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Abstract

In this work we examine the stability of some classes of integrals, in particular with
respect to homogenization. The prototypical case is the homogenization of quadratic
energies with periodic coefficients perturbed by a term vanishing at infinity, which
has been recently examined in the framework of elliptic PDE. We use localization
techniques and higher-integrability Meyers-type results to provide a closure theorem
by Γ-convergence within a large class of integral functionals. From such result we
derive stability theorems in homogenization which comprise the case of perturbations
with zero average on the whole space. The results are also extended to the stochastic
case, and specialized to the G-convergence of operators corresponding to quadratic
forms. A corresponding analysis is also carried on for non-symmetric operators using
the localization properties of H-convergence. Finally, we treat the case of perforated
domains with Neumann boundary condition, and their stability.
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1 Introduction

In this work we examine the stability of some classes of integrals, and in particular their
homogenization. The prototypical case is that of quadratic energies

ż

D

´

a0

´x

ε

¯

` ra
´x

ε

¯¯

|∇u|2 dx, (1.1)

with bounded coefficients a0,ra such that a0 and a “ a0 ` ra are strictly positive, on a
bounded subset D in Rd. Typically a0 “ aper is a periodic coefficient, and ra is considered
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as a perturbation, for which we ask the question, whether we give general conditions on
ra ensuring that such a perturbation is negligible in the problems of homogenization; that
is, when ε tends to 0. This issue has been recently widely studied in the framework of the
corresponding elliptic operators (see the discussion in Section 2).

Here, we state the problem as a general stability question for the Γ-convergence of
integral functionals, of which quadratic energies are a particular case. In particular, for
(1.1) we show that a possible condition for ra to be negligible is that |ra| has zero mean in
Rd; that is,

x|ra|yRd :“ lim
RÑ`8

1

Rd

ż

BR

|rapyq| dy “ 0. (1.2)

This condition is not necessary (this is evident from the analysis of the case d “ 1, from
which we also produce counterexamples in higher dimension), but it is handy in dealing
with a number of situations where the periodicity of the functional is perturbed.

The Γ-convergence framework gives us the possibility of extending some results in the
existing literature for quadratic forms, even though in a weaker form since it is not coupled
with a corrector result. These extensions include for example, the treatment of energies
for non-linear problems, perforated domains, and random coefficients.

The results we prove are based on the classical localization techniques of Γ-convergence
for integrals of the form

ż

D
fpx,∇uq dx for u PW 1,ppD;Rmq,

with D an open subset of Rd and f “ fpx, ξq : DˆMmˆd Ñ r0,`8q, where Mmˆd denotes
the space of m ˆ d matrices. On the one hand, this allows us to obtain compactness and
integral-representation results for equicoercive classes of integral functionals of p-growth
defined on Sobolev spaces (see Theorem 3.2) and on the other hand it allows us to de-
scribe the integrands of such functionals in terms of minimum problems on small balls
(see Theorems 3.1 and 3.4). These localization techniques, together with Meyers-type
higher-integrability estimates, are used to obtain our main result (Theorem 4.1): a closure
theorem giving a sufficient condition for sequences of functionals to be close in the sense
of Γ-convergence. In the particular case of two families of integrands fk and gk (Corollary
4.2), this result asserts that the condition

lim
ρÑ0

lim sup
kÑ`8

1

ρd

ż

Bρpxq
sup
|ξ|ďt

|fkpy, ξq ´ gkpy, ξq| dy “ 0

for all t ą 0 and almost all x P D provides a stability property; namely that, up to
subsequences

Γ- lim
kÑ`8

ż

D
fkpx,∇uq dx “ Γ- lim

kÑ`8

ż

D
gkpx,∇uq dx.
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In the case of homogenization problems, this condition is further specialized, and reads

lim
RÑ`8

1

Rd

ż

BR

sup
|ξ|ďt

|fpy, ξq ´ gpy, ξq| dy “ 0 (1.3)

for all t ą 0, in this case ensuring that

Γ- lim
εÑ0

ż

D
f
´x

ε
,∇u

¯

dx “ Γ- lim
εÑ0

ż

D
g
´x

ε
,∇u

¯

dx

if either of the two limits exists.
Those stability results extend to the stochastic case, for which condition (1.3) is now

expressed as a hypothesis involving expectations, of the form

lim
RÑ`8

1

Rd

ż

Ω

ˆ
ż

BR

sup
|ξ|ďt

|fpω, y, ξq ´ gpω, y, ξq| dy

˙

dP pωq “ 0

for all t ą 0, where pΩ, T , P q denotes the probability space in which the stochastic problem
is formulated. In this case the almost sure homogenizability of f , which is usually obtained
by statistical invariance and ergodic assumptions, implies the homogenizability of g (see
Section 5.2).

When we restrict to quadratic functionals of the form
ż

D
xApxq∇u,∇uy dx;

that is, fpx, ξq “ xApxqξ, ξy, Γ-convergence results can be translated into the corresponding
G-convergence results regarding the behaviour of elliptic problems of the form

#

´divpAk∇ukq “ φ

uk P H
1
0 pDq.

(1.4)

In this case, the condition

lim
ρÑ0

lim sup
kÑ`8

1

ρd

ż

Bρpxq
|Akpyq ´Bkpyq| dy “ 0

for almost every x ensures that the G-limits of the operators corresponding to Ak and Bk
are the same. In the case of homogenization, where Akpxq “ Apx{εkq and Bkpxq “ Bpx{εkq,
a condition providing stability is

lim sup
RÑ`8

1

Rd

ż

BR

|Apxq ´Bpxq| dx “ 0,

which reduces to (1.2) in the case of isotropic matrices as in (1.1). Similar conditions and
results can be stated also in the stochastic case.
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We can also address the case of H-convergence; that is, convergence of solutions to
problems of the form (1.4) for non-symmetric Ak. To this end, we adapt the localiza-
tion techniques introduced for minimizers (Section 4) to the case of solutions of elliptic
equations.

The final part of the article is dedicated to problems in perforated domains with Neu-
mann boundary conditions, a question related to the behaviour as εÑ 0 of functionals of
the form

FEε puq “

ż

RdzεE
|∇u|2 dx.

The analysis there is focussed on the perturbations of the perforation set E that ensure
stability of the corresponding Γ-limits.

2 Comparison with the PDE approach

We comment here upon the relation of the present work with some existing results in the
literature of the theory of partial differential equations. In the context of elliptic equations
and systems (first in divergence form and next for some other cases), homogenization
theory in the presence of perturbations in an otherwise periodic structure was developed
in the work [11] by X. Blanc, P.-L. Lions and the third author, and in the subsequent
works [12, 13, 8, 14]. In this series of works, which all follow a PDE perspective, some
necessary assumptions are limiting the applicability of the results. These assumptions
essentially are

(1) only localized perturbations are considered; that is, perturbation coefficients ã in
(1.1) that in some sense vanish at infinity (this will be made precise below);

(2) the unperturbed coefficient a0 in (1.1) is assumed periodic (this is related to the
technique of proof, which actually relies on earlier results by M. Avellaneda and F.-H. Lin
in the seminal work [4], complemented by [5, 6, 7], all precisely on the periodic case);

(3) for reasons again related to the very technique of proof the (uniform in space) Hölder
continuity of both the unperturbed coefficient and the perturbation coefficient (thus of their
sum) needs to be assumed.

The two exceptions to (3) are, on the one hand, the Hilbertian setting, when it is
assumed that ã P L2pRdq and for which the Hölder continuity of the coefficients is un-
necessary because everything is taken care of by ellipticity, and, on the other hand, the
case of equations instead of systems, for which the Nash-Moser regularity theory allows to
establish some results again without assuming the Hölder continuity.

In order to formalize (1); that is, the locality of the perturbation, the natural assumption
on the perturbation coefficients ã would be, besides the above assumptions (2)-(3), that ã
only converges to zero at infinity; that is, ãpxq Ñ 0 as |x| Ñ `8. This “natural” setting is
however not tractable mathematically. A fortiori, the (weaker) assumption (1.2), although
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very natural, in particular because it mimics what happen for averages of functions, cannot
be handled as such. Hence, the “locality” was encoded in imposing the stronger assumption

ã P LppRdq, for some 1 ď p ă `8.

Using Hölder’s inequality, this assumption clearly implies condition (1.2) on the vanishing
average.

Given these restricting assumptions, the works [11, 12, 13, 8]
(i) establish that the homogenized coefficient is left unchanged by the perturbation,
(ii) prove the existence of a suitable corrector function, adapted to the perturbation,
(iii) identify a specific rate of convergence for the residual (that is, uε minus the first

two terms of the two-scale expansion), which may be made precise depending upon the
functional space (Sobolev spaces and Hölder spaces) considered for measuring the residual,
the ambient dimension d, and the exponent p of the Lebesgue space in the condition
ã P LppRdq on the perturbation coefficient.

So, as compared to the results using the Γ-limit approach and developed in the present
article, the works [11, 12, 13, 8] use much stronger assumptions, but prove more on the
homogenization limit. They also extend to some equations and systems that are not in
divergence form and/or are not self-adjoint, as the work [14] shows. That said, as opposed
to the approach developed in the present work, the techniques of the works [11, 12, 13, 8]
do not seem to allow one to establish (i) under the only assumption (1.2).

In a related work [25] by R. Goudey, a variant of the above “local” regime was explored.
The idea therein is easily illustrated by the particular case when the perturbation ã is in
fact supported in the vicinity of the set of points in Rd that have coordinates along the
canonical axes that all are integer powers of, say, 2. Intuitively, such points become more
and more rare at infinity but never fully disappear. Such a perturbation “rare at infinity”
also satisfies condition (1.2) and so, formally, the setting of [25] is a particular instance of
that considered in the present work.

A motivation for the works [11, 12, 13, 8] arises from a preceding work [9] on nonperiodic
geometries. The underlying formalism for the theory was then originally introduced in a
slightly different (but intrinsically related) context, that of thermodynamic limit problems.
A suitable set of points tXkuZd , distributed over the ambient space Rd, is first considered.
The points are not necessarily arranged in a periodic array, but are sufficiently well orga-
nized geometrically. Prototypical functions are next constructed using translations along
this set of points; that is, functions of the form

ř

kPZd ψpx´Xkq, for ψ P C80 pRdq. If some
adequate geometric conditions are imposed on the locations of the points as well as on the
two-point, three-point etc, correlations, then it is possible to construct some algebras A of
functions that have interesting averaging properties and may be used for thermodynamic
limit problems. In a subsequent work, the construction was adapted to the context of ho-
mogenization theory, see Assumptions (H1)-(H2)-(H31) in [10, Section 5.3]. Omitting some
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technicalities, the question of developing a homogenization theory for equations with coef-
ficients a in such an algebra A then reduces to establishing the existence of a solution wp
to the corrector equation in this algebra. It is again interesting to note that the first geo-
metric condition imposed in [9, 10] ensures that the number of points within an arbitrary
ball grows at most linearly with respect to the volume of the ball. Put differently, this is a
condition on the average of the coefficient and is therefore close in spirit to condition (1.2)
used in the present work. For a recent example of a work in this line of thought, we refer
to [26].

Finally, we mention that a quasilinear setting was explored in the work [32] by S. Wolf
using the techniques introduced in the series of works mentioned above. The equation
considered in [32] involves the p-Laplacian. It reads

´div
´

a
´x

ε

¯

|∇uε|p´2 ∇uε
¯

“ fpxq,

where the coefficient a is again as above. The present article will show in Section 4 that
this case can be treated by Γ-convergence if (1.2) holds.

3 Notation and preliminaries

The fixed dimensions of a reference and target Euclidean space, respectively, will be denoted
by d ě 1 and m ě 1. The space of m ˆ d matrices is denoted by Mmˆd. If ξ P Mmˆd

then `ξ denotes the linear function x ÞÑ ξx. If D is an open subset of Rd the family of all
bounded open subsets of D will be denoted by U “ UpDq. The open ball of centre x and
radius r is denoted by Brpxq. We omit x when x “ 0. The notation 1U is used for the
characteristic function of the set U .

In the following p ą 1 will always be a fixed exponent, and α, β ą 0 with α ď β two
fixed constants. With fixed D an open subset of Rd we will consider the class F “ Fα,βpDq
of all Borel functions f : D ˆMmˆd Ñ r0,`8q satisfying

α|ξ|p ď fpx, ξq ď βp1` |ξ|pq (3.1)

for almost all x P D and ξ P Mmˆd, with fpx, ¨q quasiconvex for almost all x. We recall
that quasiconvexity implies the local Lipschitz condition

|fpx, ξq ´ fpx, ξ1q| ď Cp1` |ξ|p´1 ` |ξ1|p´1q|ξ ´ ξ1| (3.2)

for all ξ, ξ1 PMmˆd, with C depending only on α, β, d and m.
If f P F , given u PW 1,ppD;Rmq and U P U we will set

F pu, Uq “

ż

U
fpx,∇uq dx. (3.3)
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Since we will consider Γ-limits of functionals of the type F , the assumption that f is
quasiconvex is not restrictive, up to a relaxation argument (see [21, 18]), since we may
assume that F p¨, Uq is weakly lower semicontinuous in W 1,ppU ;Rmq for U P U , which is
equivalent to f being quasiconvex (in the second variable) (see [19, 20]). This will be done
throughout the article. Note that (3.1) and (3.2) imply in particular the continuity of F
in the strong topology of W 1,ppU ;Rmq.

If f P F and F is the related functional, then the values of f can be recovered from
minimum problems regarding F . Indeed, the following theorem holds (see [22]).

Theorem 3.1. Let f P F and let F be the related functional; then for almost all x P D
and for all ξ PMmˆd the limit in (3.4) exists and we have

fpx, ξq “ lim
ρÑ0

1

|Bρ|
min

 

F pv,Bρpxqq : v P `ξ `W
1,p
0 pBρpxq;Rmq

(

. (3.4)

The well-known compactness properties of functionals with integrands f P F is stated
in the following theorem [21, 19].

Theorem 3.2 (Compactness properties of the class F). Given D open subset of Rd and
fk P F there exists a subsequence (still denoted by fk) such that for all U P U the functionals
Fkp¨, Uq given by

Fkpu, Uq “

ż

U
fkpx,∇uq dx (3.5)

Γ-converge on W 1,ppD;Rmq with respect to the weak convergence in W 1,ppD;Rmq to F8p¨, Uq,
with F8 given by (3.3) for some f8 P F . Furthermore, this class enjoys the Urysohn prop-
erty; that is, Fkp¨, Uq Γ-converges to F8p¨, Uq for all U P U if and only if for all subsequence
Fkj p¨, Uq there exists a further subsequence which Γ-converges to F8p¨, Uq for all U P U .

Remark 3.3 (Extension to unbounded domains). We can extend Theorem 3.2 to U “ D,
even if D is not bounded, upon assuming that fkpx, ξq ď βpapxq` |ξ|pq for some a P L1pDq
and for all k. More precisely, we can show that if f8 is the integrand given by Theorem
3.2, then the functional

F8puq “

ż

D
f8px,∇uq dx

is the Γ-limit of the sequence

Fkpuq “

ż

D
fkpx,∇uq dx

in the weak topology of W 1,ppD;Rmq.
The Γ-liminf inequality for D follows from the corresponding inequality for U P U ,

noting that Fkpuq ě Fkpu, Uq, which is a consequence of the positiveness of fk. As for
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the Γ-limsup inequality, we recall that by the continuity of F8p¨q in W 1,ppD;Rmq it is
sufficient to construct a recovery sequence when u PW 1,ppD;Rmq has compact support in
Rd, because of the strong density of these functions inW 1,ppD;Rmq. By taking U “ BRXD,
where BR is a ball containing the support of u, Theorem 3.2 and a cut-off argument used
to match the boundary conditions [21, Chapter 21] we can find a recovery sequence uk for
F8pu, Uq in W 1,ppU ;Rmq with uk “ 0 on D X BBR. Recalling that fkpx, 0q “ 0 for all k
and almost every x, the extension to 0 of uk on DzBR provides a recovery sequence for
F8puq.

The following derivation theorem allows us to characterize Γ-convergence through the
convergence of minimum problems [22].

Theorem 3.4 (A characterization of integrands of Γ-limits). If for almost all x P D and
for all ξ PMmˆd we have

f8px, ξq “ lim sup
ρÑ0

lim sup
kÑ`8

1

|Bρ|
min

 

Fkpv,Bρpxqq : v P `ξ `W
1,p
0 pBρpxq;Rmq

(

(3.6)

“ lim sup
ρÑ0

lim inf
kÑ`8

1

|Bρ|
min

 

Fkpv,Bρpxqq : v P `ξ `W
1,p
0 pBρpxq;Rmq

(

, (3.7)

then for every U P U the sequence Fkp¨, Uq Γ-converges to F8p¨, Uq given by (3.3) with
f “ f8. Conversely, if Fkp¨, Uq Γ-converges to F8p¨, Uq with integrand f8 P F for all
U P U then for every such U there exists the limit

lim
kÑ`8

min
 

Fkpv, Uq : v P `ξ `W
1,p
0 pU ;Rmq

(

,

and we have

f8px, ξq “ lim
ρÑ0

lim
kÑ`8

1

|Bρ|
min

 

Fkpv,Bρpxqq : v P `ξ `W
1,p
0 pBρpxq;Rmq

(

(3.8)

for almost all x P D and for all ξ PMmˆd.

Finally, we recall a particular case of a higher-integrability theorem by Meyers and
Elcrat [30] (see also [24, Theorem 1] for the result in the case of an equation instead of a
system).

Theorem 3.5. (Meyers Regularity Theorem) There exists η ą 0 depending only on α, β
such that for all f P F , B an open ball contained in D, and ξ PMmˆd, the minimum points
u of

F pu,Bq “

ż

B
fpx,∇uq dx (3.9)

on `ξ `W
1,p
0 pB;Rmq belong to W 1,p`ηpB;Rmq, and

1

|B|

ż

B
|∇u|p`η dx ď Cp1`|ξ|p`ηq, (3.10)

with the constant C depending only on α, β, but not on ξ and B.
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The proof follows from [30], upon rewriting minimum problems on a common ball B1

and with boundary data given by `ξ{|ξ| (unless ξ “ 0, in which case the boundary datum is
0) by a change of variables and noting that inequalities (3.1) are maintained after change
of variables.

4 A closure theorem for Γ-convergence

The following result provides a generalization and localization of the closure theorem in
[17] (see also [19, Section 17]), with an independent proof obtained by using the derivation
formula in Theorem 3.4.

Theorem 4.1. Let fk, g
j
k be functions in F , and let Fk, G

j
k be the corresponding integral

functionals. Assume that for almost all x P D we have

lim
jÑ`8

lim sup
ρÑ0

lim sup
kÑ`8

1

ρd

ż

Bρpxq
sup
|ξ|ďt

|fkpy, ξq ´ g
j
kpy, ξq| dy “ 0 (4.1)

for all t ą 0. If for every j the sequence Gjkp¨, Uq Γ-converges to Gj8p¨, Uq as k Ñ `8 for

every U P U and gj8 P F is the corresponding integrand, then there exists the pointwise
limit g8px, ξq of gj8px, ξq for almost every x P D and ξ P Mmˆd, and Fkp¨, Uq Γ-converges
to G8p¨, Uq for all such U , where G8 is the integral functional corresponding to g8.

Proof. For every j, we assume that Gjkp¨, Uq Γ-converges to Gj8p¨, Uq as k Ñ `8, and, by
the compactness Theorem 3.2 we may also assume that Fkp¨, Uq Γ-converges to F8p¨, Uq
for every U P U . Let gj8, f8 be the integrands of Gj8 and F8, respectively. By the Urysohn
property of Γ-convergence [21, Proposition 8.3] to conclude the proof it suffices to show
that there exists the limit of gj8px, ξq as j Ñ `8 and

lim
jÑ`8

gj8px, ξq “ f8px, ξq for almost all x P D and for all ξ PMmˆd. (4.2)

For every Φ P F , ρ ą 0, ξ PMmˆd, and x P D, we set

mΦpx, ρ, ξq “ min
 

Φpv,Bρpxqq : v P `ξ `W
1,p
0 pBρpxqq

(

.

We fix ξ0 P R and x0 P D such that (3.8) holds for Gjk and gj8 for all j, and for Fk and f8.

We wish to estimate mFkpx0, ρ, ξ0q ´m
Gjkpx0, ρ, ξ0q.

With fixed j and k, let u be a minimizer of the problem defining mGjkpx0, ρ, ξ0q. We set

ψjkpx, ξq “ |g
j
kpx, ξq ´ fkpx, ξq|, (4.3)

so that we have the estimate

mFkpx0, ρ, ξ0q ď mGjkpx0, ρ, ξ0q `

ż

Bρpx0q
ψjkpy,∇uq dy. (4.4)
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For all t ą 0 let Et “ ty P Bρpx0q : |∇upyq| ą tu. By Chebyshev’s inequality we have

|Et| ď
1

tp

ż

Bρpx0q
|∇u|p dy ď 1

αtp
Gjkpu,Bρpx0qq ď

β

αtp
|Bρ|p1` |ξ0|

pq. (4.5)

By Theorem 3.5 there exist η ą 0 and C ą 0, depending only on α and β, such that (3.10)
holds, so that, by Hölder’s inequality

ż

Et

|∇u|p dy ď |Et|
η
p`η

´

ż

Bρpx0q
|∇u|p`η dy

¯

p
p`η

ď C1|Bρ|t
´

ηp
p`η (4.6)

and
ż

Bρpx0q
ψjkpy,∇uq dy ď

ż

Et

ψjkpy,∇uq dy `
ż

Bρpx0q
sup
|ξ|ďt

ψjkpy, ξq dy

ď

ż

Et

2βp1` |∇u|pq dy `
ż

Bρpx0q
sup
|ξ|ďt

ψjkpy, ξq dy

ď C2|Bρ|
´ 1

tp
`

1

t
ηp
p`η

¯

`

ż

Bρpx0q
sup
|ξ|ďt

ψjkpy, ξq dy

for some C1 and C2 depending on α, β and ξ0. Letting first k Ñ `8 we get

lim sup
kÑ`8

1

|Bρ|

ż

Bρpx0q
ψjkpy,∇uq dy ď C2

´ 1

tp
`

1

t
ηp
p`η

¯

` lim sup
kÑ`8

1

|Bρ|

ż

Bρpx0q
sup
|ξ|ďt

ψjkpy, ξq dy. (4.7)

Using (4.1) we obtain

lim sup
jÑ`8

lim sup
ρÑ0
ρPE

lim sup
kÑ`8

1

|Bρ|

ż

Bρpx0q
ψjkpy,∇uq dy ď C2

´ 1

tp
`

1

t
ηp
p`η

¯

.

so that, by (4.4) and (3.8) for f8 and gj8, we have

lim
ρÑ0

lim
kÑ`8

1

|Bρ|
mFkpx0, ρ, ξ0q ď lim inf

jÑ`8
lim
ρÑ0

lim
kÑ`8

1

|Bρ|
mGjkpx0, ρ, ξ0q ` C2

´ 1

tp
`

1

t
ηp
p`η

¯

.

Hence, after letting t tend to `8, by (3.8) (and the analog with g8 and Fk) we have

f8px0, ξ0q ď lim inf
jÑ`8

gj8px0, ξ0q. (4.8)
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To prove the opposite inequality we can proceed symmetrically, taking now u a mini-
mizer of the problem defining mFkpx0, ρ, ξ0q, which gives

mGjkpx0, ρ, ξ0q ď mFkpx0, ρ, ξ0q `

ż

Bρpx0q
ψjkpy,∇uq dy (4.9)

in the place of (4.4). The same arguments then lead to

lim sup
jÑ`8

lim
ρÑ0

lim
kÑ`8

1

|Bρ|
mGjkpx0, ρ, ξ0q ď lim

ρÑ0
lim

kÑ`8

1

|Bρ|
mFkpx0, ρ, ξ0q ` C2

´ 1

tp
`

1

t
ηp
p`η

¯

,

and eventually to
lim sup
jÑ`8

gj8px0, ξ0q ď f8px0, ξ0q. (4.10)

Finally, (4.8) and (4.10) prove claim (4.2).

As a particular case of Theorem 4.1, we have the following corollary, which provides a
sufficient condition for two sequences to have the same Γ-limit.

Corollary 4.2. Let fk, gk be two sequences of functions in F , and let Fk, Gk be the cor-
responding integral functionals. Assume that Fkp¨, Uq Γ-converges to F8p¨, Uq for every
U P U . Assume also that for almost all x P D we have

lim
ρÑ0

lim sup
kÑ`8

1

ρd

ż

Bρpxq
sup
|ξ|ďt

|fkpy, ξq ´ gkpy, ξq| dy “ 0 (4.11)

for all t ą 0. Then Gkp¨, Uq Γ-converges to F8p¨, Uq for all U P U .

We give a result of independent interest that is a consequence of Theorem 4.1. It
provides a new proof of a known property of Γ-convergence of sequences of functionals
with pointwise converging integrands.

Proposition 4.3. Let fk be a sequence in F and f8 P F , and let Fk and F8 be the
corresponding functionals. Assume that we have

lim
kÑ`8

fkpx, ξq “ f8px, ξq for almost every x P D and ξ PMmˆd. (4.12)

Then Fkp¨, Uq Γ-converges to F8p¨, Uq for every U P U .

Proof. For every j we define hj as the convex envelope of

#

0 if |ξ| ď j

βp1` |ξ|pq if |ξ| ą j.
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Note that there exists a constant Rj ą j such that hjpξq “ βp1 ` |ξ|pq if |ξ| ě Rj . We

define gjk P F as gjkpx, ξq “ maxtfkpx, ξq, hjpξqu, which converges pointwise to gj8px, ξq :“

maxtf8px, ξq, hjpξqu as k Ñ `8. Note that gj8 converge pointwise to f8; hence, the
corresponding integrals satisfy

lim
jÑ`8

Gj8pu, Uq “ F8pu, Uq (4.13)

for every u PW 1,ppD;Rmq and U P U .
By the equi-Lipschitz condition (3.2) satisfied by functions in F we have

gjkpx, ¨q Ñ gj8px, ¨q uniformly in BRj (4.14)

for almast all x P D. Let ηjk be the non-negative functions defined by

ηjkpzq “ sup
|ξďRj

|gjkpx, ξq ´ g
j
8px, ξq|.

Such functions satisfy ηjkpxq ď 2βp1` |Rj |
pq, converge to 0 for almost every x and we have

gjkpx, ξq ě gj8px, ξq ´ η
j
kpxq for almost every x P D and |ξ| ď Rj . (4.15)

Since gjkpx, ξq “ βp1` |ξ|pq “ gj8px, ξq for |ξ| ą Rj we conclude that (4.15) holds for all ξ.
Hence the corresponding integrals satisfy

Gjkpu, Uq ě Gj8pu, Uq ´

ż

U
ηjk dx (4.16)

for every u PW 1,ppD;Rmq and U P U .
Since Gj8p¨, Uq is lower semicontinuous, this implies that Γ-lim infkÑ`8G

j
kp¨, Uq ě

Gj8p¨, Uq. Since the pointwise limit of Gjkp¨, Uq is Gj8p¨, Uq as k Ñ `8, we have the

Γ-limsup inequality, and we obtain the Γ-convergence of Gjkp¨, Uq to Gj8p¨, Uq.

Trivially, |fkpx, ξq ´ gjkpx, ξq| “ 0 if |ξ| ď j, so that (4.1) holds. By Theorem 4.1 and
(4.13) we can conclude that Fk Γ-converge to F8.

5 Homogenization problems

In this section we consider homogenization problems, when the integrands fk can be ob-
tained by scaling a single integrand defined on the whole space.

12



5.1 Deterministic homogenization

We suppose that there exists f P Fα,βpRdq and εk, a positive sequence tending to 0, such
that

fkpx, ξq “ f
´ x

εk
, ξ
¯

. (5.1)

In this case fk P F and the functionals Fk take the form

Fkpu, Uq “

ż

U
f
´ x

εk
,∇u

¯

dx. (5.2)

We are interested in the case when Fkp¨, Uq has a Γ-limit F8p¨, Uq for all U P U and the
corresponding integrand f8 does not depend on x nor on the sequence εk. We then say
that f is homogenizable, and F8 and f8 are denoted by Fhom and fhom, respectively.

Theorem 3.4 provides a characterization of homogenizability thanks to (3.8). Indeed,
by a change of variables f is homogenizable if and only if for almost all x P Rd the limit

lim
ρÑ0

lim
kÑ`8

1

|B ρ
εk

|
min

"
ż

B ρ
εk

p x
εk
q

fpy,∇vq dy : v P `ξ `W
1,p
0 pB ρ

εk

p xεk
q;Rmq

*

(5.3)

exists for all ξ P Mmˆd and is independent of x and of the sequence εk. This holds in the
particular case when f is periodic in the first variable [21, 19].

We now consider a sequence of functions gj P Fα,βpRdq and the corresponding

gjkpx, ξq “ gj
´ x

εk
, ξ
¯

. (5.4)

The related functions ψjk have the form ψjkpx, ξq “ ψjp xεk , ξq, where

ψjpy, ξq “ |fpy, ξq ´ gjpy, ξq|, (5.5)

and by a change of variables hypothesis (4.11) becomes

lim
jÑ`8

lim sup
ρÑ0

lim sup
kÑ`8

εdk
ρd

ż

Bρ{εk px0{εkq
sup
|ξ|ďt

ψjpy, ξq dy “ 0 (5.6)

for almost all x0. This hypothesis is satisfied if

lim
jÑ`8

lim sup
RÑ`8

1

Rd

ż

BR

sup
|ξ|ďt

ψjpy, ξq dy “ 0 (5.7)

for all t ą 0. This observation proves the following result, which can also be found in [17].
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Theorem 5.1 (Homogenizability by approximation). Let f P Fα,βpRdq, and let gj be a
sequence in Fα,βpRdq. Assume that for all t ą 0

lim
jÑ`8

lim sup
RÑ`8

1

Rd

ż

BR

sup
|ξ|ďt

|fpy, ξq ´ gjpy, ξq| dy “ 0, (5.8)

and that each gj is homogenizable. Then f is homogenizable and

fhompξq “ lim
jÑ`8

gjhompξq

for every ξ PMmˆd.

In the particular case gj “ g we have the following stability result as a corollary.

Corollary 5.2 (Stability of homogenizability). Let f, g P Fα,βpRdq. Assume that for all
t ą 0

lim
RÑ`8

1

Rd

ż

BR

sup
|ξ|ďt

|fpy, ξq ´ gpy, ξq| dy “ 0. (5.9)

Then f is homogenizable if and only if g is homogenizable, and in this case ghom “ fhom.

The dependence of gj on j in Theorem 5.2 is justified by some homogenization results
for weakly almost-periodic functionals, which are obtained by approximation, as in the
following example.

Example 5.3 (Almost-periodic homogenization). Theorem 4.1 can be used to obtain a
homogenization theorem for quadratic forms fpy, ξq “ apyq|ξ|2 with a almost periodic in
the mean; that is, such that there exist trigonometric polynomials Pj satisfying

lim
jÑ`8

lim
RÑ`8

1

Rd

ż

BR

|Pjpyq ´ apyq| dy “ 0. (5.10)

Then we can define gjpy, ξq “ ppPjpyq _ αq ^ βq|ξ|
2, whose coefficient is uniformly almost-

periodic and hence homogenizable (see e.g. [28, 16]). By construction gj satisfy (5.8), so
that we conclude the homogenizability of f .

More in general, Theorem 4.1 can be used to obtain a homogenization theorem for
functions f P Fα,βpRdq with the property that for every ξ P Mmˆd there exists a sequence

of trigonometric polynomials P ξj such that

lim
jÑ`8

lim
RÑ`8

1

Rd

ż

BR

|P ξj pyq ´ fpy, ξq| dy “ 0. (5.11)

Indeed, if such a condition holds we can construct a family gj such that (5.8) holds
and gjp¨, ξq is almost periodic uniformly with respect to ξ (that is, with almost periods
that are independent of ξ) (see [17]), and hence homogenizable (see [16]). For details on
homogenization of uniformly almost-periodic functions and the construction of gj we refer
to [19, Chapters 15 and 17], respectively.
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5.2 Stochastic homogenization

Let pΩ, T , P q be a probability space; let Fstoc be the collection of random integrands
f “ fpω, x, ξq : Ωˆ Rd ˆMmˆd Ñ R satisfying the following properties:

(i) f is T ˆ BpRdq ˆ BpMmˆdq-measurable;
(ii) for all ω P Ω we have fpω, ¨, ¨q P Fα,βpRdq.
We suppose that Ω is equipped with a group of P -preserving transformations τz : Ω Ñ Ω

labelled by z P Zd. An integrand f P Fstoc is said to be stochastically periodic if

fpω, x` z, ξq “ fpτzpωq, x, ξq for all pω, z, x, ξq P Ωˆ Zd ˆ Rd ˆMmˆd.

The group pτzqzPZd is said to be ergodic if every set E P T such that τzpEq “ E for every
z satisfies P pEq “ 0 or P pEq “ 1.

If f P Fstoc then we use the notation fε “ fpω, x{ε, ξq and Fεpω, u, Uq for the corre-
sponding functional. The following stochastic homogenization results has been proved in
[23].

Theorem 5.4. If f is stochastically periodic then for almost all ω there exists fhom P Fstoc,
with fhom “ fhompω, ξq independent of x, such that Fεpω, ¨, Uq Γ-converge to Fhompω, ¨, Uq
corresponding to fhom for every U . Furthermore, if pτzqzPZd is also ergodic, then fhom “

fhompξq is P -almost everywhere independent of ω.

A first result for stochastic integrands is the following theorem, which can be obtained
from Theorem 5.4 by applying Corollary 5.2 to P -almost all ω P Ω.

Theorem 5.5. Let f, g P Fstoc. Assume that f is stochastically periodic, and assume that

lim
RÑ`8

1

Rd

ż

BR

sup
|ξ|ďt

|fpω, y, ξq ´ gpω, y, ξq| dy “ 0 (5.12)

for all t ą 0 and for P -almost all ω P Ω. If Gεpω, ¨, Uq is the functional with integrand
gε “ gpω, x{ε, ξq, then Gεpω, ¨, Uq Γ-converge to Fhompω, ¨, Uq given by Theorem 5.4 for
every U P U and P -almost all ω P Ω.

The pointwise condition (5.12) can be replaced by the convergence to zero of the corre-
sponding expectations. In this case the result is much weaker, since the set of probability
zero that is excluded may depend on the sequences εk and εkj we are considering.

Theorem 5.6. Let f, g P Fstoc. Assume that f is stochastically periodic, and assume that

lim
RÑ`8

1

Rd

ż

Ω

ˆ
ż

BR

sup
|ξ|ďt

|fpω, y, ξq ´ gpω, y, ξq| dy

˙

dP pωq “ 0 (5.13)

for all t ą 0. Then for every sequence εk Ñ 0` there exists a subsequence εkj such that
Gεkj pω, ¨, Uq Γ-converges to Fhompω, ¨, Uq for P -almost all ω P Ω and for every U P U .
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Proof. We fix a sequence εk Ñ 0`. In analogy with the notation in the previous sections,
we set

ψpω, y, ξq :“ |fpω, y, ξq ´ gpω, y, ξq|.

With fixed n P N, we set Rk “ n{εk, and observe that (5.13) implies that

lim
kÑ`8

1

Rdk

ż

Ω

ˆ
ż

BRk

sup
|ξ|ďt

ψpω, y, ξq dy

˙

dP pωq “ 0. (5.14)

By the change of variable y “ x
εk

we then also have

lim
kÑ`8

1

nd

ż

Ω

ˆ
ż

Bn

sup
|ξ|ďt

ψ
´

ω,
x

εk
, ξ
¯

dx

˙

dP pωq “ 0. (5.15)

Hence, there exists a subsequence εkj such that

lim
jÑ`8

ż

Bn

sup
|ξ|ďt

ψ
´

ω,
x

εkj
, ξ
¯

dx “ 0 (5.16)

for P -almost every ω P Ω. By a diagonal argument we can suppose that the subsequence
εkj does not depend on n P N. We now fix ω P Ω such that (5.16) holds for every n P N.

For every x0 P Rd and every ρ ą 0 there exists n P N such that Bρpx0q Ă Bn. By (5.16)
this implies that

lim
jÑ`8

1

ρd

ż

Bρpx0q
sup
|ξ|ďt

ψ
´

ω,
x

εkj
, ξ
¯

dx “ 0.

By Corollary 4.2 we then deduce that Gεkj pω, ¨, Uq Γ-converge to Fhompω, ¨, Uq.

6 G-convergence

The results of the previous sections can be translated into results about the G-convergence
of elliptic operators according to the following definition. A more direct approach, but
based on the same ideas, will be described in the next section. For simplicity of exposition
in this and the next sections we treat only problems for scalar-valued functions, but all
results remain valid, with obvious modifications, for vector-valued u.

We assume that D is an open set of Rd, and Mdˆd
sym denotes the space of symmetric dˆd

matrices. Given α, β ą 0 with α ď β, we let Msym “ Msym
α,β pDq denote the family of all

measurable A : D ÑMdˆd
sym , such that

α|ξ|2 ď xApxqξ, ξy ď β|ξ|2 for almost all x P D and all ξ P Rd. (6.1)
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Definition 6.1. Let D be a bounded open set in Rd, let Ak be a sequence in Msym, and
let A P Msym. We say that Ak G-converges to A if for all φ P H´1pDq the sequence of
solutions uk in the sense of distribution of

#

´divpAk∇ukq “ φ

uk P H
1
0 pDq

converge weakly in H1
0 pDq to the solution u of

#

´divpA∇uq “ φ

u P H1
0 pDq.

For the connection between G-convergence and spectral convergence of the elliptic
operators we refer to [15, Teorema 4.1] (see also [3, Section 3.9.1]). The link between
G-convergence and Γ-convergence is given by the following theorem (see [21, Section 22]).

Theorem 6.2. Let D be a bounded open set in Rd, let Ak, A PMsym, and for every U P U
let Fkp¨, Uq, F p¨, Uq be the quadratic functionals defined in H1pDq by

Fkpu, Uq “

ż

U
xAkpxq∇u,∇uy dx, F pu, Uq “

ż

U
xApxq∇u,∇uy dx.

Then the following conditions are equivalent.
(a) Ak G-converges to A;
(b) Fkp¨, Uq Γ-converges to F p¨, Uq for every open set U P U .

From this equivalence, Theorem 4.1 translates into the following result, after remarking
that for Bj

8, B8 P Mdˆd
sym the convergence of xBj

8ξ, ξy to xB8ξ, ξy for all ξ is equivalent to

the convergence of Bj
8 to B8 by the polarization identity.

Theorem 6.3. Let D be a bounded open set in Rd and let Ak, B
j
k be matrices in Msym.

Assume that for almost all x P D we have

lim
jÑ`8

lim sup
ρÑ0

lim sup
kÑ`8

1

ρd

ż

Bρpxq
|Akpyq ´B

j
kpyq| dy “ 0. (6.2)

If Bj
k G-converge to Bj

8 then there exists the pointwise limit B8 of Bj
8 and Ak G-converges

to B8.

As for Corollary 4.2, from Theorem 6.3 we obtain the following result.

Corollary 6.4. Let D be a bounded open set in Rd, and let Ak, Bk be two matrix-valued
sequences in Msym. Assume that Ak G-converges to A. Assume also that for almost all
x P D we have

lim
ρÑ0

lim sup
kÑ`8

1

ρd

ż

Bρpxq
|Akpyq ´Bkpyq| dy “ 0. (6.3)

Then Bk G-converges to A.
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Remark 6.5. Note that condition (6.3) is satisfied if Akpyq ´ Bkpyq Ñ 0 for almost all
y P D, since we can apply the Dominated Convergence Theorem thanks to (6.1).

Remark 6.6. If Ak and Bk satisfy (6.3), for given φ P L2pDq, let uk, vk be the solutions
to

#

´divpAk∇ukq “ φ

uk P H
1
0 pDq

#

´divpBk∇vkq “ φ

vk P H
1
0 pDq.

Then the difference uk´ vk tends to 0 weakly in H1
0 pDq. By the compactness of G-conver-

gence, which we can deduce from Theorems 6.2 and Theorem 3.2, passing to a subsequence
we can assume that Ak G-converges to some A, and apply Corollary 6.4 and the definition
of G-convergence. We then obtain that uk and vk converge to the same function weakly in
H1

0 pDq; hence, uk ´ vk tends to 0 weakly in H1
0 pDq. Since the limit does not depend on

the subsequence we deduce the convergence of the full sequence.

Remark 6.7. In the one-dimensional case, G-convergence of ak to a is equivalent to the
weak˚ convergence of 1

ak
to 1

a0
in L8pDq. Hence, we have that the necessary and sufficient

condition for ak and bk to have the same G-limit is that 1{ak weakly˚ converges in L8pDq,
and

1

ak
´

1

bk
á 0 weakly˚ in L8pDq. (6.4)

We note that condition (4.11), which translates into

lim
ρÑ0

lim sup
kÑ`8

1

ρ

ż

Bρpxq
|akpyq ´ bkpyq| dy “ 0, (6.5)

implies (6.4). Indeed, let θ be the weak˚ limit of 1
ak
´ 1

bk
. For almost all x P D, we have

|θpxq| “

ˇ

ˇ

ˇ

ˇ

lim
ρÑ0

lim
kÑ`8

1

2ρ

ż

Bρpxq

´ 1

akpyq
´

1

bkpyq

¯

dy

ˇ

ˇ

ˇ

ˇ

“ lim
ρÑ0

lim
kÑ`8

ˇ

ˇ

ˇ

ˇ

1

2ρ

ż

Bρpxq

´bkpyq ´ akpyq

akpyqbkpyq

¯

dy

ˇ

ˇ

ˇ

ˇ

ď lim
ρÑ0

lim
kÑ`8

1

2α2ρ

ż

Bρpxq
|bkpyq ´ akpyq| dy “ 0

by (6.5). Hence θpxq “ 0 for almost all x P D.
Conversely, note that (6.3) is not necessary. Indeed, take a and b two 1-periodic func-

tions taking values in rα, βs such that

ż 1

0

1

apyq
dy “

ż 1

0

1

bpyq
dy but apyq ‰ bpyq on a set of non-zero measure.
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If akpxq “ apkxq and bkpxq “ bpkxq then (6.4) holds, but, by the weak˚-limit of |ak ´ bk|
to the constant

ş1
0 |apyq ´ bpyq|dy, we have

lim
ρÑ0

lim
kÑ`8

1

ρ

ż

Bρpxq
|akpyq ´ bkpyq| dy “ 2

ż 1

0
|apyq ´ bpyq| dy ‰ 0,

and (6.5) does not hold.
For non-quadratic energies in dimension one similar arguments can be used to obtain

Corollary 4.2 remarking that Γ-convergence is characterized as the weak convergence of
the Legendre transforms of the integrands (Theorem 2.35 in [18]).

Remark 6.8. In dimension d ě 2, we consider the case of layered materials, for which
Akpxq “ apkx1qI, where I is the identity matrix and a is a 1 periodic function on R as
in the previous example. In this case, the homogenized matrix Ahom is diagonal, whose
11-entry is the harmonic mean of a, while the other diagonal entries are all equal to the
average of a. Hence, if a and b are periodic functions with the same harmonic means and
averages, they produce the same homogenized matrix, although in general hypothesis (6.5)
does not hold.

A trivial case is when aptq “ α for 0 ď t ă 1
2 and aptq “ β for 1

2 ď t ă 1, while bptq “ β
for 0 ď t ă 1

2 and bptq “ α for 1
2 ď t ă 1, so that |aptq ´ bptq| “ β ´ α for all t.

We now consider homogenization problems in the context of G-convergence, when the
matrix-valued Ak PMsym

α,β pDq can be obtained by scaling a single A defined on the whole

space; namely, there exists A P Msym
α,β pR

dq and εk, a positive sequence tending to 0, such
that

Akpxq “ A
´ x

εk

¯

. (6.6)

We say that A is homogenizable, if for all bounded open sets D the sequence Ak G-converges
to some Ahom independent of x and of the sequence εk.

Theorem 5.1 translates into the following result.

Theorem 6.9 (Homogenizability by approximation). Let A PMsym
α,β pR

dq, and let Bj be a

sequence in Msym
α,β pR

dq. Assume that

lim
jÑ`8

lim sup
RÑ`8

1

Rd

ż

BR

|Apxq ´Bjpxq| dx “ 0, (6.7)

and that each Bj is homogenizable. Then A is homogenizable and Ahom “ lim
jÑ`8

Bj
hom.

In the particular case Bj “ B we have the following stability result as a corollary.
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Corollary 6.10 (Stability of homogenizability). Let A,B PMsym
α,β pR

dq. Assume that

lim
RÑ`8

1

Rd

ż

BR

|Apxq ´Bpxq| dx “ 0. (6.8)

Then A is homogenizable if and only if B is homogenizable, and in this case Ahom “ Bhom.

Note that (6.7) and (6.8) are satisfied if A ´ Bj and A ´ B, respectively, belongs to
LppRdq for some p P r1,`8q.

Remark 6.11. As noted in Remark 6.7, condition (6.8) is not necessary to the validity of
the claim. Again resorting to the one-dimensional case, in which we have functions a, b in
the place of matrices A,B, for which condition (6.8) reads

lim
RÑ`8

1

R

ż R

´R
|apyq ´ bpyq| dx “ 0, (6.9)

we also see that the weaker condition

lim
RÑ`8

1

R

ż R

´R
papyq ´ bpyqq dx “ 0 (6.10)

does not allow to deduce the homogenizability of a from that of b. To check this, it suffices
to take b identically equal to a positive constant γ P pα, βq, and

apxq “

#

γ ` c if x ě 0

γ ´ c if x ă 0,

with c a constant such that γ ˘ c P pα, βq. Then (6.10) holds but a is not homogenizable.
Indeed, ak “ a do not depend on k, so that they G-converge to a.

Finally, we specialize G-convergence to the stochastic case. Let pΩ, T , P q be a proba-
bility space; let Mstoc be the collection of random matrices A “ Apω, xq : ΩˆRd ÑMdˆd

sym

satisfying the following properties:
(i) A is T ˆ BpRdq-measurable;
(ii) for all ω P Ω we have Apω, ¨q PMsym

α,β pR
dq.

Given a group of P -preserving transformations the notion of stochastic periodicity is
obtained by modifying the definition in Section 5.2. If A PMstoc is stochastically periodic,
then from [29, 27, 23] we have that for almost all ω the matrix Apω, ¨q is homogenizable.
The following result is an immediate consequence of Theorem 5.6.

Theorem 6.12. Let A,B PMstoc, with A stochastically periodic, and for P -almost every
ω P Ω let Ahompωq be its homogenized matrix. Assume in addition that

lim
RÑ`8

1

Rd

ż

Ω

´

ż

BR

|Apω, xq ´Bpω, xq| dx
¯

dP pωq “ 0. (6.11)

Then, given a sequence εk of positive numbers converging to 0 there exists a subsequence
εkj such that Bjpω, xq “ B

`

ω, x
εkj

˘

G-converges to Ahompωq almost surely.
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7 H-convergence

Non-symmetric elliptic operators fall in the range of application of the stability results by
Γ-convergence only upon significantly modifying the classical setting in Section 6 and using
differential constraints (see [2] for details). In this section we follow a more direct approach,
which avoids the use of Γ-convergence. Although we cannot exploit the results of Sections
3 and 4, we follow the same ideas based on compactness and localisation arguments.

Since we may also consider non-symmetric matrices, for α, β ą 0 with α ď β, and D an
open set in Rd we let M “Mα,βpDq denote the family of all measurable A : D Ñ Mdˆd,
such that

α|ξ|2 ď xApxqξ, ξy and |ξ|2 ď βxA´1pxqξ, ξy for almost all x P D and ξ P Rd. (7.1)

Definition 7.1. Let D be a bounded open set, Ak be a sequence in Mα,βpDq. We say that
Ak H-converges to A PMα,βpDq if for all φ P H´1pDq the sequence of solutions uk in the
sense of distribution of

#

´divpAk∇ukq “ φ

uk P H
1
0 pDq

converges weakly in H1
0 pDq to the solution u of

#

´divpA∇uq “ φ

u P H1
0 pDq ,

and we also have Ak∇uk á A∇u weakly in L2pD;Rdq.

Remark 7.2 (Localization of H-convergence). Let Ak H-converge to A. It is proven in
[31] that if D1 is an open subset of D and w P H1pD1q then the sequence of solutions uk in
the sense of distribution of

#

´divpAk∇ukq “ φ

uk ´ w P H
1
0 pD

1q

converges weakly in H1pD1q to the solution u of

#

´divpA∇uq “ φ

u´ w P H1
0 pD

1q ,

and we also have Ak∇uk á A∇u weakly in L2pD1;Rdq.

The corresponding result to Theorem 3.1 is the following derivation formula, where now
`ξpxq “ xξ, xy denotes the scalar linear function with gradient ξ.
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Theorem 7.3. Let A PM, and let x0 be a Lebesgue point of A, and let ξ P Rd. For every
ρ ą 0 consider the problem

#

´divpA∇uρq “ 0

uρ ´ `ξ P H
1
0 pBρpx0qq.

(7.2)

Then we have

Apx0qξ “ lim
ρÑ0

1

|Bρ|

ż

Bρpx0q
A∇uρ dx. (7.3)

Proof. For notational simplicity, we can assume that x0 “ 0. For y P B1 we define Aρpyq “
Apρyq, and vρpyq “

1
ρuρpρyq, so that equation (7.2) is rewritten as

#

´divpAρ∇vρq “ 0

vρ ´ `ξ P H
1
0 pB1q.

(7.4)

Since 0 is a Lebesque point for A, we have Aρ Ñ Ap0q in L1pB1q, so that, by [31] we also
have the corresponding H-convergence, which implies that Aρ∇vρ tends to Ap0q∇v, where
v is the unique solution to

#

´divpAp0q∇vq “ 0

v ´ `ξ P H
1
0 pB1q ,

(7.5)

which coincides with `ξ. This implies (7.3) after a change of variables.

The analog of Corollary 4.2 is the following result.

Theorem 7.4 (Stability of H-convergence). Let Ak, Bk be two sequences of matrices in
M. Assume that Ak H-converges to A in D. Assume also that for almost all x P D we
have

lim
ρÑ0

lim sup
kÑ`8

1

ρd

ż

Bρpxq
|Ak ´Bk| dy “ 0. (7.6)

Then also Bk H-converges to A. Furthermore, if A,B P Mα,βpRdq and (6.8) holds, then
A is homogenizable if and only if B is homogenizable, and in this case Ahom “ Bhom.

Proof. By the compactness ofH-convergence (see [31]) we may assume thatBk H-converges
to B, so that we only have to prove that B “ A almost everywhere. We fix x0 a Lebesgue
point for both A and B. For notational simplicity, we can assume that x0 “ 0.

Let ξ P Rd and consider the solutions uρk and vρk to

#

´divpAk∇uρkq “ 0

uρk ´ `ξ P H
1
0 pBρq,

#

´divpBk∇vρkq “ 0

vρk ´ `ξ P H
1
0 pBρq,

(7.7)
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respectively. Moreover, we also consider the solutions uρ and vρ to

#

´divpA∇uρq “ 0

uρ ´ `ξ P H
1
0 pBρq,

#

´divpB∇vρq “ 0

vρ ´ `ξ P H
1
0 pBρq,

(7.8)

respectively. By Remark 7.2 we have

lim
kÑ`8

ż

Bρ

pAk∇uρk ´Bk∇v
ρ
kq dy “

ż

Bρ

pA∇uρ ´B∇vρq dy. (7.9)

In order to show that Ap0q “ Bp0q, by (7.3) and the arbitrariness of ξ it is then equivalent
to show that

lim
ρÑ0

lim
kÑ`8

1

|Bρ|

ż

Bρ

pAk∇uρk ´Bk∇v
ρ
kq dy “ 0. (7.10)

To that end, we write

ˇ

ˇ

ˇ

1

|Bρ|

ż

Bρ

pAk∇uρk ´Bk∇v
ρ
kq dy

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

1

|Bρ|

ż

Bρ

ppAk ´Bkq∇uρk `Bkp∇u
ρ
k ´∇vρkqq dy

ˇ

ˇ

ˇ

ď
1

|Bρ|

ż

Bρ

|Ak ´Bk||∇uρk| dy `
1

|Bρ|

ż

Bρ

|Bk||∇uρk ´∇vρk| dy

ď

´ 1

|Bρ|

ż

Bρ

|Ak ´Bk|
2 dy

¯
1
2
´ 1

|Bρ|

ż

Bρ

|∇uρk|
2 dy

¯
1
2

`

´ 1

|Bρ|

ż

Bρ

|Bk|
2 dy

¯
1
2
´ 1

|Bρ|

ż

Bρ

|∇uρk ´∇vρk|
2 dy

¯
1
2
. (7.11)

Note that

lim
ρÑ0

lim
kÑ`8

1

|Bρ|

ż

Bρ

|Ak ´Bk|
2 dy “ 0 and

1

|Bρ|

ż

Bρ

|Bk|
2 dy ď β2

by (7.6) and (7.1). By multiplying the left-hand equation in (7.7) by uρk´`ξ and integrating
on Bρ we obtain

1

|Bρ|

ż

Bρ

|∇uρk|
2 dy ď

β2

α2
|ξ|2

for all k and ρ. In order to estimate the last term in (7.11) we note that

#

´divpAkp∇uρk ´∇vρkqq “ divppAk ´Bkq∇vρkqq
uρk ´ v

ρ
k P H

1
0 pBρq

(7.12)
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by (7.7). Multiplying the equation in (7.12) by uρk ´ vρk and integrating on Bρ we get, if
1
p `

1
q “

1
2 ,

α

|Bρ|

ż

Bρ

|∇uρk ´∇vρk|
2 dy ď

1

|Bρ|

ż

Bρ

|Ak ´Bk||∇vρk||∇u
ρ
k ´∇vρk| dy

ď

´ 1

|Bρ|

ż

Bρ

|Ak ´Bk|
p dy

¯
1
p
´ 1

|Bρ|

ż

Bρ

|∇vρk|
q dy

¯
1
q
´ 1

|Bρ|

ż

Bρ

|∇uρk ´∇vρk|
2 dy

¯
1
2
,

so that

´ 1

|Bρ|

ż

Bρ

|∇uρk ´∇vρk|
2 dy

¯
1
2
ď

1

α

´ 1

|Bρ|

ż

Bρ

|Ak ´Bk|
p dy

¯
1
p
´ 1

|Bρ|

ż

Bρ

|∇vρk|
q dy

¯
1
q
.

In order to show that this last right-hand side tends to 0 as k Ñ `8 it suffices to show that
there exists q ą 2 such that the last term is bounded uniformly with respect to ρ and k.
To this end, we define the scaled functions zρkpxq “

1
ρv

ρ
kpρxq and matrices Bρ

kpxq “ Bkpρxq,
and note that they satisfy

#

´divpBρ
k∇z

ρ
kq “ 0

zρk ´ `ξ P H
1
0 pB1q.

(7.13)

By the Meyers-Elcrat higher-integrability theorem [30, Theorem 2] (see also [24]), there
exists q ą 2, and C ą 0, independent of ρ and k, such that

1

|Bρ|

ż

Bρ

|∇vρk|
q dy “

1

|B1|

ż

B1

|∇zρk|
q dy ď C,

which proves the claim.

Let A PMα,βpRdq, let εk be a positive sequence tending to 0, and let

Akpxq “ A
´ x

εk

¯

. (7.14)

We say that A is homogenizable if Ak H-converges to some Ahom independent of x and of
the sequence εk.

Corollary 7.5. If A,B PMα,βpRdq and (6.8) holds, then A is homogenizable if and only
if B is homogenizable, and in this case Ahom “ Bhom.

Proof. It suffices to note that (6.8) guarantees the validity of (7.6) thanks to the change
of variables as in (5.6) and (5.7).

Finally, we note that the same remarks as for G-convergence at the end of Section 6
also hold for the stochastic homogenization by H-convergence.
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8 Perforated domains with Neumann boundary conditions

We now show how we can derive a stability result for the homogenization of minimum
problems in perforated domains. We only treat the quadratic case in order to concentrate
on the role of the perforations.

8.1 General assumptions

We consider closed sets E Ă Rd such that there exists an extension operator T : H1pRdzEq Ñ
H1pRdq satisfying the following properties

Tupxq “ upxq for almost all x P RdzE, (8.1)

}∇Tu}L2pRdq ď C}∇u}L2pRdzEq (8.2)

for some constant C ą 0. Note that (8.2) implies the connectedness of RdzE. In the case of
bounded domains D, the definition of extension operator is more technically complex since
it must take into account that BD may disconnect the set E; we refer to [1] for details.

Properties (8.1) and (8.2) are satisfied if RdzE is connected and with Lipschitz boundary
[1]. A non-periodic example is given by sets E “

ř

iEi such that Ei Ă Bripxiq with
BripxiqXBrj pxjq “ H and such that there exists a constant C ą 0 and extension operators
Ti : H1pBripxiqzEiq Ñ H1pBripxiqq such that Tiupxq “ upxq for almost all x P BripxiqzEi
and }∇Tiu}L2pBri pxiqq

ď C}∇u}L2pBri pxiqzEiq
. The simplest situation is when Ei is a smaller

ball concentric with Bripxiq. To check this it suffices to construct an extension operator
when E is the ball of radius 2 and centre 0. We then define

T puqpxq “

$

’

&

’

%

u if |x| ă 1

p|x| ´ 1qupLpxqq ` p2´ |x|qu if 1 ď |x| ă 2

upxq if |x| ą 2,

where Lpxq “ p4´ |x|q x
|x| for 1 ă |x| ă 2 and

u “
1

|B3zB2|

ż

B3zB2

upxq dx.

Then
ż

B2

|∇Tu|2 dx ď C 1
ż

B3zB2

p|∇u|2 ` |u´ u|2q dx,

and (8.2) follows by the Poincaré inequality. Since the constant C in (8.2) for E “ B2

is invariant by homothety, we can define an extension operator separately for each ball
maintaining the same constant.

Note that if E satisfies (8.1) and (8.2), then for all ε ą 0 there exists an extension
operator Tε for εE satisfying (8.1) and (8.2) with the same constant C independent of ε.
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In order to avoid trivial limits we suppose that

lim inf
RÑ`8

|BRzE|

Rd
ą 0. (8.3)

This condition implies that the weak limits ψ of characteristic functions 1RdzεE satisfy
ψ ą 0 almost everywhere.

8.2 Stability for perforated domains

We consider functionals

FEε puq “

ż

RdzεE
|∇u|2 dx (8.4)

defined on H1pRdq. Our goal is to compare the asymptotic behaviour of such functionals
for different E in the spirit of the stability results. The corresponding Γ-limits will be
computed in the space H1pRdq endowed with the L2

loc-topology. In the following section
we will examine the relation between Γ-convergence and the solutions to some minimum
problems on perforated domains.

Theorem 8.1 (Perturbations of perforated domains). Let E and E1 be two closed sets
satisfying the extension properties (8.1) and (8.2), and such that

lim
RÑ`8

1

Rd
|pE4E1q XBR| “ 0, (8.5)

where E4E1 :“ pEzE1q Y pE1zEq denotes the symmetric difference between the sets. Sup-
pose that E satisfies (8.3) and that Γ-limit of FEεk as k Ñ `8 exists for some εk Ñ 0.

Then there exists the Γ-limit of FE
1

εk
as k Ñ `8, and the two Γ-limits are equal.

Remark 8.2. An example in which (8.5) is satisfied is when E is a 1-periodic set and
E1 “ ΦpEq, where Φ : Rd Ñ Rd is a diffeomorphism with

lim
|x|Ñ`8

|Φpxq ´ x| “ 0. (8.6)

This is a consequence of the fact that |pE4ΦpEqq X pk ` r0, 1sdq| Ñ 0 as k P Zd tends to
8, which is obtained by the periodicity of E and the Dominated Convergence Theorem.

Another example in which (8.5) is satisfied trivially is by taking E “ H and E1 a set
“vanishing at infinity”; that is, such that

lim
RÑ`8

1

Rd
|E1 XBR| “ 0. (8.7)
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In order to refer to the setting of the previous sections, we introduce some coefficients
as follows. We first set

aEpxq “

#

1 if x P RdzE
0 if x P E ,

(8.8)

so that we have

FEε puq “

ż

Rd
aE

´x

ε

¯

|∇u|2 dx (8.9)

on H1pRdq.
Moreover, for all n P N we define

aE,npxq “

#

1 if x P RdzE
1
n if x P E

(8.10)

and

FE,nε puq “

ż

Rd
aE,n

´x

ε

¯

|∇u|2 dx (8.11)

on H1pRdq. We introduce analogous coefficients and functionals with E1 in the place of E.
Note that the integrands of (8.11) belong to the class F with p “ 2, α “ 1

n , and
β “ 1, while the integrands of (8.9) do not satisfy a growth condition from below on the
perforation.

Lemma 8.3. Let E be a set satisfying extension properties (8.1) and (8.2) and density
property (8.3). Then for every n P N and for every sequence εk Ñ 0 we have

Γ- lim inf
kÑ`8

FEεk ď Γ- lim inf
kÑ`8

FE,nεk
ď

´

1`
C2

n

¯

Γ- lim inf
kÑ`8

FEεk (8.12)

Γ- lim sup
kÑ`8

FEεk ď Γ- lim sup
kÑ`8

FE,ηεk
ď

´

1`
C2

n

¯

Γ- lim sup
kÑ`8

FEεk , (8.13)

where C is the constant in (8.2).

Proof. We only prove (8.12), the proof of (8.13) being analogous. The first inequality
is trivial; to prove the second inequality we fix u and a sequence uk converging to u in
L2

locpRdq such that
Γ- lim inf

kÑ`8
FEεkpuq “ lim inf

kÑ`8
FEεkpukq.

We set vk “ Tεkpuk|RdzεkEq and note that, for each smooth connected U P U , up to

subsequences, we can suppose that vk converges to some v in L2pUq. This follows from
the bound on ∇vk, which implies pre-compactness up to a sequence of additive constants,
and the fact that vk “ uk on RdzεkE, which implies that this sequence of constants
is bounded, and hence pre-compactness without addition of a constant. Note that from
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0 “ puk´vkq1RdzεkE and the convergence of uk to u and vk to v we deduce that 0 “ pu´vqψ

on each such U , where ψ is a weak˚ limit in L8pRdq of 1RdzεkE . Since ψ ą 0 almost

everywhere by (8.3) we deduce that u “ v almost everywhere in Rd. Then

Γ- lim inf
kÑ`8

FE,nεk
puq ď lim inf

kÑ`8
FE,nεk

pvkq “ lim inf
kÑ`8

´

FEεkpvkq `
1

n

ż

εkE
|∇vk|2 dx

¯

ď lim inf
kÑ`8

´

FEεkpukq `
1

n

ż

Rd
|∇vk|2 dx

¯

ď lim inf
kÑ`8

´

FEεkpukq `
1

n
C2

ż

RdzεE
|∇uk|2 dx

¯

“

´

1`
C2

n

¯

Γ- lim inf
kÑ`8

FEεkpuq,

which proves the claim.

Note that the argument in the first part of the proof of the lemma shows that if (8.3)
holds and we have two such extension operators Tε and rTε, if we have the strong convergence
of Tεuε to u and rTεuε to ru in L1pBRq for all R, then we have

ψu “ lim
εÑ0

1BRzεETεuε “ lim
εÑ0

1BRzεEuε “ lim
εÑ0

1BRzεE
rTεuε “ ψru in BR,

which implies ru “ u almost everywhere since ψ ą 0 and R is arbitrary.

Proof of Theorem 8.1. With fixed n P N, we define

fnk px, ξq “ aE,n
` x

εk

˘

|ξ|2 and gnk py, ξq “ aE
1,n
` x

εk

˘

|ξ|2.

We check that fk “ fnk and gk “ fnk satisfy (4.11) in Corollary 4.2. Since Bρ{εkpx{εkq Ă
Bp|x|`ρq{εk , we deduce that for each fixed ρ ą 0 we have

lim sup
kÑ`8

1

ρd

ż

Bρpxq
sup
|ξ|ďt

|fkpy, ξq ´ gkpy, ξq| dy

“ t2 lim sup
kÑ`8

1

ρd

ż

Bρpxq

ˇ

ˇ

ˇ
aE,np

y

εk
q ´ aE

1,np
y

εk
q

ˇ

ˇ

ˇ
dy

“ t2 lim sup
kÑ`8

εdk
ρd

ż

B ρ
εk

p x
εk
q

|aE,ηpyq ´ aE
1,ηpyq|dy

ď t2
p|x| ` ρqd

ρd
lim

RÑ`8

1

Rd

ż

BR

|aE,ηpyq ´ aE
1,ηpyq|dy

“ t2
p|x| ` ρqd

ρd

´

1´
1

n

¯

lim
RÑ`8

|pE4E1q XBR|
Rd

“ 0
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by (8.5), and (4.11) is satisfied. Thanks to Theorem 3.2 the convergence hypothesis of
Corollary 4.2 is satisfied up to passing to a subsequence. Hence, the integrands corre-

sponding to the Γ-limits of the localized functionals FE,nεk p¨, Uq and FE
1,n

εk p¨, Uq coincide.
Thanks to Remark 3.3 this ensures the existence and equality of the corresponding Γ-limits
on Rd; that is, in the notation (8.11), that

Γ- lim
kÑ`8

FE,nεk
“ Γ- lim

kÑ`8
FE

1,n
εk

.

By the existence of the limit for E and Lemma 8.3, we have

Γ- lim
kÑ`8

FE,nεk
ď

´

1`
C2

n

¯

Γ- lim inf
kÑ`8

FEεk

ď

´

1`
C2

n

¯

Γ- lim sup
kÑ`8

FEεk ď
´

1`
C2

n

¯

Γ- lim
kÑ`8

FE,nεk
. (8.14)

The same argument applied to E1 gives

Γ- lim
kÑ`8

FE
1,n

εk
ď

´

1`
C2

n

¯

Γ- lim inf
kÑ`8

FE
1

εk

ď

´

1`
C2

n

¯

Γ- lim sup
kÑ`8

FE
1

εk
ď

´

1`
C2

n

¯

Γ- lim
kÑ`8

FE
1,n

εk
. (8.15)

We now set
F0 “ lim

nÑ`8

`

Γ- lim
kÑ`8

FE,nεk

˘

“ lim
nÑ`8

`

Γ- lim
kÑ`8

FE
1,n

εk

˘

,

which exists since the functionals are decreasing in n. Letting nÑ `8 in (8.14) and (8.15)
we then have the existence of the limits, and equality

Γ- lim
kÑ`8

FEεk “ Γ- lim
kÑ`8

FE
1

εk
“ F0.

Since the limit is independent of the subsequence used in the application of the compactness
theorem, by the Urysohn property of Γ-convergence (see [21]) we conclude that the equality
holds for the original sequence, and the claim.

8.3 Convergence of solutions of minimum problems

Let E Ă Rd be a closed set satisfying (8.1), (8.2) and such that there exists c0 for which

lim inf
RÑ`8

|BRzE|

Rd
ě c0 ą 0, (8.16)

which is a slightly stronger version of (8.3). We suppose that the Γ-limit FEhom of FEε as
εÑ 0 exists. In particular this holds if RdzE is a connected Lipschitz domain.
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We fix λ ą 0, f P L2pRdq, and we study the convergence of solutions of minimum
problems for energies of the form

F λε puq “

ż

RdzεE
p|∇u|2 ` λu2 ´ 2fuq dx (8.17)

defined on H1pRdzεEq.

Proposition 8.4 (Convergence of minimum problems). Let E satisfy the conditions above,
and let T and Tε be the corresponding extension operators. Assume that there exists the
weak limit ψ of the characteristic functions 1RdzεE. Let uε be the minimizer of F λε in (8.17).

Then Tεpuεq converge weakly in H1pRdq to the minimizer u of

F λhompuq “ FEhompuq `

ż

Rd
pλu2 ´ 2fuqψ dx. (8.18)

Theorem 8.1 will guarantee the stability of this convergence with respect to perturba-
tions satisfying (8.5). Indeed, if we consider another set E1 satisfying the hypotheses of
Theorem 8.1, (8.5) guarantees that ψ is the same for E and E1.

We precede the proof of Proposition 8.4 by the representation of F λhom as in the following
lemma.

Lemma 8.5. There exists a measurable symmetric matrix Ahom : Rd Ñ Mdˆd satisfying
the boundedness and ellipticity conditions

1

C
|ξ|2 ď xAhompxqξ, ξy ď |ξ|

2 for almost all x P Rd and all ξ P Rd, (8.19)

where C is the constant in (8.2), such that the Γ-limit of (8.4) takes the form

FEhompuq “

ż

Rd
xAhompxq∇u,∇uy dx (8.20)

for every u P H1pRdq.

Proof. The representation of (8.20) and the boundedness inequality in (8.19) can be proved
as in [21, Theorem 22.1]. In order to prove the ellipticity condition in (8.19), we first show
that

ż

Rd
xAhompxq∇u,∇uy dx ě

1

C

ż

Rd
|∇u|2 dx (8.21)

for u with compact support. By the definition of Γ-convergence there exists a sequence uε
converging to u in L2

locpRdq such that

lim
εÑ0

ż

RdzεE
|∇uε|2 dx “

ż

Rd
xAhompxq∇u,∇uy dx.
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By a cut-off argument, multiplying by a function that is 1 on the support of u, we can also
assume that the functions uε have support contained in a common compact set K, so that
they strongly converge in L2pRdq. Let R be large enough so that we have |pBRzKqzεE| ě
c ą 0 for all ε small enough by (8.16). Since Tεpuεq “ 0 on pBRzKqzεE we can use
Poincaré’s inequality on BRzK and, arguing as in the first part of the proof of Lemma 8.3,
deduce that Tεpuεq converges to 0 in L2pBRzKq. Let now ϕ P C8c pRdq with ϕ “ 1 on K
and support in BR and define vε “ ϕTεpuεq. Note that vε á u in H1pRdq, and by (8.2)

1

C

ż

Rd
|∇u|2dx ď lim inf

εÑ0

1

C

ż

Rd
|∇vε|2 dx ď

ż

Rd
xAhompxq∇u,∇uy dx.

Applying this last inequality to functions of the form upxq “ w
`

x´x0
η

˘

and letting η Ñ 0
we deduce that

1

C

ż

Rd
|∇w|2dx ď

ż

Rd
xAhompx0q∇w,∇wy dx.

for almost all x0 and for all w P C8c pRdq. A use of Parseval’s identity then implies that

1

C

ż

Rd
|ξ|2| pw|2dξ ď

ż

Rd
xAhompx0qξ, ξy| pw|

2dξ.

and concludes the proof by the arbitrariness of w.

If RdzE is a connected Lipschitz 1-periodic set, then by [1] Ahom is a constant matrix
characterized by

xAhomξ, ξy “ min
!

ż

p0,1qdzE
|ξ `∇u|2 dx : u P H1

locpRdq 1-periodic
)

.

Proof of Proposition 8.4. Let uε be a sequence of minimizers for F λε , whose extensions Tεuε
converge, up to subsequences, to some u in L2

locpRdq. Then we have

lim inf
εÑ0

F λε puεq

“ lim inf
εÑ0

´

ż

RdzεE
|∇uε|2dx`

ż

Rd
1RdzεE

´?
λuε ´

1
?
λ
f
¯2
dx´

ż

Rd
1RdzεE

f2

λ
dx

¯

ě

ż

Rd
xAhompxq∇u,∇uy dx`

ż

Rd
ψ
´?

λu´
1
?
λ
f
¯2
dx´

ż

Rd
ψ
f2

λ
dx

ě

ż

Rd
xAhompxq∇u,∇uy dx`

ż

Rd
ψ
`

λu2 ´ 2fu
˘

dx

ě min
!

ż

Rd
xAhompxq∇u,∇uy dx`

ż

Rd
ψ
`

λu2 ´ 2fu
˘

dx : u P H1pRdq
)
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by the Γ-convergence of FEε and the lower semicontinuity of the L2 norm. The converse
inequality is obtained by noting that if we consider u with compact support, up to a cut-off
argument with functions that are 1 on its support, we can find recovery sequences uε for
FEhom strongly converging in L2pRdq, for which the additional terms pass to the limit. In
conclusion, the minimizers for F λε converge to the minimizer of F λhom.
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