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Abstract

Unsupervised deep learning approaches have recently become one of the crucial
research areas in imaging owing to their ability to learn expressive and powerful
reconstruction operators even when paired high-quality training data is scarcely
available. In this chapter, we review theoretically principled unsupervised learning
schemes for solving imaging inverse problems, with a particular focus on methods
rooted in optimal transport and convex analysis. We begin by reviewing the optimal
transport-based unsupervised approaches such as the cycle-consistency-based models
and learned adversarial regularization methods, which have clear probabilistic inter-
pretations. Subsequently, we give an overview of a recent line of works on provably
convergent learned optimization algorithms applied to accelerate the solution of
imaging inverse problems, alongside their dedicated unsupervised training schemes.
We also survey a number of provably convergent plug-and-play algorithms (based
on gradient-step deep denoisers), which are among the most important and widely
applied unsupervised approaches for imaging problems. At the end of this survey,
we provide an overview of a few related unsupervised learning frameworks that
complement our focused schemes. Together with a detailed survey, we provide an
overview of the key mathematical results that underlie the methods reviewed in the
chapter to keep our discussion self-contained.

1 Introduction

Inverse problems seek to estimate an unknown parameter x∗ ∈ X from a degraded measurement of
the form

y = Ax∗ + w ∈ Y, (1)
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where w represents measurement error (noise) and A : X → Y is an operator that encodes the
physical phenomenon governing the data acquisition process. Throughout this chapter, we will
consider linear inverse problems, where A is a bounded linear operator between two normed vector
spaces X and Y. Inverse problems are ubiquitous in imaging applications, especially in medical
image reconstruction. A classic example of an inverse problem is image recovery in X-ray computed
tomography (CT), where X is a set of functions on R3 (or on a subset of R3). The tomographic
measurement data in the absence of noise is given by line integrals of the form

y(ℓ) =
∫

ℓ
x∗(z) dz, where ℓ ∈ L. (2)

Here, L represents a pre-specified set of lines in R3. In other words, the measurement in X-ray
CT consists of projections along a set of lines determined by the acquisition geometry, and the
corresponding inverse problem seeks to recover the underlying true image x∗. Other notable examples
of imaging inverse problems include magnetic resonance imaging (MRI), super-resolution microscopy,
inpainting, image deblurring, compressed sensing, etc.

Without any further information about x∗, inverse problems are generally ill-posed, meaning that,
there could be either no solutions or several possible solutions x satisfying the operator equation
(1), even without any measurement noise. In the classical function-analytic setting, the underlying
image x∗ is assumed to be an unknown deterministic parameter, and the noise w is assumed to be
bounded, i.e., ∥w∥Y ≤ δ for some δ > 0. The task is to then construct a family of reconstruction
operators Gλ : Y → X, parameterized by λ, such that Gλ(y) yields a reasonable approximation
of x∗. Variational regularization has by far been the most popular approach to construct such
reconstruction maps by defining them as a minimizer of a variational energy function:

Gλ(y) ∈ arg min
x∈X

f(Ax, y) +Rλ(x). (3)

Here, f : Y×Y → R+ measures data fidelity and Rλ : X → R is a regularization function (regularizer
in short), parameterized by λ, that encodes prior knowledge about the reconstructed image. A
popular choice is to construct the regularizer as Rλ(x) = λR(x), where R is a fixed regularizer and
λ ∈ R+ is a penalty parameter balancing data fidelity and regularization. The classical regularization
theory for inverse problems deals with the construction of regularizers Rλ such that Gλ(y) varies
continuously in y (stability), and that there exists a parameter selection rule λ : δ 7→ λ(δ) such
that as the noise level δ → 0, Gλ(δ)(y) converges to a generalized solution of the noiseless operator
equation y0 = Ax, where y0 denotes the noise-free measurement. Such a family of reconstruction
operators (Gλ(δ))δ>0 is said to be a convergent regularization scheme [11].

An alternative modeling approach for inverse problems is offered by the Bayesian framework, wherein
a possible image x and its measurement y are treated as realizations of the X- and Y-valued random
variables x and y, respectively. The goal of Bayesian inversion is to characterize the full posterior
distribution ppost of x conditioned on y by utilizing Bayes’ formula

ppost(x|y) = 1
Z(y) pw(y −Ax) p0(x),

where p0 is the prior probability density on x and Z(y) is a normalizing constant. The data
likelihood is specified through the distribution pw of the noise and the forward operator A. If p0
is a Gibbs prior of the form p0(x) ∝ exp(−Rλ(x)), the maximum a-posteriori probability (MAP)
estimate of x leads to a variational optimization of the form (3) akin to the function-analytic setting.
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It is worth emphasizing that the Bayesian approach can, in principle, go beyond point estimation
and allow for uncertainty quantification in the solution using the complete posterior distribution
(albeit with higher computational complexity). In the context of Bayesian inversion, the notion
of stability refers to the continuity (with respect to y) of the posterior, while convergence in the
Bayesian framework deals with the concentration of the posterior measured in a suitable metric [24].

In the classical model-driven variational approach, the regularizer (or, equivalently, the prior in
the Bayesian setting) is constructed analytically to promote certain smoothness properties in
the underlying image. Some notable choices for the regularizer include Tikhonov regularization
(Rλ(x) = λ ∥Bx∥2

2, where B is a bounded linear functional), the total variation (TV) regularizer
(Rλ(x) = λ ∥∇x∥1), and more recently, sparsity-promoting regularizers (seeking to encourage the
image to be sparse in a fixed or learned basis) [82]. While model-driven approaches for inverse
problems have been studied extensively over the past few decades, the success of deep learning
has led to the emergence of data-driven methods for solving imaging inverse problems in recent
years. These methods not only surpass the classical model-driven approaches in terms of empirical
performance, but some of the data-driven methods also come with theoretical guarantees (see [66]
and references therein). The data-driven methods can broadly be classified into two categories,
namely, supervised and unsupervised. Roughly speaking, supervised methods work in an end-to-end
manner and need access to the ground-truth images to be compared against the output of a learned
reconstruction operator, as opposed to unsupervised methods which do not rely on the availability of
such ground-truths for a direct point-by-point comparison with the learned reconstruction. Therefore,
unsupervised methods offer greater flexibility over supervised approaches in terms of the required
training dataset for learning the parameters of the reconstruction operator, thereby leading to better
practical usability.

The objective of this chapter is to provide a survey of learned unsupervised methods for inverse
problems, focusing particularly on approaches that leverage ideas from generative machine learning
(and optimal transport, in particular) and classical (convex) optimization theory. We first provide
an extensive mathematical background on optimal transport and convex analysis highlighting the
important concepts that underlie such approaches, followed by a detailed review of the notable
unsupervised approaches in the context of imaging inverse problems. The survey aims to highlight
the key mathematical foundations behind the development of unsupervised learning approaches and
underscores the potential of unsupervised methods in achieving competitive empirical performance
as compared to their supervised counterparts.

Outline of the chapter. The chapter is organized as follows. Section 2 provides the necessary
mathematical background that will be used throughout the chapter, from optimal transport to
convex analysis. In this section, we also describe classical methods for learning reconstruction
operators for imaging inverse problems, while also highlighting the key differences between supervised
and unsupervised approaches. Section 3 presents recent unsupervised approaches to inverse problems
based on optimal transport, focusing particularly on cycle-consistency-based models and learned
adversarial regularizers. Section 4 surveys various unsupervised regularization-based approaches to
inverse problems, with methods ranging from learning optimizers for model-based reconstruction
to Plug-and-Play (PnP) denoising methods based on implicitly defined denoising priors. Finally,
in Section 5, we review some notable ground-truth-free approaches for image reconstruction ap-
proaches that have been shown to result in impressive empirical performance in numerous practical
applications.
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2 Background

In this section, we provide the necessary mathematical background needed in the remainder of
the chapter to make the exposition self-contained as much as possible. In particular, we provide a
detailed overview of some of the important results in optimal transport and convex analysis, which
serve as the conceptual foundation of the unsupervised techniques that we subsequently review in
this chapter. Further, we also precisely characterize what we mean by supervised and unsupervised
learning approaches, considering the vagueness around how these terms can possibly be interpreted.

2.1 Probability measures

Since the data-driven methods reviewed in this article depend heavily on approximating unknown
probability measures, we give a formal overview of the key definitions and results in probability
theory that will be useful for us. In particular, we formally define some key concepts related to
probability measures and random variables, followed by a short description of different notions of
distance between two probability measures.

2.1.1 Probability space and random variables

A probability space consists of the triplet (Ω,F , π), where Ω is the sample space, F is a σ-algebra
consisting of subsets of Ω, and π : F → [0, 1] is a probability measure. We will assume Ω to be a
Polish space (i.e., a complete metric space with an underlying metric d : Ω × Ω → [0,+∞] and a
countable dense subset). We will use the notation P(Ω) to denote the set of all possible probability
measures on the measurable space (Ω,F).

For any Rd-valued random variable x on a probability space (Ω,F , π), the corresponding probability
law is defined as the following probability measure πx on (Rd,B(Rd)), where B(Rd)) denotes the
Borel σ-algebra of Rd:

πx(B) := π(x−1(B)) for all B ∈ B(Rd).

Let λ be the Lebesgue measure on (Rd,B(Rd)). If there exists a nonnegative function px : Rd →
[0,+∞] such that πx(B) =

∫
B px dλ for all B ∈ B(Rd), px is called the probability density function

(p.d.f.), or simply the density of x (or πx). The existence of px is guaranteed by the Radon-Nikodym
theorem if πx is absolutely continuous with respect to λ, i.e., if πx(B) = 0 whenever λ(B) = 0, for
any B ∈ B(Rd). In this case, the density px is usually written as px = dπx

dλ , the Radon-Nikodym
derivative of πx with respect to the Lebesgue measure λ. The density px, if exists, is unique λ-almost
everywhere (a.e.).

The expected value of x, denoted as Ex∼πx [x] or simply E[x], is defined as

Ex∼πx [x] :=
∫

Ω
X(ω) dπ(ω) =

∫
Rd
x dπx(x). (4)

If x has a density px, the expectation defined in (4) can equivalently be written as

Ex∼πx [x] :=
∫
Rd
x px (x)dλ(x). (5)

Any mapping T : (Ω1,F1) → (Ω2,F2) between two measurable spaces with the property that

T−1(A ) ∈ F1 for all A ∈ F2, (6)
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is said to be a measurable function from (Ω1,F1) to (Ω2,F2). Let π1 be a probability measure
on (Ω1,F1). The push-forward measure of π1 by T , denoted as T#π1, is defined as a probability
measure on (Ω2,F2) such that

T#π1(A ) = π1(T−1(A )) for all A ∈ F2.

For a measurable function g : (Rd,B(Rd)) → (Rm,B(Rm)), the expected value of y = g(x) is defined
as the following integral:

Ex∼πx [g(x)] :=
∫
Rd
g(x) dπx(x) =

∫
Rm

y dπy(y), where πy := g#πx. (7)

2.1.2 Distance between probability measures

Many data-driven approaches for inverse problems rely on methods that are able to efficiently
estimate and minimize the distance between two probability distributions. A notable class of
distances between probability measures is given by the class of ϕ-divergences (sometimes referred to
as f -divergences), containing common metrics such as the Kullback-Leibler divergence and the total
variation distance.
Definition 2.1 (ϕ-divergence). Let πx and πy be two probability measures on (Ω,F) with πx being
absolutely continuous with respect to πy. Let ϕ : (0,+∞) → (−∞,+∞) be a convex function such
that ϕ(1) = 0, and ϕ(0) := lim

t→0+
ϕ(t) (which could be infinite). Then, the ϕ-divergence between πx

and πy is defined as

Dϕ(πx, πy) :=
∫

Ω
ϕ

(
dπx
dπy

(ω)
)

dπy(ω), (8)

where dπx
dπy

is the Radon-Nikodym derivative of πx with respect to πy.

Consider now the special case (albeit an important one) where (Ω,F) = (Rd,B(Rd)) and let px and
py be the densities of πx and πy, respectively. Then, (8) can be rewritten as

Dϕ(px, py) :=
∫

Ω
ϕ

(
px(x)
py(x)

)
py(x) dλ(x). (9)

The following are some important special instances of ϕ-divergence that are useful in the context of
machine learning and inverse problems:

1. Kullback–Leibler (KL): ϕ(t) = t log t.

2. Jensen-Shannon (JS): ϕ(t) = −(t+ 1) log
(

t+1
2

)
+ t log t.

3. Total Variation (TV): ϕ(t) = 1
2 |t− 1|.

4. Squared Hellinger: ϕ(t) = (
√
t− 1)2.

Despite their popularity, ϕ-divergences have been shown to have serious practical limitations,
especially in the context of machine learning, imaging, and inverse problems. From a theoretical
point of view, this is due to the fact that they are well-defined only if πx is absolutely continuous with
respect to πy. Consequently, ϕ-divergences are not well-suited to compare probability distributions
concentrated on low dimensional manifolds. This problem often arises in the context of distribution
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learning for imaging problems, where data-sets can reasonably be approximated as low dimensional
manifolds embedded in a high-dimensional ambient space.

Another popular family of distance measures that overcome some of the shortcomings of ϕ-divergences
are the so-called integral probability metrics. They have the advantage that they are also well-defined
for singular measures and are easier to estimate from finitely many samples as compared with
ϕ-divergences, especially in high-dimensional settings [87].
Definition 2.2 (Integral probability metrics (IPMs)). Let πx and πy be two probability measures on
(Ω,F), and let G be some class of bounded and measurable functions g : Ω → R. Integral probability
metrics are defined as

∆G(πx, πy) := sup
g∈G

∣∣∣∣∫
Ω
g(ω) dπx(ω) −

∫
Ω
g(ω) dπy(ω)

∣∣∣∣ . (10)

Relevant examples of integral probability metrics are the following:

1. Total-variation distance (TVD): G = {g ∈ C(Ω) : supx∈Ω g(x) ≤ 1}. Note that in the case
where πx and πy have densities with respect to the Lebesgue measure, this definition of the
TVD is equivalent to TV defined as a ϕ-divergence corresponding to ϕ(t) = 1

2 |t− 1|.

2. Maximum-mean-discrepancy (MMD): G = {g ∈ H : ∥g∥H ≤ 1} where H is a Reproducing
Kernel Hilbert Space (RKHS).

3. Kolmogorov distance (KD): G = {1(−∞,t) : t ∈ R}.

4. 1-Wasserstein distance: G is the class of 1-Lipschitz functions.

We refer the interested reader to [87] for more details. It is worth mentioning that not all IPMs
are suitable for comparing distributions, and the choice of G should be made depending on the
problem under consideration. For instance, given s ∈ R, suppose that π0 ∈ P(R2) is concentrated
and uniformly distributed on the segment [0, 1] × {0} ⊂ R2 and πs ∈ P(R2) is concentrated and
uniformly distributed on the segment [0, 1] × {s} ⊂ R2. Then, it is easy to verify that

TVD(π0, πs) =
{

2, for s ̸= 0,
0, for s = 0.

This shows that the total variation is agnostic to the relative positions of the segments in the
plane and it is thus not a suitable metric to compare the two distributions. This observation
easily translates to any two distributions concentrated on disjoint lower dimensional manifolds.
Moreover, it prevents the use of gradient descent strategies due to the severity of the vanishing
gradient phenomenon. We will see in Section 2.2.2 that such shortcomings are alleviated by the
1-Wasserstein distance, making this a popular choice for machine learning applications pertaining
to image processing.

2.2 Optimal transport

In this section, we recall some fundamental definitions and results in optimal transport that are
relevant to the development of the unsupervised learning approaches discussed in Section 3.
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2.2.1 Monge and Kantorovich formulations of optimal transport

Let Ω1 and Ω2 be two Polish spaces. Correspondingly, consider two Borel probability spaces
(Ω1,B(Ω1), π1) and (Ω2,B(Ω2), π2), where B(Ω1) and B(Ω2) are the Borel σ-algebras of Ω1 and Ω2,
respectively. Let c : Ω1 × Ω2 → [0,+∞] be the cost of transporting one unit of mass from x ∈ Ω1 to
y ∈ Ω2. We will assume that the cost c is continuous. Monge’s optimal transport problem [62] is
formulated as

Mc(π1, π2) = inf
T :T#π1=π2

∫
Ω1
c(x, T (x)) dπ1(x), (11)

where the minimization is carried out over measurable maps T . In other words, (11) seeks to find a
transport map T (i.e., a mapping T satisfying T#π1 = π2) for which the overall transportation cost
is minimized. Monge’s problem may not have a solution, and even worse, a transport map may
not always exist [81] (consider, for instance, the problem of transporting discrete masses from one
set of locations to another). Due to this shortcoming, Kantorovich proposed a relaxation of (11)
in order to restore the well-posedness of the variational problem [44]. The Kantorovich relaxation
of (11) reformulates the optimal transport problem by instead considering the transportation
of mass from any x ∈ Ω1 to any y ∈ Ω2. Let π be a probability measure on the product space
(Ω1 ×Ω2,B(Ω1)⊗B(Ω2)), where B(Ω1)⊗B(Ω2) is the smallest σ-algebra generated by B(Ω1)×B(Ω2).
We call π a transport plan if

π(A × Ω2) = π1(A ) and π(Ω1 × B) = π2(B) for all A ∈ B(Ω1),B ∈ B(Ω2).

Equivalently, π is a transport plan if its marginals are π1 and π2. Let Π(π1, π2) be the collection of
all transport plans from (Ω1,B(Ω1), π1) to (Ω2,B(Ω2), π2). The Kantorovich relaxation of Monge’s
problem (11) is then given by

Kc(π1, π2) = min
π:π∈Π(π1,π2)

∫
Ω1×Ω2

c(x, y) dπ(x, y). (12)

Note that the set Π(π1, π2) is non-empty, since the product measure π1 ⊗ π2 ∈ Π(π1, π2). Moreover,
the existence of a transport plan minimizing (12) is a consequence of Prokhorov’s theorem and the
narrow continuity of the map π 7→

∫
Ω1×Ω2

c(x, y) dπ(x, y) in P(Ω1 × Ω2) [81]. Notably, (12) is a
relaxation of Monge’s problem since given a transport map T , one can construct the associated
transport plan as π = (id ×T )#π1. Under certain conditions, the Kantorovich formulation (12) can
be shown to be equivalent to the Monge formulation (11) such as in the following theorem [73,
Theorem B].
Theorem 2.3. If π1 is non-atomic, namely π1({x}) = 0 for all x ∈ Ω1, then

Mc(π1, π2) = Kc(π1, π2).

Standard arguments of convex analysis also ensure the equivalence of (11) and (12) in the case
where π1 and π2 are empirical measures with uniform weights, i.e.,

π1 = 1
N

N∑
i=1

δxi , π2 = 1
N

N∑
i=1

δyi , (13)

where δu denotes the Dirac measure at u.
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2.2.2 The Wasserstein distance

The Kantorovich formulation of optimal transport allows us to define a distance between two
probability measures in a way that overcomes the shortcomings of the distances defined in Section
2.1.2. Given a distance d : Ω × Ω → [0,∞), for 1 ≤ p < ∞ the p-Wasserstein distance between two
Borel probability measures π1, π2 ∈ P(Ω) is defined in terms of the Kantorovich formulation (12) as

Wp(π1, π2) := (Kdp(π1, π2))1/p, π1, π2 ∈ P(Ω). (14)

It can be shown that Wp defines a distance metric on the space of probability measures P(Ω)
[81]. Moreover, it addresses some of the issues of ϕ-divergences and IPMs presented in Section
2.1.2. First, it is well-defined for any pair of probability measures π1, π2, even if they are mutually
singular. Moreover, following the example given in Section 2.1.2, let π0 ∈ P(R2) be concentrated
and uniformly distributed on the segment [0, 1] × {0} ⊂ R2, and let πs ∈ P(R2) be concentrated
and uniformly distributed on the segment [0, 1] × {s} ⊂ R2. Then, it holds that

W1(π0, πs) = |s|,

for all s ∈ R. In particular, the Wasserstein distance is sensitive to the relative position of the
supports of singular distributions being compared. This allows one to better handle the vanishing
gradient phenomena and ensure more stable learning using gradient-based algorithms [4, 37].

2.2.3 The dual of the Kantorovich formulation of optimal transport

Since the Kantorovich formulation of optimal transport is essentially an infinite-dimensional linear
programming problem, it is plausible that it admits a strong dual formulation (see [28] for a general
duality theory of convex variational problems). It can be shown that this is indeed the case. The
dual reformulation is known as the Kantorovich-Rubinstein (KR) duality. If c(x, y) ≤ a(y) + b(x) for
some suitable a ∈ L1(Ω1;π1) and b ∈ L1(Ω2;π2), the KR duality allows us to rewrite the Kantorovich
formulation of optimal transport as

sup
(f,g)∈Λ(c)

∫
Ω1
r(x) dπ1(x) +

∫
Ω2
s(y) dπ2(y), (15)

where Λ(c) = {(r, s) : r ∈ L1(Ω1;π1), s ∈ L1(Ω2;π2), r(x) + s(y) ≤ c(x, y) ∀x, y}. Moreover, the
supremum in (15) is attained and the optimal r and s are called Kantorovich potentials [2, Theorem
1.17]. In the case where Ω1 = Ω2 = Ω and the cost is a metric (in which case we rename c(x, y) by
d(x, y)), then (15) can be rewritten as

sup
g∈Lip1(Ω)

∫
Ω
g(x) dπ1(x) −

∫
Ω
g(y) dπ2(y), (16)

where Lip1(Ω) is the set of 1-Lipschitz functions defined as

Lip1(Ω) =
{
g : Ω → R s.t. sup

x ̸=y

|g(x) − g(y)|
d(x, y) ≤ 1

}
. (17)

2.2.4 Reconstructing the optimal transport map from the Kantorovich potentials

Before concluding this section, we state an important result in optimal transport that, in certain
cases, allows one to reconstruct the optimal transport map from the Kantorovich potential. Let π1
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and π2 two probability measures on (Ω,B(Ω)) where Ω ⊂ Rd is compact with a boundary negligible
with respect to the Lebesgue measure. Let c : Ω × Ω → [0,∞) defined as c(x, y) = η(x − y) for
x, y ∈ Ω, where η is a strictly convex function. Then, the following theorem relating the optimal
transport map and the Kantorovich potential holds [81, Theorem 1.17].
Theorem 2.4. Suppose that π1 is absolutely continuous with respect to the Lebesgue measure. Then
there exists a Kantorovich potential r, and the optimal transport map T can be reconstructed as

T (x) = x− (∇η)−1(∇r(x)) x ∈ Ω. (18)

This theorem is a consequence of more general results due to Brenier [13] and can be applied, for
instance, for transport costs such as c(x, y) = |x − y|p, where 1 < p < ∞. That is, this result
applies to all p-Wasserstein distances with 1 < p < ∞. Specializing Theorem 2.4 to the cost
c(x, y) = 1

2 |x− y|2 corresponding to the 2-Wasserstein distance, T can be reconstructed as

T (x) = x− ∇r(x) = ∇
(
x2

2 − r(x)
)
.

Moreover, thanks to a consequence of the celebrated Brenier’s theorem (e.g. see [81, Proposition
1.21]) the function u(x) = x2

2 − r(x) is convex, implying that the optimal transport map is the
gradient of a convex function. This observation has been utilized to design machine learning methods
to approximate optimal transport maps using gradients of convex functions [54, 3].

2.3 Convex analysis and monotone operator theory

In this section, we will recall some classical results in convex analysis and monotone operator theory
that will be useful for developing the theory behind many of the provable machine learning methods,
as well as for gaining intuition behind their workings. In particular, in Section 4, we will link some
of these classical results with the fixed point theory used in the learned iterative scheme setting.

We first recall some definitions and properties of convex functions and monotone operators, before
presenting some examples of how we can leverage these regularity properties for convergence in the
classical setting. We will also briefly discuss operator splittings, which serve as the basis for some
learned iterative schemes.

2.3.1 Convex analysis

We first review some common properties of convex functions that serve as common assumptions in
the sequel. A more comprehensive overview of convex analysis can be found, for example, in [76].
Let X be a Banach space and let X∗ denote the corresponding dual space. We state some basic
definitions in the following.
Definition 2.5. A function f : X → R is lower semi-continuous (l.s.c.) at a point x if for every
sequence xn → x in X,

lim inf
n→∞

f(xn) ≥ f(x0).

f is proper if the effective domain

dom f := {x ∈ X | f(x) < +∞}

is nonempty. We define Γ0(X) as the class of convex proper l.s.c. functions from X → R, and drop
the argument when the domain is understood from the context.

f is coercive if for all xn with ∥xn∥ → ∞, we have that f(xn) → ∞.
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The class Γ0 gives sufficient conditions for many regularity conditions to hold, and will be the main
assumption for our objective optimization problems. Lower semi-continuity may sometimes be
equivalently referred to as closed in the literature, which is shown in the following proposition.
Proposition 2.6 ([28, Prop. 2.3]). For a function f : X → R, the following two statements are
equivalent:

1. f is lower semi-continuous;

2. f is closed, i.e., the epigraph epi(f) := {(x, t) ∈ X × R | t ≥ f(x)} is closed.

These properties can be used directly to show that a convex function has a minimizer.
Theorem 2.7. Let X be a Banach space and τX be some topology on X such that bounded sequences
in X have τX-convergent subsequences. If f : X → R is proper, bounded from below, coercive, and
τX-l.s.c., then f has a minimizer.

Proof. By boundedness from below, a minimizing sequence (xn) exists. By coercivity, the minimizing
sequence is bounded. Apply the condition on τX to a minimizing sequence to obtain a limit in τX,
xkn → x̄. By lower semi-continuity, the limit satisfies f(x̄) ≤ lim inf

n
f(xkn) = inf

X
f . Therefore, x̄ is

a minimizer of f .

We continue with some definitions extending the classical notion of a derivative to convex non-
differentiable functions.
Definition 2.8. A function f : X → R is subdifferentiable at a point u ∈ X if there exists a dual
element p ∈ X∗ such that

f(v) ≥ f(x) + ⟨p, v − x⟩, ∀v ∈ X.

The dual element p is called a subgradient at u. The subdifferential of f at u, denoted ∂f(u), is the
collection of all such subgradients of f at u, i.e.

∂f(u) := {p ∈ X∗ | f(v) ≥ f(x) + ⟨p, v − x⟩, ∀v ∈ X}.

The subdifferential is a multi-valued operator that shares some properties with the classical derivative
operator, which can additionally be defined for discontinuous functions. In particular, if f is
differentiable at a point u, then the subdifferential is equal to the singleton set containing the
derivative ∂f(u) = {f ′(u)}. The following propositions state sufficient (but not necessary) conditions
for the existence of the subdifferential, as well as some useful properties. Additional properties can
be found in classical literature [76, 9, 17].
Proposition 2.9 ([72, 28]). Suppose f : X → R is convex, finite, and continuous at some u ∈ X.
Then ∂f(v) ̸= ∅ for all v ∈ X. Moreover, 0 ∈ ∂f(v) if and only if v is a minimizer of f . If g : X → R
is another convex proper l.s.c. function and f is continuous at some u ∈ dom f ∩ dom g, then

∂(f + g) = ∂f + ∂g.

If f is instead Gâteaux differentiable at u ∈ X, then it is subdifferentiable at u and ∂f(u) = {f ′(u)}.
Proposition 2.10 ([17, Thm. 7.13]). Suppose f : X → R is proper and convex. If u ∈ dom f , then
∂f(u) is convex and weak-* compact.

Under these conditions, we can define the proximal operator, which tries to move towards the
minimizer of f , regularized by the distance to the initial point.
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Definition 2.11 (Proximal operator). For a convex function f : X → R, the proximal operator is
defined as

proxf (x) = arg min
y∈X

{1
2∥y − x∥2 + f(y)

}
(19)

The following proposition details some properties of the proximal operator. In particular, it can
be thought of as an implicit Euler discretization of gradient flow, as opposed to the explicit Euler
discretization that is gradient descent.
Proposition 2.12 ([76, 28, 77]). For a proper convex l.s.c. function f , the proximal operator is
well-defined and is single-valued. Moreover, it satisfies the following:

1. proxf is nonexpansive, and, in particular, is continuous.

2. Fixed points of proxf correspond to minimizers of f :

{x0 ∈ X | x0 = proxf (x0)} = arg min
X

f.

If X = Rn, the following also hold:

1. (Moreau’s identity) proxf + proxf∗ = id, where id is the identity map on X;

2. Letting the Moreau envelope be defined as

Mλf (x) = inf
y∈Rn

{
f(x) + 1

2λ∥x− y∥2
2

}
, (20)

the proximal operator satisfies

∇Mλf (x) = 1
λ

(x− proxλf (x)) = proxf∗/λ(x). (21)

3. ∂f and proxf are maximally monotone mappings (see Section 2.3.2 for the definition) from
Rn to Rn.

2.3.2 Monotone operator theory

A common way of showing the convergence of some iterative methods is through monotone operator
theory, consisting of fixed-point results. Monotone operators are inextricably tied to convex functions
through the proximal and subgradient operators, making them a useful tool for showing convergence
within the realm of convexity.
Definition 2.13 (Monotonicity). A set-valued mapping T : Rn ⇒ Rn is monotone if for all
x, x′ ∈ Rn, p ∈ T (x), p′ ∈ T (x′),

⟨p− p′, x− x′⟩ ≥ 0,

and strictly monotone if the inequality is strict for x ̸= x′. The resolvent of T is the operator

JT := (id +T )−1,

and the reflected resolvent is
RT := 2JT − id .

T is said to be maximally monotone if its graph G(T ) = {(x, p) : x ∈ Rn, p ∈ T (x)} is not contained
within the graph of another monotone operator.
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The convex minimization problem min
x∈X

f(x) thus corresponds to the monotone inclusion problem
0 ∈ ∂f(x). In the differentiable case, this resolves to solving the optimality condition f ′(v) = 0.
Moreover, for f ∈ Γ0, the proximal operator is the resolvent of the subgradient operator, i.e.
proxf = J∂f . Monotonicity is intrinsically related to convexity as described in the following theorem.
Intuitively, it means that sub-gradients are aligned with ascent directions. One important concept
is that of non-expansiveness, which is crucial in the study of fixed-point convergence.
Definition 2.14 (Non-expansiveness). A mapping T : Rn → Rn is non-expansive if for all x, y ∈ Rn,

∥T (x) − T (y)∥ ≤ ∥x− y∥.

T is firmly non-expansive if for all x, y ∈ Rn,

∥T (x) − T (y)∥2 + ∥(id −T )(x) − (id −T )(y)∥2 ≤ ∥x− y∥2.

Note that firm non-expansiveness implies non-expansiveness.

The concepts of monotonicity and non-expansiveness are intrinsically tied to convexity, as shown by
the following results.
Theorem 2.15 ([77, Sec. 12.C.]). For a proper l.s.c. function f : Rn → R, f is convex if and only
if ∂f is monotone, in which case ∂f is also maximally monotone. Moreover, for any λ > 0, the
proximal mapping proxλf : Rn ⇒ Rn is monotone. If f is additionally convex, then proxλf = Jλ∂f

is maximally monotone and also non-expansive.
Proposition 2.16 ([9, Cor. 23.10]). For a maximally monotone operator A : Rn ⇒ Rn, we have
that

1. JA and id −JA are firmly nonexpansive and maximally monotone;

2. RA is non-expansive.

2.3.3 Operator splitting

Convex optimization problems are often solved using iterative methods, where a sequence is
constructed that converges to the minimizer, with some common methods including subgradient
descent or proximal gradient descent. Recall that variational problems typically take the form
of a composite optimization problem (3). Usually, the fidelity and regularization terms will have
different regularity conditions, such as smoothness or Lipschitz conditions. We can exploit the
composite structure to simplify each iteration. Noting the correspondence between convex problems
and monotone inclusion problems, we can convert the above problem to finding the equivalent
problem of finding zeros of sums of two maximally monotone operators.

Consider the following inclusion problem

0 ∈ Ax+Bx,

where A and B are both maximally monotone operators, which arises naturally from finding a
minimizer of the sum of two convex functions. If A + B is also maximally monotone, then one
possible approach is to consider root solving using the resolvent Jγ(A+B). However, this is generally
difficult to compute, for example in the case when A,B are proximal operators of convex functions
f, g ∈ Γ0, respectively. Therefore, one seeks to find a zero of A + B, using only their resolvents
JγA and JγB. This process of splitting the resolvent of A+B into the resolvents of its components
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is generally referred to as a splitting algorithm and can be performed in different ways [49]. We
present two simple versions, which are by far the most widely used splitting techniques in convex
optimization: the forward-backward splitting and the Douglas-Rachford splitting [26].
Theorem 2.17 (Douglas-Rachford Splitting [9, Thm. 25.6]). For a Hilbert space H, let A,B : H ⇒
H be maximally monotone operators such that zer(A+B) ̸= ∅. Let (λn)n∈N be a sequence in [0, 2]
satisfying

∑
n∈N λn(2 − λn) = +∞, γ > 0 be a step-size. Let x0 ∈ Rn be an initialization. Consider

the iterations 
yn = JγBxn,

zn = JγA(2yn − xn),
xn+1 = xn + λn(zn − yn).

(DRS)

Then there exists a fixed point x ∈ FixRγARγB such that the following hold:

1. JγB(x) ∈ zer(A+B)

2. yn − zn converges strongly to zero,

3. xn converges weakly to x

4. yn and zn converge weakly to JγB(x).

Note that in the case where the Hilbert space H is finite-dimensional, weak convergence is equivalent
to strong convergence. Letting A and B be proximal operators of some proper convex l.s.c. functions
f and g, we get convergence to a fixed point of proxf+g, using only proximal operators or subgradients
of f and g separately. Further, the fixed point is a minimum of f + g. This is particularly useful
wherein f and g have easy-to-compute proximals, while f + g does not.

By casting the above monotone inclusion problem in the scope of convex functions, with A being a
derivative and B being a proximal operator, we can obtain splitting schemes that optimize the sum
of two convex functions, where one of the functions is smooth.
Theorem 2.18 (Forward-Backward Splitting [9, Cor. 27.9]). Let f : H → R be convex and
differentiable with 1/β-Lipschitz gradient, and g : H → R be proper convex l.s.c. and possibly
non-smooth. Let γ ∈ (0, 2β) and set δ = min{1, β/γ} + 1/2. Further let (λn)n∈N be a sequence in
[0, δ] such that

∑
n∈N λn(δ − λn) = +∞. Suppose that f + g admits a minimizer and let x0 ∈ H.

Then, the forward-backward iterations, given by{
yn = xn − γ∇f(xn),
xn+1 = xn + λn(proxγg yn − xn),

(FBS)

satisfy the following:

1. (xn)n∈N converges weakly to a point in arg minH(f + g);

2. Suppose infn λn > 0 and x ∈ arg minH(f + g). Then ∇f(xn) converges strongly to ∇f(x).

Note that by taking λn = 1, the FBS algorithm alternates between a proximal step on g and a
gradient descent step on f . Optimizing the sum of two convex functions where one is smooth arises
naturally in variational regularization [82, 42]. In this case, f is usually chosen to be a smooth
fidelity term, such as the ℓ22 penalty. As this minimization is usually ill-posed, a regularization term
g is added to the fidelity, representing a prior that is imposed on the data.
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Example 2.19 (ISTA). Consider the case where our Hilbert space is finite-dimensional Euclidean
space H = Rn. Let A : Rn → Rm be a bounded linear operator, and let z ∈ Rm. The iterative
shrinkage thresholding algorithm (ISTA) considers the optimization problem where f(x) = ∥Ax−
z∥2/2, with an ℓ1 regularization [25, 36, 10]. This is used in sparse coding, where the ℓ1 penalty
enforces sparsity on x and is sometimes referred to as LASSO regression in the statistical literature
[95]. The resulting optimization problem to solve is

arg min
x∈Rn

f(x) + g(x) := 1
2∥Ax− z∥2

2 + λ∥x∥1,

where λ > 0 is a regularization parameter. Note that this f + g admits a minimizer since it is
coercive and bounded below by 0. Moreover, g is not differentiable, so first-order methods that rely on
the gradient of f + g are not applicable. We can, however, apply Theorem 2.18 to obtain a (strongly)
convergent scheme. We first observe that the proximal operator of λ∥x∥1 is the coordinate-wise
shrinkage operator, defined by

proxα∥x∥1 = hα(x), where
[hα(x)]i = sign(xi) max(|xi| − α, 0).

Observe that the proximal operator of ∥ · ∥1 is straightforward to compute. Taking the step-sizes
λn = 1 and γ < 1/∥A⊤A∥, ISTA reduces to the forward-backward scheme

xn+1 = h(λγ) (xn − γ∇f(xn)) . (ISTA)

2.3.4 Pseudo-inverses

For two Banach spaces X and Y, a bounded linear operator A ∈ L(X,Y) may not be invertible in
the usual sense outside the range of A. Recall that for a bounded linear operator A, its null-space
ker(A) is closed, and thus admits a unique orthogonal complement in X. Moreover, A restricted to
ker(A)⊥ is injective and thus admits a linear inverse from range(A) to ker(A)⊥.
Definition 2.20. For a linear operator A ∈ L(X,Y), let Ã denote the restriction of A to ker(A)⊥ ⊆
X, where ker(A) is the null-space of A. Note that Ã is invertible. The Moore-Penrose pseudo-inverse
A† : D(A†) → X is the unique linear extension of Ã−1 : range(A) → ker(A)⊥ to the domain

D(A†) := range(A) ⊕ range(A)⊥,

satisfying ker(A†) = range(A)⊥.
Remark 2.21. If X,Y are finite-dimensional, D(A†) = Y. The Moore-Penrose pseudo-inverse is
equivalent to linearly extending the inverse of A from ker(A)⊥ to all of Y by defining A† : ker(A) 7→ 0.
Proposition 2.22 ([29, Prop. 2.3]). The Moore-Penrose pseudo-inverse satisfies the following
properties:

1. A†A = Πker(A)⊥,

2. AA† = Πrange(A)|D(A†),

3. AA†A = A,

4. A†AA† = A†.

The Moore-Penrose inverse is not necessarily continuous. It is continuous if and only if range(A) is
closed [29]. Moreover, it can be very ill-conditioned if A has small singular values. This explains
why the direct inversion of inverse problems is unstable, necessitating the use of regularization
techniques.
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2.4 Supervised versus unsupervised learning of reconstruction operators

In this section, we outline different training strategies for learning a data-driven reconstruction
operator for imaging inverse problems based on available training data. The specific training
strategy adopted for a given problem depends on several practical considerations, such as the type
and amount of available data, computational requirements, desired theoretical guarantees, etc. In
general, supervised approaches tend to result in better empirical performance than unsupervised
approaches, but it might be infeasible to acquire paired trained data for supervised learning in
problems of practical interest.

2.4.1 Supervised learning

In supervised learning, one seeks to learn a reconstruction map Gθ : Y → X, typically parameterized
using a deep neural network (DNN), utilizing pairs of training examples (x(i), y(i))N

i=1 drawn from the
(unknown) joint density distribution of the (X×Y)-valued random variable (x,y), where y = Ax+w.
The parameter θ is learned by minimizing the empirical reconstruction error measured using a
suitable loss functional ℓ : X × X → R+ over the training data set:

θ∗ ∈ arg min
θ

J(θ), where J(θ) := 1
N

N∑
i=1

ℓ
(
x(i), Gθ(y(i))

)
. (22)

The key challenge in supervised learning is to construct a suitable parameterization of the recon-
struction operator Gθ such that it is sufficiently expressive and encodes knowledge about the data
generation process (i.e., the forward operator A). To this end, several techniques have been proposed
achieving remarkable performances in inverse problems reconstruction [106, 70, 41, 21, 32, 83, 61].
Here, we describe two specific ones that are relevant for the unsupervised methods treated in this
chapter: (i) post-processing approaches [41] and (ii) algorithm unrolling (see [61] and references
therein). The post-processing approach consists in designing Gθ as the composition Gθ = Cθ ◦ ρ,
where a model-based reconstruction operator ρ : Y → X (e.g., the filtered back-projection (FBP) in
CT) is followed by a deep convolutional neural network (CNN) Cθ : X → X that is trained to remove
artifacts from ρ(y). Since post-processing approaches do not fully incorporate the physics of the
imaging system, they typically need large amounts of training data to generalize well on unseen data.
Moreover, the final reconstructed image produced by a post-processing method does not necessarily
satisfy data-consistency, meaning that a small value of the fidelity ℓ(y,A ρ(y)) corresponding to ρ
does not imply a small value of the fidelity ℓ(y,A Cθ(ρ(y))).

The algorithm unrolling framework offers a more principled approach for incorporating imaging
physics into the reconstruction operator. As the name suggests, algorithm unrolling builds the
reconstruction operator by first unfolding a small number of iterations of an optimization algorithm
(such as proximal gradient descent (PGD)) for solving the variational image reconstruction problem
(3), and then by replacing the components that do not depend on the imaging process using learnable
data-driven units. In the interest of concreteness, consider (3) where both f and Rλ are in Γ0(X),
∇f is L∇f -Lipschitz continuous, but Rλ is not necessarily differentiable. If Rλ admits a cheaply
computable proximal operator, a natural choice for solving (3) is the PGD algorithm given by

xk+1 = proxηRλ
(xk − η∇f(y,Axk)) , k = 0, 2, · · · , N − 1, (23)

where η ≤ 1
L∇f

. For large-scale image reconstruction problems such as medical imaging, one would
typically need a few thousand iterations of PGD to obtain a reasonable reconstruction, which could
be unacceptably slow. The key idea behind algorithm unrolling is to truncate iterative optimization
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algorithms such as (23) after a small number of iterations (for example, N ∼ 10), and replace the
proximal operator with a CNN ψθk

: X → X for each k. The parameters θ = (θk)N
k=1 are then

learned by minimizing the empirical risk J(θ) on the training data set:

J(θ) := 1
N

N∑
i=1

ℓ
(
x(i), x

(i)
N (θ)

)
, (24)

where x(i)
k+1 := ψθk

(
x

(i)
k − η∇f

(
y(i), Ax

(i)
k

))
, k = 0, 2, · · · , N−1. The origin of algorithm unrolling

can be traced back to the seminal work by Gregor and LeCun on learned iterative shrinkage
thresholding algorithms (LISTA) [36] for efficient sparse coding. In recent years, such methods have
been extensively developed and they currently offer performances able to achieve the state-of-art for
supervised inverse problems reconstruction. We refer the interested reader to [1, 33, 101, 22, 57, 94]
and the references therein for further details on algorithm unrolling.

2.4.2 Unsupervised learning

In contrast to supervised learning, we will use the phrase unsupervised learning to refer to any scenarios
where one does not have access to paired training examples drawn from the joint distribution of
(x,y), but only on the marginal distributions of x and y. From a practical perspective, unsupervised
learning approaches are more realistic in real-world applications, as it is generally challenging to
acquire paired examples for training reconstruction operators. For instance, the training data set in
the image reconstruction problem in X-ray CT consists of high-quality reconstructed images x(i)

obtained from high- or normal-dose projection data, and their corresponding low-dose projection
data y(i). This is generally difficult to obtain, as it necessitates scanning a large number of subjects
with two different doses, then aligning the respective scans voxel-wise to ensure exact correspondence
between x(i) and y(i).

Broadly, one might encounter the following three scenarios (or, some combinations thereof) in
unsupervised learning so far as the training data is concerned.

1. Unpaired training examples: In this setting, the training data consists of i.i.d. samples
(x(i))N1

i=1 and (y(j))N2
j=1 drawn from the marginal distributions πx and πy of the ground-truth

images and the measured data, respectively. Using only the knowledge of the marginal
distributions πx and πy, one aims at learning a correspondence between the probability
distributions in the form of a reconstruction Gθ : Y → X such that (Gθ)#πy = πx. Additionally
the reconstruction needs to satisfy data-consistency, meaning that y is close to AGθ(y) for most
of the samples y from the marginal πy. In Section 3, we will describe in details several approaches
using unpaired training samples that are based on optimal transport techniques and cycle
architectures. However, we point out that many other unsupervised methods based have been
proposed in the literature. Such approaches are often based on conditional variants of generative
models and on their inversion. We refer the interested reader to [100, 99, 8, 52, 60, 80, 105] and
the references therein.

2. Learning the prior: In many applications, one has only access to samples (x(i))N1
i=1 from the

distribution πx of the ground-truth images. In such cases, the primary objective is to utilize
ideas from the generative machine learning approaches (such as generative adversarial networks
(GANs), variational autoencoders (VAEs), etc.) to build a reasonable approximation of the
image prior to regularize the inverse problem. Many approaches have been proposed to achieve
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this goal, based, for instance, on constructing a projection on the range of the pre-trained
generator and approximating its inverse [5, 84, 103, 23, 12]. Plug-and-play (PnP) denoising
methods (which we review in Section 4.2) also fall in this category as they seek to implicitly
learn a regularizer through an image denoiser.

3. Fully unsupervised approaches: We will use this term to refer to the case where only i.i.d.
samples (y(j))N2

j=1 from the data distribution πy are available for training. These methods are
essentially ground-truth-free, as do not make use of the true images during training. Among
various approaches in this category, we provide a detailed treatment of the emerging learning-to-
optimize paradigm in Section 4.1. These methods seek to learn a fast solver for high-dimensional
convex optimization problems that arise frequently in inverse problems by leveraging training
data (while not utilizing any ground-truth). Some notable methods in this category (such as
unbiased risk estimation, deep image prior, equivariance, etc.) are briefly reviewed in Section 5.

3 Optimal transport-based unsupervised approaches

In recent years, optimal transport-based methods have been extensively used to address unsupervised
data-driven tasks such as image generation [4, 37], domain adaptation, image-to-image translation,
and image super-resolution. Unsurprisingly, many inverse problems in areas such as medical imaging,
geophysics, and fluid dynamics have benefited from such methods in terms of both modeling
capabilities and the efficiency of the available algorithms. In the subsequent sections, we will
illustrate several optimal transport-based unsupervised approaches for inverse problems, ultimately
aiming to draw a connection between them.

3.1 Cycle-GAN–based approaches to unsupervised learning

We start by addressing methods that are based on cyclic models. Inspired by Cycle-GAN [107],
such approaches are particularly suited for inverse problems in the case of unsupervised data
since they allow enforcing a coupling between ground-truth images and measurements through a
cycle-consistency penalty. Optimal transport metrics have been incorporated into these models,
allowing for more stable training.

3.1.1 Wasserstein generative adversarial networks (WGANs)

Before addressing cycle-based approaches, we recall classical generative models, with a particular
focus on the ones based on optimal transport techniques. Wasserstein generative adversarial
networks (WGANs) [4, 37] have incorporated optimal transport techniques for image generation,
achieving performance superior to that of traditional generative adversarial networks (GANs) [35],
while ensuring a more stable training for high dimensional data-sets while mitigating the problem
of mode-collapse [18]. Denoting by πv ∈ P(V) a known latent distribution in V (which can be
easily sampled) and πx ∈ P(X) the unknown ground-truth distribution, Wasserstein GANs aim to
construct a generator Gθ : V → X by minimizing the 1-Wasserstein distance between (Gθ)#πv and
πx, i.e.

min
θ
W1 ((Gθ)#πv, πx) , (25)
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where Gθ is typically parameterized by a suitable DNN. Applying the dual formulation of the
1-Wasserstein distance, c.f. (15), the objective in (25) can be equivalently rewritten as

min
θ

sup
g∈Lip1(X)

∫
X
g(x) d(Gθ)#πv −

∫
X
g(x) dπx. (26)

By expressing the constraint g ∈ Lip1(X) as a penalization in the objective, and applying the
definition of push-forward of probability measures, (26) can be approximated by the following
min-max problem

min
θ

sup
σ

∫
V
gσ(Gθ(v)) dπv −

∫
X
gσ(x) dπx + λ

∫
X

(|∇gσ|(x̂) − 1)2
+ dπ̂, (27)

where gσ : X → R is parametrized by a suitable DNN, λ > 0 is a positive parameter and π̂ ∈ P(X) is
defined by sampling uniformly on the lines connecting samples of πx and samples of (Gθ)#πv. The
network gσ is referred to as the discriminator or the critic, since, during training, it learns to tell
apart the ground-truth images from the generated ones. The training is performed by optimizing
(27) computed on the empirical approximation πx ∼ 1

N1

∑N1
i=1 δx(i) and πv ∼ 1

N2

∑N2
i=1 δv(i) , where

(x(i))N1
i=1 are the training samples and (v(i))N2

i=1 are samples drawn from πv. From a theoretical point
of view, the objective of WGAN closely resembles the classical GAN objective

min
θ

sup
σ

∫
V

log(1 − dσ(Gθ(v)) dπv +
∫
X

log(dσ(x)) dπx, (28)

where Gθ : V → X is the generator and dσ : X → R is the discriminator. Indeed, (25) and (28) are
both expressed as an adversarial min-max problem, with the substantial difference that optimizing
(28) is equivalent to minimizing the Jensen-Shannon divergence between πx and (Gθ)#πv. Since
WGAN aims to minimize the 1-Wasserstein distance, the considerations of Section 2.1.2 apply,
justifying why WGAN is more stable for learning high-dimensional data distributions supported on
lower dimensional manifolds [4].

We conclude this section by mentioning that many optimal transport-based generative models
besides the WGAN framework are available in the literature. We will not focus on them here;
however, we refer the interested reader to [71, 96, 31, 102] and the references therein.

3.1.2 Cycle-GAN–based approaches for inverse problems

Classical GANs and WGANs are both characterized by the simultaneous training of a generator
Gθ : V → X mapping a low-dimensional latent space to a high-dimensional data space, and a
discriminator mapping X to R. Cycle-GAN was introduced in [107] to address unsupervised image-
to-image translation between two data sets in X and Y. This has been achieved by coupling the
action of two generators Hσ : X → Y and Gθ : Y → X that are trained to achieve cycle-consistency
by enforcing that Hσ(Gθ(y)) ≈ y and Gθ(Hσ(x)) ≈ x for samples in πy and πx, where πx and πy
are the data distributions in X and Y respectively. Moreover, the generators are trained together
with two discriminators dX

θ̃
: X → R and dYσ̃ : Y → R designed to ensure that (Hσ)#πx = πy and

(Gθ)#πy = πx through a GAN objective. This model is schematically represented in Figure 1. As
noticed in [107], cycle-consistency in cycle-GAN architectures can be seen as a way to regularize the
optimal pair of generators Hσ, Gθ by enforcing the validity of a transitivity property. This allows,
in the training phase, to reduce the pairs of generators such that (Hσ)#πx = πy and (Gθ)#πy = πx,
favoring a faster and more stable training.
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Figure 1: Schematic representation of a cycle-GAN model

The objective of cycle-GAN is given by the sum of two GAN losses together with the cycle-consistency
loss:

min
θ,σ

max
θ̃,σ̃

αLX
GAN (Gθ, d

X
θ̃

) + βLY
GAN (Hσ, d

Y
σ̃ ) + Lcycle(Hσ, Gσ), (29)

where α and β are positive parameters and

LX
GAN (Gθ, d

X
θ̃

) =
∫
Y

log(1 − dX
θ̃

(Gθ(y)) dπy +
∫
Y

log(dXσ̃ (y)) dπy,

LY
GAN (Hσ, d

Y
σ̃ ) =

∫
X

log(1 − dYσ̃ (Hσ(x)) dπx +
∫
X

log(dY
θ̃

(x)) dπx, and

Lcycle(Hσ, Gθ) =
∫
X

∥Gθ(Hσ(x)) − x∥1 dπx +
∫
Y

∥Hσ(Gθ(y)) − y∥1 dπy. (30)

The training is performed by optimizing (29) computed on the empirical approximations πx ∼
1
N

∑N
i=1 δx(i) and πy ∼ 1

M

∑M
i=1 δy(i) , where (x(i))N1

i=1, (y(i))N2
i=1 are training samples from X and Y

respectively. It is important to note here that the method is unsupervised since the training samples
are unpaired, i.e., y(i) does not necessarily correspond to the noisy measurement of x(i). This allows
for more flexible models that do not require balanced samples. Moreover, it offers methods able to
address more realistic real-world applications, since it is generally difficult and expensive to acquire
paired samples.

Despite the original cycle-GAN approach being designed mainly for image-to-image translation,
several of its variants have been proposed to address different tasks in an unsupervised framework,
such as CT-reconstruction [43], super-resolution [104], and conditional image generation [51], to
name a few. However, the successful application of cycle-GAN-based models to inverse problems
has remained problematic, primarily due to the following reasons:

1. It is unclear how to introduce the knowledge of the forward operator into the model.

2. Cycle-GAN is a symmetric architecture and struggles to take into account the potential
difference in complexity between data x and measurements y.

3.1.3 Optimal transport and cycle-consistency combined

To address the difficulties stated above in an unsupervised setting, new models based on optimal
transport methods have been proposed in [86, 64]. In [86], a cycle-GAN architecture was adapted
to the 1-Wasserstein loss by coupling two generators Gθ and Hσ, trained as in WGAN to minimize

W1((Hσ)#πx, πy) and W1((Gθ)#πy, , πx) (31)

together with a cycle-consistency loss (c.f. Figure 2). This leads to the training objective
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Figure 2: Schematic representation of a cycle-WGAN model

min
θ,σ

max
θ̃,σ̃

αLX
W (Gθ, g

X
θ̃

) + βLY
W (Hσ, g

Y
σ̃ ) + Lcycle(Hσ, Gθ), (32)

where α, β are positive parameters, with

LX
W (Gθ, g

X
θ̃

) =
∫
Y
gX

θ̃
(Gθ(y)) dπy −

∫
X
gX

θ̃
(x) dπx + λ

∫
X

(|∇gX
θ̃

|(x̂) − 1)2
+ dπ̂X,

LX
W (Hσ, g

Y
σ̃ ) =

∫
Y
gYσ̃ (Hσ(x)) dπx −

∫
X
gYσ̃ (y) dπy + λ

∫
Y

(|∇gYσ̃ |(ŷ) − 1)2
+ dπ̂Y,

where λ > 0, π̂X and π̂Y are defined as in (27), and Lcycle(Gθ, Hσ) is as in (30).

It is important to note that the training objective in (32) is symmetric in X and Y, and it is not
designed to capture a statistical relationship between x and y. In the works of [86] and [64], (32) has
been accordingly modified to include the knowledge of the inverse problem data acquisition process
y = Ax + w, where A is the measurement operator defined in (1), and y and x are the random
variables representing ground-truth and noisy measurements. To this end, [86, 64] adapt (32) by
fixing one of the two generators Hσ and Gθ to be either A or its pseudo-inverse A† (see also Figure
2). At the cost of limiting the expressivity of the cycle architecture, this choice introduces the data
acquisition process in the model leading to great benefits in the form of higher stability in the training
phase and better data consistency. Alternatively, it is also possible to assume additional structure
on the measurement operators, without fixing it, for example prescribing that the measurement
is an unknown convolutional operator of the type Hσ(x) = hσ ⋆ x for a parameterized family of
convolutional kernels hσ (c.f. Figure 3).

The objective (32) can be adapted in several ways depending on how the data acquisition process
has been incorporated. For instance, when only the measurement operator A is prescribed, given
suitable losses f1 : X × X → R+, f2 : Y × Y → R+, the cycle-loss can be written as

Lcycle(Gθ) =
∫
X
f1(Gθ(A(x)), x) dπx +

∫
Y
f2(A(Gθ(y)), y) dπy, (33)

as in [86], or alternatively as

L̃cycle(Gθ) =
∫
X
f1(Gθ(A(x)), x) dπx, Lcycle(Gθ) =

∫
Y
f2(A(Gθ(y)), y) dπy, (34)

as in [64]. In particular, the choice of L̃cycle leads to the Unrolled Adversarial Regularizer (UAR)
introduced in [64]. All these models are trained by computing the objective on the empirical
approximation πx ∼ 1

N1

∑N1
i=1 δx(i) and πy ∼ 1

N2

∑N2
i=1 δy(i) where (x(i))N1

i=1, (y(i))N2
i=1 are training

samples from X and Y. It is important to note here that the training samples are unpaired, i.e.,
they are sampled from the marginal distributions of the ground-truth images and the data, and not
from their joint distribution. This is a striking difference compared to standard supervised methods
such as U-net post-processing [41] and the learned primal-dual (LPD) method [1].
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Figure 3: Schematic representation of WGAN-cycle–type models. On the top left: the generator
Hσ : X → Y is chosen to be the measurement operator A. On the top right: the generator
Gθ : Y → X is chosen to be the pseudo-inverse A†. On the bottom: the generator Hσ : X → Y is
parametrized by a convolutional operator Hσ(x) = hσ ⋆ x.

Ground-truth FBP: 21.59, 0.24 TV: 29.16, 0.77

U-net: 32.69, 0.87 LPD: 34.05, 0.89 UAR: 32.80, 0.86

Figure 4: CT reconstructions on Mayo Clinic data using model-based (FBP, TV), supervised (U-net,
LPD), and unsupervised (UAR) methods. The PSNR and SSIM metrics are reported for each
reconstruction.

In Figure 4, we show the experimental results obtained in [64], where UAR is applied to produce
tomographic reconstructions on the Mayo Clinic low-dose CT grand challenge data-set of abdominal
CT scans [56], whose sinograms are corrupted by Gaussian noise. We compare UAR to model-
based approaches such as the classical filtered back-projection (FBP) and total variation (TV)
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regularization. Additionally, we choose LPD [1] and U-net post-processing [41] as representative
supervised methods for inverse problems.

Different choices of the cycle-consistency loss enforce different transitivity properties on the pair
(Gθ, Hσ) affecting the reconstruction. For example, the cycle-loss (33) imposes a much stronger
constraint on the reconstruction compared to (34), potentially undermining the expressive power
of high-dimensional neural networks. Moreover, the choice of the parameters α and β in (32) that
regulate the strength of the cycle-loss penalization have a strong impact on the reconstruction.
This has been analyzed in [64] for the case where Hσ = A and ℓ(z) = ∥z∥2

2, showing that when α
is small, then the reconstruction is very realistic in the sense that W1(πx, (Gθ)#πy) ≈ 0, but the
measurement-consistency cannot be ensured. Similarly, when α is large, even if cycle consistency is
ensured, the reconstruction is not guaranteed to lie in the data manifold (see Figure 5).

α=0.001: 21.60, 0.21 α=0.01: 25.33, 0.37 α=0.1: 34.65, 0.88 α=1.0: 33.96, 0.88

Figure 5: Reconstruction of UAR for different α. For α → 0, the unrolled generator (reconstruction
operator) seeks to find the minimizer of the expected data-fidelity loss, hence the reconstruction
looks similar to FBP.

These observations have been formalized in [64] in the form of the following theorem.
Theorem 3.1. Under suitable assumptions on θ and Gθ (see [64, Section 3] for more details) the
following statements hold:

1. As α → 0, Gθ → Gθ∗
1

(up to subsequences), where

θ∗
1 ∈ arg min

θ:
∫
Y∥y−AGθ(y)∥2

2 dπy=0
W1(πx, (Gθ)#πy). (35)

2. As α → ∞, Gθ → Gθ∗
2

(up to subsequences), where

θ∗
2 ∈ arg min

θ:(Gθ)#π
yδ =πx

∫
Y

∥y −AGθ(y)∥2
2 dπy. (36)

A cycle-GAN-style approach for unsupervised learning of unrolled operators referred to as the
adversarially learned primal-dual (ALPD), was introduced in [67] and was analyzed under the lenses
of variational inference. In particular, in [67] the following objective was considered

min
θ

KL((Gθ)#πy, πx) + C1

∫
Y

∥y −A(Gθ(y))∥2
2 dπy

+ C2

∫
X

∥x−Gθ(A(x))∥2
2 dπx. (37)
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Example of training data: image and its corresponding projection data (sinogram)

FBP: 19.51 dB, 0.13 TV: 29.18 dB, 0.84 LPD: 27.89 dB, 0.96 ALPD: 28.27 dB, 0.90

Figure 6: Comparison of supervised and unsupervised training on the Shepp-Logan phantom. The PSNR
(dB) and SSIM are indicated below the images. ALPD does a better job of alleviating over-smoothing, unlike
its supervised variant (LPD).

It was demonstrated in [67] that under appropriately defined statistical models for πx and πy and
suitably chosen constants C1 and C2, the maximum likelihood estimate of the parameter θ leads to
the training objective in (37). Moreover, replacing the KL divergence term with the 1-Wasserstein
distance leads to a training loss that is identical to the one proposed in [86] in the special case where
the forward operator is known. The reconstructed images using the trained model Gθ are shown in
Figures 6 and 7 for the Shepp-Logan phantom and the low-dose Mayo CT images, respectively. Both
experiments reveal that an adversarially trained unrolled operator as proposed in [67] does a better
job of preserving the image textures better than unrolled operators trained in a supervised manner
using the standard squared error loss. This behavior is consistent with the fact that supervised
approaches trained by minimizing the ℓ22 error effectively produce an approximation to the posterior
mean of the image conditioned on the data, which is inherently an averaging operator, unlike a
likelihood maximization approach.

3.2 Adversarial regularization

Another notable alternative approach to include a learned regularization in the reconstruction process
is to first learn an explicit regularization functional in (3) and to solve the resulting variational
problem subsequently. One such option is to learn an adversarial regularizer, which was first
proposed and analyzed in [53] and subsequently specialized to adversarial convex regularizers in [65].
Here, the construction of a data-driven regularization is inspired by how discriminative networks
(also referred to as critics, similarly as in the generative machine learning literature) are trained in
the WGAN framework.
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Ground-truth FBP: 21.63 dB, 0.24 TV: 29.25 dB, 0.79

AR: 31.83 dB, 0.84 LPD: 33.39 dB, 0.88 ALPD: 32.48 dB, 0.84

Figure 7: Comparison of ALPD with some classical model- and data-driven reconstruction methods on
the Mayo Clinic data. The corresponding PSNR (dB) and SSIM are indicated below the images and the
key differences in the reconstructed images are highlighted. The ALPD reconstruction is visibly sharper as
compared to LPD, enabling easier identification of clinically important features.

To train such an adversarial regularizer, we assume to have (x(i))N1
i=1 ∈ X and (y(j))N2

j=1 ∈ Y, which are
i.i.d. samples from the marginal distributions πx and πy of ground-truth images and measurement
data, respectively. Additionally, we assume that there exists a (potentially regularizing) pseudo-
inverse A† : Y → X to the forward operator A and define the measure π† ∈ P(X) as π† := A†

#(πy).
Then, the idea of adversarial regularization is to train a regularizer gθ, parametrized by a neural
network, to discriminate between the distributions πx and π†, i.e. between the distribution of
ground-truth images and the distribution of imperfect solutions A†yi (i.e., images with noise and
artifacts). More concretely, we compute

Rσ̂ : X → R where σ̂ ∈ arg min
σ

L(σ), (38)

where L(σ) is chosen as

L(σ) =
∫
X
Rσ(x) dπx −

∫
X
Rσ(x) dπ† − λ

∫
X

(
∥∇Rσ(x)∥ − 1

)2
+ dπ̂

=
∫
X
Rσ(x) dπx −

∫
X
Rσ(A†y) dπy − λ

∫
X

(
∥∇Rσ(x)∥ − 1

)2
+ dπ̂. (39)
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Here, π̂ ∈ P(X) is defined by sampling uniformly on the lines connecting samples of πx and samples
of π†. The heuristic behind this choice is that a regularizer trained this way will penalize noise and
artifacts generated by the pseudo-inverse (and contained in π†). From a theoretical point of view, one
can notice that the minimum of (39) approximates the 1-Wasserstein distance W1(πx, π†) between
πx and π†. Moreover, the optimal Rσ̂ approximates the Kantorovich potential for the 1-Wasserstein
distance as defined in Section 2.2.3. In particular, the Kantorovich potential for W1(πx, π†) turns
out to be a good regularizer for the given inverse problem. The resulting regularizer Rσ̂ is called an
adversarial regularizer (AR). In practical applications, the measures πx, π† ∈ P(X) are replaced with
their empirical counterparts given by the training data samples xi and A†yi, respectively. Suppose,
one computes a gradient step on the learned regularizer, given by xη = x − η∇xRσ̂(x), starting
from x drawn according to π†. Let πη

† be the distribution of xη. Under appropriate regularity
assumptions on the 1-Wasserstein distance W1(πη

† , πx) (see [53, Theorem 1]), one can show that

d
dηW1(πη

† , πx)|η=0 = −
∫
X

∥∇xRσ̂(x)∥2 dπ†. (40)

This ensures that by taking a small enough gradient step, one can reduce the 1-Wasserstein distance
from the ground-truth πx. This is a good indicator that using Rσ̂ as a variational regularization
term and consequently penalizing it implicitly aligns the distribution of regularized solutions with
the distribution πx of ground-truth samples. Further, one can show that if the AR is Lipschitz-
continuous1, then for a given noisy measurement yδ ∈ Y, a minimizer of the variational problem

f(yδ, Ax) + λ
(
Rσ̂(x) + ϵ∥x∥2

X

)
, (41)

exists, where the squared norm on x is needed to enforce coercivity.

3.2.1 Adversarial convex regularizer (ACR)

The adversarial regularizer Rσ̂ trained in (38) is typically non-convex, due to a typical DNN
parameterization of Rσ. Nevertheless, it is possible to enforce (strong) convexity on Rσ, leading
to the adversarial convex regularizer (ACR). The ACR allows for achieving stronger forms of
convergence than its non-convex predecessor while precluding discontinuities in the reconstruction
operator. This necessitates a suitable parameterization of the learned regularizer. One such option
to impose convexity on R

θ̂
is to use input convex neural networks [3]. We refer to [65] for more

details on the parameterization of ACRs. Given a so-constructed (and adversarially trained) ACR
(denoted as Rσ̂) that is convex in x, one then considers a regularization functional of the form

R(x) = Rσ̂(x) + ϵ ∥x∥2
X , (42)

where Rσ̂ : X → R is the trained ACR, which we assume to be 1-Lipschitz besides being convex in x.
The corresponding variational regularization problem then entails minimizing the regularized energy

f(yδ, Ax) + λR(x), (43)

with respect to x ∈ X. In this setting, we get the following set of improved theoretical guarantees
for the ACR, by following standard arguments in variational calculus.

11-Lipschitz continuity is approximately enforced by the gradient penalty term in (39). However, this does not
guarantee that the AR is Lipschitz continuous. This property can be instead enforced by choosing the right network
architecture. Indeed, all convolutional neural networks with ReLU activations are Lipschitz continuous for some
Lipschitz constant L, which, albeit, might be arbitrarily large.
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Theorem 3.2 (Properties of Adversarial Convex Regularizers [65]).

1. Existence and uniqueness: The functional in (43) is strongly convex in x and has a unique
minimizer x̂λ (y) for every y ∈ Y and λ > 0.

2. Stability: The optimal solution x̂λ (y) is continuous in y.

3. Convergence: For δ → 0 and λ(δ) → 0 such that δ

λ(δ) → 0, we have that x̂λ

(
yδ
)

converges

to the R-minimizing solution x† given by

x† ∈ arg min
x∈X

R(x) subject to y0 = Ax.

Despite strong theoretical guarantees, the numerical experiments in [65] (especially, for sparse-view
CT reconstruction) indicate a lack of expressive power of ACRs as compared to their nonconvex
counterpart AR. This underscores the need to develop techniques that achieve a better compromise
between empirical performance and theoretical certificates. A step in this direction has been made
very recently by relaxing convexity to a so-called convex-nonconvex construction of the regularizer
[85], wherein the regularizer is allowed to be nonconvex while still maintaining convexity of the
overall variational energy and the classical theoretical guarantees.

3.2.2 Combining end-to-end reconstructions and adversarial regularization

Cycle-WGAN models such as UAR and adversarial regularizer (AR) are both unsupervised ap-
proaches for solving inverse problems while being able to use the knowledge of the measurement
operator in the reconstruction process. In [64], it has been shown that UAR can be combined
with AR to improve the quality of the reconstruction. The key observation is that the adversarial
regularizer Rσ̂ : X → R is trained to distinguish samples from the noisy reconstruction (A†)#πy
from samples from the ground-truth πx. Therefore, it is plausible that by substituting A† with a
generator G

θ̂
learned through UAR, one should be able to improve the noisy reconstruction (A†)#πy

using a more accurate reconstruction, given by (G
θ̂
)#πy and then construct a regularizer based on

it. The noisy reconstruction (G
θ̂
)#πy would be an improved guess over (A†)#πy. Following this

intuition and rewriting the UAR objective [64] as

min
σ

max
θ

∫
Y
Rσ(Gθ(y)) dπy−

∫
X
Rσ(x) dπx + λ

∫
X

(|∇Rσ|(x̂) − 1)2
+ dπ̂

+
∫
X
f(Gθ(A(x)), x) dπx, (44)

one observes that the optimal Rσ̂ is trained to distinguish noisy samples of (G
θ̂
)#πy from samples

from πx and therefore Rσ̂ is a good regularizer for the distribution (G
θ̂
)#πy. Moreover, in [64] it

has been remarked that since the regularizer Rσ̂ is an approximation of the Kantorovich potential
for W1((G

θ̂
)#πy, πx), it is possible to compute the derivative of the 1-Wasserstein distance with

respect to a GD step as in (40). Indeed, suppose one considers a GD step of the learned regularizer,
given by xη = x− η∇xRσ̂(x), starting from x ∼ (G

θ̂
)#πy. Let πη

σ̂
be the distribution of xη. Under

appropriate regularity assumptions on the 1-Wasserstein distance W1(πη

σ̂
, πx) (see [64, Theorem 5]),

one can show that
d
dηW1(πη

σ̂
, πx)|η=0 = −

∫
X

∥∇xRσ̂(x)∥2 dπη

σ̂
.
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(yδ)

(G
θ̂
)#πy

∇Rσ̂
πx

Figure 8: A schematic illustration of the behavior of the gradient descent step initialized at G
θ̂
(yδ).

The gradient descent is moving the point G
θ̂
(yδ) in the direction ∇Rσ̂(G

θ̂
(yδ)). Since Rσ̂ is the

Kantorovich potential for W1((G
θ̂
)#πy, πx) the step of gradient descent moves G

θ̂
(y) towards the

ground-truth distribution πx

This ensures that by taking a small enough gradient step from samples of (G
θ̂
)#πy, one can reduce

the 1-Wasserstein distance from the ground-truth πx. This is a strong theoretical guarantee that
Rσ̂ is a good regularizer for the regularized inverse problem

min
x∈X

f(yδ, Ax) + λ
(
Rσ̂(x) + ϵ∥x∥2

X

)
, (45)

where yδ ∈ Y is the noisy measurement. In particular, by taking a few gradient descent steps on
the objective in (45), initialized with G

θ̂
(yδ), we are moving the end-to-end reconstruction G

θ̂
(yδ)

towards the ground-truth distribution πx, c.f. Figure 8. This additional refinement can be seen as a
process of instance adaptation of a given end-to-end reconstruction G

θ̂
(yδ). In Figure 9 we report

the reconstructions obtained in [64] using the UAR approach described in Section 3.1.3 (on the left)
and the reconstruction obtained by solving (45) performing few steps of GD initialized at G

θ̂
(yδ)

(on the right).

UAR: 32.80 dB, 0.86 UAR (refined): 33.15 dB, 0.87

Figure 9: Comparison between cycle-based end-to-end reconstruction obtained by UAR and the
additional refinement step. We report the PSNR (dB) and SSIM below the respective images. The
refinement step leads to a minor improvement in the quality of the reconstructed image via instance
adaptation (i.e., by computing the reconstruction corresponding to a specific realization of the
measurement random variable.)
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3.2.3 The refinement step in UAR and Brenier’s theorem

Adversarial regularizers and the refinement step in UAR can be interpreted under the lenses of
Brenier’s theorem [13] described in Section 3.2.3. Indeed, by computing the gradient descent step
with respect to the learned regularizer Rσ̂ as

xη = x− η∇xRσ̂(x) (46)

for either x = A†y (for AR) or x = G
θ̂
(y) (for UAR), one is effectively trying to compute an

approximation of the optimal transport map from the end-to-end reconstruction to the ground-truth
through the formula (18).

Unfortunately, Brenier’s theorem holds only for p-Wasserstein distances with 1 < p < ∞, and
thus it cannot be applied directly to AR and UAR since they are based on an approximation of
the 1-Wasserstein distance. Variants of AR and UAR that use the p-Wasserstein distances with
1 < p < ∞ would allow applying Theorem 2.4, giving the optimal learning step η that should be
used to compute the optimal transport map. However, such variants would inevitably suffer from
the lack of a computationally favorable dual formulation such as the one for the 1-Wasserstein
distance. Notably, [59] considers obtaining approximations of the 1-Wasserstein distance through the
computed potential to design a better descent step (46). We refer interested readers to [59] for more
details and to [30] for a more theoretical discussion about the relation between the 1-Wasserstein
distance and Kantorovich potentials.

4 Unsupervised approaches rooted in convex analysis and monotone operator theory

In this section, we give an overview of different unsupervised approaches based on convex analysis
and monotone operator theory for solving imaging inverse problems, with special emphasis on the
learned optimization-based approaches and the plug-and-play (PnP) denoising framework.

4.1 Learned optimization solvers

Learning-to-optimize (L2O) is an emerging area at the interface of optimization and machine
learning that has recently started to receive popularity various in data science applications, including
computational imaging. In this section, we review some recent progress in L2O in the context of
computational imaging.

L2O methods learn to efficiently solve a class of optimization problems, by adapting to the structure
of the problems and the underlying data distribution. Although L2O has not received strong
attention in the imaging community compared to related schemes such as PnP/RED, we believe
that it will soon become a major area in imaging, due to the recent rise of computationally intensive
learned regularizers. Moreover, for each imaging modality, the imaging system is usually fixed or
almost fixed, which is a suitable problem setting to use L2O to develop specialized optimization
algorithms for imaging in an application-driven manner.

The L2O schemes are typically trained in an unsupervised manner, with the goal of accelerating
optimization on a class of functions of interest, as outlined in the following. Firstly, the users need to
generate a set of training problem instances {fi}n

i=1, drawn from the problem class of interest, such
as those arising from model-based natural image inpainting or sinogram denoising. One example
would be fi(x) = ∥x−yi∥2 +λ∥∇x∥1, corresponding to the TV-based variational model for denoising
induced by a noisy image yi. Let us denote the algorithm to be learned as Aθ(f, x0, N), with θ
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being the set of trainable parameters within the algorithm. Here f denotes the objective, x0 denotes
the initial point of the algorithm, while the third argument N denotes the number of iterations
to be executed. The output of the algorithm is denoted as xN = Aθ(f, x0, N). The unsupervised
training objective can typically be written as minimizing the final objective value (averaged over
the training problems):

θ⋆ ∈ arg min
θ

1
n

n∑
i=1

fi(Aθ(fi, x0, N)), (47)

or minimizing the sum of the function values along the optimization path:

θ⋆ ∈ arg min
θ

1
n

n∑
i=1

N∑
m=1

fi(Aθ(fi, x0,m)), (48)

where one seeks to minimize the training problems’ objective values as much as possible within N
iterations. Due to the computational complexity in training, N cannot be too large. In the context
of imaging, the number of unrolling iterations is usually chosen to be on the order of N = 10.

In this chapter, we only consider theoretically-principled L2O frameworks which lead to provably
convergent algorithms. We will start from the basic scheme of Learned PDHG with trainable
step-size parameters [6], to more advanced schemes such as the learned mirror descent (LMD)
methods [92], which are based on trainable mirror maps using input-convex neural networks [3].

4.1.1 Learned algorithmic parameters

Banert et al. proposed a learned step-size scheme for the class of primal-dual splitting algorithms
[6], used to solve composite optimization problems of the form:

x⋆ ∈ arg min
x

f(Ax) +R(x). (49)

In the context of imaging, f(Ax) is a data-fidelity term incorporating a forward operator A, while
R(x) is a regularization term (such as TV regularization). The step-size selection in the primal-
dual splitting scheme has been a challenging problem, since jointly selecting the primal step-size,
dual step-size, and the extrapolation parameter is difficult in general and significantly affects the
practical performance [34, 14]. We present a well-known classical primal-dual splitting method, the
primal-dual hybrid gradient (PDHG) algorithm of Chambolle and Pock [15]:

yk+1 = proxσ
f∗(yk + σAvn),

xk+1 = proxτ
R(xk − τA⊤yk+1),

vk+1 = xk+1 + θ(xk+1 − xk).

One could generalize this splitting by parameterizing the scheme as follows, where ⊗ denotes the
Kronecker product, and diag(A,B) represents the diagonal operator with operators A,B on the
diagonal: [

wk

yk+1

]
= (A⊗ id) diag(proxσ

f∗ , id)(B ⊗ id)
[
Avk

yk

]
[
vk

xk+1

]
= (C ⊗ id) diag(proxτ

R, id)(D ⊗ id)
[
A⊤wk

xk

]
,
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where A, B, C, and D are 2 × 2 matrices consisting of learnable parameters [6]. This formulation
includes PDHG as the special case

A =
[
1 0
1 0

]
, B =

[
σ 0
0 1

]
, C =

[
1 + θ −θ

1 0

]
, D =

[
−τ 1
0 1

]
.

As long as the learned parameters are constrained throughout training within the acceptable range
given by the convergence theorems of the primal-dual splitting algorithms, the learned scheme is
provably convergent.

4.1.2 Learned mirror descent with input-convex neural networks

In the previous section, we presented a basic paradigm for provable L2O, by learning the algorithmic
parameters of classical optimizers such as PDHG, while restricting the learnable parameters such
that theoretical guarantees hold. Although such schemes can achieve a certain degree of adaptivity
and acceleration over classical hand-crafted optimizers while maintaining provable convergence,
their potential is limited as they involve few trainable parameters.

In order to fully utilize the training data and make the algorithm adapt well to the inherent
structure of the optimization problem class of interest, we wish to leverage the expressive capacity
of deep neural networks within some classical optimizer in a principled manner, ensuring provable
convergence. The classical mirror descent (MD) algorithm by Yudin and Nemirovski is an ideal
candidate for such extension by its nature [69]. Before introducing the MD algorithm, we first define
the mirror maps as such.
Definition 4.1 (Mirror potentials and mirror maps). We define a continuously differentiable and
strongly-convex function Ψ : X → R as a mirror potential, and its gradient ∇Ψ : X → (Rn)∗ as the
(forward) mirror map [69, 92].

Denoting Ψ∗ as the convex conjugate of the mirror potential Ψ, and the backward mirror map as
∇Ψ∗ = (∇Ψ)−1, we can write the MD iterates as

xk+1 = ∇Ψ∗[∇Ψ(xk) − tk∇f(xk)], (50)

or equivalently,
xk+1 = arg min

x∈X

{
⟨x,∇f(xk)⟩ + 1

tk
BΨ(x, xk)

}
. (51)

Here, BΨ(x, y) = Ψ(x) − Ψ(y) − ⟨∇Ψ(y), x− y⟩ denotes the Bregman distance induced by the mirror
potential Ψ. Observe that for the choice of mirror potential Ψ(·) = 1

2∥ · ∥2
2, we recover gradient

descent.

The MD algorithm naturally lends itself to the L2O setting, since we can parameterize the mirror
potential using deep neural networks. In particular, by parameterizing Ψ as an input-convex neural
network (ICNNs) [3], the learned mirror potential is enforced to be a convex function w.r.t. the
input, which allows us to inherit the convergence properties of MD. Let the mirror potential Ψ and
its conjugate Ψ∗ be parameterized by two neural networks Mθ and M∗

ϑ, respectively, where the
condition M∗

ϑ ≈ (Mθ)−1 is enforced through training2. We can describe the learned mirror descent
(LMD) algorithm as:

x̃k+1 = ∇M∗
ϑ(∇Mθ(x̃k) − tk∇f(x̃k)). (52)

2Note that the mirror potential should be strongly-convex to ensure provable convergence. We add a small ℓ2 term
µ
2 ∥x∥2

2 to the usual ICNN parameterization to ensure this.
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Due to the inexact inverses, we need to enforce M∗
ϑ ≈ (Mθ)−1 for the convergence of LMD. Hence for

this framework, we incorporate an additional regularization in the unsupervised training objective
stated previously in this section, where the inexactness ∥∇M∗

ϑ ◦ ∇Mθ − I∥ is penalized along the
distribution pX of the optimized iterates. Denoting the LMD algorithm as Aθ,ϑ, where αms are the
weights across different iterations, the regularized objective is:

arg min
θ,ϑ

1
n

n∑
i=1

N∑
m=1

αmfi(Aθ,ϑ(fi, x0,m)) + Ex∼pX [∥(∇M∗
ϑ ◦ ∇Mθ − I)(x)∥]. (53)

Under standard assumptions in convex optimization, we can provide the following regret bound
for LMD which is close to the regret bound for MD, subject to the approximation quality of the
M∗

ϑ ≈ (Mθ)−1 encouraged in the training process.
Theorem 4.2 (Regret Bound for LMD [92]). Suppose f is µ-strongly convex with parameter µ > 0,
and Ψ is a mirror potential with strong convexity parameter σ. Let {x̃k}∞

k=0 be some sequence in
X = Rn, and {xk}∞

k=1 be the corresponding exact MD iterates evaluated at x̃k−1. We have the
following regret-bound:

K∑
k=1

tk(f(x̃k) − f(x∗)) ≤

B(x∗, x̃1) +
K∑

k=1

[ 1
σ
t2k∥∇f(x̃k)∥2

∗ +
( 1

2tkµ
+ 1
σ

)
∥∇Mθ(x̃k+1) − ∇Mθ(xk+1)∥2

∗

]
.

(54)

From this result we can observe that, for the case where M∗
ϑ ≈ (Mθ)−1, the term ∥∇Mθ(x̃k+1) −

∇Mθ(xk+1)∥2
∗ → 0 and we recover the standard convergence guarantees for MD. In Figure 10 and

11, we demonstrate a numerical example of applying LMD on the total-variation (TV) model-based
image denoising task. The LMD and the adaptive LMD (a variant of LMD with learned step-sizes
besides the learned mirror maps) were trained with unrolling iteration number N = 10. We
can observe significantly improved convergence rates of LMD over classical solvers which are not
data-driven.

To further improve the convergence rates and computational efficiency of LMD, the follow-up
work [91] of Tan et al. proposes several extensions utilizing momentum-based acceleration and
stochastic gradient approximations. We present one of the extensions with the classical Nesterov-type
acceleration technique in optimization, the learned accelerated mirror descent (LAMD) algorithm in
Algorithm 1.

Algorithm 1 Learned Accelerated Mirror Descent (LAMD) [91]

Require: Input x̃(0) = z̃(0) = x(0) ∈ X, parameter r ≥ 3, step-sizes tk, number of iterations K
1: z(0) = ∇Mθ(z̃(0))
2: for k = 0, ...,K do
3: x(k+1) = λk∇M∗

ϑ(z(k)) + (1 − λk)x̃(k) with λk = r
r+k

4: z(k+1) = z(k) − ktk
r ∇f(x(k+1))

5: x̃(k+1) = x(k+1) − γtk∇f(x(k+1))
6: end for
7: return x(K+1) = λK∇M∗

ϑ(z(K)) + (1 − λK)x̃(K)

With bounded forward-backward inconsistency, an improved convergence rate of LAMD over vanilla
LMD can be established in a way similar to the classical accelerated MD. In Figure 12, we present
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Figure 10: Convergence results of LMD and traditional optimizers in TV denoising problem (see
[92]).
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Adam
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Figure 11: Recovered images by LMD and Adam. We can observe visually the LMD achieves much
faster convergence over Adam with fewer artifacts in early iterations. See [92] for further details.

numerical results of LAMD in TV model-based denoising, comparing it to learned solvers such
as LMD and LPDHG, as well as the classical optimizers such as gradient descent with Nesterov
acceleration. We can observe the superior performance of LAMD in this example.

4.2 Plug-and-play methods and data-driven regularization

Denoising is the simplest and arguably the most well-studied inverse problem in imaging, with
numerous algorithms being developed over the past few decades, particularly for removing additive
white Gaussian noise. A natural question is whether one can leverage off-the-shelf denoisers for
solving more complicated image recovery tasks with a non-trivial forward operator (that is different
from the identity). Venkatakrishnan et al. [98] pioneered the idea of using denoisers within proximal
splitting algorithms (such as ADMM) in a plug-and-play (PnP) fashion, resulting in a class of
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Figure 12: Example convergence profiles for the learned mirror descent algorithm (LMD), the learned
accelerated mirror descent algorithm (LAMD), the learned PDHG method (LPDHG), and gradient
descent with learned step-sizes (LGD). The target optimization problem arises from TV model-based
denoising. We observe that all learned methods are significantly faster than the corresponding
gradient descent and Nesterov accelerated gradient descent algorithms in the low iteration regime.
However, without special parameter choices for LPDHG, it does not converge to a minimizer.

algorithms known as the PnP denoising approach. To motivate replacing proximal operators
with denoisers, let us recall the definition of the proximal operator with respect to a (potentially
non-smooth) convex functional g : X → R ∪ {+∞} and a step-size τ > 0:

proxτg(x) = arg min
u

1
2∥x− u∥2 + τg(u). (55)

As indicated by (55), evaluating the proximal operator amounts to denoising a noisy image x using
the Bayesian maximum a-posteriori probability (MAP) estimation framework with a Gibbs prior
∝ exp (−τg(u)). This denoising interpretation of proximal operators underlies the foundation of
PnP approaches, which have been shown to produce excellent reconstruction results for a wide
range of imaging inverse problems. A classic and widely popular example of PnP denoising would
be to consider it in conjunction with forward-backward splitting (FBS), leading to the following
iterative reconstruction algorithm:

xk+1 = Dσ (xk − ηk∇f(xk)) . (56)

Here, f denotes the data fidelity loss for the underlying inverse problem, ηk > 0 is the step-size at
iteration k, and Dσ is a denoiser that eliminates Gaussian noise of standard deviation σ from its
input.

Besides the PnP denoising framework within proximal methods, wherein a denoiser implicitly acts
as a regularizer, Romano et al. [78] proposed an alternative approach to explicitly construct a
regularizing term from a denoiser Dσ(x) as

g(x) = 1
2x

⊤ (x−Dσ(x)) . (57)
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One can then seek to minimize the energy functional f(x) + λ g(x), where g is as defined in (57),
leading to fixed-point iterative schemes known as the regularization-by-denoising (RED) algorithms.
Nevertheless, it was shown subsequently by Schniter et al. [75] that the energy minimization
interpretation of the RED algorithms is valid only when (i) the denoiser is locally homogeneous, i.e.,
Dσ ((1 + ϵ)x) = (1 + ϵ)Dσ(x) holds for all x with sufficiently small ϵ, and (ii) the Jacobian of Dσ is
symmetric. These conditions are generally not satisfied by generic denoisers, thereby invalidating
the energy minimization-based interpretation of RED. Instead, the authors of [75] developed a new
framework called score-matching to analyze the convergence of RED algorithms.

Notwithstanding their empirical success, PnP denoising algorithms such as (56) do not immediately
inherit the convergence properties of the corresponding optimization scheme, such as FBS in the
previous example. Studying the convergence of PnP denoising has received a significant amount of
attention in the mathematical imaging community in recent years. Arguably, the most natural form
of convergence for PnP algorithms of the form (56) is the stability of the iterations, ascertaining
whether the sequence of iterates xk generated by a PnP algorithm converges. Such convergence
guarantees are typically derived from fixed point theorems, which require showing that the PnP
iterations are contractive maps [16, 79]. For instance, [79] established the fixed-point convergence
of PnP-ADMM (i.e., PnP with the alternating direction method of multipliers algorithm) under
the assumption of Lipschitz continuity of the operator (Dσ − id). The specific result is stated in
Theorem 4.3.
Theorem 4.3 (Fixed-point convergence of PnP-ADMM [79]). Consider the PnP-ADMM algorithm,
given by

xk+ 1
2

= proxτf (zk) , xk+1 = Dσ

(
2xk+ 1

2
− zk

)
, and

zk+1 = zk + xk+1 − xk+ 1
2
, (58)

where the data-fidelity loss f is assumed to be µ-strongly convex. One can equivalently express (58)
as the fixed-point iteration zk+1 = T (zk), where

T = 1
2 id +1

2 (2Dσ − id)
(
2 proxτf − id

)
. (59)

Suppose that the denoiser Dσ satisfies

∥(Dσ − id) (u) − (Dσ − id) (v)∥2 ≤ ϵ ∥u− v∥2 , (60)

for all u, v ∈ X and some ϵ > 0, and the strong convexity parameter µ is such that ϵ

(1 + ϵ− 2ϵ2)µ < τ

holds. Then the operator T is contractive and the PnP-ADMM algorithm is fixed-point convergent.
That is, (xk, zk) → (x∞, z∞), where (x∞, z∞) satisfy

x∞ = proxτf (z∞) and x∞ = Dσ (2x∞ − z∞) . (61)

As noted in [79], fixed-point convergence of PnP-ADMM follows from monotone operator theory if
(2Dσ − id) is non-expansive, but (60) imposes a less restrictive condition on the denoiser.

While fixed-point convergence ensures that the PnP iterations are stable, the specific fixed point
to which they converge does not naturally minimize a variational energy function. To bridge the
gap between classical variational approaches and PnP methods, it is important to derive conditions
under which the limit point of PnP iterations can be characterized as the minimizer (or, at least
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a stationary point) of some regularized variational objective (which, of course, depends on the
denoiser). This type of convergence is referred to as objective convergence and is stronger than
fixed-point convergence.

Objective convergence of PnP with classical (pseudo-) linear denoisers (e.g., non-local means denoiser)
has been established in [68]. Hurault et al. [40] showed that PnP with a denoiser constructed as a
gradient field, referred to as gradient-step (GS) denoisers, converges to the stationary point of a
(possibly non-convex) variational objective (c.f. Theorem 4.4). The construction of GS denoisers
is motivated by Tweedie’s identity; the optimal minimum mean-squared error (MMSE) Gaussian
denoiser is given by

D∗
σ(x) := E [x0|x = x] = x+ σ2 ∇ log pσ(x). (62)

Here, x = x0 + σw, where w ∼ N (0, I), is the Gaussian-noise corrupted version of the clean image
x0 ∈ Rd and

pσ(x) = 1
(2πσ2)

d
2

∫
exp

(
−∥x− x0∥2

2
2σ2

)
p(x0) dx0. (63)

Indeed, the optimal Gaussian denoiser is of the form D∗
σ(x) = x − ∇ g∗

σ(x), where g∗
σ is the

negative log-density of the smoothed distribution pσ defined in (63). This has a structure identical
to that of a GS denoiser, parameterized as Dσ(x) = x − ∇ gσ(x). It was argued in [40] that
directly parameterizing gσ using a deep neural network does not lead to state-of-the-art denoising
performance, but instead, modeling gσ as gσ(x) = 1

2 ∥x−Nσ(x)∥2
2 for a differentiable network Nσ(x)

produces superior denoising performance. The denoiser is trained by minimizing the MSE, given
by J := Ex,w ∥Dσ(x + σw) − x∥2

2, where w ∼ N (0, I), approximated over the training dataset
consisting of the ground-truth images and their noisy counterparts.
Theorem 4.4 (Objective convergence of PnP iterations [40]). Suppose the denoiser is a gradient-step
(GS) denoiser Dσ = id −∇gσ, where gσ is proper, lower semi-continuous, and differentiable with
L-Lipschitz gradient. The GS-PnP algorithm proposed in [40] is given by

xk+1 = proxτf (xk − τλ∇gσ(xk))
= proxτf ◦ (τλDσ + (1 − τλ id)) (xk), (64)

where f : X → R ∪ {+∞} is a convex and lower semi-continuous data-fidelity term. Then, the
following guarantees hold for τ < 1

λ L :

1. The sequence F (xk), where F = f + λ gσ, is non-increasing and convergent.

2. The residual ∥xk+1 − xk∥2 converges to 0.

3. All limit points of {xk} are stationary points of F (x).

Notably, the PnP iteration defined by (64) is exactly equivalent to proximal gradient descent on
f + λ gσ, with a potentially non-convex gσ.

While objective convergence ensures a one-to-one connection between PnP iterates with the min-
imization of a variational objective, it does not provide any guarantees about the regularizing
properties of the solution that the iterates converge to. In the same spirit as classical regularization
theory, it is therefore desirable to be able to control the implicit regularization effected by the
denoiser in PnP algorithms and analyze the asymptotic behavior of the PnP reconstruction as
the noise level and the regularization strength tend to vanish. More precisely, assuming that the
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Figure 13: Convergence of the residuals mini≤k ∥xi+1 −xi∥2/∥x0∥2 for various PnP methods applied
to image deblurring. Each curve corresponds to one image from the CBSD10 dataset, corrupted
with 3% additive Gaussian noise. Except for PnP-FISTA, stationary points of these PnP methods
are critical points of a weakly convex function, corresponding to the noisy image and the denoiser.

PnP iterations converge to a solution x̂
(
yδ, σ, λ

)
, where σ is a parameter associated with the

denoiser and λ is an explicit regularization penalty, one would like to obtain appropriate selection
rules for σ and/or λ such that x̂

(
yδ, σ, λ

)
is a convergent regularization scheme in the limit as

δ → 0. To the best of our knowledge, some progress in this direction was first made in [27], and
the precise convergence result is stated in Theorem 4.5. A similar convergence result for PnP
methods in the sense of regularization was shown in [38] considering linear denoisers, together with
a systematic approach based on spectral filtering for controlling the regularization effect arising from
such denoisers.
Theorem 4.5 (Convergent plug-and-play (PnP) regularization [27]). Consider the PnP-FBS iterates
of the form

xδ
λ,k+1 = Dλ

(
xδ

λ,k − η A∗
(
Axδ

λ,k − yδ
))
, (65)

where Dλ is a denoiser with a tuneable regularization parameter λ. Let PnP
(
λ, yδ

)
be the fixed

point of the PnP iteration (65). For any y ∈ range(A) and any sequence δk > 0 of noise levels
converging to 0, there exists a sequence λk of regularization parameters converging to 0 such that for
all yk with ∥yk − y0∥2 ≤ δk, the following hold under appropriate assumptions on the denoiser (see
Definition 3.1 in [27] for details):

1. PnP
(
λ, yδ

)
is continuous in yδ for any λ > 0;

2. The sequence (PnP (λk, yk))k∈N has a weakly convergent subsequence; and
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3. The limit of every weakly convergent subsequence of (PnP (λk, yk))k∈N is a solution of the
operator equation y0 = Ax.

Ground-Truth PnP-LBFGS(29.78dB) PnP-PGD (28.68dB)

Corrupted PnP-DRSdiff (28.66dB) PnP-DRS (29.39dB)

Figure 14: Deblurring visualization using starfish image, with each method limited to a maximum of
100 iterations. Experiments are run with additive Gaussian noise σ = 7.65. PnP-LBFGS converges
within the first 100 iterations, while the other PnP algorithms take longer to converge.

In Figure 13 and 14, we present some numerical results from [93] on applying provably convergent
PnP algorithms including PnP-LBFGS, PnP-PGD, PnP-DRS etc, on image deblurring task for
illustration, more details can be found in the referenced paper.

5 Various ground-truth-free approaches for image reconstruction

In this section, we briefly survey some other closely related unsupervised training strategies for
imaging inverse problems. The frameworks described here are mostly suitable for the cases where
we have limited training data for the networks, for example, in medical tomographic imaging
we could have plenty of noisy sinogram measurement data from the imaging devices, but a very
limited amount of data for ground-truth images. Strictly speaking, there are sometimes no actual
“ground-truths” in practice, making the use of unsupervised schemes necessary.

5.1 Deep image prior

One of the popular and empirically successful unsupervised approaches for imaging is the deep image
prior (DIP) method [97]. Surprisingly, this approach requires no training data, relying completely
on the regularization effect of the architecture of the deep CNNs and implicit regularization of the
gradient-based optimizers [90]. Let us denote a neural network such as a U-net by Gθ : Rd′ → Rd,
which can be either untrained or pretrained, parameterizing the image to be reconstructed. For an
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arbitrary vector z, the DIP scheme can be written as minimizing approximately:

θ⋆ ≈ arg min
θ

∥y −AGθ(z)∥2
2, (66)

with some first-order methods such as Adam, with early-stopping to avoid overfitting. The final
reconstruction is then computed as x⋆ = Gθ⋆(z). While letting z be chosen as a Gaussian random
vector produces reasonable results, it has been observed that warm-starting by choosing z to be the
corrupted image input leads to better results. For example, when applying DIP in denoising, it is
better to choose z to be the noisy input image itself for faster convergence and improved results,
as observed by Tachella et al [90]. This work also demonstrates that the success of DIP is due to
the implicit regularization by the network architecture and the dynamics of the gradient-based
optimizer.

Despite the nonstandard reconstruction method, the DIP approach demonstrates remarkable
numerical performance without any training data, even in highly ill-posed inverse problems such as
inpainting with many missing pixels. Although this scheme is usually numerically inferior compared
to fully-supervised schemes, the DIP approach demonstrates that the implicit regularization jointly
formed by the architecture and gradient-based optimization is already a very strong regularization
for imaging. Moreover, it can be jointly applied with classical variational regularization methods and
plug-and-play priors introduced in the previous subsections for even better reconstruction results.
For example, the DIP-TV approach [50]

θ⋆ ≈ arg min
θ

∥y −AGθ(z)∥2
2 + µ∥∇Gθ(z)∥1, (67)

and the DIP-RED approach [55], given by

θ⋆ ≈ arg min
θ

∥y −AGθ(z)∥2
2 + µGθ(z)⊤(Gθ(z) −Dλ(Gθ(z))), (68)

both fall within the category of combining DIP with additional prior terms. With the assistance of
additional regularization, the performance of DIP is often improved, and the need for early stopping
is alleviated if the regularization parameter µ is appropriately chosen.

5.2 Noise-2-X methods

The Noise2Noise scheme takes two distinct noisy observations of natural images for training denoisers
without ground-truth image, by taking one of the noisy observations as a “ground-truth” in the
fidelity term [48]. An interesting class of similar ground-truth-free unsupervised training schemes
has been developed, such as Noise2Self [7], Noise2Void [47], Noisier2Noise [63], and many other
related schemes [74, 46, 39]. We refer to this class of training schemes as the Noise-2-X methods.
Given a collection of noisy/corrupted images {x̂i}n

i=1 and a neural network to train, typically deep
CNNs or U-nets, the Noise-2-X schemes train the reconstruction network on unsupervised losses of
the form:

θ⋆ ≈ arg min
θ

1
n

n∑
i=1

∥ŷi −Gθ(x̂i)∥2
2, (69)

where {x̂i, ŷi}n
i=1 are pairs of noisy perturbations of the inaccessible ground-truth images {xi}n

i=1.
Different noise-2-X schemes consider different choices of such perturbations. The aim of using pairs
of perturbations is to use (69) to approximate the supervised loss

θ⋆ ≈ arg min
θ

1
n

n∑
i=1

∥xi −Gθ(x̂i)∥2
2, (70)
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in the absence of ground-truth images xi. For example, consider the denoising problem yi = xi + εi

where εi denotes additive Gaussian noise. The unsupervised loss can be written as 1
n

∑n
i=1 ∥yi −

Gθ(x̂i)∥2
2 = 1

n

∑n
i=1 ∥xi + εi −Gθ(x̂i)∥2

2. The gradient of this approximation is an unbiased estimate
of the gradient for the supervised loss above, and such an approximation becomes increasingly
accurate as the sample size n increases. Similar to the DIP, denoising networks based on noise-2-X
schemes are also trained using gradient-based optimization algorithms such as Adam or SGD.

In imaging tasks such as natural image denoising, these unsupervised training schemes demonstrate
reasonably good performance, closely matching the performance of denoising networks with fully
supervised training. Combined with the plug-and-play schemes we have introduced before, the
denoisers trained by these noise-2-X schemes can be also applied to solve more sophisticated imaging
inverse problems such as deblurring, inpainting, and tomographic reconstruction in the absence of
any noise-free ground-truth images.

5.3 Equivariant imaging

In certain imaging applications such as CT or MRI reconstruction, we often only have low-quality
measurements {yi}n

i=1 without any ground-truth images. This situation restricts the use of supervised
training, where synthetic data is instead used. In such cases, the quality of the measurements
significantly affects the training quality of brute-force unsupervised training:

θ⋆ ≈ arg min
θ

1
n

n∑
i=1

∥yi −AGθ(yi)∥2
2. (71)

This unsatisfactory training is due to the difficulty of learning in the presence of highly non-trivial
null-spaces. To mitigate this, Chen et al. [19] proposed the Equivariant Imaging (EI) framework,
utilizing the equivariant structure of the forward operator to improve the performance of the
unsupervised training in this context. More precisely, in the majority of imaging inverse problems,
the plausible set of images I are invariant to a certain group of transformations G = {g1, g2, ..., g|G|}
with actions Tg such that Tgx ∈ I for all x ∈ I. For example, natural images are usually invariant to
shift operations, while CT/MRI images are usually invariant to rotations. Exploiting this structure
of the plausible image set, the desired neural network solution should approximately satisfy:

Gθ(ATgx) = TgGθ(Ax). (72)

The composite map hθ ◦A should be equivariant under the transformations Tg, meaning that the
operators commute. This leads to the EI training framework:

θ⋆ ≈ arg min
θ

1
n

n∑
i=1

∥yi − AGθ(yi)∥2
2 + µEg∈G

[
∥Gθ(ATgGθ(yi)) − TgGθ(AGθ(yi))∥2

2

]
. (73)

This is the unsupervised training loss with the addition of a regularization term that encourages
the network to utilize the equivariant structure of the imaging problem. Akin to the previously
introduced unsupervised methods, gradient-based optimization solvers such as Adam are applied
for training, with an extra computational overhead due to the sophisticated regularization term.
Although training using EI is more computationally expensive and requires much more memory
compared to a brute-force approach, this framework demonstrates remarkable numerical potential
and can match the accuracy of fully supervised approaches closely [19]. The EI framework can
enable practitioners to train advanced reconstruction networks such as FBP-ConvNet and deep
unrolling networks from only the measurement data without the ground-truth images.
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5.4 Stein’s unbiased risk estimation (SURE)

An unsupervised learning approach based on Stein’s unbiased risk estimation (SURE) [88] was
proposed by Metzler et al. [58]. The estimation problem considered in [58] was that of recovering
an image x ∈ Rn from its linearly degraded measurement y = Ax+ w, where w is Gaussian with
mean zero and covariance σ2

wI. Then, it can be shown that

J(θ) := Ew

[ 1
n

∥y −Gθ(y)∥2
2

]
− σ2

w + 2σ2
w
n

divy (Gθ(y)) , (74)

where div denotes the divergence operator, is an unbiased estimator of the mean-squared error
(MSE) Ew

[ 1
n

∥x−Gθ(y)∥2
2

]
. Since approximating J(θ) requires only the measured data and not

the corresponding ground-truth images, it serves as a surrogate loss for MSE and results in an
unsupervised learning framework. To approximate the divergence term, the authors of [58] adopted
a Monte Carlo-based approach that relies on the following:

divy (Gθ(y)) = lim
ϵ→0

Eu

[
u⊤

(
Gθ(y + ϵu) −Gθ(y)

ϵ

)]
, (75)

where u ∼ N (0, I). A similar unbiased estimator of the MSE can be derived for noise distributions
in the exponential family. SURE can be utilized as a general framework that can turn any generic
supervised MSE-based learning approach (for instance, a bilevel learning framework) into an
unsupervised one by replacing the MSE with its SURE-based estimate.

5.4.1 Robust equivariant imaging via SURE

The EI unsupervised training framework introduced in the previous subsection can also be further
improved in terms of robustness to measurement noise by incorporating SURE, as shown in the work
of Chen et al [20]. There is a major weakness of the EI approach regarding the fragility towards
measurement noise, such that as the measurement noise increases, the performance of EI would
experience very significant decay. An effective remedy for this issue turns out to be utilizing the
SURE loss (74). This modified robust EI framework can be summarized as the following objective:

θ⋆ ≈ arg min
θ

1
n

n∑
i=1

∥yi −AGθ(yi)∥2
2 + 2σ2divyi (Gθ(yi))

+ µEg∈G [∥Gθ(ATgGθ(yi)) − TgGθ(AGθ(yi))∥2
2].

According to (75), when training the reconstruction networks using gradient-based methods, the
divergence term can be simply approximated by:

divy (Gθ(y)) ≈ u⊤
(
Gθ(y + εu) −Gθ(y)

ε

)
, (76)

in each iteration, with u ∼ N (0, I) while ε being chosen to be a small constant. With this modified
loss, the resulting reconstruction networks can closely match fully supervised methods even when
the noise in the measurement is significant.

6 Summary and conclusions

Unsupervised learning is a powerful method of performing machine learning in the absence of
complete ground-truth data, such as unpaired training examples, and access to samples of only
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the ground-truth images, or of only noisy measurements. We presented three paradigms, namely
probabilistic approaches based on optimal transport and cycle architectures, learned priors through
learning-to-optimize and plug-and-play, as well as various ways of inserting prior knowledge for
regularization. Each of these paradigms requires some prior knowledge, such as a degradation model
or probabilistic interpretation. Nonetheless, such models have been shown to be competitive with
supervised models, and are applicable to more general classes of problems.

In Section 3, we reviewed unsupervised approaches based on optimal transport, particularly the
Cycle-WGAN approach consisting of two WGANs in opposite directions and the adversarial
regularization method where a regularizer is parameterized using a neural network and learned
adversarially. Both approaches aim to minimize a Wasserstein distance between distributions
induced by the learned components, and an approach combining both Cycle-WGAN approaches
and adversarial regularization was discussed in Section 3.2.2. These approaches have the benefit
of having a probabilistic interpretation, where the distribution of the generated or reconstructed
data lives in a certain neighborhood of the ground-truth distribution. This lies in the intersection of
learning the prior and posterior distributions, and can also be related to semi-supervised learning,
where there is an imbalance of measurements and ground-truths.

Several convex analysis-based methods for unsupervised learning were presented in Section 4. In
particular, the learning-to-optimize, which accelerates model-based reconstruction, was considered
in Section 4.1. Plug-and-play methods for image reconstruction tasks, where an image prior is
implicitly defined by a pre-trained Gaussian denoiser were considered in Section 4.2. Section 5
detailed several training methods for one-shot image reconstruction such as using the deep image
prior, or various methods for training denoisers in the absence of ground-truth data.

In this review, we focused on works that derive from classical results in optimal transport and convex
analysis. However, the scope of unsupervised learning is much broader once this restriction is lifted.
Notable examples include physics-informed neural networks, which aim to learn physical operators
such as PDEs or dynamical systems [45]. While a lot of theory already exists for unsupervised
learning, we believe that the following few issues are particularly important for closing the gap
between unsupervised and supervised methods:

1. There is an inherent difference in information available in the supervised regime compared to
the unsupervised regime. Some works already seek to quantify this, such as [89] that rephrases
the EI framework in terms of compressed sensing, and derives bounds for signal recovery based
on classical theorems. An interesting direction would be quantifying the performance difference
induced by this information gap, as well as in suitable limiting cases.

2. Unsupervised methods were categorized into three main classes as in Section 2.4.2, and all these
formulations assume some sort of prior information into the model. The works presented in this
review are based on classical results in optimal transport and convex analysis, allowing for some
theoretical analysis. A more theoretical framework for building unsupervised models, utilizing
probabilistic or geometric ideas, could lead to more efficient usage of data and help close the gap
between supervised and unsupervised methods.
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