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Abstract. Measure structured deformations are introduced to present a unified theory of

deformations of continua. The energy associated with a measure structured deformation is

defined via relaxation departing either from energies associated with classical deformations or
from energies associated with structured deformations. A concise integral representation of the

energy functional is provided both in the unconstrained case and under Dirichlet conditions

on a part of the boundary.
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1. Introduction

The primary objective of continuum mechanics in solids is to articulate how a solid body
will alter its shape when subjected to specified external forces or boundary conditions. A cru-
cial initial step towards achieving this objective involves selecting a category of deformations
for the continuum. In describing numerous continua, certain widely accepted criteria for the
chosen category of deformations have been established: these deformations should be reversible,
with differentiable mappings and inverses, and the combination of two deformations within this
category should result in another deformation within the same category. However, classical de-
formations may not always suffice for describing all continua, requiring alternative selections in
many cases. One approach involves introducing additional kinematic variables, such as the di-
rector fields in a polar continuum. An alternative approach entails incorporating supplementary
fields that, while connected to the deformation, function as internal variables. For instance, in
theories concerning plasticity, the plastic deformation tensor follows an evolutionary law outlined
in the constitutive equations of the continuum.

Del Piero and Owen [19] proposed an alternative approach that identifies classes of deforma-
tions called structured deformations, suited for continua featuring supplementary kinematical
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variables, as well as for continua featuring internal variables (we refer the reader to [24] for a
comprehensive survey on this topic). In the theory of structured deformations, if Ω ⊂ RN is
the continuum body, the role usually played by the deformation field u : Ω → Rd and by its
gradient ∇u : Ω → Rd×N is now played by a triple (κ, g,G), where the piecewise differentiable
field g : Ω \ κ→ Rd is the macroscopic deformation and the piecewise continuous matrix-valued
field G : Ω \ κ→ Rd×N captures the contribution at the macroscopic level of smooth submacro-
scopic changes. The (possibly empty) discontinuity set κ ⊂ Ω of g and G can be regarded as
the crack set of the material. The main result obtained by Del Piero and Owen is the Approx-
imation Theorem [19, Theorem 5.8] stating that any structured deformation (κ, g,G) can be
approximated (in the L∞ convergence) by a sequence of simple deformations {(κn, un)} . The
matrix-valued field ∇g − G captures the effects of submacroscopic disarrangements, which are
slips and separations that occur at the submacroscopic level. The spirit with which structured
deformations were introduced was that of enriching the existing class of energies suitable for
the variational treatment of physical phenomena without having to commit at the outset to a
specific mechanical theory such as elasticity, plasticity, or fracture. Ideally, the regime of the
deformation is energetically chosen by the body depending on the applied external loads: if these
are small, then the deformation will most likely be elastic, whereas if these are large, a plastic
regime or even fracture may occur.

The natural mathematical context to study problems similar to those mentioned above is
that of calculus of variations, in which equilibrium configurations of a deforming body subject
to external forces are obtained as minimizers of a suitable energy functional. In the classical
theories where the mechanics is described by the gradient of the deformation field u , a typical
expression of the energy is

E(κ, u; Ω) :=

∫
Ω

W (∇u) dx+

∫
Ω∩κ

ψ([u], νu) dHN−1, (1.1)

where W : Rd×N → [0,+∞) and ψ : Rd × SN−1 → [0,+∞) are continuous functions satisfying
suitable structural assumptions and model the bulk and interfacial energy densities, respectively.
In the context of Del Piero and Owen, it is not clear how to assign energy to a structured
deformation (κ, g,G); the issue was solved by Choksi and Fonseca who, providing a suitable
version of the Approximation Theorem [17, Theorem 2.12], use the technique of relaxation
to assign the energy I(g,G; Ω) as the minimal energy along sequences {un} ⊂ SBV (Ω;Rd)
converging to (g,G) ∈ SBV (Ω;Rd)×L1(Ω;Rd×N ) =: SD(Ω;Rd×Rd×N ) in the following sense:

un
∗
⇀ g in BV (Ω;Rd) and ∇un

∗
⇀ G in M(Ω;Rd×N ) , (1.2)

where ∇un denotes the absolutely continuous part of the distributional gradient Du . More
precisely, the relaxation process reads

I(g,G; Ω) := inf
{un}

{
lim inf
n→∞

E(Sun
, un; Ω) : un → (g,G) according to (1.2)

}
(1.3)

and is accompanied by integral representation theorems in SD(Ω;Rd × Rd×N ) for the relaxed
energy I(g,G; Ω) (see [17, Theorems 2.16 and 2.17] and [28, Theorem 3]). The reader might
have noticed that the crack set κ has been identified with the jump set Sun

of the field un ∈
SBV (Ω;Rd). The variational setting introduced in [17] gave rise to numerous applications of
structured deformations in various contexts, see [2, 8, 10, 11, 14, 25, 26], in which an explicit
form of the energy I(g,G; Ω) could be provided.

We stress that, although we look at targets (g,G) belonging to SBV (Ω;Rd)×L1(Ω;Rd×N ),
in general, the convergence (1.2) might lead to limits that are in BV (Ω;Rd)×M(Ω;Rd×N ) and
that, in assigning the energy (1.3), Choksi and Fonseca make the explicit choice to represent
the relaxed energy only in SBV (Ω;Rd) × L1(Ω;Rd×N ). Moreover, from the mechanical point
of view, one cannot, in principle, exclude that {∇un} develop singularities in the limit, which
would reflect on a weaker regularity of the field G , possibly not even of the same type as those of
the singular part Dsg of the distributional derivative Dg , as is the case in [6, 9, 27]. Both these
mathematical and mechanical reasons suggest that the definition of structured deformations
should be extended from SD(Ω;Rd × Rd×N ) to the larger set

mSD(Ω;Rd × Rd×N ) := BV (Ω;Rd)×M(Ω;Rd×N ), (1.4)

which we call measure structured deformations, and which we abbreviate here with mSD .
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In this paper, we generalize the results of [17] to mSD . In particular, denoting with un
∗
⇀

(g,G) in mSD the convergence in (1.2), we prove the Approximation Theorem 2.3: given any
measure structured deformation (g,G) ∈ mSD , there exists a sequence {un} ⊂ SBV (Ω;Rd)
such that un

∗
⇀ (g,G) in mSD . This serves to define the energy I : mSD → [0,+∞) via the

relaxation (1.3) in the larger space mSD , see (2.2), for which we prove the integral representation
result, Theorem 2.4. This is one of the main results of the paper, in which we recover the same
structure of [17, Theorems 2.16 and 2.17] and [28, Theorem 3], with the presence of an additional
diffuse part. One of the novelties of our setting is that we manage to obtain a concise form of
the relaxed energy functional involving only a bulk contribution H and its recession function at
infinity H∞

I(g,G; Ω) =

∫
Ω

H
(
∇g, dG

dLN
)
dx+

∫
Ω

H∞
( d(Dsg,Gs)

d|(Dsg,Gs)|

)
d|(Dsg,Gs)|(x),

where Dsg and Gs are the singular parts of the measures Dg and G , respectively, see (2.13),
in the typical form of Goffman and Serrin [20] for functionals defined on measures for a density,
which is a particular case of those treated in [4]. The relaxed bulk energy density H turns
out to be quasiconvex-convex; see Proposition 4.3. It is interesting to notice that not every
quasiconvex-convex function can be obtained as the bulk energy density associated with a struc-
tured deformation: ours retains the memory of the specific relaxation process (2.2) (see also the
counterexample in Proposition 6.3). In Theorem 6.1 we prove that the energy I(g,G; Ω) can be
obtained by relaxing from SD(Ω;Rd × Rd×N ) to mSD(Ω;Rd × Rd×N ) the energy (1.1) with
the addition of a term penalizing the structuredness ∇g −G

ÊR(g,G; Ω) := E(Sg, g; Ω) +R

∫
Ω

|∇g −G|dx,

see (6.1). Another relevant result is the possibility of performing the relaxation under trace
constraints, see Theorem 5.1, which has the far-reaching potential of studying minimization
problems in mSD(Ω;Rd × Rd×N ) with the addition of boundary data.

2. Setting and the definition of the energy in mSD

We assume that the main results about functions of bounded variations are known, otherwise
we refer the reader to the monograph [3] for a thorough introduction; likewise, we refer the
reader to [18] for an introduction to relaxation (see also [13]).

We consider an initial energy as in (1.1), which, since we take κ = Su , now can be written as
E : SBV (Ω;Rd) → [0,+∞)

E(u; Ω) :=

∫
Ω

W (∇u) dx+

∫
Ω∩Su

ψ([u], νu) dHN−1(x), (2.1)

where W : Rd×N → [0,+∞) and ψ : Rd × SN−1 → [0,+∞) are continuous functions satisfying
the following assumptions for A ∈ Rd×N , λ, λ1, λ2 ∈ Rd and ν ∈ SN−1 :

cW |A| ⩽W (A) ⩽ CW (1 + |A|); (W :1)

W is globally Lipschitz continuous; (W :2)

there exist c > 0 and 0 < α < 1 such that∣∣∣∣W∞(A)− W (tA)

t

∣∣∣∣ ⩽ c |A|1−α

tα
whenever t > 0 and t |A| ⩾ 1,

where W∞(A) := lim sup
t→+∞

W (tA)

t
;

(W :3)

cψ|λ| ⩽ ψ(λ, ν) ⩽ Cψ|λ|; (ψ:1)

ψ(tλ, ν) = tψ(λ, ν) and ψ(−λ,−µ) = ψ(λ, µ); (ψ:2)

ψ(λ1 + λ2, ν) ⩽ ψ(λ1, ν) + ψ(λ2, ν). (ψ:3)

We consider measure structured deformations, that is, pairs (g,G) ∈ mSD , see (1.4); we
endow the space mSD with the norm

∥(g,G)∥mSD := ∥g∥BV (Ω;Rd) + |G|(Ω),
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the latter term denoting the total variation of the measure G . We are interested in assigning an
energy I : mSD → [0,+∞) by means of the relaxation

I(g,G; Ω) := inf
{
lim inf
n→∞

E(un; Ω) : {un} ∈ R(g,G; Ω)
}
, (2.2)

where, for every open set U ⊂ Ω,

R(g,G;U) :=
{
{un} ⊂ SBV (U ;Rd) : un

∗
⇀ (g|U , G|U ) as in (1.2)

}
(2.3)

is the set of admissible sequences. Our main result is a representation theorem for this energy,
namely that I = J with the explicit representation of the limit functional given by

J(g,G; Ω) :=

∫
Ω

H(∇g,Ga) dx+

∫
Ω∩Sg

hj
(
[g],

dGjg
d(HN−1 Sg)

, νg

)
dHN−1(x)

+

∫
Ω

hc
(

dDcg

d|Dcg|
,

dGcg
d|Dcg|

)
d|Dcg|(x) +

∫
Ω

hc
(
0,

dGsg
d|Gsg|

)
d|Gsg|(x),

(2.4)

where H : Rd×N×Rd×N → [0,+∞), hj : Rd×Rd×N×SN−1 → [0,+∞), and hc : Rd×N×Rd×N →
[0,+∞) are suitable bulk, surface, and Cantor-type relaxed energy densities. In (2.4), we have
the following objects: since g ∈ BV (Ω;Rd), we know that, by De Giorgi’s structure theorem,

Dg = Dag +Dsg = Dag +Djg +Dcg = ∇gLN + [g]⊗ νgHN−1 Sg +Dcg,

and we can decompose
G = Ga +Gs = Ga +Gjg +Gcg +Gsg,

where

Ga ≪ LN , dGjg =
dG

d|Djg|
d|Djg|, dGcg =

dG

d|Dcg|
d|Dcg|, Gsg := G−Ga −Gjg −Gcg .

Here, in case of Ga and other measures absolutely continuous with respect to the Lebesgue
measure, our notation does not distinguish between the measure and its density with respect
to LN . Also, notice that Gsg is singular with respect to LN + |Dg| .

To carry out our program, we will use the following results.

Theorem 2.1 (Alberti [1, Theorem 3], [17, Theorem 2.8]). Let G ∈ L1(Ω;Rd×N ) . Then there
exist a function f ∈ SBV (Ω;Rd) , a Borel function β : Ω → Rd×N , and a constant CN > 0
depending only on N such that

Df = GLN + βHN−1 Sf ,

∫
Ω∩Sf

|β|dHN−1(x) ⩽ CN∥G∥L1(Ω;Rd×N ). (2.5)

Lemma 2.2 ([17, Lemma 2.9]). Let u ∈ BV (Ω;Rd) . Then there exist piecewise constant
functions ūn ∈ SBV (Ω;Rd) such that ūn → u in L1(Ω;Rd) and

|Du|(Ω) = lim
n→∞

|Dūn|(Ω) = lim
n→∞

∫
Ω∩Sūn

|[ūn]| dHN−1(x). (2.6)

The following approximation theorem generalizes the one obtained in [30].

Theorem 2.3 (approximation theorem). Let Ω ⊂ RN be a bounded, open set with Lipschitz
boundary. For each (g,G) ∈ mSD there exists a sequence {un} ⊂ SBV (Ω;Rd) such that

un
∗
⇀ (g,G) in mSD according to (1.2). In addition, we have that

∥Dun∥M(Ω;Rd×N ) ⩽ C1 ∥(g,G)∥mSD , (2.7a)

and
∥un∥BV (Ω;Rd) ⩽ C2(Ω) ∥(g,G)∥mSD , (2.7b)

for constants C1 = C1(N) > 0 and C2(Ω) = C2(N,Ω) > 0 independent of {un} and (g,G) .

Proof. Let {Gk} ⊂ L1(Ω;Rd×N ) be a sequence of functions such that Gk
∗
⇀ G as k → ∞

and supk∈N
∥∥Gk∥∥

L1(Ω;Rd×N )
⩽ |G| (Ω) (see [22]), and consider the corresponding pairs (g,Gk) ∈

BV (Ω;Rd) × L1(Ω;Rd×N ). By Theorem 2.1, for each k ∈ N , there exists fk ∈ SBV (Ω;Rd)
such that ∇fk = Gk and, by the estimate in (2.5),∣∣Dfk∣∣ (Ω) ⩽ CN

∥∥Gk∥∥
L1(Ω;Rd×N )

⩽ CN |G| (Ω). (2.8a)
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Since Ω is a Lipschitz set, we can use the Poincaré inequality and obtain that

sup
k∈N

∥∥fk∥∥
BV (Ω;Rd)

⩽ CP (Ω)CN |G| (Ω). (2.8b)

By Lemma 2.2, for each k ∈ N there exists a sequence {v̄kn} ⊂ SBV (Ω;Rd) of piecewise constant
functions such that v̄kn → g − fk in L1(Ω;Rd) and, by (2.6),

∣∣Dv̄kn∣∣ (Ω) → ∣∣D(g − fk)
∣∣ (Ω) as

n→ ∞ . Now, the sequence of functions vkn := v̄kn+f
k is such that vkn → g in L1 and ∇vkn = Gk ,

as n → ∞ , for every k ∈ N . The convergences in (2.7) and the estimates in (2.7) now follow

from estimates (2.8) by a diagonal argument, by defining un := v
k(n)
n , with k(n) → ∞ slowly

enough. □

Before stating our integral representation result, we define the following classes of competitors
for the characterization of the relaxed energy densities below. We let Q ⊂ RN be the unit cube
centered at the origin with faces perpendicular to the coordinate axes, and for ν ∈ SN−1 , we let
Qν ⊂ RN be the rotated unit cube so that two faces are perpendicular to ν . For A,B,Λ ∈ Rd×N
and λ ∈ Rd , we define

Cbulk(A,B;Q) :=

{
u ∈ SBV (Q;Rd) : u|∂Q(x) = (Ax)|∂Q,

∫
Q

∇udx = B

}
, (2.9a)

Csurface(λ,Λ;Qν) :=

{
u ∈ SBV (Qν ;Rd) : u|∂Qν

(x) = sλ,ν |∂Qν
(x),

∫
Qν

∇udx = Λ

}
, (2.9b)

where sλ,ν(x) :=
1
2λ(sgn(x · ν) + 1). Moreover, for any open set U ⊂ RN and v ∈ SBV (U ;Rd),

we let

E∞(v;U) :=

∫
U

W∞(∇v) dx+

∫
U∩Sv

ψ([v], νv) dHN−1(x). (2.10)

Theorem 2.4 (integral representation). Let Ω ⊂ RN be a bounded Lipschitz domain, and
assume that (W :1)–(W :3) and (ψ:1)–(ψ:3) hold true. Then

I(g,G; Ω) = J(g,G; Ω) for all (g,G) ∈ mSD(Ω;Rd × Rd×N ),

where I and J are defined in (2.2) and (2.4), respectively, and the densities in J are given by

H(A,B) := inf
{
E(u;Q) : u ∈ Cbulk(A,B;Q)

}
; (2.11a)

hj(λ,Λ, ν) := inf
{
E∞(u;Qν) : u ∈ Csurface(λ,Λ;Qν)

}
; (2.11b)

hc(A,B) := inf
{
E∞(u;Q) : u ∈ Cbulk(A,B;Q)

}
. (2.11c)

The proof is given in Section 4.1 (upper bound: I ⩽ J ) and Section 4.2 (lower bound: I ⩾ J ).

Remark 2.5. For the special case (g,G) ∈ SD(Ω;Rd × Rd×N ) , Theorem 2.4 reduces to [17,
Theorem 2.16] (for the functional I1 in the notation of [17]). Unlike [17], we assumed coercivity
of W in (W :1), but only to avoid additional technicalities.

Remark 2.6. As shown in Proposition 3.1 below, hc coincides with the recession function H∞

of H , and hj can be replaced by hc = H∞ , more precisely,

hj(λ,Λ, ν) = hc(λ⊗ ν,Λ). (2.12)

This allows for another, much more elegant representation of J :

J(g,G) =

∫
Ω

dH(Dg,G) =

∫
Ω

H
(
∇g, dG

dLN
)
dx+

∫
Ω

H∞
( d(Dsg,Gs)

d|(Dsg,Gs)|

)
d|(Dsg,Gs)|(x), (2.13)

see Definition 3.3 and Proposition 4.1 below.

Remark 2.7. (i) As a consequence of (ψ:1) and (ψ:3), ψ is also globally Lipschitz in λ :

|ψ(λ1, ν)− ψ(λ2, ν)| ⩽ Cψ |λ1 − λ2| . (2.14)

(ii) We will never use the symmetry condition in (ψ:2) directly, but it is necessary to make E
well-defined in SBV , as jump direction and jump normal are only uniquely defined up
to a simultaneous change of sign.
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Remark 2.8 (Instability of the contribution of Gsg in I = J ). As in the case of typical integral
functionals in BV with G = 0 , the individual contributions in J handling each of the four
components of the measure decomposition

(Dg,G) =
d(Dg,G)

dLN
LN +

d(Dg,G)

d|Dag|
|Dag|+ d(Dg,G)

d|Djg|
|Djg|+ d(Dg,G)

d|Gsg|
|Gsg|

are not continuous with respect to strict or area-strict convergence; for instance, Lebesgue-
absolutely continuous contributions can generate Cantor or jump contributions in the limit. The
last contribution in J of the singular rest Gsg is even worse than the others, though, because it

is not even continuous in the norm topology of BV (Ω;Rd)×M(Ω;Rd×M ) .

Take, for instance, N = 1 ,

Ω := (−1, 1), W := |·| , ψ(·, ν) := |·| , gk :=
1

k
χ(0,1), G := δ0.

In particular, hc(0, B) = |B| for all B ∈ R . Then (gk, G) → (g,G) = (0, δ0) strongly in
BV × M , but Gsgk = 0 for all k while Gsg = δ0 (since Djgk = 1

k δ0 , the whole singular

contribution of G with respect to LN + |Dgk| is captured by dG
d|Djgk| |D

jgk| = k 1
k δ0 = δ0 , while

g = 0 so that Gsg = δ0 = G). As a consequence, the contribution of Gsgk in J jumps in the limit
as k → ∞ :

lim
k→∞

∫
Ω

hc
(
0,

dGsgk
d|Gsgk |

)
d|Gsgk |(x) = 0 ̸= 1 = hc(0, 1) =

∫
Ω

hc
(
0,

dGsg
d|Gsg|

)
d|Gsg|(x).

3. Auxiliary results

In this section, we present some auxiliary results that are pivotal for the proof of Theorem 2.4.
In particular, we show that all three densities H , hj , and hc are linked (Proposition 3.1) and
we present a sequential characterization for them (Proposition 3.2). In Section 3.2, functionals
depending on measures are introduced, as well as the notion of area-strict convergence.

3.1. Equivalent characterizations of the relaxed energy densities.

Proposition 3.1. Assume that (W :3) and (ψ:2) hold true and H , hj , and hc are defined as
in Theorem 2.4. Then the strong recession function of H ,

H∞(A,B) := lim
t→+∞

H(tA, tB)

t
,

exists. Moreover, we have that

hc = H∞ (3.1)

and for all B ∈ Rd×N , λ ∈ Rd , and ν ∈ SN−1 ,

hc(λ⊗ ν,B) = hcν(λ⊗ ν,B) = hj(λ,B, ν), (3.2)

where hcν is obtained from hc by replacing the standard unit cube Q by the unit cube Qν oriented
according to the normal ν , i.e.,

hcν(A,B) := inf
{
E∞(u;Qν) : u ∈ Cbulk(A,B;Qν)

}
. (3.3)

Proof. We define H∞(A,B) := lim supt→∞
1
tH(tA, tB). With this definition, we obtain (3.1)

as a consequence of (W :3) and (ψ:2). Moreover, this even holds if t is replaced by an arbitrary
subsequence. The lim sup above is thus independent of subsequences and, therefore, a limit. It
remains to show (3.2).

First equality in (3.2): We claim that hc(A,B) = hcν(A,B) for arbitrary A,B ∈ Rd×N .
We will first show that hcν(A,B) ⩽ hc(A,B). Let ε > 0 and choose an ε -almost minimizer
u ∈ SBV (Q;Rd) for the infimum in the definition of hc(A,B):

E(u;Q) ⩽ hcν(A,B) + ε, u = Ax on ∂Q,

∫
Q

∇udx = B. (3.4)
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Up to a set of measure zero, Qν can be covered with countably many shifted and rescaled,
pairwise disjoint copies of Q : ⋃

i∈N
xi + δiQ ⊂ Qν ⊂

⋃
i∈N

(xi + δiQ), (3.5)

with suitable xi ∈ Q , 0 < δi ⩽ 1. Defining

ũ(x) :=
∑
i

χxi+δiQ(x)

(
Axi + δu

(x− xi
δ

))
, (3.6)

we obtain ũ ∈ SBV (Qν ;Rd) with

|Dũ|(xi + δi∂Q) = 0 for all i ∈ N (3.7)

and ũ = Ax on ∂Qν (as well as on xi+ δi∂Q). Observe that by the definition of E∞ in (2.10),
the positive one-homogeneity of W∞ and ψ and a change of variables,

E∞(ũ;xi + δiQ) = δNi E
∞(u;xi + δiQ) ⩽ δNi (hcν(A,B) + ε) , (3.8)

the latter due to (3.4). In addition, (3.5) gives that
∑
i∈N δ

N
i =

∑
i∈N LN (xi+δiQ) = LN (Qν) =

1. Using the additivity of the integrals in E , (3.5) and (3.7), we can sum (3.8) over i to conclude
that

E∞(ũ;Qν) ⩽ hcν(A,B) + ε. (3.9)

Similarly, we can also check that
∫
Qν

∇ũdx = B . Since ε > 0 was arbitrary and ũ is admissible

for the infimum in the definition of hcν , this implies that hcν(A,B) ⩽ hc(A,B). The opposite
inequality follows in exactly the same way, with exchanged roles of Q and Qν .

Second equality in (3.2): We have to show that hcν(λ ⊗ ν,B) = hj(λ,B, ν). For k ∈ N ,
define the laterally extended cuboid

Rν(k) :=
{
x ∈ RN

∣∣∣ |x · ν| < 1

2
,
∣∣x · ν⊥j

∣∣ < 2k + 1

2
for j = 1, . . . , N − 1

}
,

where ν⊥j , j = 1, . . . , N − 1, are the pairwise orthogonal unit vectors perpendicular to ν cor-
responding to the lateral faces of Qν . Notice that up to a set of measure zero formed by over-
lapping boundaries, Rν(k) can be written as a pairwise disjoint union of (2k + 1)N−1 shifted
copies of Qν :

Rν(k) =
⋃

ξ∈Z(k)

(ξ +Qν), Z(k) :=

{
ξ =

N−1∑
i=1

j(i)ν⊥j(i)

∣∣∣∣∣ j(i) ∈ {−k, . . . , k}

}
.

Now let ε > 0 and choose an ε -almost minimizer u ∈ SBV (Qν ;Rd) for the infimum in the
definition of hcν(λ⊗ ν,B):

hcν(λ⊗ ν,B) + ε ⩾ E∞(
u;Qν

)
, (3.10)

with E∞ defined in (2.10). Since ν⊥j · ν = 0, the affine function x 7→ (λ⊗ ν)x determining the

boundary values of u is constant direction ν⊥j for each j = 1, . . . , N−1. We can therefore extend

u periodically in the (N−1) directions ν⊥j to a function uk ∈ SBV (Rν(k);Rd), without creating
jumps at the interfaces between elementary cells of periodicity: uk|Qν = u , uk(x+ ν⊥j ) = uk(x)

whenever x, x + ν⊥j ∈ Rν(k), uk = (λ ⊗ ν)x on ξ + ∂Qν for each ξ ∈ Z(k) (in the sense of
traces), and |Duk|(ξ + ∂Qν) = 0 for each ξ ∈ Z(k). As a consequence, (3.10) is equivalent to

hcν(λ⊗ ν,B) + ε ⩾
1

#Z(k)
E∞(

uk;Rν(k)
)

(3.11)

for all k ∈ N . Analogously, we can also extend the elementary jump function sλ,ν used in the
definition of hj periodically to sλ,ν,k ∈ SBV (Rν(k);Rd), again without creating jumps at the
interfaces since sλ,ν is constant in directions perpendicular to ν .

Now choose functions φk ∈ C∞
c (Rν(k); [0, 1]) such that

φk = 1 on Rν(k − 1) and |∇φk| ⩽ 2 on Rν(k) \Rν(k − 1)

Defining

ũk := φkuk + (1− φk)sλ,ν,k,



8 S. KRÖMER, M. KRUŽÍK, M. MORANDOTTI, AND E. ZAPPALE

we obtain that ũk = sλ,ν,k on ∂Rν(k), ũk = uk on Rν(k − 1) and

|Dũk|(Rν(k) \Rν(k − 1))| ⩽ 2 ∥uk − sλ,ν,k∥L1(Rν(k)\Rν(k−1);Rd) + |Dũk −Dsλ,ν,k|(Rν(k) \Rν(k − 1))

⩽ 2(N − 1)(2k + 1)N−2 ∥u− sλ,ν∥BV (Qν ;Rd) .

Since #Z(k) = (2k + 1)N−1 , we conclude that 1
#Z(k) |Dũk|(Rν(k) \ Rν(k − 1))| = O(1/k) → 0

as k → ∞ . Using the Lipschitz properties of W (W :2) and ψ (2.14), we can can thus replace
uk with ũk in (3.11), with an error that converges to zero as k → ∞ :

hcν(λ⊗ ν,B) + ε+O(1/k) ⩾
1

#Z(k)
E∞(

ũk;Rν(k)
)

(3.12)

Since ũk = sλ,ν on ∂Rν(k), we can define

ûk(x̃) :=

{
ũk

(
(2k + 1)x̃

)
if x̃ ∈ 1

2k+1Rν(k),

sλ,ν(x̃) if (2k + 1)x̃ ∈ Qν \ 1
2k+1Rν(k),

without creating a jump at the interface between 1
2k+1Rν(k) and the rest. As defined, ûk is

now admissible for the infimum defining hj , and by a change of variables on the right-hand side
of (3.12), we see that

hcν(λ⊗ ν,B) + ε+O(1/k) ⩾ E∞
(
ûk;

1

2k + 1
Rν(k)

)
= E∞(

ûk;Qν
)
⩾ hj(λ,B, ν). (3.13)

As ε > 0 and k ∈ N were arbitrary, (3.13) implies that hcν(λ⊗ ν,B) ⩾ hj(λ,B, ν). The reverse
inequality can be shown analogously. □

In the following proposition, we prove a sequential characterization of the relaxed energy
densities defined in (2.11). To do so, we define the classes of sequences of competitors (see (2.9))

Cbulk
seq (A,B;Q) :=

{
{un} ⊂ SBV (Q;Rd) : un

∗
⇀ Ax in BV , ∇un

∗
⇀ BLN in M

}
, (3.14a)

Csurface
seq (λ,Λ;Qν) :=

{
{un} ⊂ SBV (Qν ;Rd) : un

∗
⇀ sλ,ν in BV , ∇un

∗
⇀ ΛLN in M

}
. (3.14b)

Proposition 3.2. Suppose that (W :1)–(W :3) and (ψ:1)–(ψ:3) hold true. Then

H(A,B) = inf
{
lim inf
n→∞

E(un;Q) : {un} ∈ Cbulk
seq (A,B;Q)

}
; (3.15a)

hj(λ,Λ, ν) = inf
{
lim inf
n→∞

E∞(un;Qν) : {un} ∈ Csurface
seq (λ,Λ;Qν)

}
; (3.15b)

hc(A,B) = inf
{
lim inf
n→∞

E∞(un;Q) : {un} ∈ Cbulk
seq (A,B;Q)

}
. (3.15c)

Proof. The formulae (3.15a) and (3.15c) are obtained in the same way as in [17, Proposition 3.1]
(for the latter, notice that W = W∞ is an admissible choice in (3.15a)); formula (3.15b) is
obtained in the same way as in [17, Proposition 4.1]. □

3.2. Nonlinear transformation of measures and area-strict convergence. The following
shorthand notation will prove useful below.

Definition 3.3 (nonlinear transformation of measures). For any Borel set U ⊂ RN , any Borel
function h : Rm → R with strong recession function h∞ and any Radon measure µ ∈ M(U ;Rm) ,
we define ∫

U

dh(µ) :=

∫
U

h
( dµ

dLN
)
d|µ|+

∫
U

h∞
( dµs

d|µs|

)
d|µs|,

where µs denotes the singular part of the Radon-Nikodym decomposition of µ with respect to the
Lebesgue measure LN : µ = dµ

dLN LN + µs .

Definition 3.4 (area-strict convergence, cf. [21]). For a Borel set V , a sequence (Gk) ⊂
M(V ;Rd×N ) and G ∈ M(V ;Rd×N ) , we say that Gk → G area-strictly if Gk

∗
⇀ G in M

and ∫
V

da(Gk) →
∫
V

da(G), where a(ξ) :=

√
1 + |ξ|2, ξ ∈ Rd×N .

Analogously, if V is open, for a sequence (gk) ⊂ BV (V ;Rd) and g ∈ BV (V ;Rd) , we say that

gk → g area-strictly if gk
∗
⇀ g in BV and

∫
V
da(Dgk) →

∫
V
da(Dg) .
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The following lemma is a generalized Reshetnyak continuity theorem; see [21, Theorem 4] or
[29, Theorem 10.3].

Lemma 3.5. If H : Rd×N ×Rd×N → R is continuous and has a recession function in the strong
uniform sense (see Proposition 4.2), then the functional defined on M(Ω;Rd×N )×M(Ω;Rd×N )
by

(F,G) 7→
∫
Ω

dH(F,G)

is sequentially continuous with respect to the area-strict convergence of measures.

We also need the following well-known lemma combining area-strict approximations in BV
and M .

Lemma 3.6. Let (g,G) ∈ mSD . Then there exists a sequence {(gk, Gk)} ⊂ W 1,1(Ω;Rd) ×
L1(Ω;Rd×N ) such that gk → g area-strictly in BV and Gk → G area-strictly in M .

Proof. The sequences {gk} and {Gk} can be defined separately, essentially by mollification. As
to {gk} , see, for instance, [29, Lemma 11.1], while the case of {Gk} is simpler. □

4. Proof of Theorem 2.4

The proof of Theorem 2.4 is divided into two parts, each of which is carried out in the following
section.

4.1. Upper bound.

Proof. We have to show that I(g,G; Ω) ⩽ J(g,G; Ω), which is equivalent to the existence of

a “recovery” sequence {un} admissible in the definition of I , i.e., such that un
∗
⇀ (g,G) in

mSD and E(un; Ω) → J(g,G; Ω). The proof here is presented using a series of auxiliary results
collected below.

First observe that based on Proposition 3.1, our candidate J for the limit functional, in-
troduced in (2.4) using H , hj , and hc , can be expressed as a standard integral functional
of the measure variable (Dg,G) using only H and its recession function H∞ as integrands
(Proposition 4.1). As H is continuous and its recession function exists in a strong enough sense
(cf. Proposition 4.2), J is sequentially continuous with respect to the area-strict convergence of
measures (Lemma 3.5). Since any (g,G) ∈ mSD can be approximated area-strictly by sequences
in W 1,1 × L1 (Lemma 3.6), a diagonalization argument allows us to reduce the construction of
the recovery sequence to the case (g,G) ∈W 1,1×L1 ⊂ SBV ×L1 . This special case was already
obtained in [17], see Remark 2.5. □

Proposition 4.1. Suppose that (W :1)–(W :3) and (ψ:1)–(ψ:3) hold. Then with the notation of
Definition 3.3,

J(g,G; Ω) =

∫
Ω

dH(Dg,G)

where J is defined in (2.4) and H is given by (2.11a).

Proof. Clearly, H
(

d(Dg,G)
dLN

)
= H

(
∇g, dG

dLN

)
. In addition,

|(Dg,G)s| =
(
1 +

dG

d|Dsg|

)
|Dsg|+ θ =

(
1 +

dG

d|Dcg|

)
|Dcg|+

(
1 +

dG

d|Djg|

)
|Djg|+ |Gsg|,

since |Gsg| and |Dgs| + LN are mutually orthogonal by definition of Gsg , and the Cantor and
jump parts of Dg are mutually orthogonal as well. Since H∞ is positively 1-homogeneous, the
definition of J implies the asserted representation once we use Proposition 3.1 to replace H∞

by hj and hc , respectively. □

We need the following regularity properties of H , in particular at infinity.
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Proposition 4.2. Suppose that (W :1), (W :3) and (ψ:1)–(ψ:3) hold. Then H is globally Lips-
chitz and the recession function H∞ exists in the strong uniform sense, i.e., the limit

lim
(A′,B′)→(A,B)

t→+∞

H(tA′, tB′)

t
(4.1)

exists for all (A,B) ∈ Rd×N × Rd×N \ {(0, 0)} .

Proof. The Lipschitz property of H was proved in [10, Theorem 2.10] (the case p = 1). Con-
cerning (4.1), first observe that since H is Lipschitz with some constant L > 0,∣∣∣∣H(tA′, tB′)

t
−H∞(A,B)

∣∣∣∣ ⩽ L |(A′, B′)− (A,B)|+
∣∣∣∣H(tA, tB)

t
−H∞(A,B)

∣∣∣∣ (4.2)

Here, H∞(A,B) = lim supt→∞
1
tH(tA, tB) as before. It, therefore suffices to show that

lim
t→+∞

H(tA, tB)

t
= H∞(A,B).

We claim that in fact, we even have that∣∣∣∣H(tA, tB)

t
−H∞(A,B)

∣∣∣∣ ⩽ C(A,B)
( 1

tα
+

1

t

)
for all t > 0, A,B ∈ Rd×N , (4.3)

where C(A,B) > 0 is a constant independent of t and H∞(A,B) = lim supt→+∞
1
tH(tA, tB).

For a proof of 4.3, first fix ε > 0 and choose ε -almost optimal sequence {ut,n}n for the
sequential characterization of H(tA, tB) in Proposition 3.2, dependent on t > 0 (and A ,B ).
This choice yields that

H(tA, tB) + ε ⩾
∫
Q

W (∇ut,n) dx+

∫
Q∩Sut,n

ψ([ut,n], νut,n) dHN−1(x). (4.4)

The sequence vt,n := t−1ut,n then is also in the class of admissible sequences for the sequential
characterization of hc(A,B) in Proposition 3.2, and since hc(A,B) = H∞(A,B) by Proposi-
tion 3.1, this entails that

H∞(A,B) ⩽
∫
Q

W∞(∇vt,n) dx+

∫
Q∩Svt,n

1

t
ψ([vt,n], νvt,n) dHN−1(x), (4.5)

where we exploited that W∞ and ψ(·, ν) are positively 1-homogeneous. Multiplying (4.4)
by t−1 and combining it with (4.5) yields

H∞(A,B)− 1

t
H(tA, tB) ⩽

1

t
ε+

∫
Q

(
W∞(∇vt,n)−

1

t
W (t∇vt,n))

)
dx. (4.6)

Analogously, we can also choose and ε -almost optimal sequence ṽh for the sequential char-
acterization of hc(A,B) = H∞(A,B), which makes ũt,h := tṽh admissible for the sequential
characterization of H(tA,Bt). With this, get that

1

t
H(tA, tB)−H∞(A,B) ⩽ ε+

∫
Q

(
1

t
W (t∇ṽt,n))−W∞(∇ṽt,n)

)
dx. (4.7)

The right hands sides of (4.6) and (4.7) can now be estimated in the same fashion: by (W :1)
and the homogeneity of W∞ we have that∣∣∣∣W (tA)

t
−W∞(A)

∣∣∣∣ ⩽ ∣∣∣∣W (tA)

t

∣∣∣∣+ |W∞(A)| ⩽ CW

(
|A|+ 1

t

)
+ CW |A| ⩽ 3CW

1

t
if t |A| < 1 .

This is exactly the case excluded in (W :3), so that together with (W :3), we obtain that∣∣∣∣W (tA)

t
−W∞(A)

∣∣∣∣ ⩽ c |A|1−α

tα
+ 3CW

1

t

⩽
c(1 + |A|)

tα
+ 3CW

1

t
for all t > 0 and A ∈ Rd×N ,

(4.8)
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since 0 < α < 1. Moreover, (4.4) implies that ∥∇vt,n∥L1 = t−1 ∥∇ut,n∥L1 is equi-bounded for
t ⩾ 1 since H is globally Lipschitz, ψ ⩾ 0 and W is coercive by (W :1). Similarly, ∥∇ṽt,n∥L1 is
equi-bounded. Thus,

M(A,B) := sup
t⩾1

sup
n∈N

(
∥∇vt,n∥L1 + ∥∇ṽt,n∥L1

)
<∞, (4.9)

Now we can use (4.8) to obtain upper bounds for the right-hand sides of (4.6) and (4.7) and
combine them. By (4.9), this yields that∣∣∣∣1t H(tA, tB)−H∞(A,B)

∣∣∣∣ ⩽ ε
(1
t
+ 1

)
+
c(1 +M(A,B))

tα
+ 3LN (Ω)CW

1

t
(4.10)

for all t ⩾ 1. Since ε > 0 was arbitrary, (4.10) implies (4.3). □

4.2. Lower Bound. Our proof of the lower bound relies on the following lower semicontinuity
property.

Proposition 4.3. Assume that (W :1)–(W :3) and (ψ:1)–(ψ:3) hold. Then the integrand H
defined in (2.11a) is quasiconvex-convex in the sense that for all A,B ∈ Rd×N ,∫

Q

H(A+∇v,B + w) dx ⩾ H(A,B)

for all (v, w) ∈W∞
0 (Q;Rd)× L∞(Q;Rd×N ) with

∫
Q

w dx = 0.

Moreover, the functional (g,G) 7→
∫
Ω
dH(Dg,G) is sequentially lower semi-continuous with

respect to the convergence in (1.2).

Proof. We will first show that (g,G) 7→
∫
Ω
H(∇g,G) dx is sequentially lower semi-continuous

with respect to weak convergence in W 1,1 ×L1 . Take (g,G) ∈W 1,1(Ω;Rd)×L1(Ω;Rd×N ) and
{(gn, Gn)} ⊂W 1,1(Ω;Rd)×L1(Ω;Rd×N ) with (gn, Gn)⇀ (g,G) weakly in W 1,1 ×L1 . By [17,
Theorem 2.16] (recovery sequence for the case of I1 therein), for each n there exists a sequence
{un,k}k ⊂ SBV (Ω;Rd) such that as k → ∞ ,

un,k → gn in L1(Ω;Rd) and ∇un,k
∗
⇀ Gn in M(Ω;Rd×N ),

and

E(un,k; Ω) →
∫
Ω

H(∇gn, Gn) dx.

In addition, we may assume that up to a (not relabeled) subsequence

lim inf
n→∞

∫
Ω

H(∇gn, Gn) dx = lim
n→∞

∫
Ω

H(∇gn, Gn) dx < +∞.

Since E is coercive as a consequence of (W :1) and (ψ:1), the latter implies that {Dun,k} is equi-
bounded in M(Ω;Rd×N ). We can therefore find a diagonal subsequence un,k(n) with k(n) → ∞
fast enough, such that

(un,k(n),∇un,k(n))
∗
⇀ (g,G) in mSD and lim

n→∞
E(un,k(n); Ω) = lim

n→∞

∫
Ω

H(∇gn, Gn) dx.

Since the sequence {un,k(n)}n is admissible for the lower bound in [17, Theorem 2.16] (for the
functional I1 ), we conclude that

lim
n→∞

∫
Ω

H(∇gn, Gn) dx = lim
n→∞

E(un,k(n); Ω) ⩾
∫
Ω

H(∇g,G) dx,

i.e., the functional with integrand H is weakly lower semicontinuous in W 1,1×L1 . Since H also
has at most linear growth by Proposition 4.2 and is non-negative as a consequence of (W :1),
[15, Theorem 1.1] (see also [16]) implies that H is quasiconvex-convex.

It remains to show that (g,G) 7→
∫
Ω
dH(Dg,G) is sequentially lower semi-continuous with

respect to the convergence (1.2). This follows from [4, Theorem 1.7]. Here, notice that with A :=
(Curl, 0), A(∇gk, Gk)⊤ = 0 in the sense of distributions, and the A -quasiconvexity of H for this
special case is equivalent to quasiconvexity-convexity of H . The latter can equivalently be tested
with periodic functions on the simply connected U where all curl-free fields are gradients. □
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Proof of Theorem 2.4, lower bound. Let H be the integrand in (2.11a). Moreover, let (g,G) ∈
mSD and {vn} ⊂ SBV (Ω;Rd) be such that vn

∗
⇀ (g,G) in the sense of (1.2). Observing

that for each n , vn can be interpreted as a constant sequence converging to itself in mSD , by
Proposition 3.1 and [17, Theorem 2.16] (its lower bound for the case of I1 therein), we have that∫

Ω

dH(Dvn,∇vnLN ) ⩽
∫
Ω

W (∇vn)dx+

∫
Ω∩Svn

ψ([vn], νvn)dHN−1(x). (4.11)

In addition, (u,G) 7→
∫
Ω
dH(Du,G) is weak∗ -sequentially lower semicontinuous in mSD by

Proposition 4.3. In particular,∫
Ω

dH(Dg,G) ⩽ lim inf
n→∞

∫
Ω

dH(Dvn,∇vnLN ). (4.12)

Taking Proposition 4.1 into account, the lower bound inequality now follows from (4.12) and
(4.11):

J(g,G; Ω) =

∫
Ω

dH(Dg,G) ⩽ lim inf
n→∞

∫
Ω

dH(Dvn,∇vnLN )

⩽ lim inf
n→∞

∫
Ω

W (∇vn)dx+

∫
Ω

ψ([vn], νvn)dHN−1(x) = lim inf
n→∞

E(vn). □

5. Relaxation under trace constraints

Let Ω′ be a bounded Lipschitz domain such that Ω ⊂ Ω′ , and let

Γ := Ω′ ∩ ∂Ω.

Let u0 ∈ W 1,1(Ω′;Rd) and let (g,G) ∈ mSD . The relaxed functional subject to the Dirichlet
condition u = u0 on Γ is defined as

IΓ(g,G; Ω) := inf

lim inf
n→∞

E(un; Ω)

∣∣∣∣∣∣∣∣
un ∈ SBV (Ω;Rd), un = u0 on Γ,

un
∗
⇀ g in BV (Ω;Rd),

∇un
∗
⇀ G in M(Ω ∪ Γ;Rd×N )

 , (5.1)

where, for every open subset A of Ω′ , E(·;A) is the functional given by (2.1), with W and ψ
satisfying (W :1)-(W :3) and (ψ:1)-(ψ:3),

We have the following integral representation for IΓ .

Theorem 5.1. Let Ω ⊂ RN be a bounded Lipschitz domain and assume that (W :1)–(W :3)
and (ψ:1)–(ψ:3) hold. Moreover, let Ω′ ⊃ Ω be a bounded domain and u0 ∈ W 1,1(Ω′;Rd) . In
addition, for Γ := Ω′ ∩ ∂Ω assume that HN−1(Γ \ Γ) = 0 . Then,

IΓ(g,G; Ω) = JΓ(g,G; Ω) for every (g,G) ∈ mSD ,

where

JΓ(g,G; Ω) :=

∫
Ω

dH(g,G)

+

∫
Γ

H∞
(

d([g − u0]⊗ νΓ HN−1 Γ, G)

d|([g − u0]⊗ νΓ HN−1 Γ, G)|

)
d|([g − u0]⊗ νΓ HN−1 Γ, G)|,

and H is the function defined in (2.11a).

The proof will be given in two parts. We immediately start with the lower bound, and the
proof of the upper bound will follow after an auxiliary result needed there.

Proof of Theorem 5.1, the lower bound. We have to show that IΓ(g,G; Ω) ⩾ JΓ(g,G; Ω). For
every k ∈ N , let Ωk := {x ∈ RN : dist(x,Ω) ⩽ 1

k} , and consider

Ω′
k := Ωk ∩ Ω′.
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Thus Γ = Ω′
k ∩ ∂Ω, for every k and Ω′

k shrinks to Ω ∪ Γ as k → ∞ . As for IΓ(g,G; Ω), define
for every k ∈ N

ÎΓ(g,G; Ω
′
k) :=

∫
Ω′

k\Ω
W (∇u0) dx

+ inf
{
lim inf
n→∞

E(un; Ω) : un ∈ SBV (Ω′
k;Rd), un = u0 on ∂Ω,

un
∗
⇀ g in BV (Ω;Rd),∇un

∗
⇀ G in M(Ω ∪ Γ;Rd×N )

}
.

Thus

IΓ(g,G; Ω) = ÎΓ(g,G; Ω
′
k)−

∫
Ω′

k\Ω
W (∇u0)dx. (5.2)

On the other hand,

ÎΓ(g,G; Ω
′
k) = inf

{
lim inf
n→∞

E(vn; Ω
′
k) : vn ∈ SBV (Ω′

k;Rd), vn = u0 in Ω′
k \ Ω,

vn
∗
⇀ ĝ in BV (Ω′

k;Rd),∇vn
∗
⇀ Ĝ in M(Ω′

k;Rd×N )
}
,

where

ĝ :=

{
g in Ω,

u0 in Ω′
k \ Ω

and Ĝ :=

{
G in Ω ∪ Γ,

∇u0 in Ω′
k \ Ω.

In particular,
Dĝ⌊Γ= [g − u0]⊗ νΓ HN−1 Γ.

Clearly, for every Ω′
k ,

ÎΓ(g,G; Ω
′
k)

⩾I(ĝ, Ĝ; Ω′
k) =

∫
Ω′

k

dH(ĝ, Ĝ)

⩾
∫
Ω

dH(g,G) +

∫
Γ

H∞
(

d([g − u0]⊗ νΓ HN−1 Γ, G)

d|([g − u0]⊗ νΓ HN−1 Γ, G)|

)
d|([g − u0]⊗ νΓ HN−1 Γ, G)|,

(5.3)

where I(ĝ, Ĝ; Ω′
k) is the functional introduced in (2.2), and in the equality we have exploited

Theorem 2.4 and Remark 2.6. The proof is concluded by letting k → ∞ , in the above inequality,
taking into account (5.2) and the fact that limk→∞

∫
Ω′

k\Ω
W (∇u0) dx = 0. □

Below, we will reduce the construction of the recovery sequence needed for the upper bound
to that of Theorem 2.4. This relies on the following lemma.

Lemma 5.2 (domain shrinking [23, Lemma 3.1]). Let Ω ⊂ RN be a bounded Lipschitz domain.
Then there exists an open neighborhood U ⊃ Ω and a sequence of maps {Ψj} ⊂ C∞(U ;RN )
such that for every j ∈ N ,

Ψj : U → Ψj(U) is invertible and Ψj(Ω) ⊂⊂ Ω. (5.4)

In addition, Ψj → id in Cm(U ;RN ) as j → ∞ , for all m ∈ N ∪ {0} .

Proof. This is the case Γ = Ø in [23]. The statement there has Ψj only defined on Ω, but the

proof also provides the extension to U (as long as U is still fully covered by the union of Ω and
the open cuboids covering ∂Ω in which ∂Ω can be seen as a Lipschitz graph). □

Remark 5.3. If Ω is strictly star-shaped with respect to some x0 ∈ Ω , Lemma 5.2 is easy to
show with Ψj(x) := x0 +

j
j+1 (x − x0) . The proof of [23, Lemma 3.1] for the general case glues

local constructions near the boundary using a decomposition of unity, exploiting that everything
happens uniformly C1 -close to the identity to preserve invertibility.

Proof of Theorem 5.1, the upper bound. We have to show that IΓ(g,G; Ω) ⩽ JΓ(g,G; Ω), for
each (g,G) ∈ BV (Ω;Rd) × M(Ω ∪ Γ;Rd×N ). For this, it suffices to find a recovery sequence,
i.e., a sequence (un) admissible in the definition of IΓ(g,G; Ω) such that E(un; Ω) → JΓ(g,G; Ω).
In particular, we must have un = u0 on Γ in the sense of traces in BV . The proof is divided
into three steps. In the first two steps, we define a suitable approximating sequence of limit
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states (ĝj , Ĝj) such that (ĝj , Ĝj)
∗
⇀ (g,G) in mSD , JΓ(ĝj , Ĝj ; Ω) → JΓ(g,G; Ω) and ĝj = u0

on Γ. In the final step, we will then use the upper bound in Theorem 2.4, which for each j gives
a “free” recovery sequence {uj,n}n ⊂ BV for I(ĝj , Ĝj ; Ω) that again can be modified to match
the trace of its weak∗ limit ĝj on Γ. The assertion then follows by a diagonal subsequence
argument.

Step 1: Approximating limit states (gj , Gj) with values “close” to u0 near Γ .
Choose a bounded neighborhood U of Ω according to Lemma 5.2 and an extension

g̃ ∈ BV (U ;Rd) with g̃|Ω = g, |Dg̃|(∂Ω) = 0, g̃ ∈W 1,1(U \ Ω;Rd).
With this, we define

BV (U ;Rd) ∋ g0 :=χΩg + χU∩(Ω′\Ω)u0 + χU\Ω′ g̃,

M(U ;Rd×N ) ∋ G0 :=χΩ∪ΓG.

In particular, with the outer normal νΓ to ∂Ω on Γ,

G0 (Ω ∪ Γ) = G, Dg0 (Ω ∪ Γ) = Dg Ω+ (u0 − g)⊗ νΓ HN−1 Γ,

G0 (U \ (Ω ∪ Γ)) = 0, g0|Ω = g , and g0 jumps at Γ from (the trace of) g to u0 and at
U ∩ (∂Ω′ \ Ω) from g̃ to u0 .

With the maps Ψj from Lemma 5.2, we define

Φj := Ψ−1
j and (gj , Gj) :=

(
g0 ◦ Φj , (G0 ◦ Φj)∇Φj

)
∈ BV (Ψj(U);Rd)×M(Ψj(U);Rd×N ).

Here, in the definition of Gj , G0◦Φj is the measure defined as (G0◦Φj)(A) := G0(Φj(A)) for all

Borel sets A ⊂ Ψj(U), and ∇Φj ∈ C0(U ;RN×N ) is interpreted as a continuous density function
attached to it by matrix multiplication from the right. Altogether, Gj is the measure satisfying
dGj(z) = d(G0 ◦ Φj)(z)∇Φj(z), similar to Dgj which satisfies dDgj(z) = (Dg ◦ Φj)(z)∇Φj(z)
by the chain rule. Also notice that as a consequence of Lemma 5.2 (where we only need the case
m = 1), for all j big enough, ∇Ψj(x) is an invertible matrix for all x ∈ U , Ω ⊂ Ψj(U) and

Φj(∂Ω) ∩ Ω = Ø. Passing to a subsequence (not relabeled), we thus may assume that

Ψj : U → Ψj(U) is a diffeomorphism, Ω ⊂ Ψj(U) and Φj(∂Ω) ∩ Ω = Ø for all j ∈ N . (5.5)

We claim that the sequence {(gj , Gj)}j has the following properties:

∥TΩ(gj − u0)∥L1(Γ;Rd) −→
j→∞

0, |Gj |(Γ) = |Gj |(∂Ω) = 0, (5.6)

where TΩ : BV (Ω;Rd) → L1(∂Ω;Rd) denotes the trace operator,

gj |Ω
∗
⇀ g in BV (Ω;Rd), (Dgj Ω, Gj Ω)

∗
⇀ (Dg0 (Ω ∪ Γ), G0) in M(Ω;Rd×N )2 (5.7)

and ∫
Ω

dH(Dgj , Gj) −→
j→∞

∫
Ω∪Γ

dH(Dg0 (Ω ∪ Γ), G). (5.8)

The second part of (5.6) follows from the definition of Gj because Φj(∂Ω) ⊂ U \ Ω and

|G0|(U \ Ω) = 0. As to the first part of (5.6), first notice that since u0 ∈ W 1,1(U ;Rd), we do
not have to distinguish between the inner and outer traces TΩu0 and TU\Ωu0 of u0 on ∂Ω.
Moreover,

gj − u0 =
(
g0 ◦ Φj − u0 ◦ Φj

)
+

(
u0 ◦ Φj − u0

)
and u0 ◦ Φj → u0 in W 1,1(Ω;Rd), so that the asserted convergence of traces follows from the
continuity of the trace operator in W 1,1 once we see that (g0−u0)◦Φj = 0 in some neighborhood
of Γ (which may depend on j ). The latter is trivial by definition of g0 if

Φj(Γ) ⊂ Ω′ \ Ω for all j ∈ N; (5.9)

here, we already have that Φj(Γ) ∩ Ω = Ø. We can therefore assume (5.9) without loss of

generality: otherwise, if Φj(Γ) ̸⊂ Ω′ , we can define r(j) := 1
2 Dist(Φj(Γ),Ω) > 0 and take

Ω̃′ := Ω′ ∪
{
x ∈ RN | dist(x,Φj(Γ)) < r(j) for a j ∈ N

}
instead of Ω′ . Here, recall that Ω′ is just an auxiliary object to define Γ (and g0 above, outside

of Ω), and by construction, Ω̃′ still has all the properties we required for Ω′ : Ω̃′ ⊃ Ω is a

bounded domain and Ω̃′ ∩ ∂Ω = Γ = Ω′ ∩ ∂Ω.
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For the proof of (5.7) and (5.8), fix φ ∈ C(Ω), continuously extended to φ ∈ C(RN ). By
the definition of (gj , Gj) and the change of variables x = Φj(z), we get that for every Borel set
V ⊂ U , ∫

Ω

φ(z)dH(Dgj , Gj)(z)

=

∫
Ω

φ(z)dH
(
(Dg0 ◦ Φj)∇Φj , (G0 ◦ Φj)∇Φj

)
(z)

=

∫
Φj(Ω)

φ(Ψj(x))H
(
∇g0(∇Ψj)

−1,
dG0

dLN
(∇Ψj)

−1
)
det(∇Ψj(x)) dx

+

∫
Φj(Ω)

φ(Ψj(x))dH
∞(

Dsg0(∇Ψj)
−1, Gs0(∇Ψj)

−1
)
(x)

=

(∫
Φj(Ω)∩V

(φ ◦Ψj)H
(
∇g0(∇Ψj)

−1,
dG0

dLN
(∇Ψj)

−1
)
det(∇Ψj(x)) dx

+

∫
Φj(Ω)∩V

(φ ◦Ψj) dH∞(
Dsg0(∇Ψj)

−1, Gs0(∇Ψj)
−1

)
(x)

)
+

(∫
Φj(Ω)\V

(φ ◦Ψj)H
(
∇g0(∇Ψj)

−1,
dG0

dLN
(∇Ψj)

−1
)
det(∇Ψj(x)) dx

+

∫
Φj(Ω)\V

(φ ◦Ψj) dH∞(
Dsg0(∇Ψj)

−1, Gs0(∇Ψj)
−1

)
(x)

)
=:Sj(φ;V ) + Tj(φ;V )

(5.10)

As to the second term Tj(φ;V ) (integrals on Φj(Ω) \V ), we exploit that (∇Ψj)
−1 is uniformly

bounded and H has at most linear growth. Hence, there is a constant C > 0 such that with
Cφ := C ∥φ∥L∞(U) ,

lim sup
j→∞

|Tj(φ;V )| ⩽Cφ lim sup
j→∞

(LN + |Dg0|+ |G0|)(Φj(Ω) \ V )

⩽Cφ(LN + |Dg0|+ |G0|)(Ω \ V )

=Cφ(LN + |Dg0|+ |G0|)((Ω ∪ Γ) \ V ),

(5.11)

by dominated convergence and the fact that Φj → id in C1 . Here, we also used that

|Dg0|(∂Ω \ Γ) = 0 = |G0|(∂Ω \ Γ),

by definition of g0 , G0 and our assumption that HN−1(Γ \ Γ) = 0.

For the term Sj(φ;V ) (integrals on Φj(Ω) ∩ V ) on the right hand side of (5.10), we again
use that Φj → id in C1 ; in particular, (∇Ψj)

−1 → I (identity matrix) uniformly. In addition,
H ⩾ 0 is Lipschitz and φ is uniformly continuous. Consequently, for all φ ⩾ 0,∫

Ω∩V
φdH(Dg0, G0)(x) ⩽ lim inf

j→∞
Sj(φ;V ) ⩽ lim sup

j→∞
Sj(φ;V ) ⩽

∫
Ω∩V

φdH(Dg0, G0)(x). (5.12)

Here, to handle the limit in the domain of integration Φj(Ω) ∩ V , for the lower bound we used

monotonicity and the fact that Ω ⊂ Φj(Ω) for all j by (5.5), while for the upper bound we used

that Φj(Ω) ↘ Ω and dominated convergence.

By splitting a general φ into positive and negative parts, (5.12) immediately implies that

lim
j→∞

Sj(φ;V ) =

∫
Ω∩V

φdH(Dg0, G0)(x) =

∫
(Ω∪Γ)∩V

φdH(Dg0, G)(x) (5.13)

for all φ ∈ C(U). Combining (5.10), (5.11) and (5.13) for the case V = Ω ∪ Γ, we infer that∫
Ω

φdH(Dgj , Gj)(z) →
∫
Ω∪Γ

φdH(Dg0, G)(x) as j → ∞. (5.14)

In particular, (5.14) yields (5.8) when we choose φ ≡ 1.

In addition, we can analogously obtain (5.14) for other functions instead H (globally Lipschitz
with a uniform strong recession function in the sense of (4.1); if needed, H can be temporarily
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split into a positive and a negative part for the proof of (5.13), just like φ). With the choices

H(A,B) := Aij and H(A,B) := Bij , where A = (Aij) and B = (Bij),

for i = 1, . . . , d and j = 1, . . . , N , (5.14) implies the second part of (5.7), in particular that

Dgj Ω
∗
⇀ Dg0 (Ω∪Γ) in M(Ω;Rd×N ) . Finally, it is not hard to see that gj → g in L1(Ω;Rd).

We conclude that gj
∗
⇀ g in BV (Ω;Rd), which completes the proof of (5.7).

Step 2: Approximating limit states (ĝj , Ĝj) with ĝj = u0 on Γ .

The functions gj defined in the previous step do not yet satisfy gj = u0 on Γ, although their
traces converge to u0 by (5.6). We can correct this using the trace extension theorem: Choose
{vj} ⊂W 1,1(Ω;Rd) such that

TΩvj |Γ = TΩ(gj − u0)|Γ and ∥vj∥W 1,1(Ω;Rd) ⩽ C∂Ω ∥TΩ(gj − u0)∥L1(Γ;Rd) . (5.15)

By (5.6), we infer that ∥vj∥W 1,1(Ω;Rd) → 0. Consequently, for

ĝj := gj − vj and Ĝj := Gj ,

instead of (gj , Gj) we still have (5.6), (5.7) and (5.8), and in addition, ĝj = u0 on Γ. Namely,
defining

Θ := (TΩg − u0)⊗ νΓHN−1 Γ

so that Dg0 = Dg +Θ on Ω ∪ Γ, we have that

ĝj = u0 on Γ, |Ĝj |(Γ) = |Ĝj |(∂Ω) = 0, (5.16)

ĝj |Ω
∗
⇀ g in BV (Ω;Rd), (Dĝj Ω, Ĝj Ω)

∗
⇀ (Dg +Θ, G) in M(Ω ∪ Γ;Rd×N )2, (5.17)

and

lim
j→∞

∫
Ω

dH(Dĝj , Ĝj) =

∫
Ω

dH(g,G) +

∫
Γ

dH∞(Θ, G). (5.18)

Step 3: Recovery by diagonalizing free recovery sequences for (ĝj , Ĝj)

We first observe that I in (2.2) admits the following equivalent representation

Ig(g,G; Ω) := inf
{
lim inf
n→∞

E(un; Ω) : {un} ⊂ SBV (Ω;Rd), un
∗
⇀ (g,G), un ≡ g on ∂Ω

}
, (5.19)

for every (g,G) ∈ mSD .

Clearly I(g,G; Ω) ⩽ Ig(g,G; Ω). The opposite one can be obtained following an argument of
[12]. The details are provided below for the reader’s convenience.

For any SBV (Ω;Rd) ∋ un
∗
⇀ (g,G) in the sense of (2.7), almost optimal for I(g,G; Ω), i.e.,

for every ε > 0,

lim inf
n→∞

E(un; Ω) ⩽ I(g,G; Ω) + ε.

Without loss of generality, assume that the above lower limit is indeed a limit and consider
the sequence of measures νn := LN + |Dun| + |Dg| , which converges weakly* to some Radon
measure ν .

Denoting, for every t > 0, Ωt := {x ∈ Ω| dist(x, ∂Ω) > t} , we fix some η > 0 and for
every 0 < δ < η we define the subsets Lδ := Ωη−2δ \ Ωη+δ . Consider a smooth cut-off function
φδ ∈ C∞

0 (Ωη−δ; [0, 1]) such that φδ = 1 on Ωη . As the thickness of the strip Lδ is of order δ ,
we have an upper bound of the form ∥∇φδ∥L∞(Ωη−δ) ≤ C/δ . Define

wδn := unφδ + g(1− φδ).

Clearly this sequence converges to g in L1(Ω;Rd) and satisfies TΩw
δ
n = TΩg on ∂Ω.

Moreover

∇wδn
∗
⇀ G and Dwδn

∗
⇀ Dg in M(Ω;Rd×N )

as n→ ∞ and then δ → 0. Indeed

∇wδn = ∇φδ ⊗ (un − g) + φδ(∇un −∇g) +∇g,

Dwδn = ∇φδ ⊗ (un − g) + φδ(Dun −Dg) +Dg.
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Concerning the energies, we have

E(wδn; Ω) ≤ E(wδn; Ωη) + E(wδn; Ω \ Ωη−δ) + E(uδn; Ωη−2δ \ Ωη+δ)
≤ E(un; Ωη) + E(g; Ω \ Ωη−δ)

+ CW,ψ

(
(LN + |Dun|+ |Dg|)(Lδ) +

1

δ

∫
Lδ

|un − g|dx
)
,

where CW,ψ is any bigger constant which bounds from above the constants appearing in (W :1),
(ψ:1) and in L∞ bound of ∇ψδ on Lδ . Taking the limit as n→ ∞ we have

lim inf
n→∞

E(wδn; Ω) ≤ lim
n→∞

E(un; Ω) + CW,ψν(Ω \ Ωη−δ) + CW,ψν(Lδ)

≤ I(g,G; Ω) + ε+ CW,ψν(u; Ω \ Ωη−δ) + CW,ψν(Lδ).

Letting δ → 0 we obtain

Ig(g,G; Ω) ≤ I(g,G; Ω) + ε+ CW,ψν(Ω \ Ωη) + CW,ψν(∂Ωη).

Choose a subsequence {ηn} such that ηn → 0+ and ν(∂Aηn) = 0. By letting first n→ ∞ and
then ε→ 0+ we conclude that Ig(g,G; Ω) ⩽ I(g,G; Ω).

Then, for any (ĝj , Ĝj)
∗
⇀ (g,G) as in Step 2, satisfying (5.16), (5.17), and (5.18), we can

apply Theorem 2.4 and find a recovery sequence for Iĝj (ĝj , Ĝj ; Ω) = I(ĝj , Ĝj ; Ω) for each j , i.e.,

{ujn}n ⊂ SBV (Ω;Rd) such that ujn
∗
⇀ (ĝj , Ĝj) in the sense of (2.7), TΩu

j
n = TΩĝj on ∂Ω, in

particular TΩu
j
n = u0 on Γ, and

lim
n→∞

E(un; Ω) = J(gj , Gj ; Ω) =

∫
Ω

dH(ĝj , Ĝj).

Since |Ĝj |(∂Ω) = 0, we also have that ∇ujn
∗
⇀ Ĝj in M(Ω ∪ Γ;Rd×N ).

A standard diagonalization argument, exploiting the coercivity of E given by (W :1) and (ψ:1)
to obtain bounds uniform in n and j , now concludes the proof. □

6. Further properties and examples

As shown below, we also have an alternative way of interpreting I , as a more classic relaxation
problem of a functional on SBV × L1 in BV ×M .

Theorem 6.1. Assume (W :1)–(W :3) and (ψ:1)–(ψ:3). For (g,G) ∈ SBV (Ω;Rd)×L1(Ω;Rd×N )
and R > 0 , we define

ÊR(g,G; Ω) :=

∫
Ω

(W (∇g) +R|∇g −G|) dx+

∫
Sg∩Ω

ψ([g], νg) dHN−1(x) (6.1)

and its relaxation

ÎR(g,G; Ω) := inf
{
lim inf
n→∞

ÊR(gn, Gn; Ω)
∣∣∣SBV × L1 ∋ (gn, Gn)

∗
⇀ (g,G) in BV ×M

}
for (g,G) ∈ mSD . Then there exists R0 = R0(N,W,ψ) > 0 such that

ÎR(·, ·; Ω) = I(·, ·; Ω) for all R ⩾ R0 ,

where I(·, ·; Ω) is the relaxation of E(·; Ω) defined in (2.2).

Remark 6.2. Theorem 6.1 in principle opens another route to proving Theorem 2.4, our rep-
resentation theorem for I , via a relaxation theorem characterizing ÎR . However, the closest
available results in this direction seem to be [4, 5] (for the case A = (Curl, 0)) and [7]. However,
the former does not allow us to choose ψ freely, and the latter does not allow us to include G .

Proof of Theorem 6.1. We first observe that, for every R > 0, ÊR(u,∇u,Ω) = E(u; Ω) for every

u ∈ SBV (Ω;Rd). Let (g,G) ∈ mSD and let SBV (Ω;Rd) ∋ gn
∗
⇀ (g,G) according to (1.2).

Since {(gn,∇gn)} is an admissible sequence for ÊR(g,G; Ω),

ÎR(g,G; Ω) ⩽ lim inf
n→∞

E(gn; Ω).

Hence, passing to the infimum over all the admissible sequences {gn} , we have

ÎR(g,G,Ω) ⩽ I(g,G,Ω).
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To prove the opposite inequality for R ⩾ R0 with a suitable R0 to be chosen later, take

{(gn, Gn)} admissible for ÎR(g,G; Ω), so that gn
∗
⇀ g in BV , Gn

∗
⇀ G in M . We choose a

sequence {vn} given by [30, Theorem 1.1] such that

vn
∗
⇀ 0 in BV , ∇vn = −∇gn +Gn ,

and

|Dvn|(Ω) ⩽ C(N)

∫
Ω

|Gn −∇gn|dx = C(N)

∫
Ω

|∇vn|dx. (6.2)

In particular, the sequence un := gn + vn is admissible for I(g,G; Ω).

Taking into account that

Sgn = (Sgn \ Sgn+vn) ∪ (Sgn ∩ Sgn+vn) and Sgn+vn = (Sgn ∩ Sgn+vn) ∪ (Sgn+vn \ Sgn),
also using (W :1), (ψ:1) and (2.14) we obtain that

ÊR(gn, Gn; Ω)− ÊR(gn + vn,∇(gn + vn); Ω)

=

∫
Ω

(
W (∇gn)−W (∇gn +∇vn)

)
dx+

∫
Ω

R|∇gn −Gn| dx

+

∫
Ω∩Sgn

ψ([gn], νgn) dHN−1(x)−
∫
Ω∩Sgn+vn

ψ([gn + vn], νgn+vn) dHN−1(x)

⩾−
∫
Ω

L|∇vn| dx+

∫
Ω

R|∇vn|dx+

∫
Ω∩(Sgn\(Sgn+vn )

ψ([gn], νgn)dHN−1(x)

−
∫
Ω∩(Sgn∩Sgn+vn )

Cψ|[vn]|dHN−1(x)−
∫
Ω∩(Sgn+vn\Sgn )

Cψ|[vn]|dHN−1(x)

⩾
∫
Ω

(R− L)|∇vn|dx−
∫
Ω∩Svn

Cψ|[vn]|dHN−1(x)

⩾ (R− (L+ CψC(N)))

∫
Ω

|∇vn|dx ⩾ 0,

as long as R ⩾ R0 := L + CψC(N). Here, L , Cψ , and C(N) denote the Lipschitz constant
of W , the Lipschitz and growth constant of ψ in (2.14) and (ψ:1), and the constant appearing
in (6.2), respectively. Passing to the limit as n→ ∞ , we conclude that

lim inf
n→∞

ÊR(gn, Gn; Ω) ⩾ lim inf
n→∞

ÊR(gn + vn,∇(gn + vn); Ω) = lim inf
n→∞

E(gn + vn; Ω) ⩾ I(g,G; Ω)

for all R ⩾ R0 . As this holds for all sequences {(gn, Gn)} that are admissible for ÎR(g,G; Ω),
the thesis follows. □

In view of Theorem 6.1, it is a natural question to what degree our relaxed functional I is
influenced by its origin from E , defined on structured deformations. The following example
shows that this special background is still present in the relaxed I at least in the sense that not
all quasiconvex-convex densities H (that could be obtained by general relaxation in BV ×M)
can be obtained in I .

Proposition 6.3. For all W and ψ satisfying the assumptions of Theorem 2.4, there exists
B0 ∈ Rd×N and ξ ∈ Rd , ν ∈ RN with |ξ| = |ν| = 1 so that for the function H defined in
(2.11a),

H(B0 + tξ ⊗ ν,B0) =W (B0) + ψ(tξ, ν) for all t > 0 . (6.3)

In particular, for any possible choice of W and ψ ,

H ̸= H0 with H0(A,B) :=
√
|A|2 + 1 + |B|

because the function (0,+∞) ∋ t 7→ H0(B0 + tξ ⊗ ν,B0) is not affine.

Proof. To see “⩽” in (6.3), it suffices to choose a suitable admissible sequence in (3.15a), the

sequential characterization of H : On Q , we have ∇un
∗
⇀ B0 in M and un

∗
⇀ A0x for

A0 := B0 + tξ ⊗ ν for

un(x) := B0x+
tξ

n
[nx · ν],
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where [s] := min{z ∈ Z : |z − s| = dist(s,Z)} denotes rounding of s to the closest integer.
An upper bound for H(A0, B0) is therefore given by limnE(un;Q) = W (B0) + ψ(tξ, ν) (by
1-homogeneity of ψ ), for any possible choice of B0 , ξ and ν .

To obtain “⩾” in (6.3), we use a particular choice: Since both W and ψ are continuous and
W is coercive, there always exists global minima B0 of W on Rd×N and (ξ, ν) of ψ on the
compact set Sd−1 × SN−1 :=

{
(ξ, ν) ∈ Rd × RN | |ξ| = |ν| = 1

}
. As a consequence,

W (B0) =W ∗∗(B0) and ψ(ξ, ν) ⩽ ψ(ξ̃, ν̃) for all (ξ̃, ν̃) ∈ Sd−1 × SN−1 . (6.4)

Here, W ∗∗ denotes the convex hull of W . For any u admissible in the definition (2.11a) of
H(A0, B0) with A0 := B0 + tξ ⊗ ν , we now have that∫

Q

W (∇u) dx ⩾
∫
Q

W ∗∗(∇u) dx ⩾W ∗∗(B0) =W (B0) (6.5)

by Jensen’s inequality, since
∫
Q
∇udx = B0 for all admissible u in (2.11a). Moreover, since

u ∈ SBV and u = A0x on ∂Q , we have that∫
Su∩Q

[u]⊗ νu dHN−1(x) =

∫
Q

dDu−
∫
Q

∇udx = A0 −B0 = tξ ⊗ ν.

Multiplied with the fixed unit vector ν from the right, this reduces to∫
Su∩Q

[u](νu · ν) dHN−1(x) = tξ. (6.6)

By the positive 1-homogeneity of ψ , the minimality property of (ξ, ν) in (6.4) and another
application of Jensen’s inequality with (6.6) to the convex function | · | , we infer that∫

Su∩Q
ψ([u], νu) dHN−1(x) =

∫
Su∩Q

|[u]|ψ
( [u]

|[u]|
, νu

)
dHN−1(x)

⩾
∫
Su∩Q

|[u](νu · ν)|ψ(ξ, ν) dHN−1(x)

⩾ |tξ|ψ(ξ, ν) = ψ(tξ, ν)

(6.7)

for all t > 0. Combining (6.5) and (6.7), we conclude that E(u;Q) ⩾ W (B0) + ψ(tξ, ν) for
all u admissible in (2.11a) with (A,B) = (A0, B0). This implies the asserted lower bound for
H(A0, B0). □
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[12] G. Bouchitté, I. Fonseca, G. Leoni, and L. Mascarenhas. A global method for relaxation in W 1,p and in

SBVp . Arch. Ration. Mech. Anal., 165(3):187–242, 2002.
[13] A. Braides. Γ -convergence for beginners, volume 22 of Oxford Lecture Series in Mathematics and its Appli-

cations. Oxford University Press, Oxford, 2002.

[14] G. Carita, J. Matias, M. Morandotti, and D. R. Owen. Dimension reduction in the context of structured
deformations. J. Elasticity, 133(1):1–35, 2018.

[15] G. Carita, A. M. Ribeiro, and E. Zappale. Relaxation for some integral functionals in W 1,p
w ×Lq

w . Bol. Soc.
Port. Mat., pages 47–53, 2010.

[16] G. Carita, A. M. Ribeiro, and E. Zappale. An homogenization result in W 1,p × Lq . J. Convex Anal.,

18(4):1093–1126, 2011.
[17] R. Choksi and I. Fonseca. Bulk and interfacial energy densities for structured deformations of continua. Arch.

Rational Mech. Anal., 138(1):37–103, 1997.

[18] G. Dal Maso. An introduction to Γ -convergence, volume 8 of Progress in Nonlinear Differential Equations
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[23] S. Krömer and J. Valdman. Surface penalization of self-interpenetration in linear and nonlinear elasticity.

Applied Mathematical Modelling, 122:641–664, 2023.
[24] J. Matias, M. Morandotti, and D. R. Owen. Energetic Relaxation to Structured Deformations: A Multiscale

Geometrical Basis for Variational Problems in Continuum Mechanics. Springer Nature, 2023.

[25] J. Matias, M. Morandotti, D. R. Owen, and E. Zappale. Upscaling and spatial localization of non-local
energies with applications to crystal plasticity. Math. Mech. Solids, 26(7):963–997, 2021.

[26] J. Matias, M. Morandotti, and E. Zappale. Optimal design of fractured media with prescribed macroscopic

strain. J. Math. Anal. Appl., 449(2):1094–1132, 2017.
[27] J. Matias and P. M. Santos. A dimension reduction result in the framework of structured deformations. Appl.

Math. Optim., 69(3):459–485, 2014.

[28] D. R. Owen and R. Paroni. Optimal flux densities for linear mappings and the multiscale geometry of
structured deformations. Arch. Ration. Mech. Anal., 218(3):1633–1652, 2015.

[29] F. Rindler. Calculus of variations. Universitext. Springer, Cham, 2018.
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