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Traces of Sobolev spaces to irregular
subsets of metric measure spaces

A. I. Tyulenev

Abstract. Given p ∈ (1,∞), let (X, d, µ) be a metric measure space with
uniformly locally doubling measure µ supporting a weak local (1, p)-Poin-
caré inequality. For each θ ∈ [0, p) we characterize the trace space of the
Sobolev W 1

p (X)-space to lower θ-codimensional content regular closed sets
S ⊂ X. In particular, if the space (X, d, µ) is Ahlfors Q-regular for some
Q ⩾ 1 and p ∈ (Q,∞), then we obtain an intrinsic description of the
trace-space of the Sobolev space W 1

p (X) to arbitrary closed nonempty sets
S ⊂ X.
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§ 1. Introduction

The theory of Sobolev spaces on metric measure spaces X = (X, d, µ) is an
important rapidly growing area of contemporary geometric analysis. Since no
additional regularity structure on X is assumed a priori, it is not surprising that
most studies available so far are related to the first-order Sobolev spaces W 1

p (X),
p ∈ (1,∞). We refer to the recent beautiful monograph [1] and the lecture notes [2]
containing an exhaustive treatment of the theory of W 1

p (X)-spaces, p ∈ (1,∞), and
related questions. However, some natural questions concerning the spaces W 1

p (X),
p ∈ (1,∞), remain open. One of the most difficult and exciting among them is the
so-called trace problem, that is, the problem of a sharp intrinsic description of the
trace-space of the space W 1

p (X), p ∈ (1,∞), to different closed sets S ⊂ X. In all
previously known studies this problem was considered under some extra regularity
assumptions on S. In the present paper we introduce a new sufficiently broad class
of closed sets and solve the corresponding trace problem for sets from that class.

In order to pose the problem precisely, we recall several concepts from analysis
on metric measure spaces. First of all, by a metric measure space (an m.m.s. for
short) we always mean a triple X = (X, d, µ), where (X, d) is a complete separable
metric space and µ is a Borel regular measure on (X, d) taking finite positive values
on all balls Br(x) of radius r ∈ (0,∞) centred at x ∈ X. Furthermore, we deal
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with m.m.s. X = (X, d, µ) that are q-admissible for some q ∈ (1,∞) (see § 2.1 for
details). This means that the following conditions hold true:

A) the measure µ has the uniformly locally doubling property;
B) the space X supports a weak local (1, q)-Poincaré inequality.

Given an m.m.s. X = (X, d, µ) and a parameter p ∈ (1,∞), there are at least
five approaches to the definition of the first-order Sobolev spaces W 1

p (X) which are
commonly used in the modern literature [3]–[9]. It is remarkable that in the case
when X is p-admissible, all of them are equivalent in an appropriate sense (see
§ 2.2 for the details). In this paper we take as a basis the approach proposed by
Cheeger [7] but in the equivalent modern form used in [3]. This approach appears
to be more suitable for the questions considered in the present paper.

1.1. The statement of the problem. Recall the notion of p-capacity Cp (see
Ch. I, § 1.4 in [10] for details). It is well known that (see details in § 2.3), given
p ∈ (1,∞) and a p-admissible m.m.s. X, for every element F ∈ W 1

p (X) there is
a Borel representative F which has Lebesgue points everywhere except a set of
p-capacity zero. Any such representative will be called a p-sharp representative
of F . Given a set S ⊂ X of positive p-capacity, we define the p-sharp trace of an
element F ∈ W 1

p (X) to the set S as the (p-capacitary) equivalence class (modulo
p-capacity zero) consisting of the pointwise restrictions of all p-sharp representatives
of the element F to S and denote it by F |S . In what follows we do not distinguish
between F |S and the pointwise restriction of any p-sharp representative of F to S.
We define the p-sharp trace space W 1

p (X)|S as the linear space of p-sharp traces
F |S of all elements F ∈ W 1

p (X). We equip this space with the corresponding
quotient-space norm, that is, given f ∈ W 1

p (X)|S , we put

∥f∥W 1
p (X)|S := inf{∥F∥W 1

p (X) : f = F |S}. (1.1)

We also introduce the p-sharp trace operator as a map Tr |S : W 1
p (X) → W 1

p (X)|S
defined by the equality Tr |S(F ) := F |S for F ∈ W 1

p (X). It is not difficult to show
that the map Tr |S is a bounded linear operator from W 1

p (X) to W 1
p (X)|S . Finally,

we say that F ∈ W 1
p (X) is a p-sharp extension of a given Borel function f : S → R

if f = F |S . The equality f = F |S should be interpreted in the following sense:
the corresponding capacitary equivalence class of f coincides with F |S . The first
problem we consider in this paper can be formulated as follows.

Problem 1 (p-sharp trace problem). Let p ∈ (1,∞), and let X = (X, d, µ) be
a p-admissible metric measure space. Let S ⊂ X be a closed nonempty set with
Cp(S) > 0.

(Q1) Given a Borel function f : S → R, find necessary and sufficient conditions
for the existence of a p-sharp extension F ∈ W 1

p (X) of the function f .
(Q2) Using only the geometry of the set S and the values of a function f ∈

W 1
p (X)|S , compute the norm ∥f∥W 1

p (X)|S up to some universal constants.
(Q3) Does there exist a bounded linear operator ExtS : W 1

p (X)|S → W 1
p (X), called

a p-sharp extension operator, such that Tr |S ◦ ExtS = Id on W 1
p (X)|S ?

A warning about notation. Note that, formally, the operators Tr |S and ExtS

depend implicitly on p. However, we do not complicate notation since in all main
results of our paper the parameter p is fixed.
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In many particular cases the concepts of the p-sharp trace space and p-sharp
extension should be relaxed in an appropriate sense. For example, if a set S ⊂ X
has a ‘constant Hausdorff dimension’, then it is natural to use the corresponding
Hausdorff measure instead of Cp-capacity to describe ‘negligible sets’. For example,
in [11]–[18] the corresponding notions of traces of Sobolev functions were introduced
with the help of the corresponding Hausdorff-type measures rather than capacities.
However, the situation becomes more intricate if we deal with a set S consisting
of infinitely many ‘pieces of different dimensions’. Clearly, in this case the use of
a single Hausdorff-type measure in the definition of traces of Sobolev spaces can
lead to an ill-posed trace problem. At the same time, the use of Cp-capacities seems
to be unnatural.

The above observations motivate us to introduce a more flexible concept of the
trace of a Sobolev function. Let X = (X, d, µ) be a metric measure space, and let
S ⊂ X be a closed nonempty set. Given a Borel regular locally finite measure m
on X, we denote by L0(m) the linear space of m-equivalence classes of all Borel
functions f : supp m → R. Assume that supp m = S and the measure m is abso-
lutely continuous with respect to Cp, that is, for each Borel set E ⊂ S the equality
Cp(E) = 0 implies the equality m(E) = 0. We define the m-trace F |mS of an ele-
ment F ∈ W 1

p (X) to S as the m-equivalence class of the p-sharp trace F |S . We let
W 1

p (X)|mS denote the linear space of m-traces of all F ∈ W 1
p (X) equipped with the

corresponding quotient-space norm, that is, given f ∈ W 1
p (X)|mS , we put

∥f∥W 1
p (X)|mS := inf{∥F∥W 1

p (X) : f = F |mS }. (1.2)

We also introduce the m-trace operator as a map Tr |mS : W 1
p (X) → W 1

p (X)|mS defined
by the equality Tr |mS (F ) := F |mS for F ∈ W 1

p (X). It is not difficult to show that the
map Tr |mS is a bounded linear operator from W 1

p (X) to W 1
p (X)|mS . We say that

F ∈ W 1
p (X) is an m-extension of an element f ∈ L0(m) if f = F |mS . The second

problem considered in the present paper can be formulated as follows.

Problem 2 (m-trace problem). Let p ∈ (1,∞), and let X = (X, d, µ) be a p-admis-
sible metric measure space. Let m be a positive locally finite Borel regular measure
on X that is absolutely continuous with respect to Cp , and let S = suppm.

(MQ1) Given f ∈ L0(m), find necessary and sufficient conditions for the exis-
tence of an m-extension F ∈ W 1

p (X) of the element f .
(MQ2) Using only the geometry of the set S , the properties of m and the values

of f ∈ W 1
p (X)|mS compute the norm ∥f∥W 1

p (X)|mS up to some universal constants.
(MQ3) Does there exist a bounded linear operator ExtS,m : W 1

p (X)|mS → W 1
p (X),

called an m-extension operator, such that Tr |mS ◦ ExtS,m = Id on W 1
p (X)|mS ?

1.2. Previously known results. As far as we know, Problem 1 has been con-
sidered only in the case X = (Rn, ∥ · ∥2,Ln). Furthermore, this problem remains
open in full generality, that is, in the full range p ∈ (1,∞). Below we briefly recall
the most powerful particular results available in the literature.

(R.1.1) The results in [19] and [20] cover completely the case when p > n, that is,
Problem 1 is solved without any additional regularity assumptions on S.

(R.1.2) In the case when p ∈ (1, n], for each d ∈ (n − p, n] Problem 1 has been
solved for any closed lower content d-regular (or, equivalently, d-thick) set S ⊂ Rn

(see [21]).
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(R.1.3) Very recently, a weakened version of Problem 1 was solved by the author
without any additional regularity assumption on S (see [22] and [23]).

Now we describe briefly the available results concerning Problem 2. Let X =
(X, d, µ) be a metric measure space. Throughout the paper we use the symbol
Br(x) to denote the closed ball of radius r ⩾ 0 centred at x ∈ X, that is,

Br(x) := {y ∈ X: d(x, y) ⩽ r}.

Since in general metric spaces the behaviour of µ(Br(x)) is not so transparent, it was
observed in [14], [15], [12] and [11] that codimensional analogues of the Hausdorff
contents Hθ,δ (see § 2.1 for the corresponding precise definition) are more suitable
in this case. Following [14] and [15], given an m.m.s. X and a parameter θ ⩾ 0,
we say that a closed set S ⊂ X is Ahlfors-David θ-coregular if there exist constants
cS,1(θ), cS,2(θ) > 0 such that

cS,1(θ)
µ(Br(x))

rθ
⩽ Hθ(Br(x) ∩ S) ⩽ cS,2(θ)

µ(Br(x))
rθ

for all (x, r) ∈ S × (0, 1].

(1.3)
We denote the class of all Ahlfors-David θ-coregular sets by ADRθ(X).

(R.2.1) In [18] traces of Calderón-Sobolev spaces and Hajlasz-Sobolev spaces to
sets S ∈ ADR0(X) were considered. It was assumed in [18] that the measure µ is
globally doubling and, in addition, satisfies the reverse doubling property.

(R.2.2) In [17] traces of Besov, Lizorkin-Triebel and Hajlasz-Sobolev spaces to
porous Ahlfors-David regular closed subsets of X were considered. In fact, the
methods used in [17] allow one to achieve some relaxation of the Ahlfors-David
θ-regularity condition by replacing it by Ahlfors-David θ-coregularity.

(R.2.3) In [14], given θ > 0 and a uniform domain Ω ⊂ X whose boundary
∂Ω satisfies the corresponding Ahlfors-David θ-coregularity condition, given p ∈
(max{1, θ},∞), an exact description of traces of the Newtonian-Sobolev N1

p (Ω)-
spaces to ∂Ω was obtained. Furthermore, very recently a similar problem was
considered for homogeneous Sobolev-type spaces or, as they are sometimes called,
Dirichlet spaces D1

p(Ω), p ∈ (1,∞) (see [12]).
(R.2.4) Very recently an analogue of Problem 2 for Banach-valued Sobolev map-

pings were studied in [24] in the case S ∈ ADR0(X).

1.3. The aims of the paper. Given X = (X, d, µ), an analysis of the results
mentioned in (R.2.1)–(R.2.4) shows that Problem 2 has been considered for sets
S ⊂ X satisfying Ahlfors-David-type regularity conditions. In particular, methods
and tools available so far have been found to be inapplicable even in the case
when S = S1 ∪ S2, where Si ∈ ADRθi

(X), i = 1, 2, for θ1 ̸= θ2 and satisfying
S1 ∩S2 ̸= ∅ and Hmax{θ1,θ2}(S1 ∩S2)=0. This elementary obstacle shows that the
classes ADRθ(X), θ ⩾ 0, are too narrow to build a fruitful trace theory. Hence it is
natural to introduce a relaxation of the Ahlfors-David regularity condition (1.3) by
replacing the Hausdorff measure by the corresponding Hausdorff content. We say
that a set S ⊂ X is lower θ-codimensional content regular if there exists a constant
λS(θ) ∈ (0, 1] such that

λS(θ)
µ(Br(x))

rθ
⩽ Hθ,r(Br(x) ∩ S) for all (x, r) ∈ S × (0, 1]. (1.4)
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By LCRθ(X) we denote the class of all lower θ-codimensional content regular
subsets of X. This class is a natural generalisation of the class of all d-thick subsets
of Rn introduced by Rychkov [16] to the case of general metric measure spaces.
Indeed, in the case when X = (Rn, ∥ · ∥2,Ln) and d ∈ [0, n], a set S ⊂ Rn is
d-thick in the sense of Rychkov if and only if S ∈ LCRn−d(X). Very recently
some interesting geometric properties of d-thick subsets of Rn were actively studied
in [25]–[27]. One can show that if the measure µ has the uniformly locally doubling
property, then ADRθ(X) ⊂ LCRθ(X) for each θ ⩾ 0, but this inclusion is strict in
general (see § 4 for the details).

The class LCRθ(X) is very broad. For example, in the case when X = (Rn,
∥ · ∥2,Ln) any path-connected set Γ ⊂ Rn containing at least two distinct points
belongs to LCRn−1(X). Furthermore, if an m.m.s. X is Ahlfors Q-regular for some
Q > 0, then for each θ ⩾ Q every nonempty set S ⊂ X belongs to LCRθ(X).

The aim of this paper is to solve Problems 1 and 2 for all closed sets S ∈ LCRθ(X)
for each θ ∈ [0, p) (in the case when θ ⩾ p the above problems appear to be ill
posed in general). We will show that our results cover all previously known results
(see [18], [19], [17] and [21]). Furthermore, we provide an illustrative example
(Example 8) in which Problem 2 is solved for a set formed by two Ahlfors-David
regular sets of different codimensions with nonempty intersection. Note that even
this elementary example was beyond the scope of the previously known techniques.
Finally, as a particular case of our main results, given parameters Q ⩾ 1 and
p ∈ (Q,∞), and an Ahlfors Q-regular p-admissible m.m.s. X, in Example 9 we
present a solution to Problem 1 for an arbitrary closed nonempty set S ⊂ X. This
example gives a natural generalization of one of the main results from [19].

1.4. Statements of the main results. In order to formulate the main results
of the present paper, we introduce some keystone tools.

Given an m.m.s. X = (X, d, µ) and a parameter θ ⩾ 0, we say that a sequence
of locally finite Borel regular measures {mk} := {mk}∞k=0 is θ-regular if there exists
ϵ = ϵ({mk}) ∈ (0, 1) such that the following conditions are satisfied:

(M1) there exists a closed nonempty set S ⊂ X such that

supp mk = S for all k ∈ N0; (1.5)

(M2) there exists a constant C1 > 0 such that for each k ∈ N0

mk(Br(x)) ⩽ C1
µ(Br(x))

rθ
for all x ∈ X and all r ∈ (0, ϵk]; (1.6)

(M3) there exists a constant C2 > 0 such that for each k ∈ N0

mk(Br(x)) ⩾ C2
µ(Br(x))

rθ
for all x ∈ S and all r ∈ [ϵk, 1]; (1.7)

(M4) for each k ∈ N0 there exists wk ∈ L∞(m0) such that mk = wkm0 and,
furthermore, there exists a constant C3 > 0 such that for any k, j ∈ N0

ϵθj

C3
⩽

wk(x)
wk+j(x)

⩽ C3 for m0-a.e. x ∈ S. (1.8)
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Given a nonempty closed set S ⊂ X, the class of all θ-regular sequences of
measures {mk} satisfying (1.5) is denoted by Mθ(S). Furthermore, we say that
a sequence {mk} ∈ Mθ(S) is strongly θ-regular if

(M5) for each Borel set E ⊂ S,

lim
k→∞

mk(Bϵk(x) ∩ E)
mk(Bϵk(x))

> 0 for m0-a.e. x ∈ E. (1.9)

Given a nonempty closed set S ⊂ X, the class of all strongly θ-regular sequences
of measures {mk} satisfying (1.5) is denoted by Mstr

θ (S). Condition (M5) can be
considered as a multiweight generalization of the famous A∞-condition of Mucken-
houpt (cf. Ch. 5, § 5.7 in [28]). It is clear that, given θ ⩾ 0, we have the inclusion
Mstr

θ (S) ⊂ Mθ(S). The question of the coincidence of Mstr
θ (S) and Mθ(S) is rather

subtle and will be discussed in § 5.2 of our paper.
The first main result in this paper looks like an auxiliary statement. Neverthe-

less, this result is new, and we believe that it can be of independent interest. It can
be considered as a natural and far-reaching generalization of a simple characteriza-
tion of Ahlfors-David θ-coregular sets in Rn (see Definition 1.1 and Theorem 1 in
Ch. 1 of [13]).

Theorem 1. Given p ∈ (1,∞), let X = (X, d, µ) be a p-admissible metric measure
space. Let θ ⩾ 0 and let S ⊂ X be a closed nonempty set. If S ∈ LCRθ(X), then
Mstr

θ (S) ̸= ∅. If Mθ(S) ̸= ∅, then S ∈ LCRθ(X).

For an exposition of the subsequent results it will be convenient to fix the fol-
lowing data:

(D1) a parameter p ∈ (1,∞) and a p-admissible metric measure space X =
(X, d, µ);

(D2) a parameter θ ∈ [0, p) and a closed set S ∈ LCRθ(X);
(D3) a sequence of measures {mk} ∈ Mθ(S) and a parameter ϵ = ϵ({mk}) ∈

(0, 1/10].
Given r > 0, we introduce important notation by setting

k(r) := max{k ∈ Z : r ⩽ ϵk}.

Now we introduce several keystone functionals, which will be the main tools in
obtaining different characterizations of traces of W 1

p (X)-spaces. Given q ∈ [0, +∞),
we use the following notation. We set

Lq({mk}) :=
∞⋂

k=0

Lq(mk) and Lloc
q ({mk}) :=

∞⋂
k=0

Lloc
q (mk).

Given a nonzero Borel regular locally finite measure m on X and an element
f ∈ Lloc

1 (m), for every bonded Borel set G with m(G) > 0 we put

Em(f, G) := inf
c∈R

1
m(G)

∫
G

|f(x)− c| dm(x).

For each r > 0 we put

Ẽm(f, Br(x)) :=

{
Em(f, B2r(x)) if Br(x) ∩ supp m ̸= ∅,

0 if Br(x) ∩ supp m = ∅.
(1.10)
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Now, given f ∈ Lloc
1 ({mk}), we define the {mk}-Calderón maximal function as

a mapping f ♯
{mk} : X → [0, +∞] defined by the formula

f ♯
{mk}(x) := sup

r∈(0,1]

1
r
Ẽmk(r)(f, Br(x)), x ∈ X .

Furthermore, we consider the Calderón functional on the space Lloc
1 ({mk}) (with

values in [0, +∞]) by letting, for each f ∈ Lloc
1 ({mk}),

CNp,{mk}(f) := ∥f ♯
{mk}∥Lp(µ). (1.11)

Note that if X = S = Rn and mk := Ln for all k ∈ N0, then the {mk}-Calderón
maximal function coincides with the classical maximal function f ♯ introduced by
Calderón in [29]. Furthermore, in his paper [29] Calderón proved that, for q∈(1,∞],
an element f ∈ Lloc

1 (Rn) lies in W 1
q (Rn) if and only if both f and f ♯ belong

to Lq(Rn). This fact justifies our name for the functional CN p,{mk}.
Given c > 1, we also introduce the Brudnyi-Shvartsman functional on Lloc

1 ({mk})
(with values in [0, +∞]) by letting, for each f ∈ Lloc

1 ({mk}),

BSN p,{mk},c(f) := sup
( N∑

i=1

µ(Bri
(xi))

rp
i

(
Ẽmk(ri)

(f, Bcri
(xi))

)p
)1/p

, (1.12)

where the supremum is taken over all finite families of closed balls {Bri(xi)}N
i=1

such that:
(F1) Bri

(xi) ∩Brj
(xj) = ∅ provided that i ̸= j;

(F2) 0 < min{ri : i = 1, . . . , N} ⩽ max{ri : i = 1, . . . , N} ⩽ 1;
(F3) Bcri

(xi) ∩ S ̸= ∅ for all i ∈ {1, . . . , N}.
Note that if X = S = Rn and mk := Ln for all k ∈ N0, then the functional

BSN p,{mk},c is very close in spirit to that used by Brudnyi [30] to characterize
Sobolev-type spaces on Rn. In the case when X = Rn, p > n, and S ⊂ Rn is
an arbitrary closed nonempty set, our functional is also very close in spirit to the
corresponding functionals used by Shvartsman in [19] and [20]. These observations
justify our name for the functional BSN p,{mk},c.

Given a parameter σ ∈ (0, 1], we say that a ball Br(x) is (S, σ)-porous if there is
a ball Br′(x′) ⊂ Br(x) \ S such that r′ ⩾ σr. Furthermore, given r ∈ (0, 1], we put

Sr(σ) := {x ∈ S : Br(x) is (S, σ)-porous}. (1.13)

We say that S is σ-porous if S = Sr(σ) for all r ∈ (0, 1]. Porous sets arise naturally
in many areas of modern geometric analysis (see, for example, the survey [31]). In
the classical Euclidean settings, the porosity properties of lower content regular sets
were studied in [27].

We define a natural analogue of the Besov seminorm. More precisely, given
σ ∈ (0, 1], we introduce the Besov functional on Lloc

1 ({mk}) by letting, for each
f ∈ Lloc

1 ({mk}),

BN p,{mk},σ(f) := ∥f ♯
{mk}∥Lp(S,µ)

+
( ∞∑

k=1

ϵk(θ−p)

∫
S

ϵk (σ)

(
Emk

(f, Bϵk(x))
)p

dmk(x)
)1/p

. (1.14)
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If the space X is Ahlfors Q-regular for some Q > 0, S ⊂ X is a closed Ahlfors-David
θ-coregular set for some θ ∈ (0, Q), and mk = Hθ⌊S , k ∈ N0, then the functional
BN p,{mk},σ coincides with the corresponding Besov seminorm [17]. This justifies
our name for the functional.

The second main result of this paper gives answers to questions (MQ1) and
(MQ2) in Problem 2. Namely, we present several equivalent characterizations of
the trace space. It is important that condition (1.8) implies that W 1

p (X)|m0
S =

W 1
p (X)|mk

S for all k ∈ N0.

Theorem 2. If {mk} ∈ Mstr
θ (S), c ⩾ 3/ϵ and σ ∈ (0, ϵ2/(4c)), then, given f ∈

Lloc
1 ({mk}), the following conditions are equivalent:
(i) f ∈ W 1

p (X)|m0
S ;

(ii) CNp,{mk}(f) := ∥f∥Lp(m0) + CN p,{mk}(f) < +∞;
(iii) BSNp,{mk},c(f) := ∥f∥Lp(m0) + BSN p,{mk},c(f) < +∞;
(iv) BNp,{mk},σ(f) := ∥f∥Lp(m0) + BN p,{mk},σ(f) < +∞.
Furthermore, for each c ⩾ 3/ϵ and σ ∈ (0, ϵ2/(4c)), for every f ∈ Lloc

1 ({mk}),

∥f∥W 1
p (X)|m0

S
≈ CNp,{mk}(f) ≈ BSNp,{mk},c(f) ≈ BNp,{mk},σ(f), (1.15)

where the corresponding equivalence constants do not depend on f .

In § 11 we show that the equivalence of (i) and (iv) in Theorem 2 implies The-
orem 1.5 in [17] as a particular case. Furthermore, in the Euclidean settings the
equivalence of (i) and (iv) strengthens the author’s joint result in [21].

The third main result gives answers to questions (Q1) and (Q2) posed in Prob-
lem 1.

Theorem 3. A p-capacitary equivalence class of a Borel function f : S → R belongs
to the space W 1

p (X)|S if and only if the following conditions hold:
(A) the m0-equivalence class [f ]m0 of f belongs to W 1

p (X)|m0
S ;

(B) there exists a set Sf ⊂ S with Cp(S \ Sf ) = 0 such that

lim
k→∞

–
∫

B
ϵk (x)

|f(x)− f(y)| dmk(y) = 0 for all x ∈ Sf . (1.16)

Furthermore, for each c ⩾ 3/ϵ and σ ∈ (0, ϵ2/(4c)), for every f ∈ W 1
p (X)|S ,

∥f∥W 1
p (X)|S ≈ CNp,{mk}(f) ≈ BSNp,{mk},c(f) ≈ BNp,{mk},σ(f), (1.17)

where the corresponding equivalence constants do not depend on f .

Note that, in contrast to Theorem 2, condition (B) in Theorem 3 is delicate and
important. Roughly speaking, given f ∈ Lp(m0), the finiteness of the functionals
(1.11), (1.12) and (1.14) is not sufficient for the existence of a p-sharp extension of f .
On the other hand, the additional condition (B) allows one to relax restrictions on
the sequence of measures {mk}. Indeed, we do not require that {mk} ∈ Mstr

θ (S)
in Theorem 3. We show in Example 9 that if X is geodesic and Ahlfors Q-regular
for some Q ⩾ 1, then Theorem 3 gives an exact intrinsic description of the p-sharp
trace space W 1

p (X)|S to an arbitrary closed nonempty set S ⊂ X.
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The fourth main result of the present paper gives answers to questions (Q3) and
(MQ3) in Problems 1 and 2, respectively. Furthermore, it clarifies a deep connection
between Problems 1 and 2. This connection is given by the existence of a canonical
isomorphism between a priori different trace spaces W 1

p (X)|S and W 1
p (X)|m0

S . This
fact sheds light on the main reason why the concept of the p-sharp trace space
was not used in the previous investigations. As usual, given normed linear spaces
E1 = (E1, ∥ · ∥1) and E2 = (E2, ∥ · ∥2), we denote the linear space of all bounded
linear mappings from E1 to E2 by L(E1, E2).

Theorem 4. Let {mk} ∈ Mstr
θ (S). Then the following assertions holds.

(1) There exists an m0-extension operator Ext:=ExtS,{mk}∈L(W 1
p (X)|m0

S ,W 1
p (X)).

(2) There exists a p-sharp extension operator Ext := ExtS,{mk},p ∈ L(W 1
p (X)|S ,

W 1
p (X)).
(3) The canonical imbedding Im0 : W 1

p (X)|S → W 1
p (X)|m0

S that takes f ∈ W 1
p (X)|S

and returns the m0-equivalence class [f ]m0 of f is an isometric isomorphism.
(4) We have the following commutative diagram:

W 1
p (X)

Tr |S

��

Id //
W 1

p (X)

Tr |m0
S

��

Id
oo

W 1
p (X)|S

Im0 //

Ext

OO

W 1
p (X)|m0

S
I−1
m0

oo

Ext

OO

1.5. The keystone innovations. Note that even in the particular case of
X = (Rn, ∥ · ∥2,Ln) our results are new. Indeed, characterizations via Brudnyi-
Shvartsman-type functionals were never considered in the literature for p ∈ (1, n]
(the case p > n was considered in [19]). The keystone innovations in the present
paper can be summarized as follows.

• In contrast to the classical Whitney method used in the previous investiga-
tions, we build a new extension operator by constructing, for a fixed element
f ∈ Lloc

1 ({mk}), a special approximating sequence {f j} ⊂ Lloc
1 ({mk}), and

we obtain the resulting extension as the weak limit of this sequence.
• We introduce the Brudnyi-Shvartsman-type functional in metric measure

settings.
• In contrast to the previously known studies related to Problem 2, we use the

so-called ‘vertical approach’ to Sobolev spaces on metric measure spaces,
introduced originally by Cheeger [7]. This gives a natural symbiosis with
our new extension operator and leads to the Brudnyi-Shvartsman-type char-
acterization of the trace space.

• We introduce the new concept of the m-trace of the Sobolev W 1
p (X)-space

and investigate its relationships with the notion of the p-sharp trace of the
space W 1

p (X).
• We introduce the new class of sets LCRθ(X) which is a natural general-

ization of the class of d-thick sets introduced by Rychkov in [16] from the
case of finite-dimensional Euclidean space Rn to the case of admissible met-
ric measure spaces.
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• We introduce the new class of sequences of measures Mstr
θ (X). This allows

one to obtain a characterization of the m0-trace space of the Sobolev W 1
p (X)-

space using only the finiteness of the corresponding functionals.

1.6. The organization of the paper. The paper is organized as follows.
In § 2 we collect some classical results about metric measure spaces and Sobolev

functions defined on such spaces. These results form the fundament for the subse-
quent exposition.

In § 3 we introduce weakly noncollapsed measures and show that they possess
some sort of asymptotically doubling properties, which will be very important in
proving the existence of strongly θ-regular sequences of measures in § 5.

Section 4 is devoted to some elementary properties of sets S ∈ LCRθ(X), θ ⩾ 0.
We also present some simple examples.

Section 5 is a ‘technical basis’ of the paper. We prove Theorem 1 and study
in detail various properties of θ-regular sequences of measures. Furthermore, we
present elementary examples of sets S for which one can easily construct explicit
examples of strongly θ-regular sequences of measures.

Section 6 is devoted to investigations of some delicate pointwise properties of
functions. This section plays a crucial role in proving that the new extension
operator is a right inverse of the corresponding trace operator.

In § 7 we construct our new extension operator.
Sections 8 and 9 contain a technical foundation for the proofs of the so-called

direct and reverse trace theorems, respectively.
In § 10 we prove the main results of the paper, that is, Theorems 2, 3 and 4.
We conclude our paper by § 11, where we show that the most part of the available

results are mere particular cases of our main results. On the other hand, we present
simple examples which do not fall into the scope of the previous investigations.

Acknowledgements. I am grateful to Nageswari Shanmugalingam for discussions
that inspired me to write this paper. I thank Igor Verbitsky for valuable comments
concerning trace theorems for Riesz potentials and Wolf-type inequalities. I would
like to express my special gratitude to Pavel Shvartsman for fruitful discussions
and valuable comments that helped me to improve the first version of the paper.
Finally, I would like to thank my student Roman Oleinik, who found typos and
some inaccuracies in the preliminary version of the paper.

§ 2. Preliminaries

The goal of this preliminary section is to recall some basic material related to
modern analysis and to set the terminology that we adopt in this paper.

2.1. Geometric analysis background. Given a metric space X = (X, d) and
a set E ⊂ X, we denote by int E, cl E and ∂E the interior of E, the closure of E
and the boundary of E in the metric topology of X, respectively. Unless otherwise
stated, all the balls in X are assumed to be closed. More precisely, we put

Br(x) := {y ∈ X: d(x, y) ⩽ r} for (x, r) ∈ X×[0, +∞).

Clearly, if one regards a given ball B just as a subset of X, then it can occur that its
centre and radius are not uniquely determined. Hence, in what follows we always
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consider a ball B together with some fixed centre xB and fixed radius rB . Given
a ball B = Br(x) and a constant λ ⩾ 0, we set λB := Bλr(x).

Given a metric space X = (X, d) and a Borel set E ⊂ X, we denote by B(E) the
set of all Borel functions f : E → [−∞, +∞]. We denote by C(X) and Cc(X)
the linear space of all continuous real-valued and all compactly supported con-
tinuous real-valued functions, respectively. We equip these spaces with the usual
sup-norm. Finally, the symbol LIPloc(X) (LIP(X)) denotes the set of all real-valued
uniformly locally Lipschitz functions (Lipschitz functions, respectively) on X, that
is, f ∈ LIPloc(X) (f ∈ LIP(X)) if and only if for each R ∈ (0, +∞) (for each
R ∈ (0, +∞], respectively)

Lf (R) := sup
0<d(x,y)<R

|f(x)− f(y)|
d(x, y)

< +∞.

For each function f : X → R we define its local Lipschitz constant lip f : X →
[0, +∞] (which is also called the slope of f and denoted by |∇f |) by the equality

lip f(x) := |∇f |(x) :=

 lim
y→x

|f(y)− f(x)|
d(x, y)

, x is an accumulation point,

0, x is an isolated point.
(2.1)

It is clear that for each function f ∈ LIPloc(X) the local Lipschitz constant lip f is
finite everywhere on X and belongs to B(X). Below we summarize the elementary
properties of the local Lipschitz constants of Lipschitz functions.

Proposition 1. Given a metric space X = (X, d), the following properties hold:
(1) if f ≡ c on X for some number c ∈ R, then lip f ≡ 0 on X;
(2) if f1, f2 ∈ LIPloc(X), then

lip(f1 + f2)(x) ⩽ lip f1(x) + lip f2(x) for x ∈ X;

(3) lip(f + c) ≡ lip f for each function f ∈ LIPloc(X) and any number c ∈ R.

The following fact is well known (see Corollary 1.6 in [2], for example).

Proposition 2. If X = (X, d) is a compact metric space, then the space C(X) is
separable.

Given a metric space X = (X, d) and a number ϵ ∈ (0, 1), for each k ∈ Z we
denote by Zk(X, ϵ) an arbitrary maximal ϵk-separated subset of X. Furthermore,
the symbol Ak(X, ϵ) denotes the corresponding index set, that is,

Zk(X, ϵ) = {zk,α : α ∈ Ak(X, ϵ)}. (2.2)

It is clear that if X is separable, then Ak(X, ϵ) is an at most countable set. For
each k ∈ Z we introduce the special family of balls Bk(X, ϵ) by setting

Bk(X, ϵ) := {Bϵk(zk,α) : α ∈ Ak(X, ϵ)}. (2.3)

Finally, we put

Z(X, ϵ) :=
⋃
k∈Z

Zk(X, ϵ) and Zk(X, ϵ) :=
⋃
k⩾k

Zk(X, ϵ), k ∈ Z. (2.4)
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Given a complete separable metric space X = (X, d), we say that m is a measure
on X if m is a Borel regular outer measure on X. A measure m on X is said to be
locally finite if m(Br(x)) < +∞ for all pairs (x, r) ∈ X×[0, +∞). Given a Borel set
E ⊂ X and a measure m on X, we define the restriction m⌊E of m to E, as usual,
by the formula

m⌊E(F ) := m(F ∩ E) for any Borel sets F ⊂ X . (2.5)

Sometimes it will be convenient to work with so-called weighted measures. More
precisely, if m is a measure on X, then we say that γ ∈ B(X) is an m-weight if
γ(x) ⩾ 0 for m-a.e. x ∈ X. In this case γm should be interpreted as the measure on
X defined by

γm(E) :=
∫

E

γ(x) dm(x) for every Borel set E ⊂ X . (2.6)

Given a locally compact separable metric space X = (X, d), following [32] we say
that a sequence of measures {mk} := {mk}∞k=0 on X converges locally ∗-weakly to
a measure m on X and write mk ⇀ m as k →∞, if

lim
k→∞

∫
X

φ(x) dmk(x) =
∫

X

φ(x) dm(x) for every φ ∈ Cc(X).

The following fact is well known. For a detailed proof, see, for example, Corol-
lary 1.60 in [32].

Lemma 1. Let X = (X, d) be a locally compact separable metric space, and let
{mk} := {mk}∞k=0 be a sequence of measures on X such that

sup
k∈N0

mk(B) < +∞ for every ball B ⊂ X . (2.7)

Then there is a locally ∗-weakly convergent subsequence {mkl
} of the sequence {mk}.

We also recall some standard properties of locally ∗-weakly convergent sequences
of measures.

Proposition 3. Let (X, d) be a locally compact separable metric space. If a sequence
of measures {mk}∞k=0 on X converges locally ∗-weakly to a measure m on X, then
for every open set G ⊂ X and every compact set F ⊂ X,

lim
k→∞

mk(G) ⩾ m(G) and lim
k→∞

mk(F ) ⩽ m(F ). (2.8)

Throughout the paper, by a metric measure space (an m.m.s., for short) we
always mean a triple (X, d, µ), where (X, d) is a complete separable metric space
and µ is a nonzero locally finite measure on X such that supp µ = X.

Remark 1. In what follows, given an m.m.s. X = (X, d, µ), by a measure on X we
always mean a measure on the metric space (X, d).
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Given a complete separable metric space X = (X, d) and a measure m on X,
we assume that the collection of m-measurable sets is the completion of the Borel
σ-algebra with respect to m. Furthermore, given a Borel nonempty set E ⊂ supp m
and a function f ∈ B(E), we put

[f ]m := {f̃ : E → [−∞, +∞] : f̃(x) = f(x) for m-a.e. x ∈ E}. (2.9)

We put L0(E,m) := {[f ]m : f ∈ B(E)} and L0(m) := L0(supp m, m). Given
p ∈ (0,∞) and a Borel nonempty set E ⊂ supp m, we let Lp(E,m) (Lloc

p (E,m))
denote the linear space of m-equivalence classes [f ]m of all functions f ∈ B(E) which
are (locally) p-integrable on E with respect to the measure m. We let L∞(E,m)
(Lloc
∞ (E,m)) denote the linear space of m-equivalence classes of all (locally) bounded

on E Borel functions. For each p ∈ [0,∞] we set Lp(m) := Lp(suppm, m) and
Lloc

p (m) := Lloc
p (supp m, m). Given p ∈ [0,∞], for a sequence of measures {mk}∞k=0

on X we put

Lp({mk}) :=
∞⋂

k=0

Lp(mk) and Lloc
p ({mk}) :=

∞⋂
k=0

Lloc
p (mk).

Given an m.m.s. X = (X, d, µ), a parameter p ∈ [0,∞] and a Borel set S ⊂ X,
we use the notation Lp(S) := Lp(µ⌊S).

We introduce the following important definition.

Definition 1. Let X = (X, d) be a complete separable metric space. Given
a measure m on X and a Borel set E ⊂ supp m, we define a mapping Im : B(E) →
L0(E,m) by setting Im(f) := [f ]m for each function f ∈ B(E).

Remark 2. Typically, given a complete separable metric space X = (X, d), a measure
m on X, and a parameter p ∈ [0,∞], it will be convenient to identify the functions
f̃ ∈ [f ]m for each [f ]m ∈ Lp(m). We follow this path whenever our statements
depend only on the equivalence classes without further mention, provided that this
is clear from the context. In this case we use the symbol f instead of [f ]m and the
phrase ‘a function f belongs to Lp(m)’ should be interpreted as [f ]m ∈ Lp(m). But
we do not consider functions agreeing m-almost everywhere to be identical if we are
concerned with fine pointwise properties of the single function.

Given a metric space X = (X, d) and a family of sets G ⊂ 2X, we denote by
M(G) its covering multiplicity, that is, the minimum integer M ′ ∈ N0∪{+∞} such
that every point x ∈ X belongs to at most M ′ sets from G. We say that a family
G is disjoint if M(G) ⩽ 1. The following proposition is elementary; we omit the
proof.

Proposition 4. Let m be a measure on a complete separable metric space X=(X, d).
Let G ⊂ 2X be an at most countable family of sets with M(G) < +∞. Then∑

G∈G

∫
G

|f(x)| dm(x) ⩽ M(G)
∫

G

|f(x)| dm(x) for every f ∈ L1(m⌊G), (2.10)

where G =
⋃
{G : G ∈ G}.
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Given a complete separable metric space X = (X, d) and a measure m on X,
for each f ∈ Lloc

1 (m), and every bounded Borel set G ⊂ X such that m(G) < +∞
we put

fG,m := –
∫

G

f(x) dm(x) :=


1

m(G)

∫
G

f(x) dm(x), m(G) > 0,

0, m(G) = 0.
(2.11)

Furthermore, we put

Em(f, G) := inf
c∈R

–
∫

G

|f(x)− c| dm(x). (2.12)

In order to built a fruitful theory we work with measures satisfying some restric-
tions.

Definition 2. Given a complete separable metric space X = (X, d), we say that
a measure m on X has a uniformly locally doubling property if, for each R > 0,

Cm(R) := sup
r∈(0,R]

sup
x∈X

m(B2r(x))
m(Br(x))

< +∞. (2.13)

Remark 3. Clearly, we have the following chain of inequalities:

Em(f, G) ⩽ –
∫

G

∣∣f(x)−fG,m| dm(x) ⩽ –
∫

G

–
∫

G

|f(x)−f(y)| dm(x) dm(y) ⩽ 2Em(f, G).

Furthermore, if m has a uniformly locally doubling property, then it follows easily
from the above chain of inequalities that for each R > 0 and c ⩾ 1 there is a constant
C > 0 such that for every pair (x, r) ∈ X×(0, R]

|fBr(x′),m − fBcr(x),m| ⩽ CEm(f, Bcr(x)) for Br(x′) ⊂ Bcr(x). (2.14)

We will sometimes use the following rough upper estimate of Em(f, G), which
is an easy consequence of Remark 3, Hölder’s inequality for sums and Hölder’s
inequality for integrals.

Proposition 5. If p ∈ [1,∞), then

(Em(f, G))p ⩽ 2p –
∫

G

|f(x)|p dm(x).

Given an m.m.s. X = (X, d, µ), it is well known that the global doubling property
of the measure µ implies the globally metric doubling property of the space (X, d)
(see, for example, p. 102 in [1]). Similarly, we have the following result (we put
[c] := max{k ∈ Z : k ⩽ c}).

Proposition 6. Let X = (X, d, µ) be a metric measure space. If µ has a uniformly
locally doubling property, then for all R > 0 and c ⩾ 1, any closed ball B = BcR(x)
contains at most Nµ(R, c) := [(Cµ((c + 1)R))log2(2c)+1] + 1 disjoint closed balls of
radius R.
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Proof. If B′ = BR(x′) ⊂ B then B ⊂ B2cR(x′). Applying (2.13) [log2(2c)]+1 times
we have

µ(B) ⩽ (Cµ((c + 1)R))[log2(2c)]+1µ(B′) ⩽ (Cµ((c + 1)R))log2(2c)+1µ(B′).

If B is a disjoint family of closed balls of radius R in B, then
∑
{µ(B′) : B′ ∈ B} ⩽

µ(B). Hence

#B µ(B)
(Cµ((c + 1)R))log2(2c)+1

⩽
∑

{µ(B′) : B′ ∈ B} ⩽ µ(B).

As a result, we have #B ⩽ Nµ(R, c).

Given a number ϵ ∈ (0, 1) and a family of closed balls B ⊂ 2X, for each k ∈ Z
we put

B(k, ϵ) := {B ∈ B : rB ∈ (ϵk+1, ϵk]}. (2.15)

Proposition 7. Let X = (X, d, µ) be a metric measure space. If µ has a uniformly
locally doubling property, then for each c ⩾ 1, ϵ ∈ (0, 1), and any disjoint family of
closed balls B ,

M({cB : B ∈ B(k, ϵ)}) ⩽ Nµ

(
ϵk+1,

2c

ϵ

)
for every k ∈ Z,

where the number Nµ(ϵk+1, 2c/ϵ) is the same as in Proposition 6.

Proof. Fix c ⩾ 1, ϵ ∈ (0, 1), a disjoint family of closed balls B and a number k ∈ Z.
Consider the family B̃(k, ϵ) consisting of the closed balls whose centres are exactly
the same as in the family B(k, ϵ) but of radius ϵk+1. Given a point x ∈ X, if x ∈ cB

for some B ∈ B(k, ϵ), then B ⊂ B2cϵk(x). Since the family B̃(k, ϵ) is disjoint, by
Proposition 6,

M({cB : B ∈ B(k, ϵ)}) ⩽ sup
x∈X

∑
B∈B(k,ϵ)

χcB(x)

⩽ sup
x∈X

#{B ∈ B̃(k, ϵ) : B ⊂ B2cϵk(x)} ⩽ Nµ

(
ϵk+1,

2c

ϵ

)
. (2.16)

The proof is complete.

The following proposition, which is an easy consequence of Proposition 6, is also
well known (we recall that all balls are assumed to be closed).

Proposition 8. Let (X, d, µ) be a metric measure space. Let the measure µ have
the uniformly locally doubling property. Then each ball B = Br(x) is a compact
subset of X.

We recall the notation (2.2) and (2.4).

Definition 3. Let X = (X, d) be a complete separable metric space and ϵ ∈ (0, 1).
We say that a partial order ⪯ on Z(X, ϵ) is admissible if the following properties
hold:

(PO1) if zk,α ⪯ zl,β for some k, l ∈ Z, then k ⩾ l;
(PO2) for any l ⩽ k and zk,α ∈ Zk(X, ϵ) there is a unique zl,β ∈ Zl(X, ϵ) such

that zk,α ⪯ zl,β ;
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(PO3) if k ∈ Z and zk,α ⪯ zk−1,β , then d(zk,α, zk−1,β) < ϵk−1;
(PO4) if k ∈ Z and d(zk,α, zk−1,β) < ϵk−1

2 , then zk,α ⪯ zk−1,β .

The following proposition was proved in [33].

Proposition 9. For any complete separable metric space X=(X, d) and any param-
eter ϵ ∈ (0, 1) there exists at least one admissible partial order on the set Z(X, ϵ).

According to one beautiful result of Christ [33], given a metric measure space
X = (X, d, µ), if the measure µ is globally doubling, then there exists a natural
analogue of Euclidean dyadic cubes in Rn. However, an analysis of the arguments
in [33] shows that, in fact, the uniformly locally doubling property of µ is sufficient
to establish the following result.

Proposition 10. Let X = (X, d) be a complete separable metric space. Let ϵ ∈
(0, 1/10], and let ⪯ be an admissible partial order on the set Z(X, ϵ). Given
a ∈ (0, 1/8], for each k ∈ Z, and every α ∈ Ak(X, ϵ) let the generalized dyadic
cube Qk,α in the space X be defined by the equality

Qk,α :=
⋃

zj,β⪯zk,α

int Baϵk(zj,β). (2.17)

Then the family {Qk,α} := {Qk,α : k ∈ Z, α ∈ Ak(X, ϵ)} is at most countable
and has the following properties:

(DQ1) for each k ∈ Z the equality X =
⋃

α∈Ak(X,ϵ) cl Qk,α holds;
(DQ2) if j ⩾ k , then either Qj,β ⊂ Qk,α or Qj,β ∩Qk,α = ∅;
(DQ3) if l < k and α ∈ Ak(X, ϵ), then there is a unique β ∈ Al(X, ϵ) such that

Qk,α ⊂ Ql,β ;
(DQ4) Bϵk/8(zk,α) ⊂ Qk,α ⊂ B2ϵk(zk,α) for each k ∈ Z and any α ∈ Ak(X, ϵ).
If, in addition, a measure µ on X has a uniformly locally doubling property, then
(DQ5) µ(∂Qk,α) = 0 for each k ∈ Z and every α ∈ Ak(X, ϵ).

Given ϵ ∈ (0, 1) and r > 0, we use the following important notation:

k(r) := kϵ(r) := max{k ∈ Z : r ⩽ ϵk}. (2.18)

Proposition 11. Let X = (X, d, µ) be a metric measure space, and let the measure
µ have the uniformly locally doubling property. Let ϵ ∈ (0, 1), k ∈ Z, and let {Qk,α}
be a family of generalized dyadic cubes. For each c ⩾ 1 there exists a constant
CD(c, k) > 0 depending only on Cµ((c + 1 + 4

ϵ )ϵk), ϵ, c and k such that, for each
x ∈ X and any r ∈ (0, ϵk],

#{α ∈ Ak(r)(X, ϵ) : cl Qk(r),α ∩Bcr(x) ̸= ∅} ⩽ CD(c, k). (2.19)

Proof. Note that if cl Qk(r),α ∩ Bcr(x), then by property (DQ4) in Proposition 10
we have the following inclusions

cl Qk(r),α ⊂
(

c +
4ϵk(r)

r

)
Br(x) ⊂

(
c +

4
ϵ

)
Br(x).

On the other hand, the closed balls 1
2Bϵk(r)(zk(r),α), α ∈ Ak(r)(X, ϵ), are disjoint.

As a result, an application of Proposition 6 proves the claim.
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Let X = (X, d, µ) be a metric measure space. In the case when µ has a uniformly
locally doubling property, given q ∈ (1,∞), α ⩾ 0 and R > 0, we define the local
fractional maximal function MR

q,α(f) of f ∈ Lloc
1 (X) by

MR
q,α(f)(x) := sup

r∈(0,R]

rα

(
–
∫

Br(x)

|f(y)|q dµ(y)
)1/q

, x ∈ X . (2.20)

It is well known that the doubling condition coupled with Vitali’s 5B-covering
lemma (see § 3.3 in [1]) allows one to prove the following proposition.

Proposition 12. Let (X, d, µ) be a metric measure space, and let the measure µ
have a uniformly locally doubling property. Let p ∈ (1,∞) and q ∈ (1, p). Then for
every R > 0 there is a constant C > 0 depending only on p, q and Cµ(R) such that

∥MR
q,0(f)∥Lp(X) ⩽ C∥f∥Lp(X) for all f ∈ Lp(X). (2.21)

Given q ∈ [1,∞), a metric measure space X = (X, d, µ) is said to support a weak
local (1, q)-Poincaré inequality if for each R > 0 there are constants C = C(R) > 0
and λ = λ(R) ⩾ 1 such that for any function f ∈ LIP(X) (we use the nota-
tion (2.12))

Eµ(f, Br(x)) ⩽ Cr

(
–
∫

Bλr(x)

(lip f(y))q dµ(y)
)1/q

for all (x, r)∈ X×(0, R].

(2.22)

Remark 4. Recall [3] that a function g ∈ B(X) is said to be an upper gradient of
a function f ∈ B(X) if for every absolutely continuous curve γ : [0, 1] → X,

|f(γ(1))− f(γ(0))| ⩽
∫ 1

0

g(γ(s))|γ̇s| ds,

where |γ̇s| is the so-called metric speed of γ at s ∈ [0, 1], that is,

|γ̇s| := lim
t→s

d(γ(s), γ(t))
|t− s|

.

Notice that in the literature inequality (2.22) is typically required to hold for
Borel representatives of f ∈ Lloc

1 (X) and their upper gradients. However, using
results of [3] it is not difficult to establish the equivalence of these two approaches.
In other words, inequality (2.22) holds true for all functions f ∈ LIP(X) if and only
if, for every Borel function f ∈ Lloc

1 (X) (recall Remark 2) and each upper gradient
g of f ,

Eµ(f, Br(x)) ⩽ Cr

(
–
∫

Bλr(x)

(g(y))q dµ(y)
)1/q

for all (x, r)∈ X×(0, R]. (2.23)

Here the positive constant C is the same as in (2.22).
If µ is doubling, then a similar result was established in Theorem 8.4.2 in [1].

In this paper we always work with a special class of metric measure spaces which
is commonly used in modern geometric analysis.
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Definition 4. Given q ∈ [1,∞), we say that a metric measure space X = (X, d, µ)
is q-admissible and write X ∈ Aq if the measure µ has a uniformly locally doubling
property and X supports a weak local (1, q)-Poincaré inequality.

The following powerful result due to Keith and Zhong will be useful for us (see
Ch. 12 in [1] for a detailed proof and historical remarks).

Proposition 13. Let p ∈ (1,∞) and X ∈ Ap . Then there is a parameter q ∈ [1, p)
such that X ∈ Aq .

Our assumptions about the space X under consideration are quite typical in
modern geometric analysis and imply some nice properties of X. In the beautiful
monograph [1] the reader can find a detailed exposition of the theory of metric
measure spaces satisfying the assumptions adopted in our paper. We have the
following result.

Proposition 14. Let X ∈ Ap for some p ∈ [1,∞). Then the space X has the
following properties:

(1) the metric space X = (X, d) is locally convex, that is, for each R > 0 there
exists a constant L(R) ⩾ 1 such that any two points x, y ∈ X for which d(x, y) ⩽ R
can be joined by a curve γx,y of length l(γx,y) ⩽ L(R) d(x, y);

(2) for each R > 0 there is a number Q = Q(R) > 0 such that the measure µ has
a relative volume decay property of order Q up to the scale R, that is, there exists
a constant C(R,Q) > 0 such that, for any balls B ⊂ B of radii 0 < rB ⩽ rB ⩽ R,(

r(B)
r(B)

)Q

⩽ C(R,Q)
µ(B)
µ(B)

; (2.24)

(3) for each R > 0 there is a number q = q(R) > 0 such that the measure
µ has a reverse relative volume decay property of order q up to the scale R, that
is, there exists a constant C(R,Q) > 0 such that, for any balls B ⊂ B of radii
0 < rB ⩽ rB ⩽ R,

µ(B)
µ(B)

⩽ C(R, q)
(

r(B)
r(B)

)q

. (2.25)

Proof. To prove (1) it is sufficient to repeat, with appropriate technical modifica-
tions, the arguments in the proof of Theorem 8.3.2 in [1] and take Remark 4 into
account.

To establish (2) one needs to modify the arguments in the proof of Lemma 8.1.13
in [1].

To prove (3) it is sufficient to use the arguments in Remark 8.1.15 in [1].

Having Proposition 14 at our disposal we formulate the following definition.

Definition 5. Let X = (X, d, µ) be a metric measure space, and let µ have a uni-
formly locally doubling property. Given R > 0, we let Qµ(R) denote the set
of all Q > 0 for each of which (2.24) holds. Furthermore, we set Q

µ
(R) :=

inf{Q : Q ∈ Qµ(R)}. Similarly, we denote by qµ(R) the set of all q > 0 for which
(2.25) holds. We set qµ(R) := sup{q : q ∈ qµ(R)}.
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Remark 5. It is clear that qµ(R) ⩽ Q
µ
(R) for any R > 0. Unfortunately, given

R > 0, in many cases there is a ‘gap’ between these parameters, that is, qµ(R) can
be much smaller than Q

µ
(R). The reader can find interesting examples illustrating

this phenomenon in [34].

It is well known that in Euclidean space Rn, n ∈ N, the d-Hausdorff measures
provide a useful tool for measuring some Ln-negligible sets. Clearly, from Remark 5
it follows that the dependence of µ(Br(x)) on r is not powerlike in general. By this
reason it is natural to construct codimensional substitutions for the usual Hausdorff
contents and measures. More precisely, following [12], [11], [14], [15] and [17], given
an m.m.s. X = (X, d, µ) with locally uniformly doubling measure µ and a parameter
θ ⩾ 0, for δ ∈ (0,∞], for each set E ⊂ X we put

Hθ,δ(E) := inf
{∑ µ(Bri(xi))

(ri)θ
: E ⊂

⋃
Bri(xi) and ri < δ

}
, (2.26)

where the infimum is taken over all at most countable coverings of E by closed
balls {Bri(xi)} of radii ri ∈ (0, δ). Given δ > 0, the mapping Hθ,δ : 2X → [0, +∞]
is called the θ-codimensional Hausdorff content at the scale of δ. We define the
θ-codimensional Hausdorff measure by the equality

Hθ(E) := lim
δ→0

Hθ,δ(E). (2.27)

Remark 6. It is clear that, given θ ∈ [0, Q
µ
(R)), R > 0, the equality Hθ(∅) = 0

follows from the existence of a sequence of (closed) balls {Bi} := {Bri
(xi)}∞i=1

of radii ri → 0 as i → ∞, such that µ(Bi)/(ri)θ → 0, as i → ∞. As a result, by
Theorem 4.2 in [35], in this case Hθ : 2X → [0, +∞] is a Borel regular outer measure
on X. Clearly, the inequality 0 ⩽ θ < qµ is sufficient for this. Unfortunately, this
condition is far from necessary.

The problem of finding an appropriate range of parameters for which Hθ is
a nontrivial outer measure (that is, there exist nonempty subsets of X with finite
positive measure) appears to be quite subtle and depends on the particular struc-
ture of a given metric measure space. The situation is completely transparent for
so-called Ahlfors Q-regular spaces, that is, when µ(Br(x)) ≈ rQ, r > 0, x ∈ X,
for some Q ⩾ 0 (independent on x and r). In this case Hθ is a nontrivial outer
measure in the full range of θ ∈ [0, Q). In the case when θ = Q the measure HQ is
a counting measure and HQ(E) = +∞ for any infinite set E.

In what follows we use the following result from [11] (see Lemma 3.10 and the
discussion after the lemma).

Proposition 15. Let f ∈ Lloc
1 (X), suppose t > 0, and set

Λt :=
{

x ∈ X: lim
r→0

rt –
∫

Br(x)

|f(y)| dµ(y) > 0
}

.

Then Ht(Λt) = 0.
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There is a special class of m.m.s. for which the behaviour of µ(Br(x)) is, roughly
speaking, expressed by the function rQ for some Q > 0. The detailed discussion
of such spaces is beyond the scope of this paper. We mention only [7], [17], [36]
and [37], where the reader can find interesting results related to such spaces.

Definition 6. Given Q > 0, we say that a metric measure space X = (X, d, µ) is
Ahlfors Q-regular if there exist constants cµ,1, cµ,2 > 0 such that

cµ,1r
Q ⩽ µ(Br(x)) ⩽ cµ,2r

Q for all (x, r) ∈ X×[0, diam X).

2.2. Sobolev calculus on metric measure spaces. As mentioned in § 1, given
an m.m.s. X = (X, d, µ) and a parameter p ∈ (1,∞), there are at least five different
approaches to the definition of Sobolev-type spaces on X. In the literature the
corresponding spaces are as follows: the Korevaar-Schoen-Sobolev space KS1

p(X)
[5], [9], the Hajlasz-Sobolev space M1

p (X) [6], the Cheeger-Sobolev space Ch1
p(X) [7],

the Newtonian-Sobolev space N1
p (X) [8] and the Sobolev space W 1

p (X) [4], [3], [38].
The reader can also find some useful information relating to these spaces in Ch. 10
of [1], the lecture notes [2] and [39].

Remark 7. Given an arbitrary m.m.s. X = (X, d, µ) and a parameter p ∈ (1,∞),
there are canonical isometric isomorphisms between Ch1

p(X), N1
p (X) and W 1

p (X) [3].
Furthermore, if X ∈ Ap for some p ∈ (1,∞), then it follows from the results of [3]
and [9] that KS1

p(X) = M1
p (X) = Ch1

p(X) = N1
p (X) = W 1

p (X), where equalities
should be interpreted in the sense of the existence of canonical (not necessarily
isometric in general!) isomorphisms, the corresponding norms being equivalent.
In all main results of our paper we always assume that X ∈ Ap for some p ∈ (1,∞).
Hence, when dealing with Sobolev spaces, without loss of generality one can identify
(in an appropriate sense) different Sobolev spaces and use the symbol W 1

p (X) to
denote each of them. However, it will be convenient for us to use Cheeger’s approach
elaborated originally in [7] and modified in [3].

Keeping in mind Remark 7 we recall the approach of Cheeger to Sobolev spaces
in the Lipschitz interpretation of [3].

Definition 7. Given p ∈ (1,∞), the Sobolev space W 1
p (X) is a linear space con-

sisting of all F ∈ Lp(X) satisfying Chp(F ) < +∞, where Chp(F ) is the Cheeger
p-energy of F defined by

Chp(F ) := inf
{

lim
n→∞

∫
X

(lip Fn)p dµ : {Fn} ⊂ LIP(X), Fn → F in Lp(X)
}

.

The norm in the space W 1
p (X) is defined by

∥F∥W 1
p (X) := ∥F∥Lp(X) + (Chp(F ))1/p.

Remark 8. It is well known that for each p ∈ (1,∞) and any F ∈ W 1
p (X) there is

a well-defined nonnegative function |∇F |∗,p ∈ Lp(X) (in fact, a µ-equivalence class
of functions), called the minimal p-relaxed slope of F , which, if X is a smooth Rie-
mannian manifold, coincides µ-almost everywhere with the modulus of the distribu-
tional differential of F . Furthermore, Chp(F ) = ∥|∇F |∗,p∥Lp(X) (see [3]). However,
it follows from the results of [3] and [40] that, by contrast with the classical settings,
the minimal p-relaxed slope can depend on p.
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The following assertion will be important in the proofs of some key estimates
in § 10.

Proposition 16. Let R > 0, q ∈ (1,∞), p ⩾ q and X ∈ Aq . Then, for each
F ∈ W 1

p (X),

Eµ(F,Br(x)) ⩽ Cr

(
–
∫

Bλr(x)

(|∇F |∗,p)q dµ(y)
)1/q

for all (x, r) ∈ X×(0, R],

(2.28)
where C = C(R) and λ = λ(R) are the same constants as in (2.22).

Proof. According to the main results of [3], given F ∈ W 1
p (X), there is a sequence

{Fn} ⊂ LIP(X) such that Fn → F as n → ∞ in the Lp(X)-sense and lip Fn →
|∇F |∗,p as n → ∞ in the Lp(X)-sense. Hence, taking into account that Lp(X) ⊂
Lloc

t (X) for all t ∈ [1, p], we use (2.22) and pass to the limit as n →∞. This gives
(2.28) and completes the proof.

It was shown in [38] that under mild assumptions on an m.m.s. X = (X, d, µ), the
Sobolev space W 1

p (X) is reflexive for every p ∈ (1,∞). In particular, we have
the following result.

Proposition 17. Let p ∈ (1,∞) and X ∈ Ap . Then the Sobolev space W 1
p (X) is

reflexive.

Remark 9. In fact, it was assumed in [38] that the metric space (X, d) is glob-
ally metrically doubling. However, a careful analysis of the proof shows that the
uniformly locally doubling property of the measure µ is sufficient.

2.3. Traces of Sobolev spaces. We assume that the reader is familiar with the
notion and basic properties of so-called Sobolev p-capacities Cp, p ∈ (1,∞) (see
§§ 7.2 and 9.2 in [1] and § 1.4 in [10] for details). In fact, the main properties of
p-capacities sufficient for our purposes are contained in the following proposition.

Proposition 18. Let p ∈ (1,∞) and X ∈ Ap . Then the following properties hold:
(1) for each F ∈ W 1

p (X) there is a set EF with Cp(EF ) = 0 such that

F (x) := lim
r→0

–
∫

Br(x)

F (y) dµ(y) ∈ R for all x ∈ X \EF , (2.29)

and, furthermore, each x ∈ X \EF is a µ-Lebesgue point of F ;
(2) if θ ∈ [0, p), then Cp(E) = 0 implies that Hθ(E) = 0 for any Borel set E ⊂ X.

Proof. To prove (1) one should repeat almost verbatim the arguments from the
proof of Theorem 9.2.8 in [1] and note that the additional requirement Q ⩾ 1 was
used only at the end of the proof to establish higher-order integrability.

Property (2) was proved in the recent paper [11] (see Proposition 3.11 therein).

Given a metric measure space (X, d, µ) and a parameter p ∈ (1,∞), a measure
m on X is said to be absolutely continuous with respect to Sobolev p-capacity Cp if,
for any Borel set E ⊂ X, the equality Cp(E) = 0 implies the equality m(E) = 0.
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Definition 8. Let p ∈ (1,∞) and X ∈ Ap. Let S ⊂ X be a Borel set such that
Cp(S) > 0. Given an element F ∈ W 1

p (X), we define the p-sharp trace F |S of F to
the set S by the equality

F |S := {f ∈ B(S) : Cp({f(x) ̸= F (x)}) = 0},

where F is the representative of F defined in (2.29). Furthermore, we define the
p-sharp trace space of the space W 1

p (X) by the formula

W 1
p (X)|S := {F |S : F ∈ W 1

p (X)} (2.30)

and equip this space with the usual quotient space norm, that is, given f ∈
W 1

p (X)|S , we set

∥f∥W 1
p (X)|S := inf{∥F∥W 1

p (X) : f = F |S}.

As already mentioned in § 1, sometimes it is useful to work with a relaxed ver-
sion of the p-sharp trace space of the Sobolev W 1

p (X)-space. This motivates us to
introduce the following concept.

Definition 9. Let p ∈ (1,∞) and X ∈ Ap. Let S ⊂ X be a Borel set such that
Cp(S) > 0. Let m be a nonzero measure on X which is absolutely continuous with
respect to Cp and such that S ⊂ supp m. Given an element F ∈ W 1

p (X), we define
the m-trace F |mS of F to the set S as the m-equivalence class of its p-sharp trace.
More precisely,

F |mS := {f : S → R : m({f(x) ̸= F (x)}) = 0},

where F is the representative of F defined in (2.29). Furthermore, we define the
m-trace space of the space W 1

p (X) by the formula

W 1
p (X)|mS := {F |mS : F ∈ W 1

p (X)}

and equip this space with the quotient space norm, that is, given f ∈ W 1
p (X)|mS ,

we set
∥f∥W 1

p (X) := inf{∥F∥W 1
p (X) : f = F |mS }. (2.31)

Having different notions of trace spaces at our disposal, it is natural to define
the corresponding trace and extension operators.

Definition 10. Let p ∈ (1,∞) and X ∈ Ap. Let S ⊂ X be a Borel set such that
Cp(S) > 0. Let m be a nonzero measure on X which is absolutely continuous with
respect to Cp and such that S ⊂ supp m. We define the p-sharp trace operator by
the formula

Tr |S(F ) = F |S , F ∈ W 1
p (X). (2.32)

Furthermore, we define the m-trace operator by the equality

Tr |mS (F ) = F |mS , F ∈ W 1
p (X). (2.33)

Remark 10. Let us compare (2.32) and (2.33). If we identify functions that differ on
a set of p-capacity zero, then one can write Tr |mS = Im ◦Tr |S . This formula is correct
because m is absolutely continuous with respect to Cp according to our assumptions
and, thus, if f1, f2 ∈ B(S)∩F |S for some F ∈ W 1

p (X), then Im(f1) = Im(f2) = F |mS .
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Definition 11. Let p ∈ (1,∞) and X ∈ Ap. Let S ⊂ X be a Borel set such
that Cp(S) > 0. We say that a map ExtS := ExtS,p : W 1

p (X)|S → W 1
p (X) is

a p-sharp extension operator if it is a right inverse of Tr |S , and we say that a map
ExtS,m : W 1

p (X)|mS →W 1
p (X) is an m-extension operator if it is a right inverse of Tr |mS .

Remark 11. Typically, the index p will be fixed in the main theorems of the paper.
For this reason we omit it from the notation for the p-sharp trace operator and
the p-sharp extension operator. In contrast to this we keep the symbol m in the
notation of the m-trace operator and the m-extension operator. Indeed, generally
speaking, given a closed set S ⊂ X, there exists an infinite family of different
measures whose supports coincide with the set S. As a result, by varying measures
we obtain a different accuracy in the description of the trace to different ‘pieces of
the set S’.

Remark 12. In view of Definitions 8–10 it is clear that the p-sharp trace operator
and the m-trace operator are linear and bounded.

§ 3. Relaxing the doubling property

Given a metric measure space X = (X, d, µ), in the next sections we work fre-
quently with measures m on X that fail to have the uniformly locally doubling
property (2.13). However, given a measure m on X, in some cases it is sufficient to
have some sort of the uniformly doubling property only for a fixed family of balls.
This motivates us to introduce the following concept.

Definition 12. Given a locally finite measure m on a metric measure space X =
(X, d, µ), we say that m has the uniformly weak asymptotically doubling property if,
for each c > 0,

Cm(c) := lim
R→+0

sup
x∈supp m

inf
r∈(0,R]

m(Bcr(x))
m(Br(x))

< +∞. (3.1)

Remark 13. The word ‘weak’ was used in Definition 12 because in [1] one can find
the notion of uniformly asymptotically doubling property, which means that, for
each c > 0,

Cm(c) := lim
R→+0

sup
x∈supp m

sup
r∈(0,R]

m(Bcr(x))
m(Br(x))

< +∞.

Typically, in the present paper we deal with measures that cannot degenerate
too rapidly.

Definition 13. We say that a locally finite measure m on a metric measure space,
X = (X, d, µ) is weakly noncollapsed if

Cm
µ := inf

x∈supp m
lim
r→0

m(Br(x))
µ(Br(x))

> 0. (3.2)

It is well known that, given a measure m on the Euclidean space (Rn, ∥ · ∥2),
there are a lot of ‘doubling balls’. This fact was mentioned in [41] without a proof.
We are grateful to D.M. Stolyarov who kindly shared with us the key idea of
that proof. Using a similar idea we establish the following simple result, which
is quite important in what follows. We recall property (2) in Proposition 14 and
Definition 5.
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Lemma 2. Let X = (X, d, µ) be a metric measure space and let the measure µ have
the uniformly locally doubling property. If a measure m on X is weakly noncollapsed,
then it satisfies the uniformly weak asymptotically doubling property. Furthermore,
for all c > 1 and Q ∈ Qµ(1),

Cm(c) ⩽ 2([log2 c]+1)Q. (3.3)

Proof. We fix c > 1 and assume for a contradiction that Cm(c) > 2([log2 c]+1)Q.
We fix k = [log2 c] + 1 and M ∈ (2kQ, Cm(c)). It is clear that there exist a point
x ∈ supp m and a number r = r(M, c) ∈ (0, 1) such that

m(Bcr(x))
m(Br(x))

> M for all r ∈ (0, r]. (3.4)

By Definition 13 we clearly have

lim
r→0

µ(Br(x))
m(Br(x))

⩽
1

Cm
µ

. (3.5)

Hence, combining (2.24) with (3.4) and (3.5), for all sufficiently large i ∈ N
we obtain

2−Qki ⩽ C(1, Q)
µ(Br/2ik(x))

µ(Br(x))
= C(1, Q)

µ(Br/2ik(x))
m(Br/2ik(x))

m(Br(x))
µ(Br(x))

m(Br/2ik(x))
m(Br(x))

⩽
2C(1, Q)

Cm
µ

m(Br(x))
µ(Br(x))

(
1
M

)i

.

However, for sufficiently large i ∈ N the above chain of inequalities leads to a con-
tradiction with the choice of M .

Let X = (X, d, µ) be a metric measure space. We recall the notation (2.18).
Given a sequence of locally finite measures {mk} := {mk}∞k=0 on X, a parameter
ϵ ∈ (0, 1), and a Borel set E ⊂

⋂∞
k=0 supp mk, for each x ∈ E we introduce the

lower and upper ({mk}, ϵ)-densities of E at x by setting

D
{mk}
E (x, ϵ) := lim

r→0

mkϵ(r)(Br(x) ∩ E)
mkϵ(r)(Br(x))

and D
{mk}
E (x, ϵ) := lim

r→0

mkϵ(r)(Br(x) ∩ E)
mkϵ(r)(Br(x))

.

(3.6)
We say that x ∈ E is an ({mk}, ϵ)-density point of E if

D
{mk}
E (x, ϵ) = D

{mk}
E (x, ϵ) = 1.

It is clear that if there is a measure m on X such that mk = m for all k ∈ N0, then
we obtain the standard lower and upper m-densities of E at x, which are denoted
by Dm

E(x) and D
m

E(x), respectively (in this case the parameter ϵ is irrelevant and
we omit it from our notation).

It is well known that if m is a locally uniformly doubling measure on X, then
m-almost every point x ∈ E is an m-density point of E. Unfortunately, this is not
the case if m fails to have the locally uniformly doubling property. However, the
following result holds.
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Lemma 3. Let X = (X, d, µ) be a metric measure space with uniformly locally
doubling measure µ. Let m be a weakly noncollapsed measure on X. Then for each
Borel set E ⊂ X, any parameter c ⩾ 1 and m-almost every point x ∈ E there is
a sequence {rl(x)} decreasing to zero such that

lim
l→∞

m(Bmax{c,5}rl(x)(x))
m(Brl(x)(x))

⩽ N and lim
l→∞

m(Brl(x)(x) ∩ E)
m(Brl(x)(x))

⩾
1

2N
, (3.7)

where N = Cm(5 max{c, 5}). In particular, D
m

E(x) > 0 for m-almost every x ∈ E .

Proof. By Lemma 2, for every point x ∈ E there exists a sequence rl(x) ↓ 0
satisfying

m(Bmax{c,5}rl(x)(x))
m(Brl(x)/5(x))

⩽ Cm(5 max{c, 5}) = N for all l ∈ N. (3.8)

Given n ∈ N, we consider the set

Gn :=
{

x ∈ E : lim
l→∞

m(Brl(x)(x) ∩ E)
m(Brl(x)(x))

<
1
n

}
. (3.9)

We show that m(Gn) = 0 for all n ∈ N ∩ (2N, +∞). Without loss of generality we
assume that all sets Gn, n ∈ N are bounded. Since the measure m is locally finite,
in the rest of the proof we may assume that m(Gn) < +∞ for all n ∈ N. Applying
the 5B-covering lemma (see p. 60 in [1] for details) and taking the Borel regularity
of the measure m into account, for each n ∈ N we obtain a family of closed balls
Bn = {Brli

(xi)(xi)} such that:

(1) the family B̃n := { 1
5B : B ∈ Bn} is disjoint;

(2) Gn ⊂
⋃
{B : B ∈ Bn} ⊂ Uεn(Gn) for some εn > 0;

(3) |m(Uεn
(Gn))−m(Gn)| < 1

2n ;
(4) m(B) ⩽ 3

2Nm( 1
5B) for all B ∈ Bn;

(5) m(B ∩ E) < 1
nm(B) for all B ∈ Bn.

We fix an arbitrary n > 2N and assume that m(Gn) > 0 (note that if Gn is not
m-measurable, then we consider m as an outer measure). Hence, taking ε > 0 small
enough, from the above properties (1)–(5) we deduce

m(Gn) ⩽
∑

{m(B ∩Gn) : B ∈ Bn} ⩽
∑

{m(B ∩ E) : B ∈ Bn}

⩽
3N

2n

∑{
m

(
1
5
B

)
: B ∈ Bn

}
⩽

3N

2n
m(Uεn(Gn)) ⩽

2N

n
m(Gn).

This contradicts the assumption m(Gn) > 0.
As a result, we obtain m(Gn) = 0 for every n > 2N and complete the proof.

Now we introduce a new concept, which can be looked upon as a natural gen-
eralization of the notion of a Lebesgue point of a locally integrable function. This
concept will be extremely useful in the analysis of the local behaviour of the traces
of Sobolev functions. We recall (2.18).
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Definition 14. Let X = (X, d, µ) be a metric measure space. Let {mk} = {mk}∞k=0

be a sequence of measures on X, and let ϵ ∈ (0, 1). Given f ∈ B(X) such that
[f ]mk

∈ Lloc
1 (mk), k ∈ N0, we say that x ∈ ∩∞k=0 supp mk is an ({mk}, ϵ)-Lebesgue

point of f if

lim
r→0

–
∫

Br(x)

|f(x)− f(y)| dmkϵ(r)(y) = 0. (3.10)

We denote the set of all ({mk}, ϵ)-Lebesgue points of f by R{mk},ϵ(f).

If there is a measure m on X such that mk = m for all k ∈ N0, then an
({mk}, ϵ)-Lebesgue point of f is called an m-Lebesgue point of f (in this case the
parameter ϵ is irrelevant, and we omit it from the notation).

§ 4. Lower θ-codimensional content regular sets

Throughout this section, we fix a metric measure space X = (X, d, µ) with uni-
formly locally doubling measure µ. We also recall that all balls are assumed to be
closed.

The following concept was actively used in [12], [14] and [15], where problems
similar to Problem 2 were considered. We recall (2.27).

Definition 15. Given θ ⩾ 0, a closed set S ⊂ X is said to be codimension θ
Ahlfors-David regular if there exist constants cθ,1(S), cθ,2(S) > 0 such that, for
every pair (x, r) ∈ S × (0, 1],

cθ,1(S)
µ(Br(x))

rθ
⩽ Hθ(Br(x) ∩ S) ⩽ cθ,2(S)

µ(Br(x))
rθ

. (4.1)

The class of all closed codimension θ Ahlfors-David regular sets is denoted by
ADRθ(X).

The following proposition shows that the scale of 1 in (4.1) is not crucial.
The proof is quite simple and follows easily from Proposition 6. The details are left
to the reader.

Proposition 19. Let θ ⩾ 0 and S ∈ ADRθ(X). Then for each R ⩾ 1 there
exist constants cθ,1(S, R) > 0 and cθ,2(S, R) > 0 such that, for every pair (x, r) ∈
S × (0, R],

cθ,1(S, R)
µ(Br(x))

rθ
⩽ Hθ(Br(x) ∩ S) ⩽ cθ,2(S, R)

µ(Br(x))
rθ

. (4.2)

Remark 14. In the case when θ = 0 sets S ∈ ADR0(X) were called regular sets
in [18].

Now we introduce a natural generalization of the classADRθ(X). We recall (2.26).

Definition 16. Given θ ⩾ 0, we say that a set S ⊂ X is lower θ-codimensional
content regular if there exists a constant λθ(S) ∈ (0, 1] such that, for every pair
(x, r) ∈ S × (0, 1],

λθ(S)
µ(Br(x))

rθ
⩽ Hθ,r(Br(x) ∩ S). (4.3)

The class of lower θ-codimensional content regular sets is denoted by LCRθ(X).
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Remark 15. Let n ∈ N and X = (Rn, ∥·∥,Ln). It is easy to see that, given θ ∈ [0, n],
a set S lies in LCRθ(X) if and only if

Hθ,∞(Br(x) ∩ S) ⩾ λθ(S)
Ln(Br(x))

rθ
for all r ∈ (0, 1]. (4.4)

In other words, in the classical Euclidean settings one can replace Hθ,r by Hθ,∞.
Consequently, a set S lies in LCRθ(Rn) if and only if it is an (n − θ)-thick set
in the sense of Rychkov [16]. Furthermore, d-thick sets, d ∈ [0, n], were actively
studied in [25] and [26], where they were called d-lower content regular. In general
metric measure spaces the replacement of Hθ,r by Hθ,∞ in (4.3) can lead to a more
narrow class of sets. The reason for this phenomenon is a ‘possible gap’ between
parameters qµ(R) and Q

µ
(R) which we mentioned in Remark 5.

The following lemma was proved in [21] in the particular case of X = (Rn,
∥ · ∥2,Ln). The proof in the general case is similar. We present the details for the
completeness of our exposition.

Lemma 4. Given θ ⩾ 0, ADRθ(X) ⊂ LCRθ(X).

Proof. Fix θ ⩾ 0 and S ∈ ADRθ(X). Assume that S ̸= ∅. Consider an arbitrary
closed ball Br(x) with x ∈ S and r ∈ (0, 1]. Let B be an at most countable family
of closed balls such that Br(x) ∩ S ⊂

⋃
{B : B ∈ B}, rB ∈ (0, r) for all B ∈ B, and∑{

µ(B)
(rB)θ

: B ∈ B
}

⩽ 2Hθ,r(Br(x) ∩ S). (4.5)

Without loss of generality we may assume that for each ball B ∈ B we have
B ∩ S ̸= ∅. For each B ∈ B we choose an arbitrary point x̃B ∈ B ∩S and consider
the ball B̃ of radius 2rB centred at x̃B . Clearly, B ∩ S ⊂ B̃ ∩ S and B̃ ⊂ 4B for
all B ∈ B. Hence, using (4.5), the subadditivity property of Hθ and Proposition 19
we obtain the required estimate

2Hθ,r(Br(x) ∩ S) ⩾
1

(Cµ(2))2
∑{

µ(B̃)
(rB̃)θ

: B ∈ B
}

⩾
1

cθ,2(S, 2)(Cµ(2))2
∑

{Hθ(B̃ ∩ S) : B ∈ B}

⩾
1

cθ,2(S, 2)(Cµ(2))2
Hθ(Br(x) ∩ S) ⩾

cθ,1(S, 1)
cθ,2(S, 2)(Cµ(2))2

µ(Br(x))
rθ

.

The proof is complete.

The following example demonstrates that if X is sufficiently regular, then the
classes LCRθ(X), θ ⩾ 0, are quite broad. We recall Definition 6.

Example 1. Assume that the space X is Ahlfors Q-regular for some Q > 0. We fix
θ ∈ [max{0, Q− 1}, Q) and show that any path-connected set S ⊂ X consisting of
more than one point belongs to the class LCRθ(X). Indeed, fix x ∈ S and r ∈ (0, 1]
and consider two cases. In the first case S ⊂ Br(x). Then (clearly, Hθ,1(S) > 0)

Hθ,r(Br(x) ∩ S) = Hθ,r(S) ⩾ Hθ,1(S)rQ−θ ⩾
Hθ,1(S)

cµ,2

µ(Br(x))
rθ

. (4.6)
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In the second case there is a point y ∈ S \ Br(x). Hence there exists a curve γx,y

joining x and y. Let B be an at most countable family of closed balls such that
Br(x) ∩ S ⊂

⋃
{B : B ∈ B} and rB < r for all B ∈ B. Consider the family B :=

{int(2B) : B ∈ B}. By Proposition 8 the set γx,y ∩Br(x) is compact. Furthermore,
it is not difficult to see that there is a path-connected component Γ ⊂ γx,y ∩Br(x)
such that diam Γ ⩾ r. Hence there is a finite family {Bi}N

i=1 ⊂ B, N ∈ N, such that
Γ ⊂

⋃N
i=1 int 2Bi and for every x, y ∈ Γ there is a subfamily {Bij

}Ñ
j=1 ⊂ {Bi}N

i=1

with Ñ ⩽ N , ij ∈ {1, . . . , N} such that x ∈ Γ ∩ int 2Bi1 , y ∈ Γ ∩ int 2Bi
Ñ

and
Γ ∩ int 2Bij

∩ int 2Bij+1 ̸= ∅ for all j ∈ {1, . . . , Ñ − 1}. Then from the triangle
inequality we deduce the crucial estimate

r ⩽ diam(Γ) ⩽
N∑

i=1

diam(Γ ∩ int 2Bi) ⩽
N∑

i=1

diam(int 2Bi) ⩽
N∑

i=1

4rBi
.

As a result, since Q− θ ∈ (0, 1], we obtain

∑
B∈B

µ(B)
(rB)θ

⩾ cµ,1

∑
B∈B

(rB)Q−θ ⩾ cµ,1

( N∑
i=1

rBi

)Q−θ

⩾ cµ,1

(
r

4

)Q−θ

. (4.7)

Taking the infimum in (4.7) over all families B we obtain

Hθ,r(Br(x) ∩ S) ⩾ cµ,1

(
r

4

)Q−θ

⩾
cµ,1

4Q−θcµ,2

µ(Br(x))
rθ

. (4.8)

Finally, we conclude the discussion by combining (4.6) and (4.8).

Remark 16. Even in the case of X = (R2, ∥ · ∥,L2) it is clear that generic path-
connected sets S ⊂ X can fail to satisfy the codimension 1 Ahlfors-David regularity
condition. Furthermore, it was shown in [42] that relevant examples can be obtained
as the graphs of locally Lipschitz functions. Coupled with Lemma 4, this shows
that, given θ > 0, the family ADRθ(X) can be a very poor subfamily of LCRθ(X)
in general.

Example 2. Assume that X is Ahlfors Q-regular for some Q > 0. Then each
nonempty set S ⊂ X belongs to LCRθ(X) for every θ ⩾ Q. Indeed, fix x ∈ S,
r ∈ (0, 1] and an at most countable family of balls {Bi} of radii ri < r that cover
Br(x) ∩ S. Then∑ µ(Bi)

(ri)θ
⩾ cµ,1

∑
(ri)Q−θ ⩾ cµ,1r

Q−θ ⩾
cµ,1

cµ,2

µ(Br(x))
rθ

.

Taking the infimum over all such coverings we obtain the required result.

§ 5. θ-regular sequences of measures

Throughout this section we fix p ∈ (1,∞) and an m.m.s. X = (X, d, µ) ∈ Ap.
We recall the definitions of the classes Mθ(S) and Mstr

θ (S) given in § 1. We also
recall the notation Br(x) in § 2. It is clear that there are smallest constants for
which conditions (M2) and (M4) hold. We denote them by C{mk},1 and C{mk},3,
respectively. In a similar way, there is a greatest constant for which (M3) holds.
We denote it by C{mk},2. We use the symbol C{mk} to denote the set of these
constants, that is, C{mk} := {C{mk},1, C{mk},2, C{mk},3}.
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5.1. Elementary properties. The following fact is an immediate consequence
of (1.6) and the definition of the set functions Hθ, θ ⩾ 0. We omit an elementary
proof.

Proposition 20. Let θ ⩾ 0 and {mk} ∈ Mθ(S) for some closed set S ⊂ X. Then
for each k ∈ N0 the measure mk is absolutely continuous with respect to Hθ . Further-
more, for any Borel set E ⊂ S , for each k ∈ N0 , we have mk(E) ⩽ C{mk},1Hθ(E).

Given a sequence {mk} ∈ Mθ(S), it is natural to ask whether the measures mk,
k ∈ N0, have the doubling property. Unfortunately, this is not the case in gen-
eral. Nevertheless, we have at our disposal the following important result (we put
Bk(x) := Bϵk(x) for all x ∈ X and k ∈ Z).

Theorem 5. Let θ ⩾ 0, let the closed set S belong to LCRθ(X), and let {mk} ∈
Mθ(S). Then for each c ⩾ 1 there is a constant C > 0 depending on c, C{mk} and
Cµ(2c) such that, for each k ∈ N0 and any y ∈ S ,

1
C

mk(Bk(y)) ⩽ mk

(
1
c
Bk(y)

)
⩽ mk(cBk(y)) ⩽ Cmk(Bk(y)). (5.1)

Proof. We set k := min{k ∈ Z : ϵk < 1
c} and consider the upper and lower bounds

in (5.1) separately.
To prove the upper bound we consider two cases. In the case when k ∈ {0, . . . , k},

a combination of (1.6), (1.8) and the uniformly locally doubling property of µ gives
the existence of a constant C > 0 such that (we recall (2.3) and take Proposition 7
into account)

mk(cBk(y)) ⩽ Cm0(cBk(y)) ⩽ C
∑

B∈Bk(X,ϵ)

m0(B ∩ cBk(y))

⩽ C
∑

B∈Bk(X,ϵ)
B∩cBk(y)̸=∅

µ(B) ⩽ Cµ((c + 2)Bk(y)) ⩽ Cµ(Bk(y)). (5.2)

In the case when k > k, using (1.6)–(1.8), and the uniformly locally doubling
property of µ we obtain

mk(cBk(y)) ⩽ Cmk−k(cBk(y)) ⩽ Cmk−k(Bk−k(y))

⩽ C
µ(Bk−k(y))

ϵk−k
⩽ C

µ(Bk(y))
ϵk

⩽ Cmk(Bk(y)). (5.3)

Combining (5.2) and (5.3) we deduce the required upper bound in (5.1).
Now we fix k ∈ N0. To prove the lower bound in (5.1), an appeal to (1.6)–(1.8)

and the uniformly locally doubling property of µ gives us the required estimate

mk

(
1
c
Bk(y)

)
⩾ Cmk+k

(
1
c
Bk(y)

)
⩾ Cmk+k(Bk+k(y))

⩾ C
µ(Bk+k(y))

ϵk+k
⩾ C

µ(Bk(y))
ϵk

⩾ Cmk(Bk(y)). (5.4)

The proof is complete.
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Theorem 5 leads to the following useful corollary (we put Bk(x) := Bϵk(x)).

Proposition 21. Let θ ⩾ 0, let the closed set S belong to LCRθ(X), and let
{mk} ∈ Mθ(S). Then for each c ⩾ 1 there exists a constant C > 0 such that
for each k ∈ N0 , ∫

cBk(z)

1
mk(cBk(y))

dmk(y) ⩽ C for all z ∈ S. (5.5)

Proof. Fix k ∈ N0 and z ∈ S. Note that 2cBk(y) ⊃ cBk(z) for all y ∈ cBk(z).
Hence by Theorem 5,

sup
y∈cBk(z)

1
mk(cBk(y))

⩽ sup
y∈cBk(z)

C

mk(2cBk(y))
⩽

C

mk(cBk(z))
.

Consequently,∫
cBk(z)

1
mk(cBk(y))

dmk(y) ⩽ C

∫
cBk(z)

1
mk(cBk(z))

dmk(y) = C. (5.6)

The proof is complete.

5.2. Comparison of different classes of measures. Now given a closed set
S ⊂ X, we formulate a simple condition that is sufficient for the equality of the
classes Mstr

θ (S) and Mθ(S). We recall Definition 5 and Remark 6. We also recall
the notation (2.18) and (3.6) and put k(r) := kϵ(r).

Theorem 6. Let θ ∈ [0, Q
µ
(1)), and let S ⊂ X be a closed set such that Hθ(S) ∈

(0, +∞). Then
Mstr

θ (S) = Mθ(S).

Proof. Clearly, it is sufficient to show that Mθ(S) ⊂ Mstr
θ (S). Assume that

Mθ(S) ̸= ∅ and fix an arbitrary sequence of measures {mk} ∈ Mθ(S). We also
fix a Borel set E ⊂ S and verify (1.9). We put N := {x ∈ E : D

{mk}
E (x, ϵ) = 0}.

Since θ ∈ [0, Q
µ
(1)), by Remark 6 the set function Hθ⌊S is a finite measure on X.

Furthermore, m0(S) < +∞ by Proposition 20. If m0(N) > 0, then using Egorov’s
theorem, given ε > 0, we find a compact set Kε ⊂ N and a number δ(ε) > 0 such
that m0(N \Kε) < ε and

sup
x∈Kε

sup
r<δ(ε)

mk(r)(E ∩Br(x))
mk(r)(Br(x))

< ε. (5.7)

By the assumptions of the lemma we haveHθ(S) < +∞. Hence we find an arbitrary
at most countable covering of Kε by balls {Bj}N

j=1, N ∈ N ∪ {∞}, of radii rj :=
r(Bj) < δ(ε)/2 such that∑

j

µ(Bj)
(rj)θ

⩽ 2Hθ,δ(ε)/2(Kε) ⩽ 2Hθ(S). (5.8)

Without loss of generality we may assume that, for each Bj , Kε ∩ Bj ̸= ∅. For
each j we fix a point xj ∈ Bj∩Kε. We obviously have Bj ⊂ B2rj

(xj) ⊂ 3Bj . Hence,
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combining (1.6), (1.8) with (5.7), (5.8) and taking into account the uniformly locally
doubling property of µ, we have

m0(Kε) ⩽
∑

j

m0(E ∩Bj) ⩽ C
∑

j

mk(rj)(E ∩B2rj (xj)) < εC
∑

j

mk(rj)(B2rj (xj))

⩽ εC
∑

j

µ(B2rj
(xj))

(rj)θ
⩽ εC

∑
j

µ(3Bj)
(rj)θ

⩽ εC
∑

j

µ(Bj)
(rj)θ

⩽ εCHθ(S).

(5.9)

Hence for all sufficiently small ε > 0 we have m0(Kε) = 0. Since m0(N \Kε) < ε
and ε > 0 can be chosen arbitrarily, we obtain the equality m0(N) = 0, completing
the proof.

In the proof of the next theorem we build a simple example that exhibits a deli-
cate difference between the classes Mstr

θ (S) and Mθ(S). Despite its simplicity, the
corresponding constructions are typical and reflect the essence of the matter. One
can build similar examples in higher dimensions and even in some nice classes of
metric measure spaces. However, the corresponding machinery will be much less
transparent.

Theorem 7. Let X = (R2, ∥ · ∥2,L2) and S := {(x1, x2) ∈ R2 : x1 ∈ [0, 1], x2 = 0}.
Then for each θ ∈ (1, 2) there exists a sequence of measures {mk}∈Mθ(S)\Mstr

θ (S).

Proof. We fix an arbitrary θ ∈ (1, 2) and put

c1(θ) := 2
∞∑

k=1

1
kθ

and c2(θ) := min
j∈N0

2j

(1 + j)θ−1
.

It is convenient to split the proof into several steps.
Step 1. Let E denote the closed Cantor-type set built recursively as follows.

At the first step we put

E1 := [0, 1] \
(

1
2
− (2c1(θ))−1,

1
2

+ (2c1(θ))−1

)
and

U1 :=
(

1
2
− (2c1(θ))−1,

1
2

+ (2c1(θ))−1

)
.

Suppose that for some k ∈ N we have already built closed sets E1 ⊃ · · · ⊃ Ek and
open sets U1, . . . , Uk such that

Ei ∪
( i⋃

j=1

Uj

)
= [0, 1] and L1(Ui) =

1
c1(θ)iθ

for all i ∈ {1, . . . , k}.

Furthermore, for each i ∈ {1, . . . , k} the set Ei is a disjoint union of 2i closed
intervals Ii,l and each Ui is a disjoint union of 2i−1 open intervals Ji,l. From the
middle of each closed interval Ik,l we remove an open interval of length 1/(c1(θ)2kkθ)
and consider the union of the remaining closed sets. Then we obtain a set Ek+1
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and put Uk+1 := Ek \Ek+1. As a result, we obtain the sequence {Ek}∞k=1 of closed
sets and the sequence {Uk}∞k=1 of open sets. Furthermore, for each k ∈ N we let Ik

and Jk denote the corresponding families of closed and open intervals, respectively.
More precisely, Ek =

⋃
{I : I ∈ Ik} and Uk =

⋃
{J : J ∈ Jk} for all k ∈ N. Now we

put E :=
⋂∞

n=0 En and define weight functions ωk ∈ L1([0, 1]), k ∈ N0, by (we put
U0 := ∅)

ωk(x) := χE(x) +
k∑

i=0

2(θ−1)iiθ−1χUi(x)

+ 2(θ−1)k(k + 1)θ−1
∞∑

i=k+1

χUi(x), x ∈ [0, 1]. (5.10)

Finally, we recall (2.6) and put mk := ωkH1⌊S , k ∈ N0 (here H1 is the usual
1-dimensional Hausdorff measure). We put ϵ = 1/2 and claim that {mk} :=
{mk}k∈N0 ∈ Mθ(S) \Mstr

θ (S). This will be shown at the next steps.
Step 2. Note that supp mk = S for all k ∈ N0. This verifies (M1).
Step 3. By (5.10) it is easy to see that for each k ∈ N0 and every j ∈ N0,

c2(θ)
2θj

⩽
1

2(θ−1)j(1 + j)θ−1
⩽

(k + 1)θ−1

2(θ−1)j(k + 1 + j)θ−1
⩽

wk(x)
wk+j(x)

⩽ 1, x ∈ [0, 1].

(5.11)
This proves that condition (M4) is satisfied with C3 = max{1, (c2(θ))−1}.

Step 4. To verify (M2) we proceed as follows. We fix arbitrary k ∈ N0, j ⩾ k and
Q ∈ Dj (by Dj here and throughout the rest of the proof we denote the family of
closed dyadic intervals of length 2−j). Given i ∈ N, there are two cases to consider.

In the first case (c1(θ))−12−ii−θ < 2−j . Since θ > 1, we obviously have

2(θ−1)iiθ−1

2iiθ
=

2(θ−1)iiθ−1

2(θ−1+2−θ)iiθ(θ−1+2−θ)
⩽

1
2(2−θ)i

1
iθ(2−θ)

⩽
(c1(θ))2−θ

2(2−θ)j
. (5.12)

Consequently, given J ∈ Ji, from (5.10) and (5.12) we obtain (since (c1(θ))1−θ ⩽ 1)

1
2
mk(Q ∩ J) ⩽

1
2
mk(J) ⩽


2(θ−1)k(k + 1)θ−1

c1(θ)2iiθ
⩽

2(θ−1)iiθ−1

c1(θ)2iiθ
⩽

1
2(2−θ)j

, i > k,

2(θ−1)iiθ−1

c1(θ)2iiθ
⩽

1
2(2−θ)j

, i ⩽ k.

(5.13)
In the second case (c1(θ))−12−ii−θ ⩾ 2−j . Since θ > 1, we clearly have

2(θ−1)iiθ−1

2j
⩽

2(θ−1)iiθ−1

2(2−θ)j2(θ−1)j
⩽

2(θ−1)iiθ−1

(c1(θ))θ−12(2−θ)j2(θ−1)iiθ(θ−1)
⩽

(c1(θ))1−θ

2(2−θ)j
.

(5.14)
Consequently, given J ∈ Ji, from (5.10) and (5.14) we obtain (since (c1(θ))1−θ ⩽ 1)

1
2
mk(Q ∩ J) ⩽


2(θ−1)k(k + 1)θ−1

2j
⩽

2(θ−1)iiθ−1

2j
⩽

1
2(2−θ)j

, i > k,

2(θ−1)iiθ−1

2j
⩽

1
2(2−θ)j

, i ⩽ k.

(5.15)
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As a result, combining (5.13) and (5.15), we have

mk(Q ∩ J) ⩽
1

2(2−θ)j
for each i ∈ N for every Q ∈ Dj and any J ∈ Ji. (5.16)

We fix a closed interval I ∈ Ij and note that I ∩ Ui = ∅ for all i ∈ {1, . . . , j}.
Hence, taking into account that for each i ⩾ j + 1 the set Ui ∩ I is formed by at
most 2i−j open intervals of length (c1(θ))−12−ii−θ, we have

c1(θ)
∞∑

i=j+1

L1(Ui ∩ I) ⩽ 2−j
∞∑

i=j+1

i−θ ⩽
2

θ − 1
2−jj1−θ.

Using this observation and keeping in mind that θ ∈ (1, 2) and c1(θ) ⩾ 2, by (5.10)
we have

mk(Q ∩ I) ⩽ mk(I) ⩽ 2−j + 2(θ−1)k(k + 1)θ−1
∞∑

i=j+1

L1(Ui ∩ I)

⩽
1

2(2−θ)j
+ 2

(c1(θ))−1

θ − 1
2(θ−1)k(k + 1)θ−1

2jjθ−1
⩽

1
2(2−θ)j

+
1

θ − 1
(j + 1)θ−1

jθ−1

1
2(2−θ)j

⩽
2θ

θ − 1
1

2(2−θ)j
for each Q ∈ Dj . (5.17)

By the construction of Ui we have
∑l

i=1 L1(Ui) < 1/2 for all l ∈ N. Hence
it is easy to see that each closed interval I ∈ Ij has length greater than 2−j−1.
Consequently, it is easy to see that Q can intersect at most three different closed
intervals in Ij and at most two different open intervals in

⋃j
i=1 Ji. As a result,

given x ∈ R2 and r ∈ (2−j−1, 2−j ], combining the above observations with (5.16)
and (5.17) we obtain

mk(Br(x)) ⩽
∑

Q∈Dj

mk(Q ∩Br(x)) ⩽
2θ

θ − 1
15

2(2−θ)j
. (5.18)

Consequently, we conclude that {mk} satisfies condition (M2).
Step 5. We fix x ∈ E and k ∈ N0. By the construction of E there exists

an interval Ik(x) ∈ Ik such that x ∈ Ik(x). Hence, taking into account that
for each i ⩾ k + 1 the set Ui ∩ Ik(x) consists of 2i−k disjoint intervals of length
(c1(θ))−12−ii−θ, we obtain

mk(B2−k(x)) ⩾ mk(Ik(x)) ⩾ 2(θ−1)k(k + 1)θ−1
∞∑

i=k+1

L1(Ui ∩ Ik(x))

⩾
2(θ−1)k(k + 1)θ−1

c1(θ)2k

∞∑
i=k+1

1
iθ

⩾
1

c1(θ)(θ − 1)
1

2k(2−θ)
. (5.19)

This observation, in combination with (5.11), easily implies condition (M3).
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Step 6. By (5.10) it is easy to see that mk(E ∩ B2−k(x)) ⩽ 2−k+1 for all x ∈ E
and all k ∈ N0. Since θ > 1, the above observation in combination with (5.19),
shows for every x ∈ E that

mk(B2−k(x) ∩ E)
mk(B2−k(x))

⩽
2c1(θ)(θ − 1)

2k(θ−1)
→ 0, k →∞. (5.20)

This proves that {mk} /∈ Mstr
θ (S).

The proof is complete.

5.3. Proof of Theorem 1. We begin with a necessary condition for the existence
of a θ-regular sequence of measures.

Theorem 8. Let S ⊂ X be a closed nonempty set. If θ ⩾ 0 is such that Mθ(S) ̸= ∅,
then S ∈ LCRθ(X).

Proof. Let {mk} ∈ Mθ(S) and ϵ = ϵ({mk}) ∈ (0, 1). Given r ∈ (0, 1] and x ∈ S,
let B = {Bj}j∈N = {Brj (xj)}j∈N be a sequence of closed balls such that rj ∈ (0, r)
for all j ∈ N, Bj ∩ S ̸= ∅ for all j ∈ N, Br(x) ∩ S ⊂

⋃
j∈N Bj and

∑
j

µ(Bj)
(rj)θ

⩽ 2Hθ,r(Br(x) ∩ S). (5.21)

We recall the notation (2.18), put kj := k(rj), j ∈ N, and, for every j ∈ N, fix
a ball B̃j of radius rB̃j

= 2rj centred at some point xj ∈ S ∩ Bj . It is clear that

Bj ⊂ B̃j ⊂ 4Bj for all j ∈ N. Hence, using the uniformly locally doubling property
of the measure µ, applying (1.6), and then taking Theorem 5 into account we obtain

∑
j

µ(Bj)
(rj)θ

⩾ C
∑

j

µ(4Bj)
(4rj)θ

⩾ C
∑

j

µ(B̃j/2)
(rj/2)θ

⩾ C
∑

j

mkj

(
1
2
B̃j

)
⩾ C

∑
j

mkj (B̃j). (5.22)

Now we combine (5.21) with (5.22), take into account that k(r) ⩽ kj for all j ∈ N,
and use (1.8). This gives

Hθ,r(Br(x) ∩ S) ⩾ C
∑

j

mk(r)(B̃j) ⩾ Cmk(r)(Br(x) ∩ S).

Since r ∈ (ϵk(r)+1, ϵk(r)], using Theorem 5 and (1.7) we can continue the previous
estimate and obtain

Hθ,r(Br(x) ∩ S) ⩾ Cmk(r)(Bϵk(r)(x) ∩ S) ⩾ C
µ(Bϵk(r)(x))

ϵk(r)θ
⩾ C

µ(Br(x))
rθ

. (5.23)

Since x ∈ S and r ∈ (0, 1] were chosen arbitrarily, the theorem follows from Defini-
tion 16.

Theorem 8 is proved.
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The following result presents conditions on a set S ⊂ X that are sufficient for
the existence of a strongly θ-regular sequence of measures whose supports coincide
with S.

Theorem 9. Let θ ⩾ 0. If S ∈LCRθ(X) is closed and nonempty, then Mstr
θ (S) ̸= ∅.

Proof. We fix an arbitrary ϵ ∈ (0, 1/10] and recall the notation (2.2)–(2.4). Since
S is a closed subset of the complete separable metric space (X, d), the space S :=
(S, d |S) is a complete separable metric space (here d |S is the restriction of the
metric d to the set S).

Step 1. We recall Definition 3 and Proposition 9 and fix an admissible partial
order on Z(S, ϵ). Given k ∈ N0 and zk,α ∈ Zk(S, ϵ), we put

Q̃k,α :=
⋃
{int Bϵj/8(zj,β) : zj,β ⪯ zk,α}. (5.24)

Note that the Q̃k,α, k ∈ N0, α ∈ Ak(S, ϵ), are open subsets in X. However, they are
neither generalized dyadic cubes in X, nor generalized dyadic cubes in S. At the
same time, by (2.17) Q̃k,α ∩ S is a generalized dyadic cube in the space S for each
k ∈ N0 and any α ∈ Ak(S, ϵ). The only reason for the introduction of such special
sets Q̃k,α is that the ‘centres’ of these ‘quasicubes’ belong to the set S. This fact
is crucial at Step 8 below.

Since ϵ ∈ (0, 1/10], it is easy to see from (PO3) in Definition 3 and (5.24) that

Q̃k,α ⊂ B2ϵk(zk,α) for each k ∈ N0 and any α ∈ Ak(S, ϵ). (5.25)

Repeating almost verbatim the arguments in the proof of Lemma 15 in [33] we
obtain that

if l ⩾ k, then either Q̃l,β ⊂ Q̃k,α, or Q̃l,β ∩ Q̃k,α = ∅. (5.26)

Furthermore, by (5.24) and (5.26) we clearly have∑
zk+1,β⪯zk,α

µ(Q̃k+1,β) ⩽ µ(Q̃k,α) for each k ∈ N0 and any α ∈ Ak(S, ϵ). (5.27)

Finally, let B = Br(x) be an arbitrary closed ball of radius r ∈ (0, 1] centred
at x ∈ X. Let c ⩾ 1 be such that Bcr(x) ∩ S ̸= ∅. The same arguments as in the
proof of Proposition 11 give

#{α ∈ Ak(r)(S, ϵ) : cl(Q̃k(r),α ∩ S) ∩ cB ̸= ∅} ⩽ CD(c, 0). (5.28)

Step 2. For each j ∈ N0 and any β ∈ Aj(S, ϵ) we put hj,β := µ(Q̃j,β)/ϵjθ. Now,
for each j ∈ N0 we define a measure mj,j on S by the formula (by δx we denote the
Dirac measure concentrated at x ∈ S)

mj,j :=
∑

zj,β∈Zj(S,ϵ)

hj,βδzj,β
. (5.29)

Given j ∈ N, we modify the measure mj,j in the following way. If α ∈ Aj−1(S, ϵ) is
such that

mj,j(Q̃j−1,α ∩ S) = mj,j({zj,β : zj,β ⪯ zj−1,α}) > hj−1,α,
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then we reduce the mass of mj,j uniformly on {zj,β : zj,β ⪯ zj−1,α} until it
becomes equal to hj−1,α. On the other hand, if α ∈ Aj−1(S, ϵ) is such that
mj,j(Q̃j−1,α ∩ S) ⩽ hj−1,α, then we leave mj,j unchanged. In this way we clearly
obtain a new measure mj,j−1. We repeat this procedure for mj,j−1 obtaining mj,j−2,
and after j steps we obtain mj,0. Given j ∈ N0 and k ⩽ j, it follows from this
construction that

mj,k(Q̃i,β ∩ S) ⩽ hi,β for each i ∈ {k, . . . , j} for all β ∈ Ai(S, ϵ). (5.30)

By (5.27) it is clear that

M := inf
k∈N0

inf
zk,α∈Zk(S,ϵ)

( ∑
zk+1,β⪯zk,α

hk+1,β

)−1

hk,α ⩾ ϵθ. (5.31)

Note that by the above construction, for each k ∈ N0 and every j ⩾ k there is
a family of positive constants {cj,k(Q̃j,β) : β ∈ Aj(S, ϵ)} such that

mj,k(Q̃j,β ∩ S) = cj,k(Q̃j,β)mj,j(Q̃j,β ∩ S) for all β ∈ Aj(S, ϵ). (5.32)

Furthermore, by (5.31), for each k ∈ N0, i ∈ {0, . . . , k}, and every j ⩾ k, we have

ϵiθcj,k(Q̃j,β) ⩽ cj,k−i(Q̃j,β) ⩽ cj,k(Q̃j,β) for all β ∈ Aj(S, ϵ). (5.33)

Step 3. Using estimates (5.30) and (5.28) we obtain supj⩾k mj,k(B) < ∞ for
every closed ball B ⊂ X. Hence, by Proposition 8 and Lemma 1, for each k ∈ N0

there is a subsequence {mjs,k} and a (Borel regular) measure mk on X such that
mjs,k ⇀ mk as s →∞. In fact, from the standard diagonal arguments we conclude
that there is a strictly increasing sequence {jl}∞l=1 ⊂ N such that mjl,k ⇀ mk as
l →∞ for every k ∈ N0 (in the case when jl < k we put formally mjl,k := mk,k).

At the next steps we show that the sequence {mk} := {mk}∞k=0 satis-
fies (M1)–(M5).

Step 4. From properties (M3) and (M4) verified at Steps 5 and 7 below it follows
that mk(Bj(x)) > 0 for every x ∈ S and all k, j ∈ N0. This implies that condition
(M1) is satisfied.

Step 5. We fix arbitrary k, i ∈ N0. By (5.32) and (5.33), for each φ ∈ Cc(X) and
all sufficiently large l ∈ N we obtain

ϵiθ

∫
X

φ(x) dmjl,k+i(x) ⩽
∫

X

φ(x) dmjl,k(x) ⩽
∫

X

φ(x) dmjl,k+i(x).

Hence, passing to the limit as l →∞, we have

ϵiθ

∫
X

φ(x) dmk+i(x) ⩽
∫

X

φ(x) dmk(x) ⩽
∫

X

φ(x) dmk+i(x) for all φ ∈ Cc(X).

As a result, using the Borel regularity of the measures mk, k ∈ N0, and the
Radon-Nikodým theorem we see that condition (M4) is satisfied with C3 = 1.
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Step 6. Given k ∈ N0, we fix an arbitrary closed ball Br(x), where x ∈ X and
r ∈ (0, ϵk]. If Q̃k(r),α∩B2r(x) ̸= ∅ for some α ∈ Ak(r)(S, ϵ), then by (5.25) we have
Q̃k(r),α ⊂ Bcr(x) for c = 4ϵk(r)/r + 2. Furthermore, since k(r) ⩾ k, by (5.30) we
have mjl,k(Q̃k(r),α) ⩽ hk(r),α for each α ∈ Ak(r)(S, ϵ) and all sufficiently large l ∈ N.
Finally, by construction we have mjl,k(∂Q̃k(r),α) = 0 for each α ∈ Ak(r)(S, ϵ) and
all sufficiently large l ∈ N. As a result, we apply Proposition 3 to G = intB2r(x),
then take the above observations into account and, finally, use the uniformly locally
doubling property of the measure µ. This gives

mk(Br(x)) ⩽ mk(int B2r(x)) ⩽ lim
l→∞

mjl,k(int B2r(x))

⩽ lim
l→∞

∑
{mjl,k(Q̃k(r),α) : Q̃k(r),α ∩B2r(x) ̸= ∅} ⩽ C

µ(Bcr(x))
rθ

⩽ C
µ(Br(x))

rθ
.

(5.34)

Hence condition (M2) is satisfied.
Step 7. To verify condition (M3) it is sufficient to show that there is a constant

C > 0 such that (we put Bk(x) := Bϵk(x) for brevity)

mk(Bk(x)) ⩾ C
µ(Bk(x))

ϵkθ
for all k ∈ N0 and all x ∈ S. (5.35)

Indeed, assume that we have already proved (5.35). Then, given k ∈ N0 and
r ∈ [ϵk, 1], we note that k(r) ⩽ k in accordance with our notation (2.18). Hence,
using (M4) and, taking into account the uniformly locally doubling property of the
measure µ, for each x ∈ S we obtain the required estimate

mk(Br(x)) ⩾ mk(r)(Bk(r)+1(x)) ⩾ ϵ mk(r)+1(Bk(r)+1(x))

⩾ C
µ(Bk(r)+1(x))

ϵ(k(r)+1)θ
⩾ C

µ(Br(x))
rθ

.

To prove (5.35) we fix an arbitrary k ∈ N0 and x ∈ S. Using the subadditivity
property of the set function Hθ,ϵk and (5.28) we find a cube Q̃k,α, α ∈ Ak(S, ϵ),
such that cl(Q̃k,α ∩ S) ∩B ̸= ∅ and

Hθ,ϵk(cl(Q̃k,α ∩ S)) ⩾
1

CD(1, 0)
Hθ,ϵk(Bϵk(x) ∩ S). (5.36)

Note that for each j ⩾ k and any zj,β ⪯ zk,α such that β ∈ Aj(S, ϵ), there is
a minimum number among all integers s ∈ {k, . . . , j} for which there exists γ ∈
As(S, ϵ) such that zj,β ⪯ zs,γ ⪯ zk,α and mj,k(Q̃s,γ ∩ S) = hs,γ . Thus, there exists
a disjoint finite family {Q̃si,γi}N

i=1, where i ∈ {1, . . . , N}, such that

mj,k(Q̃k,α ∩ S) ⩾
N∑

i=1

mj,k(Q̃si,γi
∩ S) =

N∑
i=1

hsi,γi
.

At the same time, by (5.24) and (5.25) we have

Q̃k,α ∩ S ⊂
N⋃

i=1

cl Q̃si,γi
⊂

N⋃
i=1

B2ϵsi (zsi,γi
) and

1
8
Bϵsi (zsi,γi) ⊂ Q̃si,γi
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for all j ∈ {1, . . . , N}. Consequently, using the uniformly locally doubling property
of the measure µ in combination with Proposition 7 we obtain

mj,k(Q̃k,α ∩ S) ⩾
N∑

i=1

µ( 1
8Bϵsi (zsi,γi

))
ϵsiθ

⩾ C

N∑
i=1

µ(4Bϵsi (zsi,γi
))

ϵsiθ

⩾ C

N∑
i=1

ϵ−siθ
∑

B∈Bsi
(X,ϵ)

{µ(B) : B ∩B2ϵsi (zsi,γi
) ̸= ∅} ⩾ CHθ,ϵk(cl(Q̃k,α ∩ S)).

(5.37)

Since the closed ball B5ϵk(x) is a compact set and Q̃k,α ⊂ B5ϵk(x), we use Propo-
sition 3 for F = B5ϵk(x), then combine (5.36) and (5.37) and, finally, take Defini-
tion 16 into account. This gives us the crucial estimate

mk(B5ϵk(x)) ⩾ lim
l→∞

mjl,k(B5ϵk(x)) ⩾ lim
l→∞

mjl,k(Q̃k,α) ⩾ C
µ(Bϵk(x))

ϵkθ
. (5.38)

As a result, using (5.38) and the upper bound in Theorem 5 (we can use it because
the proof of this upper bound is based on condition (M2) which has already been
verified above) we arrive at (5.35) completing the proof of (M3).

Step 8. By (M4) and (M3), which were verified at Steps 5 and 7, respectively, we
have m0(Bk(x)) ⩾ ϵkθmk(Bk(x)) ⩾ Cµ(Bk(x)) for all x ∈ S. By Definition 13 this
implies that the measure m0 is weakly noncollapsed. We fix an arbitrary Borel set
E ⊂ S and recall the notation (3.6). Throughout this step we set c = 4/ϵ+2 and use
Lemma 3. This gives us the existence of a set E′ ⊂ E satisfying m0(E \E′) = 0 and
such that for each point x ∈ E′ one can find a sequence {rl(x)} strictly decreasing
to zero such that (recall (3.1))

D
m0

E (x) ⩾ D(x) := lim
l→∞

m0(Brl(x)(x) ∩ E)
m0(Brl(x)(x))

⩾
1

2Cm0
(5c)

,

lim
l→∞

m0(Bcrl(x)(x))
m0(Brl(x)(x))

⩽ Cm0
(5c).

Furthermore, fix x ∈ E′ and ε ∈ (0, 1). We recall the notation (2.18) and put
rl := rl(x) and kl := kϵ(rl) for all l ∈ N0. Clearly, there is L = L(x, ε) ∈ N such
that, for all l ⩾ L,

m0(Brl
(x) ∩ E)

m0(Brl
(x))

>

(
1− ε

8

)
D(x) and

m0(Bcrl
(x))

m0(Brl
(x))

⩽ 2Cm0
(5c). (5.39)

Using the Borel regularity of the measure m0, given l ∈ N, we find an open set
Ωl ⊂ B2rl

(x) containing Brl
(x) ∩ E and a compact set Kl ⊂ Brl

(x) ∩ E such that

|m0(Ωl)−m0(Kl)| ⩽
ε

8
D(x)m0(Brl

(x)). (5.40)

Since σl := dist(Kl, X \Ωl) > 0 for the σl/2-neighbourhood Uσl/2(Kl) of Kl,
we obtain

Kl ⊂ Uσl/2(Kl) ⊂ cl Uσl/2(Kl) ⊂ Ωl ⊂ B2rl
(x). (5.41)
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Since the index l is occupied for the sequence {rl} and for the sake of simplicity,
we assume at this step that mj,k ⇀ mk as j → ∞. To verify condition (M5) it is
sufficient to establish the existence of a constant C(x) > 0 independent on ε and l
such that for each l ⩾ L there is N = N(x, l, ε) ⩾ kl such that for any j ⩾ N

mj,kl(Q̃kl,β(j) ∩ Uσl/2(Kl)) ⩾ C(x)mj,kl(Q̃kl,β(j)) for some β(j) ∈ Akl
(S, ϵ).

(5.42)
Indeed, suppose that we have already proved (5.42). Then, given l⩾L, we use (5.24)
and (5.41) and apply Proposition 3 to F = cl(Uσ/2(Kl)) and G = intBrl/8(zkl,β).
This gives (we use the notation Bkl

(z) := Bϵkl (z), z ∈ X)

mkl
(Ωl) ⩾ mkl

(cl Uσl/2(Kl)) ⩾ lim
j→∞

mj,kl(cl Uσl/2(Kl)) ⩾ lim
j→∞

mj,kl(Uσl/2(Kl))

⩾ lim
j→∞

mj,kl(Q̃kl,β(j) ∩ Uσl/2(Kl)) ⩾ C(x) lim
j→∞

mj,kl(Q̃kl,β(j))

⩾ C(x) lim
j→∞

mj,kl

(
int

1
8
Bkl

(zkl,β(j))
)

⩾ C(x)mkl

(
int

1
8
Bkl

(zkl,β(j))
)

. (5.43)

Since Q̃kl,β(j) ∩ B2rl
(x) ̸= ∅, from (5.25) we obtain Brl

(x) ⊂ 6Bkl
(zkl,β(j)). The

crucial fact is that zkl,β(j) ∈ S and we can use Theorem 5 for c = 6, 8 and y =
zkl,β(j). As a result,

mkl
(Ωl) ⩾ C(x)mkl

(
int

1
8
Bkl

(zkl
, β(j))

)
⩾ Cmkl

(6Bkl
(zkl,β(j))) ⩾ Cmkl

(Brl
(x)).

(5.44)
The constant C > 0 on the right-hand side of (5.44) does not depend on l and ε.
Finally, since Ωl ⊃ E ∩Brl

(x) was chosen arbitrarily and since the measure mkl
is

Borel regular, we obtain the required estimate mkl
(E ∩Brl

(x)) ⩾ Cmkl
(Brl

(x)) for
a positive constant C independent of l ∈ N. Since l ⩾ L was chosen arbitrarily, this
verifies (M5).

To prove (5.42) we proceed as follows. We fix l ⩾ L, apply Proposition 3 to
G = Uσl/2(Kl) and F = B2rl

(x) and use (5.39)–(5.41). This gives (recall that
ε ∈ (0, 1))

lim
j→∞

mj,0(Uσl/2(Kl)) ⩾ m0(Uσl/2(Kl)) ⩾

(
1− ε

2

)
D(x)m0(Brl

(x))

⩾ Cm0(Bcrl
(x)) ⩾ C lim

j→∞
mj,0(Bcrl

(x)),

where C = D(x)/(4Cm0
(5c)). Hence there exists N = N(x, l, ε) ⩾ kl such that for

all j ⩾ N ,

mj,0(Uσl/2(Kl)) ⩾
D(x)

5Cm0
(5c)

mj,0(Bcrl
(x)). (5.45)

From (5.28) and (5.41) we see that there are at most CD(2, 0) generalized dyadic
cubes Q̃kl,β ∩ S in S whose closures have nonempty intersections with Uσl/2(Kl).
Furthermore, any such cube is contained in Bcrl

(x) together with its closure. Hence,
using (5.45) we conclude that for each j ⩾ N there exists β(j) ∈ Akl

(S, ϵ) such that
the inequality
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mj,0(Q̃kl,β(j) ∩ Uσl/2(Kl)) ⩾ C(x)mj,0(Bcrl
(x)) ⩾ C(x)mj,0(Q̃kl,β(j)) (5.46)

holds for C(x) := (5CD(2, 0)Cm0
(5c))−1D(x). As a result, taking (5.32) into

account we deduce from (5.46) the required estimate

mj,kl(Q̃kl,β(j) ∩ Uσl/2(Kl)) =
mj,kl(Q̃kl,β(j))

mj,0(Q̃kl,β(j))
mj,0(Q̃kl,β(j) ∩ Uσl/2(Kl))

⩾ C(x)
mj,kl(Q̃kl,β(j))

mj,0(Q̃kl,β(j))
mj,0(Q̃kl,β(j)) = C(x)mj,kl(Q̃kl,β(j)).

Theorem 9 is proved.

Theorem 1 follows from Theorems 8 and 9.

5.4. Some examples. In this subsection we show that for some sets S∈LCRθ(X),
θ > 0, one can easily build concrete examples of sequences {mk} ∈ Mθ(S). For
generic sets S ∈ LCRθ(X), where θ > 0, finding explicit examples of sequences
{mk} ∈ Mθ(S) is quite a sophisticated problem. In [42] an explicit example
of {mk} ∈ M1(Γ) was constructed in the case when Γ ⊂ R2 is a simple rectifiable
plane curve of positive length. In [21] an explicit example of {mk} ∈ Mn−1(K)
was given for the case of a single cusp K in Rn. In fact, one can show that these
sequences of measures belong to the more narrow classes Mstr

1 (Γ) (one should use
Theorem 6) and Mstr

n−1(K), respectively.

Example 3. Recall Remark 6. Let θ ∈ [0, Q
µ
(R)) for some R > 0, and let S ∈

ADRθ(X). In this case, given θ ⩾ θ, we put ϵ = 1/2 and define

mk := 2k(θ−θ)Hθ⌊S , k ∈ N0.

It is easy to verify that {mk} ∈ Mstr
θ (S). Indeed, conditions (M1)–(M4) follow

immediately from the construction. To verify (M5) one should repeat with minor
technical modifications (keeping in mind (1.3)) the corresponding arguments from
the proof of Theorem 6.2 in [35].

Example 4. Let N ∈ N and {θ1, . . . , θN} ⊂ [0, Q
µ
(R)). Given i ∈ {1, . . . , N}, let

Si ∈ ADRθi
(X). Set θ := max{θ1, . . . , θN}. Now we put ϵ = 1/2 and, given θ ⩾ θ,

define

mk :=
N∑

i=1

2k(θ−θi)Hθi
⌊Si , k ∈ N0. (5.47)

Based on Example 3, we obtain {mk} ∈ Mstr
θ (S). Indeed, properties (M1)–(M4)

can be verified easily. The most delicate condition (M5) can be verified as follows.
We consider the case N = 2. The general case is a little bit more technical but
ideologically similar. For each Borel set E ⊂ (S1 \S2)∪ (S2 \S1), condition (1.9) is
satisfied by (5.47) because S1 and S2 are closed. Now we assume that E ⊂ S1 ∩ S2

and θ1 ⩾ θ2. Given x ∈ E, by condition (M3) already verified we have (we use the
notation adopted at the very beginning of § 5)
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mk(B2−k(x) ∩ E)
mk(B2−k(x))

⩾
2k(θ−θ1)Hθ1

⌊S1(B2−k(x) ∩ E)
mk(B2−k(x))

⩾
2−kθ1

C1µ(B2−k)
Hθ1

⌊S1(B2−k(x) ∩ E).

Consequently, taking into account the Ahlfors-David regularity of S1 and using
the corresponding arguments from the proof of Theorem 6.2 in [35] (with minor
technical modifications) we complete the verification of (M5).

§ 6. Lebesgue points of functions

Throughout this section we fix the following data:
(D.6.1) a parameter p ∈ (1,∞) and an m.m.s. X = (X, d, µ) ∈ Ap;
(D.6.2) a parameter θ ∈ [0, p) and a closed set S ∈ LCRθ(X);
(D.6.3) a sequence {mk} ∈ Mstr

θ (S) with ϵ = ϵ({mk}) ∈ (0, 1/10].
In this section, for any x ∈ X and k ∈ Z we use the notation Bk(x) := Bϵk(x).

Definition 17. Given c > 0 and δ > 0, we say that a family of closed balls
B := {Bri(xi)}N

i=1, where N ∈ N, is (S, c, δ)-nice, if the following conditions hold:
(B1) Bri

(xi) ∩Brj
(xj) = ∅ if i, j ∈ {1, . . . , N} and i ̸= j;

(B2) 0 < min{ri : i = 1, . . . , N} ⩽ max{ri : i = 1, . . . , N} ⩽ δ;
(B3) Bcri

(xi) ∩ S ̸= ∅ for all i ∈ {1, . . . , N}.
Furthermore, we say that B is an (S, c, δ)-Whitney family if it satisfies (B1)–(B3)

and
(B4) B ⊂ X \S for all B ∈ B.
We will call (S, c, 1)-nice families and (S, c, 1)-Whitney families just (S, c)-nice

families and (S, c)-Whitney families, respectively.

Remark 17. Given δ ∈ (0, 1] and c ⩾ 1, every (S, c, δ)-Whitney family is an (S, c′, δ′)-
Whitney family and every (S, c, δ)-nice family is an (S, c′, δ′)-nice family for any
δ′ ∈ [δ, 1] and c′ ⩾ c.

We recall the notation (2.18) and, given a ball B = Br(x), we put k(B) := k(rB).
Furthermore, we recall the notation introduced at the beginning of § 5.

Proposition 22. Let c ⩾ 1 and c′ ⩾ c+1. If a closed ball B = Br(x) in X is such
that r ∈ (0, 1] and cB ∩ S ̸= ∅, then

µ(B)
mk(B)(c′B)

⩽
(Cµ(c′))log2 2c′+1

ϵθ

C{mk},3

C{mk},2
(rB)θ. (6.1)

Proof. Note that there exists a ball B ⊂ c′B such that rB = rB and the centre x
of B belongs to S. In this case we have B ⊂ 2c′B. Furthermore, in accordance
with our notation, ϵk(B)+1 < rB ⩽ ϵk(B). Hence from (1.7), (1.8) and the uniformly
locally doubling property of µ (we set [c] := max{k ∈ Z : k ⩽ c}) we obtain

µ(B)
mk(B)(c′B)

⩽
µ(2c′B)

mk(B)(B)
⩽

(Cµ(c′))[log2 2c′]+1

ϵθ

C{mk},3

C{mk},2
(rB)θ. (6.2)

This completes the proof.
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In this and the subsequent sections we need a Brudnyi-Shvartsman functional ‘on
small scales’. More precisely we recall (1.10) and formulate the following concept.

Definition 18. Given δ ∈ (0, 1] and c > 1, we introduce the δ-scale Brudnyi-
Shvartsman functional on Lloc

1 ({mk}) (it takes values in [0, +∞]) by letting

BSNδ
p,{mk},c(f) := ∥f∥Lp(m0) + sup

( ∑
B∈Bδ

µ(B)
(rB)p

(
Ẽmk(B)(f, cB)

)p
)1/p

, (6.3)

where the supremum is taken over all families (S, c, δ)-nice families Bδ.

Remark 18. Keeping in mind (1.12) and the notation used in Theorems 2 and 3,
for δ = 1 we write BSNp,{mk},c(f) instead of BSN1

p,{mk},c(f).

Lemma 5. Let δ ∈ (0, 1] and c ⩾ 1. Then there is a constant C > 0 depending
only on δ , C{mk} , c, ϵ, θ and Cµ(2c) such that if Bδ is an arbitrary (S, c)-nice family
of balls such that rB ⩾ δ for all B ∈ Bδ , then for each f ∈ Lp(m0),

∑
B∈Bδ

µ(B)
(rB)p

(
Emk(B)(f, 2cB)

)p
⩽ C

∫
S

|f(x)|p dm0(x). (6.4)

Proof. We fix f ∈ Lp(m0) and an (S, c)-nice family Bδ such that rB ⩾ δ for all
B ∈ Bδ. Let k be the largest integer k satisfying the inequality ϵk ⩾ δ. Below we
write explicitly all intermediate constants to indicate their dependence on k (and
hence on δ). By Proposition 7 we have (we take into account that Nµ(ϵk, C) ⩽
Nµ(1, C) for all k ∈ {0, . . . , k} and C > 0)

M({2cB : B ∈ Bδ}) ⩽
k∑

k=0

M({2cB : B ∈ Bδ(k, ϵ)}) ⩽ (1 + k)Nµ

(
1,

4c

ϵ

)
. (6.5)

Given k ∈ {0, . . . , k}, an application of Proposition 5 to m = mk yields(
Emk

(f, 2cB)
)p

⩽ 2p –
∫

2cB

|f(z)|p dmk(z) for any B ∈ Bδ(k, ϵ).

Hence, from Proposition 22 for c′ = 2c and (1.8), for any k ∈ {0, . . . , k} and
B ∈ Bδ(k, ϵ) we obtain

µ(B)
(
Emk

(f, 2cB)
)p

⩽ 2p C{mk},3

ϵkθ

µ(B)
mk(2cB)

∫
2cB

|f(z)|p dm0(z)

⩽ 2p (Cµ(2c))log2 4c+1

ϵ(k+1)θ

(C{mk},3)
2

C{mk},2
(rB)θ

∫
2cB

|f(z)|p dm0(z). (6.6)

Note that the right-hand side of (6.6) depends on k but does not depend on k ∈
{0, . . . , k}. Consequently, using Proposition 4, (6.5) and (6.6) we obtain (recall that
θ ∈ [0, p))
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∑
B∈Bδ

µ(B)
(rB)p

(
Emk(B)(f, 2cB)

)p

⩽
∑

B∈Bδ

2p

δp−θ

(Cµ(2c))log2 4c+1

ϵ(k+1)θ

(C{mk},3)
2

C{mk},2

∫
2cB

|f(z)|p dm0(z)

⩽ (1 + k)Nµ

(
1,

4c

ϵ

)
2p

δp

(Cµ(2c))log2 4c+1

ϵθ

(C{mk},3)
2

C{mk},2

∫
S

|f(x)|p dm0(x).

The proof is complete.

It is natural to ask whether the finiteness of BSNδ
p,{mk},c(f) for small δ > 0

implies that of BSNp,{mk},c(f). Fortunately, we have an affirmative answer.

Lemma 6. BSNp,{mk},c(f) < +∞ if and only BSNδ
p,{mk},c(f) < +∞ for some

δ ∈ (0, 1].

Proof. Necessity follows from Remark 17. To prove sufficiency, given an (S, c)-nice
family B, we divide it into two subfamilies. More precisely, we put Bδ := {B ∈ B:
rB ⩽ δ} and Bδ := B \ Bδ. Now the claim follows from Lemma 5.

We start with the following lemma (we use the notation Bk(x) := Bϵk(x), k ∈ N0,
x ∈ X).

Lemma 7. Let f ∈ Lloc
1 ({mk}) be such that BSNδ

p,{mk},c(f) < +∞ for some c > 1
and δ ∈ (0, 1]. Then there exists a Borel function f : S → R and a Borel set S ⊂ S
satisfying Hθ(S \ S) = 0 such that

lim
k→∞

–
∫

Bk(x)

|f(x)− f(y)| dmk(y) = 0 for all x ∈ S. (6.7)

Proof. We fix ε ∈ (0, (p− θ)/(2p)) and split the proof into several steps.
Step 1. Consider the function

R(x) := lim
r→0

∑
ϵk<r

Emk
(f, Bk(x)), x ∈ X . (6.8)

It is clear that, given δ′ ∈ (0, δ], we have

Rp(x) ⩽ lim
r→0

( ∑
ϵk<r

ϵkε

ϵkε
Emk

(f, Bk(x))
)p

⩽ C δ′
εp sup

ϵk<δ′

1
ϵkεp

(
Emk

(f, Bk(x))
)p

. (6.9)

Given t > 0, we introduce the t-superlevel set of Rp by letting Et := {x ∈ S:
Rp(x) ⩾ t}. Our aim is to show that

Hθ(Et) = 0 for all t > 0. (6.10)

Now we fix arbitrary t > 0 and δ′ ∈ (0, δ]. For each x ∈ Et we find kx ∈ N0 such
that ϵkx ∈ (0, δ′) and

t < C
δ′εp

ϵkxεp

(
Emkx

(f, Bkx
(x))

)p
.

Clearly, the family of balls B : {Bkx
(x) : x ∈ Et} is a covering of Et. Using



1284 A. I. Tyulenev

Vitali’s 5B-covering lemma we find a disjoint subfamily B̃ ⊂ B such that Et ⊂⋃
{5B : B ∈ B̃}. Hence we have∑{

µ(B)
(rB)θ

: B ∈ B̃
}

⩾ C
∑{

µ(5B)
(r5B)θ

: B ∈ B̃
}

⩾ CHθ,5δ′(Et). (6.11)

Note that any (S, c, δ′)-nice family is also an (S, c, δ)-nice family. Furthermore, by
Theorem 5 and Remark 3 it is easy to see that Emk(B)(f, B) ⩽ CEmk(B)(f, cB) for
all B ∈ B̃. As a result, we obtain

tHθ,5δ′(Et) ⩽ C
∑
B∈B̃

µ(B)
(rB)θ

(δ′)εp

(rB)εp

(
Emk(B)(f, B)

)p

⩽ C(δ′)εp
∑
B∈B̃

µ(B)
(rB)p

(
Emk(B)(f, cB)

)p
⩽ C(δ′)εp

(
BSNδ

p,{mk},c(f)
)p

. (6.12)

Passing to the limit as δ′ → 0 and taking into account that t > 0 is arbitrary we
obtain (6.10).

Step 2. If l, k ∈ N0 are such that l > k, then from Remark 3 and Theorem 5 it
is easy to see that

–
∫

Bl(x)

–
∫

Bk(x)

|f(y)− f(z)| dml(y) dmk(z)

⩽
l−1∑
i=k

–
∫

Bi(x)

–
∫

Bi+1(x)

|f(y)− f(z)| dmi(z) dmi+1(y) ⩽ C

l∑
i=k

Emi
(f, Bi(x)).

(6.13)

Consider the set S := S \
⋃

t>0 Et. Since R(x) = 0 for all x ∈ S, it follows
from (6.8), (6.13) that if x ∈ S, then{

–
∫

Bk(x)

f(y) dmk(y)
}∞

k=1

is a Cauchy sequence. Hence for every x ∈ S there exists a finite limit

f(x) := lim
l→∞

–
∫

Bl(x)

f(z) dml(z).

An application of Fatou’s lemma together with (6.13) leads to the required estimate

lim
k→∞

–
∫

Bk(x)

|f(x)− f(y)| dmk(y)

⩽ lim
k→∞

lim
l→∞

–
∫

Bk(x)

∣∣∣∣ –
∫

Bl(x)

f(z) dml(z)− f(y)
∣∣∣∣ dmk(y)

⩽ lim
k→∞

lim
l→∞

–
∫

Bl(x)

–
∫

Bk(x)

|f(y)− f(z)| dmk(y) dmk(z)

⩽ C lim
k→∞

∞∑
i=k

Emi(f, Bi(x)) ⩽ CR(x) = 0 for all x ∈ S. (6.14)

From (6.10) we obviously have Hθ(S \ S) = 0 completing the proof.



Traces of Sobolev spaces to irregular subsets of metric measure spaces 1285

We recall the following classical result (see Corollary 3.3.51 in [1]).

Proposition 23. Let m be a locally finite measure on X. Given p ∈ [1,∞), for
each f ∈ B(X) such that [f ]m ∈ Lp(m) and every ε > 0 there exists an open set
O ⊂ X such that m(O) < ε and f |X \O is continuous on X \O .

Now we are ready to state the main result of this section. We recall Definition 14.

Theorem 10. Let f ∈ B(X) be a function satisfying [f ]m0 ∈ Lloc
p ({mk}) and such

that BSNδ
p,{mk},c([f ]m0) < +∞ for some c > 1 and δ ∈ (0, 1]. Then

m0(S \ (R{mk},ϵ(f))) = 0. (6.15)

Proof. Let f and S be the same as in Lemma 7. By Proposition 20 we have
m0(S \ S) = Hθ(S \ S) = 0. Hence in order to establish (6.15) it is sufficient to
show that

f(x) = f(x) for m0-a.e. x ∈ S. (6.16)

We apply Proposition 23 for m = m0. This gives, for each ε > 0, the existence of
an open set Oε ⊂ X such that m0(Oε) < ε and f ∈ C(X \Oε). We recall (3.6) and
put Sε := {x ∈ S \ Oε : D

{mk}
S\Oε

(x, ϵ) > 0}. Taking (D.6.3) and (1.9) into account,
for each sequence satisfying εn ↓ 0 as n →∞ we obtain

m0

(
S \

⋃
n∈N

{Sεn
∩ S}

)
= 0. (6.17)

Fix a sufficiently small ε > 0 and a point x ∈ Sε∩S. By Chebyshev’s inequality,
for any fixed σ > 0 we have

(mk(Bk(x)))−1mk({y ∈ Bk(x) : |f(y)− f(x)| ⩾ σ})

⩽
1
σ

–
∫

Bk(x)

|f(y)− f(x)| dmk(y) → 0, k →∞. (6.18)

We set c(x) := D
{mk}
S\Oε

(x, ϵ) for brevity. Hence, given σ > 0, there exists a sufficiently
large number k = k(x, σ) ∈ N such that

mk

({
y ∈ Bk(x) : |f(y)− f(x)| < σ

2
, |f(y)− f(x)| < σ

2

})
⩾

c(x)
2

mk(Bk(x)).

As a result, |f(x) − f(x)| < σ by the triangle inequality. Since, given x ∈ Sε,
one can chose σ > 0 arbitrarily small, we obtain

f(x) = f(x) for all x ∈ Sε ∩ S. (6.19)

Finally, taking into account that ε > 0 can be chosen arbitrarily small and combin-
ing (6.17) with (6.19) we deduce (6.16) and complete the proof.
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§ 7. Extension operator

Throughout this section we fix the following data:
(D.7.1) a parameter p ∈ (1,∞) and an m.m.s. X = (X, d, µ) ∈ Ap;
(D.7.2) a parameter θ ∈ [0, p) and a closed set S ∈ LCRθ(X);
(D.7.3) a sequence of measures {mk} ∈ Mstr

θ (S) with parameter ϵ = ϵ({mk}) ∈
(0, 1/10].

In this section we put Bk(x) := Bϵk(x) for each k ∈ Z and all x ∈ X. Further-
more, we recall the notation (2.2) and fix a sequence {Zk(X, ϵ)} := {Zk(X, ϵ)}k∈Z.
We recall (2.3) and put

B̃k,α := B2ϵk(zk,α) for each k ∈ Z for every α ∈ Ak(X, ϵ). (7.1)

Given k ∈ Z, the kth neighbourhood of S and the kth layer of S, respectively, are
defined by

Uk(S) := {x ∈ X: dist(x, S) < 5ϵk} and Vk(S) := Uk−1(S) \ Uk(S). (7.2)

The advantages of such layers are clear from the following elementary proposition.

Proposition 24. Let k, k′ ∈ Z be such that |k − k′| ⩾ 2. Then, for any ball B =
B̃k,α such that B ∩ Vk(S) ̸= ∅ and any ball B′ = B̃k′,α′ such that B′ ∩ Vk′(S) ̸= ∅
we have B ∩B′ = ∅.

Proof. We fix arbitrary balls B and B′ satisfying the assumptions of the lemma.
If B ∩ B′ ̸= ∅, then by the triangle inequality we obtain dist(Vk(S), Vk′(S)) ⩽
4(ϵk + ϵk′). On the other hand, since ϵ ⩽ 1/10, we have

dist(Vk(S), Vk′(S)) ⩾ 4ϵmin{k,k′} + 5ϵmax{k,k′}.

This contradiction proves the claim.

A useful property of our space X is the following simple and known result about
partitions of unity (see Lemma 2.4 in [9] for details).

Lemma 8. There is a constant C > 0 depending only on Cµ(10) such that, for
each k ∈ N0 ,

0 ⩽ φk,α ⩽ χB̃k,α
, lip φk,α ⩽

C

ϵk
χB̃k,α

for all α ∈ Ak(X, ϵ) (7.3)

and, furthermore, ∑
α∈Ak(X,ϵ)

φk,α = 1. (7.4)

Now we establish a simple combinatorial result which is a folklore. Nevertheless,
we present the details for the completeness of our exposition.

Lemma 9. There exists a constant N ∈ N depending only on Cµ(10) such that for
each k ∈ N0 the family B̃k := {B̃k,α : α ∈ Ak(X, ϵ)} can be decomposed into at most
N ⩽ N disjoint subfamilies {B̃i

k}N
i=1 .
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Proof. We fix k ∈ N0 and put E(0) = Zk(X, ϵ). We denote a maximal 5ϵk-separated
subset of Zk(X, ϵ) by Z(1) and put E(1) := Zk(X, ϵ) \ Z(1). Arguing by induc-
tion, suppose that for some i ∈ N we have already built sets Z(1), . . . , Z(i) and
E(1), . . . , E(i) in such a way that

E(i′) = Zk(X, ϵ) \
i′⋃

l=1

Z(l), i′ ∈ {1, . . . , i}.

Let Z(i + 1) be a maximal 5ϵk-separated subset of E(i), and let E(i + 1) :=
E(i) \ Z(i + 1). We put N := ⌈Nµ(1, 24)⌉ (where Nµ(R, c) is the same as in
Proposition 6). We show that E(i) = ∅ for each i > N . Indeed, assume that there
is a number i > N such that E(i) ̸= ∅ and fix x(i) ∈ E(i). Given i′ ∈ {1, . . . , i},
from the maximality of Z(i′) and the obvious inclusion Ei ⊂ Ei′−1 it follows that
there is a point x(i′) ∈ Z(i′) such that d(x(i′), x(i)) < 5ϵk. Hence

Bϵk/4(x(i′)) ⊂ B6ϵk(x(i)).

As a result, since i′ can be chosen arbitrarily, there exists a family

F := {Bϵk/4(x(i′)) : i′ ∈ {1, . . . , i}}

of pairwise disjoint balls contained in the ball B6ϵk(x(i)) such that #F = i.
Combining this observation with Proposition 6, we obtain a contradiction. Conse-
quently,

#{i ∈ N : E(i) ̸= ∅} ⩽ N.

It remains to note that for each i ∈ {1, . . . , N} and any z, z′ ∈ Z(i) we have
B2ϵk(z) ∩B2ϵk(z′) = ∅.

The lemma is proved.

Given k ∈ Z, we set

Ak(S) := {α ∈ Ak(X, ϵ) : B̃k,α ∩ Uk−1(S) ̸= ∅}. (7.5)

Remark 19. Since ϵ ∈ (0, 1/10], it is easy to see from (7.2) and (7.5) that for each
k ∈ Z and any α ∈ Ak(S) there exists a point x ∈ S such that

Bϵk(x) ⊂ 3
ϵ
B̃k,α = B6/ϵ(zk,α).

The following result is an immediate consequence of (7.2)–(7.5).

Proposition 25. For each k ∈ N0 ,

χUk−1(S)(x) ⩽
∑

α∈Ak(S)

φk,α(x) ⩽ χUk−2(S)(x), x ∈ X .

Now, keeping in mind Remark 19, given an element f ∈ Lloc
1 ({mk}), for each

k ∈ N0 we define a special family of numbers. More precisely, we put

fk,α :=

 –
∫

(3/ϵ)B̃k,α

f(x) dmk(x) if α ∈ Ak(S),

0 if α ∈ Ak(X, ϵ) \ Ak(S).
(7.6)
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The following simple proposition will be useful in what follows. We recall the
notation (1.10).

Proposition 26. There exists a constant C > 0 such that for each f ∈ Lloc
1 ({mk})

and every k ∈ N0 the inequality

|fk,α − fk′,β | ⩽ CẼmk

(
f,

3
ϵ
B̃k,α

)
(7.7)

holds for each k′ ∈ {k, k + 1} and any α ∈ Ak(S) and β ∈ Ak′(S) for which
B̃k,α ∩ B̃k′,β ̸= ∅.

Proof. We fix f ∈ Lloc
1 ({mk}), numbers k ∈ N0 and k′ ∈ {k, k + 1}, and indices

α ∈ Ak(S) and β ∈ Ak′(S) such that B̃k,α ∩ B̃k′,β ̸= ∅. By (7.1) we have

3
ϵ
B̃k′,β ⊂

(
3
ϵ

+ 4
)

B̃k,α ⊂
6
ϵ
B̃k,α.

Hence, using (7.6), (1.8), Theorem 5 and Remark 3 we obtain the required estimate

|fk,α − fk′,β | ⩽ –
∫

(3/ϵ)B̃k,α

–
∫

(3/ϵ)B̃k′,β

|f(y)− f(y′)| dmk(y) dmk′(y′)

⩽ C –
∫

(6/ϵ)B̃k,α

–
∫

(6/ϵ)B̃k,α

|f(y)− f(y′)| dmk(y)dmk(y′) ⩽ CẼmk

(
f,

3
ϵ
B̃k,α

)
.

(7.8)

The proof is complete.

Given an element f ∈ Lloc
1 ({mk}), for k ∈ N0 we put

fk(x) :=
∑

α∈Ak(X,ϵ)

φk,α(x)fk,α =
∑

α∈Ak(S)

φk,α(x)fk,α, x ∈ X . (7.9)

Having Propositions 25 and 26 at our disposal we obtain nice pointwise estimates
for the local Lipschitz constants of the functions fk, k ∈ N0. We recall (2.1).

Proposition 27. There exists a constant C > 0 such that, for each f ∈Lloc
1 ({mk}),

for every k ∈ N0 and every x ∈ Uk−1(S) the inequality

lip fk(x) ⩽
C

ϵk
Ẽmk

(
f,

3
ϵ
B̃k,α

)
(7.10)

holds for any index α ∈ Ak(S) satisfying the condition B̃k,α ∋ x.

Proof. We fix k ∈ N0 and x ∈ Uk−1(S). We also fix an arbitrary index α ∈ Ak(S)
such that x ∈ B̃k,α. By property (3) in Proposition 1 and (7.4) we have

lip fk(x) = lip
(

fk −
∑

α∈Ak(X,ϵ)

φk,αfk,α

)
(x).
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From (7.5) it follows that if α ∈ Ak(X, ϵ) and φk,α(x) ̸= 0, then α ∈ Ak(S). Hence
we use (7.9) in combination with (7.3) and, finally, take Propositions 7 and 26 into
account. This gives

lip fk(x) ⩽
∑

α∈Ak(X,ϵ)

lip φk,α(x)|fk,α − fk,α| =
∑

α∈Ak(S)

lip φk,α(x)|fk,α − fk,α|

⩽ C
∑

α∈Ak(S)

χB̃k,α
(x)

1
ϵk
|fk,α − fk,α| ⩽

C

ϵk
Ẽmk

(
f,

3
ϵ
B̃k,α

)
. (7.11)

The proof is complete.

Proposition 27 leads to a nice estimate for the local Lipschitz constant in the
Lp-norm. Recall that, given a Borel set E ⊂ X and an element f ∈ Lloc

p (X), we put
∥f∥Lp(E) := ∥f∥Lp(E,µ).

Lemma 10. There exists a constant C > 0 such that for each f ∈ Lloc
1 ({mk}),

every k ∈ N0 and any Borel set E ⊂ Uk−1(S),

∥lip fk∥p
Lp(E) ⩽ C

∑
E∩B̃k,α ̸=∅

µ(B̃k,α)
ϵkp

(
Ẽmk

(
f,

3
ϵ
B̃k,α

))p

. (7.12)

Proof. By Proposition 27, for any ball B̃k,α such that E∩ B̃k,α ̸= ∅ we clearly have∫
E∩B̃k,α

(lip fk(x))p dµ(x) ⩽ C
µ(E ∩ B̃k,α)

ϵkp

(
Ẽmk

(
f,

3
ϵ
B̃k,α

))p

.

This observation in combination with (7.5) gives∫
E

(lip fk(x))p dµ(x) ⩽
∑

α∈Ak(S)

∫
E∩B̃k,α

(lip fk(x))p dµ(x)

⩽ C
∑

E∩B̃k,α ̸=∅

µ(B̃k,α)
ϵkp

(
Ẽmk

(
f,

3
ϵ
B̃k,α

))p

. (7.13)

This completes the proof.

To construct our extension operator, given an arbitrary f ∈ Lloc
1 ({mk}), we build

a certain special sequence {f j}j∈N. Informally speaking, the graph of each f j looks
like a stairway formed of elementary steps Sti[f ], i = 1, . . . , j. More precisely, given
f ∈ Lloc

1 ({mk}), we set f0 := 0. Furthermore, arguing by induction, for each i ∈ N,
we define the elementary ith step of f by

Sti[f ](x) :=
∑

α∈Ai(S)

φi,α(x)(fi,α − fi−1(x)), x ∈ X . (7.14)

Remark 20. In view of Proposition 25 it is clear that supp Sti[f ] ⊂ Ui−2(S) for
all i ∈ N.
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Finally, we define the special approximating sequence by letting, for each j ∈ N,

f j(x) :=
j∑

i=1

Sti[f ](x), x ∈ X . (7.15)

Proposition 28. For each point x ∈ X \S there exists j(x) ∈ N such that f j(x) =
f j(x)(x) for all j ⩾ j(x).

Proof. For each x ∈ X \S, from Remark 20 and (7.15) we obtain f j(x) = f j+1(x),
provided that x ∈ X \Uj−1(S). Since Uj+1(S) ⊂ Uj(S) for all j ∈ N, the claim
follows.

Now we are ready to present our extension operator.

Definition 19. Given f ∈ Lloc
1 ({mk}), we put

ExtS,{mk}(f) := χSf + χX \S lim
j→∞

f j , (7.16)

where by χSf we mean an m0-equivalence class and χX \S limj→∞ f j denotes the
pointwise limit of the sequence {f j} on the set X \S.

Remark 21. Let Nm0 be a linear space of all functions f : X → R such that f(x) = 0
for m0-almost all x ∈ S and f(x) = 0 for all x ∈ X \S. By Proposition 28 formula
(7.16) gives us a mapping ExtS,{mk} : Lloc

1 ({mk}) → B(X)/Nm0 which is well defined
and linear.

The main reason for introducing the sequence {f j} in this way is some remarkable
pointwise properties of the steps Sti[f ], i ∈ N. More precisely, the following result
holds.

Proposition 29. Let f ∈ Lloc
1 ({mk}). Let i ∈ N, x ∈ Ui−2(S) and α ∈ Ai−1(S) be

such that x ∈ B̃i−1,α . Then

S̃ti[f ](x) :=
∑

α∈Ai(S)

χB̃i,α
(x)|fi,α − fi−1(x)| ⩽ CẼmi−1

(
f,

3
ϵ
B̃i−1,α

)
, (7.17)

where the constant C > 0 depends neither on f nor on i, x or α.

Proof. By (7.4) and (7.9) we have

S̃ti[f ](x) ⩽
∑

α∈Ai(S)

∑
α′∈Ai−1(X,ϵ)

χB̃i,α
(x)φi−1,α′(x)|fi,α − fi−1,α′ |.

Using the triangle inequality we have |fi,α−fi−1,α′ |⩽ |fi,α−fi−1,α|+|fi−1,α−fi−1,α′ |.
Hence, using (7.3) and Proposition 26 and taking Proposition 7 into account we
obtain

S̃ti[f ](x) ⩽
i∑

i′=i−1

∑
α′∈Ai′ (X,ϵ)

χB̃i′,α′
(x)|fi′,α′ − fi−1,α| ⩽ CẼmi−1

(
f,

3
ϵ
B̃i−1,α

)
.

The proof is complete.
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Proposition 29 leads to useful estimates for the Lp-norms of steps and their local
Lipschitz constants.

Lemma 11. There exists C > 0 such that, for each i ∈ N, the following properties
hold:

1) for each Borel set E ⊂ Ui−2(S) and any measure ν on X,

∥Sti[f ]∥p
Lp(E,ν) ⩽ C

∑
B̃i−1,α∩E ̸=∅

ν(B̃i−1,α)
(
Ẽmi−1

(
f,

3
ϵ
B̃i−1,α

))p

;

2) for each Borel set E ⊂ Ui−2(S),

∥lip(Sti[f ])∥p
Lp(E) ⩽ C

∑
B̃i−1,α∩E ̸=∅

µ(B̃i−1,α)
ϵ(i−1)p

(
Ẽmi−1

(
f,

3
ϵ
B̃i−1,α

))p

.

Proof. Fix i ∈ N and a Borel set E ⊂ Ui−2(S).
To prove claim 1) we note that by (7.3) we have |Sti[f ](x)| ⩽ S̃ti[f ](x) for all

x ∈ X. Hence an application of Proposition 29 gives

∥Sti[f ]∥p
Lp(E,ν) ⩽ ∥S̃ti[f ]∥p

Lp(E,ν) ⩽
∑

α∈Ai−1(S)

∫
B̃i−1,α∩E

(
S̃ti[f ](x)

)p
dν(x)

⩽ C
∑

B̃i−1,α∩E ̸=∅

ν(B̃i−1,α)
(
Ẽmi−1

(
f,

3
ϵ
B̃i−1,α

))p

. (7.18)

To prove claim 2) we note that by (7.14), Proposition 1, (7.3) and (7.4) we have

lip(Sti[f ])(x) ⩽
∑

α∈Ai(S)

lip φi,α(x)|fi,α − fi−1(x)|+
∑

α∈Ai(S)

φi,α(x) lip fi−1(x)

⩽
C

ϵi
S̃ti[f ](x) + lip fi−1(x) for all x ∈ X .

Hence, using Lemma 10 for k = i− 1 and (7.18) for ν = µ we obtain the required
estimate

∥lip(Sti[f ])∥p
Lp(E) ⩽ C

∑
B̃i−1,α∩E ̸=∅

µ(B̃i−1,α)
ϵ(i−1)p

(
Ẽmi−1

(
f,

3
ϵ
B̃i−1,α

))p

. (7.19)

The proof is complete.

The crucial observation is made in the following lemma.

Lemma 12. There is a constant C > 0 such that, for each f ∈ Lloc
1 ({mk}) and

every j ∈ N,

∥lip f j∥p
Lp(U0(S)) ⩽ C

j∑
i=1

∑
B̃i,α∩V̂i(S)̸=∅

µ(B̃i,α)
ϵip

(
Ẽmi

(
f,

3
ϵ
B̃i,α

))p

, (7.20)

where V̂i(S) := Vi(S) if j ⩾ 2, i ∈ {1, . . . , j − 1} and V̂j(S) := Uj−1(S).
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Proof. For a moment fix j ∈ N, j ⩾ 2 and i ∈ {1, . . . , j − 1}. Given x ∈ V̂i(S),
from (7.2) and Remark 20 it is clear that Sti′ [f ](x) = 0 for all i′ ⩾ i + 2. Hence,
using (7.15) and Proposition 1 we obtain,

lip f j(x) ⩽ lip fi(x) + lip Sti+1[f ](x).

Thus, applying Lemmas 10 and 11 to E = V̂i(S) we deduce

∥lip f j∥p

Lp(V̂i(S))
⩽ ∥lip fi∥p

Lp(V̂i(S))
+ ∥lip Sti+1[f ]∥p

Lp(V̂i(S))

⩽ C
∑

B̃i,α∩V̂i(S)̸=∅

µ(B̃i,α)
ϵip

(
Ẽmi

(
f,

3
ϵ
B̃i,α

))p

. (7.21)

On the other hand, given j ∈ N, an application of Lemma 10 to E = Uj−1(S)
gives

∥lip f j∥p
Lp(Uj−1(S)) = ∥lip fj∥p

Lp(Uj−1(S))

⩽ C
∑

B̃j,α∩Uj−1(S) ̸=∅

µ(B̃j,α)
ϵjp

(
Ẽmj

(
f,

3
ϵ
B̃j,α

))p

. (7.22)

Summing inequalities (7.21) over all i ∈ {1, . . . , j − 1} and then taking (7.22)
into account we arrive at (7.20) completing the proof.

Lemma 13. There exists a constant C > 0 such that, for each f ∈ Lloc
1 ({mk}),

∥f1∥p
Lp(X) + ∥lip f1∥p

Lp(X) ⩽ C∥f∥p
Lp(m0)

. (7.23)

Proof. Combining the first inequality in (7.3) with (7.6) and (7.9) and using Hölder’s
inequality we obtain

|f1(x)|p ⩽ C
∑

α∈A1(S)

χB̃1,α
(x)

(
–
∫

3
ϵ B̃1,α

|f(y)| dm1(y)
)p

, x ∈ X . (7.24)

Similarly, taking the second inequality in (7.3) into account we have

(lip f1(x))p ⩽ C
∑

α∈A1(S)

χB̃1,α
(x)

(
–
∫

3
ϵ B̃1,α

|f(y)| dm1(y)
)p

, x ∈ X . (7.25)

Combining (7.24) with (7.25) and using Hölder’s inequality we obtain

∥f1∥p
Lp(µ) + ∥lip f1∥p

Lp(µ) ⩽ C
∑

α∈A1(S)

µ(B̃1,α) –
∫

3
ϵ B̃1,α

|f(y)|p dm1(y). (7.26)

By (7.5) we have (6/ϵ−1)B1,α∩S ̸= ∅ for all α ∈ A1(S). Hence using Proposition 22
for c = 6/ϵ− 1 and c′ = 6/ϵ and taking into account the uniformly locally doubling
property of µ we obtain

µ(B̃1,α)

m1( 3
ϵ B̃1,α)

⩽ C for all α ∈ A1(S).
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As a result, using this observation, Propositions 4 and 7 and taking (1.8) into
account we obtain∑

α∈A1(S)

µ(B̃1,α) –
∫

3
ϵ B̃1,α

|f(y)|p dm1(y)

⩽ C
∑

α∈A1(S)

∫
3
ϵ B̃1,α

|f(y)|p dm1(y) ⩽ C∥f∥p
Lp(m1)

⩽ C∥f∥p
Lp(m0)

. (7.27)

Combining (7.26) and (7.27) we obtain the required estimate.
The lemma is proved.

We recall Definitions 17 and 18. We also recall (1.10) and write for brevity
k(B) := k(rB). Now we introduce a new useful functional.

Definition 20. Given f ∈ Lloc
1 ({mk}), we put

Np,{mk},c(f) := lim
δ→0

BSNδ
p,{mk},c(f)+sup

(∑
B∈B

µ(B)
(rB)p

(
Ẽmk(B)(f, cB)

)p
)1/p

, (7.28)

where the supremum in the second term is taken over all (S, c)-Whitney families B.

Now we present a keystone estimate for the local Lipschitz constants of the
functions f j , j ∈ N.

Theorem 11. For each c ⩾ 3/ϵ there exists a constant C > 0 such that

lim
j→∞

∥lip f j∥p
Lp(X) ⩽ C Np,{mk},c(f) for all f ∈ Lloc

1 ({mk}). (7.29)

Proof. Without loss of generality we may assume that Np,{mk},c(f) < +∞, since
otherwise the inequality is trivial. We split the proof into several steps.

Step 1. We claim that for each j ∈ N, j ⩾ 2, there is an (S, c)-Whitney family
of balls Bj

1(S) such that (we put k(B) := k(rB), as usual, and recall (1.10))∑
B∈Bj

1(S)

µ(B)
(rB)p

(
Ẽmk(B)(f, cB)

)p
⩾

1
2N

j−1∑
i=1

∑
B̃i,α∩Vi(S)̸=∅

µ(B̃i,α)
ϵip

(
Ẽmi

(f, cB̃i,α)
)p

,

(7.30)
where the constant N is the same as in Lemma 9. Indeed, we split the sum on
the right-hand side of (7.30) into sums over the odd and even i ∈ {1, . . . , j − 1},
respectively. Without loss of generality we may assume that the sum over the
odd indices is not smaller than the one over the even indices. Next, for each odd
i ∈ {1, . . . , j − 1} we use Lemma 9 and divide the family {B̃i,α : B̃i,α ∩ Vi} into at
most N disjoint subfamilies. For each odd i ∈ {1, . . . , j − 1} we choose a subfamily
which maximizes the corresponding sum and denote it by Gi. By Proposition 24
we have Gi ∩ Gi′ = ∅ if i ̸= i′. Finally, we set Bj

1(S) :=
⋃
{Gi}, where the union is

taken over all odd i ∈ {1, . . . , j − 1}. This clearly gives (7.30). On the other hand
it is clear that∑

B∈Bj
1(S)

µ(B)
(rB)p

(
Ẽmk(B)(f, cB)

)p
⩽ sup

∑
B∈B

µ(B)
(rB)p

(
Ẽmk(B)(f, cB)

)p
, (7.31)

where the supremum in (7.31) is taken over all (S, c)-Whitney families B.
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Step 2. Given j ∈ N, by Lemma 9 there is a disjoint (S, c)-nice family Bj
2(S)

such that∑
B∈Bj

2(S)

µ(B)
(rB)p

(
Ẽmk(B)(f, cB)

)p
⩾

1
N

∑
α∈Aj(S)

µ(Bj,α)
ϵjp

(
Ẽmj

(f, cB̃j,α)
)p

. (7.32)

By Definitions 17 and 18 we have∑
B∈Bj

2(S)

µ(B)
(rB)p

(
Ẽmk(B)(f, cB)

)p
⩽ BSN2ϵj

p,{mk},c(f). (7.33)

Step 3. Using Lemma 12 and (7.30), (7.32), for any sufficiently large j ∈ N we
obtain (here we use the estimate Ẽmk(B)(f, c1B) ⩽ CẼmk(B)(f, c2B) for 1 ⩽ c1 ⩽ c2,
which follows from Remark 3 and Theorem 5)∫

U0(S)

(lip f j(x))p dµ(x) ⩽ C
∑

B∈Bj
1(S)∪Bj

2(S)

µ(B)
(rB)p

(
Ẽmk(B)(f, cB)

)p
.

Combining this inequality with (7.31) and (7.33) and (7.28) we deduce

lim
j→∞

∥lip f j∥p
Lp(U0(S)) ⩽ C Np,{mk},c(f). (7.34)

Step 4. From Remark 20 and (7.15) it follows that f1(x) = f j(x) for each j ∈ N
and all x ∈ X \U0(S). Hence, using Lemma 13 we obtain

lim
j→∞

∥lip f j∥p
Lp(X \U0(S)) = ∥lip f1∥p

Lp(X \U0(S)) ⩽ C∥f∥p
Lp(m0)

. (7.35)

Step 5. Combining (7.34) and (7.35) and taking (6.3) and (7.28) into account
we obtain the required inequality (7.29).

The theorem is proved.

The finiteness of Np,{mk},c(f) allows one to establish some interesting conver-
gence properties of the sequence {f j}. More precisely, the following assertion holds.

Theorem 12. If BSNδ
p,{mk},c(f) < +∞ for some c ⩾ 3/ϵ and δ ∈ (0, 1], then:

(i) {f j} converges to f m0-almost everywhere on S and converges to ExtS,{mk}(f)
everywhere on X \S ;

(ii) ∥f j − ExtS,{mk}(f)∥Lp(X) → 0 as j →∞;
(iii) for each k ∈ N, ∥f j − f∥Lp(mk) → 0 as j →∞.

Proof. Recall Remark 2. By Proposition 28 and Definition 19 the sequence {f j}
converges to the function ExtS,{mk}(f) everywhere on X \S. Now we recall Defini-
tion 14 and fix an arbitrary point x ∈ R{mk},ϵ(f). Since R{mk},ϵ(f) ⊂ S, from (7.9)
and (7.15) it follows that f j(x) = fj(x) for all j ∈ N. Hence using (7.3) and (7.6)
and Theorem 5, for every j ⩾ 2 we have

|f(x)− f j(x)| ⩽
∑

α∈Aj(S)

φj,α(x)|f(x)− fj,α|

⩽
∑

α∈Aj(S)

χB̃j,α
(x) –

∫
3
ϵ B̃j,α

|f(x)− f(y)| dmj(y) ⩽ C –
∫

Bj−2(x)

|f(x)− f(y)| dmj(y).

(7.36)
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Now, using (1.8) we obtain

|f(x)− f j(x)| ⩽ C –
∫

Bj−2(x)

|f(x)− f(y)| dmj−2(y) → 0, j →∞.

Combining this observation with Theorem 10 we arrive at assertion (i).
Now let us prove (ii). Given i ⩾ 2, by Lemma 9 there exists an (S, 3

ϵ , 2ϵi−1)-nice
family B such that ∑

B̃i−1,α∩Ui−2(S) ̸=∅

µ(B̃i−1,α)
(
Ẽmi−1

(
f,

3
ϵ
B̃i−1,α

))p

⩽ C
∑
B∈B

µ(B)
(
Ẽmi−1

(
f,

3
ϵ
B

))p

. (7.37)

Given i ⩾ 2, by Remark 20 we have ∥Sti[f ]∥Lp(X) = ∥ Sti[f ]∥Lp(Ui−2(S)). Hence we
apply Lemma 11 to ν = µ and E = Ui−2(S), use (7.37) and take Definition 18 and
Remark 17 into account (here we use the estimate Ẽmk(B)(f, c1B) ⩽ CẼmk(B)(f, c2B)
for 1 ⩽ c1 ⩽ c2, which follows from Remark 3 and Theorem 5). As a result,
given i ⩾ 2, we obtain

∥Sti[f ]∥Lp(X) ⩽ Cϵi BSN2ϵi−1

p,{mk},c(f).

Thus, by the triangle inequality, for each l ∈ N such that ϵl−1 ⩽ δ and any m > l
we deduce

∥f l − fm∥Lp(X) ⩽
m∑

i=l+1

∥Sti[f ]∥Lp(X) ⩽ Cϵl BSNδ
p,{mk},c(f).

Consequently, ∥f l − fm∥Lp(X) → 0 as l,m → ∞. Since Lp(X) is complete, there
exists F ∈ Lp(X) such that ∥F − f j∥Lp(X) → 0 as j →∞. The classical arguments
ensure the existence of a subsequence {f js} converging to F µ-almost everywhere.
On the other hand the measure µ is absolutely continuous with respect to the
measure m0 and, consequently, using assertion (i) already proved we obtain F =
ExtS,{mk}(f) in the sense of equality almost everywhere. This proves the claim.

To establish (iii) we fix k ∈ N0. Given i ⩾ 2, by Lemma 9 there exists an
(S, 3/ϵ, 2ϵi−1)-nice family B such that∑

B̃i−1,α∩Ui−2(S)̸=∅

mk(B̃i−1,α)
(
Ẽmi−1

(
f,

3
ϵ
B̃i−1,α

))p

⩽ C
∑
B∈B

mk(B)
(
Ẽmi−1

(
f,

3
ϵ
B

))p

. (7.38)

For each i ∈ N, i ⩾ 2, we apply Lemma 11 to ν = mk and E = Ui−2(S), use (7.38)
and take Remark 20 into account. This gives

∥Sti[f ]∥p
Lp(mk) ⩽ C

∑
B∈B

mk(B)
(
Ẽmi−1

(
f,

3
ϵ
B

))p

.
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Thus, by (1.6), Definition 18 and Remark 17, for each i ⩾ 2, i > k, we obtain
(here we use the estimate Ẽmk(B)(f, c1B) ⩽ CẼmk(B)(f, c2B) for 1 ⩽ c1 ⩽ c2, which
follows from Remark 3 and Theorem 5)

∥Sti[f ]∥p
Lp(mk) ⩽ Cϵ(p−θ)i

(
BSN2ϵi−1

p,{mk},c(f)
)p

.

Since θ ∈ [0, p), given δ ∈ (0, 1], an application of the triangle inequality gives,
for all sufficiently large l ∈ N and all m > l,

∥f l − fm∥Lp(mk) ⩽
m∑

i=l+1

∥Sti(f)∥Lp(mk) ⩽ Cϵ((p−θ)l)/p BSNδ
p,{mk},c(f).

Since Lp(mk) is complete, there exists h ∈ Lp(mk) such that ∥h− f j∥Lp(mk) → 0 as
j →∞. Thus, there is a subsequence {f js} converging to h mk-almost everywhere.
Combining this fact with the above assertion (i) and (1.8) we obtain h = f in the
sense of equality mk-almost everywhere and complete the proof of (iii).

The proof is complete.

While the finiteness of BSNδ
p,{mk},c(f) for small δ > 0 is sufficient to control

the convergence of the sequence {f j} in the Lp(X)-sense, it is still not sufficiently
powerful to obtain an appropriate estimate for the limit in the Lp(X)-norm.

Theorem 13. Given c ⩾ 3/ϵ, there exists a constant C > 0 such that

∥ExtS,{mk}(f)∥Lp(X) ⩽ C BSNp,{mk},c(f) for all f ∈ Lloc
1 ({mk}). (7.39)

Proof. The arguments used in the proof of assertion (ii) of Theorem 12 give, for
any m ⩾ 2,

∥fm − f1∥Lp(X) ⩽ C BSNp,{mk},c(f).

On the other hand, from Lemma 13 we obtain

∥f1∥Lp(X) ⩽ C∥f∥Lp(m0).

As a result, by the triangle inequality and assertion (ii) of Theorem 12,

∥ExtS,{mk}(f)∥Lp(X) = lim
l→∞

∥f l∥Lp(X) ⩽ C BSNp,{mk},c(f).

The proof is complete.

Unfortunately, it is difficult to estimate ∥ExtS,{mk}(f)∥Lp(X) from above in terms
of Np,{mk},c(f) with a constant C > 0 independent on f . On the other hand, we
have a weaker result which, however, is sufficient for our purposes.

Corollary 1. Given c ⩾ 3/ϵ, for each f ∈ Lp(m0) there exists a constant Cf > 0
such that

∥ExtS,{mk}(f)∥Lp(X) ⩽ Cf Np,{mk},c(f). (7.40)

Proof. If Np,{mk},c(f) = +∞, then one can put Cf = 1. If f ∈ Lp(m0) and
Np,{mk},c(f) < +∞, then by (7.28) there is δ = δ(f) ∈ (0, 1) such that
BSNδ

p,{mk},c(f) < +∞. Hence BSNp,{mk},c(f) < +∞ by Lemma 6. This fact, in
combination with Theorem 13, proves the claim.
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Now we are ready to prove the key result of this section. We recall Definition 7.

Theorem 14. If Np,{mk},c(f) < +∞ for some c⩾3/ϵ, then ExtS,{mk}(f)∈W 1
p (X).

Furthermore, there exists a constant C > 0 such that

Chp(ExtS,{mk}(f)) ⩽ C Np,{mk},c(f) for all f ∈ Lloc
1 ({mk}). (7.41)

Proof. If Np,{mk,c}(f)=+∞, then inequality (7.41) is obvious. If Np,{mk},c(f)<+∞,
then by Theorem 12 and Corollary 1 we have ExtS,{mk}(f) ∈ Lp(X) and f j →
ExtS,{mk}(f) as j →∞ in Lp(X)-sense. Furthermore, from Theorem 11 we obtain

Chp(ExtS,{mk}(f)) ⩽ lim
j→∞

∥lip f j∥Lp(X) ⩽ C Np,{mk},c(f).

By Definition 7 this implies that F ∈ W 1
p (X) and (7.41) holds.

The proof is complete.

§ 8. Comparison of different trace functionals

The aim of this section is to compare the functionals CNp,{mk}, BNp,{mk},σ,
BSNp,{mk},c and Np,{mk},c. Recall that these functionals are originally defined on
the space Lloc

1 ({mk}) and take their values in [0, +∞].
Throughout this section the following data are assumed to be fixed:
(D.8.1) a parameter p ∈ (1,∞) and an m.m.s. X = (X, d, µ) ∈ Ap;
(D.8.2) a parameter θ ∈ [0, p) and a closed set S ∈ LCRθ(X);
(D.8.3) a sequence of measures {mk} ∈ Mθ(S) with parameter ϵ = ϵ({mk}) ∈

(0, 1/10].
We recall Definitions 18 and 20. The first keystone result of this section is

straightforward.

Theorem 15. For each c⩾1, Np,{mk},c(f)⩽2 BSNp,{mk},c(f) for all f ∈Lloc
1 ({mk}).

Proof. In the case when BSNp,{mk},c(f) = +∞ the inequality is trivial. We fix
f ∈ Lloc

1 ({mk}) such that BSNp,{mk},c(f) < +∞. Since each (S, c)-Whitney family
is an (S, c)-nice family, we have

sup
(∑

B∈B

µ(B)
(rB)p

(
Ẽmk(B)(f, cB)

)p
)1/p

⩽ BSNp,{mk},c(f),

where the supremum on the left-hand side is taken over all (S, c)-Whitney families B.
On the other hand, by Remark 17 we have

lim
δ→0

BSNδ
p,{mk},c(f) ⩽ BSNp,{mk},c(f).

Combining these observations we obtain the required estimate.
The theorem is proved.

To go further we recall the notation adopted at the beginning of § 5. Furthermore,
we set Bk(x) := Bϵk(x) for all k ∈ Z and all x ∈ X.
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Proposition 30. Let c ⩾ 1, and let k ∈ N0 be the smallest k′ ∈ N0 satisfying
ϵk′ ⩽ 1/(2c). Then there exists a constant C > 0 depending on p, θ , k , c and C{mk}
such that if k ⩾ k , r ∈ (ϵk+1, ϵk] and Br(y) is a closed ball such that S∩Bcr(y) ̸= ∅
and Br(x) ⊂ Bcr(y) for some x ∈ S ∩Bcr(y), then

Emk
(f, Bcr(y)) ⩽ C inf

z∈Bcr(y)
Emk−k

(f, Bk−k(z)) for all f ∈ Lloc
1 ({mk}). (8.1)

Proof. We fix a ball Br(x) ⊂ Bcr(y) centred at x ∈ S ∩ cBr(y). Since r/ϵ ⩾ ϵk,
we have

Bk−k(z) ⊂
(

2c +
1

ϵk+1

)
Br(x) and cBr(y) ⊂ Bk−k(z) for all z ∈ cBr(y).

(8.2)
Since x ∈ S, it follows from (8.2) and Theorem 5 that

sup
z∈Bcr(y)

mk(Bk−k(z)) ⩽ mk

((
2c +

1
ϵk+1

)
Br(x)

)
⩽ Cmk(Br(x)) ⩽ Cmk(cBr(y)).

Hence, by the second inclusion in (8.2), Remark 3 and (1.8), for each z ∈ Bcr(y)
we have

Emk
(f, cBr(y)) ⩽

(
1

mk(cBr(y))

)2 ∫
Bk−k(z)

∫
Bk−k(z)

|f(v)− f(w)| dmk(v) dmk(w)

⩽ C –
∫

Bk−k(z)

–
∫

Bk−k(z)

|f(v)− f(w)| dmk−k(v) dmk−k(w) ⩽ CEmk−k
(f, Bk−k(z)).

(8.3)

Since z ∈ Bcr(y) was chosen arbitrarily, the claim follows.

We recall that in Theorem 2 we defined CNp,{mk}(f) := CN p,{mk}(f)+∥f∥Lp(m0)

for f ∈ Lloc
1 ({mk}). The following assertion is the second keystone result of this

section.

Theorem 16. For each c ⩾ 1 there exists a constant C > 0 such that

BSNp,{mk},c(f) ⩽ C CNp,{mk}(f) for all f ∈ Lloc
1 ({mk}). (8.4)

Furthermore, for each δ ∈ (0, 1/(4c)] there is a constant C > 0 (depending on δ)
such that ∣∣BSNδ

p,{mk},c(f)− ∥f∥Lp(m0)

∣∣ ⩽ C∥f ♯
{mk}∥Lp(U(c+1)δ(S)). (8.5)

Proof. We put δ := 1/(4c). Let k be the smallest k ∈ N0 satisfying ϵk ⩽ δ.
We start with the second claim. We fix δ ∈ (0, δ]. Without loss of generality

we may assume that f ♯
{mk} ∈ Lp(U(c+1)δ(S)) because otherwise inequality (8.5) is

trivial. Let Bδ be an arbitrary (S, c, δ)-nice family of closed balls. Since cB∩S ̸= ∅
for all B ∈ Bδ, we obtain

B ⊂ U(c+1)δ(S) for all B ∈ Bδ. (8.6)
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We recall the notation (2.15). Given k ⩾ k and B ∈ Bδ(k, ϵ), we use Proposition 30
for c replaced by 2c. This gives

Emk
(f, 2cB) ⩽ C inf

z∈B
Emk−k

(f, Bk−k(z)).

Consequently, we have

µ(B)
(rB)p

(
Emk(B)(f, 2cB)

)p
⩽ C

∫
B

(f ♯
{mk}(y))p dµ(y). (8.7)

Combining (8.6) and (8.7) and taking into account that Bδ is a disjoint family of
balls we obtain∑

B∈Bδ

µ(B)
(rB)p

(
Emk(B)(f, 2cB)

)p
⩽ C

∑
k⩾k

∑
B∈Bδ(k,ϵ)

∫
B

(f ♯
{mk}(y))p dµ(y)

⩽ C

∫
U(c+1)δ(S)

(f ♯
{mk}(x))p dµ(x).

Since Bδ was chosen arbitrarily, the claim follows from (6.3).
To prove (8.4), given an (S, c)-nice family of closed balls B, we split it into two

subfamilies. The first, B1, consists of the balls of radius greater than or equal to δ
and the second is B2 := B \ B1. Applying Lemma 5 we obtain

∑
B∈B1

µ(B)
(rB)p

(
Emk(B)(f, 2cB)

)p
⩽ C

∫
S

|f(y)|p dm0(y). (8.8)

On the other hand, using (8.5) just proved and taking (1.11) into account we obtain

∑
B∈B2

µ(B)
(rB)p

(
Emk(B)(f, 2cB)

)p
⩽ C

(
CNp,{mk}(f)

)p
. (8.9)

It remains to combine (8.8) and (8.9) and take into account that B was chosen
arbitrarily. This proves the first claim.

The proof is complete.

The following lemma is an important ingredient for comparing the functionals
Np,{mk},c and BNp,{mk},σ. Recall that in Theorem 2 we set

BNp,{mk},σ(f) := ∥f∥Lp(m0) + BN p,{mk},σ(f) for f ∈ Lloc
1 ({mk}).

Lemma 14. For each c ⩾ 1 and every σ ∈ (0, ϵ2/(4c)) there exists C > 0 (depend-
ing on σ) such that for each (S, c)-Whitney family of closed balls B

Σ :=
∑
B∈B

µ(B)
(rB)p

(
Emk(B)(f, 2cB)

)p

⩽ C
(
BNp,{mk},σ(f)

)p for all f ∈ Lloc
1 ({mk}). (8.10)
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Proof. We put σ := ϵ2/(4c) and let k be the smallest k ∈ N0 satisfying ϵk ⩽ 1/(4c).
Since B is an (S, c)-Whitney family, we have cB ∩ S ̸= ∅ for all B ∈ B. We
recall the notation (2.15). Given k ⩾ k and B ∈ B(k, ϵ), it is easy to see that
B ⊂ B(2c+1)rB

(x) ⊂ Bϵk−k(x) for all x ∈ 2cB ∩ S. If B ∈ B(k, ϵ) for some k ⩾ k,
then

rB ⩾
ϵ2

4c
ϵk−k.

Hence for each k ⩾ k and every σ ∈ (0, σ] we have

2cB ∩ S ⊂ Sk−k(σ) for all B ∈ B(k, ϵ). (8.11)

Given k ⩾ k and B ∈ B(k, ϵ), by Proposition 30 (for 2c instead of c) we have

Emk
(f, 2cB) ⩽ C inf

y∈2cB
Emk−k

(f, Bk−k(y)). (8.12)

It follows from (1.7) and (1.8) that

µ(B)
(rB)p

⩽ Cmk−k(B) ⩽ Cmk−k(2cB ∩ S).

This estimate in combination with (8.12) leads to the inequality

µ(B)
(rB)p

(
Emk

(f, 2cB)
)p

⩽ C

∫
2cB∩S

(
Emk−k

(f, Bk−k(y))
)p

dmk−k(y).

As a result, using (8.11) and taking Propositions 4 and 7 into account we derive

∞∑
k=k+1

∑
B∈B(k,ϵ)

µ(B)
(rB)p

(
Emk

(f, 2cB)
)p

⩽ C

∞∑
k=k+1

∫
Sk−k(σ)

(
Emk−k

(f, Bk−k(y))
)p

dmk−k(y) ⩽ C
(
BN p,{mk},σ(f)

)p
.

(8.13)

On the other hand, by Lemma 5 we clearly have

k∑
k=0

∑
B∈B(k,ϵ)

µ(B)
(rB)p

(
Emk

(f, 2cB))
)p

⩽ C

∫
S

|f(z)|p dm0(z). (8.14)

Combining (8.13) and (8.14) we obtain (8.10).
The lemma is proved.

Now we are ready to formulate and prove the third keystone result of this section.

Theorem 17. Given c ⩾ 1, there exists a constant C > 0 such that for each
σ ∈ (0, ϵ2/(4c)) the inequality

Np,{mk},c(f) ⩽ C BNp,{mk},σ(f) (8.15)

holds for any f ∈ Lloc
1 ({mk}) satisfying CNp,{mk}(f) < +∞.



Traces of Sobolev spaces to irregular subsets of metric measure spaces 1301

Proof. We fix an arbitrary σ ∈ (0, ϵ2/(4c)). If CNp,{mk}(f) < +∞, then by Theo-
rem 16 we have

lim
δ→0

BSNδ
p,{mk},c(f) ⩽ C

(
lim
δ→0

∥f ♯
{mk}∥Lp(U(c+1)δ(S)) + ∥f∥Lp(m0)

)
= C

(
∥f ♯
{mk}∥Lp(S) + ∥f∥Lp(m0)

)
. (8.16)

On the other hand, by Lemma 14 we obtain

sup
∑
B∈B

µ(B)
(r(B))p

(
Emk(B)(f, 2cB)

)p
⩽ C

(
BNp,{mk},σ(f)

)p
, (8.17)

where the supremum is taken over all (S, c)-Whitney families B. Collecting esti-
mates (8.16) and (8.17) we obtain (8.15).

The theorem is proved.

Finally, the fourth keystone result of this section reads as follows. We recall (1.11)
and (1.14).

Theorem 18. For each σ ∈ (0, 1) there exists a constant C > 0 such that

BN p,{mk},σ(f) ⩽ CCNp,{mk}(f) for all f ∈ Lloc
1 ({mk}). (8.18)

Proof. We recall the notation (1.13) and (2.3). We put Sk(σ) := Sϵk(σ) and Bk :=
Bk(X, ϵ), k ∈ N0, for brevity. We set Bk(x) := Bϵk(x) for k ∈ N0 and x ∈ X, as
usual. For each k ∈ N0 and for any ball B ∈ Bk that has a nonempty intersection
with Sk(σ) we fix a point xB ∈ B ∩ Sk(σ) and a ball B′ = B′(B) ⊂ Bk(xB) \ S of
radius rB′ ⩾ σϵk.

Since ϵ−1 ⩾ 10, given k ∈ N and B ∈ Bk, for any point z ∈ B′(B) we have
Bk−1(z) ⊃ 2Bk(y) and 2Bk(y) ⊃ B for all y ∈ B∩Sk(σ). Hence, by Proposition 30
(for x = y, c = 2 and k = 1)

Emk
(f, 2Bk(y)) ⩽ CEmk−1(f, Bk−1(z)) for all y ∈ B ∩ Sk(σ) and all z ∈ B′.

On the other hand, by Remark 3 and Theorem 5 we have Emk
(f, Bk(y)) ⩽

CEmk
(f, 2Bk(y)) for C > 0 independent of f , k and y. These observations, in

combination with the uniformly locally doubling property of µ and (1.6), give

ϵk(θ−p)

∫
B∩Sk(σ)

(
Emk

(f, Bk(y))
)p

dmk(y)

⩽ ϵk(θ−p)mk(B) inf
z∈ 1

2 B′

(
Emk−1(f, Bk−1(z))

)p

⩽ Cµ(B′) inf
z∈ 1

2 B′
(f ♯
{mk}(z))p ⩽ C

∫
1
2 B′

(f ♯
{mk}(z))p dµ(z). (8.19)

Given k ∈ N, the key property of the balls B′(B), B ∈ Bk, is that for some
l = l(σ) ∈ N (because ϵ ∈ (0, 1/10])

1
2
B′(B) ⊂ U2ϵk(S) \ Uϵk+l(S) for each B ∈ Bk such that B ∩ Sk(σ) ̸= ∅. (8.20)
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Furthermore, since 1
2B′(B) ⊂ 3B for all B ∈ Bk and the family { 1

2B : B ∈ Bk} is
disjoint by Proposition 7, we have

M
({

1
2
B′(B) : B ∈ Bk and B ∩ Sk(σ) ̸= ∅

})
⩽ C. (8.21)

Consequently, using (8.19)–(8.21) and Proposition 4, for each k ∈ N we obtain

ϵk(θ−p)

∫
Sk(σ)

(
Emk

(f, Bk(x))
)p

dmk(x)

⩽ ϵk(θ−p)
∑

B∈Bk

∫
B∩Sk(σ)

(
Emk

(f, Bk(x))
)p

dmk(x)

⩽ C
∑

B∈Bk

B∩Sk(σ)̸=∅

∫
1
2 B′(B)

(f ♯
{mk}(y))p dµ(y) ⩽ C

∫
Uk−1(S)\Uk+1(S)

(f ♯
{mk}(y))p dµ(y).

As a result, we have

∞∑
k=1

ϵk(θ−p)

∫
Sk(σ)

(
Emk

(f, Bk(x))
)p

dmk(x) ⩽ C

∫
U0(S)

(f ♯
{mk}(y))p dµ(y). (8.22)

Combining (8.22) with (1.11) and (1.14) we obtain (8.18).
The theorem is proved.

§ 9. Trace inequalities for the Riesz potentials

The aim of this section is to establish a Hedberg-Wolff-type inequality. Of course,
the results of this section are not surprising for experts. Nevertheless, the author
has not succeeded in finding a precise reference in the literature. We present the
details for completeness.

Throughout the whole section we fix the following data:
(D.9.1) a parameter q ∈ [1,∞) and an m.m.s. X = (X, d, µ) ∈ Aq;
(D.9.2) a locally finite measure m on X, a parameter ϵ ∈ (0, 1/10] and a number

k ∈ Z.
Having Proposition 10 at our disposal we fix a family {Qk,α} of generalized

dyadic cubes in X and introduce the essential part of X by letting X :=⋂∞
k=k

⋃
α∈Ak(X,ϵ) Qk,α. Furthermore, given a generalized dyadic cube Qk,α in X,

we put
Q̂k,α :=

⋃
{cl Qk,α′ : cl Qk,α′ ∩ 5Bϵk(zk,α) ̸= ∅}. (9.1)

From Propositions 7 and 10 we easily obtain the following assertion.

Proposition 31. There exists a constant C > 0 such that

M({Q̂k,α : α ∈ Ak(X, ϵ)}) ⩽ C for all k ⩾ k.

From (9.1) and properties (DQ2) and (DQ3) in Proposition 10 we immediately
obtain the following result.
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Proposition 32. For each k ⩾ k and α ∈ Ak(X, ϵ)⋃
{Q̂j,β : Qj,β ⊂ Qk,α} ⊂ Q̂k,α for all j ⩾ k.

Given a point x ∈ X and a number k ⩾ k, there is a unique α(x) ∈ Ak(X, ϵ) for
which x ∈ Qk,α(x). In what follows we set

Qk,α(x) := Qk,α(x) and Q̂k,α(x) := Q̂k,α(x). (9.2)

Given a Borel set E ⊂ X such that µ(E) > 0, we put

am(E) :=
m(E)
µ(E)

diam E. (9.3)

Given R ∈ (0, ϵk], the restricted Riesz potential of m is the mapping IR[m] : X →
[0, +∞] defined by

IR[m](x) :=
∑

ϵk⩽R

am(Bϵk(x)), x ∈ X . (9.4)

We also introduce the restricted dyadic Riesz potential of the measure m by the
formula

ÎR[m](x) :=


∑

ϵk⩽R

am(Q̂k,α(x)), x ∈ X,

0, x ∈ X \X.

(9.5)

Given p ∈ (1,∞), we set p′ := p/(p− 1). Given a Borel set E ⊂ X and a parameter
R ∈ (0, ϵk], the restricted energy and the restricted dyadic energy of the measure m
are defined by

ER
p [m](E) :=

∫
E

(
IR[m](x)

)p′

dµ(x) and ÊR
p [m](E) :=

∫
E

(
ÎR[m](x)

)p′

dµ(x).

(9.6)
By (DQ4) in Proposition 10 it is clear that

Q̂k,α ⊂ 9Bϵk(zk,α). (9.7)

Hence, by the uniformly locally doubling property of µ there is a constant C > 0
such that for each R ∈ (0, ϵk],

IR[m](x) ⩽ CÎR[m](x) for all x ∈ X. (9.8)

The following elementary observation will be important in the proof of Theo-
rem 19 below.

Proposition 33. Let j ⩾ k and β ∈ Aj(X, ϵ). Then

j∑
k′=k

∑
Qk′,α⊃Qj,β

am(Q̂k′,α) ⩽ inf
x∈Qj,β∩X

Îϵk

[m](x), k ∈ {k, . . . , j}.
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Proof. Indeed, by (9.2)

j∑
k′=k

∑
Qk′,α⊃Qj,β

am(Q̂k′,α) =
j∑

k′=k

am(Q̂k′,α(x)) for all x ∈ Qj,β . (9.9)

Combining this observation with (9.5) we obtain the required estimate.

The following three assertions will be crucial in what follows. In fact, the cor-
responding proofs are based on ideas very similar to the ones used in the proof of
Proposition 2.2 in [43]. However, in order to realise these ideas in our case we must
make some modifications because of the lack of Euclidean structure. We present
the details.

Lemma 15. Let p ∈ (1,∞). Then there exists a constant C > 0 such that for each
R ∈ (0, ϵk] the inequality

ÊR
p [m](E) ⩽ p′

∑
ϵk⩽R

∑
α∈Ak(X,ϵ)

am(Q̂k,α)
∫

Qk,α∩E

(Îϵk

[m](x))p′−1 dµ(x) (9.10)

holds for any Borel set E ⊂ X.

Proof. First of all, we claim that

(ÎR[m](x))p′ ⩽ p′
∑

ϵk⩽R

am(Q̂k,α(x))(Îϵk

[m](x))p′−1, x ∈ X. (9.11)

Indeed, in the case when ÎR[m](x) = +∞ the inequality is obvious. Assume that
ÎR[m](x) < +∞. Recall that for any s ⩾ 1 the elementary inequality βs − αs ⩽
s(β − α)βs−1 holds for all real numbers 0 ⩽ α ⩽ β. Hence, given x ∈ X, if k ∈ Z is
such that ϵk ⩽ R, then(∑

j⩾k

am(Q̂j,α(x))
)p′

−
( ∑

j⩾k+1

am(Q̂j,α(x))
)p′

⩽ p′(am(Q̂k,α(x)))
(∑

j⩾k

am(Q̂j,α(x))
)p′−1

.

Clearly, if ÎR[m](x) < +∞, then we have Îϵk

[m](x) → 0 as k → ∞. Thus, the
standard telescopic-type arguments, in combination with the above inequality, lead
to (9.11). As a result, combining (9.5), (9.6) and (9.11) and taking into account
(DQ5) in Proposition 10 we arrive at the required estimate.

The lemma is proved.

Now we can estimate the restricted dyadic energy from above in the case when
p ⩾ 2.

Lemma 16. Let p ∈ [2,∞). Then there exists a constant C > 0 such that, for
each R ∈ (0, ϵk] and any Borel set E ⊂ X,

ÊR
p [m](E) ⩽ C

∑
ϵk⩽R

∑
Qk,α∩E ̸=∅

ϵkm(Q̂k,α)
(
am(Q̂k,α)

)p′−1
. (9.12)
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Proof. We fix R ∈ (0, ϵk] and a Borel set E ⊂ X. We have p′ ∈ (1, 2], and so
p′ − 1 ⩽ 1. We change the sum and the integral, use (DQ1), (DQ2) and (DQ5)
in Proposition 10, and take (9.3), (9.5) and (9.7) into account. As a result, given
k ⩾ k and α ∈ Ak(X, ϵ), we obtain

1
µ(Qk,α)

∫
Qk,α∩E

(Îϵk

[m](x))p′−1 dµ(x) ⩽

(
–
∫

Qk,α

∑
j⩾k

am(Q̂j,β(x)) dµ(x)
)p′−1

⩽ 9p′−1

(
1

µ(Qk,α)

∑
j⩾k

ϵj
∑

Qj,β⊂Qk,α

m(Q̂j,β)
)p′−1

.

Given j ⩾ k, using Propositions 31 and 32 we obtain
∑

Qj,β⊂Qk,α
m(Q̂j,β) ⩽

Cm(Q̂k,α). Hence, using the above inequality, (DQ4) in Proposition 10 and the
uniformly locally doubling property of the measure µ, we derive

1
µ(Qk,α)

∫
Qk,α∩E

(Îϵk

[m](x))p′−1 dµ(x) ⩽ C

(
ϵk m(Q̂k,α)

µ(Qk,α)

)p′−1

⩽ C(am(Q̂k,α))p′−1.

(9.13)
Finally, using Lemma 15 and (9.13), we obtain (9.12) and complete the proof.

Now we are ready to establish the keystone estimate.

Theorem 19. Let p ∈ (1,∞). Then there exists a constant C > 0 such that,
for each k ⩾ k ,

Êϵk

p [m](Qk,α) ⩽ C

∞∑
j=k

∑
Qj,β⊂Qk,α

ϵjm(Q̂j,β)(am(Q̂j,β))p′−1

for all α ∈ Ak(X, ϵ). (9.14)

Proof. In the case when p ∈ [2,∞) the assertion of the theorem follows from
Lemma 16.

Consider the case when p ∈ (1, 2). We fix k ⩾ k, α ∈ Ak(X, ϵ) and argue by
induction. More precisely, the base of induction is that (9.14) holds for p′ ∈ (1, l],
where l = 2. We are going to show that (9.14) holds for each p′ > 1. We
assume that (9.14) is proved for p′ ∈ (1, l], for some l ∈ N ∩ [2,∞), and show
that (9.14) holds for all p′ ∈ (1, l + 1]. We use Lemma 15, and then take into
account that p′ − 1 ∈ (1, l]. As a result, we obtain

Êϵk

p [m](Qk,α) ⩽ p′
∞∑

k′=k

∑
Qk′,α′⊂Qk,α

am(Q̂k′,α′)
∫

Qk′,α′

(Îϵk′

[m](x))p′−1 dµ(x)

⩽ C

∞∑
k′=k

∑
Qk′,α′⊂Qk,α

am(Q̂k′,α′)
∞∑

j=k′

∑
Qj,β⊂Qk′,α′

ϵjm(Q̂j,β)(am(Q̂j,β))p′−2.

Changing the order of summation we obtain

Êϵk

p [m](Qk,α) ⩽ C

∞∑
j=k

∑
Qj,β⊂Qk,α

ϵjm(Q̂j,β)(am(Q̂j,β))p′−2

j∑
k′=k

∑
Qk′,α′⊃Qj,β

am(Q̂k′,α′).

(9.15)
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Hence, by Proposition 33, (9.3) and (9.7), and the uniformly locally doubling prop-
erty of µ,

Êϵk

p [m](Qk,α) ⩽ C

∞∑
j=k

∑
Qj,β⊂Qk,α

∫
Qj,β

ϵjm(Q̂j,β)
µ(Qj,β)

(am(Q̂j,β))p′−2Îϵk

[m](x) dµ(x)

⩽ C

∫
Qk,α

∞∑
j=k

(
am(Q̂j,β(x))

)p′−1(
Îϵk

[m](x)
)
dµ(x). (9.16)

An application of Hölder’s inequality for sums with exponents q = (p′− 1)/(p′− 2)
and q′ = p′ − 1 gives
∞∑

j=k

(
am(Q̂j,β(x))

)p′−1 =
∞∑

j=k

(
am(Q̂j,β(x))

)1/(p′−1)(
am(Q̂j,β(x))

)p′−2+(p′−2)/(p′−1)

⩽ C
(
Îϵk

[m](x)
)1/(p′−1)

( ∞∑
j=k

(am(Q̂j,β(x)))p′
)(p′−2)/(p′−1)

. (9.17)

Now we plug (9.17) into (9.16) and apply Hölder’s inequality for integrals with
exponents p′ − 1 and (p′ − 1)/(p′ − 2). This gives

Êϵk

p [m](Qk,α)

⩽ C
(
Êϵk

p [m](Qk,α)
)1/(p′−1)

(∫
Qk,α

∞∑
j=k

(
am(Q̂j,β(x))

)p′

dµ(x)
)(p′−2)/(p′−1)

.

As a result, if Êϵk

p [m](Qk,α) < +∞, then we have the required inequality

Êϵk

p [m](Qk,α) ⩽ C

∫
Qk,α

∞∑
j=k

(
am(Q̂j,β(x))

)p′

dµ(x)

⩽ C

∞∑
j=k

∑
Qj,β⊂Qk,α

ϵjm(Q̂j,β)(am(Q̂j,β))p′−1. (9.18)

To remove the assumption Êϵk

p [m](Qk,α) < +∞ we proceed as follows. Given
l ∈ N, we consider the lth truncation of the restricted Riesz potential Îϵl,ϵk

[m]
obtained by summing only over l ⩽ k′ ⩽ k in (9.5) (note that here we use the index
k′ instead of k in (9.5)). Clearly, the corresponding truncations of the restricted
dyadic energies Êϵl,ϵk

p [m](Qk,α) are finite for all l ∈ N. Repeating the above argu-
ments with minor changes, for any fixed l ∈ N we obtain an analogue of (9.18) for
Êϵk

p [m](Qk,α) replaced by Êϵl,ϵk

p [m](Qk,α). Then we pass to the limit as l goes to
infinity.

The theorem is proved.

Given R > 0, the restricted Wolff potential is a mapping WR
p [m] : X → [0, +∞]

defined by

WR
p [m](x) :=

∑
ϵk⩽R

(
ϵkp m(Bϵk(x))

µ(Bϵk(x))
)p′−1

, x ∈ X . (9.19)
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Now we are ready to establish a Hedberg-Wolff-type inequality.

Corollary 2. There are constants c1, c2 > 1 depending on ϵ only such that the
following holds. Given p ∈ (1,∞), there is a constant C > 0 such that for each
R ∈ (0, ϵk] and every Borel set E ⊂ X,

ER
p [m](E) ⩽ C

∫
Uc2R(E)

Wc1R
p [m](y) dm(y), (9.20)

where Uc2R(E) := {y ∈ X: infx∈E d(y, x) < c2R}.

Proof. We fix R ∈ (0, ϵk], recall the notation (2.18), and put k := kϵ(R). By (9.6),
(9.8) and (DQ5) in Proposition 10,

ER
p [m](E) ⩽ C

∑
Qk,α∩E ̸=∅

Êϵk

p [m](Qk,α). (9.21)

From (DQ1) in Proposition 10 and (9.1), (9.7), given j ⩾ k, it is clear that, for any
generalized dyadic cube Qj,β in X we have

B5ϵj (zj,β) ⊂ Q̂j,β ⊂ B18ϵj (y) ⊂ B27ϵj (zj,β) for all y ∈ Q̂j,β .

Hence, using the uniformly locally doubling property of the measure µ we obtain

ϵjm(Q̂j,β)
(
am(Q̂j,β)

)p′−1
⩽ C

∫
Q̂j,β

(
ϵjp m(B18ϵj (y))

µ(B18ϵj (y))

)p′−1

dm(y).

Combining this estimate with Theorem 19 we deduce

Êϵk

p [m](Qk,α) ⩽ C

∫
X

∞∑
j=k

∑
Qj,β⊂Qk,α

χQ̂j,β
(y)

(
ϵjp m(B18ϵj (y))

µ(B18ϵj (y))

)p′−1

dm(y). (9.22)

For each j ⩾ k we put k(j) := kϵ(18ϵj) (we use the notation (2.18)). By the
uniformly locally doubling property of µ it is easy to see that

ϵj m(B18ϵj (y))
µ(B18ϵj (y))

⩽ Cϵk(j) m(Bϵk(j)(y))
µ(Bϵk(j)(y))

.

Hence, letting c1 = 18ϵk/R and taking into account (9.19) and Proposition 31,
we can continue (9.22). This gives

Êϵk

p [m](Qk,α) ⩽ C

∫
Q̂k,α

Wc1R
p [m](y) dm(y). (9.23)

We put c2 = 11ϵk/R. By (9.7) we have Q̂k,α ⊂ Uc2R(E), provided that
Qk,α ∩ E ̸= ∅. Hence combining (9.21) and (9.23), and taking Proposition 4 into
account we obtain (9.20).

The corollary is proved.
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§ 10. Proofs of the main results

In this section we prove Theorems 2–4. We recall Proposition 13.
Throughout this section we fix the following data:
(D.10.1) a parameter p ∈ (1,∞), an m.m.s. X = (X, d, µ) ∈ Ap and a parameter

q ∈ (1, p) such that X ∈ Aq;
(D.10.2) a parameter θ ∈ [0, q) and a set S ∈ LCRθ(X);
(D.10.3) a sequence of measures {mk} ∈ Mθ(S) with parameter ϵ = ϵ({mk}) ∈

(0, 1/10].
Again, we recall the notation (2.18) and (2.20).

Lemma 17. Let α > θ/p. Then for each R > 0 there is a constant C > 0 such that

∥MR
q,α(g)∥Lp(m0) ⩽ C∥g∥Lp(X) for all g ∈ Lp(X). (10.1)

Proof. Given g ∈ Lp(X), let

X0(g) :=
{

x ∈ X: lim
R̃→0

M R̃
p,α(g) = 0

}
.

By Proposition 15 and Hölder’s inequality, Hαp(X \X0(g)) = 0. Since αp > θ,
by (2.27) we haveHθ(X \X0(g)) = 0. By Proposition 20, we have m0(X \X0(g))=0.
Using this observation and Hölder’s inequality, we see that MR

q,α(g)(x) < +∞ for
all x ∈ X0(g). Given x ∈ X0(g), we fix rx ∈ (0, R] such that

(rx)α

(
–
∫

Brx (x)

|g(y)|q dµ(y)
)1/q

>
1
2
MR

q,α(g)(x).

We put G := {Brx
(x) : x ∈ X0(g)}. Given k ∈ N0, we put

Ek :=
{

x ∈ X0(g) : rx ∈
(

R

2k+1
,

R

2k

]}
and Gk := {Brx

(x) : x ∈ Ek}.

Obviously, Ek ∩ Ej = ∅ for k ̸= j and
⋃

k∈N0
Ek = X0(g). Hence∫

X

(MR
q,α(g)(x))p dm0(x) =

∞∑
k=0

∫
Ek

(MR
q,α(g)(x))p dm0(x). (10.2)

Given k ∈ N0, using Vitali’s 5B-covering lemma we find a disjoint family of balls
G̃k ⊂ Gk such that Ek ⊂

⋃
{5B : B ∈ G̃k}. Using the uniformly locally doubling

property of µ we obtain∫
Ek

(MR
q,α(g)(x))p dm0(x)

⩽ 2p
∑

B∈G̃k

∫
5B∩Ek

(rx)αp

(
–
∫

Brx (x)

|g(y)|q dµ(y)
)p/q

dm0(x)

⩽ C
∑

B∈G̃k

m0(5B)
(

R

2k

)αp(
–
∫

7B

|g(y)|q dµ(y)
)p/q

.
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By Theorem 5 and (1.6) we have m0(5B) ⩽ C2kθµ(B) for all B ∈ G̃k. Consequently,
using Hölder’s inequality and Propositions 4 and 7 we deduce∫

Ek

(MR
q,α(g)(x))p dm0(x) ⩽ C2k(θ−αp)

∑
B∈G̃k

µ(5B) –
∫

7B

|g(y)|p dµ(y)

⩽ C2k(θ−αp)
∑

B∈G̃k

∫
7B

|g(y)|p dµ(y) ⩽ C2k(θ−αp)

∫
X

|g(y)|p dµ(y). (10.3)

Since αp > θ, a combination of (10.2) and (10.3) gives (10.1).
Lemma 17 is proved.

The following result is crucial for our analysis. We recall (2.11), and throughout
this section we put FG := FG,µ. Furthermore, we set Bk(x) := Bϵk(x), as usual.

Theorem 20. For each c ⩾ 1 and p̃ ∈ (q, p] there exist C > 0 and c̃ ⩾ c such that,
if Bk(x′) ⊂ cBk(x) for some k ∈ N0 , x′ ∈ S and x ∈ X, then

–
∫

cBk(x)

|F |m0
S (y)−FcBk(x)| dmk(y) ⩽ Cϵk

(
–
∫

c̃Bk(x)

(|∇F |∗,p(y))p̃ dµ(y)
)1/p̃

(10.4)

for all F ∈ W 1
p (X).

Proof. Fix c ⩾ 1. We also fix k ∈ N0, x′ ∈ S and x ∈ X such that Bk(x′) ⊂ cBk(x).
Throughout, we put B := Bk(x).

Step 1. By Definition 9, for m0-almost all y ∈ cB ∩ S we have

|F |m0
S (y)− FcB | = lim

i→∞
|FBi(y) − FcB | ⩽ |FBk(y) − FcB |+

∞∑
i=k

|FBi(y) − FBi+1(y)|.

(10.5)
Combining Remark 3 with Proposition 16, for m0-almost all y ∈ cB ∩ S we obtain

∞∑
i=k

|FBi(y) − FBi+1(y)| ⩽ C

∞∑
i=k

ϵi

(
–
∫

λBi(y)

(|∇F |∗,p(v))q dµ(v)
)1/q

. (10.6)

We recall (2.20). Using the uniformly locally doubling property of µ it is easy to
see that for each i ⩾ k,(

–
∫

λBi(y)

(|∇F |∗,p(v))q dµ(v)
)1/q

⩽ C inf
z∈Bi(y)

(
–
∫

(λ+1)Bi(z)

(|∇F |∗,p(v))q dµ(v)
)1/q

⩽ C –
∫

Bi(y)

M
(λ+1)ϵi

q,0 (|∇F |∗,p)(z) dµ(z) for all y ∈ cB. (10.7)

As a result, using estimates (10.6) and (10.7) and taking (2.6) and (9.4) into account
we obtain

–
∫

cB

∞∑
i=k

|FBi(y) − FBi+1(y)| dmk(y) ⩽ C

(
–
∫

cB

Iϵk

[M (λ+1)ϵk

q,0 (|∇F |∗,p)µ](y) dmk(y)
)

.

(10.8)
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On the other hand Bk(y) ⊂ (c + 1)B for all y ∈ cB. Hence, using Remark 3,
Proposition 16 and Hölder’s inequality we obtain

|FBk(y) − FcB | ⩽ Cϵk

(
–
∫

λ(c+1)B

(|∇F |∗,p(z))p̃ dµ(z)
)1/p̃

for all y ∈ cB. (10.9)

Step 2. From the standard duality arguments it is clear that, given a constant
C > 0, a parameter R > 0 and locally finite measures ν and σ on X,

∥IR[gν]∥L1(σ) ⩽ C∥g∥Lp̃(ν) for all nonnegative g ∈ Lp̃(ν)

if and only if (we set p̃′ := p̃/(p̃− 1) as usual)

∥IR[hσ]∥Lp̃′ (ν) ⩽ C∥h∥L∞(σ) for all nonnegative h ∈ L∞(σ).

Note that in (10.8) we work only with the part of the measure µ concentrated on
(c + 2 + λ)B. Now we set c̃ := max{c + 2 + λ, λ(c + 1)} and apply the duality
arguments given above to the measures σ = mk⌊cB and ν = µ⌊c̃B and to g =
M

(λ+1)ϵk

q,0 (|∇F |∗,pχc̃B). This gives∫
cB

Iϵk

[M (λ+1)ϵk

q,0 (|∇F |∗,pχc̃B)µ](y) dmk(y)

⩽ C

(∫
c̃B

(M (λ+1)ϵk

q,0 (|∇F |∗,pχc̃B))p̃ dµ(y)
)1/p̃

(10.10)

for the constant C :=
(
Eϵk

p̃ [mk](c̃B)
)1/p̃′ .

Step 3. By Corollary 2 we have

(C)p̃′ ⩽ C

∫
(c2+c̃)B

Wc1ϵk

p̃ [mk](y) dmk(y).

Hence, using (9.19) and (1.6) and Theorem 5 we obtain

(C)p̃′ ⩽ C

∫
(c2+c̃)B

∑
ϵi⩽c1ϵk

(ϵi(p̃−θ))p̃′−1 dmk(y) ⩽ Cµ(B)ϵk(p̃−θ)p̃′/p̃−kθ. (10.11)

Step 4. Since Bk(x′) ⊂ cB, we have B ⊂ (c + 1)Bk(x′). Hence, using (1.7) and
the uniformly locally doubling property of µ we obtain

1
mk(cB)

⩽
1

mk(Bk(x′))
⩽ C

ϵkθ

µ(Bk(x′))
⩽ C

ϵkθ

µ((c + 1)Bk(x′))
⩽ C

ϵkθ

µ(B)
. (10.12)

Step 5. Combining (10.5) with (10.8)–(10.12) and taking Proposition 12 into
account we obtain (10.4).

The theorem is proved.
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Now we recall (1.11) and establish the following powerful estimate.

Corollary 3. There exists a constant C > 0 such that

CNp,{mk}(F |
m0
S ) ⩽ C∥|∇F |∗,p∥Lp(X) for all F ∈ W 1

p (X) (10.13)

and, furthermore,

∥F |m0
S ∥Lp(m0) ⩽ C∥F∥W 1

p (X) for all F ∈ W 1
p (X). (10.14)

Proof. We fix p̃ ∈ (q, p) and put f := F |m0
S for brevity. Using (2.12) and Theorem 20

for c = 2, for each ball Bk(x), k ∈ N0, such that Bk(x) ∩ S ̸= ∅ (we set Bk(x) :=
Bϵk(x)) we obtain

Emk
(f, 2Bk(x)) ⩽ –

∫
2Bk(x)

|f(y)− F2Bk(x)| dmk(y)

⩽ Cϵk

(
–
∫

c̃Bk(x)

(|∇F |∗,p)p̃ dµ(y)
)1/p̃

. (10.15)

From Theorem 5 it is easy to see that f ♯
{mk}(x) ⩽ C supk∈N0

ϵ−kEmk
(f, 2Bk(x))

for all x ∈ X. Hence, using (10.15) we obtain

f ♯
{mk}(x) ⩽ CM c̃

p̃,0(|∇F |∗,p)(x) for all x ∈ X .

As a result, an application of Proposition 12 gives (10.13).
We recall the notation (2.3) and fix a family B := B0(X, ϵ). By Hölder’s

inequality,∫
S

|f(x)|p dm0(x) ⩽ C
∑
B∈B

B∩S ̸=∅

∫
B

|f(x)|p dm0(x)

⩽ C
∑
B∈B

B∩S ̸=∅

(∫
B

|f(x)− F2B |p dm0(x) +
m0(B)
µ(2B)

∫
2B

|F (x)|p dµ(x)
)

. (10.16)

Given B ∈ B such that B ∩ S ̸= ∅, by the triangle inequality we have∫
B

|f(x)− F2B |p dm0(x)

⩽
∫

B

|FB0(x) − F2B |p dm0(x) +
∫

B

|f(x)− FB0(x)|p dm0(x). (10.17)

By Remark 3, |FB0(x) − F2B | ⩽ CEµ(F, 2B) for all x ∈ B ∩ S. Hence, by Proposi-
tion 16,∫

B

|FB0(x) − F2B |p dm0(x) ⩽ Cm0(B) –
∫

2λB

(|∇F |∗,p)p dµ(y). (10.18)

By Definition 9, given δ ∈ (0, 1/2), we have

|f(x)− FB0(x)| ⩽
∞∑

i=0

ϵiδ

ϵiδ
|FBi(x) − FBi+1(x)| for m0-a.e. x ∈ S. (10.19)
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Using Hölder’s inequality for sums, Remark 3, Proposition 16 and taking (2.20)
into account, for m0-almost all x ∈ S we obtain

|f(x)− FB0(x)|p ⩽ C

∞∑
i=0

ϵ−ipδ|FBi(x) − FBi+1(x)|p

⩽ C

∞∑
i=0

ϵi(p−pδ)

(
–
∫

λBi(x)

(|∇F |∗,p(y))q dµ(y)
)p/q

⩽ C
(
Mλ

q,1−2δ(|∇F |∗,p)(x)
)p

.

(10.20)

By (1.6), m0(B) ⩽ Cµ(B) for all B ∈ B. We combine estimates (10.16)–(10.20),
and take Propositions 4 and 7 into account. Finally, choosing δ > 0 sufficiently
small so that p− 2pδ > θ we use Lemma 17 for α = 1− 2δ. This gives (10.14).

The corollary is proved.

We should warn the reader that the following result is not a consequence of
Theorem 20. Indeed, at this moment it has not yet been proved that ExtS,{mk} is
a right inverse of Tr |m0

S .

Theorem 21. Assume that {mk} ∈ Mstr
θ (S). Then for each c ⩾ 3/ϵ there exists

a constant C > 0 such that for every f ∈ Lloc
1 ({mk}) satisfying Np,{mk},c(f) < +∞,

each k ∈ N0 and any ball B = Bϵk(x) such that x ∈ S ,

–
∫

B

|f(y)− FB | dmk(y) ⩽ Cϵk

(
–
∫

B

(|∇F |∗,p(y))p dµ(y)
)1/p

, (10.21)

where F := ExtS,{mk}(f).

Proof. We fix f ∈ Lloc
1 ({mk}) such that Np,{mk},c(f) < +∞. By Theorem 14 we

have F = ExtS,{mk}(f) ∈ W 1
p (X). Consequently, the right-hand side of inequality

(10.21) makes sense. We recall the concept of a special approximating sequence
introduced in (7.15). By Theorem 11 there is a constant C > 0 independent on f
and a subsequence {f js} of the sequence {f j} such that for all sufficiently large
s ∈ N we have

∥lip f js∥Lp(X) ⩽ C Np,{mk},c(f).

At the same time, by Theorem 12 and Corollary 1 we have

sup
j∈N

∥f j∥Lp(X) ⩽ Cf Np,{mk},c(f) < +∞.

By Definition 7 this implies that Chp(f js) < +∞ (while we do not claim that
the functions f j , j ∈ N, are Lipschitz, yet it is not difficult to show that these
functions are uniformly locally Lipschitz, and so, multiplying them by the cor-
responding Lipschitz cut-off functions, one can easily obtain the finiteness of the
corresponding Cheeger p-energies) and, moreover, by Remark 8 ∥|∇f js |∗,p∥Lp(X) ⩽
C Np,{mk},c(f) for all sufficiently large s ∈ N, where the constant C > 0 is inde-
pendent of f and s. Hence the sequence {f js} is bounded in W 1

p (X). In view of
Proposition 17 there exists a weakly convergent subsequence of the sequence {f js}.
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By Mazur’s lemma there is an increasing sequence {Nl}l∈N and a sequence of con-
vex combinations f̃Nl :=

∑Ml

i=0 λi
Nl

fNl+i, where λi
Nl

⩾ 0 and
∑Ml

i=0 λi
Nl

= 1, such
that

∥F − f̃Nl∥W 1
p (X) → 0 as l →∞.

Since, given l ∈ N, the function f̃Nl is continuous, the m0-trace of f̃Nl to S is an
m0-equivalence class of the pointwise restriction of f̃Nl to S. Hence from Theo-
rem 20 we obtain

–
∫

B

|f̃Nl |m0
S (y)− f̃Nl

B | dmk(y) ⩽ ϵk

(
–
∫

B

(|∇f̃Nl |∗,p(y))p dµ(y)
)1/p

. (10.22)

By Theorem 12 the sequence {f j} converges both in Lp(X) (hence in Lloc
1 (mk))

and Lp(mk) to F and f , respectively. Clearly, the same holds true for the sequence
{f̃Nl}. As a result, passing to the limit in (10.22) we obtain the required estimate.

The theorem is proved.

Now we are ready to show that our extension operator ExtS,{mk} is the right
inverse of the m0-trace operator Tr |m0

S . We recall Definition 14.

Corollary 4. Assume that {mk} ∈ Mstr
θ (S). If f ∈ B(X) is a function such that

Np,{mk},c([f ]m0) < +∞ for some c ⩾ 3/ϵ, then

lim
k→∞

–
∫

Bk(x)

|f(x)− ExtS,{mk}(f)(y)| dµ(y) = 0 for Hp-a.e. x ∈ R{mk},ϵ(f).

(10.23)
In particular, Tr |m0

S ◦ ExtS,{mk}([f ]m0) = [f ]m0 .

Proof. We put F := ExtS,{mk}([f ]m0). It is clear that, given k ∈ N0 and x ∈ S,
we have

–
∫

Bk(x)

|f(x)− F (y)| dµ(y) ⩽

∣∣∣∣f(x)− –
∫

Bk(x)

f(y) dmk(y)
∣∣∣∣

+ –
∫

Bk(x)

–
∫

Bk(x)

|f(y)− F (y)| dmk(y) dµ(y) =:
2∑

i=1

Ri
k(x). (10.24)

By Definition 14 we have limk→∞R1
k(x) = 0 for all x ∈ R{mk},ϵ(f). On the other

hand, combining Remark 3, Propositions 15, and Theorem 21, we obtain

(R2
k(x))p ⩽ Cϵkp –

∫
Bk(x)

(|∇F |∗,p(y))p dµ(y) → 0, k →∞, for Hp-a.e. x ∈ S.

(10.25)
Combining (10.24) and (10.25) we derive (10.23). Finally, to prove the second claim
it is sufficient to use Theorem 10, Proposition 20 and take into account that the
inequality p > θ implies that Hθ⌊S is absolutely continuous with respect to Hp⌊S .

The corollary is proved.

We recall the concept of a p-sharp representative introduced in § 2.3.
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Proposition 34. Given F ∈ W 1
p (X), let F be an arbitrary p-sharp representative

of F . Then Cp(S \ R{mk},ϵ(F )) = 0.

Proof. One should repeat almost verbatim the proof of Lemma 4.3 in [21] using
(at appropriate places) Propositions 18, 15 and Theorem 20 of this paper instead
of Propositions 2.4, 3.1 and Theorem 3.1 from [21].

Proof of Theorems 2–4. We fix c ⩾ 3/ϵ and σ ∈ (0, ϵ2/(4c)) and split the proof into
several steps.

Step 1. We recall Definition 20 and fix a function f ∈ Lloc
1 ({mk}) such that

Np,{mk},c(f) < +∞. By Theorem 14 we have F := ExtS,{mk}(f) ∈ W 1
p (X). From

Corollary 4 we conclude that f ∈ W 1
p (X)|m0

S and f = Tr |m0
S (F ). Hence from Corol-

lary 3 we obtain CNp,{mk}(f) < +∞. By Theorem 16 this implies that
BSNp,{mk},c(f) < +∞ for any c ⩾ 1. Combining these observations with Theo-
rem 15 we prove the equivalence of (i), (ii) and (iii) in Theorem 2. An application
of Theorems 17 and 18 verifies the equivalence of (i)–(iv) in Theorem 2.

Step 2. By Theorems 13–16 we have (we put F = ExtS,{mk}(f))

∥f∥W 1
p (X)|m0

S
⩽ ∥F∥W 1

p (X) ⩽ C BSNp,{mk},c(f) ⩽ C CNp,{mk}(f). (10.26)

From Remark 8, Theorem 14 and Corollary 3 we obtain

C−1CNp,{mk}(f) ⩽ ∥|∇F |∗,p∥Lp(X) ⩽ C Np,{mk},c(f). (10.27)

By (10.26) and (10.27) and Theorem 15 we have Np,{mk},c(f) ≈ BSNp,{mk},c(f) ≈
CNp,{mk}(f). Finally, combining this fact with (10.26) and Theorems 17 and 18 we
obtain (1.15). As a result, we complete the proof of Theorem 2, and, furthermore,
we prove assertion (1) in Theorem 4.

Step 3. Now we prove the first claim in Theorem 3. If f ∈ W 1
p (X)|S , then

by Definitions 8 and 9 it is clear that Im0(f) ∈ W 1
p (X)|m0

S . Consequently, condi-
tion (A) in Theorem 3 holds. Furthermore, condition (B) in Theorem 3 holds by
Proposition 34. Conversely, assume that a function f ∈ B(S) is such that condi-
tions (A) and (B) in Theorem 3 hold true. Note that the corresponding assertions
in §§ 7, 8 and 10, Theorem 2 and assertion (1) in Theorem 4 remain valid if we
replace the requirement {mk} ∈ Mstr

θ (S) by the requirement {mk} ∈ Mθ(S) in
combination with condition (B) in Theorem 3. By Theorem 2, Definition 14 and
Corollary 4 we obtain f ∈ W 1

p (X)|S .
Step 4. By Definitions 8 and 9 it is clear that Im0 : W 1

p (X)|S → W 1
p (X)|m0

S is
a continuous embedding. From Definitions 8 and 9 and Remark 10 it follows that
for each [f ] ∈ W 1

p (X)|m0
S there is a representative f ∈ W 1

p (X)|S . Hence Im0 is
a surjection. Now we show that the mapping Im0 is injective on W 1

p (X)|S . Assume
that, given f ∈ W 1

p (X)|S , we have Im0(f)(x) = 0 for m0-almost every x ∈ X.
Consequently, by (B) in Theorem 3 this implies that f(x) = 0 everywhere on S
except on a set of p-capacity zero, that is, f = 0 in the sense of W 1

p (X)|S . As a result,
from Definitions 8 and 9 it follows easily that Im0 is an isometric isomorphism. This
verifies (3) in Theorem 4.

Step 5. We put ExtS,{mk},p := ExtS,{mk} ◦ Im0 . By Remark 10 this gives
a well-defined linear operator ExtS,{mk},p : W 1

p (X)|S → W 1
p (X). Furthermore, since
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Im0 : W 1
p (X)|S → W 1

p (X)|m0
S is an isomorphism, from Definition 10 we see that

Tr |S = (Im0)
−1 ◦ Tr |m0

S and conclude that the diagram in Theorem 4 is commuta-
tive. Since Im0 : W 1

p (X)|S → W 1
p (X)|m0

S is an isometric isomorphism, it follows that
∥ExtS,{mk},p∥ = ∥ExtS,{mk} ∥. Combining this fact with (1.15) we obtain (1.17)
and complete the proof of Theorems 3 and 4.

§ 11. Examples

In this section we show that many results related to Problems 1 and 2 and avail-
able in the literature are particular cases of Theorems 2–4 in this paper. In addition,
we present a model example (Example 8) which does not fall into the scope of the
previously known investigations. In fact, in some examples we present only sketches
of the corresponding proofs, leaving the routine verifications to the reader.

Example 5. First of all, we note that in the particular case of X = (Rn, ∥ · ∥2,Ln),
by Theorem 3 and assertion (2) of Theorem 4 we obtain a clarification of the results
in [21]. Indeed, in contrast to Theorem 3, the criterion presented in Theorem 2.1
of [21] was based on a more subtle Besov-type norm. Furthermore, characterizations
via Brudnyi-Shvartsman-type functionals were not considered in [21].

For the next examples we recall the notation (1.13) and Definition 6.

Example 6. Let p ∈ (1,∞) and X ∈ Ap. Assume, in addition, that the metric
measure space X is Ahlfors Q-regular for some Q > 0. Let θ ∈ (0, min{p, Q}) and
S ∈ ADRθ(X). Since θ > 0, we have µ(S) = 0. By Theorem 5.3 in [37] there exists
σ > 0 such that for each ϵ ∈ (0, 1] we have Sϵk(σ) = S for all k ∈ N0, that is, the
set S is porous. We put mk = Hθ⌊S for all k ∈ N0. In accordance with Example 3,
we have {mk} ∈ Mstr

θ (S). As a result, using the equivalence between (i) and (iv)
in Theorem 2 and assertion (1) of Theorem 4 we obtain the following criterion due
to Saksman and Soto [17] (see Theorems 1.5 and 1.7 therein).

A function f ∈ Lp(Hθ⌊S) belongs to the space W 1
p (X)|Hθ

S if and only if the Besov
seminorm of f is finite, that is,

∥f∥p

B
1−θ/p
p,p (S)

:=
∞∑

k=0

2k(p−θ)

∫
S

(EHθ
(f, B2−k(x)))p dHθ(x) < +∞.

Furthermore,
∥F∥

W 1
p (X)|Hθ

S

≈ ∥f∥Lp(Hθ⌊S) + ∥f∥
B

1−θ/p
p,p (S)

,

where the equivalence constants are independent of f . Moreover, there exists an
Hθ⌊S-extension operator ExtS ∈ L(W 1

p (X)|Hθ

S , W 1
p (X)).

Example 7. Let p ∈ (1,∞), X = (X, d, µ) ∈ Ap and S∈ADR0(X). We recall Exam-
ple 3 and note that by letting mk = µ⌊S for k ∈ N0 we obtain {mk} ∈ Mstr

0 (S). We
recall a combinatorial result, which is a slight modification of Theorem 2.6 in [18].

Proposition 35. Let B be an (S, c)-Whitney family of balls. Then there exist con-
stants c1, c2 > 0 and τ ∈(0, 1) and a family U :={U(B) : B∈B} of Borel subsets of S
such that U(B) ⊂ c1B , µ(U(B))⩾τµ(B) for all B∈B and M({U(B) : B∈B})⩽c2 .
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Based on Proposition 35, one can repeat the arguments used in Example 6.1
of [21] with minor modifications and deduce, for each σ ∈ (0, 1), the existence of
a constant C > 0 such that, for every f ∈ Lloc

1 (µ⌊S),
∞∑

k=1

2k(p−θ)

∫
Sk(σ)

(
Eµ⌊S

(f, B2−k(x))
)p

dµ⌊S(x) ⩽ C(∥f∥Lp(µ⌊S) + ∥f ♯
µ⌊S
∥Lp(µ⌊S)).

(11.1)
Hence, using the equivalence between (i) and (iv) in Theorem 2 and assertion (1)
of Theorem 4 we arrive at Shvartsman’s criterion [18].

A function f ∈ Lp(µ⌊S) belongs to the space W 1
p (X)|µS if and only if f ♯

S,µ ∈
Lp(µ⌊S). Furthermore,

∥f∥W 1
p (X)|µS ≈ ∥f∥Lp(µ⌊S) + ∥f ♯

µ⌊S
∥Lp(µ⌊S),

where the equivalence constants are independent of f . Moreover, there exists a µ⌊S-
extension operator ExtS ∈ L(W 1

p (X)|µS , W 1
p (X)).

Now we present a model example, which exhibits interesting effects arising in
the case when we describe the trace spaces to closed sets consisting of pieces of
different dimensions.

Example 8. Let p ∈ (1,∞) and X = (X, d, µ) ∈ Ap. Assume that X is Ahlfors
Q-regular for some Q > 1. Let B = BR(x) be a closed ball of radius R > 0
centred at x ∈ X and γ : [0, 1] → X be a rectifiable curve such that Γ := γ([0, 1]) ∈
ADRQ−1(X), Γ ∩ B = γ(0) = {x} for some point x ∈ ∂B and, furthermore, for
some κ > 0, dist(γ(t), B) ⩾ κl(γ([0, t])) for all t ∈ [0, 1]. We put S := B ∪ Γ and
recall Example 4. For each k ∈ N0 we set mk := 2k(Q−1)µ⌊B+HQ−1⌊Γ. Hence we
obtain {mk} := {mk}∞k=0 ∈ Mstr

Q−1(S).
Given k ∈ N0, we introduce the kth gluing functional by letting, for each

f ∈ Lloc
1 ({mk}),

glk(f, x) := –
∫

B∩Bk(x)

–
∫

Γ∩Bk(x)

|f(y)− f(z)| dµ(y) dHQ−1(z). (11.2)

We put k := min{k ∈ N : 2k > 1/κ} and α := 1 − (Q − 1)/p. Using Remark 3
and letting Bk(x) := B2−k(x) and Sk(σ) := S2−k(σ) it is easy to see that, given
σ ∈ (0, 1),(k+1∑

k=1

2kαp

∫
Sk(σ)

(
Emk

(f, Bk(x))
)p

dmk(x)
)1/p

⩽ C
(
∥f∥Lp(µ⌊B) + ∥f∥Lp(HQ−1⌊Γ)

)
.

(11.3)
Using the arguments presented in Examples 6 and 7 and taking into account that
for each k > k we have S ∩ Bk(x) = B ∩ Bk(x) for all x ∈ B \ Bk−k(x) and
S∩Bk(x) = Γ∩Bk(x) for all x ∈ Γ\Bk−k(x), one can show that, given a sufficiently
small σ ∈ (0, 1) (depending on Γ),
∞∑

k=k+2

2kαp

∫
Sk(σ)\Bk−k(x)

(
Emk

(f, Bk(x))
)p

dmk(x) ⩽ C
(
∥f ♯

µ⌊B
∥p

Lp(µ⌊B)+∥f∥
p
Bα

p,p(Γ)

)
.

(11.4)
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Since 1/ϵ ⩾ 10, for x ∈ Sk(σ)∩Bk−k(x) and k > k we have Bk(x) ⊂ Bk−k−1(x)
and Bk−k−1(x) ⊂ Bk−k−2(x). By Remark 3 and Theorem 5, Emk

(f, Bk(x)) ⩽
C glk−k−1(f, x). Furthermore, it is easy to see that mk(Bk−k(x)) ⩽ C2−k. As
a result,∫

Sk(σ)∩Bk−k(x)

(
Emk

(f, Bk(x))
)p

dmk(x) ⩽ C2−k
(
glk−k−1(f, x)

)p
. (11.5)

On the other hand, given x ∈ Sk(σ) ∩Bk−k(x) and k > k + 1, we have Bk−k(x) ⊂
Bk−k−1(x) and Bk−k−1(x) ⊂ Bk−k−2(x). Hence, from Theorem 5 and Remark 3
it is easy to obtain glk−k−1(f, x) ⩽ CEmk

(f, Bk−k−2(x)). If σ ∈ (0, 1) is sufficiently
small, then one can show that mk(Sk(σ) ∩Bk(x)) ≈ 2−k. As a result,(

glk−k(f, x)
)p

⩽ C2k

∫
Sk(σ)∩Bk(x)

(
Emk

(f, Bk−k−1(x))
)p

dmk(x). (11.6)

At the same time it follows from Examples 6 and 7 that there is C > 0 such that
for all F ∈ W 1

p (Rn), for f = F |m0
S we have

∥f∥Lp(µ⌊B) + ∥f∥Lp(HQ−1⌊Γ) + ∥f ♯
µ⌊B

∥Lp(µ⌊B) + ∥f∥Bα
p,p(Γ) ⩽ C∥F∥W 1

p (Rn). (11.7)

Finally, combining (11.3)–(11.7) it is easy to deduce the following result from
Theorem 2 and assertion (1) of Theorem 4.

A function f ∈ Lp(µ⌊B) ∩ Lp(Hθ⌊Γ) belongs to W 1
p (X)|m0

S if and only if f ♯
µ⌊B

∈
Lp(µ⌊B), f ∈ B

1−(Q−1)/p
p,p (Γ) and

(GL(f, x))p :=
∞∑

k=1

2k(p−Q)(glk(f, x))p < +∞.

Furthermore,

∥f∥W 1
p (X)|m0

S
≈ ∥f∥Lp(µ⌊B) + ∥f∥Lp(Hθ⌊Γ)

+ ∥f ♯
µ⌊B

∥Lp(µ⌊B) + ∥f∥
B

1−(Q−1)/p
p,p (Γ)

+ GL(f, x), (11.8)

where the equivalence constants are independent of f . Moreover, there exists an
m0-extension operator ExtS,{mk} ∈ L(W 1

p (X)|m0
S , W 1

p (X)).

We conclude by presenting a natural generalization of Theorem 1.2 from [19].

Example 9. Let X = (X, d, µ) be a geodesic metric measure space. Assume that
X is Ahlfors Q-regular for some Q ⩾ 1. Furthermore, assume that p ∈ (Q,∞)
and X ∈ Ap. Also fix a parameter θ ∈ [Q, p) and a nonempty closed set S ⊂ X.
For simplicity we assume that S ⊂ B1(x) for some x ∈ X. According to Example 2,
we have S ∈ LCRθ(X).

Combining results from [3] with Theorem 9.1.15 from [1] we obtain that each
F ∈ W 1

p (X) has a continuous representative F such that for each closed ball B,

sup
x∈B

|F (x)− FB | ⩽ CrB

(
–
∫

B

(|∇F |∗,p(y))p dµ(y)
)1/p

. (11.9)
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Furthermore, it is clear that, given F ∈ W 1
p (X), the p-sharp trace F |S is well defined

and coincides with the pointwise restriction of F to the set S.
From Remark 3 it is easy to see that if a ball Br(x) of radius r ∈ (0, 1] centred

at x ∈ X is such that Bcr(x) ∩ S ̸= ∅ for some c ⩾ 1, then for each sequence
{mk} ∈ Mstr

θ (S),

Emk(r)(f, B2cr(x)) ⩽ sup
y,z∈B2cr(x)∩S

|f(y)− f(z)| for all f ∈ C(S). (11.10)

We define the modified Brudnyi-Shvartsman-type functional on C(S) (with val-
ues in [0, +∞]) as follows. Given a function f ∈ C(X), we put

B̃SN p(f) := sup
( N∑

i=1

µ(Bri(xi))
rp
i

sup
y,z∈B60ri

(xi)∩S

|f(y)− f(z)|p
)1/p

,

where the supremum is taken over all finite disjoint families of closed balls {Bi}N
i=1 =

{Bri
(xi)}N

i=1 in X of radii ri ∈ (0, 1], i = 1, . . . , N . In the particular case of
X = (Rn, ∥ · ∥∞,Ln) our functional is very similar to that used in [19]. The only
difference is that in [19] the corresponding coefficient of dilation of balls was 11
rather than 60. Using (11.9) and Proposition 7 it is easy to see that

B̃SN p(F |S) + inf
z∈S

|F |S(z)| ⩽ C∥F∥W 1
p (X) for all F ∈ W 1

p (X). (11.11)

On the other hand, if xm ∈ S is a minimum point of f and xM ∈ S is a maximum
point of f , then it is easy to see that |f(xm)− f(xM )| ⩽ (µ(B1(x)))−1/pB̃SN p(f).
As a result, by (11.10)

BSNp,{mk},30(f) ⩽ B̃SN p(f) + sup
x∈S

|f(x)|

⩽ C
(
B̃SN p(f) + inf

z∈S
|f(z)|

)
, f ∈ C(S). (11.12)

Finally, we apply Theorem 3 for ϵ = 1/10 and c = 30 and use (11.11) and (11.12).
This leads to the following criterion.

A function f ∈ C(S) belongs to the space W 1
p (X)|S if and only if B̃SN p(f)<+∞.

Furthermore,
∥f∥W 1

p (X)|S ≈ B̃SN p(f) + inf
z∈S

|f(z)|,

where the corresponding equivalence constants do not depend on f . Moreover, there
exists a p-sharp extension operator ExtS,p ∈ L(W 1

p (X)|S , W 1
p (X)).
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[11] R. Gibara, R. Korte and N. Shanmugalingam, Solving a Dirichlet problem for
unbounded domains via a conformal transformation, arXiv: 2209.09773.

[12] R. Gibara and N. Shanmugalingam, “Trace and extension theorems for
homogeneous Sobolev and Besov spaces for unbounded uniform domains in metric
measure spaces”, Tr. Mat. Inst. Steklova 323 (to appear); arXiv: 2211.12708.

[13] A. Jonsson and H. Wallin, Function spaces on subsets of Rn, Math. Rep., vol. 2,
no. 1, Harwood Acad. Publ., London 1984, xiv+221 pp.
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