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SIMONE VERZELLESI

Abstract. We provide integral representation and Γ-compactness results for anisotropic local
functionals depending on arbitrary Lipschitz continuous vector fields. In particular, neither
bracket-generating assumptions nor linear independence conditions are required.

1. Introduction

Since its introduction in the seminal papers [20, 21], the variational tool of Γ-convergence has
proved to be of fundamental importance in the development of modern analysis (cf. [10, 11, 18])
and in solving problems arising from applications, including phase transitions, elasticity and
fracture theory (cf. e.g. [9, 19, 22, 30]). A remarkable instance can be found in [12, 13, 14,
17], where the authors studied properties of integral representation and Γ-convergence of local
functionals defined over Euclidean functional spaces. By integral representation one means
finding conditions under which an arbitrary functional F (u,A), being u a function and A a set,
can be expressed in the integral form

(1.1) F (u,A) =

∫
A

fe(x, u,Du) dx

where the Euclidean Lagrangian fe(x, u, ξ) typically satisfies some structural properties inher-
ited by F . Integral representations as in (1.1) are a crucial tool to deal with Γ-compactness
properties, since they allow to show the closure of suitable classes of integral functionals under
Γ-convergence. Starting from [28, 31], many typical problems of the calculus of variations have
been transposed into the context of variational functional driven by suitable families of vector
fields (cf. e.g. [5, 6, 7, 15, 23, 29, 34, 35, 37, 38, 39, 41]). The key point of this generalization
consists in defining a degenerate notion ofX-gradient Xu starting from a family of Lipschitz con-
tinuous vector fields X = (X1, . . . , Xm), with m ⩽ n, defined on an open bounded set Ω ⊆ Rn.
This construction is rather general, and encompasses the case of Riemannian manifolds (cf.
[24]), Carnot groups (cf. [8]), sub-Riemannian manifolds (cf. [1]) and Carnot-Carathéodory
spaces (cf. [33]). The X-gradient Xu, which plays the role of the Euclidean gradient Du, allows
to propose a functional framework suitable for the problems of calculus of variations, with the
introduction of the functional spaces W 1,p

X (Ω) and BVX(Ω) (cf. [28]). Recently, the authors of
[25, 26, 36] generalized the results of [12, 13, 14] to this anisotropic setting. More precisely, they

Date: February 19, 2024.
2020 Mathematics Subject Classification. 49J45, 49Q20, 53C17.
Key words and phrases. Integral representation; Γ-compactness; Local functionals; Anisotropic functionals;

Vector fields.
Acknowledgements. The author thanks Fares Essebei, Alberto Maione, Fabio Paronetto, Andrea Pinamonti

and Francesco Serra Cassano for interesting and valuable conversations on the topic of the paper. The author is
member of the Istituto Nazionale di Alta Matematica (INdAM), Gruppo Nazionale per l’Analisi Matematica, la
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studied integral representation properties of the form

(1.2) F (u,A) =

∫
A

f(x, u,Xu) dx

under various assumptions, together with Γ-compactness properties for sequences of integral
functionals as in (1.2). We refer to [2, 3, 4] for similar results in a Cheeger-Sobolev metric
setting. All the results in [25, 26, 36] have been obtained under a structural assumption on X,
the so-called linear independence condition (LIC) (cf. [36, Definition 1.1]). More precisely, X
satisfies the linear independence condition if

(LIC) X1(x), . . . , Xm(x) are linearly independent for a.e. x ∈ Ω.

In particular, the approach of [25, 26, 36] consists in applying the results in [12, 13, 14] to obtain
Euclidean integral representations as in (1.1). That being done, (LIC) plays a crucial role to
upgrade the Euclidean representation (1.1) to a suitable anisotropic representation as in (1.2).
More precisely, since (1.1) gives rise to a representation depending on an Euclidean Lagrangian
fe(x, u, ξ), the authors of [25, 26, 36] exploits (LIC) to define a new anisotropic Lagrangian
f(x, u, η) in such a way that

(1.3) fe(x, u,Du) = f(x, u,Xu)

for any sufficiently regular function u. Further to [25, 26, 36], an interesting open question was
whether these results could be generalised beyond the (LIC) setting.

In this paper, we provide an affirmative answer to the above issue, showing that all the
results in [25, 26, 36] still hold even without requiring (LIC). The value of this result is at
least twofold. On the one hand, avoiding (LIC) allows to consider anisotropies in the greatest
generality. In particular, our results apply to the whole sub-Riemannian framework of Carnot-
Carathéodory spaces. Indeed, while (LIC) is general enough to cover many relevant settings,
among which Carnot groups and Grushin spaces (cf. [36]), it is easy to provide instances of
Carnot-Carathéodory spaces whose associated generating vector fields do not satisfy (LIC) (cf.
Example 2.1). On the other hand, our generality allows to consider the case in which a fixed
family X is replaced by a sequence of families (Xh)h converging to a limiting family X in any
reasonable sense. Even assuming that each family Xh satisfies (LIC), not even the strongest
convergence (say, for instance, C∞) can guarantee in general that X will do the same (cf. Ex-
ample 2.2). This last consideration takes on concrete relevance in matters of Γ-compactness,
and will be the subject of further research.

Our approach starts from noticing that (1.3) is essentially the only point where (LIC) proves
fundamental in the approach of [25, 26, 36]. Therefore, the crucial part of this work is to
achieve (1.3) without requiring (LIC). To explain our approach, we should start by recalling the
strategy of [25, 26, 36]. To this aim, fix a point x ∈ Ω and assume that X1(x), . . . , Xm(x) are
linearly independent in Rm. This implies that the projection map C(x) : Rn −→ Rm induced by
X1(x), . . . , Xm(x) is surjective. In this case, it is possible to set

(1.4) f(x, u, η) = fe
(
x, u, C(x)−1(η)

)
,

being C(x)−1 a suitable right-inverse map of C(x), and to show, under additional assumptions on
fe, that (1.4) suffices to infer (1.3). Since our vector fields may be in general linearly dependent,
C(x) may not be right-invertible. To this aim, we replace C(x)−1 with the so-called Moore-
Penrose pseudo-inverse of C(x) (cf. [32]), say CP (x), and we set

(1.5) f(x, u, η) = fe (x, u, CP (x) · η) .
A careful analysis of the properties of CP (x) (cf. Proposition 3.1) will allow us to exploit (1.5)
to provide anisotropic representations as in (1.3) (cf. Proposition 3.2). Once (1.3) is achieved,
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we devote the rest of the paper to the generalization of the results in [25, 26, 36] (cf. Section 4
and Section 5). We decided to make this last part of the exposition as concise as possible, both
to emphasise the crucial importance of Proposition 3.2, and because, once Proposition 3.2 is
obtained, the proofs work exactly like their counterparts in [25, 26, 36]. We stress that our
results are substantially analogous to those proved in [25, 26, 36]. Nevertheless, the possible
non-surjectivity of C(x) brings out some interesting new phenomena. First of all, a deep look at
the shape of f in (1.5) reveals that it is constant outside the range of C(x) (cf. Proposition 3.2).
More precisely, if we orthogonally decompose any η ∈ Rm as

η = C(x) · ξη + η⊥

for some ξη ∈ Rn, then f satisfies

(1.6) f(x, u, η) = f(x, u, C(x) · ξη).
Anyway, (1.6) is verified only if f is defined as in (1.5). Indeed, it is possible to provide integral
representations as in (1.2) by arbitrarily choosing the value of the corresponding anisotropic
Lagrangian outside the range of C(x) (cf. Example 4.1 and Theorem 4.2). Notwithstanding, we
prove that (1.6) is a sufficient property to guarantee uniqueness in the integral representation
(cf. Theorem 4.1). Another consequence of (1.6) is that f as in (1.5) cannot inherit from fe
full coercivity in the gradient argument. Nevertheless, one can easily observe how the structural
properties of an integral functional depend, in our case, solely on the behaviour of the Lagrangian
on the range of C(x) (cf. Theorem 4.2).

The paper is organized as follows. In Section 2 we collect some basic preliminaries and
we provide some detailed motivations. In Section 3 we prove the core results of this paper,
namely Proposition 3.1 and Proposition 3.2, showing (1.3). In Section 4 we show how to exploit
Proposition 3.2 to provide integral representation (cf. Theorem 4.1) and Γ-compactness (cf.
Theorem 4.3) for a particular class of local functionals. Moreover, we motivate the content of
the statements and we show why our setting of conditions is the optimal one (cf. Example 4.1 and
Theorem 4.2). Finally, in Section 5 we state, for further references, the remaining counterparts
of the results in [25, 26, 36].

2. Preliminaries and motivations

2.1. Main notation. In the following, we fix m,n ∈ N such that 0 < m ⩽ n. For α, β ∈ N\{0},
we denote by M(α, β) the set of matrices with α rows and β columns. If α, β are as above and
L : Rα −→ Rβ is a linear map, we denote by ker(L) ⊆ Rα and Im(L) ⊆ Rβ respectively its
kernel and its range. We fix an open bounded set Ω ⊆ Rn, and we denote by A the class of all
the open subsets of Ω. In the following, we mean vectors in Rα as matrices in M(α, 1).

2.2. Lipschitz continuous vector fields. Given a family X := (X1, . . . , Xm) of Lipschitz
continuous vector fields on Ω, we denote by C(x) the m× n matrix defined by

C(x) := [cj,i(x)] i=1,...,n
j=1,...,m

,

where cj,i is a Lipschitz continuous function on Ω for any j = 1, . . . ,m and any i = 1, . . . , n and

Xj =
n∑

i=1

cj,i
∂

∂xi

for any j = 1, . . . ,m. We recall (cf. [28]) that the X-gradient Xu of u ∈ L1
loc(Ω) is the

distribution defined by

Xu(φ) = −
∫
Ω

u div(φ(x) · C(x))dx
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for any φ ∈ C∞
c (Ω,Rm). The associated anisotropic Sobolev spaces are defined by

W 1,p
X (Ω) = {u ∈ Lp(Ω) : Xu ∈ Lp(Ω,Rm)} and W 1,p

X,loc(Ω) =
⋂{

W 1,p
X (A) : A ∈ A, A ⋐ Ω

}
.

It is well-known (cf. [27]) that the vector space W 1,p
X (Ω), endowed with the norm

∥u∥W 1,p
X (Ω) := ∥u∥Lp(Ω) + ∥Xu∥Lp(Ω,Rm),

is a Banach space for any 1 ⩽ p < +∞, and that it is reflexive when 1 < p < +∞. Under
the Lipschitz continuity assumption on X, W 1,p(Ω) embeds continuously into W 1,p

X (Ω) (cf. [36]),

and the inclusion may be strict (cf. [25]). More precisely, if u ∈ W 1,p
loc (Ω), its X-gradient admits

the Euclidean representation

(2.1) Xu(x) = C(x) ·Du(x)

for a.e. x ∈ Ω.

2.3. Relevant vector fields. As already known, many relevant families of vector fields can
already be found when (LIC) holds, such as the Euclidean space, Carnot groups and Grushin
spaces (cf. [36]). Nevertheless, avoiding (LIC) is crucial to ensure that the results of [25, 26, 36],
gain sufficient generality to be applied, for example, to the Carnot-Carathéodory setting.

Example 2.1. As an instance, consider the the family X = (X1, X2) of vector fields defined on
Ω = (−1, 1)2 ⊆ R2 by

X1(x) =
∂

∂x1

and X2(x) =

{
0 if x1 ∈ (−1, 0)

x1
∂

∂x2
if x1 ∈ [0, 1)

.

for any x = (x1, x2) ∈ Ω. Is is easy to check that Ω, endowed with the control distance induced
by X (cf. [40]), is a Carnot-Carathéodory space. Moreover, X1, X2 are Lipschitz continuous on
Ω. Nevertheless, they do not satisfy (LIC).

Moreover, as pointed out in the introduction, (LIC) may not in general be preserved under
even strong notions of convergence.

Example 2.2. For any h ∈ N \ {0}, consider the the family Xh = (X1, X
h
2 ) of vector fields

defined on R2 by

X1(x) =
∂

∂x1

and Xh
2 (x) =

1

h

∂

∂x2

for any x = (x1, x2) ∈ R2. For any h as above, Xh is made of smooth and globally Lipschitz
continuous vector fields which satisfy (LIC) on R2. Nevertheless, (Xh)h convergence uniformly,
with all its derivatives, to X = (X1, 0), which clearly does not satisfy (LIC).

2.4. Γ-convergence and local functionals. For a complete account to Γ-convergence, we
refer the reader to [10, 11, 18]. We just recall that if (X , τ) is a first-countable topological
space, a sequence of functionals (Fh)h : X −→ [0,+∞] is said to Γ(τ)-converge to a functional
F : X −→ [0,+∞] if the following two conditions hold.

• For any u ∈ X and any sequence (uh)h converging to u, then

(2.2) F (u) ⩽ lim inf
h→+∞

Fh(uh).

• For any u ∈ X , there exists a sequence (uh)h converging to u such that

(2.3) F (u) = lim
h→+∞

Fh(uh).
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Sequences for which (2.3) holds are known as recovery sequences. We conclude this preliminary
section with a list of definitions concerning local functions, in order to keep the discussion as
self-contained as possible. Since an exhaustive treatment of this topic goes beyond the scope of
this paper, we refer to [18] for further references, and to [25, 26, 36] for the anisotropic setting
notation. If F : Lp(Ω)×A −→ [0,+∞] (resp. F : W 1,p

X (Ω)×A −→ [0,+∞]), we say that F is:

• a measure if F (u, ·) is a measure for any u ∈ Lp(Ω) (resp. u ∈ W 1,p
X (Ω));

• local if, for any A ∈ A and u, v ∈ Lp(Ω) (resp. u, v ∈ W 1,p
X (Ω)), then

u|A = v|A =⇒ F (u,A) = F (v,A);

• convex on W 1,p
X (Ω) if F (·, A) restricted to W 1,p

X (Ω) is convex for any A ∈ A;

• Lp-lower semicontinuous (resp. W 1,p
X -lower semicontinuous) if F (·, A) is Lp-lower semi-

continuous (resp. W 1,p
X -lower semicontinuous) for any A ∈ A;

• weakly*- sequentially lower semicontinuous if F (·, A) restricted to W 1,∞(Ω) is sequentially
lower semicontinuous with respect to the weak*- topology of W 1,∞(Ω) for any A ∈ A.

3. Anisotropic representation of Euclidean Lagrangians

This section constitutes the core of this paper. More precisely, we show how to express a
Euclidean Lagrangian in terms of an anisotropic Lagrangian, proving (1.3).

3.1. Algebraic properties of the Moore-Penrose pseudo-inverse. Following the notation
of [25, 36], for any x ∈ Ω we define the linear map C(x) : Rn −→ Rm by

C(x)(ξ) = C(x) · ξ
for any ξ ∈ Rn. Moreover, we let

Nx = ker(C(x)) and Vx =
{
C(x)T · η : η ∈ Rm

}
.

From standard linear algebra (cf. e.g. [42]), we know that Rn = Nx ⊕ Vx. Hence, for any x ∈ Ω
and ξ ∈ Rn, there are uniqe ξNx ∈ Nx and ξVx ∈ Vx such that

(3.1) ξ = ξNx + ξVx .

Therefore, the map Πx : Rn → Vx defined by Πx(ξ) = ξVx is well-posed. The authors of [25, 36]
exploited in a crucial way (LIC) to ensure the existence of a right-inverse map associated to
C(x). Precisely, if X1(x), . . . , Xm(x) are linearly independent at some x ∈ Ω, then any η ∈ Rm

can be expressed in the form η = C(x) · ξη for some ξη ∈ Rn. In the general case, we decompose
η ∈ Rm as

η = C(x) · ξη + η⊥,

where η⊥ ∈ Im(C(x))⊥. We stress that ξη is uniquely defined only modulo ker(C(x)). Since C(x)
may not have full rank, our approach must therefore differ from [25, 36]. Let CP : Ω −→ M(n,m)
be defined so that CP (x) is the Moore-Penrose pseudo-inverse of C(x) (cf. [32]) for any x ∈ Ω.
Precisely, for a fixed x ∈ Ω, CP (x) is the unique matrix in M(n,m) such that (cf. [32])

(3.2)
CP (x) · C(x) · CP (x) = CP (x), C(x) · CP (x) · C(x) = C(x),
CP (x) · C(x) = C(x)T · CP (x)T , C(x) · CP (x) = CP (x)T · C(x)T .

Our anisotropic representation is based on the following properties of CP .

Proposition 3.1. Let CP be the above-defined map. Moreover, for any x ∈ Ω, let CP (x) :
Rm −→ Rn be the linear map defined by

CP (x)(η) = CP (x) · η
for any η. Then the map

x 7→ CP (x)(η)
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is measurable for any η ∈ Rm. Moreover, for any x ∈ Ω, the following facts hold.

(i) Im(CP (x)) = Vx.
(ii) Πx(ξ) = CP (x) · C(x) · ξ for any ξ ∈ Rn.
(iii) ker(CP (x)) = Im(C(x))⊥.

Proof. For a given η ∈ Rn, it is well-known (cf. [32]) that

CP (x) · η = lim
h→+∞

(
C(x)T · C(x) + 1

h
In

)−1

· C(x)T · η.

for any x ∈ Ω. In particular, being C continuous over Ω, x 7→ CP (x) · η is the pointwise limit of
continuous functions, and hence it is measurable. Now we fix x ∈ Ω. Notice that, by (3.2),

CP (x) · η = CP (x) · C(x) · CP (x) · η = C(x)T ·
(
CP (x)T · CP (x) · η

)
for any η ∈ Rm, so that Im(CP (x)) ⊆ Vx. To prove the other inclusion, it suffices to show (ii).
To this aim, fix ξ ∈ Rn. by (3.1) and (3.2),

C(x) · CP (x) · C(x) · ξ = C(x) · ξ = C(x) · (Πx(ξ) + ξNx) = C(x) · Πx(ξ).

Since we already know that CP (x) · C(x) · ξ ∈ Vx, and being C(x) injective on Vx, (ii) follows. To
prove (iii), fix η ∈ ker(CP (x)) and ξ ∈ Rn. Then, by (3.2),

ηT · C(x) · ξ = ηT · C(x) · CP (x) · C(x) · ξ = (CP (x) · η)T · C(x)T · C(x) · ξ = 0,

so that η ∈ Im(C(x))⊥. Hence ker(CP (x)) ⊆ Im(C(x))⊥. Assume by contradiction that there
exists η ̸= 0 such that η ∈ Im(C(x))⊥ ∩ ker(C(x))⊥. In view of (3.2),

(3.3) CP (x) · η = CP (x) · C(x) · CP (x) · η.
Since we know that ker(CP (x)) ⊆ Im(C(x))⊥, then Im(C(x)) ⊆ ker(CP (x))⊥, so that both η and
C(x) · CP (x) · η belongs to ker(CP (x))⊥. Being CP (x) injective on ker(CP (x))⊥, we conclude from
(3.3) that η = C(x) · CP (x) · η, a contradiction with η ∈ Im(C(x))⊥. □

3.2. The anisotropic representation result. We exploit Proposition 3.1 to show that the
anisotropic Lagrangian in (1.5) satisfies (1.3).

Proposition 3.2. Let fe : Ω× R× Rn −→ [0,+∞] be a Carathéodory function. Assume that

(3.4) fe(x, u, ξ) = fe(x, u,Πx(ξ))

for a.e. x ∈ Ω, any u ∈ R and any ξ ∈ Rn. Define the map f : Ω× R× Rm −→ [0,+∞] by

(3.5) f(x, u, η) = fe(x, u, CP (x) · η)
for any x ∈ Ω, any u ∈ R and any η ∈ Rm. Then f is a Carathéodory function such that

(3.6) f(x, u, η) = f(x, u, C(x) · ξη)
and

(3.7) fe(x, u, ξ) = f(x, u, C(x) · ξ)
for a.e. x ∈ Ω, any u ∈ R, any η ∈ Rm and any ξ ∈ Rn. Moreover, f enjoys the following
properties.

(i) If there exist a ∈ L1
loc(Ω) and some b, c ≥ 0 such that

(3.8) fe(x, u, ξ) ⩽ a(x) + b|u|p + c|C(x) · ξ|p

for a.e. x ∈ Ω, any u ∈ R and any ξ ∈ Rn, then

(3.9) f(x, u, C(x) · ξ) ⩽ a(x) + b|u|p + c|C(x) · ξ|p

for a.e. x ∈ Ω, any u ∈ R and any ξ ∈ Rn.
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(ii) If there exist d > 0 such that

(3.10) d|C(x) · ξ|p ⩽ fe(x, u, ξ)

for a.e. x ∈ Ω, any u ∈ R and any ξ ∈ Rn, then

(3.11) d|C(x) · ξ|p ⩽ f(x, u, C(x) · ξ)
for a.e. x ∈ Ω, any u ∈ R and any η ∈ Rm.

(iii) If fe(x, u, ξ) = fe(x, ξ) for a.e. x ∈ Ω, any u ∈ R and any ξ ∈ Rn, then f(x, u, η) = f(x, η)
for a.e. x ∈ Ω, any u ∈ R and any η ∈ Rm.

(iv) If

(3.12) fe(x, u, ·) is convex
for a.e. x ∈ Ω and any u ∈ R, then

(3.13) f(x, u, ·) is convex
for a.e. x ∈ Ω and any u ∈ R.

(v) If

fe(x, ·, ·) is convex
for a.e. x ∈ Ω, then

(3.14) f(x, ·, ·) is convex
for a.e. x ∈ Ω.

Proof. Let f be the function in (3.5). First we show that f is a Carathéodory function. To this
aim, fix u ∈ R and η ∈ Rm, and define the function Φu,η : Ω −→ R× Rn by

Φu,η(x) = (u, CP (x) · η)
for any x ∈ Ω. Being x 7→ CP (x) · η measurable by Proposition 3.1, then Φu,η is measurable.
Since

(3.15) f(x, u, η) = fe(x,Φu,η(x))

for a.e. x ∈ Ω, and being fe a Carathéodory function, we deduce from [16, Proposition 3.7]
that x 7→ f(x, u, η) is measurable for any u ∈ R and any η ∈ Rm. Fix now x ∈ Ω and define
Ψx : R× Rm −→ R× Rn by

Ψx(u, η) = Φu,η(x)

for any u ∈ R and any η ∈ Rm. Clearly, Ψx is a linear function. In particular, by (3.15) and
being fe a Carathéodory function, then (u, η) 7→ f(x, u, η) is continuous for a.e. x ∈ Ω, so that f
is a Carathéodory function. Moreover, in view of (3.15), the linearity of Ψx and the definition of
f , (iii), (iv) and (v) easily follows. Moreover, (3.6) follows directly from (iii) of Proposition 3.1.
Let us prove (3.7). In view of (ii) of Proposition 3.1, (3.4) and the definition of f , we infer that

f(x, u, C(x) · ξ) = fe(x, u, CP (x) · C(x) · ξ) = fe(x, u,Πx(ξ)) = fe(x, u, ξ)

for a.e. x ∈ Ω, any u ∈ R and any ξ ∈ Rn, so that (3.7) follows. Finally, (i) and (ii) are direct
consequences of (3.7). □

4. Integral representation and Γ-compactness without (LIC): proofs in a
prototypical example

In this section we prove integral representation and Γ-compactness results in the setting of
translation-invariant local functionals proposed in [14, 36]. As already pointed out, our proofs
will be concise and focused on the application of Proposition 3.2.
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4.1. Integral representation. Let us begin with the generalization of [36, Theorem 3.12] to
our general setting.

Theorem 4.1. Let p ∈ [1,+∞). Let F : Lp(Ω)×A −→ [0,+∞] satisfy the following properties.

(i) F is a measure.
(ii) F is local.
(iii) F is Lp-lower semicontinuous.
(iv) F (u+ k,A) = F (u,A) for any A ∈ A, any u ∈ C∞(A) and any k ∈ R.
(v) There exist a ∈ L1

loc(Ω) and c ≥ 0 such that

F (u,A) ⩽
∫
A

a(x) + c|Xu|p dx

for any A ∈ A and any u ∈ C∞(A) ∩ Lp(Ω).

Then there exists a Carathéodory function f : Ω× Rm −→ [0,+∞) such that

(4.1) F (u,A) =

∫
A

f(x,Xu(x)) dx

for any A ∈ A and any u ∈ W 1,p
X,loc(A)∩Lp(Ω). Moreover, f satisfies (3.6), (3.9) and (3.13). In

addition, if f̃ : Ω × Rm −→ [0,+∞) is a Carathéodory function which verifies (3.6), (3.9) and

for which (4.1) holds with f̃ in place of f , then

(4.2) f̃(x, η) = f(x, η)

for a.e. x ∈ Ω and any η ∈ Rm. Finally, if there exists d > 0 such that

(4.3) d

∫
A

|Xu|p dx ⩽ F (u,A)

for any A ∈ A and any u ∈ C∞(A) ∩ Lp(Ω), then f satisfies (3.10).

Proof. Arguing verbatim as in the first step of the proof of [36, Theorem 3.12], our assumptions
allow an Euclidean integral representation for F , meaning that

(4.4) F (u,A) =

∫
A

fe(x,Du(x)) dx

for any A ∈ A and any u ∈ W 1,p
loc (A), where fe : Ω×Rn −→ [0,+∞) is a suitable Carathéodory

function satisfying (3.4), (3.8) and (3.12). Therefore, by Proposition 3.2, f : Ω×Rm −→ [0,+∞)
defined as in (3.5) is a Carathéodory function which satisfies (3.6), (3.7), (3.9) and (3.13).
Therefore, combining (2.1), (3.7) and (4.4),

(4.5) F (u,A) =

∫
A

f(x,Xu(x)) dx

for any A ∈ A and any u ∈ C∞(A). In order to achieve (4.1), one exploits (4.5) to argue
verbatim as in the third step of the proof of [36, Theorem 3.12]. If (4.3) holds, arguing verbatim
as in the first step of the proof of [36, Theorem 3.12] we infer that fe satisfies (3.10), so that,
by Proposition 3.2, f verifies (3.11). Finally, assume that there exists a Carathéodory function

f̃ : Ω× Rm −→ [0,+∞) which verifies (3.6), (3.9) and (4.1). By (3.9), (4.1) and proceeding as
in the fifth step of the proof of [25, Theorem 3.3], one infer that

(4.6) f̃(x, C(x) · ξ) = f(x, C(x) · ξ)

for a.e. x ∈ Ω and any ξ ∈ Rn. Since both f and f̃ satisfy (3.6), we conclude by (4.1) that

f̃(x, η) = f̃(x, C(x) · ξη) = f(x, C(x) · ξη) = f(x, η)

for a.e. x ∈ Ω and any η ∈ Rm, so that (4.2) follows. □
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We point out that the statement of Theorem 4.1 is sharp. On the one hand, neither in (3.9)
nor in (3.13) it is reasonable to expect global bounds rather than partial bounds on Im(C(x)).
On the other hand, a uniqueness property as in (4.2) may fails dropping (3.6). This is to say,
roughly speaking, that the structural properties of F translates into structural properties of f
only as regards the part of f acting on the image of C. This fact is not surprising. Indeed, for a
fixed x ∈ Ω, we already know that the action of C(x) is surjective only when X1(x), . . . , Xm(x)
are linearly independent. Since we are not assuming (LIC), this property may trivially fail in
general.

Example 4.1. As an instance, consider the the family X = (X1, X2) of vector fields defined on
Ω = (0, 1)2 ⊆ R2 by

X1(x) = X2(x) =
∂

∂x1

for any x = (x1, x2) ∈ Ω. Clearly X1, X2 are Lipschitz continuous on Ω and linearly dependent
for any x ∈ Ω. The associated matrices C and CP are respectively

C(x) =
[
1 0
1 0

]
and CP (x) =

[
1/2 1/2
0 0

]
for any x ∈ Ω. In particular,

(4.7) Nx =
{
(0, λ) ∈ R2 : λ ∈ R

}
and Im(C(x)) =

{
(λ, λ) ∈ R2 : λ ∈ R

}
for any x ∈ Ω. Consider the functions f1, f2 : Ω× R2 −→ [0,+∞) defined by

f1(x, η) = 2

(
η1 + η2

2

)2

and f2(x, η) = 2

(
η1 + η2

2

)2

+ e(η1−η2)2 − 1

for any x ∈ Ω and any η = (η1, η2) ∈ R2. They are clearly Carathéodory functions. In view of
(4.7), they both verify (3.9), (3.11) and (3.13) with a, b = 0 and c, d = 1. Moreover,

(4.8) f1(x, C(x) · ξ) = f2(x, C(x) · ξ)

for any x ∈ Ω and any ξ ∈ R2, but they differ otherwise. In particular f1 satisfies (3.6), while
f2 does not. Consider the local functionals F1, F2 : L

2(Ω)×A −→ [0,+∞] defined by

Fj(u,A) =

{∫
A
fj(x,Xu(x)) dx if A ∈ A, u ∈ W 1,2

X,loc(A)

+∞ otherwise
.

for j = 1, 2. Clearly F1 and F2 verify (i), (ii) and (iv) in Theorem 4.1. By means of the
forthcoming Theorem 4.2, it holds that

(4.9) F1(u,A) = F2(u,A) =: F (u,A)

for any A ∈ A and any u ∈ L2(Ω). In particular coupling (4.9) with [36, Lemma 4.14], we
conclude that F verifies also (iii) and (v) in Theorem 4.1, with a = 0 and c = 1, so that F verifies
all the hypotheses of Theorem 4.1. In addition, F satisfies (4.3) with d = 1. Nevertheless, on
the one hand we know by (4.8) that the integral representation of F drastically lack uniqueness.
On the other hand, neither f1(x, η) ≥ |η|2 for a.e. x ∈ Ω and any η ∈ R2, nor f2(x, η) ⩽ |η|2 for
a.e. x ∈ Ω and any η ∈ R2.

Despite these differences with respect to the (LIC) framework, we show that the structural
properties of f that one can derive from an integral representation as in Theorem 4.1 are es-
sentially the only ones relevant for deducing structural properties of the associated functional.
More precisely, the following holds.
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Theorem 4.2. Let p ∈ [1,+∞). Let f : Ω× R× Rm −→ [0,+∞] be a Carathéodory function.
Let F : Lp(Ω)×A −→ [0,+∞] be defined by

F (u,A) =

{∫
A
f(x, u(x), Xu(x)) dx if A ∈ A, u ∈ W 1,p

X,loc(A)

+∞ otherwise
.

The following facts hold.

(i) If f satisfies (3.9), then

F (u,A) ⩽
∫
A

a(x) + b|u(x)|p + c|Xu|p dx

for any A ∈ A and any u ∈ W 1,p
X,loc(A) ∩ Lp(Ω).

(ii) If f satisfies (3.11), then

d

∫
A

|Xu|p dx ⩽ F (u,A)

for any A ∈ A and any u ∈ W 1,p
X,loc(A) ∩ Lp(Ω).

(iii) If f̃ : Ω× R× Rm −→ [0,+∞] is another Carathéodory function such that

(4.10) f(x, u, C(x) · ξ) = f̃(x, u, C(x) · ξ)

for a.e. x ∈ Ω, any u ∈ R and any ξ ∈ Rn, then

F (u,A) =

∫
A

f̃(x, u(x), Xu(x)) dx

for any A ∈ A and any u ∈ W 1,p
X,loc(A) ∩ Lp(Ω).

Proof. In view of (2.1), the three statements are clearly true for any A ∈ A and any u ∈
C∞(A) ∩ Lp(Ω). Noticing that all the involved functionals are continuous with respect to the
metric topology of W 1,p

X , the general statement follows by means of standard localization and

continuity arguments (cf. [36, 25]) coupled with the density of C∞ ∩W 1,p
X in W 1,p

X with respect

to the metric topology of W 1,p
X (cf. [28] and [36, Proposition 2.8]). □

4.2. Γ-compactness. We conclude this section with the generalization of [36, Theorem 4.10].

Theorem 4.3. Let p ∈ (1,+∞). For any h ∈ N, let fh : Ω×Rm −→ [0,+∞] be a Carathéodory
function satisfying (3.9), (3.11) and (3.13) with a ∈ L1(Ω), b = 0, c ≥ 0 and d > 0 independent
of h ∈ N. For any h ∈ N, define the integral functional Fh : Lp(Ω)×A −→ [0,+∞] by

Fh(u,A) =

{∫
A
fh(x,Xu(x)) dx if A ∈ A, u ∈ W 1,p

X (A)

+∞ otherwise
.

Then, up to a subsequence, there exists an integral functional of the form

F (u,A) =

{∫
A
f(x,Xu(x)) dx if A ∈ A, u ∈ W 1,p

X (A)

+∞ otherwise
,

where f : Ω×Rm −→ [0,+∞) is a Carathéodory function which satisfies (3.6), (3.9), (3.11) and
(3.13) with a, b, c, d as above, for which

(4.11) F (·, A) = Γ(Lp)− lim
h→+∞

Fh(·, A)

for any A ∈ A.
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Proof. By means of (i) and (ii) in Theorem 4.2, it is simply a matter of retracing the steps of the
proof of [26, Proposition 3.3] to ensure the existence of a functional F : Lp(Ω)×A −→ [0,+∞]
which verifies (i), (ii), (iii), (v) and (4.3) in Theorem 4.1 and such that (4.11) holds. We claim
that F verifies (iv) in Theorem 4.1. To this aim, fix A ∈ A, u ∈ C∞A and k ∈ R. We only show
that F (u,A) ≥ F (u + k,A), being the other inequality analogous. If F (u,A) = +∞, the claim
is trivial. Assume otherwise that F (u,A) is finite. Let (uh)h ⊆ Lp(Ω) be a recovery sequence for
u as in (2.3). Since F (u,A) is finite, up to a subsequence (uh)h ⊆ W 1,p

X (A) ∩ Lp(Ω). Therefore,
by our choice of (uh)h, (2.2), (2.3) and the definition of (Fh)h,

F (u,A) = lim inf
h→+∞

Fh(uh, A) = lim inf
h→+∞

Fh(uh + k,A) ≥ F (u+ k,A).

To conclude, F satisfies the hypotheses of Theorem 4.1, so that there exists a Carathéodory
function f : Ω × Rm −→ [0,+∞) which satisfies (3.6), (3.9), (3.11) and (3.13) with a, b, c, d as
in the statement, such that (4.1) holds for any A ∈ A and any u ∈ W 1,p

X (A)∩Lp(Ω). Finally, fix

A ∈ A and let u ∈ Lp(Ω) \W 1,p
X (A). If it was the case that F (u,A) < +∞, then u would admit

a recovery sequence (uh)h ⊆ W 1,p
X (A) ∩ Lp(Ω). But then, in view of (2.3), (ii) of Theorem 4.2

and [36, Lemma 4.14],

F (u,A) = lim inf
h→+∞

Fh(uh, A) ≥ lim inf
h→+∞

d

∫
A

|Xuh|p dx ≥ d

∫
A

|Xu|p dx = +∞,

from which a contradiction would follow. □

5. Further statements

For future references, we include in this last section the statements which generalize the corre-
sponding results in [25, 26] avoiding (LIC). We omit their proof since, owing to Proposition 3.2
and Theorem 4.2, they can be recovered following the original approach of [25, 26] as done in
the previous section.

5.1. Integral representation. The following results generalize, respectively, [25, Theorem 3.3],
[25, Theorem 4.3] and [25, Theorem 5.6]. We refer to [25, 26] for the notation.

Theorem 5.1. Let p ∈ [1,+∞). Let F : Lp(Ω)×A −→ [0,+∞] satisfy the following properties.

(i) F is a measure.
(ii) F is local.
(iii) F is convex on W 1,p

X (Ω).
(iv) There exist a ∈ L1

loc(Ω) and b, c ≥ 0 such that

(5.1) F (u,A) ⩽
∫
A

a(x) + b|u|p + c|Xu|p dx

for any A ∈ A and any u ∈ C∞(A) ∩ Lp(Ω).

Then there exists a Carathéodory function f : Ω× R× Rm −→ [0,+∞) such that

(5.2) F (u,A) =

∫
A

f(x, u(x), Xu(x)) dx

for any A ∈ A and any u ∈ W 1,p
X,loc(A)∩Lp(Ω). Moreover, f satisfies (3.6), (3.9) and (3.14). In

addition, if f̃ : Ω × Rm −→ [0,+∞) is a Carathéodory function which verifies (3.6), (3.9) and

for which (4.1) holds with f̃ in place of f , then

(5.3) f̃(x, u, η) = f(x, u, η)

for a.e. x ∈ Ω, any u ∈ R and any η ∈ Rm. Finally, if there exists d > 0 such that (4.3) holds,
then f satisfies (3.10).

Theorem 5.2. Let p ∈ [1,+∞). Let F : Lp(Ω)×A −→ [0,+∞] satisfy the following properties.
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(i) F is a measure.
(ii) F is local.
(iii) F satisfies the weak condition (ω).
(iv) F satisfies (5.1).
(v) F is lower semicontinuous on W 1,p

X (Ω).
(vi) F is weakly*-sequentially lower semicontinuous.

Then there exists a Carathéodory function f : Ω × R × Rm −→ [0,+∞) such that (5.2) holds.
Moreover, f satisfies (3.6), (3.9) and (3.13). In addition, f is unique in the sense of (5.3).
Finally, if there exists d > 0 such that (4.3) holds, then f satisfies (3.10).

Theorem 5.3. Let p ∈ [1,+∞). Let F : Lp(Ω)×A −→ [0,+∞] satisfy the following properties.

(i) F is a measure.
(ii) F is local.
(iii) F satisfies the strong condition (ω).
(iv) F satisfies (5.1).
(v) F is lower semicontinuous on W 1,p

X (Ω).

Then there exists a Carathéodory function f : Ω × R × Rm −→ [0,+∞) such that (5.2) holds.
Moreover, f satisfies (3.6) and (3.9). In addition, f is unique in the sense of (5.3). Finally, if
there exists d > 0 such that (4.3) holds, then f satisfies (3.10).

5.2. Γ-compactness. The following results generalize, respectively, [26, Theorem 3.1], [26, The-
orem 4.3] and [26, Theorem 4.4]. We refer again to [26] for the notation.

Theorem 5.4. Let p ∈ (1,+∞). For any h ∈ N, let fh : Ω × R × Rm −→ [0,+∞] be a
Carathéodory function which satisfies (3.9), (3.11) and (3.14) with a ∈ L1(Ω), b, c ≥ 0 and d > 0
independent of h ∈ N. For any h ∈ N, define the integral functional Fh : Lp(Ω)×A −→ [0,+∞]
by

Fh(u,A) =

{∫
A
fh(x, u(x), Xu(x)) dx if A ∈ A, u ∈ W 1,p

X (A)

+∞ otherwise
.

Then, up to a subsequence, there exists an integral functional of the form

F (u,A) =

{∫
A
f(x, u(x), Xu(x)) dx if A ∈ A, u ∈ W 1,p

X (A)

+∞ otherwise
,

where f : Ω×R×Rm −→ [0,+∞) is a Carathéodory function which satisfies (3.6), (3.9), (3.11)
and (3.14) with a, b, c, d as above, for which (4.11) holds.

Theorem 5.5. Let p ∈ [1,+∞). For any h ∈ N, let fh : Ω × R × Rm −→ [0,+∞] be a
Carathéodory function which satisfies (3.9) and (3.14) with a ∈ L1(Ω) and b, c ≥ 0 independent
of h ∈ N. For any h ∈ N, define the integral functional Fh : W 1,p

X (Ω)×A −→ [0,+∞] by

(5.4) Fh(u,A) =

∫
A

fh(x, u(x), Xu(x)) dx

for any A ∈ A and any u ∈ W 1,p
X (Ω). Then, up to a subsequence, there exists an integral

functional of the form

(5.5) F (u,A) =

∫
A

f(x, u(x), Xu(x)) dx

for any A ∈ A and any u ∈ W 1,p
X (Ω), where f : Ω × R × Rm −→ [0,+∞) is a Carathéodory

function which satisfies (3.6), (3.9) and (3.14) with a, b, c as above, for which

(5.6) F (·, A) = Γ(W 1,p
X )− lim

h→+∞
Fh(·, A)
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for any A ∈ A.

Theorem 5.6. Let p ∈ [1,+∞). For any h ∈ N, let fh : Ω × R × Rm −→ [0,+∞] be a
Carathéodory function which satisfies (3.9) with a ∈ L1(Ω) and b, c ≥ 0 independent of h ∈ N.
For any h ∈ N, define the integral functional Fh : W 1,p

X (Ω) × A −→ [0,+∞] as in (5.4).
Assume that (Fh)h satisfies a uniform strong condition (ωX) with respect to ω (cf. [26, Definition
4.1]). Then, up to a subsequence, there exists an integral functional as in (5.5), where f :
Ω × R × Rm −→ [0,+∞) is a Carathéodory function which satisfies (3.6) and (3.9) with a, b, c
as above, for which (5.6) holds. Finally, f satisfies the strong condition (ωX) with respect to ω.
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