
A PONTRYAGIN MAXIMUM PRINCIPLE FOR AGENT-BASED
MODELS WITH CONVEX STATE SPACE
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Abstract. We derive a first order optimality condition for a class of agent-based sys-
tems, as well as for their mean-field counterpart. A relevant difficulty of our analysis
is that the state equation is formulated on possibly infinite-dimensional convex subsets
of Banach spaces, as required by some problems in multi-population dynamics. Due to
the lack of a linear structure and of local compactness, the usual tools of needle vari-
ations and linearisation procedures used to derive Pontryagin type conditions have to
be generalised to the setting at hand. This is done by considering suitable notions of
differentials and by a careful inspection of the underlying functional structures.
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1. Introduction

Presentation of the problem. Large systems of interacting agents, the so-called multi-
agent systems, have enjoyed growing attention from several mathematical communities in
recent years. Indeed, they may encompass a broad class of applications, including, e.g.,
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the modelling of autonomous vehicle ensembles [20], swarms and flocking structures in the
animal kingdom [27], coordinated animal motion [8], opinion dynamics on networks [9],
pedestrian flows [26], cell aggregation and motility [23, 30], cooperative robots [25], and
influence of key investors in the stock market [11, Introduction]. The modeling of such
systems is usually inspired from Newtonian laws of motion and is usually described by
large dynamical systems based on pairwise forces accounting for repulsion/attraction,
alignment, self-propulsion/friction in biological, social, or economical interactions. On
the one hand, such discrete formulations often give rise to intractable problems because
of their very large dimensionality. On the other hand, for many applications one is not
interested in the exact pattern of the single agent, which may be indistinguishable from
another one, but rather on the collective behavior of the system. This point of view is also
relevant for control-theoretic purposes [2,3,33], where a policy maker aims at formulating
control laws which are as generic and global as possible in order to steer a given system
towards a desired goal.

To overcome the so-called curse of dimensionality one is naturally lead to consider
infinite-dimensional approximations of the class of multi-agent systems at hand. They
usually take the form of a continuity equation for the time-dependent distribution µ
of the agent on the state space (a probability measure), driven by a possibly nonlocal
velocity field accounting for particle interactions and external control. This is often
referred to as mean-field approximation of large particle systems (see [32] as well as the
survey [24]). These equations are studied in the space of probability measures endowed
with the Wasserstein metrics of optimal transport (see Section 4 below). The well-
posedness of mean-field optimal control problems, as well as their compliance with particle
formulations, has been addressed in several recent contributions (see, e.g., [22, 28, 29])
hinging on a variational approach.

From an applicative standpoint, the identification of mean-field optimal controls relies
on the implementation of suitable optimality conditions rather then on the direct min-
imisation of a cost functional. Such optimality conditions have been studied in the recent
literature [12, 14, 15, 18, 21, 34], resulting in a generalisation to Wasserstein spaces of the
celebrated Pontryagin Maximum Principle (PMP). The works [12, 15, 18] are of particu-
lar interest for our purposes. Indeed, in such papers the conditions of Pontryagin type
are recovered by adapting to the geometric setting of Wasserstein spaces some classical
tools coming from optimal control techniques in Euclidean setting, such as the use of
needle variations and linearisation of the evolution constraints. The optimal control has
to maximise a suitable Hamiltonian field H(ν, u), where ν is a probability measure on R2d

accounting for both state and costate of the system, evolving through the Wasserstein
Hamiltonian flow driven by H.

In recent applications, a refined modelling comes into play, where the state space of
an agent is no more the Euclidean, but is instead represented by a convex subset C of
a possibly infinite-dimensional Banach space E. This point of view has been introduced
in the context of spatially inhomogeneous evolutionary games in [6]. In this case, the
state variable is a pair (x, λ) ∈ C := Rd ×P(K), where P(K) is the space of probability
measure on a compact metric space of pure strategies K. The agents’ state is therefore
described by their position x and by their mixed strategy λ. A related point of view
has been considered in other contributions [4, 5, 31] to describe the evolution of systems
where each agent has a time-evolving degree of influence decoded by λ. This is useful
in many applications where agents could belong to different populations, such as leaders
and followers. In particular, a mean-field selective optimal control problem has been
analysed in [1], where the action of the policy maker aimed at steering the whole system

2



through a parsimonious intervention on possibly temporary leaders, i.e., via a control law
depending on the (time evolving) variable λ. Notice that also the particle formulation
of this systems requires additional care, as the involved operators must satisfy a suitable
set of assumptions (see, e.g., [31]), in order to guarantee existence and uniqueness of
solutions for differential equations constrained to live in a given convex set (see [19]).

Our results. The goal of our paper is to extend the formulation of a PMP to the convex
constrained setting. The main technical tools are (i) a notion of differentiability for
functionals defined on a convex set C, (ii) a weak notion of local differentiability for
functionals defined on P(C) , and (iii) the introduction of a functional setting suitable
for linearisation and for the derivation of the adjoint equation.

We start with the controlled particle systems, which we recast in the form

min
u∈U

{∫ T

0

L(t, c(t), u(t))dt

}
(1.1)

subject to {
d
dt
c(t) = A(t, c(t), u(t)) in (0, T ],

c(0) = c0 ∈ C.
(1.2)

In (1.1), U is a weakly compact space of admissible controls, while the assumptions on
the operator A are listed in (HAode) assure well-posedness of the state equation (1.2)
constrained to C and involve the notion of C-differentiability with respect to c ∈ C (see
also [6]). In Theorem 3.4 we prove that the an optimal pair trajectory-control (c(t), p(t))
solves 

d
dt

(
c(t)

p(t)

)
= JD(c(t),p(t))H(t, c(t), p(t), u(t)) in [0, T ),

c(0) = c0 ∈ C,

p(T ) = 0 ∈ E∗
C ,

on C × E∗
C , where EC := R(C − C). Furthermore, the optimal control maximises the

Hamiltonian H(t, c(t), p(t), u(t)) = ⟨p(t), A(t, c(t), u(t))⟩ − L(t, c(t), u(t)), where the du-
ality product is taken in E∗

C , EC . The proof is based on needle variations and on passing
to the limit in the blow-up (cε − c)/ε, where cε denotes the solution of the perturbed
problem. Here some care is required, since a linear structure is not available and can only
be partially replaced by convexity. In our setting tangent directions can be approximated
only at first order by the perturbed trajectories, so that a careful estimate of the behavior
of rest terms is in order. We refer to the proof of Theorems 3.3 and 3.4 for full details.

In Section 4 we turn our attention to the mean-field control problem

min
u∈U

{∫ T

0

L(t, µ(t), u(t))dt

}
, (1.3)

subject to {
d
dt
µ(t) + div (A(t, µ(t), ·, u(t, ·))µ(t)) = 0 in (0, T ],

µ(0) = µ0 ∈ Pc(C).
(1.4)

The set of admissible controls U has a closed-loop structure with respect to the state
variable, which means that an admissible control u may depend on both t and c, and
satisfies similar assumptions than the one considered in [18] to ensure compactness of
controls. The operator A is assumed to satisfy two sets of assumptions, namely (HA1)
and (HA2). The first is similar to (HAode), while the latter is crucial for writing a
linearised equation in form of a nonlocal Cauchy problem (4.19). This requires, besides
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the already mentioned C-differentiability of A, a suitable notion of Wasserstein gradient
with respect to µ introduced in Definition 4.2, which is tailored for the functional setting
at hand. The core of our arguments is contained in Proposition 4.9, where we perform
the linearisation of the flow associated to (1.4). Here is where our analysis significantly
departs from [15,18]. Indeed the states space lacks of linearity and of local compactness;
furthermore we cannot in principle assume that the dependence of the velocity field A on
the closed-loop control u is linear.

Also from a technical point of view the hardest part is contained in the proof of Propo-
sition 4.9. A crucial technical tool is a chain-rule with respect to the notion of Wasserstein
differentiability, which we prove in Proposition 4.3, allowing for a first-order expansion
of suitable compositions of flow maps close to the identity. This is heavily exploited in
Theorem 4.7 to analyse the behavior of the perturbed solutions to (1.4) arising from
needle variations of the optimal control, as well as in the derivation of the optimality
conditions for the Hamiltonian associated to the problem, which is explicitly given in
(4.12). Our main result is contained in Theorem 4.10, where a PMP for (1.3)–(1.4) is
derived, coupling a maximality condition for the control u with a Wasserstein Hamilton-
ian flow in the space C × E∗

C . We remark that the derivation of such principle requires
some assumptions on the involved (possibly infinite-dimensional) functional spaces. In
particular, we need to assume E to be separable and EC to be reflexive. The compliance
of our setting with a model example inspired by [4] is shortly discussed in Section 5.

We conclude with the obvious remark that in the special case C = Rd one retrieves
the known results obtained for instance in [18] for closed-loop controls and in [15] for
open-loop controls.

Outlook. This work provides a general functional setting for identifying optimality con-
ditions for agent-based systems with convex state space, where the evolution of the sys-
tem is described by the continuity equation (1.4). Possible generalisations of the present
framework may take into account evolutions driven by differential inclusions or stochastic
effects, which have recently been considered in the Euclidean setting (see [16] and [13],
respectively). As pointed out in [17] for systems with unconstrained state space, opti-
mality conditions for the finite particle control problem (1.1)–(1.2) in combination with
convexity assumptions on the Hamiltonian H may lead to Lipschitz regularity of optimal
controls for the mean-field problem (1.3)–(1.4). Such topics will be the focus of future
investigation.

2. Preliminaries and notation

In a Banach space (E, ∥ · ∥E), let C be a closed convex subset of E. For R > 0 we
define BR := {e ∈ E : ∥e∥E ≤ R} and BR,C = BR ∩ C. For any vectorial subspace W
of E we denote by L(W ;E) the Banach space of linear bounded operator from W to
E and by W ∗ the dual space of W , i.e. W ∗ = L(W ;R). Recall that, by density, each
operator in L(W ;E) uniquely extends to an operator in L(W ;E). By ⟨·, ·⟩ we denote
the duality pairing between a vectorial space and its dual. We denote by EC the closed
vector subspace R(C − C) ⊂ E and, for c ∈ C, by Ec the convex cone of directions

Ec := R+(C − c) ⊂ EC ⊂ E.

We have the following definition of C-differential.
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Definition 2.1. Let (F, ∥ · ∥F ) be a normed space and let f : C → F . We say that f
is C-differentiable in c ∈ C if there exists a linear operator M ∈ L(EC ;F ) such that

lim
c′→c

f(c′)− f(c)−M [c′ − c]

∥c′ − c∥E
= 0 .

We will denote the C-differential in c ∈ C by Dcf . Notice that such map is a priori
well-defined in Ec and can be uniquely extended by linearity and density to a map in EC .
Given (X, d) a separable Radon metric space, we denote by P(X) the family of all

Borel probability measures on X. For p ≥ 1 we further consider

Pp(X) :=

{
µ ∈ P(X) :

∫
X

d(x, x̄)pdµ(x) < +∞ for some x̄ ∈ X

}
and Pc(X) the subset of P(X) of measures with compact support in X recalling that the
support is the closed set

supp(µ) = {x ∈ X : µ(V ) > 0 for each neighborhood V of x}.

If X is contained in some Banach space Y , we define the p momentum of µ ∈ P(X) as

mp(µ) :=

(∫
X

∥x∥pY dµ(x)

) 1
p

for p ≥ 1.

Let X1 and X2 be separable Radon metric spaces, we define for every µ1 ∈ P(X1) and
µ2 ∈ P(X2) the transport plans with marginals µ1 and µ2

Γ(µ1, µ2) :=
{
γ ∈ P(X1 ×X2) : π

i
#γ = µi for i = 1, 2

}
,

where πi : X1 × X2 → Xi is the projection on Xi and π
i
#γ ∈ P(Xi) is the pushforward

of γ through πi. Note that Γ(µ1, µ2) is a not empty and compact subset of P(X1 ×X2)
(see Remark 5.2.3 of [7]). We define the p-Wasserstein distance between two probability
measure µ1 and µ2 in Pp(X) by

W p
p (µ

1, µ2) = min

{∫
X×X

d(x1, x2)
pdγ(x1, x2) : γ ∈ Γ(µ1, µ2)

}
,

it follows from Proposition 7.15 of [7] that Pp(X) endowed with the p-Wasserstein distance
is a separable metric space which is complete if X is complete.

3. Pontryagin maximum principle for optimal control problems in
convex spaces

Let the following assumptions hold:

• (E, ∥ · ∥E) is a Banach space;
• C ⊂ E is a closed and convex subset of E;
• (U, dU) is a compact metric space of admissible controls;
• U := {u : [0, T ] → U such that u(·) is Lebesgue measurable}.

We introduce here the main set of assumptions for the operator A appearing in (1.2).
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(HAode) Let A(t, ·, ·) : C × U → E, t ∈ [0, T ], be a family of operators satisfying
the following properties:

(i) for every R > 0 there exists a constant LR ≥ 0 such that for every c1, c2 ∈
BR,C , t ∈ [0, T ] and u ∈ U

∥A(t, c1, u)− A(t, c2, u)∥E ≤ LR∥c1 − c2∥E; (3.1)

(ii) there exists M > 0 such that for every c ∈ C, t ∈ [0, T ] and u ∈ U it holds

∥A(t, c, u)∥E ≤M(1 + ∥c∥E);
(iii) for every c ∈ C and u ∈ U the map t 7→ A(t, c, u) belongs to L1([0, T ];E);
(iv) for every t ∈ [0, T ] and c ∈ C the map u 7→ A(t, c, u) belongs to C0(U ;E);
(v) for every R > 0 there exists θ > 0 such that for every t ∈ [0, T ] and u ∈ U

c ∈ C, ∥c∥E ≤ R ⇒ c+ θA(t, c, u) ∈ C;

(vi) for every c ∈ C, t ∈ [0, T ] and u ∈ U , A is C-differentiable at c ∈ C, i.e.
there exists B(t,c,u) ∈ L(EC ;EC) such that

lim
C∋c′→c

∥A(t, c′, u)− A(t, c, u)−B(t,c,u)[c
′ − c]∥E

∥c′ − c∥E
= 0; (3.2)

Note that (v) implies A(t, ·, u) : C → Ec and that by (3.2) we have for every e ∈ Ec

B(t,c,u)[e] = lim
h→0+

A(t, c+ he, u)− A(t, c, u)

h
. (3.3)

For every t ∈ [0, T ] and u ∈ U , we denote the C-differential of A in c ∈ C by

DcA := {B(t,c,u) ∈ L(EC ;EC) : B(t,c,u) fullfils (3.2)}.
Let us give some results related to the notion of C-differentiability given in (vi).

Lemma 3.1. Let A satisfy (vi). Then the map DA : C → L(EC ;EC) with DA(c) := DcA
is single valued. Moreover, if (i) holds, Dc(t)A := B(t,c(t),u(t)) ∈ L∞([0, T ];L(EC ;EC)) for
every c ∈ AC([0, T ];C) and u ∈ U .

Proof. First we prove that DA is single valued. If e ∈ Ec, then, by (3.3), DcA[e] is a
singleton. Moreover, if v ∈ R(C − C), then v = α(c1 − c2) = α(c1 − c) − α(c2 − c) for
some c1, c2 ∈ C and α ∈ R. Hence, by linearity, we deduce

DcA[v] = αDcA[c1 − c]− αDcA[c2 − c],

where c1 − c, c2 − c ∈ Ec. Therefore DcA[v] too is singleton and, by density, DA is single
valued.
Now let c(t) ∈ AC([0, T ];C) and u ∈ U . By continuity we have that c(t) ∈ BR,C for some
R > 0. Since for h small enough we have c(t) + he ∈ C ∩ B2R with e ∈ Ec(t) (recall that
C is convex), it follows from (3.1) and (3.3) that ∥Dc(t)A[e]∥E ≤ l∥e∥E for some l ≥ 0
depending on R. This property can be extended for v ∈ R(C − C). Indeed, using the
decomposition v = α(c1 − c2) = α(c1 − c(t))− α(c2 − c(t)), we have

∥Dc(t)A[v]∥E = |α|
∥∥Dc(t)A[c1 − c(t)]−Dc(t)A[c2 − c(t)]

∥∥
E

(3.3)
= |α|

∥∥∥∥ lim
h→0+

A(t, c(t) + h(c1 − c(t)), u)− A(t, c(t) + h(c2 − c(t)), u)

h

∥∥∥∥
E

= |α|
∥∥∥∥ lim
h→0+

A(t, (1− h)c(t) + hc1, u)− A(t, (1− h)c(t) + hc2, u)

h

∥∥∥∥
E
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(i)

≤ l|α|∥c1 − c2∥E = l∥v∥E.

Hence, using again a density argument and recalling that EC = R(C − C), we deduce
that ∥Dc(t)A∥L(EC ;EC) ≤ l in [0, T ]. □

From now on we use DcA instead of B(t,c,u). We define the adjoint operator D∗
cA ∈

L(E∗
C , E

∗
C) of DcA as

⟨D∗
cA[p], v⟩ := ⟨p,DcA[v]⟩ ∀p ∈ E∗

C , v ∈ EC .

Remark 3.2. By its definition

∥D∗
cA∥L(E∗

C ,E
∗
C) = ∥DcA∥L(EC ;EC).

Then it follows from the second statement of Lemma 3.1 that

D∗
c(t)A ∈ L∞([0, T ];L(E∗

C , E
∗
C)), (3.4)

for every c ∈ AC([0, T ];C) and u ∈ U .

(Hφode) Let φ : C → R be C-differentiable for every c ∈ C with C-differential
Dcφ ∈ E∗

C defined as in (vi), i.e.

lim
C∋c′→c

|φ(c′)− φ(c)− ⟨Dcφ, c
′ − c⟩|

∥c′ − c∥E
= 0.

Under the sets of assumptions (HAode) and (Hφode), we aim at finding necessary
conditions for optimal solutions (c(t), u(t)) ∈ AC([0, T ];C) × U of the following Mayer
problem with free terminal point:

min
u∈U

φ(c(T, u)) (3.5)

subject to {
d
dt
c(t) = A(t, c(t), u(t)) in (0, T ],

c(0) = c0 ∈ C.
(3.6)

Notice that from the assumptions on A and from Theorem I.4 of [19] we deduce that
(3.6) admits a unique weak solution c ∈ AC([0, T ;C) for every control u and every initial
condition c0 ∈ C.
We have the following result:

Theorem 3.3. Consider the optimal control problem (3.5)-(3.6), under the assumptions
(HAode) and (Hφode). Let u ∈ U be an admissible control whose corresponding tra-
jectory c ∈ AC([0, T ];C) is optimal. Let p : [0, T ] → E∗

C the weak solution of the adjoint
equation {

d
dt
p(t) = −D∗

c(t)A[p(t)] in [0, T ),

p(T ) = −Dc(T )φ.

Then the maximality condition

⟨p(t), A(t, c(t), u(t))⟩ = max
ω∈U

{⟨p(t), A(t, c(t), ω)⟩}

holds for almost everywhere t in [0, T ].
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Proof. Fix any time τ ∈ (0, T ] and any admissible control value ω ∈ U . For ε > 0
sufficiently small, we consider the following function called needle variation:

uε(t) =

{
ω if t ∈ [τ − ε, τ ],

u(t) otherwise.

It follows from the assumptions on A and from Theorem I.4 of [19] that{
d
dt
c(t) = A(t, c(t), uε(t)) in (0, T ]

c(0) = c0 ∈ C
(3.7)

has a unique weak solution cε(t) ∈ C for a.e. t ∈ [0, T ]. By its definition cε(t) = c(t)
for a.e. t ∈ [0, τ − ε]. Now we prove that cε(t) converges to c(t) uniformly in [0, T ].
By assumptions on A we deduce that A(t, c(t), u(t)), A(t, c(t), uε(t)) and A(t, cε(t), uε(t))
are integrable on [0, T ]. Moreover R > 0 depending only on c0 and T exists such that
∥c(t)∥E + ∥cε(t)∥E ≤ R in [0, T ]. Hence, we have

∥c(t)− cε(t)∥E
(3.6),(3.7)

≤
∫ T

0

∥A(s, c(s), u(s))− A(s, c(s), uε(s))∥Eds

+

∫ T

0

∥A(s, c(s), uε(s))− A(s, cε(s), uε(s))∥Eds

(3.1)

≤
∫ T

0

∥A(s, c(s), u(s))− A(s, c(s), uε(s))∥Eds

+LR

∫ T

0

∥c(s)− cε(s)∥Eds. (3.8)

Since uε converges to u in L
1([0, T ];U) as ε tends to 0+, by (iv) we obtain thatA(t, c(t), uε(t))

converges to A(t, c(t), u(t)) almost everywhere in [0, T ] as ε tends to 0+. Using (ii) we
have that ∥A(s, c(s), u(s))−A(s, c(s), uε(s))∥E ≤ 2M(1 +R) for some M > 0. Then ap-
plying the Lebesgue theorem we obtain that A(t, c(t), uε(t)) converges to A(t, c(t), u(t))
in L1([0, T ];E) as ε tends to 0+. This, together with (3.8), implies

∥c(t)− cε(t)∥E ≤ δε + LR

∫ T

0

∥c(s)− cε(s)∥Eds,

where δε → 0 as ε → 0+. Applying the integral formulation of the Grönwall inequality
we get

∥c(t)− cε(t)∥E ≤ δεe
LRT ,

whence

lim
ε→0+

cε(t) = c(t) uniformly in [0, T ]. (3.9)

Note that, since A(t, c(t), ω) and A(t, c(t), u(t)) are integrable in [0, T ], then a.e. time
τ in [0, T ] is one of their Lebesgue points. From now on τ is a time with such property.
Notice that such set of Lebesgue points can be made independent of ω ∈ U , since U is
a compact metric space. It follows that a positive δε tending to 0 as ε tends to 0 exists
such that∥∥∥∥cε(τ)− c(τ)

ε
− (A(τ, c(τ), ω)− A(τ, c(τ), u(τ)))

∥∥∥∥
E

≤ 1

ε

∫ τ

τ−ε
∥A(s, cε(s), ω)− A(s, c(s), ω)∥Eds+

∥∥∥∥1ε
∫ τ

τ−ε
A(s, c(s), ω)ds− A(τ, c(τ), ω)

∥∥∥∥
E

8



+

∥∥∥∥A(τ, c(τ), u(τ))− 1

ε

∫ τ

τ−ε
A(s, c(s), u(s))ds

∥∥∥∥
E

(3.1)

≤ LR∥c− cε∥L∞([0,T ];E) + δε.

Therefore, by (3.9), we obtain

lim
ε→0+

cε(τ)− c(τ)

ε
= A(τ, c(τ), ω)− A(τ, c(τ), u(τ)), (3.10)

whence we get A(τ, c(τ), ω)− A(τ, c(τ), u(τ)) ∈ Ec(τ).
Now we consider the following equation a priori defined in EC{

d
dt
v(t) = Dc(t)A[v(t)] in (τ, T ],

v(τ) = A(τ, c(τ), ω)− A(τ, c(τ), u(τ)).
(3.11)

By assumption (vi) and Lemma 3.1, using Theorem I.4 of [19] we infer the existence of
a unique weak solution v ∈ AC([τ, T ];EC) such that d

dt
v ∈ L1([τ, T ];EC). We want to

prove that

v(t) = lim
ε→0+

cε(t)− c(t)

ε
uniformly in [τ, T ], (3.12)

which in particular implies that v(t) ∈ Ec(t) a.e. t ∈ [τ, T ]. Let us start by noting that
cε(t) and c(t) in [τ, T ] solve the same equation (i.e. (3.6) with u(t) replaced by u(t)) with
cε(τ) and c(τ) respectively as initial datum. We define

vε(t) :=
cε(t)− c(t)

ε
for t ∈ [τ, T ].

Hence by its definition vε(t) ∈ Ec(t) for every t ∈ [τ, T ]. Thus (3.12) is equivalent to

lim
ε→0+

∥vε(t)− v(t)∥L∞([τ,T ];E) = 0. (3.13)

Moreover by (3.10) vε(τ) converges to v(τ) in E. Now, recalling that ∥cε(t)∥E+∥c(t)∥E ≤
R in [0, T ] and denoting by L the constant given by (3.1) (we omit the subscript R), by
continuity with respect to the initial data (see Theorem 1 of [1]) we obtain for t ∈ [τ, T ]

∥vε(t)∥E ≤ eLT∥vε(τ)∥E
(3.10)

≤ 2eLT∥v(τ)∥E. (3.14)

Now we note that by its definition vε(t) satisfies

d
dt
vε(t) =

1

ε
(A(t, cε(t), u(t))− A(t, c(t), u(t))) = Dc(t)A[vε(t)] + rε(t), (3.15)

where

rε(t) :=
1

ε
(A(t, cε(t), u(t))− A(t, c(t), u(t)))−Dc(t)A[vε(t)].

It follows from (3.9), (3.2) and (3.14) that for every t ∈ (τ, T ]

lim
ε→0

∥rε(t)∥E = lim
ε→0

∥A(t, cε(t), u(t))− A(t, c(t), u(t))−Dc(t)A[cε(t)− c(t)]∥E
∥cε(t)− c(t)∥E

∥vε(t)∥E = 0.

Moreover by Lemma 3.1 we have

∥rε(t)∥E
(3.15)

≤ 1

ε
∥A(t, cε(t), u(t))− A(t, c(t), u(t))∥E + ∥Dc(t)A[vε(t)]∥E

(3.1)

≤
(
L+ ∥Dc(t)A∥L∞([0,T ];L(EC ;EC))

)
∥vε(t)∥E.
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Hence using (3.14) and applying the Lebesgue theorem we obtain that rε → 0 in L1([τ, T ];E)
as ε→ 0+. Therefore, recalling that v solves (3.11) and using again Lemma 3.1, we obtain

∥vε(t)− v(t)∥E ≤ ∥vε(τ)− v(τ)∥E +

∥∥∥∥∫ t

τ

Dc(s)A[vε(s)− v(s)]ds

∥∥∥∥
E

+

∥∥∥∥∫ t

τ

rε(s)ds

∥∥∥∥
E

(3.10)

≤ δε + ∥Dc(t)A∥L∞([0,T ];L(EC ;EC))

∫ t

τ

∥vε(s)− v(s)∥Eds, (3.16)

where δε := ∥vε(τ) − v(τ)∥E + ∥rε∥L1([τ,T ];E) → 0 as ε → 0+. Since ∥vε(t) − v(t)∥E is a
continuous function from [τ, T ] to R, by (3.16), applying the integral form of the Grönwall
inequality and recalling that ∥Dc(t)A∥L∞([0,T ];L(EC ;EC)) ≤ L it follows that

∥vε(t)− v(t)∥E ≤ δεe
LT .

This implies (3.13) and, consequentially, (3.12).
Since the control u(t) is optimal in U , we deduce for every ε > 0

φ(c(T )) ≤ φ(cε(T )). (3.17)

Moreover by (3.12) we have cε(T ) = c(T ) + εv(T ) + o(ε). Hence, recalling that φ is
C-differentiable and that

cε(T )− c(T ) = εv(T ) + o(ε) ∈ Ec(t)

we have

φ(cε(T ))− φ(c(T )) = φ(c(T ) + εv(T ) + o(ε))− φ(c(T ))

= ⟨Dc(T )φ, εv(T ) + o(ε)⟩+ o(ε). (3.18)

Therefore

0
(3.17)

≤ lim
ε→0+

φ(cε(T ))− φ(c(T ))

ε

(3.18)
= ⟨Dc(T )φ, v(T )⟩. (3.19)

Now we consider the adjoint equation of (3.11) which transports p(T ) = Dc(T )φ ∈ E∗
C

backward in time, i.e. {
d
dt
p(t) = −D∗

c(t)A[p(t)] in [τ, T ),

p(T ) = −Dc(T )φ ∈ E∗
C .

(3.20)

It follows from (3.4) and Theorem I.4 of [19] that p(t) ∈ AC([τ, T ];E∗
C) is the unique

weak solution of (3.20). Then d
dt
p ∈ L1([τ, T ];E∗

C). The density of C1([τ, T ];EC) and
C1([τ, T ];E∗

C) in W
1,1([τ, T ];EC) and W

1,1([τ, T ];E∗
C) respectively implies that the func-

tion ⟨p(·), v(·)⟩ : [τ, T ] → R is weak differentiable and its weak derivative is
d
dt
⟨p(t), v(t)⟩ = ⟨ d

dt
p(t), v(t)⟩+ ⟨p(t), d

dt
v(t)⟩.

Therefore, using equations (3.11) and (3.20) and the definition of adjoint operator, we
obtain

d
dt
⟨p(t), v(t)⟩ = 0 a.e. t ∈ [τ, T ].

This implies that ⟨p(t), v(t)⟩ is constant in [τ, T ], more precisely

0
(3.19),(3.20)

≥ ⟨p(T ), v(T )⟩ = ⟨p(t), v(t)⟩ = ⟨p(τ), v(τ)⟩
(3.11)
= ⟨p(τ), A(τ, c(τ), ω)− A(τ, c(τ), u(τ))⟩

for a.e. τ ∈ [0, T ]. Since ω ∈ U is arbitrary, we have that

⟨p(τ), A(τ, c(τ), u(τ))⟩ = max
ω∈U

{⟨p(τ), A(τ, c(τ), ω)⟩} for a.e. τ ∈ [0, T ].

□
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Now we focus on the Bolza problem with running cost L, i.e.

min
u∈U

{∫ T

0

L(t, c(t), u(t))dt

}
(3.21)

subject to (3.6). We assume:

(HLode) Let L : [0, T ]× C × U → R be a map satisfying:

(a) for every R > 0 there exists a constant LR ≥ 0 such that for every c1, c2 ∈
BR,C , t ∈ [0, T ] and u ∈ U

|L(t, c1, u)− L(t, c2, u)| ≤ LR∥c1 − c2∥E;
(b) for every c ∈ C and u ∈ U the map t 7→ L(t, c, u) belongs to L1([0, T ];R);
(c) for every t ∈ [0, T ] and c ∈ C the map u 7→ L(t, c, u) belongs to C0(U ;R);
(d) for every c ∈ C, t ∈ [0, T ] and u ∈ U , L is C-differentiable at c ∈ C with

C-differential DcL ∈ L(EC ;R).

Under these assumptions on L with the same argument contained in Lemma 3.1 we have
that DcL is single valued in EC and Dc(t)L ∈ L∞([0, T ];E∗

C) for every c ∈ AC([0, T ];C)
and u ∈ U .

We can rewrite the Bolza problem in Mayer form introducing the auxiliary variable

cau(t) =

∫ t

0

L(s, c(s), u(s))ds,

with cau(0) = 0. We introduce the following notations:

c :=

(
c
cau

)
∈ C × R, v :=

(
v
vau

)
∈ EC × R, p :=

(
p
pau

)
∈ E∗

C × R,

A(t, c, u) :=

(
A(t, c, u)
L(t, c, u)

)
. (3.22)

Since A and L are C-differentiable, it follows that A : [0, T ] × C × R × U → EC is
C-differentiable and

DcA :=

(
DcA 0
DcL 0

)
∈ L(EC × R;EC × R). (3.23)

Finally, we denote by D∗
cA the adjoint operator of DcA. Note that for every c ∈

AC([0, T ];C) and u ∈ U , since Dc(t)A ∈ L∞([0, T ];L(EC × R;EC × R)), with the same
argument of Remark 3.2 we obtain D∗

c(t)A ∈ L∞([0, T ];L(E∗
C × R;E∗

C × R). Recalling

that A(t, c, u) ∈ Ec ⊂ EC , we define H : [0, T ]× C × E∗
C × U → R as

H(t, c, p, u) = ⟨p,A(t, c, u)⟩ − L(t, c, u). (3.24)

By its definition and sinceA and L are C-differentiable, it follows thatH is C-differentiable
at c ∈ C and its C-differential DcH ∈ E∗

C has the form

DcH[v] = ⟨p,DcA[v]⟩ −DcL[v] = ⟨D∗
cA[p], v⟩ −DcL[v] ∀v ∈ EC .

Moreover H is Fréchet-differentiable with respect to p and DpH = A(t, c, u) ∈ EC ⊂ E∗∗
C .

It follows that H is differentiable in C × E∗
C and

D(c,p)H(t, c, p, u) =

(
D∗
cA[p]−DcL
A(t, c, u)

)
∈ E∗

C × EC . (3.25)
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In this way the Bolza problem (3.21)-(3.6) is equivalent to the Mayer problem

min
u∈U

cau(T, u) (3.26)

subject to 
d
dt
c(t) = A(t, c(t), u(t)) in (0, T ],

c(0) =

(
c0

0

)
∈ C × R.

(3.27)

Thanks to the assumptions on A and L we can apply Theorem 3.3 to problem (3.26)-(3.27)
obtaining the following result.

Theorem 3.4. Under the assumptions (HAode) and (HLode), let u ∈ U be an ad-
missible control whose corresponding trajectory c ∈ AC([0, T ];C) is optimal for problem
(3.21)-(3.6). Then there exists p ∈ AC([0, T ];E∗

C) such that (c, p) solves in distributional
sense 

d
dt

(
c(t)

p(t)

)
= JD(c(t),p(t))H(t, c(t), p(t), u(t)) in [0, T ),

c(0) = c0 ∈ C,

p(T ) = 0 ∈ E∗
C ,

where H is defined by (3.24) and J : E∗
C × EC ∋ (T, e) 7→ (e,−T ) ∈ EC × E∗

C. Moreover
the maximality condition

H(t, c(t), p(t), u(t)) = max
ω∈U

H(t, c(t), p(t), ω)

holds for almost everywhere t in [0, T ].

Proof. Let us start by noting that, if u ∈ U be an admissible control whose corresponding
trajectory c ∈ AC([0, T ];C) is optimal for problem (3.21)-(3.6), then by (3.22) and (3.21)
we have that c = (c, cau) ∈ AC([0, T ];C × R) is optimal for problem (3.26)-(3.27). Since

φ(c(T, u)) = cau(T, u), we deduce that Dc(T )φ =

(
0
1

)
∈ E∗

C ×R. Hence it follows from

Theorem 3.3 that〈
p(t), A(t, c(t), u(t))

〉 (3.22)
= ⟨p(t), A(t, c(t), u(t))⟩+ pau(t)L(t, c(t), u(t))

= max
ω∈U

{⟨p(t), A(t, c(t), ω)⟩+ pau(t)L(t, c(t), ω)} (3.28)

holds for almost everywhere t in [0, T ], where p is the weak solution of
d
dt
p(t) = −D∗

c(t)A[p(t)] in [0, T ),

p(T ) = −Dc(T )φ =

(
0

−1

)
∈ E∗

C × R.
(3.29)

Then for (v, 0) ∈ EC × R it holds

⟨ d
dt
p(t), v⟩ =

〈
d
dt
p(t),

(
v
0

)〉
(3.29)
=

〈
−D∗

c(t)A[p(t)],

(
v
0

)〉
= −

〈
p(t),Dc(t)A

[
v
0

]〉
(3.22),(3.23)

= −
〈(

p(t)
pau(t)

)
,

(
Dc(t)A[v]
Dc(t)L[v]

)〉
= −⟨p(t),Dc(t)A[v]⟩ − pau(t)Dc(t)L[v]

= −⟨D∗
c(t)A[p(t)], v⟩ − pau(t)Dc(t)L[v]. (3.30)
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Therefore, recalling (3.24) and (3.25), in order to have the result it remains to prove that
pau(t) = −1 almost everywhere t in [0, T ] or, equivalently, since pau(T ) = −1, to prove
that d

dt
pau(t) = 0 almost everywhere t in [0, T ]. Using (3.29) and the definition of adjoint

operator we obtain that

d
dt
pau(t) =

〈
d
dt
p(t),

(
0
1

)〉
=

〈
−D∗

c(t)A[p(t)],

(
0
1

)〉
= −

〈
p(t),Dc(t)A

[
0
1

]〉
(3.23)
≡ 0.

Hence, by substituting pau(t) = −1 in (3.28) and (3.30), the result follows from (3.24)
and (3.25). □

3.1. A generalization to finite particle control problems. In this subsection we
rewrite the results obtained in Theorems 3.3 and 3.4 for a control problem involving
N particles, N ∈ N. Before stating the assumptions on the velocity field and the cost
functions, we introduce some notation. We denote by c a generic element (c1, . . . , cN) ∈
CN and by c(t) a generic element (c1(t), . . . , cN(t)) ∈ L1([0, T ];CN), by p an element
(p1, . . . , pN) ∈ (E∗

C)
N and by p(t) an element (p1(t), . . . , pN(t)) ∈ L1([0, T ]; (E∗

C)
N), by

u an element (u1, . . . , uN) ∈ UN and by u(t) an element (u1(t), . . . , uN(t)) ∈ UN respec-
tively.

We make the following assumptions on the velocity fieldA and on the cost functional L,
which are the finite-particle counterparts of (HAode) and of (HLode), respectively.

(HAsym) Let A : [0, T ]×CN×C×U → E be an operator satisfying the following
properties:

(i) for every c ∈ C, c ∈ CN , t ∈ [0, T ] and u ∈ U it holds

A(t, c, c, u) = A(t, σ(c), c, u) for every permutation σ : CN → CN ;

(ii) for every R > 0 there exists a constant LR ≥ 0 such that for every c, c̃ ∈
BR,C , t ∈ [0, T ], c, c̃ ∈ BN

R,C and u ∈ U

∥A(t, c, c, u)−A(t, c̃, c̃, u)∥E ≤ LR (∥c− c̃∥E +W1 ( 1
N

∑N
i=1 δci ,

1
N

∑N
i=1 δc̃i)) ;

(iii) there exists M > 0 such that for every c ∈ C, c ∈ CN , t ∈ [0, T ] and u ∈ U
it holds

∥A(t, c, c, u)∥E ≤M (1 + ∥c∥E +m1 ( 1
N

∑N
i=1 δci)) ;

(iv) for every c ∈ C, c ∈ CN and u ∈ U the map t 7→ A(t, c, c, u) belongs to
L1([0, T ];E);

(v) for every t ∈ [0, T ], c ∈ C and c ∈ CN the map u 7→ A(t, c, c, u) belongs to
C0(U ;E);

(vi) for every R > 0 there exists θ > 0 such that for every t ∈ [0, T ], c ∈ BN
R,C

and u ∈ U

c ∈ C, ∥c∥E ≤ R ⇒ c+ θA(t, c, c, u) ∈ C;

(vii) for every c ∈ C, c = (c1, . . . , c, . . . , cN) ∈ CN , t ∈ [0, T ] and u ∈ U , A is
C-differentiable at c ∈ C, i.e. there exists DcA ∈ L(EC ;EC)

lim
C∋c′→c

∥A(t, c′, c′, u)−A(t, c, c, u)−DcA[c′ − c]∥E
∥c′ − c∥E

= 0.
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(HLsym) Let L : [0, T ]× CN × UN → R be a continuous function such that

(a) for every c ∈ CN , t ∈ [0, T ] and u ∈ UN it holds

L(t, c,u) = L(t, σ(c), ι(u)) for every permutations σ : CN → CN , ι : UN → UN ;

(b) for every R > 0 there exists a constant LR ≥ 0 such that for every c, c̃ ∈
(BC

R)
N , t ∈ [0, T ] and u ∈ UN

|L(t, c,u)− L(t, c̃,u)| ≤ LRW1 ( 1
N

∑N
i=1 δci ,

1
N

∑N
i=1 δc̃i) ;

(c) for every c ∈ C, c = (c1, . . . , c, . . . , cN) ∈ CN , t ∈ [0, T ] and u ∈ U , L is
C-differentiable at c ∈ C with C-differential DcL ∈ L(EC ;R).

We consider the following Bolza problem

min
u(t)∈UN

{∫ T

0

L(t, c(t),u(t))dt

}
(3.31)

subject to the system{
d
dt
ci(t) = A(t, c(t), ci(t), ui(t)) in (0, T ],

ci(0) = c0,i ∈ C,
for i = 1, . . . , N. (3.32)

Thanks to the assumptions on A and by Theorem I.4 of [19] for every u ∈ UN there
exists a unique weak solution c(t) ∈ AC([0, T ];CN) of system (3.32).

Assume that the minimum control problem (3.31)-(3.32) admits a solution (c, u) ∈
AC([0, T ];CN) × UN . Then, after an application of Theorem 3.4, the following result
follows.

Theorem 3.5. Let A and L satisfy (HAsym) and (HLsym) respectively. Let u ∈ UN

be an admissible control whose corresponding trajectory c ∈ AC([0, T ];CN) is optimal for
problem (3.31)-(3.32). Then there exists a family of co-state curves p ∈ AC([0, T ]; (E∗

C)
N)

such that (c, p, u) solve in distributional sense the following system

d
dt

(
ci(t)

pi(t)

)
= JD(ci(t),pi(t))H(t, c(t), p(t), u(t)) in [0, T ),

ci(0) = c0,i ∈ C,

pi(T ) = 0 ∈ E∗
C ,

u(t) ∈ argmax
u∈UN

H(t, c(t), p(t),u),

for every i = 1, . . . , N,

where the Hamiltonian H : [0, T ]× CN × (E∗
C)

N × UN → R is defined by

H(t, c,p,u) =
N∑
i=1

⟨pi,A(t, c, ci, ui)⟩ − L(t, c,u).

4. Pontryagin maximum principle in the Wasserstein space of convex
spaces

We will henceforth need stronger assumptions than those in Section 3. Let the following
assumptions hold:
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• (E, ∥ · ∥E) is a separable Banach space;
• C ⊂ E is a closed and convex subset of E;
• EC is reflexive;
• (Z, ∥ · ∥Z) is a separable Banach space;
• U = L1([0, T ];U) where U is a not empty compact subset of the normed
space

(C1
b (C;Z), ∥·∥C1

b
) :=

{
u ∈ C1(C;Z) : ∥u∥C1

b
:=supc∈C ∥u(c)∥Z+supc∈C ∥Dcu∥L(EC ;Z)<+∞

}
,

where C1(C;Z) means continuous C-differentiability.

From now on we will often use for any u ∈ U the identification u(t)(c) = u(t, c).

Remark 4.1. Since C is closed in E (which is Banach and separable) we deduce that
C with the induced metric is a complete separable metric space. This implies that C is
a separable Radon space (it is actually a Polish space). Similarly, since EC is reflexive
and separable, then E∗

C is a separable Banach space, and so a separable Radon space. It
follows that C×E∗

C is a separable Radon space and that Pp(C), Pp(E∗
C) and Pp(C×E∗

C)
are complete separable metric space for every p ≥ 1.

We define
Pc(C) := {µ ∈ P(C) : supp(µ) is compact in C}

and
Pb(C) := {µ ∈ P(C) : supp(µ) is bounded in C} .

From now on, unless otherwise specified, when we write Pc(C) and Pb(C) we mean the
separable metric spaces (Pc(C),W1) and (Pb(C),W1) respectively, both seen as subset of
the separable complete metric space (P1(C),W1).

Note that EC×E∗
C
= R(C × E∗

C − C × E∗
C) = EC ×E∗

C and (EC ×E∗
C)

∗ = E∗
C ×E∗∗

C =
E∗
C × EC (recall that EC is reflexive). We define the linear and continuous operator

J : E∗
C × EC → EC × E∗

C

(T, e) 7→ (e,−T ) .

We define the R-fattening of the support of a measure µ ∈ Pc(C) as

Bµ(R) :=
⋃

c∈supp(µ)

BR,C(c),

where BR,C(c) is the closed subset {e ∈ E : ∥e − c∥E ≤ R} ∩ C. Note that, since µ has
compact support, if η ∈ P(Bµ(R)) then η ∈ Pb(C).

From now on let ϕ : P1(C) → Y be such that Pb(C) ⊂ D(ϕ) := {µ ∈ P1(C) :
∥ϕ(µ)∥Y < +∞}, with (Y, ∥ · ∥Y ) a Banach space. We introduce a definition of local
differentiability of ϕ at µ ∈ Pc(C).

Definition 4.2. A functional ϕ : P1(C) → Y is locally differentiable at µ ∈ Pc(C) if there
exists a map ∇µϕ(µ) ∈ L2

µ(C;L(EC ;Y )) in Bochner sense such that for every R > 0 and
for every ν ∈ P(Bµ(R)) it holds

ϕ(ν)− ϕ(µ) =

∫
C×C

∇µϕ(µ)(c1)[c2 − c1]dγ(c1, c2) + oR(W2,γ(µ, ν))
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for any γ ∈ Γ(µ, ν), where

W 2
2,γ(µ, ν) :=

∫
C×C

∥c1 − c2∥2Edγ(c1, c2).

This new notion of local differentiability for functional with values in Banach spaces
enjoys the following chain rule.

Proposition 4.3. Let µ ∈ Pc(C) and V be a closed and bounded subset of C such that
supp(µ) ⊂ V . Suppose that ϕ : P(V ) → Y is locally differentiable over Pc(V ). Let
ψ : C → C be a C-differentiable map with C-differential Dcψ such that

(i) Dψ ∈ L∞
µ (C;L(EC ;EC)) where Dψ(c) := Dcψ;

(ii) supp(ψ#µ) ⊂ V .

Let ε > 0 and G : (−ε, ε)× V → C be a map such that:

(iii) G(0, ·) = IdV and the map ε 7→ G(ε, c) ∈ C ⊂ E is Fréchet-differentiable at ε = 0
uniformly in V ;

(iv) the map F : V → EC which is defined by c 7→ F(c) := d
dε
G(ε, c)

∣∣
ε=0

belongs to
L∞
µ (V ;EC);

(v) supp((ψ ◦ G(ε, ·))#µ) ⊂ V for every ε ∈ (−ε, ε).
Then the map ε 7→ ϕ((ψ ◦ G(ε, ·))#µ) is Fréchet-differentiable at ε = 0 and

d

dε
ϕ((ψ ◦ G(ε, ·))#µ)

∣∣
ε=0

=

∫
C

∇ψ#µϕ(ψ#µ)(ψ(c)) [Dcψ[F(c)]] dµ(c). (4.1)

Proof. For notational convenience set ψε := (ψ ◦ G(ε, ·)) : C → C. First we observe that,
by (ii), since ψ : C → C is continuous and µ ∈ Pc(C), then supp(ψ#µ) = ψ(supp(µ))
is compact in V (see formula (5.2.6) of [7]). Hence ψ#µ ∈ Pc(V ) and, by (v), (ψε)#µ ∈
P(Bµ(R)) for R > 0 large enough. Then, using that µε := (ψ, ψε)# µ ∈ Γ (ψ#µ, (ψε)#µ)

and that ϕ is locally differentiable over Pc(V ), from Definition 4.2 we obtain

ϕ((ψε)#µ)− ϕ(ψ#µ)

ε

=

∫
C×C

∇ψ#µϕ(ψ#µ)(c)

[
c̃− c

ε

]
dµε(c, c̃) +

1

ε
oR (W2,µε(ψ#µ, (ψε)#µ))

=

∫
C

∇ψ#µϕ(ψ#µ)(ψ(c))

[
ψε(c)− ψ(c)

ε

]
dµ(c)

+
1

ε
oR

((∫
C

∥ψε(c)− ψ(c)∥2E dµ(c)

) 1
2

)
. (4.2)

Using that G is Frechet differentiable at ε = 0 uniformly in V and since ψ is C-
differentiable, we have

ψε(c) = ψ(G(ε, c)) = ψ (c+ εF(c) + rF(ε)) = ψ(c) + εDcψ[F(c)] + r(ε, c), (4.3)

where
r(ε, c) = Dcψ[rF(ε)] + o(∥εF(c) + rF(ε)∥)

with rF(ε) = o(ε) not depending on c. It follows from (i) and (iv) that

∥r(ε, c)∥L∞
µ (C;EC) ≤ 2∥Dψ∥L∞

µ (C;L(EC ;EC))∥rF(ε)∥E = o(ε). (4.4)

Now we can pass to the limit in (4.2) as ε→ 0. Indeed, by (4.3)-(4.4), we have

lim
ε→0

ψε(c)− ψ(c)

ε
= Dcψ[F(c)] a.e. c ∈ C
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and ∥∥∥∥ψε(c)− ψ(c)

ε

∥∥∥∥
L∞
µ (C;EC)

≤ 2∥Dψ∥L∞
µ (C;L(EC ;EC))∥F∥L∞

µ (C;EC).

Hence we deduce that

oR

((∫
C

∥ψε(c)− ψ(c)∥2E dµ(c)

) 1
2

)
= oR(ε) as ε→ 0.

Therefore, recalling that ∇ψ#µϕ(ψ#µ) ∈ L2
µ(C;L(EC ;Y )), after an application of the

Lebesgue theorem we obtain (4.1). □

We start by considering the following Mayer optimal control problem:

min
u∈U

φ(µ(T )) (4.5)

subject to {
d
dt
µ(t) + div (A(t, µ(t), ·, u(t, ·))µ(t)) = 0 in (0, T ],

µ(0) = µ0 ∈ Pc(C).
(4.6)

We assume that the non-local velocity field A : [0, T ] × Pb(C) × C × C0
b (C;Z) → EC

satisfies the following.

(HA1): Assumptions on A for the well-posedness of (4.6)

(i) there exists a constant L > 0 such that for every t ∈ [0, T ], µ, µ̃ ∈ Pc(C),
c, c̃ ∈ C and u, ũ ∈ C0

b (C;Z)

∥A(t, µ, c, u)− A(t, µ̃, c̃, ũ)∥E ≤ L
(
∥c− c̃∥E +W1(µ, µ̃) + ∥u− ũ∥C0

b

)
;

(ii) there exists M > 0 such that for every t ∈ [0, T ], µ ∈ Pc(C), c ∈ C and
u ∈ U there holds

∥A(t, µ, c, u)∥E ≤M (1 + ∥c∥E +m1(µ)) ;

(iii) for every µ ∈ Pc(C), c ∈ C and u ∈ U the map t 7→ A(t, µ, c, u) belongs to
L1([0, T ];E);

(iv) for every R > 0 there exists θ > 0 such that for every t ∈ [0, T ], µ ∈ Pc(C)
and u ∈ U

c ∈ C, ∥c∥E ≤ R ⇒ c+ θA(t, µ, c, u) ∈ C.

Under (HA1), it follows from Theorem 3.3 of [6] that, for every u ∈ U , there exists a
unique solution µ ∈ AC([0, T ];Pc(C)) of (4.6). The curve µ(t) can be represented as

µ(t) =
(
Φµ0

(0,t)

)
#
µ0 for t ∈ [0, T ], (4.7)

where, for 0 ≤ s ≤ t ≤ T , Φ
µ(s)
(s,t) : C → C denotes the family of non-local flows defined by

Φµs

(s,t)(c) := c+

∫ t

s

A
(
t, µ(σ),Φµs

(s,σ)(c), u
(
σ,Φµs

(s,σ)(c)
))

dσ, with µs := µ(s). (4.8)

Moreover, by Theorem 1 of [1], for every 0 ≤ s ≤ t ≤ T we have

Φµs

(s,t) ∈ C0
b (C;C). (4.9)

In order to find necessary conditions for the optimal control problem (4.5)-(4.6) we
need further assumptions.
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(HA2): Assumptions on A for the well-posedness of (4.14)

(v) for every t ∈ [0, T ], µ ∈ Pc(C) and c ∈ C the map u 7→ A(t, µ, c, u) belongs
to C1(C1

b (C;Z);E);
(vi) for every t ∈ [0, T ], µ ∈ Pc(C) and u ∈ U the map c 7→ A(t, µ, c, u(t, c)) is

C-differentiable with C-differential DcA and the application DA : Pc(C) ×
C × U → L(EC ;EC) defined by (µ, c, u) 7→ DcA := DcA(t, µ, c, u(t, c)) is
continuous for every t ∈ [0, T ];

(vii) for every t ∈ [0, T ], c ∈ C and u ∈ U the map Pc(C) ∋ µ 7→ A(t, µ, c, u) ∈
EC is locally differentiable at any µ in the sense of the Definition 4.2 with
differential ∇µA := ∇µA(t, µ, c, u) and the application Pc(C)×C×U×C ∋
(µ, c, u, c̃) 7→ ∇µA(c̃) ∈ L(EC ;EC) is continuous for every t ∈ [0, T ].

With an extended but similar argument to the one used to prove Lemma 3.1, we can
get a boundedness result for D

Φµs

(s,t)
(c)
A. We state such result in the following lemma

which will be proved in Appendix A.

Lemma 4.4. Under the assumptions (HA1)-(i) and (HA2)-(vi), it holds that∥∥∥DΦµs

(s,t)
(c)
A
∥∥∥
L(EC ;EC)

≤ L for every 0 ≤ s ≤ t ≤ T and c ∈ C, (4.10)

where L is a positive constant which only depends on the Lipschitz constant of A and
on U . In particular,

the map (t, c) 7→ D
Φµs

(s,t)
(c)
A belongs to L∞

L×µs ([s, T ]× C;L(EC ;EC)) .

Thanks to Lemma 4.4 we can deduce a regularity result for the family of non-local
flows defined in (4.8). In the next lemma we show that this family is C-differentiable and
characterize its C-differential. Since the techniques used in the proof are similar to those
seen in Section 3, we postpone the proof in Appendix A.

Lemma 4.5. Under the assumptions (HA1) and (HA2)-(vi), it holds that for every

s ∈ [0, T ] the map Φµs

(s,t) : C → C is C-differentiable with C-differential DcΦ
µs

(s,t) at c ∈ C

and
the map (t, c) 7→ DcΦ

µs

(s,t) belongs to L∞
L×µs ([s, T ]× C;L(EC ;EC)) .

Moreover, for every c ∈ C and f ∈ EC, DcΦ
µs

(s,t)[f ] is the unique solution to the linear

differential equation {
d
dt
z(t, c) = D

Φµs

(s,t)
(c)
A[z(t, c)] in (s, T ],

z(s, c) = f.
(4.11)

To adapt the needle variation technique to the infinite-dimensional case we need an-
other lemma describing how the flow (4.8) and the solution of (4.6) behave when we
do an infinitesimal variation of the control. Also in this case we postpone the proof to
Appendix A. For simplicity of notation we give the result for initial time s = 0.

Lemma 4.6. Assume (HA1) and (HA2). Let ε > 0. Let u, uε ∈ U be such that uε → u
in L1([0, T ]; (U, ∥ · ∥C1

b
)) as ε → 0. Let µ0, µ0

ε ∈ Pc(C) be such that W1(µ
0
ε, µ

0) → 0 as

ε → 0. Let µ be the solution of (4.6) with initial datum µ0 and corresponding family

of flows Φµ0

(0,t). Let µε be the solution of (4.6) in which u is replaced by uε with initial

datum µ0
ε and corresponding family of flows Φ

ε,µ0ε
(0,t). Then the following hold as ε→ 0:
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(a) Φ
ε,µ0ε
(0,t) → Φµ0

(0,t) in C
0
b ([0, T ]× C;C);

(b) W1(µε(t), µ(t)) → 0 uniformly in [0, T ];

(c) DcΦ
ε,µ0ε
(0,t) → DcΦ

µ0

(0,t) in L(EC ;EC) for every c ∈ C and t ∈ [0, T ].

As for the final cost φ : Pc(C) → R we assume:

(Hφ): φ is Lipschitz continuous w.r.t. theW1-metric and locally differentiable over
Pc(C) with differential ∇µφ. Moreover, the map C ∋ c 7→ ∇µφ(c) ∈ E∗

C is
continuous.

We define the Hamiltonian H : [0, T ] × Pb(C × E∗
C) × U → R of the Mayer problem

(4.5)-(4.6) as

H(t, ν, ω) =

∫
C×E∗

C

⟨p,A(t, π1
#ν, c, ω(c))⟩dν(c, p). (4.12)

Note that, by (HA1)-(ii), H(t, ν, ω) is finite for every ν ∈ Pb(C×E∗
C). Moreover, thanks

to the assumptions (HA1)-(HA2) we can apply Lemma B.2 to obtain that H is locally
differentiable at any ν ∈ Pc(C×E∗

C) in the sense of Definition 4.2. The following explicit
formula for its differential ∇νH(t, ν, u) : C × E∗

C → E∗
C × EC holds:

∇νH(t, ν, u)(c, p) =

 D∗
cA(t, π

1
#ν, c, u)[p] +

∫
C×E∗

C

∇∗
π1
#ν
A(t, π1

#ν, c̃, u)(c)[p̃]dν(c̃, p̃)

A(t, π1
#ν, c, u)

 ,

(4.13)
whereD∗

cA(t, π
1
#ν, c, u) is the adjoint operator ofDcA(t, π

1
#ν, c, u) and∇∗

π1
#ν
A(t, π1

#ν, c̃, u)(c)

is the adjoint operator of ∇π1
#ν
A(t, π1

#ν, c̃, u)(c).

We state the Pontryagin maximum principle for the infinite-dimensional Mayer problem
(4.5)–(4.6).

Theorem 4.7. Let (µµµ, u) ∈ AC([0, T ];Pc(C))×U be an optimal pair control trajectory for
(4.5)-(4.6). Then there exists ννν ∈ AC([0, T ];Pc(C × E∗

C)) which solves in distributional
sense 

d
dt
ννν(t) = −div(c,p)

((
J∇ννν(t)H(t, ννν(t), u(t))(·, ·)

)
ννν(t)

)
in [0, T ),

π1
#ννν(t) = µµµ(t),

ννν(T ) =
(
Id,−∇µµµ(T )φ(µµµ(T ))

)
#
µµµ(T ),

(4.14)

where H and ∇νH are defined by (4.12) and (4.13) respectively. Moreover the following
maximality condition holds

H(t, ννν(t), u(t)) = max
ω∈U

{H(t, ννν(t), ω)} for a.e. t ∈ [0, T ]. (4.15)

In what follows we are concerned with the proof of Theorem 4.7.
First we give a boundedness result for ∇µA which will be useful to derive the linearised
non-local equation.

Lemma 4.8. Let A satisfy (HA1)-(i) and (HA2)-(vi). Then

∥∇µA(c̃)∥L(EC ;EC) ≤ L

for every (µ, c, u) ∈ Pc(C) × C × C1
b (C;Z) and a.e. t ∈ [0, T ] and µ-a.e. c̃ ∈ supp(µ),

where L is the Lipschitz constant of A. In particular,

∇µA ∈ L∞
L×µ×µ([0, T ]× C × supp(µ);L(EC ;EC)).
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Proof. Let µ ∈ Pc(C), c ∈ C and u ∈ C1
b (C;Z). Fix c0 ∈ supp(µ) and c1, c2, c̄ ∈ C. We

define for r > 0, 0 < ε < 1 and i = 1, 2

φiε(c̃) :=


ci for c̃ ∈ Br(c0) ∩ C,(
1− ∥c̃∥−r

ε

)
ci +

(
∥c̃∥−r
ε

)
c̄ for c̃ ∈ (Br+ε(c0) \Br(c0)) ∩ C,

c̄ otherwise.

(4.16)

Then φiε are continuous functions from C to C for i = 1, 2. Since C is convex, we deduce
that (1− ε)Id+ εφiε : C → C, and therefore µiε := ((1− ε)Id+ εφiε)# µ are in Pc(C). It
follows choosing in Definition 4.2

γi =
(
(1− ε)Id+ εφiε, Id

)
#
µ ∈ Γ(µiε, µ)

that

A(t, µ2
ε, c, u)− A(t, µ1

ε, c, u) = A(t, µ2
ε, c, u)− A(t, µ, c, u)−

(
A(t, µ1

ε, c, u)− A(t, µ, c, u)
)

= ε

∫
C

∇µA(t,µ,c,u)(c̃)
[
φ2
ε(c̃)− φ1

ε(c̃)
]
dµ(c̃)

+oR

(
ε

(∫
C

∥φ2
ε(c̃)− c̃∥2Edµ(c̃)

) 1
2

)
+ oR

(
ε

(∫
C

∥φ1
ε(c̃)− c̃∥2Edµ(c̃)

) 1
2

)
.

Hence, by (4.16), using (HA1)-(i) and recalling that supp(µ) is compact in C, we have∥∥∥∥∫
Br+ε(c0)∩C

∇µA(t,µ,c,u)(c̃)
[
φ2
ε(c̃)− φ1

ε(c̃)
]
dµ(c̃)

∥∥∥∥
E

≤ 1

ε

∥∥A(t, µ2
ε, c, u)− A(t, µ1

ε, c, u)
∥∥
E
+

∥∥∥∥1εoR (Mε)

∥∥∥∥
E

≤ L

ε
W1(µ

1
ε, µ

2
ε) +

∥∥∥∥1εoR (Mε)

∥∥∥∥
E

≤ L∥c1 − c2∥Eµ (Br+ε(c0) ∩ C) +
∥∥∥∥1εoR (Mε)

∥∥∥∥
E

, (4.17)

whereM is a positive constant dependent on c̄, c1, c2 and supp(µ). Now, by Definition 4.2,
∇µA(t,µ,c,u) ∈ L2

µ(C;L(EC ;EC)). Moreover,

∥φ2
ε(c̃)− φ1

ε(c̃)∥E ≤ (∥c1∥E + ∥c2∥E + ∥c̄∥E) ∈ L2
µ(C;EC)

and
φ2
ε(c̃)− φ1

ε(c̃) → (c2 − c1)χ{Br(c0)∩C} pointwise in E.

Therefore, after an application of the Lebesgue theorem for general measures, we infer
that as ε→ 0+∥∥∥∥ 1

µ(Br(c0) ∩ C)

∫
Br(c0)∩C

∇µA(t,µ,c,u)(c̃) [c2 − c1] dµ(c̃)

∥∥∥∥
E

≤ L∥c2 − c1∥E. (4.18)

Finally, by (HA2)-(vi), ∇µA(t,µ,c,u) ∈ C0(C;L(EC ;EC)) for a.e. t ∈ [0, T ]. Then, apply-
ing Lebesgue differentiation theorem to (4.18), we deduce as r → 0+ that

∥∇µA(t,µ,c,u)(c0) [c2 − c1] ∥E ≤ L∥c2 − c1∥E
for any c, c1, c2 ∈ C, µ ∈ Pc(C), u ∈ C1

b (C;Z) and c0 ∈ supp(µ). Thanks to the arbitrari-
ness of c2 − c1 ∈ EC , the result follows. □

Now we derive the expression of the linearised Cauchy problem associated to the non-
local continuity equation (4.6).
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Proposition 4.9. Let V be a closed and bounded subset of C and µ0 ∈ Pc(V ). Assume

(HA1)-(HA2). Fix u ∈ U and let µ(t) and Φµ0

(0,t) be the solution of (4.6) and the

associated non-local flow defined in (4.8) respectively.
Let ε > 0 and G : (−ε, ε)× V → C be a continuous map such that:

(i) G(0, ·) = IdV and the map ε 7→ G(ε, c) ∈ C ⊂ E is Fréchet-differentiable at ε = 0
uniformly in V ;

(ii) the map F : V → EC which is defined by c 7→ F(c) := d
dε
G(ε, c)

∣∣
ε=0

belongs to
L∞
µ0(V ;EC);

(iii) supp((Φµ0

(0,t) ◦ G(ε, ·))#µ0) ⊂ V for every ε ∈ (−ε, ε).

Set µ0
ε := G(ε, ·)#µ0. Then, the map (−ε, ε) ∋ ε 7→ Φ

µ0ε
(0,t)(c) ∈ C is Fréchet-differentiable

at ε = 0 for all (t, c) ∈ [0, T ] × V . Moreover, its differential v(t, c) is continuous with
respect to c and it is the unique solution of the non-local Cauchy problem

d
dt
v(t, c) = D

Φµ0

(0,t)
(c)
A
(
t,µ(t),Φµ0

(0,t)
(c),u

(
t,Φµ0

(0,t)
(c)

))
[v(t, c)]

+

∫
C

∇µ(t)A
(
t,µ(t),Φµ0

(0,t)
(c),u

(
t,Φµ0

(0,t)
(c)

))(
Φµ0

(0,t)(c̃)
) [

Dc̃Φ
µ0

(0,t)(c̃)F(c̃) + v(t, c̃)
]
dµ0(c̃),

v(0, c) = 0.

(4.19)

Proof. For notational convenience we define Gε(c) := G(ε, c) for every (ε, c) ∈ (−ε, ε)×V

and µε(t) :=
(
Φ
µ0ε
(0,t)

)
#
µ0
ε. Note that µε(t) is the unique solution of (4.6) with initial

datum µ0
ε. Moreover, by (HA2), we can apply Lemma B.1 obtaining that there exists a

unique distributional solution v(t, c) of (4.19) which is continuous with respect to c.
Let vε : [0, T ]× V → EC be

vε(t, c) :=
Φ
µ0ε
(0,t)(c)− Φµ0

(0,t)(c)

ε
for ε ∈ (−ε, ε). (4.20)

Then the thesis is equivalent to

lim
ε→0

vε(t, c) = v(t, c) for any (t, c) ∈ [0, T ]× V. (4.21)

To prove (4.21) we divide the proof into steps.

Step 1. In this step we prove that vε(t, c) is uniformly bounded in [0, T ] × V for |ε|
small enough.
By (4.8) we have for a positive constant LV only dependent on V that

∥vε(t, c)∥E ≤ 1

|ε|

∫ t

0

∥∥∥A(s,µε(s),Φµ0ε
(0,s)

(c),u

(
s,Φ

µ0ε
(0,s)

(c)

))
− A

(
s,µ(s),Φµ0

(0,s)
(c),u

(
s,Φµ0

(0,s)
(c)

))∥∥∥
E
ds

(HA1)−(i)

≤ L

|ε|

∫ t

0

{∥∥∥Φµ0ε
(0,s)(c)− Φµ0

(0,s)(c)
∥∥∥
E
+W1 (µε(s), µ(s))

}
ds

(4.7)

≤ L

∫ t

0

∥vε(s, c)∥E ds+
L

|ε|

∫ t

0

W1

((
Φ
µ0ε
(0,s)

)
#
µ0
ε,
(
Φµ0

(0,s)

)
#
µ0

)
ds

≤ L

∫ t

0

∥vε(s, c)∥E ds+
LW1 (µ

0
ε, µ

0)

|ε|

∫ t

0

e2LV sds.
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where in the last inequality we have applied Theorem 4.1 of [6]. Therefore we deduce
that

∥vε(t, c)∥E ≤ L

∫ t

0

∥vε(s, c)∥E ds +
(
e2LT − 1

)W1 (µ
0
ε, µ

0)

2|ε|
. (4.22)

To estimate the second term on the right-hand side of (4.22), we use the definition of
1-Wasserstain distance recalling that (Gε, Id)#µ0 ∈ Γ(µ0

ε, µ
0) to obtain

W1

(
µ0
ε, µ

0
)

= W1

(
Gε#µ0, µ0

)
≤
∫
V

∥G(ε, c̃)− c̃∥E dµ0(c̃)

(i)−(ii)
=

∫
V

∥εF(c̃) + o(ε)∥Edµ0(c̃)
(ii)

≤ 2|ε|∥F∥L∞
µ0 (V ;EC).

Hence, in view of (4.22), we infer that

∥vε(t, c)∥E ≤ L

∫ t

0

∥vε(s, c)∥E ds +
(
e2LT − 1

)
∥F∥L∞

µ0
(V ;EC),

which implies, applying the Grönwall inequality, that for |ε| small enough

∥vε(t, c)∥E ≤ e3LT∥F∥L∞
µ0

(V ;EC) uniformly in [0, T ]× V. (4.23)

Step 2. In this step we explicitly write vε(t, c)− v(t, c).
By (4.20) and (4.19), we have, noting that vε(0, c) = 0, that for every (t, c) ∈ [0, T ]× V

vε(t, c)− v(t, c) =

∫ t

0

D
Φµ0

(0,s)
(c)
A
(
s,µ(s),Φµ0

(0,s)
(c),u

(
s,Φµ0

(0,s)
(c)

))
[vε(s, c)− v(s, c)]ds

+

∫ t

0

∫
C

∇µ(s)A
(
s,µ(s),Φµ0

(0,s)
(c),u

(
s,Φµ0

(0,s)
(c)

))(
Φµ0

(0,s)(c̃)
)
[vε(s, c̃)− v(s, c̃)] dµ0(c̃)ds

+

∫ t

0

rε(s, c)ds, (4.24)

where

rε(t, c) =
1

ε

{
A
(
t,µε(t),Φ

µ0ε
(0,t)

(c),u

(
t,Φ

µ0
ε

(0,t)
(c)

))
− A

(
t,µ(t),Φµ0

(0,t)
(c),u

(
t,Φµ0

(0,t)
(c)

))}
−D

Φµ0

(0,t)
(c)
A
(
t,µ(t),Φµ0

(0,t)
(c),u

(
t,Φµ0

(0,t)
(c)

))
[vε(t, c)] (4.25)

−
∫
C

∇µ(t)A
(
t,µ(t),Φµ0

(0,t)
(c),u

(
t,Φµ0

(0,t)
(c)

))(
Φµ0

(0,t)(c̃)
) [

Dc̃Φ
µ0

(0,t)(c̃)F(c̃) + vε(s, c̃)
]
dµ0(c̃).

By adding and subtracting to (4.25) the term

A
(
t,µ(t),Φ

µ0ε
(0,t)

(c),u

(
t,Φ

µ0ε
(0,t)

(c)

))
+ A

(
t,

(
Φµ0

(0,t)
◦Gε

)
#

µ0,Φ
µ0ε
(0,t)

(c),u

(
t,Φ

µ0ε
(0,t)

(c)

))

we obtain
∥rε(t, c)∥E ≤ I + II + III, (4.26)

where

I :=

∥∥∥∥1ε {A(t,µ(t),Φµ0ε
(0,t)

(c),u

(
t,Φ

µ0ε
(0,t)

(c)

))
− A

(
t,µ(t),Φµ0

(0,t)
(c),u

(
t,Φµ0

(0,t)
(c)

))}
− D

Φµ0

(0,t)
(c)
A
(
t,µ(t),Φµ0

(0,t)
(c),u

(
t,Φµ0

(0,t)
(c)

))
[vε(t, c)]

∥∥∥∥
E

, (4.27)

II :=

∥∥∥∥1ε
{
A
(
t,

(
Φµ0

(0,t)
◦Gε

)
#

µ0,Φ
µ0ε
(0,t)

(c),u

(
t,Φ

µ0ε
(0,t)

(c)

))
− A

(
t,µ(t),Φ

µ0
ε

(0,t)
(c),u

(
t,Φ

µ0ε
(0,t)

(c)

))}
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−
∫
C

∇µ(t)A
(
t,µ(t),Φµ0

(0,t)
(c),u

(
t,Φµ0

(0,t)
(c)

))(
Φµ0

(0,t)(c̃)
) [

Dc̃Φ
µ0

(0,t)(c̃)F(c̃)
]
dµ0(c̃)

∥∥∥∥
E

,(4.28)

and

III :=

∥∥∥∥1ε
{
A
(
t,µε(t),Φ

µ0ε
(0,t)

(c),u

(
t,Φ

µ0ε
(0,t)

(c)

))
− A

(
t,

(
Φµ0

(0,t)
◦Gε

)
#

µ0,Φ
µ0ε
(0,t)

(c),u

(
t,Φ

µ0ε
(0,t)

(c)

))}
−
∫
C

∇µ(t)A
(
t,µ(t),Φµ0

(0,t)
(c),u

(
t,Φµ0

(0,t)
(c)

))(
Φµ0

(0,t)(c̃)
)
[vε(t, c̃)] dµ

0(c̃)

∥∥∥∥
E

. (4.29)

Step 3. In this step we prove that rε(t, c) → 0 as ε→ 0 in E for any (t, c) ∈ [0, T ]×V .
To estimate I, we rewrite the right-hand side of (4.27) in the following way

I =
1

∥Φµ0ε
(0,t)(c)− Φµ0

(0,t)(c)∥E

{∥∥∥A(t,µ(t),Φµ0ε
(0,t)

(c),u

(
t,Φ

µ0ε
(0,t)

(c)

))
− A

(
t,µ(t),Φµ0

(0,t)
(c),u

(
t,Φµ0

(0,t)
(c)

))

− D
Φµ0

(0,t)
(c)
A
(
t,µ(t),Φµ0

(0,t)
(c),u

(
t,Φµ0

(0,t)
(c)

))
[Φ

µ0ε
(0,t)(c)− Φµ0

(0,t)(c)]

∥∥∥∥
E

}
∥vε(t, c)∥E,

then, it follows from (HA2)-(vi) and using (4.23) that I → 0 as ε → 0 for any (t, c) ∈
[0, T ]× V .

The fact of II → 0 as ε → 0 follows from Lemma 4.5 and assumption (HA2)-(vii)

which allow us to apply Proposition 4.3 in (4.28) with ϕ(µ) = A(t, µ, c, u) and ψ = Φµ0

(0,t).

Thus we have

lim
ε→0

{I + II} = 0. (4.30)

The estimate of term III is trickier. By (HA2)-(vii), recalling Definition 4.2 and that

µε(t) =
(
Φ
µ0ε
(0,t) ◦ Gε

)
#
µ0, we have

A
(
t,µε(t),Φ

µ0ε
(0,t)

(c),u

(
t,Φ

µ0ε
(0,t)

(c)

))
= A

(
t,

(
Φµ0

(0,t)
◦Gε

)
#

µ0,Φ
µ0ε
(0,t)

(c),u

(
t,Φ

µ0ε
(0,t)

(c)

))

+

∫
C×C

∇(
Φµ0

(0,t)
◦Gε

)
#
µ0
A
(
t,

(
Φµ0

(0,t)
◦Gε

)
#

µ0,Φ
µ0ε
(0,t)

(c),u

(
t,Φ

µ0ε
(0,t)

(c)

))
(c1)[c2 − c1]dγ(c1, c2)

+ o

(
W2,γ

((
Φ
µ0ε
(0,t) ◦ G

ε
)
#
µ0,
(
Φµ0

(0,t) ◦ G
ε
)
#
µ0

))
(4.20)
= A

(
t,

(
Φµ0

(0,t)
◦Gε

)
#

µ0,Φ
µ0
ε

(0,t)
(c),u

(
t,Φ

µ0ε
(0,t)

(c)

))

+ ε

∫
C

∇(
Φµ0

(0,t)
◦Gε

)
#
µ0
A
(
t,

(
Φµ0

(0,t)
◦Gε

)
#

µ0,Φ
µ0ε
(0,t)

(c),u

(
t,Φ

µ0
ε

(0,t)
(c)

))(
Φµ0

(0,t)(G
ε(c̃))

)
[vε(t,Gε(c̃))] dµ0(c̃)

+ o

(
|ε|
(∫

C

∥vε(t,Gε(c̃))∥2Edµ0(c̃)

) 1
2

)
, (4.31)

where in the last equality we have chosen γ =
(
Φ
µ0ε
(0,t) ◦ Gε,Φ

µ0

(0,t) ◦ Gε
)
#
µ0. Combin-

ing (4.29) and (4.31), we deduce

III
(4.7)
=

∥∥∥∥∫
C

∇(
Φµ0

(0,t)
◦Gε

)
#
µ0
A
(
t,

(
Φµ0

(0,t)
◦Gε

)
#

µ0,Φ
µ0ε
(0,t)

(c),u

(
t,Φ

µ0
ε

(0,t)
(c)

))(
Φµ0

(0,t)(G
ε(c̃))

)
[vε(t,Gε(c̃))] dµ0(c̃)

−
∫
C

∇(
Φµ0

(0,t)

)
#
µ0
A
(
t,

(
Φµ0

(0,t)

)
#

µ0,Φµ0

(0,t)
(c),u

(
t,Φµ0

(0,t)
(c)

))(
Φµ0

(0,t)(c̃)
)
[vε(t, c̃)] dµ

0(c̃)
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+
1

ε
o

(
|ε|
(∫

C

∥vε(t,Gε(c̃))∥2Edµ0(c̃)

) 1
2

)∥∥∥∥∥
E

. (4.32)

By adding and subtracting to the terms within the norm in (4.32) the term∫
C

∇(
Φµ0

(0,t)

)
#
µ0
A
(
t,

(
Φµ0

(0,t)

)
#

µ0,Φµ0

(0,t)
(c),u

(
t,Φµ0

(0,t)
(c)

))(
Φµ0

(0,t)(c̃)
)
[vε(t,Gε(c̃))] dµ0(c̃)

we obtain

III ≤ III′ + III′′ +

∥∥∥∥∥1εo
(
|ε|
(∫

C

∥vε(t,Gε(c̃))∥2Edµ0(c̃)

) 1
2

)∥∥∥∥∥
E

, (4.33)

where

III′ :=

∥∥∥∥∫
C

(
∇(

Φµ0

(0,t)
◦Gε

)
#
µ0
A
(
t,

(
Φµ0

(0,t)
◦Gε

)
#

µ0,Φ
µ0ε
(0,t)

(c),u

(
t,Φ

µ0ε
(0,t)

(c)

))(
Φµ0

(0,t)(G
ε(c̃))

)
−∇(

Φµ0

(0,t)

)
#
µ0
A
(
t,

(
Φµ0

(0,t)

)
#

µ0,Φµ0

(0,t)
(c),u

(
t,Φµ0

(0,t)
(c)

))(
Φµ0

(0,t)(c̃)
))

[vε(t,Gε(c̃))] dµ0(c̃)

∥∥∥∥
E

,

and

III′′ :=∥∥∥∥∫
C

∇(
Φµ0

(0,t)

)
#
µ0
A
(
t,

(
Φµ0

(0,t)

)
#

µ0,Φµ0

(0,t)
(c),u

(
t,Φµ0

(0,t)
(c)

))(
Φµ0

(0,t)(c̃)
)
[vε(t,Gε(c̃))− vε(t, c̃)] dµ

0(c̃)

∥∥∥∥
E

.

First we focus on III′. Using (4.23) and applying Hölder inequality, we obtain for a
positive constant M

III′ ≤M

(∫
C

∥∥∥∥∇(
Φµ0

(0,t)
◦Gε

)
#
µ0
A
(
t,

(
Φµ0

(0,t)
◦Gε

)
#

µ0,Φ
µ0ε
(0,t)

(c),u

(
t,Φ

µ0ε
(0,t)

(c)

))(
Φµ0

(0,t)(G
ε(c̃))

)
−∇(

Φµ0

(0,t)

)
#
µ0
A
(
t,

(
Φµ0

(0,t)

)
#

µ0,Φµ0

(0,t)
(c),u

(
t,Φµ0

(0,t)
(c)

))(
Φµ0

(0,t)(c̃)
)∥∥∥∥2

L(EC ;EC)

dµ0(c̃)

) 1
2

. (4.34)

By the continuity assumption (HA2)-(vii) and recalling that in Step 1 we have seen that

W1

((
Φµ0

(0,t) ◦ Gε
)
#
µ0,
(
Φµ0

(0,t)

)
#
µ0

)
→ 0 as ε→ 0, we deduce

lim
ε→0

{
∇(

Φµ0

(0,t)
◦Gε

)
#
µ0
A
(
t,

(
Φµ0

(0,t)
◦Gε

)
#

µ0,Φ
µ0ε
(0,t)

(c),u

(
t,Φ

µ0ε
(0,t)

(c)

))(
Φµ0

(0,t)(G
ε(c̃))

)}
L(EC ;EC)

= ∇(
Φµ0

(0,t)

)
#
µ0
A
(
t,

(
Φµ0

(0,t)

)
#

µ0,Φµ0

(0,t)
(c),u

(
t,Φµ0

(0,t)
(c)

))(
Φµ0

(0,t)(c̃)
)

uniformly for c̃ ∈ supp(µ0) (recall that supp(µ0) is compact in C). Moreover, by
Lemma 4.8, it follows that∥∥∥∥∇(

Φµ0

(0,t)
◦Gε

)
#
µ0
A
(
t,

(
Φµ0

(0,t)
◦Gε

)
#

µ0,Φ
µ0ε
(0,t)

(c),u

(
t,Φ

µ0ε
(0,t)

(c)

))(
Φµ0

(0,t)(G
ε(c̃))

)
−∇(

Φµ0

(0,t)

)
#
µ0
A
(
t,

(
Φµ0

(0,t)

)
#

µ0,Φµ0

(0,t)
(c),u

(
t,Φµ0

(0,t)
(c)

))(
Φµ0

(0,t)(c̃)
)∥∥∥∥

L(EC ;EC)

≤ 2L.

Thus, after an application of the Lebesgue theorem for general measures to the right-hand
side of (4.34), we infer that

lim
ε→0

III′ = 0. (4.35)
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As for III′′, using again Lemma 4.8, we infer

III′′ ≤M

∫
C

∥vε(t,Gε(c̃))− vε(t, c̃)∥Edµ0(c̃), (4.36)

for a positive constant M . Moreover, by assumption (i)-(ii) and thanks to the property

of uniform C-differentiability of Φµ0

(0,t) and Φ
µ0ε
(0,t) on supp(µ0) given by Lemma 4.5, we

have as ε→ 0

vε(t,Gε(c̃))− vε(t, c̃)
(4.20)
=

Φ
µ0ε
(0,t)(Gε(c̃))− Φµ0

(0,t)(Gε(c̃))
ε

−
Φ
µ0ε
(0,t)(c̃)− Φµ0

(0,t)(c̃)

ε

=
1

ε

{
Φ
µ0ε
(0,t)(G

ε(c̃))− Φ
µ0ε
(0,t)(c̃)− Φµ0

(0,t)(G
ε(c̃)) + Φµ0

(0,t)(c̃)
}

=
1

ε

{
εDc̃Φ

µ0ε
(0,t) [F(c̃)]− εDc̃Φ

µ0

(0,t) [F(c̃)] + o(ε)
}

=
(
Dc̃Φ

µ0ε
(0,t) −Dc̃Φ

µ0

(0,t)

)
[F(c̃)] +

o(ε)

ε

E−→ 0,

where in the limit we have applied Lemma 4.6. Thanks to (4.23) and applying the
Lebesgue theorem to the right-hand side of (4.36), we obtain

lim
ε→0

III′′ = 0. (4.37)

Finally, using again (4.23), we infer that

lim
ε→0

{
1

ε
o

(
|ε|
(∫

C

∥vε(t,Gε(c̃))∥2Edµ0(c̃)

) 1
2

)}
= 0.

Hence, combining the last limit with (4.33), (4.35) and (4.37), we conclude that

lim
ε→0

III = 0.

This, together with (4.26) and (4.30), implies that

lim
ε→0

rε(t, c) = 0 ∀(t, c) ∈ [0, T ]× V. (4.38)

Step 4. In this last step we prove the result.
Using (HA1)-(i), the fact that W1(µε(t), µ(t)) ≤ M |ε| (as seen in Step 1) and (4.20) in
the first term of the right-hand side of (4.25), inequalities (4.10) and (4.23) in the second
term and Lemma 4.8, Lemma 4.5, assumption (ii) and again (4.23) in the third term
respectively, we deduce for a positive constant M that

∥rε(t, c)∥E ≤M ∀(t, c) ∈ [0, T ]× V.

Therefore, by (4.38) and applying the Lebesgue theorem, we infer that

rε(t, c) → 0 in L1
L×µ0([0, T ]× C;E) as ε→ 0. (4.39)

Finally, we estimate (4.24). By (4.10) and Lemma 4.8, we deduce

∥vε(t, c)− v(t, c)∥E ≤ L

∫ t

0

∥vε(s, c)− v(s, c)∥Eds

+L

∫ t

0

∫
C

∥vε(s, c̃)− v(s, c̃)∥Edµ0(c̃)ds

+

∫ t

0

∥rε(s, c)∥Eds. (4.40)
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Integrating over C, recalling that µ0(C) = 1 and applying Fubini theorem, we have∫
C

∥vε(t, c)− v(t, c)∥Edµ0(c) ≤ 2L

∫ t

0

∫
C

∥vε(s, c)− v(s, c)∥Edµ0(c)ds

+

∫ t

0

∫
C

∥rε(s, c)∥Edµ0(c)ds,

which implies, applying Grönwall inequality and using (4.39), that∫
C

∥vε(t, c)−v(t, c)∥Edµ0(c) ≤ δεe
2Lt, δε :=

∫ T

0

∫
C

∥rε(s, c)∥Edµ0(c)ds→ 0 as ε→ 0.

Inserting this last inequality in (4.40), we obtain for every (t, c) ∈ [0, T ]× V

∥vε(t, c)− v(t, c)∥E ≤ L

∫ t

0

∥vε(s, c)− v(s, c)∥Eds+ δεe
2LT +

∫ t

0

∥rε(s, c)∥Eds.

Hence, setting

δ̂ε := δεe
2LT +

∫ T

0

∥rε(s, c)∥Eds,

recalling that, by (4.39), δ̂ε → 0 uniformly in V as ε → 0, and applying again Grönwall
inequality, we infer

∥vε(t, c)− v(t, c)∥E ≤ δ̂εe
Lt,

which gives (4.21). □

Proof of Theorem 4.7. We divide the proof into steps.

Step 1: Needle variations. Fix any time τ ∈ (0, T ] and any admissible control value
ω ∈ U . Up to a null set we can assume that τ is a Lebesgue point of t 7→ A(t,µµµ(t), c, z)
for all z ∈ Z. Notice that this is possible by separability of Z and the uniform Lipschitz
continuity of A in the last variable. For ε ∈ [0, ε̄) with ε̄ > 0 sufficiently small, we consider
the following needle variation:

uε(t) =

{
ω if t ∈ [τ − ε, τ ],

u(t) otherwise.
(4.41)

Thanks to (HA1), by Theorem 3.3 of [6], there exists a unique solution µε ∈ AC([0, T ];Pc(C))
of {

d
dt
µ(t) + div (A(t, µ(t), ·, uε(t, ·))µ(t)) = 0 in (0, T ],

µ(0) = µ0 ∈ Pc(C).

The curve µε(t) can be represented using the associated family of non-local flows as

µε(t) =
(
Φε,µ0

(0,t)

)
#
µ0 for t ∈ [0, T ].

Moreover, by Proposition 4 of [1], R > 0 exists such that supp(µµµ(t))∪supp(µε(t)) ⊂ BR,C

and ∥Φε,µ0

(0,t)∥C0
b (C;C) ≤ R for every (ε, t) ∈ [0, ε̄)× [0, T ].

Let t ∈ (τ, T ]. We want to compute for every (t, c) ∈ (τ, T ]×BR,C

lim
ε→0+

Φε,µ0

(0,t) ◦ Φ
µµµ(t)
(t,0)(c)− Id(c)

ε
, (4.42)
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where Id: C → C is the identity function. It follows from (4.41) and from the definition

of Φ
ε,µε(s)
(s,t) and Φ

µµµ(s)
(s,t) (0 ≤ s < t ≤ T ) that

Φε,µ0

(0,t) ◦ Φ
µµµ(t)
(t,0)(c) = Φ

µε(τ)
(τ,t) ◦ Φε,µµµ(τ−ε)

(τ−ε,τ) ◦ Φµµµ(τ)(τ,τ−ε)(cτ ) (4.43)

where cτ := Φ
µµµ(t)
(t,τ)(c). Using again (HA1), we deduce that the map

σ 7→ A
(
σ,µµµ(σ),Φ

µµµ(τ)
(σ,τ−ε)

(cτ ),u
(
σ,Φ

µµµ(τ)
(σ,τ−ε)

(cτ )
))

∈ L∞([0, T ];E).

Then, after an application of the Lebesgue differentiation theorem for vector-valued func-
tions, we obtain

Φ
µµµ(τ)
(τ,τ−ε)(cτ )

(4.8)
= cτ −

∫ τ

τ−ε
A
(
σ,µµµ(σ),Φ

µµµ(τ)
(σ,τ−ε)

(cτ ),u
(
σ,Φ

µµµ(τ)
(σ,τ−ε)

(cτ )
))
dσ

= cτ − εA (τ,µµµ(τ), cτ , u (τ, cτ )) + δ1ε ,

with δ1ε
ε
→ 0 in E as ε→ 0+. Now, choose d = cτ − εA (τ,µµµ(τ), cτ , u (τ, cτ ))+ δ

1
ε . Observe

that

1

ε

∫ τ

τ−ε

[
W1(µε(σ),µµµ(τ)) +

∥∥∥Φε,µµµ(τ−ε)
(τ−ε,σ) (d)− cτ

∥∥∥
E
+
∥∥∥ω (Φε,µµµ(τ−ε)

(τ−ε,σ) (d)
)
− ω(cτ )

∥∥∥
Z

]
dσ → 0 .

Using (HA1)-(i) we deduce that

1

ε

∫ τ

τ−ε
A
(
σ,µε(σ),Φ

ε,µµµ(τ−ε)
(τ−ε,σ)

(d),ω
(
Φ

ε,µµµ(τ−ε)
(τ−ε,σ)

(d)
))

− A
(
σ,µε(σ),Φ

ε,µµµ(τ−ε)
(τ−ε,σ)

(d),ω(cτ )
)
dσ → 0 .

With the above equalities and the Lebesgue differentiation theorem we get

Φ
ε,µµµ(τ−ε)
(τ−ε,τ) (d)

(4.8)
= d+

∫ τ

τ−ε
A
(
σ,µε(σ),Φ

ε,µµµ(τ−ε)
(τ−ε,σ)

(d),ω
(
Φ

ε,µµµ(τ−ε)
(τ−ε,σ)

(d)
))
dσ

= cτ − εA (τ,µµµ(τ), cτ , u (τ, cτ )) + εA (τ,µµµ(τ), cτ , ω(cτ )) + δ2ε ,

with δ2ε
ε
→ 0 in E as ε→ 0+. Recalling the definition of d, this amounts to

Φ
ε,µµµ(τ−ε)
(τ−ε,τ) ◦Φµµµ(τ)(τ,τ−ε)(cτ ) = cτ+ε (A (τ,µµµ(τ), cτ , ω(cτ ))− A (τ,µµµ(τ), cτ , u (τ, cτ )))+δε, (4.44)

with δε
ε
→ 0 in E as ε→ 0+. Recalling that µµµ(t) and µε(t) can be represented using the

associated non-local flows, we have the following expression which links µε(τ) and µµµ(τ):

µε(τ) =
(
Φ
ε,µµµ(τ−ε)
(τ−ε,τ)

)
#
µµµ(τ − ε) =

(
Φ
ε,µµµ(τ−ε)
(τ−ε,τ) ◦ Φµµµ(τ)(τ,τ−ε)

)
#
µµµ(τ)

(4.44)
= (Id + ε (A (τ,µµµ(τ), ·, ω(·))− A (τ,µµµ(τ), ·, u (τ, ·))) + δε)#µµµ(τ). (4.45)

We then define for fixed c ∈ BR,C the function G : [0, ε̄) → E as

G(ε, τ, c) := Id + ε (A (τ,µµµ(τ), c, ω(c))− A (τ,µµµ(τ), c, u (τ, c))) + δε, (4.46)

and, since G is Fréchet-differentiable from the right with differential

F(τ, c) := A (τ,µµµ(τ), c, ω(c))− A (τ,µµµ(τ), c, u (τ, c)) , (4.47)

applying Lemma 2.11 of [35] we can extend G from [0, ε̄) to (−ε̄, ε̄) preserving the Fréchet-
differentiability at ε = 0. Consequently, by (HA1)-(ii), we have for ε ∈ (−ε̄, ε̄)

G(0, τ, ·) = Id,
d
dε
G(ε, τ, c)

∣∣
ε=0

= F(τ, c) ∈ L∞
µµµ(τ)(BR,C ;E),

µε(τ)
(4.45)
= G(ε, τ, ·)#µµµ(τ).

(4.48)
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Therefore, combining (4.42), (4.43), (4.44) and (4.46), we infer that

Φε,µ0

(0,t) ◦ Φ
µµµ(t)
(t,0)(c)− Id(c)

ε
=

Φ
µε(τ)
(τ,t) (G(ε, τ, cτ ))− Φ

µµµ(τ)
(τ,t)(cτ )

ε
(4.49)

for every (ε, t, c) ∈ (−ε̄, ε̄) × (τ, T ] × BR,C . Thanks to (4.48) we can apply Proposition
4.9 and Lemma 4.5 obtaining

Φ
µε(τ)
(τ,t) (G(ε, τ, cτ )) = Φ

µµµ(τ)
(τ,t) (G(ε, τ, cτ )) + εv(t,G(ε, τ, cτ )) + δ̂ε

= Φ
µµµ(τ)
(τ,t)(cτ ) + ε

(
DcτΦ

µµµ(τ)
(τ,t)[F(τ, cτ )] + v(t,G(ε, τ, cτ ))

)
+ δ̃ε,(4.50)

where v(t, ·) is the Fréchet derivative at ε = 0 of Φ
µε(τ)
(τ,t) (·) and

δ̂ε
ε
, δ̃ε
ε
→ 0 as ε→ 0+. Hence,

by the continuity of G with respect to ε and v with respect to c given by Lemma B.1, we
conclude that for every (t, c) ∈ (τ, T ]×BR,C

lim
ε→0+

Φε,µ0

(0,t) ◦ Φ
µµµ(t)
(t,0)(c)− Id(c)

ε

(4.49),(4.50)
= DcτΦ

µµµ(τ)
(τ,t)[F(τ, cτ )] + v(t, cτ ).

We define F : (τ, T ]×BR,C → EC as

F(t, c) := DcΦ
µµµ(τ)
(τ,t)[F(τ, c)] + v(t, c)

(4.47)
= DcΦ

µµµ(τ)
(τ,t)[A (τ,µµµ(τ), c, ω(c))− A (τ,µµµ(τ), c, u (τ, c))] + v(t, c), (4.51)

thus obtaining

lim
ε→0+

Φε,µ0

(0,t) ◦ Φ
µµµ(t)
(t,0)(c)− Id(c)

ε

(4.51)
= F(t,Φ

µµµ(t)
(t,τ)(c)). (4.52)

Finally, again applying Lemma 4.5 and Proposition 4.9, we characterize F(t, c) as the
unique solution of the following linear ODE defined in EC for t ∈ (τ, T ]:

d
dt
F(t, c) = D

Φ
µµµ(τ)
(τ,t)

(c)
A
(
t,µµµ(t),Φ

µµµ(τ)
(τ,t)

(c),u
(
t,Φ

µµµ(τ)
(τ,t)

(c)
))
[F(t, c)]

+

∫
C

∇µµµ(t)A
(
t,µµµ(t),Φ

µµµ(τ)
(τ,t)

(c),u
(
t,Φ

µµµ(τ)
(τ,t)

(c)
))(

Φ
µµµ(τ)
(τ,t)(c̃)

)
[F(t, c̃)] dµµµ(τ)(c̃),

F(τ, c)
(4.47)
= A (τ,µµµ(τ), c, ω(c))− A (τ,µµµ(τ), c, u (τ, c)) .

(4.53)

Step 2: Optimality condition. Note that, by the definitions of µµµ(t) and µε(t) and
using (4.52), we deduce

µε(t) =
(
Φε,µ0

(0,t) ◦ Φ
µµµ(t)
(t,0)

)
#
µµµ(t) =

(
Id + εF(t,Φ

µµµ(t)
(t,τ)(·)) + δε

)
#
µµµ(t), (4.54)

for every t ∈ (τ, T ], where δε
ε
→ 0 as ε→ 0+. Thus, it follows from the assumption (Hφ)

and using (4.54) with t = T that we can apply Proposition 4.3 obtaining

φ(µε(T )) = φ(µµµ(T )) + ε

∫
C

〈
∇µµµ(T )φ(µµµ(T ))(c),F(T,Φ

µµµ(T )
(T,τ)(c))

〉
dµµµ(T )(c) + δ1ε , (4.55)

where δ1ε
ε
→ 0 as ε→ 0+. By the optimality condition on u ∈ U , we know that

φ(µε(T ))− φ(µµµ(T ))

ε
≥ 0 for every ε > 0,

hence, using (4.55) and letting ε go to 0, we infer∫
C

〈
∇µµµ(T )φ(µµµ(T ))(c),F(T,Φ

µµµ(T )
(T,τ)(c))

〉
dµµµ(T )(c) ≥ 0. (4.56)
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Step 3: Adjoint problem. In this Step we follow Step 3 of Section 3.2 in [18].
We consider the unique distributional solution ψt(c, p) : [0, T ] × C × E∗

C → E∗
C of the

adjoint equation of (4.53) (which is a linear ODE defined on E∗
C):

d
dt
w(t, c, p) = −D∗

Φ
µµµ(T )
(T,t)

(c)
A
(
t,µµµ(t),Φ

µµµ(T )
(T,t)

(c),u
(
t,Φ

µµµ(T )
(T,t)

(c)
))
[w(t, c, p)]

−
∫
C×E∗

C

∇∗
µµµ(t)A

(
t,µµµ(t),Φ

µµµ(T )
(T,t)

(c̃),u
(
t,Φ

µµµ(T )
(T,t)

(c̃)
))(

Φ
µµµ(T )
(T,t)(c)

)
[w(t, c̃, p̃)] d

(
(Id,−∇µµµ(T )φ(µµµ(T )))#µµµ(T )

)
(c̃, p̃),

w(T, c, p) = p ∈ E∗
C .

(4.57)
Note that, since DcA(t, µ, c, u) and ∇µA(t, µ, c̃, u)(c) are uniformly bounded operators in
L(EC ;EC), then their adjoint operators are uniformly bounded in L(E∗

C ;E
∗
C). Hence, ap-

plying Lemma B.1, there exists a unique distributional solution ψt(c, p) ∈ AC([0, T ];E∗
C)

of (4.57). Moreover, ψt(c, p) is continuous with respect to c and p. Thus, we define a
curve of measure in E∗

C as

σc : t 7→ ψt(c, ·)#δ−∇µµµ(T )φ(µµµ(T ))(c). (4.58)

Since δ−∇µµµ(T )φ(µµµ(T ))(c) ∈ Pc(E∗
C), we have σc ∈ AC([0, T ];Pc(E∗

C)). Now we extend this
curve of measures on C × E∗

C . First we define

νT : t 7→
∫
C

σc(t)dµµµ(T )(c), (4.59)

which belongs to AC([0, T ];Pc(C×E∗
C)) since µ(T ) and σc(t) have compact support in C

and E∗
C respectively. Then we set

ννν : t 7→
(
Φ
µµµ(T )
(T,t) ◦ π

1, π2
)
#
νT (t), (4.60)

thus obtaining ννν ∈ AC([0, T ];Pc(C × E∗
C)). By its definition we deduce that

dννν(T )(c, p)
(4.60)
= dνT (T )(c, p)

(4.59)
= dσc(T )(p)dµµµ(T )(c)

(4.58),(4.57)
= dδ−∇µµµ(T )φ(µµµ(T ))(c)(p)dµµµ(T )(c)

= d
((
Id,−∇µµµ(T )φ(µµµ(T ))

)
#
µµµ(T )

)
(c, p). (4.61)

Moreover, we have

π1
#ννν(t)

(4.60),(4.59)
= (Φ

µµµ(T )
(T,t))#µµµ(T ) = µµµ(t) for every t ∈ [0, T ]. (4.62)

Now we prove that ννν is a distributional solution of
d
dt
ν(t) = −div(c,p) (Γ (t, ν(t), c, p, u(t, c)) ν(t)) in [0, T ),

π1
#ν(t) = µµµ(t),

ν(T ) =
(
Id,−∇µµµ(T )φ(µµµ(T ))

)
#
µµµ(T ),

(4.63)

where Γ = (Γ1,Γ2) : [0, T ]×Pb(C×E∗
C)×C×E∗

C×U → EC×E∗
C is defined componentwise

by

Γ1(t, ν, c, p, u) := A(t, π1
#ν, c, u) (4.64)

Γ2(t, ν, c, p, u) := −D∗
cA(t, π

1
#ν, c, u)[p]−

∫
C×E∗

C

∇∗
π1
#ν
A(t, π1

#ν, c̃, u)(c)[p̃]dν(c̃, p̃).
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Let ξ ∈ C∞
c (E × E∗

C ;R) with differential (DEξ,DE∗
C
ξ). Then

d
dt

[∫
C×E∗

C

ξ(c, p)dννν(t)(c, p)

]
(4.60)
= d

dt

[∫
C×E∗

C

ξ(Φµµµ
T

(T,t)(c), p)dνT (t)(c, p)

]
(4.59)
= d

dt

[∫
C×E∗

C

ξ(Φµµµ
T

(T,t)(c), p)dσc(t)(p)dµµµ(T )(c)

]
(4.58)
= d

dt

[∫
C×E∗

C

ξ(Φµµµ
T

(T,t)(c), ψt(c, p))dδ−∇µµµ(T )φ(µµµ(T ))(c)(p)dµµµ(T )(c)

]
(4.61)
= d

dt

[∫
C×E∗

C

ξ(Φµµµ
T

(T,t)(c), ψt(c, p))dννν(T )(c, p)

]
(4.8),(4.57)

=

∫
C×EC∗

〈
DEξ(Φ

µµµT

(T,t)(c), ψt(c, p)), A
(
t,µµµ(t),ΦµµµT

(T,t)
(c),u

(
t,ΦµµµT

(T,t)
(c)

))〉
dννν(T )(c, p)

−
∫
C×EC∗

〈
DE∗

C
ξ(Φµµµ

T

(T,t)(c), ψt(c, p)),D
∗
ΦµµµT

(T,t)
(c)
A
(
t,µµµ(t),ΦµµµT

(T,t)
(c),u

(
t,ΦµµµT

(T,t)
(c)

))
[ψt(c, p)]

+

∫
C×E∗

C

∇∗
µµµ(t)A

(
t,µµµ(t),ΦµµµT

(T,t)
(c̃),u

(
t,ΦµµµT

(T,t)
(c̃)

))(
Φµµµ

T

(T,t)(c)
)
[ψt(c̃, p̃)] dννν(T )(c̃, p̃)

〉
dννν(T )(c, p)

(4.61),(4.58),(4.59),(4.60)
=

∫
C×EC∗

⟨DEξ(c, p), A(t,µµµ(t),c,u(t,c))⟩ dννν(t)(c, p)

−
∫
C×EC∗

〈
DE∗

C
ξ(c, p),D∗

cA(t,µµµ(t),c,u(t,c))[p] +

∫
C×E∗

C

∇∗
µµµ(t)A(t,µµµ(t),c̃,u(t,c̃)) (c) [p̃] dννν(t)(c̃, p̃)

〉
dννν(t)(c, p)

(4.62),(4.64)
=

∫
C×EC∗

⟨DEξ(c, p),Γ1(t, ννν(t), c, p, u(t, c))⟩ dννν(t)(c, p)

+

∫
C×E∗

C

〈
DE∗

C
ξ(c, p),Γ2(t, ννν(t), c, p, u(t, c))

〉
dννν(t)(c, p).

It follows, recalling (4.62) and (4.61), that ννν is a distributional solution of (4.63).
Finally we define Kω,τ : [τ, T ] → R as

Kω,τ (t) :=

∫
C×E∗

C

〈
p,F

(
t,Φ

µµµ(t)
(t,τ)(c)

)〉
dννν(t)(c, p)

(4.60),(4.59),(4.58),(4.61)
=

∫
C×E∗

C

〈
ψt(c, p),F

(
t,Φ

µµµ(T )
(T,τ)(c)

)〉
dννν(T )(c, p), (4.65)

where F is defined by (4.51). Using that ψt(c, p) and F(t, c) are weak solutions of (4.57)
and (4.53) respectively, by the same density argument used in the proof of Theorem 3.3
(cf. the comments after (3.20)), recalling the definition of adjoint operator and applying
Fubini’s Theorem, we obtain

d
dt
Kω,τ (t) = 0 a.e t ∈ [τ, T ]. (4.66)

Step 4: Conclusion of the proof. Note that, by (4.66) and since

Kω,τ (T )
(4.65),(4.61)

=

∫
C

〈
−∇µµµ(T )φ(µµµ(T ))(c),F(T,Φ

µµµ(T )
(T,τ)(c))

〉
dµµµ(T )(c)

(4.56)

≤ 0,
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we deduce that Kω,τ (t) ≤ 0 for t ∈ [τ, T ]. In particular, it holds for every ω ∈ U and a.e.
τ ∈ [0, T ] that

Kω,τ (τ)
(4.65)
=

∫
C×E∗

C

⟨p,F(τ, c)⟩dννν(τ)(c, p)

(4.47)
=

∫
C×E∗

C

⟨p,A (τ,µµµ(τ), c, ω(c))− A (τ,µµµ(τ), c, u (τ, c))⟩dννν(τ)(c, p) ≤ 0.

Thus, recalling (4.12), we get (4.15). Finally, it follows from (4.13) and (4.64) that

Γ(t, ν, c, p, u) = J∇νH(t, ν, u)(c, p).

Hence, by (4.63), ννν is a distributional solution of (4.14). □

Now we focus on the Bolza problem and we give the infinite-dimensional version of
Theorem 3.4. Let L : [0, T ]× Pb(C)× C1

b (C;Z) → R. We consider

min
u∈U

{∫ T

0

L(t, µ(t), u(t))dt

}
, (4.67)

subject to (4.6). We assume for the running cost L that a function l : [0, T ] × Pb(C) ×
C × C1

b (C;Z) → R exists such that

L(t, µ, u) =

∫
C

l(t, µ, c, u(c))dµ(c).

Moreover, the following hold.

(HL):

(a) there exists a constant L > 0 such that for every t ∈ [0, T ], µ, µ̃ ∈ Pc(C)
and u ∈ U

|L(t, µ, u)− L(t, µ̃, u)| ≤ LW1(µ, µ̃);

(b) there exists M > 0 such that for every t ∈ [0, T ], µ ∈ Pc(C) and u ∈ U
there holds

|L(t, µ, u)| ≤M (1 +m1(µ)) ;

(c) for every µ ∈ Pc(C) and u ∈ U the map t 7→ L(t, µ, u) belongs to
L1([0, T ];R);

(d) for every t ∈ [0, T ] and µ ∈ Pc(C) the map u 7→ L(t, µ, u) belongs to
C0(C1

b (C;Z);R);
(e) for every t ∈ [0, T ] and u ∈ U the map Pc(C) ∋ µ 7→ L(t, µ, u) ∈ R is locally

differentiable at any µ in the sense of the Definition 4.2 with differential
∇µL := ∇µL(t, µ, u) and the application Pc(C) × U × C ∋ (µ, u, c̃) 7→
∇µL(c̃) ∈ E∗

C is continuous for every t ∈ [0, T ].

We define the HamiltonianH : [0, T ]×Pb(C×E∗
C)×U → R for the problem (4.67)-(4.6)

as

H(t, ν, ω) =

∫
C×E∗

C

⟨p,A(t, π1
#ν, c, ω(c))⟩dν(c, p)− L(t, π1

#ν, ω). (4.68)

As seen for the Mayer problem we can compute explicitly ∇νH(t, ν, u) : C ×E∗
C → E∗

C ×
EC :

∇νH(t, ν, u)(c, p) = (4.69)
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 D∗
cA(t, π

1
#ν, c, u)[p] +

∫
C×E∗

C

∇∗
π1
#ν
A(t, π1

#ν, c̃, u)(c)[p̃]dν(c̃, p̃)−∇π1
#ν
L(t, π1

#ν, u)(c)

A(t, π1
#ν, c, u)

 .

Finally we state the Pontryagin maximum principle for the Bolza problem.

Theorem 4.10. Let (µµµ, u) ∈ AC([0, T ];Pc(C))×U be an optimal pair control trajectory
for (4.67)-(4.6). Then there exists ννν ∈ AC([0, T ];Pc(C × E∗

C)) which solves in distribu-
tional sense

d
dt
ννν(t) = −div(c,p)

((
J∇ννν(t)H(t, ννν(t), u(t))(·, ·)

)
ννν(t)

)
in [0, T ),

π1
#ννν(t) = µµµ(t),

ννν(T ) = µ(T )× δ0 ∈ Pc(C × E∗
C),

where H and ∇νH are defined by (4.68) and (4.69) respectively. Moreover the following
maximality condition holds

H(t, ννν(t), u(t)) = max
ω∈U

{H(t, ννν(t), ω)} for a.e. t ∈ [0, T ].

Proof. The proof is an infinite-dimensional adaptation of the proof of Theorem 3.4. We
do not report the details here as they are very similar of [15, Section 4.2]. □

5. A model example

In this section we briefly discuss an example that fits into the theoretical framework
presented in Section 4. The general setting we present here is that of entropy regularised
mean-field particle systems presented in [4,10] for inhomogeneous evolutionary games [6].

We fix a compact metric space (V, d) of pure strategies, a probability measure η ∈ P(V )
with supp(η) = V , and p ∈ (1,+∞). We define as ambient space E := Rd × Lp(V, η),
where

Lp(V, η) :=

{
ℓ : V → R :

∫
V

|ℓ(v)|p dη(v) < +∞
}
.

Denoting by | · | the Euclidian norm in Rd and by ∥ · ∥p the Lp-norm in Lp(V, η), we
endow E with the norm ∥ · ∥E = | · | + ∥ · ∥p. With such choice, E is a separable and
reflexive Banach space. For 0 < r < R < +∞ we set

Cr,R := Rd × {ℓ ∈ Lp(V, η) : r ≤ ℓ(v) ≤ R for η-a.e. v ∈ V }.

In particular, Cr,R is a convex and closed subset of E. To shorten the notation, we denote
by c = (x, ℓ) the generic element of E.

Let us fix 0 < r < R < +∞. As in Section 4, we consider U = L1([0, T ];U) for U a
not empty compact subset of (C1

b (Cr,R;Rd), ∥ · ∥C1
b
). As velocity field, for Ψ ∈ P1(Cr,R)

and u ∈ U we consider

A(Ψ, c, u) := (vΨ(c) + u, TΨ(c) + εS(ℓ)), (5.1)

for some ε > 0. Here, vΨ : E 7→ Rd takes the form

vΨ(c) :=

∫
Cr,R

K(x′ − x) dΨ(x′, ℓ′),

for a suitable interaction kernel K : Rd → Rd such that

(K) K ∈ C1
b (Rd;Rd).
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As for the operators TΨ : Cr,R → Lp(V, η) and S : Cr,R → L0(V, η) we consider

TΨ(c) :=

(∫
Cr,R

J(x, ·, x′) dΨ(x′, ℓ′)−
∫
V

∫
Cr,R

J(x, v′, x′) ℓ(v′) dΨ(x′, ℓ′) dη(v′)

)
ℓ,

S(ℓ) :=
(∫

V

ℓ(v) log(ℓ(v)) dη(v)− log(ℓ)

)
ℓ,

for a payoff function J : Rd × V × Rd → R satisfying

(J.1) J is bounded on Rd × V × Rd and there exists a constant L > 0 such that for
every x1, x

′
1, x2, x

′
2 ∈ Rd and every v ∈ V

|J(x1, v, x′1)− J(x2, v, x
′
2)| ≤ L

(
|x1 − x2|+ |x′1 − x′2|

)
;

(J.2) for every v ∈ V , the map (x, x′) 7→ J(x, v, x′) is differentiable with (x, x′) 7→
(∇xJ(x, v, x

′),∇x′J(x, v, x
′)) continuous in Rd × Rd.

Under the assumptions (K) and (J.1)–(J.2), it has been shown in [4, Proposition 3.2]
and in [31, Proposition 5.8] that for every ε > 0 there exists 0 < rε < Rε < +∞ such
that, setting C := Crε,Rε , the velocity field A defined in (5.1) complies with assumptions
(i)–(iv) in (HA1). Moreover, we have that

EC = R(C − C) =

{
ℓ ∈ Lp(V, η) :

∫
V

ℓ(v) dη(v) = 0

}
.

Hence, EC is reflexive.
We now verify that A also satisfies the set of assumptions (HA2). As before, condi-

tion (v) of (HA2) is trivial in view of the linear dependence of A on the control variable u.
As for the C-differentiability of A, we write the C-differential piece-by-piece as

DcvΨ(c)[c1 − c2] = −
∫
C

∇K(x′ − x)(x1 − x2) dΨ(x′, ℓ′),

DcTΨ(c)[c1 − c2] =

(∫
C

∇xJ(x, ·, x′) · (x1 − x2) dΨ(x′, ℓ′)

−
∫
V

∫
C

∇xJ(x, v
′, x′) · (x1 − x2) ℓ(v

′) dΨ(x′, ℓ′) dη(v′)

)
ℓ

+

(∫
C

J(x, ·, x′) dΨ(x′, ℓ′)−
∫
V

∫
C

J(x, v′, x′) ℓ(v′) dΨ(x′, ℓ′) dη(v′)

)
(ℓ1 − ℓ2)

− ℓ

∫
V

∫
C

J(x, v′, x′) (ℓ1(v
′)− ℓ2(v

′)) dΨ(x′, ℓ′) dη(v′),

DcS(c)[c1 − c2] =

(∫
V

ℓ(v) log(ℓ(v)) dη(v)− log(ℓ)− 1

)
(ℓ1 − ℓ2)

+ ℓ

∫
V

(ℓ1(v)− ℓ2(v))(1 + log(ℓ(v))) dη(v),

for every Ψ ∈ P(C) and every c1, c2 ∈ C (recall that ci = (xi, ℓi) for i = 1, 2). In
particular, (K) and (J.1)–(J.2) imply that A satisfies (vi) of (HA2).

Finally, the map Pc(C) ∋ Ψ 7→ A(Ψ, c, u) ∈ EC is locally differentiable at any Ψ in the
sense of the Definition 4.2 with differential(

∇ΨA(Ψ, c, u)
)
(c1)[c2 − c1]

=

(
∇K(x1 − x)[x2 − x1][

∇x′J(x, ·, x1) · (x2 − x1)−
∫
V
∇x′J(x, v, x1) · (x2 − x1)ℓ(v) dη(v)

]
ℓ(·)

)
,
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for every c, c1, c2 ∈ C. In particular, (K) and (J.1)–(J.2) yield (vii) in (HA2).

Appendix

We first prove the results whose proof we have postponed, then we give two technical
results that we used in Section 4.

A: Proofs of Lemma 4.4, Lemma 4.5 and Lemma 4.6.

Proof of Lemma 4.4. Fix c ∈ C. We recall that Φµs

(s,t) ∈ C0
b (C;C). For brevity of notation

we set c̃ := Φµs

(s,t)(c). Let v ∈ R(C − C). Then v = α(c1 − c2) = α(c1 − c̃)− α(c2 − c̃). It

follows by definition of C-differential (see (3.2)) that

∥Dc̃A[v]∥E = |α|∥Dc̃A[c1 − c̃]−Dc̃A[c2 − c̃]∥E
(3.3)
= |α| lim

h→0+

∥∥∥∥1h (A(t,µ(t),c̃+h(c1−c̃),u(t,c̃+h(c1−c̃))) − A(t,µ(t),c̃+h(c2−c̃),u(t,c̃+h(c2−c̃))))

∥∥∥∥
E

(4.9),(HA1)−(i)

≤ |α|L lim
h→0+

{
h∥c1 − c2∥E + ∥u(t, c̃+ h(c1 − c̃))− u(t, c̃+ h(c2 − c̃))∥C0

b

}
.

Since u ∈ U which is compact in C1
b (C;Z), by Remark A.5 of [6], there exists a positive

constant LU such that, starting from the last inequality, we deduce

∥Dc̃A[v]∥E ≤ L(1 + LU)∥v∥E.
By an abuse of notation we use the symbol L to denote L(1 + LU), hence, the result
follows. □

Proof of Lemma 4.5. Let us first note that, by (4.10), the Cauchy problem (4.11) is well-
defined and admits a unique solution zf (t, c) ∈ AC([s, T ];EC). In particular, we can
define the family of diffeomorphisms Lc(s,t) : EC → EC as Lc(s,t)[f ] := zf (t, c). Since the

differential equation in (4.11) is linear, we have that Lc(s,t) is a linear operator for every

(t, c) ∈ [s, T ]× C. Moreover, by its definition

zf (t, c) = f +

∫ t

s

D
Φµs

(s,σ)
(c)
A[zf (σ, c)]dσ, (A.1)

which, using (4.10), implies

∥zf (t, c)∥E ≤ ∥f∥E + L

∫ t

s

∥zf (σ, c)∥Edσ.

Then, after an application of the Grönwall inequality, we obtain

∥Lc(s,t)[f ]∥E = ∥zf (t, c)∥E ≤ ∥f∥EeLT .

Hence Lc(s,t) ∈ L(EC ;EC) and ∥Lc(s,t)∥L(EC ;EC) ≤ eLT , consequently we deduce that

the map (t, c) 7→ Lc(s,t) belongs to L∞
L×µs ([s, T ]× C;L(EC ;EC)) .

Let us now show that Lc(s,t) is exactly the C-differential of Φµs

(s,t) at c ∈ C, thus proving

the statement. By definition of C-differential, defining

h := ∥c′ − c∥E, zh(t) :=
Φµs

(s,t)(c
′)− Φµs

(s,t)(c)

h
and f :=

c′ − c

h
,

we just have to prove that

lim
c′→c

∥zh(t)− zf (t, c)∥E = 0. (A.2)
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Note that, by its definition, zh(t) solves{
d
dt
zh(t) =

1
h

{
A
(
t, µ(t),Φµs

(s,t)(c
′), u(t,Φµs

(s,t)(c
′))
)
− A

(
t, µ(t),Φµs

(s,t)(c), u(t,Φ
µs

(s,t)(c))
)}

in (s, T ],

zh(s) =
c′−c
h
.

We can therefore rewrite the equation for zh(t) as
d
dt
zh(t) = D

Φµs

(s,t)
(c)
A[zh(t)] + rh(t),

where

rh(t) :=
∥Φµs

(s,t)(c
′)− Φµs

(s,t)(c)∥E
h

×

A
(
t,µ(t),Φµs

(s,t)
(c′),u(t,Φµs

(s,t)
(c′))

)
− A

(
t,µ(t),Φµs

(s,t)
(c),u(t,Φµs

(s,t)
(c))

)
−D

Φµs

(s,t)
(c)
A[Φµs

(s,t)(c
′)− Φµs

(s,t)(c)]

∥Φµs

t (c′)− Φµs

t (c)∥E
,

leading to

zh(t) = f +

∫ t

s

D
Φµs

(s,σ)
(c)
A[zh(σ)]dσ +

∫ t

s

rh(σ)dσ. (A.3)

By (4.8), (HA1)-(i), and again applying the Grönwall inequality, we obtain

∥Φµs

(s,t)(c
′)− Φµs

(s,t)(c)∥E ≤ heLT , (A.4)

which, together to (HA2)-(vi), implies that

lim
h→0

∥rh(t)∥E = 0 for t ∈ [s, T ].

Moreover, using again (HA1)-(i), (4.10) and (A.4), it easy to check that

∥rh(t)∥E ≤ 2LeLT for t ∈ [s, T ],

so that, from an application of the Lebesgue dominated convergence theorem, we have

rh(t) → 0 in L1([s, T ];EC) as h→ 0. (A.5)

Finally, by (A.1) and (A.3), we deduce that

∥zh(t)− zf (t, c)∥E ≤
∫ t

s

∥D
Φµs

(s,σ)
(c)
A[zh(σ)− zf (σ, c)]∥Edσ +

∫ t

s

∥rh(σ)∥Edσ

(4.10)

≤ L

∫ t

s

∥zh(σ)− zf (σ, c)∥Edσ + δh,

where

δh :=

∫ T

s

∥rh(σ)∥Edσ
(A.5)→ 0 as h→ 0. (A.6)

Applying again the Grönwall inequality, we conclude that

∥zh(t)− zf (t, c)∥E ≤ δhe
LT .

Therefore, recalling that h = ∥c′ − c∥E and by (A.6), we get (A.2). □

Proof of Lemma 4.6. We divide the proof in agreement with the three statements.
Proof of (a) and (b). Let µ̂ε be the solution of (4.6) with u replaced by uε and with initial

datum µ0. Let Φε,µ0

(0,t) be the family of non-local flows associated to µ̂ε. We know by (4.9)

that Φµ0

(0,t),Φ
ε,µ0

(0,t),Φ
ε,µ0ε
(0,t) belong to C0

b ([0, T ] × C;C). Fix c ∈ C. It follows from triangle

inequality that∥∥∥Φε,µ0ε
(0,t)(c)− Φµ0

(0,t)(c)
∥∥∥
E
≤
∥∥∥Φε,µ0ε

(0,t)(c)− Φε,µ0

(0,t)(c)
∥∥∥
E
+
∥∥∥Φε,µ0

(0,t)(c)− Φµ0

(0,t)(c)
∥∥∥
E
. (A.7)
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We focus on the second term of the right-hand side of (A.7). We define

Fε(t) := sup
C

∥∥∥Φε,µ0

(0,t)(c)− Φµ0

(0,t)(c)
∥∥∥
E

for t ∈ [0, T ].

It follows from (4.8) and (HA1)-(i) that

∥Φε,µ0

(0,t)(c)− Φµ0

(0,t)(c)∥E (A.8)

≤
∫ t

0

∥∥∥A(s,µ̂ε(s),Φε,µ0

(0,s)
(c),uε(s,Φ

ε,µ0

(0,s)
(c))

)
− A

(
s,µ(s),Φµ0

(0,s)
(c),u(s,Φµ0

(0,s)
(c))

)∥∥∥
E
ds

≤ L

∫ t

0

{
W1(µ̂ε(s), µ(s)) + ∥Φε,µ0

(0,s)(c)− Φµ0

(0,s)(c)∥E + ∥uε(s,Φε,µ0

(0,s)
(c)) − u(s,Φµ0

(0,s)
(c))∥C0

b

}
ds

≤ L

∫ t

0

W1(µ̂ε(s), µ(s))ds+ L

∫ t

0

∥Φε,µ0

(0,s)(c)− Φµ0

(0,s)(c)∥Eds

+ L

∫ t

0

∥uε(s,Φε,µ0

(0,s)
(c)) − uε(s,Φµ0

(0,s)
(c))∥C0

b
ds+ L

∫ t

0

∥uε(s,Φµ0

(0,s)
(c)) − u(s,Φµ0

(0,s)
(c))∥C0

b
ds.

Now we estimate the terms on the right-hand side of (A.8). As for the first term, by
definition of Wasserstein distance, we deduce that∫ t

0

W1(µ̂ε(s), µ(s))ds ≤
∫ t

0

∫
C

∥Φε,µ0

(0,s)(c)− Φµ0

(0,s)(c)∥Edµ0(c)ds ≤
∫ t

0

Fε(s)ds. (A.9)

Regarding the third term, since uε, u ∈ U which is compact in (C1
b (C;Z), ∥ · ∥C1

b
), there

exists a positive constant LU such that∫ t

0

∥uε(s,Φε,µ0

(0,s)
(c)) − uε(s,Φµ0

(0,s)
(c))∥C0

b
ds ≤ LU

∫ t

0

Fε(s)ds. (A.10)

Finally, by assumption, uε → u in L1([0, T ]; (U, ∥ · ∥C1
b
)), then∫ t

0

∥uε(s,Φµ0

(0,s)
(c)) − u(s,Φµ0

(0,s)
(c))∥C0

b
ds→ 0 as ε→ 0. (A.11)

Combining (A.9), (A.10) and (A.11) with (A.8), we obtain that

Fε(t) ≤ L(2 + LU)

∫ t

0

Fε(s)ds+ δε,

where δε is a positive constant not depending on c and t which goes to 0 as ε→ 0. Hence,
applying Grönwall inequality, we conclude that

Fε(t) ≤ δεe
L(2+LU )T , (A.12)

whence

sup
C

∥∥∥Φε,µ0

(0,t)(c)− Φµ0

(0,t)(c)
∥∥∥
E
→ 0 as ε→ 0 uniformly in t ∈ [0, T ]. (A.13)

As regards the first term on the right-hand side of (A.7), since by Theorem 3.3 of [6] we
have for a positive constant M

W1(µε(t), µ̂ε(t)) ≤ eMtW1(µ
0
ε, µ

0) for t ∈ [0, T ], (A.14)

and recalling that, by assumption, W1(µ
0
ε, µ

0) → 0 as ε→ 0, we can proceed in the same
way used for the second term to obtain that

sup
C

∥∥∥Φε,µ0ε
(0,t)(c)− Φε,µ0

(0,t)(c)
∥∥∥
E
→ 0 as ε→ 0 uniformly in t ∈ [0, T ]. (A.15)
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Hence, combining (A.13) and (A.15) with (A.7), we deduce (a). The proof of (b) is an
easy consequence of what we have just seen. Indeed, by triangle inequality,

W1(µε(t), µ(t)) ≤ W1(µε(t), µ̂ε(t)) +W1(µ̂ε(t), µ(t))
(A.14)

≤ eMTW1(µ
0
ε, µ

0) +

∫
C

∥Φε,µ0

(0,t)(c)− Φµ0

(0,t)(c)∥Edµ
0(c)

(A.12)

≤ eMTW1(µ
0
ε, µ

0) + δεe
L(2+LU )T ,

so (b) follows.
Proof of (c). Fix t ∈ [0, T ] and c ∈ C. We define for a fixed f ∈ EC

zε(t, c) := DcΦ
ε,µ0ε
(0,t)[f ] and z(t, c) := DcΦ

µ0

(0,t)[f ].

By Lemma 4.5 we know that ∥z(t, c)∥E ≤M∥f∥E for a positive constant M and that

∥zε(t, c)− z(t, c)∥E (A.16)

≤
∫ t

0

∥D
Φ

ε,µ0ε
(0,s)

(c)
A(s,µε(s),Φ

ε,µ0ε
(0,s)

(c),uε(s,Φ
ε,µ0ε
(0,s)

(c)))[zε(s, c)− z(s, c)]∥Eds

+

∫ t

0

∥(D
Φ

ε,µ0ε
(0,s)

(c)
A(s,µε(s),Φ

ε,µ0ε
(0,s)

(c),uε(s,Φ
ε,µ0

ε
(0,s)

(c))) −D
Φµ0

(0,s)
(c)
A(s,µ(s),Φµ0

(0,s)
(c),u(s,Φµ0

(0,s)
(c))))[z(s, c)]∥Eds

(4.10)

≤ L

∫ t

0

∥zε(s, c)− z(s, c)∥Eds

+M∥f∥E
∫ t

0

∥D
Φ

ε,µ0
ε

(0,s)
(c)
A(s,µε(s),Φ

ε,µ0ε
(0,s)

(c),uε(s,Φ
ε,µ0

ε
(0,s)

(c))) −D
Φµ0

(0,s)
(c)
A(s,µ(s),Φµ0

(0,s)
(c),u(s,Φµ0

(0,s)
(c)))∥L(EC ;EC)ds.

Furthermore, by assumption (HA2)-(vi) and using (a) and the convergence of uε to u in
L1([0, T ]; (U, ∥ · ∥C1

b
)), we have for a.e. t ∈ [0, T ] that as ε→ 0∥∥∥∥DΦ

ε,µ0
ε

(0,t)
(c)
A(t,µε(t),Φ

ε,µ0ε
(0,t)

(c),uε(t,Φ
ε,µ0ε
(0,t)

(c))) −D
Φµ0

(0,t)
(c)
A(t,µ(t),Φµ0

(0,t)
(c),u(t,Φµ0

(0,t)
(c)))

∥∥∥∥
L(EC ;EC)

→ 0.

Since, by Lemma 4.4, both D
Φ

ε,µ0ε
(0,t)

(c)
A and D

Φµ0

(0,t)
(c)
A are uniformly bounded in [0, T ],

we can apply the Lebesgue theorem to the last term on the right-hand side of (A.16)
obtaining that

∥zε(t, c)− z(t, c)∥E ≤ L

∫ t

0

∥zε(s, c)− z(s, c)∥Eds+M∥f∥Eδε(c),

where δε(c) is a positive constant depending on c which goes to 0 as ε→ 0. It follows by
an application of the Grönwall inequality that

∥zε(t, c)− z(t, c)∥E ≤M∥f∥Eδε(c)eLT .

Hence, recalling the definitions of zε and z, we conclude that

sup
EC∋f ̸=0

∥(DcΦ
ε,µ0ε
(0,t) −DcΦ

µ0

(0,t))[f ]∥E
∥f∥E

≤Mδε(c)e
LT → 0 as ε→ 0,

thus finding (c). □
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B: Auxiliary lemmas. In what follows let X be a closed and convex subset of a sep-
arable Banach space Y and let EX be the closure of the vectorial subspace R(X − X)
in Y .

Lemma B.1. Let µ belong to Pc(X). Let B1 : [0, T ]×X → L(EX ;EX) and B2 : [0, T ]×
X ×X → L(EX ;EX) be operators satisfying

(i) the map x 7→ B1(t, x) belongs to C(X;L(EX ;EX)) for a.e. t ∈ [0, T ] and B1 ∈
L∞
L×µ([0, T ]×X;L(EX ;EX));

(ii) the map (x, x̃) 7→ B2(t, x, x̃) belongs to C(X ×X;L(EX ;EX)) for a.e. t ∈ [0, T ]
and B1 ∈ L∞

L×µ×µ([0, T ]×X ×X;L(EX ;EX)).
Then there exists a unique continuous weak solution w : [0, T ]×X → EX of d

dt
w(t, x) = B1(t, x)[w(t, x)] +

∫
X

B2(t, x, x̃)[w(t, x̃)]dµ(x̃) in (0, T ],

w(0, x) = y ∈ EX .

Proof. We consider the metric space C0
b ([0, T ]×X;EX) equipped with the norm

∥w∥α := sup
[0,T ]×X

e−2αt∥w(t, x)∥Y .

Set F := (C0
b ([0, T ]×X;EX), ∥ · ∥α). Since EX is a closed subset of Y which is a Banach

space, it follows that EX is a complete metric space. Then F is a complete metric space.
We define the operator S : F → F as

S(w)(t, x) := y +

∫ t

0

B1(s, x)[w(s, x)]ds+

∫ t

0

∫
X

B2(s, x, x̃)[w(s, x̃)]dµ(x̃)ds.

Thanks to the assumptions (i)-(ii), S is well-defined. Following the same reasoning as
in the first part of the proof of Proposition 5 in [18], it is easy to prove that, with a
suitable choice of α, S is a contraction mapping. Then, applying the Banach-Caccioppoli
theorem, the result follows. □

Lemma B.2. Let H : Pb(X) → R be

H(µ) =

∫
X

H(µ, x)dµ(x),

where H : Pb(X)×X → R. Assume that H is X-differentiable in the sense of (3.2) with
X-differential satisfying

(i) the map (µ, x) 7→ DxH(µ, x) belongs to C(Pb(X)×X;E∗
X);

(ii) there exists a positive constant L not depending on µ ∈ Pb(X) and x ∈ X such
that ∥DxH(µ, x)∥E∗

C
≤ L for every µ ∈ Pb(X) and x ∈ X.

Moreover, assume that H is differentiable in the sense of Definition 4.2 with µ-differential
satisfying

(iii) the map (µ, x̃, x) 7→ ∇µH(µ, x̃)(x) belongs to C(Pc(X)×X ×X;E∗
X);

(iv) the map (x̃, x) 7→ ∇µH(µ, x̃)(x) belongs to L∞
µ×µ(X×X;E∗

X) for every µ ∈ Pc(X).

Then, H is differentiable at any µ ∈ Pc(X) in the sense of Definition 4.2 and

∇µH(µ)(x) = DxH(µ, x) +

∫
X

∇µH(µ, x̃)(x)dµ(x̃)
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Proof. Let R > 0 and η ∈ P(Bµ(R)). It follows from the disintegration theorem that for
γ ∈ Γ(µ, η)

H(η)−H(µ) =

∫
X

H(η, x)dη(x)−
∫
X

H(µ, x)dµ(x) (B.1)

=

∫
X×X

(H(η, x2)−H(µ, x1)) dγ(x1, x2)

=

∫
X×X

(H(η, x2)−H(η, x1)) dγ(x1, x2)︸ ︷︷ ︸
=:I1

+

∫
X

(H(η, x1)−H(µ, x1)) dµ(x1)︸ ︷︷ ︸
=:I2

.

Now we focus on I1. Recalling that X is convex and using (i) and (ii), we have for
x(s) = x1 + s(x2 − x1) ∈ X with s ∈ [0, 1] and applying Fubini theorem for Bochner
integral

I1 =

∫
X×X

∫ 1

0

⟨Dx(s)H(η, x(s)), x2 − x1⟩dsdγ(x1, x2) (B.2)

=

∫ 1

0

∫
X×X

⟨Dx(s)H(η, x(s)), x2 − x1⟩dγ(x1, x2)ds

=

∫
X×X

⟨Dx1H(µ, x1), x2 − x1⟩dγ(x1, x2)

+

∫
X×X

⟨Dx1H(η, x1)−Dx1H(µ, x1), x2 − x1⟩dγ(x1, x2)︸ ︷︷ ︸
=:I1,1

+

∫ 1

0

∫
X×X

⟨Dx(s)H(η, x(s))−Dx1H(η, x1), x2 − x1⟩dγ(x1, x2)ds︸ ︷︷ ︸
=:I1,2

.

As for I1,1, using Hölder inequality, we deduce that

|I1,1| ≤
(∫

X

∥Dx1H(η, x1)−Dx1H(µ, x1)∥2E∗
X
dµ(x1)

) 1
2

W2,γ(µ, η).

Since, γ ∈ P(X ×X), we have that if W2,γ(µ, η) → 0 then W1(µ, η) → 0. Hence, using
(i) and (ii), we have{

Dx1H(η, x1) → Dx1H(µ, x1) as W2,γ(µ, η) → 0,

∥Dx1H(η, x1)−Dx1H(µ, x1)∥E∗
X
≤ 2L.

Therefore, by an application of the Lebesgue theorem, we get

I1,1 = oR (W2,γ(µ, η)) . (B.3)

As regards I1,2, using again (i) and (ii), we know that for every ε > 0 there exists δ > 0
depending on η such that

|I1,2| ≤ ε

∫
{∥x1−x2∥Y <δ}

∥x1 − x2∥Y dγ(x1, x2) + 2L

∫
{∥x1−x2∥Y ≥δ}

∥x1 − x2∥Y dγ(x1, x2)

≤ εW2,γ(µ, η) +
2L

δ
W 2

2,γ(µ, η).
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It follows that, if W2,γ(µ, η) → 0, then we can choose W2,γ(µ, η) ≤ εδ
2L

so that from the
last inequality we deduce for every ε > 0 that |I1,2| ≤ 2εW2,γ(µ, η). Hence,

I1,2 = oR (W2,γ(µ, η)) . (B.4)

Finally we focus on I2. We have using (iii) and (iv) and applying Fubini theorem for
Bochner integral that

I2 =

∫
X

∫
X×X

⟨∇µH(µ, x1)(x3), x4 − x3⟩dγ(x3, x4)dµ(x1) + oR (W2,γ(µ, η))

=

∫
X×X

〈∫
X

∇µH(µ, x1)(x3)dµ(x1), x4 − x3

〉
dγ(x3, x4) + oR (W2,γ(µ, η)) .(B.5)

Combining (B.2),(B.3),(B.4) and (B.5) with (B.1) we obtain the result. □

Acknowledgements. The work of S. Almi was funded by the FWF Austrian Science
Fund through the Projects ESP-61 and P35359-N and by the University of Naples Fed-
erico II through FRA Project ”ReSinApas”. R. Durastanti has been supported by
the funding PON Ricerca e Innovazione D.M. 1062/21–Contratti di ricerca, from the
Italian Ministry of University (MUR) and, together with F. Solombrino, by Gruppo
Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA-
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[33] B. Piccoli, F. Rossi, and E. Trélat, Control to flocking of the kinetic Cucker-Smale model,
SIAM J. Math. Anal., 47(6) (2015), pp. 4685–4719.

[34] N. Pogodaev and M. Saritsyn, Impulsive control of nonlocal transport equation, J. Differential
Equations, 269(4) (2020), pp. 3585–3623.

[35] I.A. Shvartsman, New approximation method in the proof of the Maximum Principle for nonsmooth
optimal control problems with state constraints, J. Math. Anal. Appl., 326 (2007), pp. 974–1000.

42


	1. Introduction
	Presentation of the problem.
	Our results.
	Outlook.

	2. Preliminaries and notation
	3. Pontryagin maximum principle for optimal control problems in convex spaces
	3.1. A generalization to finite particle control problems

	4. Pontryagin maximum principle in the Wasserstein space of convex spaces
	5. A model example
	Appendix
	A: Proofs of Lemma 4.4, Lemma 4.5 and Lemma 4.6
	B: Auxiliary lemmas
	Acknowledgements

	References

