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Abstract

We find a surprising link between Maz’ya–Shaposhnikova’s well-known
asymptotic formula concerning fractional Sobolev seminorms and the gener-
alized Bishop–Gromov inequality. In the setting of abstract metric measure
spaces we prove the validity of a large family of asymptotic formulas concern-
ing non-local energies. Important examples which are covered by our approach
are for instance Carnot groups, Riemannian manifolds with Ricci curvature
bounded from below and non-collapsed RCD spaces. We also extend the clas-
sical Maz’ya–Shaposhnikova’s formula on Euclidean spaces to a wider class of
mollifiers.
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1 Introduction

Let N ∈ N, p ≥ 1 and 0 < s < 1. We recall that the fractional Gagliardo seminorm
of a measurable function f : RN → R is defined as

∥f∥W s,p(RN ) :=

(∫
RN

∫
RN

|f(x)− f(y)|p

|x− y|N+sp
dLN(x)dLN(y)

) 1
p

.

Here W s,p(RN) denotes the classical fractional Sobolev space, i.e. the set of all Lp

functions f s.t. ∥f∥W s,p(RN ) < ∞. In the celebrated paper [4], Bourgain, Brezis and
Mironescu studied the asymptotic behaviour of ∥ · ∥W s,p(RN ) as s → 1− for p > 1. In
particular, they proved that whenever f ∈ W 1,p(RN) the following formula holds:

lim
s↑1

(1− s)∥f∥p
W s,p(RN )

= C∥∇f∥p
Lp(RN )

, (BBM)
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where C > 0 is an explicit constant depending only on N and p. Afterwards,
this result was generalized by Dávila [16] to the case of functions of bounded varia-
tion. Later, Maz’ya and Shaposhnikova [32] studied the asymptotic behaviour of the
Gagliardo seminorm when s → 0+. They proved that for any f ∈ ∪0<s<1W

s,p(RN)

lim
s↓0

s∥f∥p
W s,p(RN )

= L∥f∥p
Lp(RN )

, (MS)

where L is another positive constant depending only on p ≥ 1 and N ∈ N. Recently
several authors studied generalizations of these results in the Euclidean framework
and the literature became extremely vast: a detailed overview is beyond the scope
of our contribution. Here, we restrict ourselves to the research that is most close
in spirit to [4] and [32]. Interesting contributions in these directions have been
provided by Ali–Lam–Pinamonti [27, 31], Arroyo–Rabasa–Bonicatto [2], Brazke–
Po Lam–Schikorra [5], Brezis–Nguyen [6–9], Brezis–Van Schaftingen–Yung [10, 11],
Brué–Calzi–Comi–Stefani [13], Buseghin–Garofalo–Tralli [14,21], Leoni–Spector [28,
29], Nguyen–Pinamonti–Squassina–Vecchi [34,36], Ponce [37] and references therein.
At the same time, in the past thirty years the research activity has known remarkable
contributions in many aspects of analysis in the general setting of metric measure
spaces. Particular interest has been addressed to the theory of first order Sobolev
spaces and BV functions, as well as their connection with PDEs and variational
problems: see e.g [1] and related references. For instance, an interesting question on
the relation between Sobolev spaces on metric measure spaces and formula (BBM)
was raised by Brezis in [12, Remark 6]. Later, new characterizations of Sobolev
and BV spaces, which are very close in spirit to formula (BBM), were obtained by
Di Marino and Squassina [20] in the setting of PI spaces (doubling metric measure
spaces satisfying a Poincaré inequality), see also [25, 26]. Munnier [33] previously
proved a similar result in Ahlfors-regular spaces, while Górny [22] approached the
problem in a range of PI spaces that “locally appear” as Euclidean spaces. As far as
we know the validity of (MS) in metric measure spaces is still an open problem. The
aim of the present paper is to fill this gap. Moreover, we find an intriguing relation
between the validity of (MS) and suitable geometric properties of the underlying
metric space.

In order to describe this relation we recall that in comparison geometry, no matter
in smooth or non-smooth setting, Bishop–Gromov type inequalities play a central
role. For curvature parameter K and dimension parameter N , denote by V K,N(R)
the volume of the geodesic ball with radius R in the space form. We say that a
metric measure space (X, d,m) satisfies the generalized Bishop–Gromov inequality
if

m
(
BR(x0)

)
V K,N(R)

≤
m
(
Br(x0)

)
V K,N(r)

for all R ≥ r. (BGI)

In the present paper we find a surprising link between the Maz’ya–Shaposhnikova’s
formula (MS) and the generalized Bishop–Gromov inequality (BGI). Using this
simple, precise and geometric information we provide several new interesting ex-
amples satisfying such an asymptotic formula. In particular, applying our result
to the metric measure spaces with synthetic curvature-dimension condition à la
Lott–Sturm–Villani, we find a couple of new sharp functional inequalities which, as
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far as we know, are new even in the smooth setting.

Another interesting outcome of the present paper is the extension of the formula
(MS) with mollifier s

d(x,y)N+sp , which appears in the Gagliardo seminorm, to the case

of general radial mollifier satisfying suitable monotonicity assumptions (cf. Condi-
tion 2.10). In [17] the authors devised necessary and sufficient conditions on the
mollifiers to get formula (BBM). The analogous problem for formula (MS) is open
and it will be the subject of future research.
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istry of Science and Technology of China, through the Young Scientist Programs
(No. 2021YFA1000900 and 2021YFA1002200), and NSFC grant (No.12201596).
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Project code: 2022F4F2LH.
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brought to the attention of the authors that in a paper yet unpublished, [15] Caselli
and Gennaioli proved, among other things, that some of the examples in our paper
can be treated with different techniques and less restrictive assumptions for p = 2
and the kernel naturally induced by the fractional Hs/2−Sobolev spaces.

2 Main results

2.1 General theory

In this paper, a metric measure space is a triple (X, d,m), where (X, d) is a complete
and separable metric space and m is a locally finite non-negative Borel measure on
X with full support.

First of all, we set some general assumptions on the mollifiers.

Assumption 2.1. Let (X, d,m) be a metric measure space and let p ≥ 1. Suppose
there exists a sequence of non-negative, symmetric, measurable functions (ρn)n∈N
defined on {(x, y) ∈ X ×X : x ̸= y}, called mollifiers, such that

A) there exists a constant L ≥ 0 such that, for any x ∈ X,

lim
R→+∞

lim
n→∞

∫
Bc

R(x)

ρn(x, y) dm(y) = lim
R→+∞

lim
n→∞

∫
Bc

R(x)

ρn(x, y) dm(y) = L,

(2.1)
where Bc

R(x) = {y ∈ X : d(x, y) ≥ R};

B) for any u ∈ Lp such that there exists n0 ∈ N with

En0(u) :=

∫∫
{(x,y):x,y∈X,x̸=y}

|u(x)− u(y)|pρn0(x, y) dm(x)dm(y) < +∞,
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we have

lim
n→∞

∫∫{
(x,y):0<d(x,y)<R

} |u(x)− u(y)|pρn(x, y) dm(x)dm(y) = 0, ∀R > 0;

(2.2)

C) for any R > 0 sufficiently large, there exists a constant C = C(R) such that,
for any x ∈ X, n ∈ N, ∫

Bc
R(x)

ρn(x, y) dm(y) ≤ C. (2.3)

The main result of this paper is the following Maz’ya–Shaposhnikova type for-
mula which is expressed in a very general form.

Theorem 2.2 (Generalized Maz’ya–Shaposhnikova’s formula). Let (X, d,m) be a
metric measure space and let (ρn)n∈N be mollifiers satisfying Assumption 2.1. Then,
for any u ∈ Lp such that En0(u) < +∞ for a certain n0 ∈ N, it holds

lim
n→∞

En(u) = 2L∥u∥pLp . (GMS)

Proof. Fix x0 ∈ X and R > 0. We consider the following decomposition of X:
A :=

{
(x, y) : 0 < d(x, y) < R

}
B :=

{
(x, y) : d(x, y) ≥ R, d(y, x0) > 2d(x, x0) or d(y, x0) <

1
2
d(x, x0)

}
C :=

{
(x, y) : d(x, y) ≥ R, 1

2
d(x, x0) ≤ d(y, x0) ≤ 2d(x, x0)

}
.

so that

En(u) =

∫
A

|u(x)− u(y)|pρn(x, y) dm(x) dm(y)︸ ︷︷ ︸
I:=I(R,n)

+

∫
B

|u(x)− u(y)|pρn(x, y) dm(x) dm(y)︸ ︷︷ ︸
II:=II(R,n)

+

∫
C

|u(x)− u(y)|pρn(x, y) dm(x) dm(y)︸ ︷︷ ︸
III:=III(R,n)

.

By Assumption 2.1-B) we have

lim
R→+∞

lim
n→+∞

I(R, n) = 0. (2.4)

For any x, y ∈ X satisfying d(y, x0) > 2d(x, x0), by the triangle inequality we know

d(x, y) ≥ d(y, x0)− d(x0, x) > d(y, x0)−
1

2
d(y, x0) =

1

2
d(y, x0)

and

d(x, y) ≤ d(x0, x) + d(y, x0) <
3

2
d(y, x0).
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Therefore{
x : d(x, y) ≥ R, d(y, x0) > 2d(x, x0)

}
⊂
{
x :

1

2
d(y, x0)∨R ≤ d(x, y) <

3

2
d(y, x0)

}
so that

IIa(R, n) :=

∫
X

|u(y)|p
(∫{

x: d(x,y)≥R, d(y,x0)>2d(x,x0)
} ρn(x, y) dm(x)

)
dm(y)

≤
∫
X

|u(y)|p
(∫{

x: 1
2
d(y,x0)∨R≤d(x,y)< 3

2
d(y,x0)

} ρn(x, y) dm(x)

)
dm(y)

=

∫
X

|u(y)|p
(∫{

x: d(x,y)≥ 1
2
d(y,x0)∨R

} ρn(x, y) dm(x)

−
∫{

x: d(x,y)≥ 3
2
d(y,x0)∨R

} ρn(x, y) dm(x)

)
dm(y).

Note that, for R sufficiently large, ρn(·, y) is integrable on the complementary of
each ball centered at y by Assumption 2.1-C and the symmetry of ρn.
Moreover, for R sufficiently large,∫{

x: d(x,y)≥ 1
2
d(y,x0)∨R

} ρn(x, y) dm(x)−
∫{

x: d(x,y)≥ 3
2
d(y,x0)∨R

} ρn(x, y) dm(x)

≤
∫{

x: d(x,y)≥ 1
2
d(y,x0)∨R

} ρn(x, y) dm(x) +

∫{
x: d(x,y)≥ 3

2
d(y,x0)∨R

} ρn(x, y) dm(x)

≤ 2

∫{
x: d(x,y)≥R

} ρn(x, y) dm(x) ≤ 2C.

Hence, by Fatou’s lemma,

lim
n→∞

IIa(R, n) ≤
∫
X

|u(y)|p lim
n→∞

(∫{
d(x,y)≥ 1

2
d(y,x0)∨R

} ρn(x, y) dm(x)

−
∫{

d(x,y)≥ 3
2
d(y,x0)∨R

} ρn(x, y) dm(x)

)
dm(y).

By a similar argument, since the map R 7→ C(R) can be chosen to be non-increasing
for large R, we get

lim
R→+∞

lim
n→∞

IIa(R,n) ≤
∫
X
|u(y)|p lim

R→+∞
lim
n→∞

(∫{
d(x,y)≥ 1

2
d(y,x0)∨R

} ρn(x, y) dm(x)

−
∫{

d(x,y)≥ 3
2
d(y,x0)∨R

} ρn(x, y) dm(x)

)
dm(y)

≤
∫
X
|u(y)|p

(
lim

R→+∞
lim
n→∞

∫{
d(x,y)≥ 1

2
d(y,x0)∨R

} ρn(x, y) dm(x)

− lim
R→+∞

lim
n→∞

∫{
d(x,y)≥ 3

2
d(y,x0)∨R

} ρn(x, y) dm(x)

)
dm(y).
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By Assumption 2.1-A) we infer

lim
R→+∞

lim
n→∞

IIa(R, n) = 0. (2.5)

Similarly, for x ̸= x0, it is immediate to see that

Bc
4d(x,x0)

(x) ⊂
{
y ∈ X : d(y, x0) > 2d(x, x0)

}
⊂ Bc

d(x,x0)
(x),

so that

IIb(R, n) :=

∫
X

|u(x)|p
(∫{

y: d(x,y)≥R, d(y,x0)>2d(x,x0)
} ρn(x, y) dm(y)

)
dm(x)

≥
∫
X

|u(x)|p
(∫

Bc
4d(x,x0)∨R

(x)

ρn(x, y) dm(y)

)
dm(x)

and

IIb(R, n) ≤
∫
X

|u(x)|p
(∫

Bc
d(x,x0)∨R

(x)

ρn(x, y) dm(y)

)
dm(x).

By Assumption 2.1-A) and Fatou’s lemma again

L∥u∥pLp =

∫
X

|u(x)|p
(

lim
R→+∞

lim
n→∞

∫
Bc

4d(x,x0)∨R
(x)

ρn(x, y) dm(y)

)
dm(x)

≤ lim
R→+∞

lim
n→∞

IIb(R, n) ≤ lim
R→+∞

lim
n→∞

IIb(R, n)

≤ lim
R→+∞

lim
n→∞

∫
X

|u(x)|p
(∫

Bc
d(x,x0)∨R

(x)

ρn(x, y) dm(y)

)
dm(x)

≤
∫
X

|u(x)|p lim
R→+∞

lim
n→∞

(∫
Bc

d(x,x0)∨R
(x)

ρn(x, y) dm(y)

)
dm(x) = L∥u∥pLp .

Hence
lim

R→+∞
lim
n→∞

IIb(R, n) = L∥u∥pLp = lim
R→+∞

lim
n→∞

IIb(R, n). (2.6)

Now note that, by the symmetry of x and y,

II(R, n) :=

∫
B

|u(x)− u(y)|pρn(x, y) dm(x) dm(y)

= 2

∫
D:=
{
(x,y): d(x,y)≥R, d(y,x0)>2d(x,x0)

} |u(x)− u(y)|pρn(x, y) dm(x) dm(y).

Hence

|II(R, n)− 2IIb(R, n)| ≤ 2

∫
D

∣∣∣|u(x)− u(y)|p − |u(x)|p
∣∣∣ ρn(x, y) dm(x) dm(y).

If p = 1, by the triangle inequality, the last integral is bounded by IIa(R, n). Hence,
by (2.5),

lim
R→+∞

lim
n→∞

|II(R, n)− 2IIb(R, n)| = 0. (2.7)
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In case p > 1, we use Lagrange theorem and find, for every x, y ∈ X, a number
c ∈ R lying between u(x) and u(x)− u(y) such that∣∣∣|u(x)− u(y)|p − |u(x)|p

∣∣∣ = p |c|p−1|u(y)|.

In particular |c| ≤ max{|u(x)|, |u(x)−u(y)|}. Therefore, using also Young’s inequal-
ity for products,

|II(R, n)− 2IIb(R, n)| ≤ 2p

∫
D

(
|u(x)|p−1 + |u(x)− u(y)|p−1

)
|u(y)| ρn(x, y) dm(x) dm(y)

≤ 2

∫
D

(
ε

1
p−1 (p− 1)(|u(x)|p + |u(x)− u(y)|p) + 2

ε
|u(y)|p

)
ρn(x, y) dm(x) dm(y)

for every ε > 0. Using Minkowski inequality |u(x)− u(y)|p ≤ 2p−1(|u(x)|p + |u(y)|p)
and passing to the limits, exploiting (2.5) and (2.6) we finally get

lim
R→+∞

lim
n→∞

|II(R, n)− 2IIb(R, n)| ≤ 2(p− 1)ε
1

p−1 (1 + 2p−1)L∥u∥pLp .

By arbitrariness of ε, we deduce (2.7) for every p ≥ 1. Now we estimate

lim
n→∞

II(R, n) ≤ lim
n→∞

(
II(R, n)− 2IIb(R, n)

)
+ 2 lim

n→∞
(IIb(R, n))

≤ lim
n→∞

|II(R, n)− 2IIb(R, n)|+ 2 lim
n→∞

(IIb(R, n)).

Passing to the limit as R → +∞, we get by (2.7) and (2.6)

lim
R→+∞

lim
n→∞

II(R, n) ≤ 2L∥u∥pLp . (2.8)

Similarly,

− lim
n→∞

II(R, n) = lim
n→∞

(−II(R, n))

≤ lim
n→∞

(
− II(R, n) + 2IIb(R, n)

)
+ 2 lim

n→∞
(−IIb(R, n))

≤ lim
n→∞

|II(R, n)− 2IIb(R, n)| − 2 lim
n→∞

(IIb(R, n)).

Again, as R → +∞, we get by (2.7) and (2.6)

lim
R→+∞

lim
n→∞

II(R, n) ≥ 2L∥u∥pLp . (2.9)

By (2.8) and (2.9) we conclude

lim
R→+∞

lim
n→∞

II(R, n) = 2L∥u∥pLp = lim
R→+∞

lim
n→∞

II(R, n). (2.10)

Concerning III(R, n), observe that

C ⊂
{
(x, y) ∈ X ×X | d(x, y) ≥ R, d(x, x0) ≥

R

3

}
,

C ⊂
{
(x, y) ∈ X ×X | d(x, y) ≥ R, d(y, x0) ≥

R

3

}
.

(2.11)
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Thus, by Minkowski inequality, Fubini’s theorem and the symmetry of ρn, we deduce

III =

∫
C

|u(x)− u(y)|pρn(x, y) dm(x) dm(y)

≤ 2p−1

(∫
C

|u(x)|pρn(x, y) dm(x) dm(y) +

∫
C

|u(y)|pρn(x, y) dm(x) dm(y)

)
≤ 2p−1

∫
d(x,x0)≥R

3

|u(x)|p
(∫

d(x,y)≥R

ρn(x, y) dm(y)

)
dm(x)

+ 2p−1

∫
d(y,x0)≥R

3

|u(y)|p
(∫

d(x,y)≥R

ρn(x, y) dm(x)

)
dm(y)

= 2p
∫
d(x,x0)≥R

3

|u(x)|p
(∫

d(x,y)≥R

ρn(x, y) dm(y)

)
dm(x).

Applying Fatou’s lemma as before,

lim
n→∞

III(R, n) ≤ 2p
∫
d(x,x0)≥R

3

|u(x)|p lim
n→∞

(∫
d(x,y)≥R

ρn(x, y) dm(y)

)
dm(x)

and
lim

R→+∞
lim
n→∞

III(R, n) = 0. (2.12)

Combining (2.12) with (2.4) and (2.10) we get the conclusion.

Remark 2.3. In the case of a metric measure space with bounded diameter, Assump-
tion 2.1 C) is always satisfied with C = 0 and the same holds for Assumption 2.1
A) with L = 0. In particular, in the proof of Theorem 2.2 we can fix R > diam(X),
so that B = C = ∅ and

En(u) :=

∫∫
{(x,y):x,y∈X,x̸=y}

|u(x)− u(y)|pρn(x, y) dm(x)dm(y)

=

∫∫
{(x,y):0<d(x,y)<R}

|u(x)− u(y)|pρn(x, y) dm(x)dm(y),

which goes to 0 = 2L∥u∥pLp as n → ∞ by Assumption 2.1 B).

2.2 Applications and Examples

In this section we introduce some examples satisfying Assumption 2.1 and Theorem
2.2. Doing so, we not only extend Maz’ya and Shaposhnikova’s formula on Eu-
clidean spaces (as well as Ludwig’s theorem on finite dimensional Banach spaces) to
a large family of mollifiers on curved spaces, but also find some new sharp functional
inequalities.

Volume growth conditions

From now on, V : [0,+∞) → [0,+∞) will be a C1 strictly increasing function such
that limt→∞ V (t) = +∞. We will also use the notation S(t) := d

dt
V (t).
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Some prototype examples (see e.g [38]) arising from Riemannian geometry are for
instance given by the family of functions V K,N(t) on [0,+∞) defined by

V K,N(t) :=


tN if K = 0, N = 1, 2, . . .∫ t

0

sinhN−1

(
r

√
−K

N − 1

)
dr if K < 0, N = 2, 3, . . .

(2.13)

Definition 2.4 (Generalized Bishop–Gromov inequality). We say that a metric
measure space (X, d,m) satisfies the generalized Bishop–Gromov inequality associ-
ated to the function V : [0,+∞) → [0,+∞) if, for every x0 ∈ X,

m
(
BR(x0)

)
V (R)

≤
m
(
Br(x0)

)
V (r)

for all 0 < r ≤ R < +∞.

Definition 2.5. We say that a metric measure space (X, d,m) admits the generalized
asymptotic volume ratio associated to the function V : [0,+∞) → [0,+∞) if there
exists AVRV

(X,d,m) ∈ [0,+∞] s.t., for every x0 ∈ X,

AVRV
(X,d,m) = lim

r↑+∞

m
(
Br(x0)

)
V (r)

.

Definition 2.6. Let (X, d,m) be a metric measure space. Its density function θV

associated to V is defined as

θV (x) := lim
r↓0

m
(
Br(x)

)
V (r)

∀x ∈ X.

Remark 2.7. For spaces satisfying the generalized Bishop–Gromov inequality, we
can see that AVRV

(X,d,m) and θV are both well-defined. In particular, generalized

Bishop–Gromov inequality implies that the map r 7→ m
(
Br(x)

)
V (r)

is non-increasing, so

that AVRV
(X,d,m) > 0 implies that θ(x) > 0 for any x ∈ X, while θ ∈ L∞ implies that

m
(
Br(x)

)
V (r)

is uniformly bounded in x ∈ X and r > 0.

Remark 2.8. It is very easy to construct examples of spaces with bounded den-
sity satisfying the generalized Bishop–Gromov inequality associated to a function V
which is different from the standard models V K,N .
Consider for instance X = R, equipped with the Lebesgue measure L1.
Let V : [0,+∞) → [0,+∞) be invertible and of class C1 (in particular V (0) = 0,
limx→∞ V (x) = +∞ and V is strictly increasing). Suppose in addition that V −1 :
[0,+∞) → [0,+∞) is sub-additive, which means

V −1(a+ b) ≤ V −1(a) + V −1(b).

Standard examples of such maps are V (x) = xα (with α ≥ 1) or V (x) = ex − 1.
Under this conditions it is easy to see that the map d : X ×X → [0,+∞)

d(x, y) := V −1(|x− y|)
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is a distance on X. Moreover, for each x ∈ X,

L1(Br(x))

V (r)
=

L1({y ∈ R : V −1(|x− y|) < r})
V (r)

=
L1({y ∈ R : |x− y| < V (r)})

V (r)
=

2V (r)

V (r)
= 2.

In particular the space (R, d,L1) has density θV ≡ 2 and satisfies (trivially) the
generalized Bishop–Gromov inequality.

Example 2.9. The range of spaces satisfying the generalized Bishop–Gromov in-
equality and admitting the generalized asymptotic volume ratio is actually pretty
wide. We list below some relevant examples:

1) Euclidean spaces: It is known that AVRV 0,N

(RN ,|·|,LN ) = ωN = |SN−1|
N

where

ωN = π
N
2

Γ(N
2
+1)

denotes the volume of an N-dimensional unit ball and |SN−1| de-

notes its surface measure. This is the case studied in Maz’ya-Shaposhnikova’s
original paper [32, Theorem 3].

2) Finite dimensional Banach spaces: Let (RN , ∥·∥,LN) be an N-dimensional

Banach space. It can be seen AVRV 0,N

(RN ,∥·∥,LN ) is the volume of its unit ball. This
is the case studied by Ludwig [30, Theorem 2].

3) Riemannian manifolds: Let (MN , g) be a complete Riemannian manifold of
dimension N with Ric ≥ K. Let d and m be the Riemannian distance and the
volume measure determined by g respectively. By the classical Bishop–Gromov
volume comparison theorem, the generalized Bishop–Gromov inequality and the
generalized asymptotic volume ratio associated to V K,N exist. In particular,
when K = 0, AVRV 0,N

(MN ,d,m) < +∞ if and only if (MN , d,m) has Euclidean
volume growth.

4) Carnot groups: Let G = (Rd, ·) be a Carnot group of step s endowed with
the Carnot–Carathéodory distance dcc and the Lebesgue measure Ld. It is well
known that Ld(Br(x)) = rQLd(B1(0)) where Q ∈ N is the so called homoge-

neous dimension of G. It is then clear that then AVRV 0,Q

G = Ld(B1(0)) > 0.

5) MCP(K,N) spaces: Let (X, d,m) be a metric measure space satisfying the
so-called Measure Contraction Property MCP(K,N), a property introduced
independently by Ohta [35] and Sturm [39], as a generalization of CD(K,N)
metric measure spaces. By generalized Bishop–Gromov volume growth inequal-
ity (cf. [39, Theorem 2.3]) on MCP(K,N) spaces, the (generalized) asymptotic
volume ratio is well-defined.

Mollifiers of radial type

Let (X, d,m) be a metric measure space and let (ρn)n be a family of functions defined
on {(x, y) ∈ X ×X : x ̸= y}. We are now going to introduce some conditions which
are easier and more manageable than the ones in Assumption 2.1.

10



Condition 2.10 (Approximation of the identity). We say that (ρn)n∈N are mollifiers
satisfying approximation of the identity of radial type associated to an increasing map
V : [0,+∞) → [0,+∞), if there exists a sequence of strictly decreasing functions
ρ̃n ∈ C1(0,+∞) such that

A) (Radial distribution)

lim
n→∞

ρ̃n(r) = 0 ∀ r ∈ (0,+∞), (2.14)

lim
r→+∞

ρ̃n(r)V (r) = 0 ∀ n ∈ N, (2.15)

and
ρn(x, y) = ρ̃n

(
d(x, y)

)
∀ x, y ∈ X, x ̸= y.

B) (Monotonicity) For any n,m ∈ N with n > m,

(0,+∞) ∋ r → ρ̃n(r)

ρ̃m(r)
is non-decreasing.

C) (Approximation of the identity) It holds

lim
R→+∞

lim
n→∞

∫ +∞

R

S(r)ρ̃n(r) dr = 1, (2.16)

where S(t) := d
dt
V (t).

Lemma 2.11. Let (X, d,m) be a metric measure space admitting generalized asymp-
totic volume ratio AVRV

(X,d,m) and suppose also that there exists a constant k > 0
such that m(Br(x)) ≤ k V (r) for every x ∈ X and every r > 0 sufficiently large. Let
(ρn)n∈N be mollifiers satisfying approximation of the identity of radial type associated
to V . Then (ρn)n∈N satisfy Assumption 2.1 with L = AVRV

(X,d,m).

Proof. Assumption 2.1-A):

First of all, notice that AVRV
(X,d,m) is finite by our assumption on k. For simplicity,

we assume that AVRV
(X,d,m) > 0, the case for AVRV

(X,d,m) = 0 can be proved in the
same way. Fix x ∈ X. For any ϵ > 0, there is R0 > 0 such that

(1− ϵ)AVRV
(X,d,m)V (r) ≤ m

(
Br(x)

)
≤ (1 + ϵ)AVRV

(X,d,m)V (r), ∀r ≥ R0. (2.17)

For simplicity, we write

m
(
Br(x)

)
=
(
1 +O(ϵ)

)
AVRV

(X,d,m)V (r).

Let R ∈ (R0,+∞). For any n ∈ N we define ρ̄n,R : X ×X → (0, ρ̃n(R)] as

ρ̄n,R(x, y) :=


ρn(x, y) d(x, y) ≥ R,

ρ̃n(R) 0 ≤ d(x, y) < R.

11



By Cavalieri’s formula (cf. [1, Chapter 6]) we can write∫
Bc

R(x)

ρn(x, y) dm(y) + ρ̃n(R)m
(
BR(x)

)
=

∫
X

ρ̄n,R(x, y) dm(y)

(Cavalieri’s formula) =

∫ +∞

0

m
(
{ρ̄n,R(x, y) > r}

)
dr

=

∫ ρ̃n(R)

0

m
(
Bρ̃−1

n (r)(x)
)
dr

=

∫ ρ̃n(R)

0

(
1 +O(ϵ)

)
AVRV

(X,d,m)V
(
ρ̃−1
n (r)

)
dr

(let t = ρ̃−1
n (r)) =

(
1 +O(ϵ)

)
AVRV

(X,d,m)

∫ R

+∞
V (t)ρ̃′n(t) dt

=
(
1 +O(ϵ)

)
AVRV

(X,d,m)

(
ρ̃n(R)V (R)−

∫ R

+∞
S(t)ρ̃n(t) dt

)
where we use integration by parts formula and (2.15) in the last equality. So, using
(2.17), ∫

Bc
R(x)

ρn(x, y) dm(y)

= 2O(ϵ)AVRV
(X,d,m)ρ̃n(R)V (R) +

(
1 +O(ϵ)

)
AVRV

(X,d,m)

∫ +∞

R

S(r)ρ̃n(r) dr.

Letting n → ∞, R → +∞ and ϵ → 0, by (2.14) and (2.16), we get

lim
R→+∞

lim
n→∞

∫
Bc

R(x)

ρn(x, y) dm(y) = AVRV
(X,d,m) = lim

R→+∞
lim
n→∞

∫
Bc

R(x)

ρn(x, y) dm(y)

which is the thesis.

Assumption 2.1-B):

Let u ∈ Lp(X) be such that En0(u) < +∞ for some n0 ∈ N. For any R > 0 and
any n > n0, by assumption B) of Condition 2.10, it holds∫

X

(∫
BR(y)\{y}

|u(x)− u(y)|pρn0(x, y)
ρn(x, y)

ρn0(x, y)
dm(x)

)
dm(y)

≤
∫
X

(∫
BR(y)\{y}

|u(x)− u(y)|pρn0(x, y)
ρ̃n(R)

ρ̃n0(R)
dm(x)

)
dm(y)

≤ En0(u)
ρ̃n(R)

ρ̃n0(R)
.

Then (2.2) follows from (2.14).

Assumption 2.1-C):

12



Proceeding as in the first part of the proof, we get that, for R sufficiently large,∫
Bc

R(x)

ρn(x, y) dm(y) =

∫ ρ̃n(R)

0

m(Bρ̃−1
n (r)(x)) dr − ρ̃n(R)m(BR(x))

≤
∫ ρ̃n(R)

0

m(Bρ̃−1
n (r)(x)) dr

≤ k

∫ ρ̃n(R)

0

V (ρ̃−1
n (r)) dr

= −k

∫ +∞

R

V (s) ρ̃′n(s) ds

(2.15)
= k

[
V (R) ρ̃n(R) +

∫ +∞

R

S(s)ρ̃n(s) ds

]
The last quantity does not depend on x and, by assumptions (2.14) and (2.16), it is
bounded in n, completing the proof.

Remark 2.12. Note that the conditions on the space required in Lemma 2.11 (and
in the following Theorem 2.16) are fulfilled for instance if (X, d,m) satisfies a gen-
eralized Bishop–Gromov inequality and has bounded density function. In the final
examples we will often refer to these stronger conditions.

Remark 2.13. Notice also that a space with bounded diameter admits always gener-
alized asymptotic volume ratio and, if m(X) < +∞, then AVRV

(X,d,m) = 0 necessarily.
Moreover, the proof of Lemma 2.11 reduces to the task of proving Assumption 2.1-
B), since L = AVRV

(X,d,m) = 0 and A) and C) are automatically satisfied, as already
observed. Notice that in this case also the second condition required in Lemma 2.11
is always fulfilled.

We construct now an interesting class of mollifiers satisfying approximation of
the identity of radial type in Condition 2.10.

Lemma 2.14. Let (an)n∈N be a strictly decreasing sequence converging to 0 and let
f : (0,+∞) → R be a positive increasing C2 function which satisfies the following
properties:

lim
s→∞

f(s) = +∞; (2.18)

lim
s→∞

sf ′(s)

[f(s)]r
= 0 for r > 1; (2.19)

s 7→ f ′(s)

[f(s)]r
is strictly decreasing for r > 1. (2.20)

Then the mollifiers ρ̃n : (0,+∞) → R defined by

ρ̃n(t) :=
an f

′(V (t))

[f(V (t))]an+1
(2.21)

satisfy the requests in Condition 2.10.
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Proof. First of all, ρ̃n are strictly decreasing: this follows by (2.20) since an > 0 and
V is a strictly increasing function.
Moreover (2.14) follows by the fact that an → 0, while we get (2.15) since

ρ̃n(t)V (t) =
an f

′(V (t))V (t)

[f(V (t))]an+1

combined with (2.19) and the fact that V (t) → +∞ as t → ∞.
Regarding condition B), for n > m we compute

ρ̃n(t)

ρ̃m(t)
=

an
am

[f(V (t))]am−an ,

which is non-decreasing since an < am and both f and V are increasing functions.
Finally, we conclude by observing∫ +∞

δ

S(t)ρ̃n(t) dt =
[
− [f(V (t))]−an

]+∞

δ
= [f(V (δ))]−an n→+∞−→ 1.

Remark 2.15. Conditions (2.18)-(2.20) are satisfied by plenty of examples: for in-
stance f(s) = sα for α > 0, f(s) = es or f(s) = ln(s) (on the half-line (1,+∞)).
In particular, considering f(s) = sα we obtain the family of mollifiers

ρ̃n(t) =
an α

[V (t)]αan+1
α > 0. (2.22)

Notice that, if we choose V (t) = V 0,N(t) = tN and α = 1/N , we get ρ̃n(t) =
an

Ntan+N ,
which is the standard family of mollifiers which appears in (MS).
In addition, considering f(s) = es, we get the mollifiers

ρ̃n(t) =
an

eanV (t)
, (2.23)

while taking f(s) = ln s we derive

ρ̃n(t) =
an(

ln(V (t))
)an+1

V (t)
(2.24)

on the half-line (V −1(1),+∞).

Asymptotic formulas

Combining Theorem 2.2 and Lemma 2.11, we get the following asymptotic formulas.

Theorem 2.16. Let (X, d,m) be a metric measure space admitting generalized
asymptotic volume ratio AVRV

(X,d,m) and suppose also there exists a constant k > 0
such that

m(Br(x)) ≤ k V (r) (2.25)

for every x ∈ X and every r > 0 sufficiently large. Let (ρn)n∈N be mollifiers of radial
type satisfying Condition 2.10. Then for any u ∈ Lp such that En0(u) < +∞ for a
certain n0 ∈ N, it holds

lim
n→∞

En(u) = 2AVRV
(X,d,m)∥u∥

p
Lp .

14



Remark 2.17. The assumptions in Theorem 2.16 are very general and they encom-
pass several important examples. Indeed, as already remarked in Example 2.9, finite
dimensional Banach spaces, Carnot groups, Riemannian manifolds with Ricci cur-
vature bounded from below and MCP spaces all satisfy the general Bishop–Gromov
inequality and admit the generalized asymptotic volume ratio. On the other hand
a direct computation show that also (2.25) is satisfied in Carnot groups and finite
dimensional Banach spaces. Moreover, Theorem [23, Theorem III.4.4] and [19] show
that (2.25) holds in Riemannian manifolds with Ricci curvature bounded from below
and non-collapsed RCD spaces respectively taking V as in (2.13).

Remark 2.18. Observe also that, if the space has finite measure, then assumptions
in Theorem 2.16 are always satisfied and

lim
n→∞

En(u) = 0

for every u ∈ Lp(X) with En0(u) < +∞ for a certain n0 ∈ N.
For instance this holds if we consider the sphere Sn with the standard mollifiers used
in (MS): this case is also discussed in [24].

In particular we can apply Theorem 2.16 to the families of mollifiers described
in Lemma 2.14. For instance, considering (2.22) with an = sp, we get the following
asymptotic formula:

Example 2.19. Let (X, d,m) be a metric measure space satisfying the general-
ized Bishop–Gromov inequality associated to V . Assume that its associated density
function is bounded. Then for any p ≥ 1, α > 0, if there exists s0 ∈ (0, 1) and
u ∈ Lp(X, d,m) such that∫∫

{(x,y)∈X×X:x ̸=y}

|u(x)− u(y)|p

[V (d(x, y))]αs0p+1
dm(x) dm(y) < ∞,

we have

lim
s↓0

s

∫∫
{(x,y)∈X×X:x ̸=y}

|u(x)− u(y)|p

[V (d(x, y))]αsp+1
dm(x) dm(y) =

2

αp
AVRV

(X,d,m)∥u∥
p
Lp .

In particular, taking X = RN , V (t) = V 0,N(t) = tN and α = 1/N , we recover exactly
Maz’ya and Shaposhnikova’s asymptotic formula (MS) with L = 2NωN

p
.

Similarly, if we consider (2.24) with an = sp, we get the following similar result.
Notice that in this case we need to restrict to the set {(x, y) : V

(
d(x, y)

)
> 1}, since

the function f is defined on (1,+∞). Nevertheless, the same proof of Theorem 2.2
still works with the obvious changes.

Example 2.20. Let (X, d,m) be a metric measure space with bounded density, sat-
isfying the generalized Bishop–Gromov inequality associated to V . For any p ≥ 1, if
there exists s0 ∈ (0, 1) and u ∈ Lp(X, d,m) such that∫∫

V
(
d(x,y)

)
>1

|u(x)− u(y)|p[
lnV

(
d(x, y)

)]s0p+1
V (d(x, y))

dm(x) dm(y) < ∞,

we have

lim
s↓0

s

∫∫
V
(
d(x,y)

)
>1

|u(x)− u(y)|p[
lnV

(
d(x, y)

)]sp+1
V (d(x, y))

dm(x) dm(y) =
2

p
AVRV

(X,d,m)∥u∥
p
Lp .
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Similar results can be obtained by considering mollifiers of different shape, as
soon as they satisfy approximation of the identity of radial type, described in Con-
dition 2.10.

We conclude by pointing out another interesting example in which our theory can
be applied: cf. [19] for the definition of non-collapsed RCD(0, N) space.

Example 2.21. Let (X, d,HN) be a non-collapsed RCD(0, N) metric measure space
with N ∈ N∗. Then

lim
s↓0

s

∫
X

∫
X

|u(x)− u(y)|p

dN+sp(x, y)
dm(x) dm(y) ≤ 2NωN

p
∥u∥pLp (2.26)

for any u ∈ Lp(X) which has finite associated energy for a certain s = s0. Here ωN

denotes the volume of an N-dimensional unit ball.
If the equality in (2.26) is attained by a nowhere-zero function u, then (X, d,m) is
isometric to a metric cone over an RCD(N − 2, N − 1) space.

Proof. Firstly, by Generalized Bishop–Gromov volume growth inequality (cf. [39,
Theorem 2.3]) we know

AVRV 0,N

(X,d,m) = lim
r→∞

m
(
Br(x0)

)
rN

≤ lim
R→0

m
(
BR(x0)

)
RN

= ωN , ∀R > 0. (2.27)

Combining with Theorem 2.16 we get (2.26).
If the equality in (2.26) is attained by a nowhere-zero function u, by Theorem 2.16
and (2.27) we can see that

m
(
BR(x0)

)
RN

= ωN , ∀R > 0.

By [18, Theorem 1.1] we know (X, d,m) is isometric to a metric cone over an
RCD(N − 2, N − 1) space.
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