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Abstract

The goal of the paper is to prove the equivalence of distributional and synthetic Ricci curvature lower
bounds for a weighted Riemannian manifold with continuous metric tensor having Christoffel symbols in
L2

loc, and with weight in C0 ∩W 1,2
loc .
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1 Introduction

Let (M, g) be a smooth n-dimensional Riemannian manifold without boundary. One can locally compute
the coefficients of the Ricci curvature tensor in terms of the metric tensor g and its first two derivatives.
More precisely, denoting by Γkij the Christoffel symbols of g

Γkij =
1

2
gkl(∂jgli + ∂igjl − ∂lgij), i, j, k = 1, . . . , n,

the Ricci curvature can be written locally as

Ricij = ∂kΓkij − ∂iΓkkj + ΓkjiΓ
l
lk − ΓkjlΓ

l
ik, i, j = 1, . . . , n, (1.1)

where ∂i is the shorthand notation for ∂
∂xi , and where we used the Einstein convention that repeated indices

are summed.

Given a smooth function V on M , one can define the weighted measure dµ = e−V dvolg. Given N ∈ [n,∞],

the Bakry-Émery N -Ricci curvature tensor of the weighted Riemannian manifold (M, g, µ) is defined by

Ricµ,N := Ric + HessV − 1

N − n
∇V ⊗∇V. (1.2)

In case that N = n, we adopt the convention that V must be constant and that Ricvolg,n = Ric. We also
adopt the standard convention that 1/∞ = 0, so that for N =∞ the last adding term in the right hand side
of (1.2) disappears. For K ∈ R, we say that the Bakry-Émery N -Ricci curvature tensor is bounded below
by K, if Ricµ,N (X,X) ≥ Kg(X,X) for all smooth vector fields X.

Since the local expression of the Ricci tensor involves two derivatives of the metric tensor g, and the Bakry-
Émery N -Ricci curvature tensor involves the Ricci tensor and the Hessian of the weight function V , some
care is needed if g or V are not twice differentiable. We will work with two approaches to Ricci curvature
lower bounds for weighted manifold of regularity below C2: the distributional and the synthetic approaches.

Via the distribution theory on smooth manifolds (cf. [31, 26, 25]), one can define a distributional Ricci
curvature and generalise the notion of Ricci curvature lower bounds. This approach is suitable to handle the
case of a smooth manifold M endowed with a continuous metric g having Christoffel symbols in L2

loc, as it

is apparent from (1.1). Moreover, assuming V ∈ C0 ∩W 1,2
loc suffices to define a distributional Bakry-Émery

N -Ricci curvature tensor of the corresponding weighted space, as one can check using (1.2). Note that
this approach assumes the space to be smooth: all the non-smoothness is encoded in the metric tensor and,
possibly, in the weighted measure. Let us also mention [32] for a notion of Ricci curvature lower bounds
for continuous metrics conformal to smooth ones, based on the concept of viscosity solutions for non-linear
elliptic partial differential equations.

A different approach is to drop also the smoothness assumption of the underlying space and consider the
general framework of metric measure spaces. A metric measure space is a triplet (X, d,m), where (X, d) is
a complete and separable metric space and m is a non-negative σ-finite Borel measure (playing the role of
reference volume measure). By analysing convexity properties of suitable entropy functionals on the space
of probability measures endowed with the Kantorovich-Wasserstein quadratic transportation distance W2,
Sturm [44, 45] and Lott-Villani [35, 34] devised synthetic notions of Ricci curvature bounded below by some
constant K ∈ R and dimension bounded above by some N ∈ [1,∞]. The metric measure spaces satisfying
such a synthetic notion of Ricci curvature bounded below by K ∈ R and dimension bounded above by
N ∈ [1,∞] are called CD(K,N) spaces. Such a synthetic notion is consistent with the smooth definitions.
Moreover, the class of CD(K,N) spaces is stable under pointed measure Gromov-Hausdorff convergence
[44, 45, 35, 46], and satisfies several geometric and analytic properties such as Brunn-Minkowski and Bishop-
Gromov inequalities [45], Poincaré inequality [34, 40], Lévy-Gromov isoperimetric inequality [12] (under an
essentially non-branching assumption on geodesics).
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Since the conditions CD(K,∞) and CD(K,N) provide a definiton of Ricci curvature lower bounds for man-
ifolds with metrics of regularity below C2, a natural question to ask is whether distributional and synthetic
Ricci curvature lower bounds continue to agree on metrics with regularity below C2. Using regularisations of
the metric tensor, Kunzinger, Oberguggenberger and Vickers [28] proved that distributional Ricci curvature
bounded below by K implies the CD(K,∞)-condition in the case that M is a compact manifold endowed
with a C1 Riemannian metric, and established the reverse implication under the stronger assumption that
g is a C1,1 metric tensor satisfying an additional convergence condition on its regularisations.
In this paper, we will prove the following equivalence result:

Theorem 1 (see Theorem 7.2). Let M be a smooth manifold, g a continuous Riemannian metric with
Christoffel symbols in L2

loc, and V ∈ C0 ∩W 1,2
loc (M) a positive function on M . Define the weighted measure

µ as dµ := e−V dvolg. Let N ∈ [n,∞] and K ∈ R. The following are equivalent:

(i) (M, dg, µ) is a CD(K,N) space.

(ii) The distributional Bakry-Émery N -Ricci curvature tensor is bounded below by K and µ has at most
exponential volume growth in the sense of (4.1).

Remark 1.1 (On the smoothness assumption on M). Note that, for C0-Riemannian metrics, the natural
class of differentiability of the manifolds is C1. However, by a classical result of Whitney [47] (see also
[36, Sect. 4]), a C1-manifold always possesses a C∞-sub-atlas, unique up to diffeomorphisms; we will choose
some such sub-atlas whenever convenient.
Remark 1.2 (On the volume growth assumption). The volume growth assumption (4.1) is satisfied by any
CD(K,N) metric measure space, N ∈ [1,∞], as proved in [44, Thm. 4.24]. Thus it is necessary for the
implication from distributional to synthetic Ricci lower bounds to hold. In Proposition 7.5 (resp. Proposition
7.6), we show that (4.1) is satisfied for a smooth manifold endowed with a C0∩W 1,p

loc Riemannian metric, p >
n, satisfying a distributional lower bound on the Ricci curvature (resp. for a smooth manifold endowed with a
C1-Riemannian metric and a C1-weighted measure satisfying a distributional lower bound on the N -Bakry-
Émery Ricci tensor). See Corollary 7.7 and Remark 7.8 for the equivalence result taking in consideration
the validity of (4.1) in the aforementioned cases.

Few months after the present work was posted on arXiv, an independent paper [29] by Kunzinger, Ohanyan
and Vardabasso appeared, where the authors prove the implication from distributional to synthetic Ricci
lower bounds, under the stronger conditions that the manifold is endowed with a C0,1

loc -Riemannian metric
and the volume is non-weighted. Their approach is different, and based on the stability of the synthetic
Ricci lower bounds under convergence.

Main ingredients in the proof and organisation of the paper. A first important observation is that
a smooth manifold endowed with a continuous Riemannian metric and a continuous weight on the volume
measure is an infinitesimally Hilbertian metric measure space (in the sense of [22], after [3]) satisfying the
Sobolev-to-Lipschitz property (see Cor. 4.27). Thus it is a CD(K,N) space if and only if it is a RCD(K,N)
space. Now, a deep result by Cavalletti-Milman [11] (see also [33] for the extension to the case of σ-finite
measures) is that the RCD(K,N) condition is equivalent to the RCD∗(K,N) condition.

The main ingredient to prove Theorem 1, is the equivalence of the RCD∗(K,N) condition (corresponding to
a Lagrangian formulation of the curvature-dimension condition) and the Bakry-Émery condition BE(K,N),
which roughly corresponds to the Bochner inequality (and provides a Eulerian formulation of the curvature-
dimension condition). Such an equivalence is a deep result that was first established in the case N =
∞ by Ambrosio-Gigli-Savaré [3, 4] (after the work [24] in Alexandrov spaces) and later for N < ∞ by
Erbar-Kuwada-Sturm [20] and Ambrosio-Mondino-Savaré [6]. We will prove that the BE(K,N) condition
is equivalent to having the distributional N -Bakry-Émery Ricci tensor bounded below by K. Most of the
work consists in comparing the test objects used in metric measure setting for the BE(K,N) condition, and
the smooth functions and vector fields, which are the test objects in the distributional formulation. More
precisely, we will make use of the second order calculus developed in [23] in the metric measure framework.
Such a non-smooth approach requires to work with gradient vector fields, while the distributional lower Ricci
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bounds are classically tested against arbitrary smooth vector fields. To this regard, a key technical tool will
be an approximation result of smooth vector fields by gradient vector fields (see Lemma 6.6). Also, since
we will work with metrics of low regularity, we will use the parabolic version of the De Giorgi-Nash-Moser
regularity (see Proposition 6.9). The proof of the implication from RCD to distributional Ricci lower bounds
will be obtained via a contradiction argument involving suitable coverings by balls centred in Lebesgue
points of the test objects and using the Besicovitch covering theorem and the Hahn decomposition theorem
for signed Radon measures. Such an implication will be established in Theorem 6.11 for the case N = ∞
and in Theorem 6.20 for the case N ∈ [n,∞). Let us mention that the case N ∈ [n,∞) is slightly more
subtle, as the distributional N -Bakry-Émery Ricci tensor involves a quadratic non-linearity in the weight
(term which is not present in the case N =∞). The converse implication will be obtained in Theorem 7.1.

Along the way, in Sec. 4, we will compare the theory of classical Sobolev spaces on manifolds (see for instance
[27]) with the generalised notion of differentiability introduced by Cheeger [13] and further investigated
by Ambrosio, Gigli and Savaré [2]; the framework will be a smooth manifold endowed with a continuous
Riemannian metric g and a positive continuous weight on the volume measure.

Acknowledgements. A.M. is supported by the European Research Council (ERC), under the European
Union Horizon 2020 research and innovation programme, via the ERC Starting Grant “CURVATURE”,
grant agreement No. 802689.

Notation

Consider a smooth manifold M . When equipped with a Riemannian metric, we will always denote the metric
by g. Moreover, we denote by dg the distance and by volg the volume form induced by g.
In local coordinates gij will denote the coefficients of g as a matrix, gij the coefficients of the inverse matrix,
and |g| the determinant of (gij)ij . We will write Γ for the Levi-Civita connection of g and denote its
coefficients by Γkij .
The covariant derivative with respect to Γ will be denoted by either ∇ or ∇c, with the only exception that
∇f = gij∂if∂xj = (df)] always denotes the gradient field of f and never its covariant derivative (which in
that particular case equals the differential df).
For a vector field V and a differentiable function f , we define V (f) := df(V ) to be the action of V on f . For
a vector field V and a k-form ω ∈ Ωk(M) on M , where k ≥ 1, we denote by ιV ω ∈ Ωk−1(M) the contraction
of the first entry of ω with V .

Given a topological Hausdorff space X, we denote by Meas(X) the Banach space of finite Radon measures
on X equipped with the total variation norm ‖·‖TV . Given a finite dimensional vector space V with an inner
product 〈·, ·〉, we denote by | · |HS the Hilbert-Schmidt norm on the space of linear operators on V .

2 Distributional calculus with a Riemannian metric of low regu-
larity

2.1 Notation and basic definitions

In this section, we recall some elements of the theory of distributions on manifolds, including the distributional
Riemann tensor; for more details, we refer to [25], [26], [28], and [31].

Let M be a smooth real manifold of dimension n without boundary, and let (E,M, π) be a vector bundle
over M . To keep notation short, we will simply write E instead of (E,M, π). For 0 ≤ k ≤ ∞, we denote by
Γk(M,E) (resp. Γkc (M,E)) the space of Ck-sections (resp. with compact support). In the case k = ∞, we
often drop the superscript to simplify the notation. We denote T rs (M) := (

⊗r
i=1 TM) ⊗ (

⊗s
i=1 T

∗M) and
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T rs := Γ(M,T rs (M)). We will also write X(M) for T 1
0 (M) and X∗(M) for T 0

1 (M). For some vector bundle F
and V ⊂M open, we say that a sequence ωj converges to ω in Γkc (V, F ) if there exists a compact set K ⊂ V
such that suppωj , suppω ⊂ K and ∇lωj → ∇lω uniformly on K for all l ≤ k.

We denote by Vol(M) the vector bundle of 1-densities, i.e. the one dimensional vector bundle with tran-
sition functions Ψαβ(x) = |detD(ψβ ◦ ψ−1

α )(x)|, where ψα, ψβ denote local charts into Rn. A section
ω ∈ Γkc (M,Vol(M)) is called a test volume. The space of distributions of order k on M is defined as the
topological dual of Γkc (M,Vol(M)) ([26], Sec. 3.1), i.e.

D′(k)
(M) := Γkc (M,Vol(M))′.

The space of distributional (r, s)-tensor fields of order k is given by

D′(k)T rs (M) := Γkc (M,T sr (M)⊗Vol(M))′.

It is known that

D′(k)
(T rs )Ck(M) ∼= D′(M)⊗Ck(M) T rs (M) ∼= LCk(M)(X

∗(M)rCk × X(M)sCk ;D′(M)),

where the latter denotes the Ck(M)-module of Ck(M)-multilinear maps from X∗(M)rCk × X(M)sCk to

D′(k)
(M) (cf. [26]).

Definition 2.1 (Action of a vector field on a distribution, [31]). For a scalar distribution T ∈ D′(M) and
a vector field X, we define the action of X on T via

〈X(T ), ω〉D′,D := −〈T,LXω〉D′,D,

where ω is a test volume and LXω denotes the Lie derivative of ω in the direction of X.
Definition 2.2 ([31], Def. 4.1). A distribution g ∈ D′T 0

2 (M) is called a generalised Riemannian metric, if
it satisfies

g(X,Y ) = g(Y,X) in D′(M) and

g(X,Y ) = 0 ∀Y ∈ X(M) =⇒ X = 0.

Using a partition of unity, it is clear that one can localise and reduce the computations to distributions on
Rn.

In order to generalise the Riemann curvature tensor, it is appropriate to consider a Riemannian metric that
is locally given as a positive definite matrix such that the coefficients gij and the coefficients of the inverse
matrix gij are both in L∞loc ∩H1

loc (cf. [26], 5.2.1). This condition is automatically met, if g ∈ C0(M) and
admits L2

loc-Christoffel symbols (see Lemma 3.8).
In order to define a distributional covariant derivative, one generalises the first Koszul formula. For smooth
vector fields X,Y, Z one can define ∇[XY ∈ D′T 0

1 (M) as:

〈∇[XY, Z〉 :=
1

2
(X(g(Y,Z)) + Y (g(X,Z))− Z(g(X,Y ))− g(X, [Y,Z])− g(Y, [X,Z]) + g(Z, [X,Y ]))

inD′(M). Raising the index gives the distributional covariant derivative∇XY := (∇[XY )] and a computation
in local coordinates yields that indeed

(∇XY )s = δsi (X
k∂kY

i) + ΓsikX
iY k in D′(Rn).

For a 1-form θ, the distributional covariant derivative is defined via

〈∇Xθ, Z〉 := X(〈θ, Z〉)− 〈θ,∇XZ〉 in D′(M),
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which, when spelled out in local coordinates, coincides with the classical covariant derivative of a 1-form. We
have all the ingredients to define the distributional Riemann tensor. Here, it is crucial that the coefficients
of the covariant derivatives are in L2

loc, as the expression of the Riemann tensor involves a quadratic term
in the Christoffel symbols. Following the notation of [31, Definition 3.3], we have that

〈Riem(X,Y )Z, θ〉 = X〈∇Y Z, θ〉 − Y 〈∇XZ, θ〉 − 〈∇Y Z,∇Xθ〉L2 + 〈∇XZ,∇Y θ〉L2 − 〈∇[X,Y ]Z, θ〉

in D′(M). All the quantities on the right hand side can be computed locally. Thus, in local coordinates, the
Riemann tensor can be written as

Rlijk = ∂iΓ
l
jk − ∂jΓlik + ΓskjΓ

l
is − ΓskiΓ

l
js, (2.1)

in the sense of distributions on Rn. Note that in local coordinates, the components of X,Y, Z and θ “are
part of the test function”. Note that, if g is a smooth Riemannian metric, the expression (2.1) coincides
with the classical Riemann tensor (cf. [38]). For a C0-metric g admitting L2

loc-Christoffel symbols, let ei be

a C0∩W 1,2
loc -local frame in XC0(M). Note that this exists by Lemma 3.8. For two smooth vector fields X,Y ,

the distributional Ricci tensor of is then given by

Ric(X,Y ) =
∑
i

g(ei,Riem(ei, X)Y ).

It is immediate to check that Ric is a symmetric bilinear form that can be expressed in local coordinates as:

Ricjk = Rppjk = ∂pΓ
p
jk − ∂jΓ

p
pk + ΓskjΓ

p
ps − ΓskpΓ

p
js, (2.2)

which coincides with the classical expression in the smooth case. We next define distributional lower bounds
of the Ricci curvature. We say that a one-density is non-negative if it can be written as φvolg ∈ Vol(M) for
some non-negative φ ∈ C∞(M).
Definition 2.3. Let K ∈ R. We say that a C0-Riemannian metric g with L2

loc Christoffel symbols satisfies
Ric ≥ K in the distributional sense if, for all X ∈ X(M), it holds Ric(X,X) ≥ Kg(X,X) in D′(M), i.e.
for all non-negative test volumes ω it holds,∫

Ric(X,X)ω ≥
∫
Kg(X,X)ω.

We conclude this section by recalling how to perform convolutions on a manifold. Fix a function ρ ∈ C∞c (Rn)
such that supp ρ ⊂ B1(0), ρ ≥ 0, and

∫
Rn ρ = 1. Define ρε(x) := 1

εn ρ(xε ). For a smooth manifold M , fix
an atlas (Uα, ψα) such that (Uα)α is locally finite and each Uα is relatively compact, and fix a partition of
unity ηα subordinate to the atlas. Choose a family of smooth cutoff functions χα such that suppχα ⊂ Uα
and χα = 1 on supp ηα. For any tensor T ∈ L1

loc(T rs (M)), define

T ∗ ρε(x) :=
∑
α

χα(x)ψ∗α
(
(ψα∗(ηαT )) ∗ ρε

)
(x). (2.3)

2.2 Some regularisation results and their application to Sobolev Riemannian
metrics

In this section, we present some variants of the convergence results obtained in [25, 10], which will be key to
obtain Lp-convergence of the Ricci curvature tensor under regularisation of the Riemannian metric. More
precisely, we will follow the strategy of [10, Lemma 3.3] with the following difference: we will work with
Lp-functions instead of locally Lipschitz functions, and we will keep track of the exponents. The following
lemma generalises [25, Lemma 4.7] to the Lp case.
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Lemma 2.4. Let f ∈ Lploc(Rn), for some p ∈ [1,∞). Let ρ ∈ C∞c (Beuc1 (0), [0,∞)) be a rotationally
symmetric standard mollifier and define ρε(x) := 1

εn ρ(xε ). Then, for any compact set K ⊂ Rn, it holds that

ε‖∂jρε ∗ f‖Lp(K) → 0, as ε→ 0.

Proof. Note that, for any constant c ∈ R, integration by parts gives that ∂jρε ∗ c = 0. Hence, using the
definition of ρε, Jensen’s inequality, and Fubini’s theorem, we get that

ε
(∫

K

|∂jρε ∗ f |p
) 1
p

= ε
(∫

K

∣∣∣ ∫
Bε(0)

∂jρε(y)
(
f(y − x)− f(x)

)
dy
∣∣∣pdx) 1

p

=
(∫

K

∣∣∣ ∫
Bε(0)

ε

εn+1
∂jρ
(y
ε

)(
f(y − x)− f(x)

)
dy
∣∣∣pdx) 1

p

≤ C(n)
(∫

K

1

εn

∫
Bε(0)

|∂jρ
(y
ε

)
|p|f(y − x)− f(x)|p dydx

) 1
p

≤ C(n, ρ)
( 1

εn

∫
Bε(0)

∫
K

|f(y − x)− f(x)|p dydx
) 1
p

.

The last integral converges to 0, since

lim
h→0
‖f − f(· − h)‖Lp(K) = 0.

Lemma 2.5 (A Friedrichs type lemma). Let p ∈ [2,∞) and a ∈ C0 ∩W 1,p
loc (Rn) and f ∈ Lploc(Rn). Then,

for any compact set K, it holds that

‖(a ∗ ρε)(ρε ∗ f)− ρε ∗ (af)‖
W 1,

p
2 (K)

→ 0, as ε→ 0.

Proof. We will proceed as in the proof of [25, Lemma 4.8], see also [16, Sect. 2]. Fix a compact set K. We
need to estimate the L

p
2 (K)-norm of

hε(x) = ((af) ∗ ∂jρε − (∂jρε ∗ a)(f ∗ ρε)− (ρε ∗ a)(f ∗ ∂jρε))(x)

=
(
((a− a(x))(f − f(x))) ∗ ∂jρε

)
(x)︸ ︷︷ ︸

=:F1(x)

−
(
(a ∗ ∂jρε)((f − f(x)) ∗ ρε)

)
(x)︸ ︷︷ ︸

=:F2(x)

−
(
((a− a(x)) ∗ ρε)(f ∗ ∂jρε)

)
(x)︸ ︷︷ ︸

=:F3(x)

.

Notice that the second line follows by the fact that c ∗ ρε = c and c ∗ ∂jρε = 0, for every constant c ∈ R. We
start by estimating F1.

‖F1‖L p2 (K)
=
(∫

K

∣∣(((a− a(x))(f − f(x))) ∗ ∂jρε
)
(x)
∣∣ p2 dx) 2

p

=
(∫

K

∣∣∣ ∫
Bε(0)

((a(x− y)− a(x))(f(x− y)− f(x))) ∂jρε(y)dy
∣∣∣ p2 dx) 2

p

=
(∫

K

∣∣∣ 1

εn

∫
Bε(0)

1

ε
((a(x− y)− a(x))(f(x− y)− f(x))) ∂jρ

(y
ε

)
dy
∣∣∣ p2 dx) 2

p

≤ C(n)
(∫

K

1

εn

∫
Bε(0)

∣∣∣1
ε

((a(x− y)− a(x))(f(x− y)− f(x))) ∂jρ
(y
ε

)∣∣∣ p2 dydx) 2
p

≤ C(n, ρ)
( 1

εn

∫
Bε(0)

∫
K

∣∣∣1
ε

((a(x− y)− a(x))(f(x− y)− f(x)))
∣∣∣ p2 dxdy) 2

p

≤ C(n, ρ)
(( 1

εn

∫
Bε(0)

∫
K

∣∣∣1
ε

(a(x− y)− a(x))
∣∣∣pdxdy) 1

2
( 1

εn

∫
Bε(0)

∫
K

∣∣∣(f(x− y)− f(x))
∣∣∣pdxdy) 1

2
) 2
p

.
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It is a classical fact of Sobolev functions that

1

εn

∫
Bε(0)

∫
K

∣∣∣1
ε

(a(x− y)− a(x))
∣∣∣pdxdy ≤ C(n)‖∇a‖pLp(Bε(K)). (2.4)

Indeed, by the density of C1-functions in W 1,p, we can assume without loss of generality that a ∈ C1. Using
the fundamental theorem of calculus, Hölder’s inequality, and Fubini’s theorem, we estimate:

1

εn

∫
Bε(0)

∫
K

∣∣∣1
ε

(a(x− y)− a(x))
∣∣∣pdxdy ≤ 1

εn

∫
Bε(0)

∫
K

∣∣∣1
ε

∫ |y|
0

∇a
(
x− t y

|y|

)
dt
∣∣∣pdxdy

≤ 1

εn

∫
Bε(0)

|y|p−1

εp

∫
K

∫ |y|
0

∣∣∣∇a(x− t y|y|)∣∣∣pdtdxdy
≤ 1

εn

∫
Bε(0)

|y|p−1

εp

∫ |y|
0

∫
K

∣∣∣∇a(x− t y|y|)∣∣∣pdxdtdy
≤ 1

εn

∫
Bε(0)

εp

εp
‖∇a‖pLp(Bε(K))dy ≤ C(n)‖∇a‖pLp(Bε(K)),

proving (2.4). Hence, for ε ≤ 1, we get that

‖F1‖L p2 (K)
≤ C(n, p)‖∇a‖Lp(B1(K))

(( 1

εn

∫
Bε(0)

∫
K

∣∣∣(f(x− y)− f(x))
∣∣∣pdxdy) 1

2
) 2
p

≤ C(n, p)‖∇a‖Lp(B1(K))

(
sup
|y|≤ε

‖f − f(· − y)‖pLp(K)

) 1
p → 0,

as ε→ 0. Furthermore,

‖F2‖L p2 (K)
≤ ‖(a ∗ ∂jρε)‖Lp(K)‖((f − f(x)) ∗ ρε)‖Lp(K)

≤ ‖∇a‖Lp(B1(K))

(∫
K

∣∣∣ ∫
Bε(0)

ρε(y)((f(x− y)− f(x))dy
∣∣∣pdx) 1

p

≤ ‖∇a‖Lp(B1(K))

(∫
Bε(0)

ρε(y)

∫
K

∣∣∣((f(x− y)− f(x))
∣∣∣pdxdy) 1

p

≤ ‖∇a‖Lp(B1(K))

(
sup
|y|≤ε

‖f − f(· − y)‖pLp(K)

) 1
p → 0,

as ε→ 0. We next estimate F3. To this aim, we start by estimating

‖(a− a(x)) ∗ ρε‖Lp(K) =
(∫

K

∣∣∣ ∫
Bε(0)

ρε(y)(a(x− y)− a(x))dy
∣∣∣pdx) 1

p

≤
(∫

K

∫
Bε(0)

ρε(y)|(a(x− y)− a(x))|pdydx
) 1
p

=
(∫

Bε(0)

ρε(y)

∫
K

|(a(x− y)− a(x))|pdxdy
) 1
p

. (2.5)

For |y| ≤ ε, it is a classical fact for Sobolev functions that(∫
K

|(a(x− y)− a(x))|pdx
) 1
p ≤ ε‖∇a‖Lp(B1(K)). (2.6)

Indeed, by the density of C1-functions in W 1,p, we can assume without loss of generality that a ∈ C1. Denote
v = y

|y| ∈ R
n. Using the fundamental theorem of calculus, Hölder’s inequality, and Fubini’s theorem, we
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estimate: (∫
K

|(a(x− y)− a(x))|pdx
) 1
p

=
(∫

K

∣∣∣ ∫ |y|
0

∇a(x− tv)dt
∣∣∣pdx) 1

p

≤
(∫

K

|y|p−1

∫ |y|
0

|∇a|p(x− tv)dtdx
) 1
p

≤
(
εp−1

∫ |y|
0

∫
K

|∇a|p(x− tv)dxdt
) 1
p

≤
(
εp−1

∫ |y|
0

‖∇a‖pLp(B1(K))dt
) 1
p ≤ ε‖∇a‖Lp(B1(K)).

Combining the estimates above with Hölder’s inequality, we obtain

‖F3‖L p2 (K)
≤ ‖(a− a(x)) ∗ ρε‖Lp(K)‖∂jρε ∗ f‖Lp ≤ ε‖∇a‖Lp(B1(K))‖∂jρε ∗ f‖Lp → 0,

as ε→ 0, by Lemma 2.4.

Lemma 2.6. Let p ∈ [2,∞), a ∈ C0 ∩W 1,p
loc (Rn) and f ∈ Lploc(Rn). Let ρε be as in the previous lemma. Let

aε ∈ C∞(Rn) be such that aε → a locally uniformly and in W 1,p
loc ; moreover, assume that, for each K ⊂ Rn

compact subset there exists CK > 0 such that

‖aε − a‖Lp(K) ≤ CKε. (2.7)

Then, for any compact set K ⊂ Rn, it holds that

‖aε(ρε ∗ f)− ρε ∗ (af)‖
W 1,

p
2 (K)

→ 0, as ε→ 0.

Proof. Write

aε(ρε ∗ f)− ρε ∗ (af) = (aε − ρε ∗ a)(ρε ∗ f)︸ ︷︷ ︸
(I)

+ (ρε ∗ a)(ρε ∗ f)− ρε ∗ (af)︸ ︷︷ ︸
(II)

.

We only need to estimate the W 1,p-norm of term (I), as Lemma 2.5 yields the desired estimate for term
(II). Write

∂j((aε − ρε ∗ a)(ρε ∗ f)) = (∂j(aε − ρε ∗ a))(ρε ∗ f) + (aε − ρε ∗ a)(∂j(ρε ∗ f)).

We start estimating the first term:

‖(∂j(aε − ρε ∗ a))(ρε ∗ f)‖
L
p
2 (K)

≤ ‖∂j(aε − ρε ∗ a)‖Lp(K)‖(ρε ∗ f)‖Lp(K)

≤
(
‖∂j(aε − a)‖Lp(K) + ‖∂j(a− ρε ∗ a)‖Lp(K)

)
‖(ρε ∗ f)‖Lp(K) → 0,

as ε→ 0. Moreover, for the second term, we use the assumption (2.7) together with (2.5) and (2.6) and get
that

‖aε − (a ∗ ρε)‖Lp(K) ≤ ‖aε − a‖Lp(K) + ‖a− (a ∗ ρε)‖Lp(K) ≤ C(K)ε.

Hence,

‖(aε − ρε ∗ a)(∂j(ρε ∗ f))‖
L
p
2 (K)

≤ ‖(aε − ρε ∗ a)‖Lp(K)‖(∂j(ρε ∗ f)‖Lp(K) ≤ CKε‖(∂j(ρε ∗ f)‖Lp(K) → 0

as ε→ 0, by Lemma 2.4.
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Now, assume to have a Riemannian metric g ∈ C0∩W 1,p
loc , for some p ∈ [2,∞). As usual, we write gij for the

coefficients of g in local coordinates. Let gε = ρε ∗g. We note that for all i, j, k, l,m = 1, . . . , n, the functions
f = ∂kglm, a = gij and aε := ((gε)

−1)ij satisfy the assumptions of Lemma 2.6. This can be seen directly
from (2.5) and (2.6), together with the formula of the inverse coefficients of a matrix. Hence, recalling the
local expression (2.2) of the Ricci curvature tensor, together with Lemma 2.6, we get the following useful
result.
Proposition 2.7. Let M be a smooth manifold and let g be a Riemannian metric of regularity g ∈ W 1,p

loc ,
for some p ∈ [2,∞). Then, for each compact set K ⊂M , it holds

‖Ric[gε]− ρε ∗ Ric[g]‖
L
p
2 (K)

→ 0, as ε→ 0. (2.8)

3 A weak formulation of Bochner’s formula for metrics of low
regularity

3.1 Smooth calculus on manifolds

In this subsection, we will recall some basic calculus concepts from smooth Riemannian geometry. More
details can be found in [38].
Lemma 3.1. Let g be a smooth Riemannian metric on M and f, h be smooth functions on M . The following
equations hold in local coordinates:

(i) ∇f = gik(∂if)∂xk .

(ii) volg =
√
|g|dx1 ∧ . . . ∧ dxn.

(iii) ∆f = ∂jg
ij∂if + gij∂ijf + 1

2 tr(g−1∂ig)gij∂jf = 1√
|g|
∂i(
√
|g|gij∂jf).

(iv) 〈∇f,∇h〉g = ∂ifg
ij∂jh.

Note that these expressions still hold for g ∈ C0(M), Γkij ∈ L2
loc. The Hessian is given by

Hessf(∂xi , ∂xj ) = ∂ijf − Γsij∂sf.

For all smooth functions φ, h, and f , it holds

2Hessf(∇φ,∇h) = 〈∇φ, 〈∇f,∇h〉g〉g + 〈∇h, 〈∇f,∇φ〉g〉g − 〈∇f, 〈∇h,∇φ〉g〉g. (3.1)

Now let X be a smooth vector field and ω a smooth 1-form. Then the musical isomorphisms ] : T ∗M → TM
and [ : TM → T ∗M are defined via

X[(Y ) = 〈X,Y 〉g, and ω(Y ) = 〈ω], Y 〉g,

for all vector fields Y . Note that the musical isomorphisms come from the smooth setting, but also make
sense for C0-Riemannian metrics.

3.2 Bochner’s formula for vector fields on smooth weighted manifolds

In this subsection we briefly recall the generalisation of Bochner’s formula to the case of a smooth weighted
manifold. Denote by ∆H the Hodge-Laplacian and recall that for f ∈ C∞(M) it holds ∆Hf = −∆f . Then:
Proposition 3.2. For a smooth manifold M with a smooth Riemannian metric g and any smooth vector
field X, it holds

−1

2
∆H |X|2 = −〈(∆HX

[)], X〉+ |∇X|2HS + Ric(X,X). (3.2)

10



Now let (M, g) be a smooth Riemannian manifold and let µ be a measure on M such that dµ = h2dvolg for
a smooth and positive function h. As usual, we write for a C1-function u, that (∇u)i = gij∂ju. We can now
define the associated divergence operator divµ by

divµ(X) =
1

h2
div(h2X) =

1

h2

(
h2∂iX

i + 2h∂ihX
i +

1

2
h2Xitr(g−1∂ig)

)
(3.3)

and the weighted Laplace operator ∆µ

∆µ := divµ ◦ ∇ =
1

h2
div(h2∇) = ∆ +

2〈∇h,∇〉
h

.

The divergence operator satisfies ∫
M

fdivµ(X) dµ = −
∫
M

X(f) dµ, (3.4)

for any function f ∈ C∞c (M) and any smooth vector field X. It then follows that for u, v ∈ C∞(M) such
that u or v are compactly supported, we have that∫

M

u∆µv dµ = −
∫
M

〈∇u,∇v〉g dµ =

∫
M

∆µuv dµ.

Sometimes it is notationally convenient to write h2 = e−V for some smooth function V .
Definition 3.3. Let N ≥ n and V, h as above. The generalised Bakry-Émery N -Ricci tensor is defined by

Ricµ,N := Ric +∇2V − 1

N − n
∇V ⊗∇V.

In the case n = N , we use the convention that the only admissible V is constant. For N =∞, we get

Ricµ,∞ := Ric +∇2V = Ric + Hess[−2 log h].

We will now generalise the Hodge star operator and the codifferential to this setting. Recall the Hodge
star operator ∗ : Ωp(M) → Ωn−p(M) in a Riemannian manifold without weight, where ∗β is defined via
α ∧ ∗β = 〈α, β〉volg for all α ∈ Ωp(M). This shall motivate our next definition.
Definition 3.4. The weighted Hodge star operator ∗µ : Ωp(M) → Ωn−p(M) is defined as h2∗, where ∗
denotes the classical Hodge star operator. It satisfies

α ∧ ∗µβ = 〈α, β〉gµ,

where we interpret the n-form α ∧ ∗µβ as a measure on M .

It directly follows that for all p ∈ {0, . . . , n} and β ∈ Ωp(M), it holds

∗−1
µ β = ∗−1

(
1

h2
β

)
.

As in the unweighted case, we get that δµ := (−1)p ∗−1
µ d∗µ is adjoint to d in the L2(M,µ)-inner product,

i.e. ∫
M

〈dα, β〉g dµ = (−1)p
∫
M

〈α, ∗−1
µ d ∗µ β〉g dµ,

for all compactly supported (p− 1)-form α and p-form β.
Definition 3.5. The above operator δµ : Ω•(M)→ Ω•−1(M) is called the weighted codifferential. We denote
by ∆µ,H : Ω•(M)→ Ω•(M) the weighted Laplace-Beltrami operator, which is defined by

∆µ,H := dδµ + δµd.
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We now aim to generalise (3.2) to the weighted case. In local normal coordinates, we can compute that

−1

2
∆µ,H |α|2 =

1

2
∆µ|α|2 =

1

2
∆|α|2 +

1

h
〈∇h,∇|α|2〉 = −1

2
∆H |α|2 +

2

h
∂jhαk∂jαk

and

Ricµ,∞(α], α]) = Ric(α], α]) + Hess[−2 log h](α], α]) = Ric(α], α])− 2αjαk

(h∂2
jkh− ∂jh∂kh

h2

)
. (3.5)

Finally, we get that

−〈α,∆µ,Hα〉 = −〈α,∆Hα〉+
2

h
(∂jh∂jαkαk − ∂kh∂jαkαj) +

2

h
∂jαk∂khαj + ∂j

(
2∂kh

h

)
αkαj

= −〈α,∆Hα〉+
2

h
∂jh∂jαkαk −

2

h
∂kh∂jαkαj +

2

h
∂jαk∂khαj + αkαjHess[2 log h]kj

= −〈α,∆Hα〉+
2

h
∂jh∂jαkαk + αkαjHess[2 log h]kj .

Recalling (3.2), this yields
Proposition 3.6. Let (M, g, µ) be a weighted Riemannian manifold with smooth metric and smooth weight.
Then, for every smooth 1-form α, it holds

−1

2
∆µ,H |α|2 = −〈α,∆µ,Hα〉+ Ricµ,∞(α], α]) + |∇α|2HS .

In other terms, for every smooth vector field X, it holds

−1

2
∆µ,H |X|2 = −〈X, (∆µ,HX

[)]〉+ Ricµ,∞(X,X) + |∇X|2HS . (3.6)

3.3 A Bochner formula for weighted manifolds of lower regularity

We can generalise Definition 3.3 to the distributional case:
Definition 3.7. Let M be a smooth manifold and N ∈ [n,∞]. Let g be a C0-Riemannian metric with L2

loc

Christoffel symbols and let h ∈ C0(M, (0,∞))∩W 1,2
loc (M), V ∈ C0∩W 1,2

loc (M) such that h2 = e−V . We define

the distributional Bakry-Émery N -Ricci-curvature tensor of the weighted manifold (M, g, h2volg) as

Ricµ,N = Ric +∇2
gV −

1

N − n
∇V ⊗∇V ∈ D′T 0

2 . (3.7)

The case N =∞ can also be rewritten as:

Ricµ,∞ := Ric− 2Hess[log h] ∈ D′T 0
2 . (3.8)

In the following, we will integrate by parts, to get a version of Bochner’s formula that only involves first
derivatives of g and h. First we make the following useful observation: Assume g to be a smooth metric on
the manifold M . Then the Christoffel symbols (of the second kind) are given by

Γkij =
1

2
gkl(∂igjl + ∂jgil − ∂lgij).

We can recover the Christoffel symbols of the first kind by multiplication with g, i.e.

Γij,l =
1

2
(∂igjl + ∂jgil − ∂lgij) = glkΓkij = g(∇∂i∂j , ∂l). (3.9)
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Now note that

(Γil,j + Γjl,i) = ∂lgij . (3.10)

This follows directly from the definition of the Levi-Civita connection, hence the last identity holds in a weak
sense for the distributional Levi-Civita connection for g of lower regularity. More precisely:
Lemma 3.8. Let g be a C0-Riemannian metric such that g admits L2

loc-Christoffel symbols (of the second

kind). Then g ∈W 1,2
loc (M).

Proof. As g is in C0, it follows from (3.9), that the Christoffel symbols of the first kind are in L2
loc as well.

Then using (3.10) integration by parts and the linearity of the Christoffel symbols of the first kind in terms
of g, we get that all partial derivatives of g are in L2

loc.

Recall that (3.6) holds on a smooth manifold. Using that for functions ∆µ = −∆µ,H and testing with a
function φ ∈ C∞c (M), we obtain∫

M

(
−1

2
∆µ|X|2 − 〈(∆µ,HX

[)], X〉+ |∇X|2 + Ricµ,∞(X,X)

)
φdµ = 0.

We will again integrate by parts, where necessary, to spell this out in local coordinates. By potentially using
a partition of unity, we can assume that φ is supported in one coordinate patch. We have that∫

1

2
〈∇|X|2,∇φ〉g dµ =

∫
−1

2
∆µ|X|2φ dµ

and∫
M

Ricµ,∞(X,X)φ dµ =

∫
XjXk(∂pΓ

p
jk − ∂jΓ

p
pk + ΓskjΓ

p
ps − ΓskpΓ

p
js)φh

2
√
|g| dx1 . . . dxn

+ 2

∫
XjXk(∂jh∂kh− h∂2

jkh+ h∂shΓskj)φ
√
|g|dx1 . . . dxn

=

∫
XjXk(ΓskjΓ

p
ps − ΓskpΓ

p
js)φh

2
√
|g| dx1 . . . dxn

−
∫

Γpjk∂p(X
jXkφh2

√
|g|) dx1 . . . dxn +

∫
Γppk∂j(X

jXkφh2
√
|g|) dx1 . . . dxn

+ 2

∫
XjXk(∂jh∂kh+ h∂shΓskj)φ

√
|g|dx1 . . . dxn

+ 2

∫
∂jh∂k(XjXkhφ

√
|g|)dx1 . . . dxn.

The above holds for any smooth g and h. Using that each function h ∈ C0 ∩W 1,2
loc and each metric g ∈ C0

with L2
loc-Christoffel symbols can be approximated in the C0 ∩W 1,2

loc topology by smooth objects, we get:
Proposition 3.9. Let M be a smooth manifold, g a C0-Riemannian metric with L2

loc Christoffel symbols

and h ∈ C0(M, (0,∞)) ∩W 1,2
loc (M), V ∈ C0 ∩W 1,2

loc (M) such that h2 = e−V .
Then, for every smooth vector field X, it holds:

−1

2
∆µ|X|2 − 〈(∆HX

[)], X〉+ |∇X|2 + Ricµ,∞(X,X) = 0 in D′(M). (3.11)

For what will come next, it is convenient to investigate the other terms of the formula more closely:

〈(∆HX
[)], X〉 = |dX[|2 + |δµX[|2 = |dX[|2 + |divµ(X)|2 in D′(M).
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Note that if locally X = Xi∂xi then X[ = gijX
idxj and hence

dX[ = d(gijX
idxj) = ∂k(gijX

i)dxk ∧ dxj =
∑
j<k

(∂k(gijX
i)− ∂j(gikXi))dxk ∧ dxj .

It follows that

|dX[|2 =
∑
j<k

∑
l<m

gjlgkm(∂k(gijX
i)− ∂j(gikXi))(∂m(gplX

p)− ∂l(gpmXp)).

We also know that

|divµ(X)|2 =
1

h4

(
h2∂iX

i + 2h∂ihX
i +

1

2
h2Xitr(g−1∂ig)

)2

.

Recalling Lemma 3.8 and arguing by density, we get that the following formula holds for all g ∈ C0 with
L2

loc Christoffel symbols, all φ ∈ C0
c ∩W

1,2
loc (M) and all positive h ∈ C0 ∩W 1,2

loc (M):∫
XjXk(ΓskjΓ

p
ps − ΓskpΓ

p
js)φh

2
√
|g| dx1 . . . dxn −

∫
Γpjk∂p(X

jXkφh2
√
|g|) dx1 . . . dxn

+

∫
Γppk∂j(X

jXkφh2
√
|g|) dx1 . . . dxn

+ 2

∫
XjXk(∂jh∂kh+ h∂shΓskj)φ

√
|g|dx1 . . . dxn + 2

∫
∂jh∂k(XjXkhφ

√
|g|)dx1 . . . dxn

=− 1

2

∫
〈∇|X|2,∇φ〉gh2

√
|g| dx1 . . . dxn +

∫ (
∂iXi +Xi

1

2
tr
(
g−1∂ig

)
+

2

h
∂ihX

i
)2

h2φ
√
|g| dx1 . . . dxn

+

∫ ∑
j<k

∑
l<m

gjlgkm(∂k(gijX
i)− ∂j(gikXi))(∂m(gplX

p)− ∂l(gpmXp))φh2
√
|g| dx1 . . . dxn

−
∫ ( ∑

i,j,r,s

(∂iX
s + ΓripX

p)(∂jX
r + ΓsjqX

q)gijgsr

)
φh2

√
|g| dx1 . . . dxn. (3.12)

4 First order calculus

In this section we recall the notion of Cheeger energy and the associated Sobolev space W 1,2
w , which provide

a well settled first order calculus for general metric measure spaces. On a smooth manifold endowed with a
continuous metric and a continuous weight on the measure, one can define the first order quadratic Sobolev
space H2

1 also using local charts and distributional weak derivatives. After recalling the two approaches, we
will show that they actually coincide, in the latter framework. The results will be useful in the establishing
the equivalence of distributional and synthetic Ricci curvature lower bounds.

4.1 The Cheeger energy

In this subsection we recall a generalised notion of modulus of gradients and Sobolev functions in metric
measure spaces introduced by Cheeger in [13] and further analysed by Ambrosio, Gigli and Savaré [2].

Throughout the section, (X, d) is a complete and separable metric space. The slope (or local Lipschitz
constant) of a real valued function F : X → R is defined by

|DF |(x) := lim sup
y→x

|F (x)− F (y)|
d(x, y)

,
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if {x} is not isolated, and 0 otherwise.

We endow (X, d) with a non-negative σ-finite Borel measure, obtaining the metric measure space (X, d,m).
Throughout the rest of this work, we assume that there exists a bounded Borel Lipschitz map V : X → [0,∞)
such that (cf. [2, Ch. 4])

V is bounded on each compact set K ⊂ X and∫
X

e−V
2

dm ≤ 1.
(4.1)

The metric speed of a curve γ : [0, 1]→ X is given by |γ̇t| := limh→0
d(γt+h,γt)
|h| which exists for almost every

t ∈ [0, 1]. The curve γ is said to be absolutely continuous if t→ |γ̇t| ∈ L1((0, 1)). We next recall the notion
of test plan and weak upper gradient. We will use the conventions of [23], after [2].
Definition 4.1. Let π ∈ P(C([0, 1], X)). We say that π is a test plan if there exists a constant C(π) > 0
such that

(et)#π ≤ C(π)m for all t ∈ [0, 1]

and ∫ ∫ 1

0

|γ̇t|2 dtdπ(γ) <∞.

We use the convention that if γ is not absolutely continuous, then
∫ 1

0
|γ̇t|2 dt =∞.

Definition 4.2. Given f : X → R a m-measurable function, then a m-measurable function G : X → [0,∞]
is called a weak upper gradient of f , if∫

|f(γ1)− f(γ0)|dπ(γ) ≤
∫ ∫ 1

0

G(γt)|γ̇t|dtdπ(γ) <∞, for all test plans π. (4.2)

We say that f is in the Sobolev class S2(X, d,m), if there exists G ∈ L2(m) such that (4.2) holds.

The discussion in [2, Prop. 5.9 and Def. 5.11], shows the existence of a weak upper gradient |Df |w such that
|Df |w ≤ G m-a.e. for all other weak upper gradients G. We will call it the minimal weak upper gradient of
f .
Definition 4.3. The Sobolev space W 1,2

w (X, d,m) is defined as L2∩S2(X) and becomes a Banach space with
the norm

‖f‖2W 1,2
w (X) = ‖f‖2L2 + ‖|Df |w‖2L2 .

For simplicity, we will from now on write W 1,2
w (X) instead of W 1,2

w (X, d,m).
Definition 4.4. The Cheeger energy is defined in the class of m-measurable functions by

Ch(f) :=

{
1
2

∫
X
|Df |2w dm if f has a weak upper gradient in L2(X,m),

∞ otherwise,

with proper domain D(Ch) = {f : X → [0,∞],m−measurable, Ch(f) <∞} = S2(X, d,m).

A metric measure space is called infinitesimally Hilbertian if Ch is a quadratic form or, equivalently, if
W 1,2
w (X) is a Hilbert space [3, 22]. In this case, we can define the associated Dirichlet form E : D(Ch)2 → R,

via E(f, f) = 2Ch(f) [3, Ch. 4.3].
Proposition 4.5 ([3], Def. 4.12 and Prop. 4.14). For any f, g ∈ D(Ch), it holds

E(f, g) =

∫
X

G(f, g) dm,
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where

G(f, g) = lim
ε↘0

|D(f + εg)|2w − |Df |2w
2ε

∈ L1(X,m).

By the theory of Dirichlet forms (cf. [8]), there exists an associated Laplace operator ∆ : D(∆)→ L2(X,m),
given by

−
∫
X

∆fhdm =

∫
X

G(f, h) dm.

Here D(∆) = {f ∈ L2(m) : ∆f exists, ∆f ∈ L2} is dense in L2. Moreover, it induces a linear semi-group
(Ht)t≥0, Ht : L2(X) → L2(X) such that Ht+s = HsHt, for all f ∈ L2, we have that limt→0Htf = f , and
for all t > 0, we have that Htf ∈ D(∆) and d

dtHtf = ∆Htf . (Ht)t≥0 is called heat flow semi-group. Write
ft for Ht(f0). By [2, (4.26)], we have that

Ch(ft) ≤ inf

{
Ch(g) +

1

2t

∫
X

|g − f0|2 dm : g ∈ D(Ch)

}
.

Another useful fact is the maximum principle for the heat flow: [3, Prop. 2.14]: if f ∈ L2, f ≤ C, (f ≥ C)
m-a.e. then Htf ≤ C (Htf ≥ C) m-a.e. in X.

4.2 Optimal transport and curvature dimension conditions

In this subsection, we recall the notion of an RCD(K,∞)-space, starting by some elements of optimal
transport theory. Throughout the section, (X, d) is a complete and separable metric space. Denote by
P(X) the set of Borel probability measures on X and P2(X) the space of probability measures with finite
second moment:

P2(X) :=

{
µ ∈ P(X) :

∫
d2(x, x0) dµ(x) <∞ for some x0 ∈ X

}
,

Let (Y, dY ) be another complete and separable metric space. Given a Borel map T : X → Y , µ ∈ P(X), the
measure T#µ, called the push-forward of µ by T , is defined by

T#µ(E) = µ(T−1(E)).

For µ ∈ P(X) and ν ∈ P(Y ), we define the set Γ(µ, ν) as the set of all transport plans γ ∈ P(X × Y ), i.e.
the set of Borel probability measures on X × Y such that πX#γ = µ and πY#γ = ν. Here πX and πY denote
the natural projections from X × Y onto X and Y respectively.

For µ, ν ∈ P2(X), the quadratic Wasserstein distance W2 is defined as

W2(µ, ν) :=

√
inf

γ∈Γ(µ,ν)

∫
d2(x, y) dγ(x, y).

The Wasserstein distance W2 is a distance on P2(X) and turns it into a complete and separable metric
space. Moreover, if (X, d) is a geodesic space, then so is (P2(X),W2).
Given a metric measure space (X, d,m), we denote by Pa2 (X) ⊂ P2(X) the set of measures with finite second
moment that are absolutely continuous with respect to m.
In order to introduce curvature dimension conditions, we will need the following distortion coefficients. For
κ ∈ R and θ ≥ 0, let

sκ(θ) :=


1√
κ

sin(
√
κθ) if κ > 0,

0 if κ = 0,
1√
−κ sinh

(√
−κθ

)
if κ < 0.
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Moreover, for t ∈ [0, 1], set

σ(t)
κ (θ) :=


sκ(tθ)
sκ(θ) if κθ2 6= 0 and κθ2 < π2,

t if κθ2 = 0,
+∞ if κθ2 ≥ π2.

Define the convex and continuous function U∞ on [0,∞) as

U∞(z) := z log(z).

The Boltzmann-Shannon entropy functional E∞ : P(X)→ R ∪ {+∞} is defined by

E∞(µ) :=

{ ∫
X
U∞(ρ) dm, if µ� m, with µ = ρm and U∞(ρ) ∈ L1(X,m)

∞, else.

Next we recall the synthetic notion of Ricci curvature bounded below for a metric measure space, pioneered
by Sturm [44, 45] and Lott-Villani [35]. For the finite dimensional case, we will use the (reduced) curvature
dimension condition of Bacher-Sturm [7].
Definition 4.6. We say that a metric measure space (X, d,m) has Ricci curvature bounded from below by
K ∈ R provided the functional E∞ : P(X)→ R ∪ {+∞} is (weakly) K-geodesically convex on (Pa2 (X),W2),
that means that for any µ0, µ1 ∈ Pa2 (X), there exists a Wasserstein geodesic (µt)t∈[0,1] such that for all
t ∈ [0, 1],

E∞(µt) ≤ (1− t)E∞(µ0) + tE∞(µ1)− K

2
t(1− t)W 2

2 (µ0, µ1).

In this case we say that (X, d,m) is a CD(K,∞)-space.

Definition 4.7. Given two numbers K ∈ R and N ∈ [1,∞), we say that a metric measure space (X, d,m)
satisfies the (reduced) curvature-dimension condition CD∗(K,N) if for each pair µ0, µ1 ∈ Pa2 (X) with bounded
supports there exists an optimal transport coupling γ and a Wasserstein geodesic (µt = ρtm)t∈[0,1] ⊂ Pa2 (X)
connecting µ0 = ρ0m and µ1 = ρ1m such that for all t ∈ [0, 1], N ′ ≥ N , it holds∫

X

ρ
− 1
N′

t dµt ≥
∫
X×X

[
σ

(1−t)
K/N ′(d(x0, x1))ρ0(x0)−

1
N′ + σ

(t)
K/N ′(d(x0, x1))ρ1(x1)−

1
N′
]
dγ(x0, x1).

In order to single out the “Riemannian” like structures out of the “possibly Finslerian” CD spaces, Ambrosio-
Gigli-Savaré [3] (see also [1]) in the N =∞ case, and Gigli [22] in the N <∞ case introduced the Riemannian
curvature-dimension condition.
Definition 4.8. We say that (X, d,m) satisfies the Riemannian curvature-dimension condition RCD(K,∞)
if it is infinitesimally Hilbertian and satisfies the CD(K,∞)-condition.
For N ∈ [1,∞), we say that (X, d,m) satisfies the Riemannian curvature-dimension condition RCD∗(K,N)
if it is infinitesimally Hilbertian and satisfies the CD∗(K,N)-condition.
Remark 4.9. In the case of weighted Riemannian manifolds with continuous metric and continuous weight,
the resulting measure will always be σ-finite in which case the RCD∗ and RCD condition coincide, see [11, 33].

Let us recall the following useful results:
Lemma 4.10 ([20], Lem. 3.2 and Thm. 3.17). If (X, d,m) satisfies the RCD∗(K,N)-condition then it also
satisfies the RCD∗(K ′, N ′)-condition for any K ′ ≤ K and N ′ ≥ N . Moreover, it satisfies the RCD(K,∞)-
condition.
Theorem 4.11 ([3], Thm. 6.2). Let (X, d,m) be a RCD(K,∞) space and f ∈W 1,2

w (X). Then

|D(Htf)|2w ≤ e−2Kt(Ht|Df |2w).

Remark 4.12. By [44, Thm. 4.24], the condition (4.1) is automatically satisfied in every CD(K,∞) space,
by choosing the function V : X → R, V (x) := Cd(x, x0) for a suitable C > 0 and any base point x0 ∈ X.
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4.3 Lp and Sobolev spaces on weighted Riemannian manifolds of low regularity

In this subsection, we recall the language of Sobolev spaces on manifolds. We will summarise facts from [27,
Ch. 2], adapting to the case of weighted manifolds of low regularity. Let (M, g) be a Riemannian manifold
(with g a smooth metric for now). Let h : M → (0,∞) be a C0-function and define the measure µ via
dµ := h2dvolg . For an integer k ≥ 0 and u ∈ C∞(M) define ∇kcu to be the k-th covariant derivative
(∇0

cu := u). Notice that ∇kcu is a (0, k)-tensor. We will only be interested in the cases k ≤ 2, so we write
down the explicit formulas for the covariant derivatives in local coordinates:

(∇1
cu)i = (du)i = ∂iu and (∇2

cu)ij = ∂iju− Γkij∂ku.

By definition, we have that

|∇kcu|2 = gi1j1 . . . gikjk(∇kcu)i1...ik(∇kcu)j1...jk ,

where i1 < . . . < ik and j1 < . . . < jk. Let p ∈ [1,∞). Denote by Cpk(M,µ) the space of smooth functions
u ∈ C∞(M) such that |∇jcu| ∈ Lp(M,µ) for any j = 0, . . . k.
Definition 4.13. The Sobolev space Hp

k (M,µ) is the completion of Cpk(M,µ) with respect to the norm

‖u‖Hpk (M,µ) =

k∑
j=0

(∫
M

|∇jcu|p dµ

) 1
p

.

Proposition 4.14. H2
k(M,µ) is a Hilbert space with the inner product

〈u, v〉 =

k∑
m=0

∫
M

(
gi1j1 . . . gimjm(∇mc u)i1...im(∇mc v)j1...jm

)
h2 dvolg.

Note that the inner product induces an equivalent norm on H2
k(M,µ). In the case p = 2, we will work with

the norm induced by the inner product. We can generalise these definitions to the following:
Definition 4.15. Let s, r ≥ 0 and p ≥ 1. Define Cpk(T rs (M), µ) the space of smooth sections u ∈ T rs (M)
such that |∇jcu|g ∈ Lp(M,µ) for j = 0, . . . , k. The Sobolev space Hp

k (T rs (M), µ) is defined to be the closure
of Cpk(T rs (M), µ) under the norm

‖u‖Hpk (T rs (M),µ) :=

k∑
j=0

(∫
M

|∇jcu|p dµ

) 1
p

.

Moreover, for all such s, r, we define the space H̊p
k (T rs (M), µ) as the closure of the set of smooth compactly

supported (r, s)-tensors under the Hp
k (T rs (M), µ)-norm.

We notice that these definitions make sense for k ≤ 2 and p = 2 if g ∈ C0(M) with L2
loc-Christoffel symbols.

The following criterion for weak convergence will be useful later. We will repeatedly make use of the
following elementary result.
Lemma 4.16. Let M be a smooth manifold, g be a continuous Riemannian metric and h a continuous
positive function. Moreover let p ∈ [1,∞). Define the measure µ by µ := h2dvolg. Then C∞c (M) is dense in
Lp(M,µ).
Lemma 4.17. Let (M, g, µ) be a weighted Riemannian manifold with a C0-Riemannian metric g with L2

loc-
Christoffel symbols and endowed with a measure µ defined via dµ = h2dvolg for a function h ∈ C0(M, (0,∞)).
Let (Vα, ψα)α be an atlas for M such that Vα is compact, for all α.
Let fi be a sequence in L2(M,µ) and let f ∈ L2(M,µ).
Then fi ⇀ f in L2(M,µ) if and only if (ψα)∗fi ⇀ (ψα)∗f in L2(ψα(Vα), (ψα)#µ), for all α.
If f, fi ∈ H2

k(M,µ) (k ≤ 1) and ∂βfi ⇀ ∂βf in L2(ψα(Vα), (ψα)#µ) for all α and all β ∈ Nn, |β| ≤ k, then
fi ⇀ f in H2

k(M,µ).
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Proof. For the first part, note that it suffices to prove convergence of the inner product on a dense subset
of L2(M,µ). Using Lemma 4.16, we can pick a function ϕ ∈ Cc(M). Let (Vj)

l
j=1 be a finite cover of suppϕ

and pick a partition of unity (ρj) subordinate to that cover. Now∫
M

ϕfih
2 dvolg =

∫
M

l∑
j=1

ρjϕfih
2 dvolg =

l∑
j=1

∫
ψj(Vj)

(ψj)∗(ρjϕfi)h
2
√
|g|dLn.

If (ψj)∗fi ⇀ (ψj)∗f , it is easy to see that the above term converges. For the other direction it suffices to
note that every function ϕ ∈ L2(ψj(Vj), (ψj)∗µ) for some j can be extended to a function Φ ∈ L2(M,µ) via
pullback and extension by 0.
For the second part, we simply use the first part and the definition of the H2

k(M,µ)-inner product.

Now, we can generalise the validity of the identity (3.12) to Sobolev vector fields:
Lemma 4.18 (Distributional Ricci curvature for H2

1 (TM,µ)-fields). Let g be a C0-Riemannian metric
whose Christoffel symbols are in L2

loc and µ be the measure defined by dµ = h2dvolg for a positive h ∈
C0(M, (0,∞)) ∩W 1,2

loc (M). Let X ∈ H2
1 ∩ L∞loc(TM,µ). Then (3.12) holds.

Proof. This follows from the density of C2
1 (TM,µ) in H2

1 (TM,µ) and the fact that φ, |∇φ|g ∈ L1 ∩ L∞(M)
have compact support.

4.4 Cheeger energy on a manifold with continuous Riemannian metric and
weight

In this subsection, we examine the Cheeger energy in the setting of a smooth manifold M endowed with a
continuous Riemannian metric g and a continuous weight h2 on the volume form. The distance induced by
g is given by

dg(x, y) = inf
{∫ 1

0

|γ̇t|g dt : γ piecewise C∞, γ0 = x, γ1 = y
}
. (4.3)

We also consider the Riemannian volume form given locally by
√
|g|dx1∧ . . .∧dxn and the associated volume

measure dvolg =
√
|g|dLn. We will consider the metric measure space (M, dg, µ), where dµ = h2dvolg for

a positive and continuous h. It is easily checked that µ is a σ-finite Borel measure. We assume that (4.1)
holds, as we will work with CD(K,∞)-manifolds (cf. Rem. 4.12).

To begin with, we will collect some properties of the metric space arising from a manifold with a continuous
Riemannian metric g. The even more general setting of Lipschitz manifolds, with emphasis on potential
theory for uniformly elliptic operators, has previously been studied by Norris [37], Saloff-Coste [41], Sturm
[43], De Cecco and Palmieri [18]. In that case, the term Lipschitz manifold refers to a topological manifold
M with Lipschitz charts, endowed with a Riemannian metric tensor g, such that the coefficients of g and g−1

are in L∞loc. This shall not be confused with metric tensors whose coefficients are locally Lipschitz continuous.
More in the spirit of the present section is the work by Burtscher [9]. For the reader’s convenience, in the
following we will focus on our original results, while trying to be as self-contained as possible.
Proposition 4.19 (cf. [38] Thm. 5.3.8, and [9] Thm. 4.5). Let f be a Lipschitz function on (M, dg) and
(Vα, ψα)α be an atlas for M . Then for each α, f ◦ (ψα)−1 is locally Lipschitz.

Proof. We show that | · |euc and dg are locally equivalent. Pick a point p ∈ M , α such that p ∈ Vα and fix

an ε > 0 such that Beucε (ψα(p)) ⊂ ψα(Vα). From now on, we will drop the index α. Take two arbitrary x, y
such that ψ(x), ψ(y) ∈ Beucε/2 (ψ(p)) and let c : [0, 1]→M be a piecewise C∞-curve from x to y. We note that

we can find a λ ≥ 1 such that 1
λ‖v‖euc ≤ g(v, v) ≤ λ‖v‖euc for all q ∈ ψ−1(Beucε (ψ(p))) and all v ∈ TqM .

We now distinguish three cases:
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1. c is a straight line in the Euclidean metric. Then

|x− y|euc = Leuc(c) =

∫ 1

0

|ċ|euc ≥
1

λ

∫ 1

0

|ċ|g dt ≥ 1

λ
dg(x, y).

2. If c is a general curve that lies in ψ−1(Beucε (ψ(p))) then

Lg(c) =

∫ 1

0

|ċ|g dt ≥ λ
∫ 1

0

|ċ|euc dt ≥ λ|x− y|euc.

3. If c leaves ψ−1(Beucε (ψ(p))) then there is a minimal t0 such that c(t0) /∈ ψ−1(Beucε (ψ(p))) and hence

Lg(c) ≥
∫ t0

0

|ċ|g dt ≥ λ
∫ t0

0

|ċ|euc dt ≥ λε
2
≥ λ

2
|x− y|euc.

This yields that the two metrics are equivalent in ψ−1(Beucε/2 (ψ(p))) =: Up. Hence, for a dg-Lipschitz function
f and any p ∈M , there exists a constant LUp such that f is locally LUp -Lipschitz with respect to the induced
Euclidean metric via ψ on Up.

In [9], a mollification argument yields:
Proposition 4.20 ( [9] Prop. 4.1 and Thm 3.15). The metric (4.3) turns M into a length space.

The Hopf-Rinow theorem directly implies:
Corollary 4.21. If M is compact, (M, dg) is a geodesic space.

A standard fact on the slope of functions is that if f ∈ C1(M), then |Df |(x) = |∇f |g(x) for every x. The
next proposition is also classical, so the proof is omitted.
Proposition 4.22. Let γ : [0, 1] → M be an absolutely continuous curve. Then the metric speed |γ̇t|
coincides a.e. with |γ̇t|g =

√
〈γ̇t, γ̇t〉g, where γ̇t denotes the (a.e. existing) derivative.

We will show that if f ∈ C1, then |∇f |g is the minimal weak upper gradient. The next lemma will be used
in the proof of Proposition 4.24.
Lemma 4.23. Let M be a smooth manifold equipped with a C0-Riemannian metric g and a measure µ
defined via dµ = h2dvolg, for some h ∈ C0(M, (0,∞)). Let k ∈ L1

loc(M,µ) and fix some coordinate patch
(Vm, ψm). Let x ∈ ψm(Vm) and θ > 0, such that Beuc4θ (x) ⊂ ψm(Vm). For δ ∈ (0, θ) ∩Q, γ̇ ∈ Qn ∩ Beucθ (0),
we define

Fγ̇,δ,x : t→ 1

Ln(Bδ(x))

∫
Bδ(x)

|γ̇|g(y+tγ̇)k(y + tγ̇) dLn(y), ∀t, |t| < 1.

Then for Ln-a.e. x ∈ ψm(Vm) and all δ ∈ (0, θ) ∩ Q, γ̇ ∈ Qn ∩ Beucθ (0), we have that t = 0 is a Lebesgue
point of Fγ̇,δ,x.

Proof. As g and h are continuous, we get that (ψm)∗k ∈ L1
loc(ψm(Vm),Ln). Fix w ∈ ψm(Vm), and choose

θ > 0 accordingly. Moreover, fix δ and γ̇. For any z ∈ Beucθ (w), the Lebesgue differentiation theorem yields
that L1-almost every t ∈ (−1, 1) is a Lebesgue point of Fγ̇,δ,z. In other words that means that for L1-almost
every y on the line {z + tγ̇, |t| < 1}, t = 0 is a Lebesgue point of Fγ̇,δ,y. The set of non-Lebesgue points on
that line shall be denoted by Nγ̇,δ,z, and it holds that L1(Nγ̇,δ,z) = 0. Let Hγ̇,w be the (n− 1)-dimensional
hyperplane through w that is orthogonal to γ̇, and intersected with Beucθ (w). Then, by Fubini’s Theorem,
it holds

Ln
( ⋃
z∈Hγ̇,w

Nγ̇,δ,z

)
=

∫
Hγ̇,w

L1(Nγ̇,δ,z)dLn−1(z) = 0.
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Hence for Ln-almost every y ∈ Beucθ (w), t = 0 is a Lebesgue point of Fγ̇,δ,y. Note that, by construction,
γ̇ and δ vary in a countable set. This shows the claim in an open neighbourhood around w. As w was
arbitrary, the proof is complete.

Proposition 4.24. Let M be a smooth manifold, g a C0-Riemannian metric on M and µ a measure on M
defined by dµ = h2dvolg, where h ∈ C0(M, (0,∞)). Let f be a C1-function. Then

|Df |w(x) = |∇f |g(x), for µ-a.e. x.

Proof. First, we observe that |∇f |g is a weak upper gradient because for any absolutely continuous curve γ,
we have

|f(γ1)− f(γ0)| =
∣∣∣∣∫ 1

0

〈∇f, γ̇t〉g
∣∣
γt

dt

∣∣∣∣ ≤ ∫ 1

0

|∇f |g(γt)|γ̇t|g dt.

To see that it is minimal, we argue by contradiction. Suppose that |∇f |g is not minimal. Then there exists
an ε ∈ (0, 1

4 ) such that µ({|∇f |g−|Df |w > ε}) > 0. We can then find an open set V such that V is compact,
is contained in one coordinate patch and µ({|∇f |g − |Df |w > ε} ∩ V ) > 0. We denote by ψ : V → Rn the
associated coordinate chart. By the continuity of g and h, there exists a constant C = C(g, h, V ) such that
for each Borel set E ⊂ V , 1

CL
n(ψ(E)) ≤ µ(E) ≤ CLn(ψ(E)). For almost all x ∈ ψ(V ) take θ, γ̇, δ as in

Lemma 4.23. It still holds Ln({|∇f |g − |Df |w > ε} ∩ V ) > 0. By the Lebesgue differentiation theorem and
Lemma 4.23 with k = |Df |w, we get that there exists an x ∈ {|∇f |g − |Df |w > ε} ∩ V such that x is a
Lebesgue point of |Df |w, and for all γ̇, δ as above, t = 0 is a Lebesgue point of Fγ̇,δ,x. Set

η =
1

101
min

(
1,

1

‖∇f‖L∞
,

1

2n3‖g‖L∞

)2

.

Choose γ̇ ∈ Qn such that and

99

100
≤ |γ̇|g(x) ≤ 101

100
and |〈∇f, γ̇〉g(x)− |∇f |g(x)|γ̇|g(x)| ≤ 1

4
ηε. (4.4)

Note that if t = 0 is a Lebesgue-point of Fx,γ̇,δ then it is a Lebesgue-point of Fx,αγ̇,δ for all α ∈ Q.

Now choose q ∈ Q ∩ (0, θ) such that for all δ ∈ (0, q), it holds

1

Ln(Bδ(x))

∫
Bδ(x)

(|Df |w(y)− |Df |w(x)) < ηε, (4.5)

||∇f |g(y)− |∇f |g(z)| ≤
1

2
ηε, ∀y, z ∈ B3δ(x), (4.6)

|gij(y)− gij(z)| ≤
1

2
ηε, ∀1 ≤ i, j ≤ n, y, z ∈ B3δ(x). (4.7)

The first inequality can be achieved because x is a Lebesgue point of |Df |w and the remaining inequalities
follow from the continuity of g and ∇f . We can now compute that for s ≤ q and y ∈ Bq(x),

|f(y − sγ̇)− f(y + sγ̇)| =
∫ s

−s
〈∇f, γ̇〉g(y + tγ̇) dt.

Using (4.4), (4.6), and (4.7), we get that for t ∈ [−s, s] it holds

|〈∇f, γ̇〉g(y + tγ̇)− |∇f |g|γ̇|g(x)| ≤|〈∇f(y + tγ̇), γ̇〉g(y+tγ̇)−g(x)|+ |〈∇f(y + tγ̇)−∇f(x), γ̇〉g(x)|

+ |〈∇f, γ̇〉g(x)− |∇f |g(x)|γ̇|g(x)| ≤ 3ε

100
.
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Hence, for all δ ∈ (0, q), y ∈ Bδ(x),

|(|f(y − sγ̇)− f(y + sγ̇)|)− (2s|∇f |g(x)|γ̇|g(x))| ≤ 6sε

100
. (4.8)

Moreover, again by (4.4), (4.6), and (4.7), we get that∣∣∣ 1

|Bq(x)|

∫
Bq(x)

|∇f |g(y)dLn(y)− |∇f |g(x)
∣∣∣ ≤ 1

100
ε, (4.9)∣∣∣ 1

|Bq(x)|

∫
Bq(x)

|∇f |g|γ̇|g(y)dLn(y)− |∇f |g|γ̇|g(x)
∣∣∣ ≤ 1

100
ε, (4.10)

and (4.5) yields that ∣∣∣ 1

|Bq(x)|

∫
Bq(x)

|Df |w(y)dLn(y)− |Df |w(x)
∣∣∣ ≤ 1

100
ε, (4.11)

thus,

1

|Bq(x)|

∫
Bq(x)

(|∇f |g − |Df |w)(y)dLn(y) >
9ε

10
. (4.12)

Using that t = 0 is a Lebesgue point of Fγ̇,q,x, and the fact that g and |∇f |g are continuous, we can choose
s ∈ (0, q) small enough such that∣∣∣∣∣ 1

|Bq(x)|

∫ s

−s

∫
Bq(x)

|∇f |g(y + tγ̇)|γ̇|g(y+tγ̇) dLn(y)dt− 2s
1

|Bq(x)|

∫
Bq(x)

|∇f |g(y)|γ̇|g(y)dLn(y)

∣∣∣∣∣ ≤ 2sε

100
,

(4.13)

and∣∣∣∣∣ 1

|Bq(x)|

∫ s

−s

∫
Bq(x)

|Df |w(y + tγ̇)|γ̇|g(y+tγ̇) dLn(y)dt− 2s
1

|Bq(x)|

∫
Bq(x)

|Df |w(y)|γ̇|g(y)dLn(y)

∣∣∣∣∣ ≤ 2sε

100
.

(4.14)

Now, we have all the ingredients to construct a test plan that yields a contradiction. For y ∈ Bq(x) define
γy : [0, 1]→ ψm(Vm), t 7→ y + 2(t− 1

2 )sγ̇ and define a test plan π as

dπ(γ) :=

{ 1
|Bq(x)|dL

n(y) if γ = γy, for some y ∈ Bq(x),

0 otherwise.

Now, we can directly compute that∫
|f(γ1)− f(γ0)|dπ(γ) =

1

|Bq(x)|

∫
Bq(x)

|f(y − sγ̇)− f(y + sγ̇)|dLn(y). (4.15)

Moreover, ∫∫ 1

0

|∇f |g(γt)|γ̇t|g(γt) dtdπ(γ)

=
1

|Bq(x)|

∫
Bq(x)

∫ 1

0

|∇f |g
(
y + 2

(
t− 1

2

)
sγ̇
)

2s|γ̇|g((γy)t) dtdLn(y)

=
1

|Bq(x)|

∫
Bq(x)

∫ s

−s
|∇f |g(y + tγ̇)|γ̇|g((γy)t) dtdLn(y), (4.16)
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and similarly ∫∫ 1

0

|Df |w(γt)|γ̇t|g(γt) dtdπ(γ)

=
1

|Bq(x)|

∫
Bq(x)

∫ s

−s
|Df |w(y + tγ̇)|γ̇|g((γy)t) dtdLn(y).

We then have that ∫∫ 1

0

|∇f |g(γt)|γ̇t|g(γt) dtdπ(γ)−
∫∫ 1

0

|Df |w(γt)|γ̇t|g(γt) dtdπ(γ)

=
1

|Bq(x)|

∫
Bq(x)

∫ s

−s
(|∇f |g − |Df |w)(y + tγ̇)|γ̇|g(y+tγ̇) dtdLn(y)

(4.14),(4.13)

≥ 2s
1

|Bq(x)|

∫
Bq(x)

(|∇f |g − |Df |w)|γ̇|g(y) dLn(y)− 4sε

100

(4.12)
>

99

100

9sε

10
− 4sε

100
≥ 3sε

2
> 0. (4.17)

The combination of the above estimates gives:∫
|f(γ1)− f(γ0)|dπ(γ)

(4.15),(4.8)

≥ 2s|∇f |g(x)|γ̇|g(x)− 6sε

100
(4.10)

≥ 2s

|Bq(x)|

∫
Bq(x)

|∇f |g|γ̇|g(y)dLn(y)− sε

10

(4.13)

≥ 1

|Bq(x)|

∫ s

−s

∫
Bq(x)

|∇f |g(y + tγ̇)|γ̇|g(y+tγ̇) dLn(y)dt− 3sε

20

(4.16)
=

∫∫ 1

0

|∇f |g(γt)|γ̇t|g(γt) dtdπ(γ)− 3sε

20

(4.17)
>

∫∫ 1

0

|Df |w(γt)|γ̇t|g(γt) dtdπ(γ)− 3sε

20
+

3sε

2
.

This yields a contradiction, as |Df |w fails to satisfy the condition of a weak upper gradient for the chosen
test plan π.

In the following, we will investigate W 1,2
w (X) for (X, d,m) = (M, dg, µ), with dµ = h2dvolg.

A mollification argument together with Rademacher’s theorem and Proposition 4.24 shows that:
Proposition 4.25. Let (M, dg, µ) be the metric measure space arising from a smooth manifold M a continu-
ous Riemannian metric g and a measure given by dµ = h2dvolg for a function h ∈ C0(M, (0,∞)). Let f be a
locally dg-Lipschitz function. Then f is differentiable µ-almost everywhere. If in addition f, |∇f |g ∈ L2(M,µ)
then |Df |w = |∇f |g almost everywhere, moreover f ∈W 1,2

w (M)∩H2
1 (M,µ), and ‖f‖W 1,2

w (M) = ‖f‖H2
1 (M,µ).

Proof. Throughout this proof, we will fix a locally finite cover (Bi, ψi)
∞
i=1 of M such that each Bi is a regular

coordinate ball. As f is locally dg-Lipschitz, we can apply Proposition 4.19 (or Theorem 4.5 in [9]), to see
that for each i ≥ 1, (ψi)∗f is locally Lipschitz continuous with respect to the Euclidean metric on ψi(Bi). By
Rademacher’s theorem, we have that for each i, (ψi)∗f is differentiable Ln-almost everywhere in ψi(Bi). As
(ψi)#µ is absolutely continuous with respect to Ln on ψi(Bi), we get that (ψi)∗f is differentiable µ-almost
everywhere in ψi(Bi). As M is the countable union of the Bi, we get that f is differentiable µ-almost
everywhere in M , hence the function |∇f |g is well-defined in L∞loc(M,µ).
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Assume f, |∇f |g ∈ L2(M,µ). We will prove that |∇f |g is a weak upper gradient for f . Let ε > 0. Fix
a partition of unity ζi subordinate to the cover Bi and proceed as follows. For each i = 1, 2, . . . , choose
0 < δi ≤ disteuc(supp ζi, ∂ψi(Bi)) such that

‖ρδi ∗ (ψi)∗ζif − (ψi)∗ζif‖C0(ψi(Bi))
≤ ε

2i
and

‖ρδi ∗ (ψi)∗ζif − (ψi)∗ζif‖W 1,2(ψi(Bi),(ψi)#µ) ≤
ε

2i(1 + n2(‖(ψi)∗g‖L∞(ψi(Bi))
+ ‖(ψi)∗g−1‖L∞(ψi(Bi))

))
.

This is possible by classical results about Lp-spaces. Define fε =
∑∞
i=1 ρδi ∗ (ψi)∗ζif . As the cover Bi is

locally finite, fε is well-defined. That produces a sequence (fε)ε>0. Note that by construction, we have that
for every point p ∈M , it holds

|fε(p)− f(p)| ≤ ε.

Moreover,

‖fε − f‖H2
1 (M,µ) ≤ n

2
∞∑
i=1

(‖g‖L∞(ψi(Bi))
+
∥∥g−1

∥∥
L∞(ψi(Bi))

)‖ρδi ∗ (ψi)∗ζif − (ψi)∗ζif‖W 1,2(ψi(Bi),(ψi)#µ) ≤ ε.

Fix a test plan π. For all ε ∈ (0, 1], it holds that∫
|fε(γ0)− fε(γ1)|dπ(γ) =

∫ ∣∣∣∣∣
∫ 1

0

〈∇fε(γt), γ̇t〉g(γt) dt

∣∣∣∣∣dπ(γ) ≤
∫ ∫ 1

0

|∇fε(γt)|g(γt)|γ̇t|g(γt) dtdπ(γ).

(4.18)

As ε ≤ 1, we have that |fε(x)− fε(x′)| ≤ 2 + |f(x)− f(x′)|, for any x, x′ ∈M . Now we can use that π is a
probability measure together with the Hölder inequality, to get that(∫

|f(γ0)− f(γ1)|+ 2 dπ(γ)

)2

≤ 8 + 2

∫
|f(γ0)− f(γ1)|2 dπ(γ) ≤ 8 + 4

∫
|f(γ0)|2 + |f(γ1)|2 dπ(γ)

= 8 + 4

∫
|f |2 d(e0)#π(γ) + 4

∫
|f |2 d(e1)#π(γ) ≤ 8 + 8C(π)‖f‖2L2 .

Hence, we can use dominated convergence theorem to infer that∫
|fε(γ0)− fε(γ1)|dπ(γ)→

∫
|f(γ0)− f(γ1)|dπ(γ), (4.19)

as ε→ 0. Moreover, we have that for all k ∈ L2(M,µ), it holds

∫ ∫ 1

0

|k|(γt)|γ̇t|g(γt) dtdπ(γ) ≤
(∫ ∫ 1

0

|k|2(γt) dtdπ(γ)

) 1
2
(∫ ∫ 1

0

|γ̇t|2g(γt) dtdπ(γ)

) 1
2

.

By the definition of test plans, we have that∫ ∫ 1

0

|γ̇t|2g(γt) dtdπ(γ) <∞,

and, using Fubini’s theorem,∫ ∫ 1

0

|k|2(γt)|dtdπ(γ) =

∫ 1

0

∫
|k|2 d(et)#πdt ≤ C(π)‖k‖2L2 .
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Now we can use the L2-convergence of ∇fε → ∇f and choose k = |∇fε −∇f |g to see that∫ ∫ 1

0

|∇fε(γt)|g(γt)|γ̇t|g(γt) dtdπ(γ)→
∫ ∫ 1

0

|∇f(γt)|g(γt)|γ̇t|g(γt) dtdπ(γ), (4.20)

as ε→ 0. The combination of (4.19) and (4.20) allows passing to the limit as ε→ 0 in (4.18), and obtain∫
|f(γ0)− f(γ1)|dπ(γ) ≤

∫ ∫ 1

0

|∇f(γt)|g(γt)|γ̇t|g(γt) dtdπ(γ),

hence, |∇f |g is a weak upper gradient. In particular, we get that for all Lipschitz functions f , it holds
‖f‖W 1,2

w (M) ≤ ‖f‖H2
1 (M,µ). As f ∈ H2

1 (M,µ), we can find a sequence fp ∈ H2
1 (M,µ) ∩ C1(M) such that

fp → f in H2
1 (M,µ) as p → ∞. This implies that fp → f in W 1,2

w (M) and by Proposition 4.24, |∇fp|g =
|Dfp|w → |∇f |g in L2(M,µ), hence |∇f |g = |Df |w almost everywhere, and ‖f‖W 1,2

w (M) = ‖f‖H2
1 (M,µ).

By [2, Rem. 5.5], the slope |Df | of a dg-Lipschitz function f is a weak upper gradient. Thus, if f ∈ L2(M,µ)
is a dg-Lipschitz function such that |Df | ∈ L2(M,µ), then Proposition 4.25 implies that:

|Df |w = |∇f |g ≤ |Df |. (4.21)

This observation is crucial for the following lemma.
Lemma 4.26. Let M be a smooth manifold, g a C0-Riemannian metric on M , dg the distance induced by
g, volg the volume form, and h be a positive continuous function. Define the measure µ by dµ = h2dvolg.
Then W 1,2

w (M) ⊂ H2
1 (M,µ) and for each f ∈W 1,2

w (M), it holds |Df |w = |∇f |g a.e..

Proof. Let f ∈ W 1,2
w (M). By [3, (2.22)], we can find a sequence of Lipschitz functions (fl)

∞
l=1 such that

fl → f in L2 and |Dfl| → |Df |w in L2. Using (4.21), we get that (fl)
∞
l=1 is a bounded sequence in H2

1 (M,µ).
As this space is reflexive, we can find a subsequence that converges weakly in H2

1 (M,µ). As fl → f strongly
in L2, we get that fl ⇀ f in H2

1 (M,µ). As we now know that f ∈ H2
1 (M,µ), we can approximate it

with a different sequence fk ∈ H2
1 (M,µ) ∩ C2

1 (M,µ), i.e. liml→∞ ‖fk − f‖H2
1 (M,µ) = 0. Then fk is a

Cauchy sequence in H2
1 (M,µ). As for C2

1 (M,µ)-functions ‖·‖W 1,2
w (M) = ‖·‖H2

1 (M,µ) (by Proposition 4.24),

it is a Cauchy sequence in W 1,2
w . Hence |∇fk|g = |Dfk|w → |Df |w in L2, which in particular shows that

|Df |w = |∇f |g almost everywhere.

We can now finally identify the space W 1,2
w with the classical Sobolev space H2

1 :
Corollary 4.27. Let M be a smooth manifold with a C0-Riemannian metric g. Consider the metric measure
space (M, dg, µ), where dµ = h2dvolg for a continuous positive function h. Then W 1,2

w (M) = H2
1 (M,µ) and

the Dirichlet form associated to the Cheeger energy on (M, dg, µ) is a quadratic form given by the L2(M,µ)-
inner product of the gradients, more precisely for all functions f, h ∈W 1,2

w (M) = H2
1 (M,µ) it holds

(i) |Df |w = |∇f |g.

(ii) E(f, h) =
∫
M
〈∇f,∇h〉gdµ

Moreover, every f ∈ D(Ch) with |Df |w ≤ 1 µ-a.e. admits a 1-Lipschitz representative µ-a.e. with respect
to dg.

Proof. We prove that H2
1 (M,µ) ⊂ W 1,2

w (M). At first we notice that by Proposition 4.24, C2
1 (M,µ) ⊂

W 1,2
w (M) and for each f ∈ C2

1 (M,µ), we have that ‖f‖H2
1 (M,µ) = ‖f‖W 1,2

w (M). Now, fix f ∈ H2
1 (M,µ) and

approximate it with a sequence fk ∈ C2
1 (M,µ). This is then a Cauchy sequence in H2

1 (M,µ) and hence in
W 1,2
w (M), by the norm equality we proved in Lemma 4.26. Hence, fk converges in W 1,2

w (M) to some f̃ . It
follows that fk → f̃ in L2(M,µ), hence, f̃ = f ∈W 1,2

w (M). We get W 1,2
w (M) = H2

1 (M,µ) from Lemma 4.26.
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For the second part, we use that by Proposition 4.5, the associated Dirichlet form E is defined on (H2
1 (M,µ))2

and is of the form

E(f, k) =

∫
M

G(f, k) dµ,

where

G(f, k) = lim
ε↘0

|D(f + εk)|2w − |Df |2w
2ε

= 〈∇f,∇k〉g ∈ L1(X,m). (4.22)

For the last part, without loss of generality by localising to a suitable coordinate patch and by using a
partition of unity, we can assume that f has compact support in an open set U ⊂ Rn endowed with a
continuous Riemannian metric g such that for every x ∈ U it holds that C−1 Idn ≤ g ≤ C Idn, for some
constant C ≥ 1 uniform on U . It follows that f lies in W 1,∞(Rn) and thus, by the classical result in Rn,
f has a Lipschitz representative Ln-a.e. that we identify with f . Hence, f is Lipschitz also in (M, g) and,
by Proposition 4.25 and the assumption on f , it holds that |∇f |g = |Df |w ≤ 1 µ-a.e. Let ρδ(x) := 1

δn ρ(xδ ),
δ > 0, be standard mollifiers in Rn and consider fδ := f ? ρδ. It is easily seen that

|∇fδ|g ≤ 1 + θ(δ) and fδ → f uniformly as δ → 0. (4.23)

Here limδ→0 θ(δ) = 0. Let x, y ∈ M, x 6= y. By Proposition 4.20, for every ε ∈ (0, dg(x, y)/2) there exists a
rectifiable curve γ : [0, 1]→M parametrised by arc-length such that

lengthg(γ) ≤ dg(x, y) + ε, |γ̇| = lengthg(γ), L1-a.e. on [0, 1]. (4.24)

Then

|fδ(x)− fδ(y)| =
∣∣∣∣∫ 1

0

d

dt
fδ(γt) dt

∣∣∣∣ ≤ ∫ 1

0

|γ̇t|g |∇fδ|g dt

(4.23),(4.24)

≤ (1 + θ(δ))(dg(x, y) + ε).

Passing to the limit as ε→ 0, we get that fδ is 1 + θ(δ)-Lipschitz with respect to dg. Passing further to the
limit as δ → 0 and recalling the second in (4.23) we conclude that f is 1-Lipschitz with respect to dg.

5 Second order calculus

In this section, we will specialise the second order calculus developed in [23, Ch. 3] to the setting of a smooth
manifold with a C0-Riemannian metric with L2

loc-Christoffel symbols and C0 ∩W 1,2
loc -weight on the measure.

5.1 Some elements of the theory for general RCD(K,∞)-spaces

Let (M, d,m) be a metric measure space that satisfies the RCD(K,∞)-condition. Recall that

D(∆) := {f ∈ L2(m) : ∆f ∈ L2(m)} ⊂W 1,2
w (M).

Denote by Const(M) the space of constant functions on M . Following the notation of [23, Ch. 3], we define
the space of test functions

TestF(M) :=
{
f ∈ D(∆) ∩ L∞(M,m) : |∇f | ∈ L∞(M,m) and ∆f ∈W 1,2

w (M)
}
,
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test vector fields

TestV(M) :=
{ n∑
i=1

hi∇fi : n ∈ N fi ∈ TestF(M), hi ∈ TestF(M) ∪ Const(M)} i = 1, . . . , n
}
,

and test forms

TestFormk(M) :=
{

linear combinations of forms of the kind

f0df1 ∧ . . . ∧ dfk : f1, . . . fk ∈ TestF(M), f0 ∈ TestF ∪ Const(M)
}
,

for 1 ≤ k ≤ n. Set TestForm0(M) = TestF(M). For the notion of gradients and differentials in metric
measure spaces, we refer to [23, Ch. 2]. We will apply this theory to weighted manifolds with continuous
metrics and weights. In that case, the non-smooth notions of [23] coincide with the classical gradients and
differentials on manifolds.

All expressions are well-defined, because f ∈ TestF(M) implies that f ∈ W 1,2
w , so the differential and the

gradient are well-defined. A regularization result due to Savaré [42] (see also [23], (3.1.5)), yields that
if f ∈ L2 ∩ L∞(M,m) then for all t > 0, ft := Htf ∈ TestF(M). In the next proposition we recall two
important density results proved in [23, Prop. 2.2.5] for general metric measure spaces. In the setting of a
smooth manifold with a continuous metric and a continuous weight, we will prove an even stronger result in
Lemma 6.10.
Proposition 5.1. TestForm1(M) is dense in L2(T ∗M) and TestV(M) is dense in L2(TM).

In [23] it is shown that for f, g ∈ TestF(M), then 〈∇f,∇g〉 ∈ W 1,2
w (M), which allows to define a notion of

Hessian H[f ] : [TestF(M)]2 → L2(M) of a function f ∈ TestF(M) as

H[f ](g, h) =
1

2

(
〈∇〈∇f,∇g〉,∇h〉+ 〈∇〈∇f,∇h〉,∇g〉 − 〈∇〈∇g,∇h〉,∇f〉

)
.

Definition 5.2. The space D(∆) ⊂ W 1,2
w (M) is the space of functions f ∈ W 1,2

w (M) such that there exists
a measure ν ∈ Meas(M) satisfying ∫

hdν = −
∫
〈∇h,∇f〉dm,

for all h : M → R Lipschitz with bounded support. In this case the measure ν is unique and denoted by ∆f .

By [23, Lemma 3.2.6], we have that if X,Y ∈ TestV(M), then 〈X,Y 〉 ∈ D(∆). Define

DW 1,2
w

(∆) = {f ∈W 1,2
w (M), ∆f ∈W 1,2

w (M)}.

We are now able to define the measure valued operator Γ2 : [TestF(M)]2 → Meas(M) given by

Γ2(f, g) :=
1

2
∆〈∇f,∇g〉 − 1

2

(
〈∇∆f,∇g〉+ 〈∇f,∇∆g〉

)
.

In the next definition we recall the Bakry-Émery condition BE(K,N), the reader is referred to [4, 5, 20] for
more details.
Definition 5.3. Let K ∈ R and N ∈ [1,∞]. We say that (M, d,m) satisfies the BE(K,N) condition if for
every f ∈ TestF(M), it holds

Γ2(f, f) ≥
(
K|∇f |2 +

1

N
(∆f)2

)
m.

The following important fact was proved for N = ∞ in [3, 4] (see also [24, 1]) and for N ∈ [1,∞) in [20,
Sec. 4] and [6, Sec. 12]:
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Theorem 5.4. Let (X, d,m) be a metric measure space, let K ∈ R and N ∈ [1,∞]. The following are
equivalent:

(i) (X, d,m) is a RCD∗(K,N)-space or, in case N =∞, (X, d,m) is a RCD(K,∞)-space.

(ii) (X, d,m) satisfies (4.1), the BE(K,N)-condition, and it is infinitesimally Hilbertian. Moreover, every
f ∈ D(Ch) with |Df |w ≤ 1 m-a.e. admits a 1-Lipschitz representative m-a.e. with respect to d.

5.2 Application to smooth manifolds with lower regularity Riemannian metrics
and weights

Let M be a smooth manifold. Take a Riemannian metric g ∈ C0 that admits L2
loc-Christoffel symbols and

induces the distance dg. Define the measure µ via dµ := h2dvolg for a h ∈ C0(M ; (0,∞)) ∩W 1,2
loc (M,µ).

Moreover, we assume that (M, dg, µ) is a CD(K,∞)-space. Thus (4.1) is satisfied (see Remark 4.12) and by
Corollary 4.27, (M, dg, µ) is an RCD(K,∞)-space.

We will now specialise some concepts from [23] to this particular case. Using integration by parts, [3,
Prop. 2.14 (iv)] and Lemma 4.17 yields:
Proposition 5.5. Let f ∈W 1,2

w (M) and Ht denote the heat flow of the Cheeger energy. Then ft := Htf → f
in W 1,2

w (M) as t→ 0.
Proposition 5.6. The space L2(T ∗M) (as defined in [23, Def. 2.2.1]) is isometric to H2

0 (T ∗M,µ) and the
space L2(TM) (as defined in [23, Def. 2.3.1]) is isometric to H2

0 (TM,µ).

We will not give a proof as it directly follows from the (quite technical) definitions and from [23, Prop. 2.2.5];
in the following we will identify the isomorphic spaces with each other.
We will now turn to a generalisation of the divergence. For a compactly supported X ∈ H2

1 (TM,µ) we
have that div(X) =

(
∂iX

i + Xi 2
h∂ih + Xi 1

2 tr
(
g−1∂ig

))
∈ L2(M,µ) satisfies (3.4). Hence, any compactly

supported and smooth vector field X is in D(div), according to [23, Def. 2.3.11].

Next, we look at a generalisation of the Hessian. The identity (3.1) motivates the following definition of
the space W 2,2(M).
Definition 5.7 ([23] Def. 3.3.1). The space W 2,2(M) ⊂W 1,2

w (M) is the space of all functions f ∈W 1,2
w (M)

with the following property: There exists A ∈ L2((T ∗)⊗2M) such that for any h1, h2, φ ∈ TestF(M) it holds

2

∫
φA(∇h1,∇h2) dµ

= −
∫
〈∇f,∇h1〉div(φ∇h2) + 〈∇f,∇h2〉div(φ∇h1) + φ〈∇f,∇〈∇h1,∇h2〉〉dµ. (5.1)

We will call A the Hessian of f and denote it as Hess(f). The space W 2,2(M) is endowed with the norm
‖·‖W 2,2(M) defined via

‖f‖2W 2,2(M) = ‖f‖2L2(M) + ‖df‖2L2(T∗M) + ‖Hessf‖2L2((T∗)⊗2M).

We next investigate such a space W 2,2(M) in case of a smooth manifold M with a C0-Riemannian metric g
with L2

loc-Christoffel symbols and a C0 weighted measure µ.

Recall that, for every ϕ ∈ C∞c (M) ⊂ L2 ∩ L∞(M,µ) ∩ D(∆), it holds Htϕ ∈ TestF(M). Moreover, for
each function ϕ ∈ D(∆), we know that ∆Htϕ = Ht∆ϕ → ∆ϕ in L2. Then, Proposition 5.5 yields that
Htϕ→ ϕ in H2

1 (M,µ) and Theorem 4.11 gives that ‖|∇Htϕ|‖L∞ ≤ e−2Kt‖|∇ϕ|‖L∞ . Hence, it follows that
for each f ∈ W 2,2(M), (5.1) also holds with φ, h1, h2 ∈ C∞c (M), which together with A ∈ L2 implies that
f ∈ H2

2 (M,µ). This fact is summarised in the following proposition.
Proposition 5.8. H2

2 (M,µ) ⊃W 2,2(M) and for all f ∈W 2,2(M), it holds ‖f‖H2
2 (M,µ) = ‖f‖W 2,2(M).
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Moreover, it holds that TestF(M) ⊂W 2,2(M), see [23, Thm. 3.3.8].

A consequence of Proposition 5.5, Lemma 4.17, and Mazur’s lemma is:
Proposition 5.9. Let M be a smooth manifold, g a C0-Riemannian metric that admits L2

loc-Christoffel

symbols and µ a measure on M defined by dµ = h2dvolg for a h ∈ C0(M, (0,∞)) ∩ W 1,2
loc (M). Then

TestF(M) is H2
2 (M,µ)-dense in L∞ ∩H2

2 (M,µ) .
Definition 5.10 ([23], Def. 3.3.17). The space H2,2(M) is defined as the W 2,2-closure of TestF(M).

By Proposition 3.3.18 in [23], we have that H2,2(M) coincides with the W 2,2-closure of D(∆µ), so we get:

Proposition 5.11. H2,2(M) = H2
2 (M,µ) ∩ L∞(M,µ)

H2
2 (M,µ)

and it coincides with the W 2,2-closure of
D(∆µ).

Now, we can turn to the abstract definition of the covariant derivative:
Definition 5.12 ([23] Def. 3.4.1). The Sobolev space W 1,2

C (TM) ⊂ L2(TM) is defined as the space of all
X ∈ L2(TM) such that there exists T ∈ L2(T⊗2M) such that for every h1, h2, ϕ ∈ TestF(M) it holds∫

ϕT : (∇h1 ⊗∇h2) dµ = −
∫
〈X,∇h2〉div(ϕ∇h1)− ϕHess(h2)(X,∇h1) dµ.

In this case we call the tensor T the covariant derivative of X and denote it by ∇X. We endow W 1,2
C (TM)

with the norm ‖·‖W 1,2
C (TM) defined by

‖X‖2W 1,2
C (TM) := ‖X‖2L2(TM) + ‖∇X‖2L2(T⊗2M).

We denote by H1,2
C (TM) the closure of TestV(M) in W 1,2

C .

This definition makes sense, as in [23] it is proved that test vector fields are indeed in W 1,2
C (TM).

Proposition 5.13. TestV(M) ⊂ H2
1 ∩ L∞(TM,µ), and hence H1,2

C (TM) is a subspace of H2
1 (TM,µ).

We note that by our previous computations we get that for X ∈ H2,1
C (TM), it holds ∇X = (∇cX)] in the

classical H2
1 (TM,µ)-sense. For X ∈W 1,2

C (TM) and Z ∈ L2(TM), we define ∇ZX via

〈∇ZX,Y 〉g = ∇X : (Z ⊗ Y ).

A computation shows that in the case of smooth vector fields, this coincides with the smooth covariant
derivative. As for C1-vector fields, we have that ∇ZX = Zi∂iX

s + ΓsijXjZi, this holds by density for all

vector fields X ∈ H2
1 ∩ L∞(TM,µ) and motivates the following definition of Lie bracket:

Definition 5.14 ([23], Def. 3.4.8). For X,Y ∈ H1,2
C (TM), we define [X,Y ] ∈ L1(TM) via

[X,Y ] := ∇XY −∇YX.

Note that this again coincides with the Lie bracket in the smooth case and the local expressions carry over
by density. The generalised differential is defined as follows:
Definition 5.15 ([23], Def. 3.5.1, 3.5.5). The space W 1,2

d (ΛkT ∗M) ⊂ L2(ΛkT ∗M) is the space of k-forms
ω ∈ L2(ΛkT ∗M) such that there exists a (k + 1)-form η ∈ L2(Λk+1T ∗M) for which the identity∫

η(X0, . . . , Xk) dµ =

∫ ∑
i

(−1)i+1ω(X0, . . . , X̂i. . . . , Xk) dµ

+

∫ ∑
i<j

(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk) dµ,

holds for any X0, . . . , Xk ∈ TestV(M). In this case we call η the exterior differential of ω and we will denote
it as dω. We endow W 1,2

d (ΛkT ∗M) with the norm ‖·‖W 1,2
d (ΛkT∗M) given by

‖ω‖2W 1,2
d (ΛkT∗M) := ‖ω‖2L2(ΛkT∗M) + ‖dω‖2L2(Λk+1T∗M).

Moreover, we define H1,2
d (ΛkT ∗M) as the W 1,2

d -closure of TestFormk(M).
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Again, this definition makes sense as in [23] it is proved that test forms are contained in W 1,2
d (ΛkT ∗M). As

TestV(M) ⊂ H2
1 (TM,µ), we get that H2

1 (M,µ) ⊂ W 1,2
d (Λ0T ∗M), on the intersection the coefficients need

to coincide with the ones from the classical differential, and the norms are equivalent on the intersection.
The cases of k = 0, 1 will be of particular interest.
Next, we recall the definition of the codifferential:
Definition 5.16 ([23], Def. 3.5.11). The space D(δk) ⊂ L2(ΛkT ∗M) is the space of k-forms ω for which
there exists a form δω ∈ L2(Λk−1T ∗M) called the codifferential of ω, such that∫

〈δω, η〉dµ =

∫
〈ω,dη〉dµ

for all η ∈ TestFormk−1(M). In the case k = 0, we set D(δ0) = L2(µ) and define δ to be identically zero.

For 1-forms, note that ω ∈ D(δ1) if and only if ω] ∈ D(div) and, in this case, δω = −div(ω]). In [23], it is
shown that for each k, TestFormk(M) ⊂ D(δk). Hence, the following definition makes sense:
Definition 5.17 ([23], Def. 3.5.13). The space W 1,2

H (ΛkT ∗M) is defined as W 1,2
d (ΛkT ∗M)∩D(δk) endowed

with the norm ‖·‖W 1,2
H (ΛkT∗M) defined by

‖ω‖2W 1,2
H (ΛkT∗M) := ‖ω‖2W 1,2

d (ΛkT∗M) + ‖δω‖2L2(Λk−1T∗M).

The space H1,2
H (ΛkT ∗M) is defined as the W 1,2

H -closure of TestFormk(M).

It is not hard to check that TestFormk(M) ⊂W 1,2
H (ΛkT ∗M).

Definition 5.18 ([23], Def. 3.6.3). The space H1,2
H (TM) ⊂ L2(TM,µ) is the space of vector fields X ∈

L2(TM) such that X[ ∈ H1,2
H (T ∗M) equipped with the norm ‖X‖H1,2

H (TM) :=
∥∥X[

∥∥
H1,2
H (T∗M)

.

Definition 5.19 ([23], Def. 3.5.14). Given k ∈ N the domain D(∆H,k) ⊂ H1,2
H (ΛkT ∗M) of the Hodge

Laplacian is defined as the set of ω ∈ H1,2
H (ΛkT ∗M) for which there exists an α ∈ L2((ΛkT ∗M) such that∫

〈α, η〉dµ =

∫
〈dω,dη〉dµ+

∫
〈δω, δη〉dµ ∀η ∈ H1,2

H (ΛkT ∗M).

In this case α is unique and we denote it by ∆H,kω.

Note that ∫
〈∆H,kω, ω〉dµ =

∫
(〈dω, dω〉+ 〈δω, δω〉) dµ.

In [23, Prop. 3.6.1], it is shown that TestForm1(M) ⊂ D(∆H,1). Moreover, ∆f = −∆H,0f for all f ∈
TestF(M). Finally, we recall the generalised Ricci curvature tensor:
Theorem 5.20 ([23], Thm. 3.6.7). There is a unique continuous map Ric : [H1,2

H (TM)]2 → Meas(M) such
that, for every X,Y ∈ TestV(M), it holds:

Ric(X,Y ) = ∆
〈X,Y 〉

2
+
(1

2
〈X, (∆HY

[)]〉+
1

2
〈Y, (∆HX

[)]〉 − ∇X : ∇Y
)
µ.

This map is bilinear, symmetric and satisfies:

Ric(X,X) ≥ Kg(X,X)µ.

Moreover, setting X = Y , we get that

Ric(X,X) + (|∇X|2HS − 〈X, (∆HX
[)]〉)µ = ∆

|X|2

2
.

We will now connect the measure valued Ricci tensor in the sense of Theorem 5.20 and the distributional
Ricci tensor in the sense of Subsection 3.3.
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Proposition 5.21. Let M be a smooth manifold with a C0-Riemannian metric g with L2
loc Christoffel

symbols. Consider dµ = h2dvolg for a positive function h ∈ C0 ∩ W 1,2
loc . Assume that (M, dg, µ) is a

CD(K,∞)-space. For X ∈ TestV(M) we have that Ric(X,X) = Ricµ,∞(X,X) in the sense of (3.12).

Proof. By the previous observations we have that for ϕ ∈ Cc ∩W 1,2
loc (M) (which we assume to be supported

in one coordinate patch),∫
M

ϕdRic(X,X) =

∫
M

ϕd∆
|X|2

2
+

∫
M

(〈X, (∆HX
[)]〉 − |∇X|2HS)ϕdµ

= −1

2

∫
M

〈∇|X|2,∇ϕ〉dµ+

∫
M

(〈X, (∆µ,HX
[)]〉 − |∇X|2HS)ϕdµ

= −1

2

∫
M

〈∇|X|2,∇ϕ〉dµ+

∫
M

(|dX[|2 + |δµX[|2 − |∇X|2HS)ϕdµ.

Now the last line equals the right hand side of (3.12) as it appears in Lemma 4.18 so we get that locally∫
M

ϕdRic(X,X)

=

∫
XjXk(ΓskjΓ

p
ps − ΓskpΓ

p
js)ϕh

2
√
|g| dx1 . . . dxn −

∫
Γpjk∂p(X

jXkϕh2
√
|g|) dx1 . . . dxn

+

∫
Γppk∂j(X

jXkϕh2
√
|g|) dx1 . . . dxn

+ 2

∫
XjXk(∂jh∂kh+ h∂shΓskj)ϕ

√
|g|dx1 . . . dxn + 2

∫
∂jh∂k(XjXkhϕ

√
|g|)dx1 . . . dxn.

As in [23], we have that for all f ∈ TestF(M) it holds

Ric(∇f,∇f) + |∇2f |2HSµ = ∆
|∇f |2

2
− 〈∇f,∇∆f〉µ = Γ2(f, f). (5.2)

Proposition 5.22. Let M be a smooth manifold and g a C0-Riemannian metric with L2
loc-Christoffel symbols

and h ∈ C0(M, (0,∞)) ∩W 1,2
loc such that (M, dg, µ) is a CD(K,∞)-space, where dµ = h2dvolg.

Then, for all f ∈ H2,2(M), it holds that∫
M

|∇2f |2h2 dvolg ≤
∫
M

|∆f |2h2 dvolg −K
∫
M

|∇f |2h2 dvolg.

If f ∈ D(∆), we have that Htf → f strongly in H2,2.

Proof. By [23, Cor. 3.3.9], we have that∫
M

|∇2u|2HS dµ ≤
∫
M

((∆u)2 −K|∇u|2) dµ

for all u ∈ D(∆). If f ∈ H2,2 ∩ D(∆), we have that ∆f ∈ L2 and hence Ht∆f → ∆f strongly in L2 as
t → 0. As the semi-group Ht is generated by ∆, we have that ∆Htf = Ht∆f for all t ≥ 0. It follows that
∆Htf → ∆f strongly in L2 as t→ 0. Setting u = f −Htf , we infer∥∥∇2(f −Htf)

∥∥2

L2((T∗)⊗2M)
≤ −K

∫
M

|∇(f −Htf)|2 h2dvolg +

∫
M

|∆(f −Htf)|2 h2dvolg

≤ (|K|+ 1)(‖f −Htf‖H2
1 (M,µ) + ‖∆(f −Htf)‖L2(M,µ))→ 0

as t→ 0.
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6 RCD implies distributional Ricci curvature lower bounds

6.1 Some useful approximation results

We start the section with some local considerations, so we work in Rn for simplicity of presentation. Recall
the following consequence of the Poincaré inequality:
Lemma 6.1. Let R > 0, 1 ≤ p < ∞ and u ∈ W 1,p(BR(0)). Let m := 1

|BR(0)|
∫
BR(0)

udLn. Then there

exists a constant C = C(p) > 0 independent of R such that

‖u−m‖Lp(BR(0)) ≤ CR‖∇u‖Lp(BR(0)).

Lemma 6.2. Let Ω ⊂ Rn be open and ν be a σ-finite measure on Ω such that C∞c (Ω) is dense in Lp(ν) for
each p ∈ [1,∞). Let f, (fk)k≥1 be measurable functions on Ω such that ‖fk‖L∞ and ‖f‖L∞ are bounded and

such that fk ⇀ f weakly in Lp(ν) for some p ∈ [1,∞). Then fk
∗
⇀ f in the weak* topology of (L1)∗ = L∞.

Proof. As ν is σ-finite, we have that indeed (L1)∗ = L∞. By the Banach-Alaoglu theorem, it follows that
there is a weakly* convergent subsequence of fk, which we will still denote by fk. Hence, fk converges
weakly* to some f̃ ∈ L∞. Suppose f̃ 6= f . Then there exists an L1-function φ such that∫

Ω

fφdν 6=
∫

Ω

f̃φdν.

As C∞c (Ω) is dense in L1, we can assume that φ ∈ C∞c ⊂ Lq, where q = p
p−1 . This contradicts the weak

convergence in Lp.

Lemma 6.3. Let K ⊂ B1(0) ⊂ Rn be compact and denote d = dist(K, ∂B1(0)) > 0. Then there exists a
δ0 > 0 and a constant C = C(n) such that for all δ ∈ (0, δ0), there exist an integer m ≤ Cδ−n and points
y1, . . . , ym ∈ B1(0) such that B3δ(yi) ⊂ B2δ+ d

12
(yi) ⊂ B1(0) for all 1 ≤ i ≤ m, K ⊂

⋃m
i=1Bδ(yi) and for all

x ∈ B1(0), |{i : x ∈ B2δ(yi)}| ≤ C.

Proof. Let δ0 = d
12 and fix δ ∈ (0, δ0). Now let {y1, . . . , ym} := δ

2
√
n
Zn ∩ B1− 3d

4
(0). It follows that

K ⊂ B1− 3d
4 −

δ
2
(0) ⊂

⋃m
i=1Bδ(yi) ⊂

⋃m
i=1B2δ+ d

12
(yi) ⊂ B1− d4

(0). Moreover, there exists a constant C1(n)

such that for each x ∈ Rn, | 1
2
√
n
Zn ∩ B2(x)| ≤ C1(n) so for each x ∈ B1(0), there are at most C1(n) points

in δ
2
√
n
Zn ∩B2δ(x). Finally, there exists a constant C2(n) such that for each 0 < λ ≤ 1, | λ

2
√
n
Zn ∩B1(0)| ≤

C2(n)λ−n. Taking C(n) = max(C1(n), C2(n)) finishes the proof.

Lemma 6.4. Let R > 0, ϕ ∈ C∞c (BR(0)). Then there exists a constant C = C(n,R) > 0 and δ0 > 0 such
that for each δ ∈ (0, δ0), there exists a set {χ1, . . . , χm} ⊂ C∞c (BR(0), [0, 1]) and a family {y1, . . . , ym} ⊂
BR−3δ(0) such that the following holds:

(i) m ≤ Cδ−n,

(ii)
∑m
i=1 χi(x) ≤ 1 for all x ∈ BR(0) and

∑m
i=1 χi(x) = 1 for all x ∈ supp ϕ,

(iii) For each 1 ≤ i ≤ m, ‖∇χi‖L∞ ≤ Cδ−1.

(iv) For all i, it holds χi ∈ C∞c (B2δ(yi)).

(v) For all x ∈ BR(0), it holds |{i : x ∈ B2δ(yi)}| ≤ C.

Proof. By rescaling, we can assume R = 1. Then take K = suppϕ and apply Lemma 6.3 to get δ0.
Choose 0 < δ ≤ δ0 and take m, {y1, . . . , ym} as in Lemma 6.3. It then follows that for all i = 1, . . . ,m,
B3δ(yi) ⊂ BR(0), hence yi ∈ BR−3δ(0). Now, for each i ∈ {1, . . . ,m} take a function ηi ∈ C∞c (B2δ(yi), [0, 1])
such that ηi(x) = 1 for all x ∈ Bδ(yi) and |∇ηi| ≤ C 1

δ . It follows that
∑m
i=1 ηi ∈ C∞c (B1(0)) and

∑m
i=1 ηi ≥ 1
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on suppϕ. Now take a function h ∈ C∞(R) such that |h′| ≤ 1, h(x) ≥ max(|x|, 1
4 ) and h(x) = x for x ≥ 1.

Define

χj(x) =
ηj(x)

h(
∑m
i=1 ηi(x))

.

It follows that
∑m
i=1 χi(x) ≤ 1 for all x ∈ B1(0) and

∑m
i=1 χi(x) = 1 for all x ∈ suppϕ. To see (iii), note

that for all x ∈ B1(0)

|∇χj(x)| ≤
|∇ηj |(x) + |h′(

∑m
i=1 ηi(x))|

∑m
i=1 |∇ηi|(x)|

h(
∑m
i=1 ηi(x))2

≤ 16C
(
δ−1 +

m∑
i:x∈supp ηi

δ−1
)
≤ 16(1 + C(n))δ−1.

Definition 6.5. Let Ω ⊂ Rn be an open set. We denote by CompV(Ω) the linear span of functions of the
form ρ∇h, where ρ, h ∈ C∞c (Ω). For a smooth manifold M with a C0-Riemannian metric g, we define
CompV(M) as the linear span of functions of the form ρ∇h, where ρ, h ∈ C∞c (M).

Lemma 6.6. Let R > 0, BR(0) ⊂ Rn. Let X ∈ C∞c (BR(0);Rn). Then there exists a constant C =
C(n,R) > 0 and a constant C2 = C2(n) > 0 such that for all ε > 0 there is a X̃ =

∑q
p=1 hp∇fp ∈

CompV(BR(0)) satisfying the following

(i)
∥∥∥X − X̃∥∥∥

W 1,1(BR(0))
≤ Cε and

∥∥∥X − X̃∥∥∥
L∞(BR(0))

≤ Cε,

(ii)
∥∥∥X̃∥∥∥

W 1,∞(BR(0))
≤ C(1 + ‖X‖W 2,∞(BR(0))),

(iii) q ≤ C2,

(iv) for all p, we have that ‖hp‖L∞(BR(0)) ≤ C and ‖fp‖L∞(BR(0)) ≤ C‖X‖C1(BR(0))ε,

(v) for all p, we have that ‖∇hp‖L∞(BR(0)) ≤ C(1 + ‖X‖C2(BR(0)))ε
−1 and ‖∇fp‖L∞(BR(0)) ≤ C(1 +

‖X‖C1(BR(0))).

Proof of (i). Assume (by potentially readjusting) that ε ≤ min( 1
2 , δ0), where δ0 > 0 is as in Lemma 6.4. We

will denote by DX the Jacobi matrix of X. We choose

δ =
ε

8n2(1 + ‖DX‖L∞ + ‖D2X‖L∞)
, (6.1)

so by the mean value theorem we get that for all y, z ∈ BR(0) with |y − z| ≤ 4δ, it holds |X(y)−X(z)| < ε
and |DX(y) − DX(z)| < ε. Note that we also have δ < δ0. For this chosen δ, take m, {χ1, . . . χm} and
{y1, . . . , ym} as in Lemma 6.4. Let ψ ∈ C∞c (B3δ(0)) such that ψ(B2δ(0)) = {1} and |∇ψ| ≤ 2δ−1. Fix an
i ∈ {1, . . . ,m}. Let

Ai =
1

|B2δ(yi)|

∫
B2δ(yi)

XdLn ∈ Rn,

and

αi : Rn → R, x 7→ ψ(x− yi)〈Ai, (x− yi)〉.

Then ∇αi = Ai and DAi = 0 on B2δ(yi). For 1 ≤ l, k ≤ n, let Blki = ∂kX
l(yi) ∈ R. Moreover, define

ρki (x) := ψ(x− yi)(xk − (yi)k) ∈ C∞c (BR(0)),

ηlki (x) := ψ(x− yi)Blki (xl − (yi)l) ∈ C∞c (BR(0)) and

βlki (x) := (ρki∇ηlki )(x) = ψ(x− yi)(xk − (yi)k) · ∇(ψ(x− yi)Blki (xl − (yi)l) ∈ CompV(BR(0)).
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Then, for all x ∈ B2δ(yi), we have that

βlki (x) = (xk − (yi)k)Blki el ∈ Rn, and

Dβlki (x) = (δlmδ
k
pB

lk
i )m,p=1,...,n ∈ Rn×n.

Notice that ∫
B2δ(yi)

βlki dLn = 0 ∈ Rn,

as βlki is linear on B2δ(yi). Now define X̃ :=
∑m
i=1 χi · (∇αi +

∑n
k,l=1 β

lk
i ) ∈ CompV(BR(0)). As X, X̃ ∈

W 1,1
0 (BR(0)), the Poincaré inequality implies that∥∥∥X − X̃∥∥∥

W 1,1(BR(0))
≤ C · (1 +R)

∥∥∥DX −DX̃∥∥∥
L1(BR(0))

,

for some C = C(n) > 0. Now, as X =
∑m
i=1 χiX, we get that∥∥∥DX −DX̃∥∥∥

L1(BR(0))
=

∫
BR(0)

|
m∑
i=1

D(χiX)−D(χi(∇αi +

n∑
k,l=1

βlki ))|dLn

≤
∫
BR(0)

m∑
i=1

|∇χi||X − (∇αi +

n∑
k,l=1

βlki )|+ |
m∑
i=1

χi(DX −D
n∑

k,l=1

βkli )|dLn.

For each i, we get that∥∥∥∥∥∥DX −D
( n∑
k,l=1

βkli

)∥∥∥∥∥∥
L∞(B2δ(yi))

= ‖DX −DX(yi)‖L∞(B2δ(yi))
≤ n2ε. (6.2)

Thus, using that χi ≥ 0, we get that∫
BR(0)

∣∣∣ m∑
i=1

χi(DX −D
n∑

k,l=1

βkli )
∣∣∣dLn ≤ ∫

BR(0)

m∑
i=1

χi

∣∣∣(DX −D n∑
k,l=1

βkli )
∣∣∣dLn ≤ n2|BR(0)|ε.

For each i, we have |∇χi| ≤ C(n,R)δ−1 and∫
BR(0)

|∇χi|
∣∣∣X −∇αi +

n∑
k,l=1

βkli

∣∣∣dLn =

∫
B2δ(yi)

|∇χi|
∣∣∣X −∇αi +

n∑
k,l=1

βkli

∣∣∣dLn
≤ C(n,R)δ−1

∥∥∥∥∥∥X −∇αi +

n∑
k,l=1

βkli

∥∥∥∥∥∥
L1(B2δ(yi))

.

By Lemma 6.1 and (6.2), we have that∥∥∥∥∥∥X −∇αi +

n∑
k,l=1

βkli

∥∥∥∥∥∥
L1(B2δ(yi))

≤ 2Cδ

∥∥∥∥∥∥DX −D
(
∇αi +

n∑
k,l=1

βkli

)∥∥∥∥∥∥
L1(B2δ(yi))

= 2Cδ

∥∥∥∥∥∥DX −D
( n∑
k,l=1

βkli

)∥∥∥∥∥∥
L1(B2δ(yi))

≤ Cδn+1ε.
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Thus, ∫
BR(0)

|∇χi||X −∇αi +

n∑
k,l=1

βkli |dLn ≤ C(n,R)εδn.

Now, as m ≤ C(n,R)δ−n, we get that∫
BR(0)

m∑
i=1

|∇χi||X −
(
∇αi +

n∑
k,l=1

βlki

)
| ≤ C(n,R)2ε.

All together this gives∥∥∥X − X̃∥∥∥
W 1,1(BR(0))

≤ C(1 +R)
∥∥∥DX −DX̃∥∥∥

L1(BR(0))
≤ C(n,R)ε.

Moreover, note that for each x ∈ BR(0),

|X − X̃|(x) ≤
∣∣∣ m∑
i=1

χi(X −∇αi)
∣∣∣(x) +

m∑
i=1

∑
l,k

|χiβkli |(x) ≤ C(n)ε.

This concludes the proof of (i).

Proof of (ii). Next, we want to investigate the L∞-norm of DX̃. We get that for a point y ∈ BR(0)

|DX −DX̃|(y) =
∣∣∣ m∑
i=1

D(χiX)−D
(
χi(∇αi +

n∑
k,l=1

βlki )
)∣∣∣(y)

≤
( m∑
i=1

|∇χi||
∣∣∣X − (∇αi +

n∑
k,l=1

βlki )
∣∣∣)(y) +

∣∣∣ m∑
i=1

χi

(
DX −D

n∑
k,l=1

βkli

)∣∣∣(y).

We will investigate the two sums separately. For a fixed i, we know that |∇χi|(y) ≤ C(n,R)δ−1 and
|χi|(y) ≤ 1. It suffices to only consider y ∈ B2δ(yi), in which case we have that B2δ(yi) ⊂ B4δ(y). By our
choice of δ, we have that for all z ∈ B2δ(yi) it holds |X(z)−X(y)| ≤ ε. Hence,

|X(y)−∇αi|

=

∣∣∣∣∣X(y)− 1

|B2δ(yi)|

∫
B2δ(yi)

X(z) dLn(z)

∣∣∣∣∣
≤ 1

|B2δ(yi)|

∫
B2δ(yi)

|X(z)−X(y)|dLn(z) ≤ ε.

Moreover, ∣∣∣ n∑
k,l=1

βlki

∣∣∣(y) ≤ n2δ(1 + |DX|L∞).

This gives that

|∇χi|
∣∣∣X − (∇αi +

n∑
k,l=1

βlki

)∣∣∣(y) ≤ C(n)δ−1
(
|X(y)−∇αi|+

∣∣∣ n∑
k,l=1

βlki

∣∣∣(y)
)

≤ C(n)δ−1(ε+ δ|DX|L∞)

≤ C(n)(1 + |DX|L∞ + |D2X|L∞),
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where in the last estimate we used the precise dependence of ε in terms of δ, (6.1). The choice of δ also gives∣∣∣DX −D n∑
k,l=1

βkli

∣∣∣(y) ≤ n2ε.

Noting that |i : y ∈ suppχi| ≤ C(n), we get that

|DX −DX̃|(y) ≤
m∑
i=1

|∇χi|
∣∣∣X − (∇αi +

n∑
k,l=1

βlki

)∣∣∣(y) +
∣∣∣ m∑
i=1

χi

(
DX −D

n∑
k,l=1

βkli

)∣∣∣(y)

≤ C(n)
((

1 + ‖DX‖L∞ +
∥∥D2X

∥∥
L∞

)
+ n2ε

)
.

It follows that there exists a constant C(n,R) such that∥∥∥DX̃∥∥∥
L∞
≤
∥∥∥DX −DX̃∥∥∥

L∞
+ ‖DX‖L∞ ≤ C(n,R)(1 + ‖X‖C2(BR(0))).

As X̃ ∈ C∞c (BR(0)), we get that also
∥∥∥X̃∥∥∥

L∞
≤ CR(1 + ‖X‖C2(BR(0))), which proves (ii).

Proof of (iii) For the last three statements, let us explicitly spell out how we can build X̃ out of finitely
many (bounded by C2 = C2(n) independent of δ) C∞c -functions and their gradients. Recall that by the

proof of Lemma 6.3, we have chosen the yi to be in δ
2
√
n
Zn ∩BR(0). Note that

∣∣∣(Z�12nZ
)n∣∣∣ = (12n)n. For

ξ ∈
(
Z�12nZ

)n
, let

Zξ := {ζ ∈ Zn : ζs ≡ ξs mod 12n, ∀1 ≤ s ≤ n}.
Define Yξ := {i : yi ∈ {y1, . . . , ym}∩ δ

2
√
n
Zξ}. If Yξ = ∅, define χξ = αξ = ρkξ = ηlkξ = 0 ∈ C∞c (BR(0)), where

k, l ∈ {1, . . . , n}. Otherwise, define

χξ :=
∑
i∈Yξ

χi ∈ C∞c (BR(0)),

αξ :=
∑
i∈Yξ

αi ∈ C∞c (BR(0)),

ρkξ :=
∑
i∈Yξ

ρki ∈ C∞c (BR(0)), for 1 ≤ k ≤ n and

ηlkξ :=
∑
i∈Yξ

ηlki ∈ C∞c (BR(0)), for 1 ≤ k, l ≤ n.

We note that

B3δ(yi) ∩B3δ(yi′) = ∅, if i, i′ ∈ Yξ and i 6= i′, (6.3)

as then |yi − yi′ | ≥ 6
√
nδ. Now, for all i, we have that

suppαi ∪ suppχi ∪
n⋃
k=1

supp ρki ∪
n⋃

k,l=1

supp ηlki ⊂ B3δ(yi),

so

χξ∇αξ +

n∑
k,l=1

χξρ
k
ξ∇ηlkξ =

∑
i∈Yξ

χi

∑
i∈Yξ

∇αi

+

n∑
k,l=1

∑
i∈Yξ

χi

∑
i∈Yξ

ρki

∑
i∈Yξ

∇ηlki


=
∑
i∈Yξ

χi∇αi +
∑
i∈Yξ

χi

n∑
k,l=1

ρki∇ηlki .
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Hence,

X̃ =
∑

ξ∈
(
Z�12nZ

)n
χξ∇αξ +

n∑
k,l=1

χξρ
k
ξ∇ηlkξ

 .

These are at most 2 · (12n)n(n2 + 1) =: C2(n) functions, proving (iii).

Proof of (iv) and (v). To prove the last two statements, we may again fix a ξ ∈
(
Z�12nZ

)n
as above. Take

an x ∈ BR(0). If x /∈ B3δ(yi) for some i ∈ Yξ, then all of the above functions and their gradients are zero
when evaluated at x. Otherwise, by (6.3), there exists exactly one i ∈ Yξ such that x ∈ B3δ(yi). Then we
have,

|χξ(x)| = |χi(x)| ≤ 1,

|∇χξ(x)| = |∇χi(x)| ≤ Cδ−1 ≤ C(1 + ‖X‖C2)ε−1,

|αξ(x)| = |αi(x)| ≤ C‖X‖C0δ ≤ C(1 + ‖DX‖C1)δ ≤ Cε,

and

|∇αξ(x)| = |∇αi(x)| ≤ |∇ψ(x− yi)〈Ai, (x− yi)〉|(x) + |ψ(x− yi)Ai|(x) ≤ δ−1 · C‖X‖C0δ + C‖X‖C0

≤ C(1 + ‖X‖C0).

Moreover,

|χξρkξ (x)| = |χiρki (x)| ≤ Cδ ≤ Cε

and

|∇(χξρ
k
ξ )|(x) = |∇(χiρ

k
i )|(x) ≤ |(∇χi)|(x)|ρki |(x) + |χi|(x)(|∇ψ(x− yi)||(xk − (yi)k)|+ |ψ(x− yi)|)

≤ C(δ−1 · δ) + C(δ−1δ + 1) ≤ C.

Finally,

|ηlkξ |(x) = |ηlki |(x) = |ψ(x− yi)||Blki ||(xl − (yi)l)| ≤ C‖X‖C1δ

and

|∇ηlkξ |(x) = |∇ηlki |(x) ≤ |∇ψ(x− yi)||Blki ||xl − (yi)l|+ |ψ(x− yi)||Blki |
≤ Cδ−1‖X‖C1δ + ‖X‖C1 ≤ C‖X‖C1 .

As x was arbitrary in BR(0), this holds for all x, and as ξ was arbitrary, this holds for all ξ, which proves
the lemma.

We now deduce a corollary about Sobolev spaces in Rn. This is not related to our further study but it is
worth mentioning.

Corollary 6.7. Let Ω ⊂ Rn be an open subset. Then CompV(Ω) is dense in W 1,p
0 (Ω) for all p ∈ [1,∞).

We are now going to apply the previous results to manifolds. The next lemma follows from partitioning the
manifold in balls and patching the approximations from Lemma 6.6 together.

Lemma 6.8. Let M be a smooth manifold with a C0-Riemannian metric g that admits L2
loc-Christoffel

symbols and a measure µ defined via dµ = h2dvolg, where h ∈ C0(M, (0,∞)). Let X be a compactly
supported smooth vector field on M and let ε > 0. Then there exist a constant C = C(M, g, h,X) and a
vector field X̃ =

∑q
p=1 hp∇fp ∈ CompV(M) such that
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(i)
∥∥∥X − X̃∥∥∥

H1
1 (TM,µ)

≤ Cε,

(ii) supM (|X̃|g + |∇X̃|g) ≤ C,

(iii) q ≤ C,

(vi) for all p, we have that ‖hp‖L∞ ≤ C and ‖fp‖L∞ ≤ Cε,

(v) for all p, we have that ‖|∇hp|g‖L∞ ≤ Cε
−1 and ‖|∇fp|g‖L∞ ≤ C.

In the next proposition we invoke the parabolic De Giorgi-Nash-Moser theory [30] to obtain C0,α convergence
of the heat flow to the initial datum. The non-triviality of the statement relies on the fact that the Riemannian
metric is merely C0 with L2

loc Christoffel symbols, and the weight on the measure is merely C0∩W 1,2
loc (M).

Proposition 6.9. Let M be a smooth manifold and g a C0-Riemannian metric with L2
loc Christoffel symbols.

Let moreover h ∈ C0(M, (0,∞))∩W 1,2
loc (M). Define the measure µ on M via dµ = h2dvolg. Let K ∈ R and

assume that (M, dg, µ) is an RCD(K,∞)-space. Denote by Ht the heat flow on M . Let Ω ⊂M be open such
that Ω is contained in one coordinate patch (U,ψ) and Ω is compact. Then there exists an α ∈ (0, 1) such
that for each ρ ∈ C∞c (M), T > 0, and for each open Ω̃ ⊂⊂ Ω, it holds (id[0,1] × ψ)∗Htρ|Ω̃ ∈ C0,α([0, T ), Ω̃).

Proof. Throughout this proof we write ρt for ψ∗Htρ|Ω. As Ω is compact, we get that there exists a constant
λ > 0 such that 1

λ ≤ h
2
√
|g| ≤ λ and 1

λ Idn ≤ g−1 ≤ λIdn on Ω. We note that ρt weakly solves

d

dt
ρt = ∆µρt

on Ω. Observing that for any two functions f, φ ∈ C∞c (Ω) it holds∫
M

∆µf · φ dµ = −
∫
M

〈∇gf,∇gφ〉g dµ = −
∫
M

h2
√
|g|gij∂if∂jφ dLn,

we get that ρt weakly solves

∂tρt − div(ADρt) = 0, (6.4)

where

Aij = h2
√
|g|gij . (6.5)

By the previous observations, A is uniformly elliptic on Ω. Recalling that ρ ∈ C∞c (M), the result follows
from the parabolic DeGiorgi-Nash-Moser theory, see for instance Theorem 1.1 in Chapter V of [30].

We are now ready to prove the main approximation result of the section that will be key in the proof of the
main theorem of the paper.
Lemma 6.10. Let M be a smooth manifold endowed with a C0-Riemannian metric g that admits L2

loc-
Christoffel symbols and a continuous positive weight h. Let µ be the measure defined via dµ = h2dvolg.
Assume that the metric measure space (M, dg, µ) satisfies the CD(K,∞)-condition. Then for each relatively
compact, open U ⊂ M and vector field X ∈ C∞c (TM) there exists a sequence (Wj)j ⊂ TestV(M) such that
Wj → X in H2

1 (TU, µ) and (Wj)j is bounded in L∞(U, µ).

Proof. As a first observation we note that by Corollary 4.27, the metric measure space (M, dg, µ) is infinitesi-
mally Hilbertian, hence an RCD(K,∞)-space, which in particular enables us to apply all the theory from the
previous section. Let ε > 0. We can find a constant C = C(M, g, h,X) and functions fp, hp ∈ C∞c (M) where

p ∈ {1, . . . q} such that, denoting X̃ :=
∑q
p=1 hp∇fp satisfy conditions (i)-(v) from Lemma 6.8. We first note

that by interpolation,
∥∥∥X − X̃∥∥∥

H2
1 (TM,µ)

≤ C
√
ε. We have that C∞c ⊂ D(∆µ) ∩W 2,2(M) ∩ L∞(M), so for
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all p, it holds fp, hp ⊂ H2
2 ∩ L∞(M,µ) ⊂ D(∆). Thanks to Proposition 5.22 together with the equality of

norms established in Proposition 5.8, we get that for each p, there exists a t ∈ (0, 1
|K| ], such that

max(‖hp −Hthp‖H2
2 (M,µ), ‖fp −Htfp‖H2

2 (M,µ)) <
ε2

maxp
(
‖fp‖H2

2 (M,µ) + ‖hp‖H2
2 (M,µ)

) .
Fix a relatively compact, open set U ⊂ M . Then by using Proposition 6.9 on a finite, relatively compact
cover, we can potentially decrease t, to get

max(‖hp −Hthp‖L∞(U,µ), ‖fp −Htfp‖L∞(U,µ)) <
ε2

maxp
(
‖fp‖H2

2 (M,µ) + ‖hp‖H2
2 (M,µ)

) ,
for all p = 1, . . . , q. Define f̃p := Htfp and h̃p := Hthp for all p. Moreover, recall that for each t ∈

(
0, 1
|K|
]

and each f ∈W 2,2 ∩ L∞, we have that

‖Htf‖L∞(M,µ) ≤ ‖f‖L∞(M,µ) and

‖|∇Htf |g‖L∞(M,µ) ≤ e
−Kt‖|∇f |g‖L∞(M,µ),

by Theorem 4.11 and the maximum principle of the heat flow. Hence,∥∥∥f̃p∥∥∥
L∞
≤ ‖fp‖L∞ ≤ Cε,∥∥∥h̃p∥∥∥

L∞
≤ ‖hp‖L∞ ≤ C,∥∥∥|∇f̃p|g∥∥∥
L∞
≤ C, and∥∥∥|∇h̃p|g∥∥∥

L∞
≤ Cε−1.

Define W :=
∑q
p=1 h̃p∇f̃p. We directly get that

‖|W |g‖L∞(M,µ) =

∥∥∥∥∥∣∣∣
q∑
p=1

h̃p∇f̃p
∣∣∣
g

∥∥∥∥∥
L∞(M,µ)

≤
q∑
p=1

∥∥∥|h̃p∇f̃p|g∥∥∥
L∞(M,µ)

≤ qC2.

To conclude, we estimate that∥∥∥W − X̃∥∥∥
L2(TM,µ)

≤
q∑
p=1

∥∥∥h̃p∇f̃p − hp∇fp∥∥∥
L2(TM,µ)

≤
q∑
p=1

∥∥∥h̃p∇f̃p − h̃p∇fp∥∥∥
L2(TM,µ)

+
∥∥∥h̃p∇fp − hp∇fp∥∥∥

L2(TM,µ)

≤
q∑
p=1

∥∥∥h̃p∥∥∥
L∞(M,µ)

∥∥∥∇f̃p −∇fp∥∥∥
L2(TM,µ)

+
∥∥∥h̃p − hp∥∥∥

L2(M,µ)

∥∥∥∇f̃p∥∥∥
L∞(TM,µ)

≤ C(M, g, h,X)ε.

For the covariant derivative, we note that

∇W =

(
∇c

q∑
p=1

h̃p∇f̃p

)]
=

(
q∑
p=1

h̃pHessf̃p + dh̃p ⊗∇f̃p

)]
=

q∑
p=1

h̃p(Hessf̃p)
] +∇h̃p ⊗∇f̃p.
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Then, by similar arguments as the previous ones, we get that∥∥∥∇W −∇X̃∥∥∥
L2(T⊗2U,µ)

≤
q∑
p=1

∥∥∥∇(h̃p∇f̃p)−∇(hp∇fp)
∥∥∥
L2(T⊗2U,µ)

≤
q∑
p=1

∥∥∥h̃p∥∥∥
L∞(U,µ)

∥∥∥Hess(f̃p − fp)]
∥∥∥
L2(T⊗2U,µ)

+
∥∥∥h̃p − hp∥∥∥

L∞(U,µ)

∥∥∥(Hessf̃p)
]
∥∥∥
L2(T⊗2U,µ)

+

q∑
p=1

∥∥∥∇h̃p∥∥∥
L∞(TU)

∥∥∥∇f̃p −∇fp∥∥∥
L2(TU,µ)

+
∥∥∥∇(h̃p − hp)

∥∥∥
L2(TU,µ)

∥∥∥∇f̃p∥∥∥
L∞(TU,µ)

≤C(M,U, g, h,X)ε.

Finally, we estimate that

‖X −W‖H2
1 (TU,µ) ≤

∥∥∥X − X̃∥∥∥
H2

1 (TU,µ)
+
∥∥∥X̃ −W∥∥∥

H2
1 (TU,µ)

≤ C(M,U, g, h,X)
√
ε.

6.2 The case N =∞

We are now able to prove the first main result:

Theorem 6.11. Let M be a smooth manifold and g ∈ C0(M) be a metric with L2
loc Christoffel symbols and

let h ∈ C0(M, (0,∞)) ∩W 1,2
loc (M) be such that (M, dg, µ), with dµ = h2dvolg is a CD(K,∞)-space. Then

Ricµ,∞ ≥ Kg

in the distributional sense.

Proof. From Corollary 4.27, we get that (M, dg, µ) is indeed an RCD(K,∞)-space, so all the observations
from the previous chapter apply. Our aim is to show that Ricg ≥ Kg distributionally, so we fix a smooth

vector field X ∈ T 1
0 and a test volume ω = φh2volg, where φ ∈ Cc ∩W 1,2

loc (M). Using a smooth cut-off
function, we can assume that X is compactly supported. We can (using a partition of unity) again assume
that φ is supported in one coordinate patch. We will therefore directly work in an open, relatively compact
set U ⊂ Rn. From (3.8), we know that∫
U

Ricµ,∞(X,X)ω =

∫
U

XjXk(ΓskjΓ
p
ps − ΓskpΓ

p
js)φh

2
√
|g| dx1 . . . dxn

−
∫
U

Γpjk∂p(X
jXkφh2

√
|g|) dx1 . . . dxn +

∫
U

Γppk∂j(X
jXkφh2

√
|g|) dx1 . . . dxn

+ 2

∫
U

XjXk(∂jh∂kh+ h∂shΓskj)φ
√
|g|dx1 . . . dxn + 2

∫
U

∂jh∂k(XjXkhφ
√
|g|)dx1 . . . dxn

=

∫
U

XjXk(ΓskjΓ
p
ps − ΓskpΓ

p
js)φh

2
√
|g| dx1 . . . dxn −

∫
Γpjk∂p(X

j)Xkφh2
√
|g| dx1 . . . dxn

−
∫
U

ΓpjkX
j∂p(X

kφh2
√
|g|) dx1 . . . dxn +

∫
U

Γppk∂j(X
j)Xkφh2

√
|g| dx1 . . . dxn

+

∫
U

ΓppkX
j∂j(X

kφh2
√
|g|) dx1 . . . dxn

+ 2

∫
U

XjXk(∂jh∂kh+ h∂shΓskj)φ
√
|g|dx1 . . . dxn + 2

∫
U

∂jh∂kX
jXkhφ

√
|g|)dx1 . . . dxn

+ 2

∫
U

∂jhX
j∂k(Xkhφ

√
|g|)dx1 . . . dxn.
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By the assumptions on g and h and Lemma 3.8, there exist functions Ψi,j,k ∈ L2(U,Ln) and Φj,k ∈ L1(U,Ln)
all compactly supported in U such that∫

U

Ricµ,∞(X,X)ω =

∫
U

XjXkΦj,k dLn +

∫
U

∂iX
jXkΨi,j,k dLn.

By Lemma 6.10, there exists a sequence Vδ ∈ TestV(M) such that ‖|Vδ|g‖L∞(U) ≤ C for some constant
C > 0 that does not depend on δ and ‖Vδ −X‖H2

1 (TU,µ) → 0 as δ → 0. Fix an ε > 0. Note that

Vδ ⊗ Vδ is bounded in L∞ and converges to X ⊗ X in L1. By Lemma 6.2, Vδ ⊗ Vδ
∗
⇀ X ⊗ X in L∞ =

(L1)∗ and Vδ
∗
⇀ X in L∞ = (L1)∗. Hence, we can find a δ0 > 0 such that ‖Vδ −X‖H2

1 (TU,µ) < ε and

‖Vδ ⊗ Vδ −X ⊗X‖L1(T⊗2U,µ) < ε for all δ ∈ (0, δ0). As g and h2
√
|g| are uniformly bounded from above

and from below on U , we get that ‖Vδ −X‖W 1,2(Rn,Ln) < Cε and ‖Vδ ⊗ Vδ −X ⊗X‖L1(Rn×n,Ln×n) < Cε for

all δ ∈ (0, δ0) and a C = C(M, g, h, U) > 0. Now we can use the weak* convergence, to choose a δ1 ∈ (0, δ0)
such that ∣∣∣∣∫

U

XjXkΦj,k dLn −
∫
U

V jδ1V
k
δ1Φj,k dLn

∣∣∣∣ ≤ ε and∣∣∣∣∫
U

∂iX
jXkΨi,j,k dLn −

∫
U

∂iX
jV kδ1Ψi,j,k dLn

∣∣∣∣ ≤ ε.
From now on we will denote Vδ1 = V for simplicity. We get that∣∣∣∣∫

U

∂iX
jV kΨi,j,k dLn −

∫
U

∂iV
jV kΨi,j,k dLn

∣∣∣∣ ≤ C(M, g, h, U, φ,X)ε.

Now note that∣∣∣∣∫
M

〈V, V 〉gφh2dvolg −
∫
M

〈X,X〉gφh2dvolg

∣∣∣∣ ≤ C‖V ⊗ V −X ⊗X‖L1(Rn×n) ≤ Cε,

where again C = C(M, g, h, U, φ,X). Finally, we use that∫
M

φh2 dRic(V, V ) =

∫
U

Ricµ,∞(V, V )ω =

∫
U

V jV kΦj,k dLn +

∫
U

∂iV
jV kΨi,j,k dLn. (6.6)

All together, we get that ∫
M

Ric(X,X)ω ≥
∫
M

φh2 dRic(V, V )− Cε

≥ K
∫
M

〈V, V 〉gφh2 dvolg − Cε

≥ K
∫
M

〈X,X〉gφh2 dvolg − (2 + |K|)Cε

= K

∫
M

g(X,X)ω − (2 + |K|)Cε.

Sending ε→ 0 yields the result.

Lemma 6.12. Let Ω ⊂ Rn be open and M ∈ C∞c (Ω;Rn×nsym ) be pointwise positive semidefinite. Let ε > 0.
Then there exist a function ϕ ∈ C∞c (Ω, [0, 1]) and vector fields bk ∈ C∞(Ω,Rn) for k = 1, . . . , n, such that
for Mε :=

∑
k ϕbk ⊗ bk, it holds

|M −Mε|C1(Rn) ≤ Cε,

where C = C(Ω, suppM,n) does not depend on ε.
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Proof. First we recall a basic fact about matrices. Let P ∈ Rn×n be positive definite. Then there exists
a unique positive definite matrix A ∈ Rn×n such that ATA = P . Writing A = (Aij)ij , we get that
Pij = (ATA)ij =

∑n
k=1AkiAkj =

∑
k(Ak ⊗ Ak)ij , where Ak denotes the k-th row vector of A and ⊗ the

dyadic product.
Now define M̃ := M + εIdn ∈ C∞(Ω;Rn×nsym ) and note that M̃ is constant outside suppM . By construction,

we have that M̃ is positive definite everywhere in Ω and its smallest eigenvalue is bounded below by ε.
Similarly, its largest eigenvalue is bounded above by ||M |HS |C0(Ω) + ε =: m. Set

U :=

{
a+ ib : a ∈

(
1

2
ε,m+ 2

)
, b ∈ (−1, 1)

}

and K := [ε,m + 1] ⊂ R+ ⊂ C. For a matrix B ∈ Cn×n, we denote by σCn×n(B) the set of its complex
eigenvalues. Note that for each p ∈ Ω, σCn×n(M̃(p)) ⊂ K. Let γ be a smooth cycle in U \ K such that
n(γ,w) = 1 for all w ∈ K, where n(γ,w) denotes the winding number of γ around w. We denote by
s : U → C the unique holomorphic function which is defined by s2(z) = z and s(w) ≥ 0 for w ∈ R ∩ U .
Define

B(p) :=
1

2πi

∫
γ

s(z)(zIdn − M̃(p))−1 dz.

Using holomorphic functional calculus we infer that B(p) is the unique positive square root of M̃(p) for all
p ∈ Ω. As γ is a fixed curve with positive distance to K, all functions in the integral are smooth and bounded
on the domain of integration. As M̃(p) is a smooth function of p, so is B(p) and each of its rows, which we
will denote by bk for k = 1, . . . , n. Let ϕ ∈ C∞c (Ω, [0, 1]) be a non-negative cut-off function such that ϕ ≡ 1
on suppM . We can choose ϕ such that |∇ϕ| is bounded by C(n) · dist(∂Ω, suppM). Now define

Mε := ϕ
∑
k

bk ⊗ bk.

By definition, we have that

|Mε − M̃ |(p) =

{
0 if p ∈ suppM,
ϕ|εIdn| ≤ C(n)ε if p /∈ suppM.

Similarly,

|∇(Mε − M̃)|(p) =

{
0 if p ∈ suppM,
∇ϕ|εIdn| ≤ C(Ω, suppM,n)ε if p /∈ suppM.

By definition, we know that |M − M̃ |C1 ≤ C(n)ε, so combining the estimates above, we get that

|M −Mε|C1 ≤ |M − M̃ |C1 + |Mε − M̃ |C1 ≤ Cε.

Theorem 6.13. Let M be a smooth manifold endowed with a C0-Riemannian metric g that admits L2
loc-

Christoffel symbols and a positive function h ∈ C0(M) ∩W 1,2
loc (M). Define the measure µ via dµ = h2dvolg.

Suppose the distributional Bakry-Émery ∞-Ricci curvature as defined in (3.8) is bounded below by K for
some K ∈ R. For each coordinate patch U , there exist regular Radon measures νij for i, j = 1, . . . , n such

that for a test volume ω with suppω ⊂ U (locally written as ω = ϕh2
√
|g|dx1 ∧ . . .∧ dxn) and smooth vector

fields X,Y , we have that in local coordinates it holds

Ricµ,∞(X,Y )ω =
∑
i,j

∫
XiY jϕh2

√
|g|dνij(x1, . . . , xn). (6.7)
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Proof. Using the local trivialisation ψ : U → Ω ⊂ Rn, we may assume that we are working on the open set
Ω and will express everything in local coordinates. Define

Dij := ∂pΓ
p
ij − ∂iΓ

p
pj + ΓsijΓ

p
ps − ΓsjpΓ

p
is −

2

h2
(h∂ijh− ∂ih∂jh− Γsijh∂sh)−Kgij ∈ D′(Ω).

By definition, Dij is a distribution of order at most 1 and for any smooth vector field X and any test volume

ω = ϕh2
√
|g|dx1 ∧ . . . ∧ dxn, for a ϕ ∈ Cc ∩W 1,2

loc (M) we get that

(Ric(X,X)µ,∞ −Kg(X,X))ω =
∑
i,j

〈Dij , X
iXjϕh2

√
|g|〉D′,D.

Now define D ∈ D′(Ω,Rn×nsym ) via 〈D,M〉D′,D :=
∑
i,j〈Dij ,Mij〉D′,D. Denote B(X,ϕ) := ϕh2

√
|g|(X ⊗X).

Then

(Ric(X,X)µ,∞ −Kg(X,X))ω =
∑
ij

〈Dij , B(X,ϕ)ij〉D′,D = 〈D,B(X,ϕ)〉D′,D.

Now let B ∈ C∞c (Ω;Rn×nsym ) be pointwise positive semidefinite and ε > 0. Let Bε be as in Lemma 6.12. As
Ricµ,∞ −Kg ≥ 0, we get that

〈D,Bε〉D′,D ≥ 0.

Moreover,

|〈D, (Bε −B)〉D′,D| ≤ C(Ω, suppB, g, h)|B −Bε|C1(Ω) ≤ C(Ω, B, n, g, h)ε.

Hence,

〈D,B〉D′,D ≥ −C(Ω, B, n, g, h)ε.

Letting ε→ 0, we get that for any such B,

〈D,B〉D′,D ≥ 0. (6.8)

Now fix S ⊂ Ω compact and let A ∈ C∞c (Ω;Rn×nsym ) (not necessarily positive semidefinite) such that suppA ⊂
S and supS |A|HS ≤ 1. Then A only has eigenvalues in [−1, 1] at each point in Ω. Let ρ ∈ C∞c (Ω, [0, 1]) such
that ρ ≡ 1 on S. It then follows that ρIdn −A is positive semidefinite in Ω. Then by (6.8),

〈D,A〉D′,D ≤ 〈D, ρIdn〉D′,D.

In other words:

sup
A∈C∞c (Ω;Rn×nsym ),suppA⊂S,||A|HS |C0≤1

〈D,A〉D′,D ≤ 〈D, ρIdn〉D′,D <∞.

As S is arbitrary, we have proven that D ∈ Cc(Ω;Rn×nsym )′ ∼=
(
Cc(Ω,R)

n(n+1)
2

)′ ∼= (Cc(Ω,R)′)
n(n+1)

2 . By Riesz’
Theorem, Cc(Ω,R)′ equals the space of regular Radon measures on Ω, so it follows that there exist regular
Radon measures ν̃ij on Ω for i, j = 1, . . . , n such that

〈D,M〉 =
∑
i,j

∫
Ω

Mijdν̃ij , for all M ∈ Cc(Ω;Rn×nsym ).

Define the regular Radon measure

νij := ν̃ij +KgijLn.
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Now for any vector field X and any compactly supported test volume ϕh2
√
|g|dx1∧, . . . ,∧dxn, we have that∫

Ω

XiXjϕh2
√
|g|gijKdLn = 〈Kg(X,X), ω〉D′,D.

By the definition of B(X,ϕ) and D, we get that

〈Ric(X,X)µ,∞, ω〉D′,D =
∑
i,j

∫
XiXjϕh2

√
|g|dνij(x1, . . . , xn).

By using that Ricµ,∞(·, ·) is a symmetric bilinear form and considering Ricµ,∞(X + Y,X + Y ), we conclude
that (6.7) holds.

Remark 6.14. From the proof of Theorem 6.13 it also follows that
∑
i,j |νij |(S) < ∞ for each compact

subset S ⊂ Ω. Moreover, the components (νij)ij change tensorially under coordinate transformations.

6.3 The case N ∈ [n,∞)

Finally, we want to examine the case when (M, dg, µ) is a CD∗(K,N) space for some N ≥ 1. By Corol-
lary 4.27, we know that (M, dg, µ) is infinitesimally Hilbertian, hence we know that it is RCD∗(K,N). Then,
by Theorem 5.4, we get that (M, dg, µ) satisfies the BE(K,N)-condition

Γ2(f, f) =
1

2
∆〈∇f,∇f〉 − 〈∇∆f,∇f〉µ ≥ (K|∇f |2 +

1

N
(∆f)2)µ, for all f ∈ TestF(M).

Testing with a non-negative function ϕ ∈ Cc ∩ W 1,2
loc (M), that we may assume to be supported in one

coordinate patch, we obtain:

−1

2

∫
M

〈∇〈∇f,∇f〉,∇ϕ〉h2
√
|g|dx1 . . . dxn −

∫
M

ϕ〈∇∆f,∇f〉h2
√
|g|dx1 . . . dxn

≥
∫
M

(K|∇f |2 +
1

N
(∆f)2)ϕh2

√
|g|dx1 . . . dxn.

Using (3.12) and Proposition 5.21 and (5.2), we get that∫
(∇f)j(∇f)k(ΓskjΓ

p
ps − ΓskpΓ

p
js)ϕh

2
√
|g| dx1 . . . dxn −

∫
Γpjk∂p((∇f)j(∇f)kϕh2

√
|g|) dx1 . . . dxn

+

∫
Γppk∂j((∇f)j(∇f)kϕh2

√
|g|) dx1 . . . dxn

+

∫
2

h2
(∇f)j(∇f)k(∂kh∂jh+ hΓsjk∂sh)ϕh2

√
|g| dx1 . . . dxn

+ 2

∫
∂kh∂j(h(∇f)j(∇f)kϕ

√
|g|) dx1 . . . dxn +

∫
M

ϕ|∇2f |2HSh2
√
|g| dx1 . . . dxn

≥
∫
M

(K|∇f |2 +
1

N
(∆µf)2)ϕh2

√
|g| dx1 . . . dxn. (6.9)

Now take a function f̃ ∈ C2
c (M,µ). It follows that f̃ ∈ H2,2(M,µ)∩D(∆µ), so by Proposition 5.22 the heat

flow Htf̃ =: f̃t converges strongly to f̃ in H2,2(M) ⊂ H2
2 (TM,µ). Then f̃t → f̃ in H2,2 ⊂ H2

2 so we can
conclude that (6.9) holds for any f̃ ∈ C2

c (M) and any ϕ ∈ C1
c (M). With Theorem 6.13, this gives:
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Proposition 6.15. Let M be a smooth manifold endowed with a C0-Riemannian metric g that admits L2
loc-

Christoffel symbols and a measure µ defined via dµ = h2dvolg, for a positive function h ∈ C0 ∩W 1,2
loc (M). If

(M, dg, µ) is a CD∗(K,N)-space, then for all f ∈ C2
c (M), it holds∑

ij

(∇f)i(∇f)jνij + (|∇2f |2HS −K|∇f |2 −
1

N
(∆µf)2)µ ≥ 0 (6.10)

in fixed local coordinates.

An application of Theorem 4.7 in [14] shows:
Lemma 6.16. Let M be a smooth manifold, g a C0-Riemannian metric on M and U ⊂ V ⊂M both open
such that U ⊂ V and V is compact. Moreover denote by gε = g ∗ ρε. Denote G = ‖g‖C0(V ) +

∥∥g−1
∥∥
C0(V )

.

Then there exists an ε0 > 0 such that for all x ∈ U and 0 < ε < ε0, it holds

iε(x) ≥ C(ε,G,U, V, ρ) > 0,

where iε(x) denotes the injectivity radius with respect to the metric gε.

Lemma 6.17. Let M be a smooth manifold, g a C0-Riemannian metric that admits L2
loc-Christoffel symbols

on M and U ⊂ V ⊂M both open such that U ⊂ V , and V is compact and contained in one coordinate patch.
Moreover let gε := g ∗ ρε. Denote G = ‖g‖C0(V ) +

∥∥g−1
∥∥
C0(V )

. For all p ∈ U , there exists an ε0 > 0 such

that for all ε ∈ (0, ε0), there exists a constant C = C(U, V, ε,G, p, ρ) > 0 with the following property: for all
vectors ṽ ∈ TpM with ‖ṽ‖gε ≤ min(1, C), it holds∣∣D expgεp |ṽ

∣∣
euc
≤ 3, and

∣∣D2 expgεp |ṽ
∣∣
euc
≤ 3. (6.11)

Proof. By covering and rescaling, we can assume that U = BeucR (0) ⊂ Rn and V = BeucR+2(0) ⊂ Rn. Let

ε0 > 0 small enough for Lemma 6.16 to hold, and such that ε0 ≤ 1
2 and for all ε ∈ (0, ε0), gε is a Riemannian

metric on BR(0) satisfying

‖gε‖C0(BeucR (0))
+
∥∥g−1
ε

∥∥
C0(BeucR (0))

≤ 2G.

Choose ε ∈ (0, ε0) and denote by iε the injectivity radius with respect to gε. Fix a point p ∈ U and v ∈ TpU
such that ‖v‖euc ≤ 1. By the relative compactness of V and arguments as in the proof of Proposition 4.19
(or alternatively Theorem 4.5 in [9]), there exists λ = λ(G) ≥ 1 such that g, gε, and | · |euc are pairwise
λ-equivalent on V and their induced metrics are pairwise λ-equivalent on Beuc1/2(p). For a curve c : [0, 1]→M

and W a vector field along the c, we denote by Ẇ the covariant time derivative and by W ′ the derivative in
local coordinates. Denote γ := γεv the geodesic with respect to gε, originating in p and tangent to v. Note
that |γ̇(t)|gε is constant in the existence domain of γ, hence we have that for all such t,

|γ̇(t)|euc ≤ λ2|γ̇(0)|euc = λ2|v|euc. (6.12)

For any vector w ∈ TpU define Jεv,w to be the Jacobi field in metric gε along γ with J̇εv,w(0) = ∇γ̇(0)J
ε
v,w(0) =

w. Recall the Jacobi equation for the smooth metric gε:

J̈εv,w(t) = ∇γ̇(t)(∇γ̇(t)J
ε
v,w)(t) = R(Jεv,w(t), γ̇(t))γ̇(t).

In order to keep notation short, we write Jw for Jεv,w. In local coordinates, we get:

(J̇w(t))k = (∇γ̇(t)Jw(t))k =
d

dt
Jkw(t) + Jj(t)γ̇i(t)Γε

k
ij(γ(t)), and

(J̈w(t))l =
d

dt

( d

dt
J lw(t) + Jj(t)γ̇i(t)Γε

l
ij(γ(t))

)
+ Γε

l
pk(γ(t))γ̇p(t)

( d

dt
Jkw(t) + Jj(t)γ̇i(t)Γε

k
ij(γ(t))

)
.
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Hence, the Jacobi equation in local coordinates gives

(Rε)
l
ijkJ

i
w(t)γ̇j(t)γ̇k(t) =

d2

dt2
J lw(t) +

d

dt
Jj(t)γ̇i(t)Γε

l
ij(γ(t)) + Jj(t)γi

′′
(t)Γε

l
ij(γ(t))

+ Jj(t)γ̇i(t)dΓε
l
ij(γ(t))(γ̇(t)) + Γε

l
pk(γ(t))γ̇p(t)

( d

dt
Jkw(t)

+ Jj(t)γ̇i(t)Γε
k
ij(γ(t))

)
.

We have that

|D2gε| ≤ C(ρ,G)ε−2, and |Dg−1
ε | ≤ C(ρ,G)ε−1, (6.13)

where we may assume that C > 1. Moreover, recall that we can use the geodesic equation and (6.12) to
bound |γ′′(t)|euc in terms of |v|euc, Gε−1 and λ. Hence, all coefficients of the above linear system of ODEs
are bounded by Cε−2. Denote Y Tw (t) := (JT (t), (J ′)T (t)). We get that

Y ′w(t) = P (t)Y (t),

Yw(0)T = (0T , wT ), (6.14)

where P is a matrix with smooth entries whose L∞-norm is bounded above by Cε−2. Gronwall’s inequality
gives that for u ∈ TpM

|Yw(t)− Yw+su(t)|euc ≤ |s||u|euceCtε
−2

.

Hence,

|J ′w(t)− J ′w+su(t)|euc ≤ |s||u|euceCtε
−2

.

Thus,

|Jw(t)− Jw+su(t)|euc ≤ |s||u|euc
ε2

C
(eCtε

−2

− 1).

It is known that Jw(t) = D expgεp |tv(tw). Hence, denoting a := Cε−2, we get that for 0 < t ≤ 1
a ,∣∣D expgεp |tv(w)−D expgεp |tv(w + su)

∣∣
euc
≤ |s||u|euc

1

at
(eat − 1) ≤ 3|s||u|euc,

which shows local Lipschitz continuity of the first derivative at the point γ(t). The second derivative of the
exponential map exists as gε is smooth and by the Lipschitz continuity, it is bounded. Setting su = −w, and
recalling that J0(t) = 0 for all t, we get that∣∣D expgεp |tv(w)

∣∣
euc
≤ 3|w|euc.

Hence the first differential is bounded at the point tv. Recall that v is arbitrary, given that the geodesic
tangent to v and its variation are well defined for t ∈ [0, 1

a(ε) ]. Then the above holds for each ṽ ∈ (0, 1
a(ε) ]v

and (6.11) holds for each ṽ such that

0 < ‖ṽ‖gε ≤
a

2λ
min(iε(p), 1).

By continuity of the differential and the second differential this also holds for ‖ṽ‖gε = 0. Since p was
arbitrary, taking Lemma 6.16 into account, we get the result.

Lemma 6.18. Let K,K ′ ⊂ Rn be compact sets such that K ⊂ K ′. Let furthermore F be a family of closed
balls in Rn such that for every point x ∈ K, there exists a radius Rx > 0 such that for all positive R ≤ Rx, it
holds BR(x) ∈ F . Let ϕ ∈ Cc(K ′, [0,∞)) and ε > 0. Then there exists a finite family of functions {χp}qp=1

such that the following holds:
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(i) For every p = 1, . . . , q, there exists an x ∈ K and a positive R ≤ Rx such that χp ∈ Cc(BR(x), [0,∞))
and χp is rotationally symmetric centered at x.

(ii)
∑q
p=1 χp ≤ ϕ and

∥∥∥∑q
p=1 χp − ϕ

∥∥∥
C0(K)

≤ ε.

Proof. We first recall that, by Besicovitch’s covering theorem, there exists a constant cn ≥ 1 such that
for any family G of closed balls in Rn, such that the set A of their centers is bounded, there exist cn
countable subfamilies (Gh)cnh=1 such that for each h = 1, . . . , cn, any two different balls in Gh are disjoint and
A ⊂

⋃cn
h=1

⋃
B∈Gh B.

Claim. For every function ϕ ∈ Cc(K ′, [0,∞)), there exists a finite family of functions {ψk}mk=1 such that
for every k = 1, . . . ,m the following holds:

1. There exist x ∈ K and a positive R ≤ Rx such that ψk ∈ Cc(BR(x), [0,∞)).

2. ψk is rotationally symmetric centered at x.

3. The following estimate holds:

m∑
k=1

ψk ≤ ϕ, and

∥∥∥∥∥
m∑
k=1

ψk − ϕ

∥∥∥∥∥
C0(K)

≤
(

1− 1

2cn

)
‖ϕ‖C0(K). (6.15)

Proof of the claim. If ‖ϕ‖C0(K) = 0, we do not need any function to approximate ϕ, so we set m = 0.

Otherwise, using that ϕ is uniformly continuous, we can find δ > 0 such that for all x, y ∈ K ′ with
|x− y| ≤ 4δ, we have that |ϕ(x)− ϕ(y)| ≤ ‖ϕ‖C0(K) ·

1
2cn

. For each x ∈ K we define ρx = min(Rx, δ). Now⋃
x∈K B ρx

2
(x) is an open cover of K, so by compactness of K, there exists a finite subcover

⋃m
k=1B ρk

2
(xk)

of K, where we write ρk = ρxk to keep notation short. Now we apply Besicovitch’s covering theorem to find

cn finite families Fh ⊂ {B ρk
2

(xk)}k such that K ⊂
⋃cn
h=1

⋃
B∈Fh B and the balls in each family are pairwise

disjoint. For each h denote by Ih the set of indices k such that B ρk
2

(xk) ∈ Fh. Fix such an h. Note that Ih
is finite, hence for each k ∈ Ih we can find a radius ρk

2 < rk ≤ ρk such that for k, k′ ∈ Ih, k 6= k′, we have
that Brk′ (xk′) ∩Brk(xk) = ∅. For each k = 1, . . . ,m, define a function ηk ∈ Cc(Brk(xk), [0, 1]) such that ηk
is rotationally symmetric (with center xk) and ηk = 1 on B ρk

2
(xk). Define

θk := min
y∈Brk (xk)

ϕ(y) ∈ [0,∞).

Now define ψk ∈ Cc(Brk(xk), [0,∞)) via

ψk(x) :=
θk
cn
ηk(x).

We now claim that (6.15) holds. Pick a point x ∈ K ′. Let Lx := {l : x ∈ Brl(xl)}. For each h = 1, . . . , cn,
we have that |Ih ∩ Lx| ≤ 1, hence |Lx| ≤ cn. By definition, we have that θl ≤ ϕ(x) for each l ∈ Lx, hence

m∑
k=1

ψk(x) =
∑
l∈Lx

ψl(x) =
∑
l∈Lx

θl
cn
ηl(x) ≤ ϕ(x).

Now let x ∈ K. We have that for each l ∈ Lx and y ∈ Brl(xl) it holds |x− y| ≤ 2rl ≤ 2ρl ≤ 2δ. Hence, for
each l ∈ Lx, we have that |ϕ(x)− θl| ≤ ‖ϕ‖C0(K) ·

1
2cn

. By the construction of our cover, we have that there

exists at least one λ ∈ Lx such that x ∈ B ρλ
2

(xλ). Hence

m∑
k=1

ψk(x) ≥ θλ
cn
ηλ(x) =

θλ
cn
.
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Thus,

0 ≤ ϕ(x)−
m∑
k=1

ψk(x) ≤ ϕ(x)− θλ
cn
≤ ϕ(x)− ϕ(x)

cn
+

∣∣∣∣ϕ(x)

cn
− θλ
cn

∣∣∣∣ =
(

1− 1

cn

)
ϕ(x) +

1

cn
|ϕ(x)− θλ|

≤
(

1− 1

cn

)
‖ϕ‖C0(K) +

1

2c2n
‖ϕ‖C0(K) ≤

(
1− 1

2cn

)
‖ϕ‖C0(K).

This proves the claim.
Now given a function ϕ ∈ Cc(K

′, [0,∞)), we define a sequence of functions (ϕj)
∞
j=0 ⊂ Cc(K

′, [0,∞)) as

follows: ϕ0 := ϕ. Given ϕj , we apply the claim to find mj ≥ 0 and functions ψ
(j)
k , for k = 1, . . . ,mj such

that

• ψ(j)
k ∈ Cc(BRxj,k (xj,k), [0,∞)) for some xj,k ∈ K.

• ψ(j)
k is rotationally symmetric centered at xj,k.

• The following estimate holds:

mj∑
k=1

ψ
(j)
k ≤ ϕj , and

∥∥∥∥∥
mj∑
k=1

ψ
(j)
k − ϕj

∥∥∥∥∥
C0(K)

≤
(

1− 1

2cn

)
‖ϕj‖C0(K).

Then set ϕj+1 := ϕj −
∑mj
k=1 ψ

(j)
k ≥ 0. Inductively, we get that

‖ϕj‖C0(K) ≤
(

1− 1

2cn

)j
‖ϕ‖C0(K). (6.16)

Now we can choose J ≥ ln ε−ln ‖ϕ‖C0(K)

ln (1− 1
2cn

)
. We choose the family of functions {ψ(j)

k : k = 1, . . . ,mj , j = 0, . . . J}
Then

ϕ−
J∑
j=0

mj∑
k=1

ψ
(j)
k = ϕ0 −

J∑
j=0

(ϕj − ϕj+1) = ϕJ+1 ≥ 0.

By our choice of J and (6.16), we get that∥∥∥∥∥∥ϕ−
J∑
j=0

mj∑
k=1

ψ
(j)
k

∥∥∥∥∥∥
C0(K)

= ‖ϕJ+1‖C0(K) ≤ ε.

This finishes the proof.

Lemma 6.19. Let f ∈ L1
loc(Rn) and h ∈ C0(Rn). Then for each p ∈ Rn, we have that if p is a Lebesgue

point of f , then p is also a Lebesgue point of f · h.

We are now able to state and prove the second main result of the paper, namely that the CD∗(K,N) condition
implies that the distributional N -Bakry-Émery Ricci tensor is bounded below by K, on a smooth manifold
endowed with a continuous Riemannian metric with L2

loc-Christoffel symbols and a C0 ∩W 1,2
loc -weight on the

volume measure.

Theorem 6.20. Let M be a smooth manifold, g ∈ C0 a Riemannian metric that admits L2
loc-Christoffel

symbols and h ∈ C0 ∩W 1,2
loc (M) a positive function, V := −2 log h ∈ C0 ∩W 1,2

loc (M). Define the measure µ
via µ := e−V dvolg. Let K ∈ R and N ∈ [n,∞). If (M, dg, µ) is a CD∗(K,N)-space, then

Ricµ,N = Ricµ,∞ −
1

N − n
∇V ⊗∇V ≥ Kg in D′T 0

2 .
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Proof. We first notice that by Lemma 4.10 and Corollary 4.27, (M, dg, µ) is an RCD(K,∞)-space, so by
Theorem 6.13, we have that Ricµ,∞ ∈ D′T 0

2 can be expressed via Radon measures (νij)i,j as in (6.7).
Let U ⊂ W ⊂ M be open such that W is compact, U ⊂ W and W lies in one coordinate patch. It
is enough to prove the statement for M = U , as we can cover the manifold with sets like U . Let ρ ∈
C∞c (Beuc1 (0), [0,∞)) be a rotationally symmetric standard mollifier and ρδ(x) := 1

δn ρ(xδ ), δ > 0. For 0 <
δ ≤ δ0 < dist(∂W,U), we define gδ = ρδ ∗ g. We assume that for all these δ, gδ is a Riemannian metric on
U and that max(‖gδ‖C0(U),

∥∥g−1
δ

∥∥
C0(U)

) < 2 max(‖g‖C0(U),
∥∥g−1

∥∥
C0(U)

), as this is the case for δ0 > 0 small

enough. Then gδ → g everywhere as δ → 0. Then, by the proof of Proposition 4.20 there exists a ζ > 0
and a λ ≥ 1 such that g, gδ and | · |euc are pairwise λ-equivalent on U and dg, dgδ , and | · |euc are pairwise
λ-equivalent on Beucζ (p) for all p ∈ U . Fix a point p ∈ U such that

p is a Lebesgue point of Dg, and of Dg ·Dg. (6.17)

Then, as ρ is rotationally symmetric, we get that

Dgδ(p)→ Dg(p). (6.18)

Fix ε > 0. We can assume p = 0. In order to compute local coordinates with a vanishing Levi-Cevita
connection with respect to g at the point p, we define the map ψ : U → Ũ ⊂ Rn, x 7→ y via

yk = ψk(x) := 0 + αki x
i + βkijx

ixj ,

where αki , β
k
ij = βkji ∈ R are constants. Then

(Dψ)ki(x) = ∂xiy
k = αki + 2βkijx

j ,

∂xl(Dψ)ki(x) = 2βkil, and

(ψ∗g)ij = ((Dψ)−T g(Dψ)−1)ij .

Moreover, it holds

(∂xl(Dψ)−1)ij(0) = −((Dψ)−1∂xlDψ(Dψ)−1)ij(0) = −(Dψ)−1
it ∂xlDψts(Dψ)−1

sj (0)

= −2(Dψ)−1
it β

t
sl(Dψ)−1

sj (0).

We assume α to be invertible and define α−1 =: σ = (σij)ij ∈ Rn×n. In order to be “normal coordinates”

at p = 0, we need that at the point ψ(0) = 0 ∈ Ũ , it holds

(ψ∗g)ij(0) = (α−T gα−1)ij(0) = Idn. (6.19)

We want the first derivative of the metric with respect to the y-coordinates to vanish at p = 0, hence we
compute:

0 = ∂yk(ψ∗g)ij(0) = ∂xl((Dψ
−1)ri(Dψ

−1)qjgrq)
∂xl

∂yk
(0)

= (∂xl(Dψ
−1)ri(Dψ

−1)qjgrq + (Dψ−1)ri∂xl(Dψ
−1)qjgrq + (Dψ−1)ri(Dψ

−1)qj∂xlgrq)
∂xl

∂yk
(0)

= (−2σrtβ
t
slσsiσqjgrq − 2σriσqtβ

t
slσsjgrq + σriσqj∂xlgrq)σlk. (6.20)

This gives 1
2n

2(n+ 1) equations and 1
2n

2(n+ 1) variables βkij . To keep notation short, we rewrite this to

ζmijk(g, σ)βkij = ξm(Dg, σ), m = 1, . . . ,
1

2
n2(n+ 1), (6.21)
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for some polynomials ζmijk : (Rn×n)2 → R and ξm : Rn×n×n×Rn×n. In order to find a solution of this system
of equations, consider gδ, δ ∈ (0, δ0). By using the exponential map, we can find a map ψδ defined as

ψδ = (expgδp )−1 : Ωδ → Brδ(0) ⊂ TpU ∼= Rn, x 7→ yδ,

where Ωδ ⊂ U is an open neighbourhood of 0 and rδ > 0. Define the distance function dpδ : Ωδ → [0,∞), y 7→
dgδ(p, z) =

(∑n
i=1(yiδ)

2
) 1

2 . It is known that (ψδ)∗(gδ)ij = δij + Oδ((d
p
δ)

2). More precisely, this means that
there exists a constant Cgδ > 0 such that for all x ∈ Ωδ,

‖(ψδ)∗gδ(x)− Idn‖Rn×n ≤ Cgδ(d
p
δ)

2(x). (6.22)

Note that |Dgδ| ≤ Cλδ−1 for some C > 0. Take Ω̃δ := Ωδ ∩ {x : |x|euc = |x − p|euc ≤ δ
2nC , (dpδ(x))2 <

1
2nCgδ

1
4λ2 }. Then in Ω̃δ, we get that

1

2λ
Idn ≤ gδ ≤ 2λIdn, and

1

2
Idn ≤ (ψδ)∗gδ ≤ 2Idn. (6.23)

Using that ‖v‖gδ = ‖(ψδ)∗v‖(ψδ)∗gδ , we get that the transition map Ψδ := Dψδ : T Ω̃δ → Tψδ(Ω̃δ) is bounded

from above and from below in the Euclidean norm, meaning that for all 0 6= v ∈ TqΩ̃δ, we have that

1

4λ
=

1
2

2λ
≤
‖Ψδ(v)‖euc
‖v‖euc

≤ 2
1

2λ

= 4λ. (6.24)

By the inverse function theorem, we know that on Ω̃δ

Dψδ = (D(expgδp ))−1, hence ∂iDψδ = −Dψδ∂i(D(expgδp ))Dψδ.

Hence, using (6.24) and (6.11), we get that

|(Dψδ)−1|euc(0) ≤ 4λ and |D2ψδ|euc(0) ≤ 12λ2. (6.25)

Now for all δ > 0, we have that

ζmijk(gδ, (Dψδ)
−1)

1

2
∂j(Dψδ)ik = ξm(Dgδ, (Dψδ)

−1), m = 1, . . . ,
1

2
n2(n+ 1).

With (6.24) and (6.25), we get that there exists a convergent subsequence δ′ → 0 such that (Dψδ′(0), D2ψδ′(0))→
(Dψ(0), D2ψ(0)) and

|Dψ|euc(0) ≤ 4λ, |Dψ−1|euc(0) ≤ 4λ, and |D2ψ|euc(0) ≤ 12λ2. (6.26)

By (6.17), (6.18), and the continuity of g, it follows that (Dψ(0), D2ψ(0)) satisfies (6.19) and (6.20). Now
we have found coefficients for our map ψ : U → Ũ and we notice that for now the map is defined everywhere
on U . By (6.19), Dψ(0) must be invertible, so by the inverse function theorem we can shrink U to a
neighbourhood U ′ of p such that ψ is a diffeomorphism on U ′. Note that D2ψ is constant, so

|D2ψ|euc(x) ≤ 12λ2, (6.27)

for all x ∈ U ′. As ψ∗g = Idn, we get that the transition map Ψ|0 := Dψ|0 : T0U
′ → T0ψ(U ′) is bounded,

meaning that for all 0 6= v ∈ T0ψ(U ′), we have that

1

λ
≤
‖Ψ(v)‖euc
‖v‖euc

≤ λ. (6.28)
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Using (6.27), we can shrink the domain U ′ and find an open Ω ⊂ U ′ such that p ∈ Ω and the transition map
Ψ := Dψ : TΩ→ Tψ(Ω) satisfies

1

2λ
≤
‖Ψ(v)‖euc
‖v‖euc

≤ 2λ, (6.29)

for each v ∈ TqΩ, q ∈ Ω. As p satisfies (6.17), we can use Lemma 6.19, to get that for each f ∈ C2
c (M),

p is a Lebesgue point of x 7→ |∇2
gf(x)|2HS , and x 7→ (∆gf(x))2. (6.30)

Here ∆g denotes the Laplacian with respect to the volume measure induced by g. As, by the above con-
struction, y = ψ(x) defines normal coordinates at p with respect to g, we have that

((ψ)∗(∇2
gf)(0))ij = ∂2

yi,yjf(0), and

∆gf =
∑
i

∂2
yi,yif(0) =

∑
i

((ψ)∗(∇2
gf)(p))ii.

Now fix a smooth vector field X on U and denote B := ψ∗(X(p)) ∈ Rn. Let f : Ω → R be defined by
ψ∗f :=

∑
iBiy

i + a
2
√
n

(yi)2 for some a ∈ R. Then

ψ∗∇gf(0) = B, ψ∗∇2
gf(0) =

a√
n

Idn, and ψ∗∆gf(0) =
√
na.

Note that f is smooth because ψ is smooth. Writing h2 = e−V for a C0 ∩W 1,2
loc -function V , we get:

∆g,µf = ∆gf + 〈∇gV,∇gf〉g.

Hence,

|∇2
gf |2HS,g(p)−

1

N
(∆g,µf)2(p) =

N − n
N

a2 − 2
√
n

N
a〈X,∇gV 〉g(p)−

1

N
〈X,∇gV 〉2g(p).

The choice a =
√
n〈X,∇gV 〉g(p)

N−n minimises the right hand side and yields

|∇2
gf |2HS,g(p)−

1

N
(∆g,µf)2(p) = − 1

N − n
〈X,∇gV 〉2g(p). (6.31)

Now there is a τ0 > 0, τ ≤ min(ε, 1) such that Bτ0(p) := Beucτ0 (p) ⊂ Ω and for all z ∈ Bτ0(p), we have

|∇gf(z)−X(p)|euc ≤ ε and |X(z)−X(p)|euc ≤ ε. (6.32)

Finally note f = ψ∗ψ∗f , so we can bound ‖f‖W 2,∞ in a neighbourhood of p in terms of |ψ|, |Dψ|, |Dψ−1|, |D2ψ|, a,
and B. Hence, by (6.27) and (6.29), we get that

‖f‖W 2,∞(Bτ0 (p)) ≤ C(X,V, λ, n,N). (6.33)

Now, by (6.10), we have∑
i,j

(∇gf)i(∇gf)jνij + (|∇2
gf |2HS,g −K|∇gf |2g −

1

N
(∆g,µf)2)µ ≥ 0.

Recall that µ = e−V
√
|g|Ln, where V, g ∈ C0(U). Then by the triangle inequality, (6.30) together with

Lemma 6.19, and by (6.32), we get that there exists a τ ∈ (0, τ0) such that for all τ ′ ∈ (0, τ), it holds∣∣∣∣∣(∑
i,j

(∇gf)i(p)(∇gf)j(p)νij + (|∇2
gf |2HS,g(p)−K|∇gf |2g(p)−

1

N
(∆g,µf)2(p))µ

)

−
(∑
i,j

(∇gf)i(∇gf)jνij + (|∇2
gf |2HS,g −K|∇gf |2g −

1

N
(∆g,µf)2)µ

)∣∣∣∣∣
TV

(Bτ ′(p))

≤ C(n,U, g, V,X,N,K)
(∑
i,j

|νij |TV + Ln
)
(Bτ ′(p)) · ε.
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Similarly, using again (6.32), we get that∣∣∣∣∣∑
i,j

(∇gf)i(p)(∇gf)j(p)νij − (K|∇gf |2g(p) +
1

N − n
(〈∇gf,∇gV 〉2g)(p))µ

−
∑
i,j

XiXjνij + (K|X|2g +
1

N − n
(〈X,∇gV 〉2g))µ

∣∣∣∣∣
TV

(Bτ ′(p))

≤ C(n,U, g, V,X,N,K)ε
(∑
i,j

|νij |TV + Ln
)
(Bτ ′(p)).

Together with (6.31), this yields(∑
i,j

XiXjνij − (K|X|2g +
1

N − n
(〈X,∇gV 〉2g))µ

)
(Bτ ′(p))

≥ −C(n,U, g, V,X,N,K)ε
(∑
i,j

|νij |TV + Ln
)
(Bτ ′(p)).

We infer that for χ ∈ Cc(Bτ (p), [0,∞)]) with χ rotationally symmetric around p, it holds∫
Bτ (p)

χd(
∑
i,j

XiXjνij − (K|X|2g +
1

N − n
(〈X,∇gV 〉2g))µ)

≥ −C(n,U, g, V,X,N,K)ε

∫
Bτ (p)

χd
(∑
i,j

|νij |TV + Ln
)
. (6.34)

As p was chosen arbitrarily among all points satisfying (6.17), we have that for all p ∈ U , satisfying (6.17),
and each ε > 0, there exists a τp,ε > 0 such that (6.34) holds for χ ∈ Cc(B

euc
τp,ε(p), [0,∞)) such that χ is

rotationally symmetric around p. Now suppose there exists a function φ ∈ Cc(U, [0,∞)) such that

〈Ricµ,∞(X,X)−K|X|2gµ−
1

N − n
(∇V ⊗∇V )(X,X)µ, φ dx1 . . . dxn〉D′,D = κ < 0.

We can assume that ‖φ‖sup = 1. Choose

0 < ε ≤ −κ
8C · (Ln(U) +

∑
i,j |νij |TV (U))

, (6.35)

where C ≥ 1 is as in (6.34). Write

Ricµ,∞(X,X) := rsX + raX ,

where rsX denotes the singular part and raX denotes the absolutely continuous part with respect to the
Lebesgue measure. As Ricµ,∞(X,X) −K|X|2gµ ≥ 0, and K|X|2gµ is absolutely continuous with respect to
the Lebesgue measure, we know that

rsX ≥ 0. (6.36)

Moreover, there exist two Borel sets Us, Ua ⊂ U such that Us ∩ Ua = ∅, Us ∪ Ua = U , rsX(Ua) = 0, and
Ln(Us) = 0. Define

N := {p ∈ U : p does not satisfy (6.17)}.
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Then Ln(N ) = 0 and hence Ln(N ∪Us) = 0. By the outer regularity of Borel measures, there exists an open
set O ⊂ U such that

(N ∪ Us) ⊂ O, and

|raX |TV (O) + (|K||X|2g +
1

N − n
(∇V ⊗∇V )(X,X))µ(O) ≤ ε

4
. (6.37)

Denote suppφ = K ′, K := K ′ \ O and note that both K and K ′ are compact. Moreover, denote F :=
{Bτ (p) : p ∈ K, 0 < τ ≤ 1

2τp,ε}. We can now apply Lemma 6.18 to find an m ∈ N and functions

χk ∈ Cc(Bτk(pk), [0,∞)) for k = 1, . . . ,m, pk ∈ K, χk is rotationally symmetric centered at pk, τk ≤
τpk,ε

2 ,
such that

∑m
k=1 χk ≤ φ and ‖

∑m
k=1 χk − φ‖C0(K)

≤ ε. Denote ψ :=
∑m
k=1 χk. Define the signed Radon

measure s on U as

s = −K|X|2gµ−
1

N − n
(∇V ⊗∇V )(X,X)µ.

By (6.35), (6.37), and the bound ‖φ− ψ‖C0(K) ≤ ε, we have that∣∣∣∣∣
∫
U

(φ− ψ) d(s + raX)

∣∣∣∣∣ =

∣∣∣∣∣
∫
K′

(φ− ψ) d(s + raX)

∣∣∣∣∣
≤

∣∣∣∣∣
∫
K

(φ− ψ) d(s + raX)

∣∣∣∣∣+

∣∣∣∣∣
∫
O

(φ− ψ) d(s + raX)

∣∣∣∣∣
≤ ε · (|s|TV + |raX |TV )(U) + ‖φ‖sup(|r

a
X |TV + |s|TV )(O)

≤ −κ
8

+
ε

4
≤ −κ

2
.

Then, using (6.36) and that φ ≥ ψ, we get that∫
U

φd(s + rsX + raX) =

∫
U

ψ d(s + rsX + raX) +

∫
U

(φ− ψ) d(s + raX) +

∫
U

(φ− ψ) d(rsX)

≥
∫
U

ψ d(s + rsX + raX) +
κ

2
.

Finally, using (6.34), and ‖ψ‖sup ≤ ‖φ‖sup ≤ 1, we get that∫
U

ψ d(s + rsX + raX)

=

m∑
k=1

∑
i,j

∫
Bτk (pk)

XiXjχk dνij −
∫
Bτk (pk)

(
K|X|2g +

1

N − n
(〈X,∇gV 〉2g)

)
χk dµ


≥ −C(n,U, g, V,X,N,K)ε

m∑
k=1

(∫
Bτk (pk)

∑
i,j

χk d|νij |TV +

∫
Bτk (pk)

χk dLn
)

≥ κ

8(Ln(U) +
∑
i,j |νij |TV (U))

(∫
U

∑
i,j

ψ d|νij |TV +

∫
U

ψ dLn
)

≥ κ

8
.

But then

κ =

〈
Ricµ,∞(X,X)−K|X|2gµ−

1

N − n
(∇V ⊗∇V )(X,X)µ, φdx1 . . . dxn

〉
D′,D

=

∫
U

φ d(s + rsX + raX) ≥ 5κ

8
.

Since κ < 0, this is a contradiction. As X was arbitrary, the proof is complete.
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7 Distributional Ricci curvature lower bounds imply RCD

In this section, we prove the reverse implication, namely from distributional to synthetic Ricci lower bounds,
under the assumption of the volume growth condition (4.1). Note that such a condition is necessary, as
all CD(K,∞) spaces satisfy it (see Remark 4.12). At the end of the section, we establish such volume
growth condition for weighted manifolds with C1-metrics and distributional Bakry-Émery N -Ricci curvature
bounded below by K for finite N .

Theorem 7.1. Let M be a smooth manifold, g a continuous Riemannian metric with L2
loc-Christoffel symbols

and let h ∈ C0(M) ∩W 1,2
loc (M) be a positive function. Denote V := −2 log h ∈ C0 ∩W 1,2

loc (M). Define the
measure µ via dµ := e−V dvolg. Let N ∈ [n,∞] and K ∈ R. Assume that the metric measure space (M, dg, µ)
satisfies (4.1).

If the distributional Bakry-Émery N -Ricci curvature tensor is bounded below by K, i.e.

Ricµ,N ≥ Kg in D′T 0
2 ,

then (M, dg, µ) satisfies the RCD∗(K,N)-condition if N ∈ [n,∞), or the RCD(K,∞)-condition if N =∞.

Proof. By Theorem 5.4, it suffices to prove that (M, dg, µ) satisfies the BE(K,N)-condition. For any smooth
function f ∈ C∞(M) and any non-negative, compactly supported test volume ω, we have that

〈Ricµ,N (∇f,∇f)−Kg(∇f,∇f), ω〉D′,D

=

〈
Ricµ,∞(∇f,∇f)− 1

N − n
〈∇V,∇f〉2g −Kg(∇f,∇f), ω

〉
D′,D

≥ 0. (7.1)

Let n ≥ 1 be the dimension of M and denote by ∆g the Laplacian induced by the volume measure dvolg.

Claim. The following inequality holds at µ-almost every point p ∈M :

|∇2f |2HS −
1

N
(∆gf + 〈∇V,∇f〉)2 ≥ − 1

N − n
〈∇V,∇f〉2. (7.2)

Proof of the claim. Fix p ∈M such that p is a Lebesgue point of Dg and (Dg)2. Denote B := |〈∇V,∇f〉|(p).
For (ei)

n
i=1, a g-orthonormal basis at TpM , we have that

|∇2f |2HS(p) =

n∑
i,j=1

∇2f(ei, ej)
2 and ∆gf(p) =

n∑
i=1

∇2f(ei, ei).

From the Cauchy-Schwartz inequality, we get that

n|∇2f |2HS(p) ≥ (∆gf(p))2.

Denote a = |∇2f |HS . Then

|∇2f |2HS −
1

N
(∆gf + 〈∇V,∇f〉)2 +

1

N − n
〈∇V,∇f〉2

≥ |∇2f |2HS −
1

N
(|∆gf |+ |〈∇V,∇f〉|)2 +

1

N − n
〈∇V,∇f〉2

≥ a2 − 1

N
(
√
na+B)2 +

1

N − n
B2

=
1

N
(
√
N − na+

√
n√

N − n
B)2 ≥ 0.
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This proves the claim.
We can now plug (7.2) into (7.1) and infer that〈

Ricµ,∞(∇f,∇f) + |∇2f |2HS −
1

N
(∆µf)2 −Kg(∇f,∇f), ω

〉
D′,D

≥ 0.

Using a partition of unity, we may assume that ω is supported in one coordinate patch and we can locally
assume that ω = φh2

√
|g|dx1∧ . . .∧dxn for some φ ∈ C0

c (M, [0,∞))∩W 1,2
loc (M). In local coordinates, we get

that (6.9) holds for any f ∈ C2(M). Using Lemma 4.16 and Proposition 5.11, we get that (6.9) holds for each
f ∈ H2,2(M) ⊂ H2

2 (M,µ). This means exactly that the Bakry-Émery condition BE(K,N) is satisfied.

The combination of Theorem 6.11, Theorem 6.20, and Theorem 7.1 yields:

Theorem 7.2. Let M be a smooth manifold, g a continuous Riemannian metric with L2
loc-Christoffel symbols

and let h ∈ C0 ∩W 1,2
loc (M) be a positive function. Denote V := −2 log h ∈ C0 ∩W 1,2

loc (M) and define the
measure µ via dµ := e−V dvolg. Let N ∈ [n,∞] and K ∈ R. The following are equivalent:

(i) (M, dg, µ) is a CD∗(K,N)-space.

(ii) The distributional Bakry-Émery N -Ricci curvature tensor is bounded below by K and (M, dg, µ) satisfies
(4.1).

Remark 7.3. In Theorem 7.2 (i), the CD∗(K,N)-condition corresponds to the RCD∗(K,N)-condition by
Corollary 4.27.
Remark 7.4. To define distributional lower Ricci curvature bounds, the minimal requirement is that g, g−1 ∈
L∞loc admits L2

loc-Christoffel symbols; this is known in the literature as Geroch-Traschen class, after [21].
Under the assumption that g, g−1 ∈ L∞loc, Norris ([37]) and De Cecco-Palmieri ([17], [18]) defined a distance
that turns (M, dg) into a length space, when only considering curves γ : Lip([0, 1],M) for which L1-almost
every point is outside a null set N , which includes all non-Lebesgue points of g. It is thus natural to ask
whether the equivalence of distributional and synthetic Ricci curvature lower bounds can be generalized to the
Geroch-Traschen class.
It does not seem immediate to extend the present paper, though. For instance, it is not obvious if Proposition
4.22 and the identification of the slope of C1-functions as the norm of the gradient remains true in such a
higher generality. Related to this, De Giorgi [19] introduced the notion of quasi-Riemannian metric spaces,
which are Lipschitz manifolds with an elliptic metric g such that the slope of Lipschitz functions coincide
almost everywhere with the norm of the gradient; moreover, he formulated several conjectures on the topic.
Since such identification is crucial for our comparison of the classical and the synthetic Sobolev spaces
(Corollary 4.27), we assume g to be at least continuous.

Remarks on the volume growth condition

We conclude the paper by pointing out that, in the case of a Riemannian manifold with g ∈ C0 ∩W 1,p
loc (M)

for some p > n = dimM , one can drop the volume growth condition in Theorem 7.2 (ii). More precisely
we prove that, in this case, the exponential bound on volume growth follows from the distributional lower
Ricci curvature bound. The assumption g ∈ C0 ∩W 1,p(M), with p > n is used in order to build on top of
the approximation results from Subsection 2.2 and the volume bounds established by Chen-Wei [15] (after
Petersen-Wei [39]) for Riemannian manifolds with Ricci curvature bounded below in an Lp-sense.
Proposition 7.5. Let M be a smooth manifold and let g ∈ C0 ∩W 1,p

loc (M) be Riemannian metric on M , for
some p > n. Suppose that the distributional Ricci curvature tensor is bounded below by K, for some K ∈ R.
Then (M, dg,dvolg) satisfies the volume growth condition (4.1).

Proof. Fix a point p ∈ M and a sequence Rj ∈ (0,∞) such that limj→∞Rj = ∞. For each j, the set

Bj := B
dg
Rj

(p) is compact. For ε ∈ (0, 1), define gε = ρε ∗ g. By local uniform convergence gε → g, as ε→ 0,

we get that, for each j ∈ N, there exists an εj ∈ (0, 1), such that:
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• for each Borel set Ω ⊂ Bj , it holds 1
2volg(Ω) ≤ volgεj (Ω) ≤ 2volg(Ω);

• for each x ∈ Bj , it holds that g and gεj are 2-equivalent; i.e., 1
2g ≤ gεj ≤ 2g.

Proposition 2.7 yields that, for each compact set K ⊂M :

‖Ric[gε]− ρε ∗ Ric[g]‖Lp/2(K) → 0, as ε→ 0. (7.3)

For any smooth Riemannian manifold (M, g̃), in [15] the authors consider the quantity k̄[g̃](H, q,R, x), for
H ∈ R, 2q > n,R > 0, x ∈M , defined as

k̄[g̃](H, q,R, x) =
( 1

volg̃(B
dg̃
R (x))

∫
(B

dg̃
R (x))

ρqHdvolg̃

) 1
q

,

where ρH(y) = max(−ρ(y) + (n − 1)H, 0) and ρ(y) denotes the smallest eigenvalue of the Ricci curvature
tensor at y. In other words, ρH denotes the Ricci curvature lying below the threshold (n − 1)H. The
convergence (7.3) implies that for all j, we can choose εj small enough such that k̄[gεj ](

K
n−1 ,

p
2 , 1, x) ≤ δ0

for all x ∈ BRj−1(p), where δ0 = δ0( K
n−1 ,

p
2 , 1) is given in [15, Theorem 1.2]. Then, [15, Theorem 1.2] yields

that, for R ≤ Rj−1
4 :

volg(B
dg
R (p)) ≤ 2volg(B

dgεj
2R (p)) ≤ 2(1 + C(n, p,K))eR−1V (K,n,R), (7.4)

where V (K,n,R) denotes the volume of the ball of radius R in the n-dimensional space form of constant
curvature K/(n − 1). Now the result follows by the exponential volume growth of metric balls in space
forms.

In the presence of a weight on the volume measure, the results of [15] are not yet available in the literature for
Lp-lower bounds on the Bakry-Émery-N -Ricci curvature tensor (though we expect analogous statements).
For this reason, below we include a variant of Proposition 7.5 which allows to consider a C1-weight, under
the stronger assumption that g ∈ C1. The proof is again by approximation, building on top of [25].
Proposition 7.6. Let M be a smooth manifold and g be a C1-Riemannian metric on M . Moreover, let
h ∈ C1(M, (0,∞)). Let N ∈ [n,∞) and K ∈ R. Suppose that the distributional Bakry-Émery-N -Ricci
curvature tensor is bounded below by K. Then (M, dg, h

2dvolg) satisfies the volume growth condition (4.1).

Proof. Fix a point p ∈ M and a sequence Rj ∈ (0,∞) such that limj→∞Rj = ∞. For each j, the set

Bj := B
dg
Rj

(p) is compact. For ε ∈ (0, 1), define gε = ρε ∗ g and hε = ρε ∗ h. Noting that [25, Lemma 4.6]

holds similarly for K < 0, we get that, for each j ∈ N, there exists an εj ∈ (0, 1) such that

• for each Borel set Ω ⊂ Bj , it holds that 1
2h

2volg(Ω) ≤ h2
εjvolgεj (Ω) ≤ 2h2volg(Ω);

• for each x ∈ Bj , it holds that g and gεj are 2-equivalent; i.e., 1
2g ≤ gεj ≤ 2g;

• for each X ∈ TBj , it holds that Ricµ,∞[gεj ](X,X) ≥ (K − 1)gεj (X,X).

Fix jıN. To keep notation short, write gj for gεj and hj for hεj . For each R < Rj , we can apply the weighted
Bishop-Gromov theorem for (Bj , dgj , h

2
jdvolgj ) together with the fact that H := supj supB1

|hj | <∞ to get
constants C,D > 0, depending only on K, N , H, and volg(B1(p)), such that

h2
jvolgj (B

dgj
R (p)) ≤ CeDR

2

.

From the choice of εj , it follows that for all R ≤ 1
2Rj :

h2volg(B
dg
R (p)) ≤ 2Ce4DR2

.

As j was arbitrary, the proof is complete.
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Corollary 7.7. Let M be a smooth manifold and assume one of the following two conditions hold:

(1) Let g be a C1-Riemannian metric and let h ∈ C1 be a positive function. Denote V := −2 log h ∈ C1

and define the measure µ via dµ := e−V dvolg.

(2) Let g be a Riemannian metric such that g ∈ C0 ∩W 1,p
loc (M), for some p > n. Define the measure µ via

dµ = dvolg.

Let N ∈ [n,∞) and K ∈ R. Then the following are equivalent:

(i) (M, dg, µ) is a CD∗(K,N)-space.

(ii) The distributional Bakry-Émery N -Ricci curvature tensor is bounded below by K.
Remark 7.8 (Equivalent formulations of Corollary 7.7). Under the assumptions of Corollary 7.7, the
CD∗(K,N) condition is equivalent to RCD∗(K,N) (which, in turn, is equivalent to RCD(K,N); see Re-
mark 4.9) since the associated metric measure space is infinitesimally Hilbertian (see Corollary 4.27).
Moreover in the unweighted case (i.e., assumption (1)), the statement (ii) in the equivalence is in turn
equivalent to distributional Ricci curvature tensor bounded below by K.
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