# ON THE MINIMALITY OF THE WINTERBOTTOM SHAPE 

SHOKHRUKH YU. KHOLMATOV


#### Abstract

In this short note we prove that the Winterbottom shape [5] is a volume-constraint minimizer of the corresponding anisotropic capillary functional.


## 1. Introduction

In this paper we study volume-constraint minimizers of the anisotropic capillary functional in the upper half-space $\Omega:=\left\{x=\left(x_{1}, \ldots, x_{n}\right): x_{n}>0\right\} \subset \mathbb{R}^{n}:$

$$
\mathcal{C}_{\Phi, \beta}(E):=P_{\Phi}(E, \Omega)-\beta \int_{\partial \Omega} \chi_{E} d \mathcal{H}^{n-1}, \quad E \in B V(\Omega ;\{0,1\})
$$

where $\Phi$ is an anisotropy - a positively-one homogeneous convex function in $\mathbb{R}^{n}$ satisfying

$$
\begin{equation*}
c_{\Phi}|x| \leq \Phi(x) \leq C_{\Phi}|x|, \quad x \in \mathbb{R}^{n} \tag{1.1}
\end{equation*}
$$

for some $C_{\Phi} \geq c_{\Phi}>0$,

$$
P_{\Phi}(E, \Omega)=\int_{\Omega \cap \partial^{*} E} \Phi\left(\nu_{E}\right) d \mathcal{H}^{n-1}
$$

is the $\Phi$-perimeter of $E$ in $\Omega, \partial^{*} E$ is the reduced boundary and $\nu_{E}$ is the generalized outer unit normal of $E, \beta$ is constant - a reative adhesion constant of $\partial \Omega$, and $\chi_{E}$ is the interior trace of $E$ along $\partial \Omega$, i.e.,

$$
\int_{\partial \Omega} \chi_{E} d \mathcal{H}^{n-1}=\mathcal{H}^{n-1}\left(\partial \Omega \cap \partial^{*} E\right)
$$

Recall that $E \in B V(\Omega ;\{0,1\})$ if and only if $E \in B V\left(\mathbb{R}^{n} ;\{0,1\}\right)$, and in particular, $\chi_{E} \in L^{1}(\partial \Omega)$ (see e.g. [1]). It is well-known that if $\beta \leq-\Phi\left(-\mathbf{e}_{n}\right)$, where $\mathbf{e}_{n}:=(0, \ldots, 0,1)$, then up to a translation the unique volume-constrained minimizer of $\mathcal{C}_{\Phi, \beta}$ is a translation of the Wulff shape $W^{\Phi}:=\left\{\Phi^{o} \leq 1\right\}$ of $\Phi$ in $\Omega$, where

$$
\Phi^{o}(x):=\max _{\Phi(y)=1}\langle x, y\rangle
$$

is the dual anisotropy, where $\langle\cdot, \cdot\rangle$ is the Euclidean scalar product. On the other hand, if $\beta \geq \Phi\left(\mathbf{e}_{n}\right)$, then one can readily check that

$$
\inf _{E \in B V(\Omega ;\{0,1\}),|E|=1} \mathcal{C}_{\Phi, \beta}(E)= \begin{cases}-\infty & \text { if } \beta>\Phi\left(\mathbf{e}_{n}\right) \\ 0 & \text { if } \beta=\Phi\left(\mathbf{e}_{n}\right)\end{cases}
$$

and the minimum problem does not admit a solution. In case $\beta=0$ from [2, Theorem 1.3] we deduce the following relative isoperimetric inequality in $\Omega$ :

$$
\begin{equation*}
\frac{P_{\Phi}(E, \Omega)}{|E|^{\frac{n-1}{n}}} \geq \frac{P_{\Phi}\left(W^{\Phi}, \Omega\right)}{\left|\Omega \cap W^{\Phi}\right|^{\frac{n-1}{n}}}, \quad E \in B V(\Omega,\{0,1\}) \tag{1.2}
\end{equation*}
$$

for $0<|E \cap \Omega|<+\infty$. It turns out (see [2, p. 2979]) that the equality in (1.2) holds if and only if $E=b+r W^{\Phi}$ for some $b \in \partial \Omega$ and $r>0$, i.e., $E$ is a horizontal translation of scaled Wulff shapes. In particular, the set $W_{0}^{\Phi}:=\Omega \cap W^{\Phi}$ is a unique (up to a horizontal translation) solution to the minimum problem

$$
\inf _{E \in B V(\Omega ;\{0,1\}),|E|=\left|W_{0}^{\Phi}\right|} \mathcal{C}_{\Phi, 0}(E) .
$$

Date: February 3, 2024.
2010 Mathematics Subject Classification. 53C44, 49Q20, 35A15, 35D30, 35D35.
Key words and phrases. anisotropy, capillarity functional, Wulff shape, Winterbottom shape, minimizer.

More generally, for $\beta \in\left(-\Phi\left(-\mathbf{e}_{n}\right), \Phi\left(\mathbf{e}_{n}\right)\right)$ Winterbottom in [5] constructed an equilibrium shape of crystalls atop other material, which can be defined as

$$
\begin{equation*}
W_{\beta}^{\Phi}:=\Omega \cap W^{\Phi}\left(-\beta \mathbf{e}_{n}\right) \tag{1.3}
\end{equation*}
$$

where $W^{\Phi}(z)=z+W^{\Phi}$. As we have seen earlier, the "half" Wulff shape $W_{0}^{\Phi}$ (which is also the Winterbottom shape with $\beta=0$ ) is not only an equilibrium, but also a global volume-constraint minimizer of $\mathcal{C}_{\Phi, 0}$. The following result shows that this property is true also for other values of $\beta$.

Theorem 1.1. For any $\beta \in\left(-\Phi\left(-\mathbf{e}_{n}\right), \Phi\left(\mathbf{e}_{n}\right)\right)$

$$
\begin{equation*}
\inf _{E \in B V(\Omega ;\{0,1\}),|E|=W_{\beta}^{\Phi}} \mathcal{C}_{\Phi, \beta}(E)=\mathcal{C}_{\Phi, \beta}\left(W_{\beta}^{\Phi}\right) \tag{1.4}
\end{equation*}
$$

The equality holds if and only if $E=W^{\Phi}\left(b-\beta \mathbf{e}_{n}\right)$ for some $b \in \partial \Omega$. Equivalently,

$$
\begin{equation*}
\frac{\mathcal{C}_{\Phi, \beta}(E)}{|E|^{\frac{n-1}{n}}} \geq \frac{\mathcal{C}_{\Phi, \beta}\left(W_{\beta}^{\Phi}\right)}{\left|W_{\beta}^{\Phi}\right|^{\frac{n-1}{n}}}, \quad E \in B V(\Omega ;\{0,1\}) \tag{1.5}
\end{equation*}
$$

and the equality holds if and only if $E=\Omega \cap\left(b-r \beta \mathbf{e}_{n}+r W^{\Phi}\right)$ for some $r>0$ and $b \in \partial \Omega$.
Thus, the volume-constraint minimizers of $\mathcal{C}_{\Phi, \beta}$ are precisely the horizontal translations of $W_{\beta}^{\Phi}$. This result is well-known in the Euclidean case $\Phi=|\cdot|$ (see, for example, [4, Theorem 19.21]). To the best of my knowledge, there is no literature on the minimality of $W_{\beta}^{\Phi}$ except for cases where $\beta=0$ or $\Phi$ is Euclidean.

Acknowledgement. I thank Guido De Philippis and Francesco Maggi for useful discussions, especially, for showing their (unpublished) short notes on a generalization of Theorem 1.1 to more general cones with vertex at origin. I acknowledge support from the FWF Stand-Alone project P33716.

## 2. Proof of Theorem 1.1

Owing (1.2) we provide an elementary proof of this result using only properties of anisotropies in $\mathbb{R}^{n}$. We divide the prove into smaller steps.

Step 1: Introducing new anisotropies. Fix any $\beta \in\left(-\Phi\left(-\mathbf{e}_{n}\right), \Phi\left(\mathbf{e}_{n}\right)\right)$ and $\eta^{ \pm} \in \partial \Phi\left( \pm \mathbf{e}_{n}\right)$, i.e. ${ }^{1}$,

$$
\begin{equation*}
\left\langle\eta^{ \pm}, \pm \mathbf{e}_{n}\right\rangle=\Phi\left( \pm \mathbf{e}_{n}\right) \quad \text { and } \quad \Phi^{o}\left(\eta^{ \pm}\right)=1 \tag{2.1}
\end{equation*}
$$

where $\partial f$ is the subdifferential of a convex function $f$. Consider the functions

$$
\Psi_{\beta}(x):=\left\{\begin{array}{ll}
\Phi(x)-\beta\left\langle x, \frac{\eta^{+}}{\Phi\left(\mathbf{e}_{n}\right)}\right\rangle & \text { if } \beta \geq 0,  \tag{2.2}\\
\Phi(x)+\beta\left\langle x, \frac{\eta^{-}}{\Phi\left(-\mathbf{e}_{n}\right)}\right\rangle & \text { if } \beta<0,
\end{array} \quad x \in \mathbb{R}^{n}\right.
$$

where for shortness we drop the dependence of $\Psi_{\beta}$ on $\Phi$ and the choice of $\eta^{ \pm}$. Notice that such a technique of "absorbing" the relative adhesion coefficient into the anisotropy was already used in [3].

Let us show that $\Psi_{\beta}$ is an anisotropy in $\mathbb{R}^{n}$. Indeed, the convexity and positive one-homogeneity of $\Psi_{\beta}$ are obvious. Let us show that there exists $C_{\Psi_{\beta}} \geq c_{\Psi_{\beta}}>0$ such that

$$
\begin{equation*}
c_{\Psi_{\beta}}|x| \leq \Psi_{\beta}(x) \leq C_{\Psi_{\beta}}|x|, \quad x \in \mathbb{R}^{n} \tag{2.3}
\end{equation*}
$$

Indeed, by (1.1)

$$
\sup _{|x|=1} \Psi_{\beta}(x) \leq \sup _{|x|=1} \Phi(x)+\frac{|\beta| \max \left\{\left|\eta^{+}\right|,\left|\eta^{-}\right|\right\}}{\Phi\left(\mathbf{e}_{n}\right)} \leq C_{\Phi}+\frac{|\beta| \max \left\{\left|\eta^{+}\right|,\left|\eta^{-}\right|\right\}}{\Phi\left(\mathbf{e}_{n}\right)}=: C_{\Psi_{\beta}} .
$$

Thus, the second inequality in (2.3) holds.
On the other hand, by the Young inequality ${ }^{2}$ and the second equality in (2.1)

$$
\begin{equation*}
\left\langle x, \frac{\eta^{ \pm}}{\Phi\left( \pm \mathbf{e}_{n}\right)}\right\rangle \leq \frac{\Phi(x) \Phi^{o}\left(\eta^{ \pm}\right)}{\Phi\left( \pm \mathbf{e}_{n}\right)}=\frac{1}{\Phi\left( \pm \mathbf{e}_{n}\right)} \Phi(x) \tag{2.4}
\end{equation*}
$$

[^0]Now if $\beta \geq 0$, then by (2.4) and (1.1)

$$
\Psi_{\beta}(x) \geq\left(1-\frac{\beta}{\Phi\left(\mathbf{e}_{n}\right)}\right) \Phi(x) \geq \frac{\Phi\left(\mathbf{e}_{n}\right)-\beta}{\Phi\left(\mathbf{e}_{n}\right)} c_{\Phi}|x|
$$

and similarly, if $\beta<0$,

$$
\Psi_{\beta}(x) \geq \frac{\Phi\left(-\mathbf{e}_{n}\right)+\beta}{\Phi\left(-\mathbf{e}_{n}\right)} c_{\Phi}|x| .
$$

Thus,

$$
c_{\Psi_{\beta}}:=c_{\Phi} \min \left\{\frac{\Phi\left(\mathbf{e}_{n}\right)-|\beta|}{\Phi\left(\mathbf{e}_{n}\right)}, \frac{\Phi\left(-\mathbf{e}_{n}\right)-|\beta|}{\Phi\left(-\mathbf{e}_{n}\right)}\right\}>0
$$

and the first inequality in (2.3) holds. Therefore, $\Psi_{\beta}$ is an anisotropy in $\mathbb{R}^{n}$.
Step 2: A representation of the capillary functional. Let us show

$$
\mathcal{C}_{\Phi, \beta}=P_{\Psi_{\beta}}(\cdot, \Omega)
$$

Indeed, since $\eta^{ \pm}$are constant, by the divergence theorem

$$
0=\int_{E} \operatorname{div} \eta^{ \pm} d x=\int_{\Omega \cap \partial^{*} E}\left\langle\eta^{ \pm}, \nu_{E}\right\rangle d \mathcal{H}^{n-1}-\int_{\partial \Omega \cap \partial^{*} E}\left\langle\eta^{ \pm}, \mathbf{e}_{n}\right\rangle d \mathcal{H}^{n-1}
$$

Thus,

$$
\begin{aligned}
P_{\Psi_{\beta}}(E, \Omega) & =\int_{\Omega \cap \partial^{*} E} \Phi\left(\nu_{E}\right) d \mathcal{H}^{n-1} \mp \frac{\beta}{\Phi\left( \pm \mathbf{e}_{n}\right)} \int_{\Omega \cap \partial^{*} E}\left\langle\nu_{E}, \eta^{ \pm}\right\rangle d \mathcal{H}^{n-1} \\
& =P_{\Phi}(E, \Omega)-\beta \frac{\left\langle\eta^{ \pm}, \pm \mathbf{e}_{n}\right\rangle}{\Phi\left( \pm \mathbf{e}_{n}\right)} \int_{\partial \Omega} \chi_{E} d \mathcal{H}^{n-1} \\
& =P_{\Phi}(E, \Omega)-\beta \int_{\partial \Omega} \chi_{E} d \mathcal{H}^{n-1}=\mathcal{C}_{\Phi, \beta}(E)
\end{aligned}
$$

Step 3: Wulff shapes of $\Psi_{\beta}$ and $\Phi$. We claim

$$
\begin{equation*}
W^{\Psi_{\beta}}=\mp \frac{\beta \eta^{ \pm}}{\Phi\left( \pm \mathbf{e}_{n}\right)}+W^{\Phi} \tag{2.5}
\end{equation*}
$$

where if $\beta \geq 0$, we take " + " sign, otherwise we take "-" sign. Indeed, assume that $\beta \geq 0$ and take any $x$ with $\Psi_{\beta}^{o}(x)=1$, where $\Psi_{\beta}^{o}$ is the dual of $\Psi_{\beta}$ (since $\Psi_{\beta}$ is an anisotropy, its dual is well-defined and also is an anisotropy). We claim that

$$
\begin{equation*}
\Phi^{o}\left(x+\frac{\beta \eta^{+}}{\Phi\left(\mathbf{e}_{n}\right)}\right)=1 . \tag{2.6}
\end{equation*}
$$

Let $\xi \in \partial \Psi_{\beta}^{o}(x)$, i.e., $\langle x, \xi\rangle=1$ and $\Psi_{\beta}(\xi)=1$. Then one can readily check that $x \in \partial \Psi_{\beta}(\xi)$. Hence, using the explicit expression of $\Psi_{\beta}$ in (2.2) we can compute its subdifferential:

$$
\begin{equation*}
\partial \Psi_{\beta}(\theta)=\partial \Phi(\theta)-\frac{\beta \eta^{+}}{\Phi\left(\mathbf{e}_{n}\right)} \tag{2.7}
\end{equation*}
$$

at each $\theta \in \mathbb{R}^{n} \backslash\{0\}$, and get

$$
x=\zeta-\frac{\beta \eta^{+}}{\Phi\left(\mathbf{e}_{n}\right)} \quad \text { for some } \zeta \in \partial \Phi(\xi)
$$

Thus,

$$
\Phi^{o}\left(x+\frac{\beta \eta^{+}}{\Phi\left(\mathbf{e}_{n}\right)}\right)=\Phi^{o}(\zeta)=1
$$

On the other hand, if (2.6) holds, then $\zeta:=x+\frac{\beta \eta^{+}}{\Phi\left(\mathbf{e}_{n}\right)} \in \partial \Phi(\xi)$ for some $\xi \neq 0$. This and (2.7) implies $x \in \partial \Psi_{\beta}(\xi)$, i.e., $\Psi_{\beta}^{o}(x)=1$. Thus,

$$
\Phi^{o}\left(x+\frac{\beta \eta^{+}}{\Phi\left(\mathbf{e}_{n}\right)}\right)=1 \quad \Longleftrightarrow \quad \Psi_{\beta}^{o}(x)=1
$$

Since both Wulff shapes are convex and their boundaries coincide, this implies (2.5).
The case $\beta<0$ is analogous.
Step 4: Translated Wulff shapes. Let us show that the translated $W^{\Phi}$ in (2.5) is a horizontal translation of truncated Wulf shapes $W_{\beta}^{\Phi}$ in (1.3). Indeed, consider the vector

$$
b:=\mp \frac{\beta \eta^{ \pm}}{\Phi\left( \pm \mathbf{e}_{n}\right)}+\beta \mathbf{e}_{n}
$$

By (2.1)

$$
\left\langle b, \mathbf{e}_{n}\right\rangle=-\frac{\beta\left\langle\eta^{ \pm}, \pm \mathbf{e}_{n}\right\rangle}{\Phi\left( \pm \mathbf{e}_{n}\right)}+\beta=0
$$

and hence, $b \in \partial \Omega$. Therefore, the translated Wulff shape $\mp \frac{\beta \eta^{ \pm}}{\Phi\left( \pm \mathbf{e}_{n}\right)}+W^{\Phi}$ is a horizontal translation of the translated Wulff shape $-\beta \mathbf{e}_{n}+W^{\Phi}$.

Step 5: Minimality of truncated Wulff shape $W_{\beta}^{\Phi}$ in (1.3). Applying (1.2) with $\Psi_{\beta}$ we find

$$
\begin{equation*}
\frac{P_{\Psi_{\beta}}(E, \Omega)}{|E|^{\frac{n-1}{n}}} \geq \frac{P_{\Psi_{\beta}}\left(W^{\left.\Psi_{\beta}, \Omega\right)}\right.}{\left|\Omega \cap W^{\Psi_{\beta}}\right|^{\frac{n-1}{n}}}, \quad E \in B V(\Omega ;\{0,1\}) . \tag{2.8}
\end{equation*}
$$

The equality holds iff $E=b+r W^{\Psi_{\beta}}$ for some $r>0$ and $b \in \partial \Omega$. By steps 3 and $4, W_{\beta}^{\Phi}$ is a horizontal translation of

$$
\begin{equation*}
W^{\Psi_{\beta}}=W^{\Phi}\left(\mp \frac{\beta \eta^{ \pm}}{\Phi\left( \pm \mathbf{e}_{n}\right)}\right)=b_{0}+W^{\Phi}\left(-\beta \mathbf{e}_{n}\right) \tag{2.9}
\end{equation*}
$$

for some $b_{0} \in \partial \Omega$. In particular, we can use $W_{\beta}^{\Phi}$ in place of $\Omega \cap W^{\Psi_{\beta}}$ in (2.8). Moreover, by step 2 $P_{\Psi_{\beta}}(\cdot, \Omega)=\mathcal{C}_{\Phi, \beta}$, and hence, we can represent (2.8) as

$$
\frac{\mathfrak{C}_{\Phi, \beta}(E)}{|E|^{\frac{n-1}{n}}} \geq \frac{\mathfrak{C}_{\Phi, \beta}\left(W_{\beta}^{\Phi}\right)}{\left|W_{\beta}^{\Phi}\right|^{\frac{n-1}{n}}}, \quad E \in B V(\Omega ;\{0,1\})
$$

which is (1.5).
Step 6: Conclusion of the proof of Theorem 1.1. Since $\partial \Omega$ is a (horizontal) hyperplane, the set of all horizontal translations form an additive group. In particular, by step 5 and (2.9) the sets

$$
E:=b+r W^{\Psi_{\beta}}=b+r W^{\Phi}\left(\mp \frac{\beta \eta^{ \pm}}{\Phi\left( \pm \mathbf{e}_{n}\right)}\right)=\left(b+b_{0} r\right)+r W^{\Phi}\left(-\beta \mathbf{e}_{n}\right)
$$

are the only ones preserving the equality in (2.8), or equivalently, the equality in (1.5) holds if and only if $E=\Omega \cap\left(b+W^{\Phi}\left(-\beta r \mathbf{e}_{n}\right)\right)$ for some $b \in \partial \Omega$ and $r>0$. Finally, the assertions related to the equality (1.4) directly follows from (1.5).

## References

[1] G. Bellettini, Sh. Kholmatov: Minimizing movements for mean curvature flow of droplets with prescribed contact angle. J. Math. Pures Appl. 117 (2018), 1-58.
[2] X. Cabré, X. Ros-Oton, J. Serra: Sharp isoperimetric inequalities via the ABP method. J. Eur. Math. Soc. 18 (2016), 2971-2998.
[3] G. De. Philippis, F. Maggi: Regularity of free boundaries in anisotropic capillarity problems and the validity of Young's law. Arch. Rational Mech. Anal. 216 (2015), 473-568.
[4] F. Maggi: Sets of Finite Perimeter and Geometric Variational Problems. An Introduction to Geometric Measure Theory. Cambridge University Press, Cambridge, 2012.
[5] W.L. Winterbottom: Equilibrium shape of a small particle in contact with a foreign substrate. Acta Metallurgica 15 (1967), 303-310.
(Sh. Kholmatov) University of Vienna, Oskar-Morgenstern Platz 1, 1090 Vienna (Austria)
Email address: shokhrukh.kholmatov@univie.ac.at


[^0]:    ${ }^{1}$ Since a priori we are not assuming the regularity of $\Phi$, there could be more than one possible choice of $\eta^{ \pm}$. Moreover, since we are not assuming the evenness of $\Phi$, in general we cannot claim $\eta^{+}=-\eta^{-}$.
    ${ }^{2}$ I.e., $\langle x, y\rangle \leq \Phi(x) \Phi^{o}(y)$ for all $x, y \in \mathbb{R}^{n}$.

