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Abstract. In this short note we prove that the Winterbottom shape [5] is a volume-constraint

minimizer of the corresponding anisotropic capillary functional.

1. Introduction

In this paper we study volume-constraint minimizers of the anisotropic capillary functional in the
upper half-space Ω := {x = (x1, . . . , xn) : xn > 0} ⊂ Rn :

CΦ,β(E) := PΦ(E,Ω)− β

∫
∂Ω

χEdHn−1, E ∈ BV (Ω; {0, 1}),

where Φ is an anisotropy – a positively-one homogeneous convex function in Rn satisfying

cΦ|x| ≤ Φ(x) ≤ CΦ|x|, x ∈ Rn, (1.1)

for some CΦ ≥ cΦ > 0,

PΦ(E,Ω) =

∫
Ω∩∂∗E

Φ(νE)dHn−1

is the Φ-perimeter of E in Ω, ∂∗E is the reduced boundary and νE is the generalized outer unit normal
of E, β is constant – a reative adhesion constant of ∂Ω, and χE is the interior trace of E along ∂Ω,
i.e., ∫

∂Ω

χEdHn−1 = Hn−1(∂Ω ∩ ∂∗E).

Recall that E ∈ BV (Ω; {0, 1}) if and only if E ∈ BV (Rn; {0, 1}), and in particular, χE ∈ L1(∂Ω) (see
e.g. [1]). It is well-known that if β ≤ −Φ(−en), where en := (0, . . . , 0, 1), then up to a translation the
unique volume-constrained minimizer of CΦ,β is a translation of the Wulff shape WΦ := {Φo ≤ 1} of
Φ in Ω, where

Φo(x) := max
Φ(y)=1

⟨x, y⟩

is the dual anisotropy, where ⟨·, ·⟩ is the Euclidean scalar product. On the other hand, if β ≥ Φ(en),
then one can readily check that

inf
E∈BV (Ω;{0,1}), |E|=1

CΦ,β(E) =

{
−∞ if β > Φ(en),

0 if β = Φ(en),

and the minimum problem does not admit a solution. In case β = 0 from [2, Theorem 1.3] we deduce
the following relative isoperimetric inequality in Ω :

PΦ(E,Ω)

|E|n−1
n

≥ PΦ(W
Φ,Ω)

|Ω ∩WΦ|n−1
n

, E ∈ BV (Ω, {0, 1}), (1.2)

for 0 < |E ∩ Ω| < +∞. It turns out (see [2, p. 2979]) that the equality in (1.2) holds if and only if
E = b+ rWΦ for some b ∈ ∂Ω and r > 0, i.e., E is a horizontal translation of scaled Wulff shapes. In
particular, the set WΦ

0 := Ω∩WΦ is a unique (up to a horizontal translation) solution to the minimum
problem

inf
E∈BV (Ω;{0,1}),|E|=|WΦ

0 |
CΦ,0(E).
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More generally, for β ∈ (−Φ(−en),Φ(en)) Winterbottom in [5] constructed an equilibrium shape of
crystalls atop other material, which can be defined as

WΦ
β := Ω ∩WΦ(−βen), (1.3)

where WΦ(z) = z + WΦ. As we have seen earlier, the “half” Wulff shape WΦ
0 (which is also the

Winterbottom shape with β = 0) is not only an equilibrium, but also a global volume-constraint
minimizer of CΦ,0. The following result shows that this property is true also for other values of β.

Theorem 1.1. For any β ∈ (−Φ(−en),Φ(en))

inf
E∈BV (Ω;{0,1}), |E|=WΦ

β

CΦ,β(E) = CΦ,β(W
Φ
β ). (1.4)

The equality holds if and only if E = WΦ(b− βen) for some b ∈ ∂Ω. Equivalently,

CΦ,β(E)

|E|n−1
n

≥
CΦ,β(W

Φ
β )

|WΦ
β |n−1

n

, E ∈ BV (Ω; {0, 1}), (1.5)

and the equality holds if and only if E = Ω ∩ (b− rβen + rWΦ) for some r > 0 and b ∈ ∂Ω.

Thus, the volume-constraint minimizers of CΦ,β are precisely the horizontal translations of WΦ
β .

This result is well-known in the Euclidean case Φ = | · | (see, for example, [4, Theorem 19.21]). To the
best of my knowledge, there is no literature on the minimality of WΦ

β except for cases where β = 0 or
Φ is Euclidean.

Acknowledgement. I thank Guido De Philippis and Francesco Maggi for useful discussions, espe-
cially, for showing their (unpublished) short notes on a generalization of Theorem 1.1 to more general
cones with vertex at origin. I acknowledge support from the FWF Stand-Alone project P33716.

2. Proof of Theorem 1.1

Owing (1.2) we provide an elementary proof of this result using only properties of anisotropies in
Rn. We divide the prove into smaller steps.

Step 1: Introducing new anisotropies. Fix any β ∈ (−Φ(−en),Φ(en)) and η± ∈ ∂Φ(±en), i.e.
1,〈

η±,±en
〉
= Φ(±en) and Φo(η±) = 1, (2.1)

where ∂f is the subdifferential of a convex function f. Consider the functions

Ψβ(x) :=

Φ(x)− β
〈
x, η+

Φ(en)

〉
if β ≥ 0,

Φ(x) + β
〈
x, η−

Φ(−en)

〉
if β < 0,

x ∈ Rn, (2.2)

where for shortness we drop the dependence of Ψβ on Φ and the choice of η±. Notice that such a
technique of “absorbing” the relative adhesion coefficient into the anisotropy was already used in [3].

Let us show that Ψβ is an anisotropy in Rn. Indeed, the convexity and positive one-homogeneity
of Ψβ are obvious. Let us show that there exists CΨβ

≥ cΨβ
> 0 such that

cΨβ
|x| ≤ Ψβ(x) ≤ CΨβ

|x|, x ∈ Rn. (2.3)

Indeed, by (1.1)

sup
|x|=1

Ψβ(x) ≤ sup
|x|=1

Φ(x) + |β|max{|η+|,|η−|}
Φ(en)

≤ CΦ + |β|max{|η+|,|η−|}
Φ(en)

=: CΨβ
.

Thus, the second inequality in (2.3) holds.
On the other hand, by the Young inequality2 and the second equality in (2.1)〈

x, η±

Φ(±en)

〉
≤ Φ(x)Φo(η±)

Φ(±en)
= 1

Φ(±en)
Φ(x). (2.4)

1Since a priori we are not assuming the regularity of Φ, there could be more than one possible choice of η±. Moreover,
since we are not assuming the evenness of Φ, in general we cannot claim η+ = −η−.
2I.e., ⟨x, y⟩ ≤ Φ(x)Φo(y) for all x, y ∈ Rn.
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Now if β ≥ 0, then by (2.4) and (1.1)

Ψβ(x) ≥
(
1− β

Φ(en)

)
Φ(x) ≥ Φ(en)−β

Φ(en)
cΦ|x|,

and similarly, if β < 0,

Ψβ(x) ≥ Φ(−en)+β
Φ(−en)

cΦ|x|.
Thus,

cΨβ
:= cΦ min

{
Φ(en)−|β|

Φ(en)
, Φ(−en)−|β|

Φ(−en)

}
> 0

and the first inequality in (2.3) holds. Therefore, Ψβ is an anisotropy in Rn.

Step 2: A representation of the capillary functional. Let us show

CΦ,β = PΨβ
(·,Ω).

Indeed, since η± are constant, by the divergence theorem

0 =

∫
E

div η±dx =

∫
Ω∩∂∗E

〈
η±, νE

〉
dHn−1 −

∫
∂Ω∩∂∗E

〈
η±, en

〉
dHn−1.

Thus,

PΨβ
(E,Ω) =

∫
Ω∩∂∗E

Φ(νE)dHn−1 ∓ β
Φ(±en)

∫
Ω∩∂∗E

〈
νE , η

±〉 dHn−1

=PΦ(E,Ω)− β
⟨η±,±en⟩
Φ(±en)

∫
∂Ω

χEdHn−1

=PΦ(E,Ω)− β

∫
∂Ω

χEdHn−1 = CΦ,β(E),

Step 3: Wulff shapes of Ψβ and Φ. We claim

WΨβ = ∓ βη±

Φ(±en)
+WΦ, (2.5)

where if β ≥ 0, we take ”+” sign, otherwise we take ”-” sign. Indeed, assume that β ≥ 0 and take any
x with Ψo

β(x) = 1, where Ψo
β is the dual of Ψβ (since Ψβ is an anisotropy, its dual is well-defined and

also is an anisotropy). We claim that

Φo
(
x+ βη+

Φ(en)

)
= 1. (2.6)

Let ξ ∈ ∂Ψo
β(x), i.e., ⟨x, ξ⟩ = 1 and Ψβ(ξ) = 1. Then one can readily check that x ∈ ∂Ψβ(ξ). Hence,

using the explicit expression of Ψβ in (2.2) we can compute its subdifferential:

∂Ψβ(θ) = ∂Φ(θ)− βη+

Φ(en)
(2.7)

at each θ ∈ Rn \ {0}, and get

x = ζ − βη+

Φ(en)
for some ζ ∈ ∂Φ(ξ).

Thus,

Φo
(
x+ βη+

Φ(en)

)
= Φo(ζ) = 1.

On the other hand, if (2.6) holds, then ζ := x+ βη+

Φ(en)
∈ ∂Φ(ξ) for some ξ ̸= 0. This and (2.7) implies

x ∈ ∂Ψβ(ξ), i.e., Ψ
o
β(x) = 1. Thus,

Φo
(
x+ βη+

Φ(en)

)
= 1 ⇐⇒ Ψo

β(x) = 1.

Since both Wulff shapes are convex and their boundaries coincide, this implies (2.5).
The case β < 0 is analogous.

Step 4: Translated Wulff shapes. Let us show that the translated WΦ in (2.5) is a horizontal
translation of truncated Wulf shapes WΦ

β in (1.3). Indeed, consider the vector

b := ∓ βη±

Φ(±en)
+ βen.
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By (2.1)

⟨b, en⟩ = −β⟨η±,±en⟩
Φ(±en)

+ β = 0,

and hence, b ∈ ∂Ω. Therefore, the translated Wulff shape ∓ βη±

Φ(±en)
+WΦ is a horizontal translation of

the translated Wulff shape −βen +WΦ.

Step 5: Minimality of truncated Wulff shape WΦ
β in (1.3). Applying (1.2) with Ψβ we find

PΨβ
(E,Ω)

|E|
n−1
n

≥ PΨβ
(WΨβ ,Ω)

|Ω∩WΨβ |
n−1
n

, E ∈ BV (Ω; {0, 1}). (2.8)

The equality holds iff E = b+ rWΨβ for some r > 0 and b ∈ ∂Ω. By steps 3 and 4, WΦ
β is a horizontal

translation of
WΨβ = WΦ(∓ βη±

Φ(±en)
) = b0 +WΦ(−βen) (2.9)

for some b0 ∈ ∂Ω. In particular, we can use WΦ
β in place of Ω ∩ WΨβ in (2.8). Moreover, by step 2

PΨβ
(·,Ω) = CΦ,β , and hence, we can represent (2.8) as

CΦ,β(E)

|E|
n−1
n

≥ CΦ,β(W
Φ
β )

|WΦ
β |

n−1
n

, E ∈ BV (Ω; {0, 1}),

which is (1.5).

Step 6: Conclusion of the proof of Theorem 1.1. Since ∂Ω is a (horizontal) hyperplane, the set of
all horizontal translations form an additive group. In particular, by step 5 and (2.9) the sets

E := b+ rWΨβ = b+ rWΦ(∓ βη±

Φ(±en)
) = (b+ b0r) + rWΦ(−βen)

are the only ones preserving the equality in (2.8), or equivalently, the equality in (1.5) holds if and
only if E = Ω ∩ (b +WΦ(−βren)) for some b ∈ ∂Ω and r > 0. Finally, the assertions related to the
equality (1.4) directly follows from (1.5).
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