
THE MONGE PROBLEM IN WIENER SPACE

FABIO CAVALLETTI

Abstract. We address the Monge problem in the abstract Wiener space and we give an existence result
provided both marginal measures are absolutely continuous with respect to the infinite dimensional
Gaussian measure γ.

1. Introduction

Let (X, ‖ · ‖) be an ∞-dimensional separable Banach space, γ ∈ P(X) be a non degenerate Gaussian
measure over X and H(γ) be the corresponding Cameron-Martin space with Hilbertian norm ‖ · ‖H(γ).
Given two probability measures µ, ν ∈ P(X), we will prove the existence of a solution for the following
Monge minimization problem

(1.1) min
T :T♯µ=ν

∫

X

‖x− T (x)‖H(γ)µ(dx),

provided µ and ν are both absolutely continuous w.r.t. γ.
Before giving an overview of the paper, we recall the main results on the Monge problem.
In the original formulation given by Monge in 1781 the problem was settled in Rd, with the cost given

by the Euclidean norm and the measures µ, ν supposed to be absolutely continuous and supported on
two disjoint compact sets. The original problem remained unsolved for a long time. In 1978 Sudakov
[17] claimed to have a solution for any distance cost function induced by a norm: an essential ingredient
in the proof was that if µ ≪ Ld and Ld-a.e. Rd can be decomposed into convex sets of dimension k,
then then the conditional probabilities are absolutely continuous with respect to the Hk measure of the
correct dimension. But it turns out that when d > 2, 0 < k < d− 1 the property claimed by Sudakov is
not true. An example with d = 3, k = 1 can be found in [15].

The Euclidean case has been correctly solved only during the last decade. L. C. Evans and W. Gangbo
in [11] solve the problem under the assumptions that sptµ ∩ spt ν = ∅, µ, ν ≪ Ld and their densities are
Lipschitz functions with compact support. The first existence results for general absolutely continuous
measures µ, ν with compact support is independently obtained by L. Caffarelli, M. Feldman and R.J.
McCann in [8] and by N. Trudinger and X.J. Wang in [18]. M. Feldman and R.J. McCann [12] extend
the results to manifolds with geodesic cost. The case of a general norm as cost function on Rd, including
also the case with non strictly convex unitary ball, is solved first in the particular case of crystalline
norm by L. Ambrosio, B. Kirchheim and A. Pratelli in [2], and then in full generality independently by L.
Caravenna in [9] and by T. Champion and L. De Pascale in [10]. The Monge minimization problem for
non-branching geodesic metric space is studied in [6], where the existence is proven for spaces satisfying
a finite dimensional lower curvature bound, namely MCP(K,N).

1.1. Overview of the paper. The approach to this problem is the one of [6]: assume that there exists
a transference plan of finite cost, then we can

(1) reduce the problem to transportation problems along distinct geodesics;
(2) show that the disintegration of the marginal µ on each geodesic is continuous;
(3) find a transport map on each geodesic and piece them together.

Indeed, since the cost function is lower semi-continuous, the existence of transference plan of finite cost
implies the existence of an optimal transference plan. This permits to reduce the minimization problem
to one dimensional minimization problems. There an explicit map can be constructed provided the first
marginal measure µ is continuous (i.e. without atoms), for example choose the monotone minimizer of
the quadratic cost | · |2. The third point is an application of selection theorems.
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All this strategy has already been implemented in full generality in [6]. Thus to obtain the existence
of an optimal transference map we have to show that point (2) of the strategy is fulfilled for µ and ν
absolutely continuous with respect to the infinite dimensional Gaussian measure γ.

We recall the main steps of the reduction to geodesics.
The geodesics used by a given transference plan π to transport mass can be obtained from a set Γ

on which π is concentrated. It is well-known that every optimal transference plan is concentrated on a
‖ · ‖H-cyclically monotone set. Since the considered norm is non-branching, Γ yields a natural partition
R of a subset of the transport set Te, i.e. the set of points on the geodesics used by π: defining

• the set T made of inner points of geodesics,
• the set a ∪ b := Te \ T of initial points a and end points b,

the cyclical monotonicity of Γ implies that the geodesics used by π are a partition on T . In general in a
there are points from which more than one geodesic starts and in b there are points in which more than
one geodesic ends, therefore the membership to a geodesic can’t be an equivalence relation on the set
a ∪ b. Take as example the unit circle with µ = δ0 and ν = δeiπ .

Even if we have a natural partition R of T and µ(a) = 0, we cannot reduce the transport problem
to one dimensional problems: a necessary and sufficient condition is the strongly consistency of the
disintegration of µ. The latter is equivalent to the existence of a µ-measurable map f : T → T such that
(x, y) ∈ R if and only if f(x) = f(y), i.e. f is a µ-measurable quotient map of the equivalence relation R.

If this is the case, then

m := f♯µ, µ =

∫

µym(dy), µy(f
−1(y)) = 1,

i.e. the conditional probabilities µy are concentrated on the counterimages f−1(y) (which are single
geodesics). In our setting the strong consistency of the disintegration of µ is a consequence of the
topological properties of the geodesics of ‖ · ‖H(γ) as curves in (X, ‖ · ‖). Finally we obtain the one
dimensional problems by partitioning π w.r.t. the partition R× (X ×X),

π =

∫

πym(dy), ν =

∫

νym(dy), νy := (P2)♯πy,

and considering the one dimensional problems along the geodesic R(y) with marginals µy, νy and cost
the arc length on the geodesic.

At this point we can study the problem of the regularity of the conditional probabilities µy. A natural
operation on sets can be considered: the evolution along the transport set. If A is a Borel subset of Te,
we consider the set Tt(Γ ∩ A×X) where Tt is the map from X ×X to X that associates to a couple of
points its convex combination at time t.

It turns out that the µ-negligibility of the set of initial points and the continuity of measures µy they
both depend on the behavior of the function t 7→ γ(Tt(Γ ∩A×X)).

Theorem 1.1 (Proposition 4.1 and Proposition 4.2). If for every A with µ(A) > 0 there exist a sequence
tn ց 0 and a positive constant C such that γ(Ttn(Γ ∩ A ×X)) ≥ Cµ(A), then µ(a) = 0 and for m-a.e.
y the conditional probabilities µy and νy are continuous.

This result implies that the existence of a minimizer of the Monge problem is equivalent to the regularity
properties of t 7→ γ(Tt(Γ ∩A ×X)). Hence the problem is reduced to verify that the Gaussian measure
γ satisfies the assumptions of Theorem 1.1.

Let µ = ρ1γ and ν = ρ2γ and assume that ρ1 and ρ2 are bounded. Then we find suitable d-dimensional
measures µd, νd, absolutely continuous w.r.t. the d-dimensional Gaussian measure γd, converging to µ
and ν respectively, such that (Theorem 6.1) γd verifies

γd(Tt(Γd ∩A×X)) ≥ Cµd(A)

where the evolution now is induced by the transport problem between µd and νd (the set Γd will be the
graph of an optimal map between µd and νd) and the constant C does not depend on the dimension.
Passing to the limit as d ր ∞, we prove the same property for γ. Hence the existence result is proved
for measures with bounded densities. To obtain the existence result in full generality we observe that the
transport set Te is a transport set also for transport problems between measures satisfying the uniformity
condition stated above (Proposition 7.1 and Proposition 7.2).
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The assumption that both µ and ν are a.c. with respect to γ is fundamental. Indeed take as example
a diffuse measure µ and ν = δx, then the constant in the evolution estimate induced by the optimal
transference plan will depend on the dimension and passing to the limit we lose all the informations on
the evolution.

Theorem 1.2 (Theorem 7.3). Let µ, ν ∈ P(X) with µ, ν ≪ γ. Then there exists a solution T for the
Monge minimization problem (1.1)

min
T :T♯µ=ν

∫

‖x− T (x)‖H(γ)µ(dx).

Moreover we can find T µ-essentially invertible.

Conditions ensuring the existence of a transference plan of finite transference cost can be found in [13].
To conclude the introduction just few words on the organization of the paper. In Section 2 we recall

the basic mathematical results we use: projective set theory, the Disintegration Theorem in the version
of [5], selection principles, some fundamental results in optimal transportation theory and the definition
and some properties of the abstract Wiener space.

In Section 3 we show, omitting the proof, the construction done in [6] on the Monge problem in a
generalized non-branching geodesic space and we show that the Wiener space fits into the general setting.

In Section 4 we prove Theorem 1.1. In Section 5 we prove that the hypothesis of Theorem 1.1 can
be proved by a finite-dimensional approximation and Section 6 proves the hypothesis of Theorem 1.1 in
the finite dimensional case. Finally in Section 7 we prove Theorem 7.3 and we obtain the existence of an
optimal transport map.

2. Preliminaries

2.1. Borel, projective and universally measurable sets. The projective class Σ1
1(X) is the family of

subsets A of the Polish space X for which there exists Y Polish and B ∈ B(X×Y ) such that A = P1(B).
The coprojective class Π1

1(X) is the complement in X of the class Σ1
1(X). The class Σ1

1 is called the class
of analytic sets, and Π1

1 are the coanalytic sets.
The projective class Σ1

n+1(X) is the family of subsets A of the Polish space X for which there exist Y

Polish and B ∈ Π1
n(X × Y ) such that A = P1(B). The coprojective class Π1

n+1(X) is the complement in
X of the class Σ1

n+1.

If Σ1
n, Π1

n are the projective, coprojective pointclasses, then the following holds (Chapter 4 of [16]):

(1) Σ1
n, Π1

n are closed under countable unions, intersections (in particular they are monotone classes);
(2) Σ1

n is closed w.r.t. projections, Π1
n is closed w.r.t. coprojections;

(3) if A ∈ Σ1
n, then X \A ∈ Π1

n;
(4) the ambiguous class ∆1

n = Σ1
n ∩ Π1

n is a σ-algebra and Σ1
n ∪ Π1

n ⊂ ∆1
n+1.

We will denote by A the σ-algebra generated by Σ1
1: clearly B = ∆1

1 ⊂ A ⊂ ∆1
2.

We recall that a subset of X Polish is universally measurable if it belongs to all completed σ-algebras
of all Borel measures on X : it can be proved that every set in A is universally measurable. We say that
f : X → R ∪ {±∞} is a Souslin function if f−1(t,+∞] ∈ Σ1

1.

2.2. Disintegration of measures. Given a measurable space (R,R) and a function r : R → S, with S
generic set, we can endow S with the push forward σ-algebra S of R:

Q ∈ S ⇐⇒ r−1(Q) ∈ R,

which could be also defined as the biggest σ-algebra on S such that r is measurable. Moreover given a
measure space (R,R, ρ), the push forward measure η is then defined as η := (r♯ρ):

η(Q) := ρ(r−1(Q)), ∀Q ∈ S .

Consider a probability space (R,R, ρ) and its push forward measure space (S,S , η) induced by a map
r. From the above definition the map r is clearly measurable.

Definition 2.1. A disintegration of ρ consistent with r is a map ρ : R × S → [0, 1] such that

(1) ρs(·) is a probability measure on (R,R) for all s ∈ S,
(2) ρ·(B) is η-measurable for all B ∈ R,
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and satisfies for all B ∈ R, C ∈ S the consistency condition

ρ
(

B ∩ r−1(C)
)

=

∫

C

ρs(B)η(ds).

A disintegration is strongly consistent with respect to r if for all s we have ρs(r
−1(s)) = 1.

The measures ρs are called conditional probabilities.
We say that a σ-algebra H is essentially countably generated with respect to a measurem if there exists

a countably generated σ-algebra Ĥ such that for all A ∈ H there exists Â ∈ Ĥ such that m(A △ Â) = 0.
We recall the following version of the disintegration theorem that can be found on [14], Section 452

(see [5] for a direct proof).

Theorem 2.2 (Disintegration of measures). Assume that (R,R, ρ) is a countably generated probability
space, {Rs}s∈S a partition of R, r : R → S the quotient map and (S,S , η) the quotient measure space.
Then S is essentially countably generated w.r.t. η and there exists a unique disintegration s 7→ ρs in the
following sense: if ρ1, ρ2 are two consistent disintegration then ρ1,s(·) = ρ2,s(·) for η-a.e. s.

If {Sn}n∈N is a family essentially generating S define the equivalence relation:

s ∼ s′ ⇐⇒ {s ∈ Sn ⇐⇒ s′ ∈ Sn, ∀n ∈ N}.
Denoting with p the quotient map associated to the above equivalence relation and with (L,L , λ) the
quotient measure space, the following properties hold:

• R̂l := ∪s∈p−1(l)Rs = (p ◦ r)−1(l) is ρ-measurable and R = ∪l∈LR̂l;
• the disintegration ρ =

∫

L ρlλ(dl) satisfies ρl(R̂l) = 1, for λ-a.e. l. In particular there exists a
strongly consistent disintegration w.r.t. p ◦ r;

• the disintegration ρ =
∫

S ρsη(ds) satisfies ρs = ρp(s) for η-a.e. s.

In particular we will use the following corollary.

Corollary 2.3. If (S,S ) = (X,B(X)) with X Polish space, then the disintegration is strongly consistent.

2.3. Selection principles. Given a multivalued function F : X → Y , X , Y metric spaces, the graph of
F is the set

(2.1) graph(F ) :=
{

(x, y) : y ∈ F (x)
}

.

The inverse image of a set S ⊂ Y is defined as:

(2.2) F−1(S) :=
{

x ∈ X : F (x) ∩ S 6= ∅
}

.

For F ⊂ X × Y , we denote also the sets

(2.3) Fx := F ∩ {x} × Y, F y := F ∩X × {y}.
In particular, F (x) = P2(graph(F )x), F

−1(y) = P1(graph(F )y). We denote by F−1 the graph of the
inverse function

(2.4) F−1 :=
{

(x, y) : (y, x) ∈ F
}

.

We say that F is R-measurable if F−1(B) ∈ R for all B open. We say that F is strongly Borel mea-
surable if inverse images of closed sets are Borel. A multivalued function is called upper-semicontinuous
if the preimage of every closed set is closed: in particular u.s.c. maps are strongly Borel measurable.

In the following we will not distinguish between a multifunction and its graph. Note that the domain
of F (i.e. the set P1(F )) is in general a subset of X . The same convention will be used for functions, in
the sense that their domain may be a subset of X .

Given F ⊂ X × Y , a section u of F is a function from P1(F ) to Y such that graph(u) ⊂ F . We recall
the following selection principle, Theorem 5.5.2 of [16], page 198.

Theorem 2.4. Let X and Y be Polish spaces, F ⊂ X × Y analytic, and A the σ-algebra generated by
the analytic subsets of X. Then P1(F ) ∈ A and there is an A-measurable section u : P1(F ) → Y of F .

A cross-section of the equivalence relation E is a set S ⊂ E such that the intersection of S with each
equivalence class is a singleton. We recall that a set A ⊂ X is saturated for the equivalence relation
E ⊂ X ×X if A = ∪x∈AE(x), or, more clearly, if x ∈ A and (x, y) ∈ E then y ∈ A.

The next result is taken from [16], Theorem 5.2.1.
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Theorem 2.5. Let Y be a Polish space, X a nonempty set, and L a σ-algebra of subset of X. Every
L-measurable, closed value multifunction F : X → Y admits an L-measurable section.

We will use the following corollary.

Corollary 2.6. Let F ⊂ X ×X be A-measurable, X Polish, such that Fx is closed for all x ∈ X and
define the equivalence relation x ∼ y ⇔ F (x) = F (y). Then there exists a A-section f : P1(F ) → X
such that (x, f(x)) ∈ F and f(x) = f(y) if x ∼ y.

Proof. For all open sets G ⊂ X , consider the sets F−1(G) = P1(F ∩ X × G) ∈ A, and let R be the
σ-algebra generated by F−1(G). Clearly R ⊂ A.

If x ∼ y, then

x ∈ F−1(G) ⇐⇒ y ∈ F−1(G),

so that each equivalence class is contained in an atom of R, and moreover by construction x 7→ F (x) is
R-measurable.

We thus conclude by using Theorem 2.5 that there exists an R-measurable section f : this measurability
condition implies that f is constant on atoms, in particular on equivalence classes. �

2.4. General facts about optimal transportation. Let (X,B, µ) and (Y,B, ν) be two Polish prob-
ability spaces and c : X × Y → R be a Borel measurable function. Consider the set of transference
plans

Π(µ, ν) :=
{

π ∈ P(X × Y ) : (P1)♯π = µ, (P2)♯π = ν
}

.

Define the functional

(2.5)
I : Π(µ, ν) → R+

π 7→ I(π) :=
∫

cπ.

The Monge-Kantorovich minimization problem is to find the minimum of I over all transference plans.
If we consider a µ-measurable transport map T : X → Y such that T♯µ = ν, the functional (2.5)

becomes

I(T ) := I
(

(Id× T )♯µ
)

=

∫

c(x, T (x))µ(dx).

The minimum problem over all T is called Monge minimization problem.
The Kantorovich problem admits a (pre) dual formulation.

Definition 2.7. A map ϕ : X → R ∪ {−∞} is said to be c-concave if it is not identically −∞ and there
exists ψ : Y → R ∪ {−∞}, ψ 6≡ −∞, such that

ϕ(x) = inf
y∈Y

{

c(x, y) − ψ(y)
}

.

The c-transform of ϕ is the function

(2.6) ϕc(y) := inf
x∈X

{c(x, y) − ϕ(x)} .

The c-superdifferential ∂cϕ of ϕ is the subset of X × Y defined by

(2.7) ∂cϕ :=
{

(x, y) : c(x, y) − ϕ(x) ≤ c(z, y) − ϕ(z) ∀z ∈ X
}

⊂ X × Y.

Definition 2.8. A set Γ ⊂ X×Y is said to be c-cyclically monotone if, for any n ∈ N and for any family
(x0, y0), . . . , (xn, yn) of points of Γ, the following inequality holds:

n
∑

i=0

c(xi, yi) ≤
n

∑

i=0

c(xi+1, yi),

where xn+1 = x0.
A transference plan is said to be c-cyclically monotone if it is concentrated on a σ-compact c-cyclically

monotone set.
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Consider the set

(2.8) Φc :=
{

(ϕ, ψ) ∈ L1(µ) × L1(ν) : ϕ(x) + ψ(y) ≤ c(x, y)
}

.

Define for all (ϕ, ψ) ∈ Φc the functional

(2.9) J(ϕ, ψ) :=

∫

ϕµ+

∫

ψν.

The following is a well known result (see Theorem 5.10 of [19]).

Theorem 2.9 (Kantorovich Duality). Let X and Y be Polish spaces, let µ ∈ P(X) and ν ∈ P(Y ), and
let c : X × Y → [0,+∞] be lower semicontinuous. Then the following holds:

(1) Kantorovich duality:
inf

π∈Π(µ,ν)
I(π) = sup

(ϕ,ψ)∈Φc

J(ϕ, ψ).

Moreover, the infimum on the left-hand side is attained and the right-hand side is also equal to

sup
(ϕ,ψ)∈Φc∩Cb

J(ϕ, ψ),

where Cb = Cb(X,R) × Cb(Y,R).
(2) If c is real valued and the optimal cost is finite, then there is a measurable c-cyclically monotone

set Γ ⊂ X × Y , closed if c is continuous, such that for any π ∈ Π(µ, ν) the following statements
are equivalent:
(a) π is optimal;
(b) π is c-cyclically monotone;
(c) π is concentrated on Γ;
(d) there exists a c-concave function ϕ such that π-a.s. ϕ(x) + ϕc(y) = c(x, y).

(3) If moreover

c(x, y) ≤ cX(x) + cY (y), cX µ-integrable, cY ν-integrable,

then the supremum is attained:

sup
Φc

J = J(ϕ,ϕc) = inf
π∈Π(µ,ν)

I(π).

We recall also that if −c is Souslin, then every optimal transference plan π is concentrated on a
c-cyclically monotone set [5].

2.5. Approximate differentiability of transport maps. The following results are taken from [1]
where they are presented in full generality.

Definition 2.10 (Approximate limit and approximate differential). Let Ω ⊂ Rd be an open set and
f : Ω → Rm. We say that f has an approximate limit (respectively, approximate differential) at x ∈ Ω
if there exists a function g : Ω → Rm continuous (resp. differentiable) at x such that the set {f 6= g}
has Lebesgue-density 0 at x. In this case the approximate limit (resp. approximate differential) will be

denoted by f̃(x) (resp. ∇̃f(x)).

Recall that if f : Ω → Rm is Ld-measurable, then it has approximate limit f̃(x) at Ld-a.e. x ∈ Ω and

f(x) = f̃(x) Ld-a.e..
Consider m = d and denote with Σf the Borel set of points where f is approximately differentiable.

Lemma 2.11 (Density of the push-forward). Let ρ ∈ L1(Rd) be a nonnegative function and assume

that there exists a Borel set Σ ⊂ Σf such that f̃xΣ is injective and {ρ > 0} \ Σ is Ld-negligible. Then

f♯ρLd ≪ Ld if and only if | det ∇̃f | > 0 for Ld-a.e. on Σ and in this case

(2.10) f♯(ρLd) =
ρ

| det ∇̃f |
◦ f̃−1

xf(Σ)Ld.

We include a regularity result for the Monge minimization problem in Rd with cost cp(x, y) = |x− y|p,
p > 1 (Theorem 6.2.7 of [1]):

(2.11) min
T :T♯µ=ν

∫Rd

cp(x, T (x))µ(dx).
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Theorem 2.12. Assume that µ ∈ Pr(Rd), ν ∈ P(Rd),
µ

(

{

x ∈ Rd :

∫

cp(x, y)ν(dy) < +∞
}

)

> 0 and ν
({

y ∈ Rd :

∫

cp(x, y)µ(dx) < +∞
}

)

> 0.

If the minimum of (2.5) is finite, then

i) there exists a unique solution Tp for the Monge problem (2.11);

ii) for µ-a.e. x ∈ Rd the map Tp is approximately differentiable at x and ∇̃Tp(x) is diagonalizable
with nonnegative eigenvalues.

2.6. The Abstract Wiener space. We briefly introduce our setting. The main reference is [7].
Given an infinite dimensional separable Banach space X , we denote by ‖ · ‖X its norm and X∗

denotes the topological dual, with duality 〈·, ·〉. Given the elements x∗1, . . . , x
∗
m in X∗, we denote by

Πx∗

1
,...,x∗

m
: X → Rm the map

Πx∗

1
,...,x∗

m
(x) := (〈x, x∗1〉, ..., 〈x, x∗m〉) .

Denoted with E(X) the σ-algebra generated by X∗. A set C ∈ E(X) is called cylindrical if

C = {x ∈ X : Π{x∗

i }
(x) ∈ B}, B ⊂ Rn, {x∗i }i≤n ⊂ X∗,

and we will denote the cylindrical set with C(B) where B is the base of C.
A set E belongs to E(X) precisely when it has the form

E = {x ∈ X : Π{x∗

i }
(x) ∈ B}, B ∈ B(R∞), {x∗i }i∈N ⊂ X∗,

where R∞ is considered with the standard locally convex topology. In our setting B(X) = E(X).

Lemma 2.13 (Lemma 2.1.5 of [7]). Let µ be a positive Borel measure on X. For any set A ∈ B(X)µ
(the completion of B(X) w.r.t. µ) and any ε > 0 there exists a set E = C(B) in E(X) with B ⊂ R∞

compact in the locally convex topology of R∞, such that

E ⊂ A, µ(A \ E) < ε.

A Borel measure γ ∈ P(X) is a non-degenerate centred Gaussian measure if it is not concentrated on
a proper closed subspace of X and for every x∗ ∈ X∗ the measure x∗♯γ is a centred Gaussian measure onR, that is, the Fourier transform of γ is given by

γ̂(x∗) =

∫

X

exp{i〈x∗, x〉}γ(dx) = exp
{

− 1

2
〈x∗, Qx∗〉

}

where Q ∈ L(X∗, X) is the covariance operator. The non-degeneracy hypothesis of γ is equivalent to
〈x∗, Qx∗〉 > 0 for every x∗ 6= 0. The covariance operatorQ is symmetric, positive and uniquely determined
by the relation

〈y∗, Qx∗〉 =

∫

X

〈x∗, x〉〈y∗, x〉γ(dx), ∀x∗, y∗ ∈ X∗.

The fact that Q is bounded follows from the Fernique’s Theorem, see [7]. This imply that any x∗ ∈ X∗

defines a function x 7→ x∗(x) that belongs to Lp(X, γ) for all 1 ≤ p < ∞. In particular let us denote by
R∗
γ : X∗ → L2(X, γ) the embedding R∗

γx
∗(x) := 〈x∗, x〉. The space H given by the closure of R∗

γX
∗ in

L2(X, γ) is called the reproducing kernel of the Gaussian measure. The definition is motivated by the
fact that if we consider the operator Rγ : H → X whose adjoint is R∗

γ then Q = RγR
∗
γ :

〈y∗, RγR∗
γx

∗〉 = 〈R∗
γy

∗, R∗
γx

∗〉H =

∫

X

〈x∗, x〉〈y∗, x〉γ(dx) = 〈y∗, Qx∗〉.

It can proven that Rγ is injective, compact and that

(2.12) Rγ ĥ =

∫

X

ĥ(x)xγ(dx), ĥ ∈ H ,

where the integral is understood in the Bochner or Pettis sense.
The space H(γ) = RγH ⊂ X is called the Cameron-Martin space. It is a separable Hilbert space

with inner product inherited from L2(X, γ) via Rγ :

〈h1, h2〉H(γ) = 〈ĥ1, ĥ2〉H .
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for all h1, h2 ∈ H with hi = Rγ ĥi for i = 1, 2. Moreover H is a dense subspace of X and by the
compactness of Rγ follows that the embedding of (H(γ), ‖ · ‖H(γ)) into (X, ‖ · ‖) is compact. Note that
if X is infinite dimensional then γ(H) = 0 and if X is finite dimensional then X = H(γ).

2.7. Finite dimensional approximations. Using the embedding of X∗ in L2(X, γ) we say that a
family {x∗i } ⊂ X∗ is orthonormal if the corresponding family {R∗

γx
∗
i } is orthonormal in H . In particular

starting from a sequence {y∗i }i∈N whose image under R∗
γ is dense in H , we can obtain an orthonormal

basis R∗
γx

∗
i of H . Therefore also hj = RγR

∗
γx

∗
j provide an orthonormal basis in H(γ).

In the following we will consider a fixed orthonormal basis {ei} of H(γ) with ei = Rγ êi for êi ∈ R∗
γX

∗.

Proposition 2.14 (Proposition 3.8.12 of [7]). Let γ be a centred Gaussian measure on a Banach space

X and {ei} an orthonormal basis in H(γ). Define Pdx :=
∑d
i=1〈êi, x〉ei. Then the sequence of measures

γd := Pd ♯γ ∈ P(X) converges weakly to γ.

The measure γd defined above is a centred non-degenerate d-dimensional Gaussian measure and, due
to the orthonormality of {ei}i∈N, with identity covariance matrix. Note that from (2.12) it follows that
〈êj , x〉 = 〈ei, x〉H for all x ∈ H . Hence we will not specify whether the measures γd is probability measures
on Rd or on PdH :

γd = ê1 ♯γ ⊗ · · · ⊗ êd ♯γ, êj ♯γ =
1√
2π

exp
{

− x2

2

}

L1.

For every d ∈ N we can disintegrate γ w.r.t. the partition induced by the saturated sets of Pd:

(2.13) γ =

∫

γ⊥y,dγd(dy), γ⊥y,d(P
−1
d (y)) = 1 for γd − a.e. y.

3. Optimal transportation in geodesic spaces

In what follows (X, d, dL) is a generalized non-branching geodesic space in the sense of [6]. In this
Section we retrace, omitting the proof, the construction done in [6] that permits to reduce the Monge
problem with non-branching geodesic distance cost dL, to a family of one dimensional transportation
problems. The triple (X, ‖ · ‖, ‖ · ‖H(γ)) is a generalized non-branching geodesic space in the sense of [6].

Let µ, ν ∈ P(X) and let π ∈ Π(µ, ν) be a dL-cyclically monotone transference plan with finite cost.
By inner regularity, we can assume that the optimal transference plan is concentrated on a σ-compact
dL-cyclically monotone set Γ ⊂ {dL(x, y) < +∞}. It is worth noting that due to the lack of regularity of
dL (and of ‖ · ‖H(γ)) we can’t use the existence of optimal potentials (φ, φdL) and therefore of a “fixed”
cyclically monotone set. Hence we prefer to consider the cyclically monotone set Γ independent of the
transference plan π.

By Lusin Theorem, we can require also that dLxΓ is σ-continuous:

(3.1) Γ = ∪nΓn, Γn ⊂ Γn+1 compact, dLxΓn
continuous.

Consider the set

Γ′ :=

{

(x, y) : ∃I ∈ N0, (wi, zi) ∈ Γ for i = 0, . . . , I, zI = y

wI+1 = w0 = x,

I
∑

i=0

dL(wi+1, zi) − dL(wi, zi) = 0

}

.(3.2)

In other words, we concatenate points (x, z), (w, y) ∈ Γ if they are initial and final point of a cycle
with total cost 0. One can prove that Γ ⊂ Γ′ ⊂ {dL(x, y) < +∞}, if Γ is analytic so is Γ′ and if Γ is
dL-cyclically monotone so is Γ′.

Definition 3.1 (Transport rays). Define the set of oriented transport rays

(3.3) G :=
{

(x, y) : ∃(w, z) ∈ Γ′, dL(w, x) + dL(x, y) + dL(y, z) = dL(w, z)
}

.

For x ∈ X , the outgoing transport rays from x is the set G(x) and the incoming transport rays in x is
the set G−1(x). Define the set of transport rays as the set

(3.4) R := G ∪G−1.
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It is fairly easy to prove that G is still dL-cyclically monotone, Γ′ ⊂ G ⊂ {dL(x, y) < +∞} and G and
R are analytic sets.

Definition 3.2. Define the transport sets

T := P1

(

graph(G−1) \ {x = y}
)

∩ P1

(

graph(G) \ {x = y}
)

,(3.5a)

Te := P1

(

graph(G−1) \ {x = y}
)

∪ P1

(

graph(G) \ {x = y}
)

.(3.5b)

From the definition of G one can prove that T , Te are analytic sets. The subscript e refers to the
endpoints of the geodesics: we have

(3.6) Te = P1(R \ {x = y}).

It follows that we have only to study the Monge problem in Te: π(Te × Te ∪ {x = y}) = 1. As a
consequence, µ(Te) = ν(Te) and any maps T such that for νxTe

= T♯µxTe
can be extended to a map T ′

such that ν = T♯µ with the same cost by setting

(3.7) T ′(x) =

{

T (x) x ∈ Te
x x /∈ Te.

By the non-branching assumption, if x ∈ T , then R(x) is a single geodesic and therefore the set
R ∩ T × T is an equivalence relation on T that we will call ray equivalence relation. Notice that the set
G is a partial order relation on Te.

The next step is to study the set Te \ T .

Definition 3.3. Define the multivalued endpoint graphs by:

a :=
{

(x, y) ∈ G−1 : G−1(y) \ {y} = ∅
}

,(3.8a)

b :=
{

(x, y) ∈ G : G(y) \ {y} = ∅
}

.(3.8b)

We call P2(a) the set of initial points and P2(b) the set of final points.

Even if a, b are not in the analytic class, still they belong to the σ-algebra A.

Proposition 3.4. The following holds:

(1) the sets

a, b ⊂ X ×X, a(A), b(A) ⊂ X,

belong to the A-class if A analytic;
(2) a ∩ b ∩ Te ×X = ∅;
(3) a(x), b(x) are singleton or empty when x ∈ T ;
(4) a(T ) = a(Te), b(T ) = b(Te);
(5) Te = T ∪ a(T ) ∪ b(T ), T ∩ (a(T ) ∪ b(T )) = ∅.

Finally we can assume that the µ-measure of final points and the ν-measure of the initial points are 0:
indeed since the sets G∩ b(T )×X , G ∩X × a(T ) is a subset of the graph of the identity map, it follows
that from the definition of b one has that

x ∈ b(T ) =⇒ G(x) \ {x} = ∅,

A similar computation holds for a. Hence we conclude that

π(b(T ) ×X) = π(G ∩ b(T ) ×X) = π({x = y}),

and following (3.7) we can assume that

µ(b(T )) = ν(a(T )) = 0.
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3.1. The Wiener case. For the abstract Wiener space, it is possible to obtain more regularity for the
sets introduced so far. Let d = ‖ · ‖ and dL = ‖ · ‖H : by the compactness of the embedding Rγ of H into
X it follows that

(1) dL : X ×X → [0,+∞] is a l.s.c. distance;
(2) dL(x, y) ≥ Cd(x, y) for some positive constant C;
(3) ∪x∈K1,y∈K2

γ[x,y] is d-compact if K1, K2 are d-compact and dL|K1×K2

is uniformly bounded.

The set Γ′ is σ-compact: in fact, if one restrict to each Γn given by (3.1), then the set of cycles of
order I is compact, and thus

Γ′
n,Ī :=

{

(x, y) : ∃I ∈ {0, . . . , Ī}, (wi, zi) ∈ Γn for i = 0, . . . , I, zI = y

wI+1 = w0 = x,
I

∑

i=0

dL(wi+1, zi) − dL(wi, zi) = 0

}

is compact. Finally Γ′ = ∪n,IΓ′
n,I .

Moreover, dLxΓ′

n,I
is continuous. If (xn, yn) → (x, y), then from the l.s.c. and

I
∑

i=0

dL(wn,i+1, zn,i) =

I
∑

i=0

dL(wn,i, zn,i), wn,I+1 = wn,0 = xn, zn,I = yn,

it follows also that each dL(wn,i+1, zn,i) is continuous.
Similarly the sets G, R, a, b are σ-compact: assumption (3) and the above computation in fact shows

that

Gn,I :=
{

(x, y) : ∃(w, z) ∈ Γ′
n,I , dL(w, x) + dL(x, y) + dL(y, z) = dL(w, z)

}

is compact. For a, b, one uses the fact that projection of σ-compact sets is σ-compact.
So we have that Γ, Γ′, G, G−1, a and b are σ-compact sets.

3.2. Strongly consistency of disintegrations. The strong consistency of the disintegration follows
from the next result.

Proposition 3.5. There exists a µ-measurable cross section f : T → T for the ray equivalence relation
R.

Up to a µ-negligible saturated set TN , we can assume it to have σ-compact range: just let S ⊂ f(T )
be a σ-compact set where f♯µxT is concentrated, and set

(3.9) TS := R−1(S) ∩ T , TN := T \ TS , µ(TN ) = 0.

Having the µxT -measurable cross-section

S := f(T ) = S ∪ f(TN ) = (Borel) ∪ (f(µ-negligible)),

we can define the parametrization of T and Te by geodesics.
Using the quotient map f , we obtain a unitary speed parametrization of the transport set.

Definition 3.6 (Ray map). Define the ray map g by the formula

g :=
{

(y, t, x) : y ∈ S, t ∈ [0,+∞), x ∈ G(y) ∩ {dL(x, y) = t}
}

∪
{

(y, t, x) : y ∈ S, t ∈ (−∞, 0), x ∈ G−1(y) ∩ {dL(x, y) = −t}
}

= g+ ∪ g−.

Proposition 3.7. The following holds.

(1) The restriction g ∩ S × R×X is analytic.
(2) The set g is the graph of a map with range Te.
(3) t 7→ g(y, t) is a dL 1-Lipschitz G-order preserving for y ∈ T .
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(4) (t, y) 7→ g(y, t) is bijective on T , and its inverse is

x 7→ g−1(x) =
(

f(y),±dL(x, f(y))
)

where f is the quotient map of Proposition 3.5 and the positive/negative sign depends on x ∈
G(f(y))/x ∈ G−1(f(y)).

Another property of dL-cyclically monotone transference plans.

Proposition 3.8. For any π dL-monotone there exists a dL-cyclically monotone transference plan π̃ with
the same cost of π such that it coincides with the identity on µ ∧ ν.

Coming back to the abstract Wiener space, we have that given µ, ν ≪ γ and given π ∈ Π(µ, ν) ‖·‖H(γ)-
cyclically monotone, we have constructed the transport T (and Te), an equivalence relation R on it with
geodesics as equivalence classes and the corresponding disintegration is strongly consistent:

(3.10) µxT =

∫

S

µym(dy)

with m = f♯µ and µy(R(y)) = 1 for m-a.e. y ∈ T . Using the ray map g one can assume that µy ∈ P(R)
and

µxT = g♯

∫

S

µym(dy).

4. Regularity of disintegration

To obtain existence of an optimal transport map it is enough to prove that:

• µ in concentrated on T ;
• µy is a continuous measure for m-a.e. y ∈ S.

Indeed at that point, for every y ∈ S we consider the unique monotone map Ty such that Ty ♯µy = νy,
then T (g(y, t)) := Ty(g(y, t)) is an optimal transport map, see Theorem 6.2 of [6].

Define the map X ×X ∋ (x, y) 7→ Tt(x, y) := x(1 − t) + yt ∈ X .

Assumption 1 (Non-degeneracy assumption). The measure γ is said to satisfy Assumption 1 w.r.t. a
‖ · ‖H(γ)-cyclically monotone set Γ if

i) π(Γ) = 1 with π ∈ Π(µ, ν) and µ, ν ≪ γ;
ii) for each set A ∈ E(X) with compact base such that µ(A) > 0 there exist C > 0 and {tn}n∈N ⊂

[0, 1] converging to 0 as n→ +∞ such that

(4.1) γ(Ttn(Γ ∩A×X)) ≥ Cµ(A)

for all n ∈ N.

An immediate consequence of Assumption 1 is that the set of final points is γ-negligible.

Proposition 4.1. If γ satisfies Assumption (1) then

µ(a(Te)) = 0.

Proof. Let A = a(Te) and recall that µ = ρ1γ. Suppose by contradiction µ(A) > 0. By inner regularity

and Lemma 2.13 there exist a Borel set C(B) =: Â ⊂ A, with compact base B, of positive µ-measure and a

strictly positive constant δ ∈ R such that ρ1(x) ≥ δ for all x ∈ Â. Since Γ ⊂ {(x, y) : ‖x−y‖H(γ) < +∞},
we can moreover assume that

Γ ∩ Â×X ⊂ {(x, y) : ‖x− y‖H(γ) ≤M}
for some positive M ∈ R.

By Assumption 1 there exist C > 0 and {tn}n∈N converging to 0 such that

γ(Ttn(Γ ∩ Â×X)) ≥ Cµ(Â) ≥ δCγ(Â).

Denote with Âtn = Ttn(Γ ∩ Â×X) and define

Âε :=
{

x : ‖Â− x‖H(γ) < ε
}

= P1

(

{

(x, y) ∈ X × Â : ‖x− y‖H(γ) < ε
}

)

.
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Since Â ⊂ A = a(Te), Âtn ∩ Â = ∅ for every n ∈ N. Moreover for tn ≤ ε/M it holds Âε ⊃ Âtn . So we
have for tn small enough

γ(Âε) ≥ γ(Â) + γ(Âtn) ≥ (1 + Cδ)γ(Â).

Since γ(Â) = limε→0 γ(Â
ε), this is a contradiction. �

It follows that µ(T ) = 1, therefore we can use the Disintegration Theorem 2.2 to write

(4.2) µ =

∫

S

µym(dy), m = f♯µ, µy ∈ P(R(y)).

The disintegration is strongly consistent since the quotient map f : T → T is µ-measurable and (T ,B(T ))
is countably generated.

The second consequence of Assumption 1 is that µy is continuous, i.e. µy({x}) = 0 for all x ∈ X .

Proposition 4.2. If γ satisfies Assumption 1 then the conditional probabilities µy are continuous for
mγ-a.e. y ∈ S.

Proof. From the regularity of the disintegration and the fact that m(S) = 1, we can assume that the
map y 7→ µy is weakly continuous on a compact set K ⊂ S of comeasure < ε. It is enough to prove the
proposition on K.

Step 1. From the continuity of K ∋ y 7→ µy ∈ P(X) w.r.t. the weak topology, it follows that the map

y 7→ A(y) :=
{

x ∈ R(y) : µy({x}) > 0
}

= ∪n
{

x ∈ R(y) : µy({x}) ≥ 2−n
}

is σ-closed: in fact, if (ym, xm) → (y, x) and µym
({xm}) ≥ 2−n, then µy({x}) ≥ 2−n by u.s.c. on compact

sets. Hence A is Borel.
Step 2. The claim is equivalent to µ(P2(A)) = 0. Suppose by contradiction µ(P2(A)) > 0. By Lusin

Theorem (Theorem 5.8.11 of [16]) A is the countable union of Borel graphs. Therefore we can take a

Borel selection of A just considering one of the Borel graphs, say Â. Clearly m(P1(Â)) > 0 hence by (4.2)

µ(P2(Â)) > 0. Using Lemma 2.13 we can find a Borel subset Ã ⊂ P2(Â) still with positive µ-measure

such that Ã = C(B) with B ⊂ R∞ compact.

By Assumption 1, γ(Ttn(Γ∩Ã×X)) ≥ Cµ(Ã) for some C > 0 and tn → 0. From Ttn(Γ∩Ã×X)∩(Ã) =
∅, using the same argument of Proposition 4.1, the claim follows. �

5. An approximation result

Let Pd : X → H be the projection map of Proposition 2.14 associated to the orthonormal basis {ei}i∈N
of H(γ) with ei = Rγ êi for êi ∈ R∗

γX
∗ and Pd ♯γ = γd.

Consider the following measures

(5.1) µd := Pd ♯µ, νd := Pd ♯ν

and observe that µd = ρ1,dγd and νd = ρ2,dγd with

(5.2) ρi,d(z) =

∫

ρi(x)γ
⊥
z,d(dx), i = 1, 2,

where γ⊥z,d is defined in (2.13). Recall that µd ⇀ µ and νd ⇀ ν as dր ∞.

Denote with Πo(µd, νd) the set of optimal transference plans for the Monge problem between µd and
νd with ‖ · ‖H(γ)-cost.

Proposition 5.1. Let πd ∈ Πo(µd, νd) and let π ∈ Π(µ, ν) be any weak limit of {πd}d∈N. Then π ∈
Π(µ, ν) is an optimal transport plan for (1.1).

Proof. Let π̂ ∈ Π(µ, ν) be a transference plan. The following holds true
∫

‖x− y‖H π̂(dxdy) ≥
∫

‖Pd(x− y)‖H(γ)π̂(dxdy) =

∫

‖x− y‖H(γ)((Pd ⊗ Pd)♯π̂)(dxdy)

≥
∫

‖x− y‖H(γ)πd(dxdy).

Let {dk}k∈N be a subsequence such that πdk
⇀ π as dk ր ∞. Since ‖ · ‖H(γ) is l.s.c. it follows that

∫

‖x− y‖H(γ)π̂(dxdy) ≥ lim inf
k→+∞

∫

‖x− y‖H(γ)πdk
(dxdy) ≥

∫

‖x− y‖H(γ)π(dxdy).
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Hence the claim follows. �

Since ρi,d depend only on the first d-coordinates, the measures µd, νd can be considered also as prob-
ability measure on Rd. Clearly for x, y ∈ Pd(X) the norm ‖ · ‖d and ‖ · ‖H(γ) coincide. Therefore we can

study the transport problem with euclidean norm cost ‖x‖2
d :=

∑d
j=1 x

2
j :

(5.3) min
π∈Π(µd,νd)

∫

‖x− y‖dπ(dxdy).

However it is worth noting that when we speak of weak convergence, the measures µd, νd and γd are all
thought as probability measures in X .

It is a well-known fact in optimal transportation that (5.3) has a minimizer of the form (Id, Td)♯µd with
Td µ-essentially invertible and Borel. For each d we choose as optimal map Td the one obtained gluing the
monotone rearrangements over the geodesics and we set πd := (Id, Td)♯µd. Moreover Γd := graph(Td).

The results that we are about to present are true for any weak limit π of the sequence {πd}d∈N.
Nevertheless to simplify the notation we assume that the whole sequence {πd}d∈N = {(Id, Td)♯µd}d∈N
converges to some π.

Theorem 5.2. Fix t ∈ [0, 1]. Assume that there exists C > 0 such that for all d ∈ N and A ⊂ X compact
set the following holds true

γd
(

Tt(Γd ∩A×X)
)

≥ Cµd(A).

Then for all A ⊂ X γ-measurable

(5.4) γ
(

Tt(Γ ∩A×X)
)

≥ Cµ(A),

where Γ ⊂ X ×X is any ‖ · ‖H(γ)-cyclically monotone with π(Γ) = 1.

Proof. It follows from Proposition 5.1 that π is an optimal transference plan, hence it is concentrated on
a ‖ · ‖H(γ)-cyclically monotone set Γ.

Step 1. Since µd ⇀ µ and νd ⇀ ν, for every ε > 0 there exist K1,ε and K2,ε compact sets such that
µd(K1,ε) ≥ 1 − ε/3 and νd(K2,ε) ≥ 1 − ε/3. Denote with Kε := K1,ε × K2,ε. For every d ∈ N there

exists a compact set Γ̂d ⊂ Γd such that πd(Γ̂d) ≥ 1 − ε/3. Consider the compact se Γd,ε := Γ̂d ∩ Kε,
then πd(Γd,ε) ≥ 1 − ε and Γd,ε converges as d ր ∞ in the Hausdorff topology, up to subsequences, to a
compact set Γε with π(Γε) ≥ 1 − ε.

Step 2. Let Γn ⊂ Γ be a compact set such that π(Γn) ≥ 1 − 1/n. Hence π(Γε ∩ Γn) ≥ 1 − ε − 1/n.
Consider the following sets, open and closed respectively:

(Γε ∩ Γn)δ := {x : ‖Γε ∩ Γn − x‖ < δ}, cl(Γε ∩ Γn)
δ := {x : ‖Γε ∩ Γn − x‖ ≤ δ}.

Since lim infd πd(U) ≥ π(U) for every open set U ⊂ X , it follows that for every δ > 0 there exists dδ ∈ N
such that for all d ≥ dδ

πd
(

(Γε ∩ Γn)
δ
)

≥ 1 − 2ε− 1/n.

The same inequality holds true for πd
(

cl(Γε ∩ Γn)
δ
)

. Therefore

πdδ

(

Γdδ,ε ∩ cl(Γε ∩ Γn)
δ
)

≥ 1 − 3ε− 1/n.

Take as δ = 1/k for k ∈ N and let dk := dδk
. Define the compact set Γnk,ε := Γdk,ε ∩ cl(Γε ∩ Γn)

1/k, then

since Γnk,ε ⊂ Kε, up to subsequences, limkր∞ dH(Γnk,ε,Γε,n) = 0 with

(5.5) Γε,n ⊂ Γε ∩ Γn ⊂ Γ, πdk
(Γnk,ε) ≥ 1 − 3ε− 1/n, π(Γε,n) ≥ 1 − 3ε− 1/n.

The inclusion Γε,n ⊂ Γε ∩ Γn can be verified observing that any limit point of sequences of Γnk,ε must be
contained in Γε ∩ Γn.

Step 3. Consider A = C(B) ∈ E(X) with B ∈ Rm compact set for some fixed m ∈ N. Since Tt is
continuous and Γnk,ε∩A×X converges in Hausdorff topology to Γε,n∩A×X , it is fairly easy to prove that

Tt(Γ
n
k,ε∩A×X) Kuratowski-converges to Tt(Γε,n∩A×X). For the definition of Kuratowski-convergence

see for instance [4]. Moreover

Tt(Γ
n
k,ε ∩A×X) ⊂ co(P1(Kε ∩A×X) ∩ P2(Kε ∩A×X))

and by Proposition A.1.6 of [7], co(P1(Kε∩A×X)∩P2(Kε∩A×X)) is compact. Therefore, by Proposition
4.4.14 of [4], Tt(Γ

n
k,ε ∩A×X) converges also in the Hausdorff topology to Tt(Γε,n ∩A×X).
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Step 4. It follows that

γ(Tt(Γε,n ∩A×X)) ≥ lim sup
k→+∞

γdk
(Tt(Γ

n
k,ε ∩A×X)),

hence, since Γnk,ε is a subset of the graph Γdk
, it follows that

γ(Tt(Γε,n ∩A×X)) ≥ lim sup
k→+∞

γdk
(Tt(Γ

n
k,ε ∩A×X))

≥ C lim sup
k→+∞

µdk
(P1(Γ

n
k,ε) ∩A)

≥ C lim sup
k→+∞

µdk
(A) − C(3ε− 1/n)(5.6)

where in the last equation we have used µd(P1(Γ
n
k,ε)) ≥ 1 − 3ε − 1/n that follows from (5.5). Since

µdk
= Pdk ♯µ and A has finite dimensional base, the sequence {µdk

(A)}k∈N is definitively constant and
therefore

(5.7) γ(Tt(Γε,n ∩A×X)) ≥ Cµ(A) − C(3ε− 1/n)

for all A ∈ E(X) with finite dimensional base.
Step 5. Consider A = C(B) = {x ∈ X : {ℓi(x)}i∈N ∈ B} with B ∈ R∞ compact set in the locally

convex topology of R∞ and {ℓi}i∈N ⊂ X∗. We consider the sequence of compact sets

Ad := C(Pd(B)) = {x ∈ X : {ℓi(x)}i≤d ∈ Pd(B)}.
Clearly Ad is closed with finite-dimensional compact base and Ad ⊃ Ad+1 ⊃ A for every d ∈ N. Then for
every d ∈ N from (5.7)

γ(Tt(Γε,n ∩Ad ×X)) ≥ Cµ(Ad) − C(3ε− 1/n) ≥ Cµ(A) − C(3ε− 1/n).

Since the first term in the above inequality is decreasing, it follows that

lim
d→+∞

γ(Tt(Γε,n ∩Ad ×X)) ≥ Cµ(A) − C(3ε− 1/n).

Now observe that
⋂∞
d=1 Tt(Γε,n ∩Ad ×X) = Tt(Γε,n ∩A×X): indeed one inclusion is trivial and for the

other one observe that if

x = (1 − t)yd + tzd, yd ∈ Ad, (yd, zd) ∈ Γn,ε, ∀d ∈ N,
then from the compactness of Γn,ε, up to subsequences, yd → y zd → z and observing that y ∈ A =
∩d∈NAd the inclusion, and thus the identity, is proved. Thus (5.7) holds true and

γ(Tt(Γ ∩A×X)) ≥ γ(Tt(Γε,n ∩A×X)) ≥ Cµ(A) − C(3ε− 1/n).

Letting ε → 0 and n → +∞, the claim is proved for every A ∈ E(X) with compact base. The extension
to γ-measurable sets is now a straightforward application of Lemma 2.13. �

6. Finite dimensional estimate

The next theorem proves that the d-dimensional standard Gaussian measure γd = Pd ♯γ satisfies
Assumption 1 for Γ = graph(Td) = Γd.

Theorem 6.1. Assume that there exists C > 0 such that ρi,d(x) ≤ C for γd-a.e. x ∈ Rd and i = 1, 2.
Then the following estimate holds true

γd
(

Tt(Γd ∩A×X)
)

≥ 1

C
µd(A), ∀t ∈ [0, 1], A ∈ B(Rd).

Proof. Observe that the set Tt(Γd ∩A×X) is parametrized by the map Td,t := (1 − t)Id+ tTd.
Step 1. Consider the Monge minimization problem with cost cp, (2.11), between µd and νd. It

follows from Theorem 2.12 and from the boundedness of ρi,d that there exists a unique optimal map Tp,d
approximately differentiable µd-a.e.. We will use the following notations: ρi = ρi,d and Tp = Tp,d. By
Lemma 2.11 it follows that

ρ2(Tp(x))| det ∇̃Tp|(x)
d

∏

j=1

1√
2π

exp
{

−
Tp(x)

2
j

2

}

= ρ1(x)
d

∏

j=1

1√
2π

exp
{

−
x2
j

2

}

.
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Since for µd-a.e. x ∈ Rd | det ∇̃Tp|(x) > 0, also ρ2(Tp(x)) > 0 for µd-a.e. x ∈ Rd. Hence the following
makes sense µ-a.e.:

Jac(Tp)(x) = | det ∇̃Tp|(x) =
ρ1(x)

ρ2(Tp(x))
exp

{

d
∑

j=1

−1

2
(x2
j − Tp(x)

2
j )

}

.

Step 2. Let Tp,t := (1 − t)Id + tTp. From Theorem 2.12, det ∇̃Tp(x) =
∏d
j=1 λj with λi > 0 for

i = 1, . . . , d. It follows that

Jac(Tp,t)(x) = det((1 − t)Id+ t∇̃Tp(x)) =

d
∏

j=1

(

(1 − t) + λjt
)

.

Passing to logarithms, we have by concavity

log(Jac(Tp,t)(x)) ≥ t log(Jac(Tp)(x)) + (1 − t) log(Jac(Id)) = t log(Jac(Tp)(x)).

Hence

(6.1) Jac(Tp,t)(x) ≥
(

Jac(Tp)
)t

(x) ≥
(

ρ1(x)

ρ2(Tp(x))

)t

exp
{

d
∑

j=1

−1

2
t(x2

j − Tp(x)
2
j )

}

.

Step 3. We have the following

exp
{

d
∑

j=1

− 1

2
(Tp,t(x)

2
j − x2

j)
}

Jac(Tp,t)(x)

≥ exp
{

d
∑

j=1

−1

2
(Tp,t(x)

2
j − x2

j)
}

(

ρ1(x)

ρ2(Tp(x))

)t

exp
{

d
∑

j=1

−1

2
t(x2

j − Tp(x)
2
j )

}

=

(

ρ1(x)

ρ2(Tp(x))

)t

exp
{

d
∑

j=1

−1

2
(Tp,t(x)

2
j − x2

j + tx2
j − tTp(x)

2
j )

}

=

(

ρ1(x)

ρ2(Tp(x))

)t

exp
{

d
∑

j=1

−1

2

(

((1 − t)xj + tTp(x)j)
2 − ((1 − t)x2

j + tTp(x)
2
j

)}

=

(

ρ1(x)

ρ2(Tp(x))

)t

exp
{

d
∑

j=1

−1

2

(

xj − Tp(x)j
)2

(t2 − t)
}

=

(

ρ1(x)

ρ2(Tp(x))

)t

exp
{

− 1

2
‖x− Tp(x)‖2

d(t
2 − t)

}

.

Thus

γ(Tp,t(A)) =

∫

A

Jac(Tp,t)(x)

d
∏

j=1

1√
2π

exp
{

− 1

2
Tp,t(x)

2
j

}

Ld(dx)

=

∫

A

Jac(Tp,t)(x) exp
{

d
∑

j=1

−1

2
(Tp,t(x)

2
j − x2

j )
}

γ(dx)

≥
∫

A

(

ρ1(x)

ρ2(Tp(x))

)t

exp
{1

2
‖x− Tp(x)‖2

d(t− t2)
}

γ(dx)

≥ 1

Ct

∫

A

ρ1(x)
tγ(dx)

≥ 1

Ct

∫

A

ρ1(x)
t−1µ(dx)

≥ 1

C
µ(A).
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Step 4. Since (Id, Tp)♯µd ⇀ (Id, T )♯µd as p ց 1, see Theorem 7.1 of [3], using the techniques of the
proof of Theorem 5.2, one can prove that

γd(Tt(Γd ∩A×X)) ≥ 1

C
µd(A).

�

Remark 6.2. We summarize the results obtained so far. If ρ1, ρ2 ≤ C, then from (5.2) it follows that
the densities of µd and νd enjoy the same property with the same constant C. Identifying µd, νd and γd
with the corresponding measures on Rd, we have from Theorem 6.1:

γd
(

Tt(Γd ∩A×X)
)

≥ 1

C
µd(A), ∀A ∈ B(X), t ∈ [0, 1].

From Theorem 5.2 we have the same inequality for the ∞-dimensional measures:

γ
(

Tt(Γ ∩A×X)
)

≥ 1

C
µ(A), ∀A ∈ B(X)γ, t ∈ [0, 1].

As Proposition 4.1 and Proposition 4.2 show, this estimate implies µ(a(T )) = 0 and the continuity of
the conditional probabilities µy. Since the optimal finite dimensional map Td is invertible, following the
argument of Theorem 6.1 we can also prove

(6.2) γ
(

T1−t(Γ ∩X ×A)
)

≥ 1

C
ν(A),

and adapting the proofs of Proposition 4.1 and Proposition 4.2 we can prove that ν(b(T )) = 0 and the
continuity of the conditional probabilities νy. So we have

µ =

∫

S

µym(dy), ν =

∫

S

νym(dy), µy, νy continuous for m− a.e.y ∈ S.

In the next Section we remove the hypothesis ρ1, ρ2 ≤M .

7. Solution

Let π be the weak limit of πd = (Id, Td)♯µd and Γ any ‖ · ‖H(γ)-cyclically monotone set such that
π(Γ) = 1. All the definition of Section 3 are referred to this Γ.

Proposition 7.1. Let µ, ν ∈ P(X) be such that µ, ν ≪ γ. Then µ(a(T )) = ν(b(T )) = 0.

Proof. Let µ = ρ1γ and ν = ρ2γ. We only prove that µ(a(T )) = 0. The other statement follows similarly.
Step 1. Assume by contradiction that µ(a(T )) > 0. Let A ⊂ a(T ) be such that µ(A) > 0 and for

every x ∈ A, ρ1(x) ≤M for some positive constant M . Consider γxT and its disintegration

γxT =

∫

S

γymγ(dy), γy(T ) = 1, mγ − a.e.y ∈ S.

Consider the initial point map a : S → A and the measure a♯mγ . Observe that since

∀B ⊂ A : µ(B) > 0 ⇒ γ(R(B) ∩ T ) > 0,

it follows that µxA≪ a♯mγ . Hence there exists Â ⊂ A of positive a♯mγ-measure such that the map

Â ∋ x 7→ h(x) :=
dµxA

da♯mγ
(x)

verifies h(x) ≤M ′ for some positive constan M ′.
Step 2. Considering

µxÂ, γ̂ :=

∫

R(Â)∩S

h(a(y))γymγ(dy),
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we have the claim. Indeed both have uniformly bounded densities w.r.t. γ and Te is still a transport set
for the transport problem between µxÂ and γ̂. Indeed for S ⊂ S

µxÂ(∪y∈SR(y)) = µxÂ(a(S))

=

∫

a(S)

h(a)(a♯mγ)(da)

=

∫

S

h(a(y))mγ(dy) = γ̂(∪y∈SR(y)).

Hence we can project the measures, obtain the finite dimensional estimate of Theorem 6.1, obtain the
infinite dimensional estimate through Theorem 5.2 and finally by Proposition 4.1 get that µ(Â) = 0, that

is a contradiction with µ(Â) > 0. In the same way, following Remark 6.2, we obtain that ν(b(T )) = 0. �

It follows that the disintegration formula (3.10) holds true on the whole transportation set:

µ =

∫

µym(dy), ν =

∫

νym(dy).

Proposition 7.2. For m-a.e. y ∈ S the conditional probabilities µy and νy have no atoms.

Proof. We only prove the claim for µy.

Step 1. Suppose by contradiction that there exist a measurable set Ŝ ⊂ S such that m(Ŝ) > 0 and for

every y ∈ Ŝ there exists x(y) such that µy({x(y)}) > 0. Restrict and normalize both µ and ν to R(Ŝ),
and denote them again with µ and ν.

Consider the sets Ki,M := {x ∈ X : ρi ≤ M} for i = 1, 2. Note that µ(K1,M ) ≥ 1 − c1(M) and
ν(K2,δ) ≥ 1 − c2(M) with ci(M) → 0 as M ր +∞. Hence for M sufficiently large the conditional

probabilities of the disintegration of µxK1,M
have atoms, therefore we can assume, possibly restricting Ŝ,

that for all y ∈ Ŝ it holds x(y) ∈ K1,M .
Step 2. Define

µy,M := µyxK1,M
, νy,M := νyxK2,M

,

and introduce the set

D(N) :=
{

y ∈ Ŝ :
µy,M (R(y))

νy,M (R(y))
≤ N

}

.

Then for sufficiently largeN , m(D(N)) > 0. The map D(N) ∋ y 7→ h(y) := νy,M (R(y))/µy,M (R(y)) ≤ N
permits to define

µ̂ :=

∫

D(N)

h(y)µy,Mm(dy), ν̂ := νxR(D(N))∩K2,M
.

It follows that µ̂ and ν̂ have bounded densities w.r.t. γ and the set T̂ := T ∩ G(K1,δ) ∩ G−1(K2,δ) is a
transport set for the transport problem between µ̂ and ν̂.

It follows from Theorem 5.2 and Theorem 6.1 that γ̂ := γxT̂ verifies Assumption 1 w.r.t. G ∩K1,M ×
X ∩ X × K2,M . Therefore from Proposition 4.2 follows that the conditional probabilities µ̂y of the
disintegration of µ̂ are continuous. Since µ̂y = c(y)µyxT̂ for some positive constant c(y), we have a
contradiction. �

It follows straightforwardly the existence of an optimal invertible transport map.

Theorem 7.3. Let µ, ν ∈ P(X) absolute continuous w.r.t. γ and assume that there exists π ∈ Π(µ, ν)
such that I(π) is finite. Then there exists a solution for the Monge minimization problem

min
T :T♯µ=ν

∫

X

‖x− T (x)‖H(γ)µ(dx).

Moreover we can find T µ-essentially invertible.

Proof. For m-a.e y ∈ S µy and νy are continuous. Since R(y) is one dimensional and the ray map R ∋ t 7→
g(t, y) is an isometry w.r.t. ‖ · ‖H(γ), we can define the non atomic measures g(y, ·)♯µy, g(y, ·)♯νy ∈ P(R).
By the one-dimensional theory, there exists a monotone map Ty : R→ R such that

Ty ♯

(

g(y, ·)♯µy
)

= g(y, ·)♯νy.
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Using the inverse of the ray map, we can define Ty on R(y). Hence for m-a.e. y ∈ S we have a ‖ · ‖H(γ)-
cyclically monotone map Ty such that Ty ♯µy = νy. To conclude define T : T → T such that T = Ty on
R(y). Indeed T is µ-measurable, µ-essentially invertible and T♯µ = ν. For the details, see the proof of
Theorem 6.2 of [6]. �
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