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Abstract. We study asymptotics of the eigenvalues and eigenfunctions of the
operators used for constructing multidimensional scaling (MDS) on closed con-

nected symmetric spaces. They are the limits of eigenvalues and eigenvectors

of squared distance matrices of an increasing sequence of finite subsets covering
the space densely in the limit. We show that for products of spheres and real

projective spaces, the numbers of positive and negative eigenvalues of these

operators are both infinite. We also find a class of spaces (namely RPn with
odd n > 1) whose MDS defining operators are not trace class, and original

distances cannot be reconstructed from the eigenvalues and eigenfunctions of

these operators.

1. Introduction

A problem frequently encountered in the modern data science is that of recon-
structing a metric space (X, d) and the Borel probability measure µ on it just from
the information on the distances between points of a sufficiently large finite sub-
set Σk := {xk1 , . . . , xkk} ⊂ X. Here we require the subset Σk to cover X “almost
densely” and with a density approximately µ. Of course, unless X is finite itself,
no finite set of points will be sufficient to reconstruct the triple (X, d, µ) and one
can only hope to do this in the limit as k → ∞. To be more precise, we suppose
we know the distances between points of each set Σk of some chosen sequence of
finite subsets of X, and would like to recover from it the information on (X, d, µ).
This is known as the learning problem (or manifold learning, when X is a priori
supposed to be some smooth, say, Riemannian manifold, and d to be its geodesic
distance).

One of the basic algorithms aiming to solve the learning problem and widely
used in applications is multidimensional scaling (MDS) [21]. Although the latter
has been originally proposed only for intrinsically Euclidean data (i.e., when X
is a subset of a Euclidean space Rn and the distance d is Euclidean), it has been
extended to generic metric spaces. Moreover, in applied science “folklore”, it is often
used not only when the distance d is non-Euclidean, but also when d is merely some
symmetric function not necessarily satisfying the triangle inequality (the so-called
dissimilarity function). Whether this application of MDS is justified, i.e., what will
be reconstructed by MDS when d is a non-Euclidean distance has been recently
posed and solved in [1] with quite an astonishing answer. Namely, take X := S1
as a unit circle endowed with its geodesic distance, and let the points of Σk ⊂ X
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to be uniformly spaced so that in the limit as k → ∞ they cover X uniformly.
Then according to [1], MDS yields in the limit as k → ∞ a closed curve in an
infinite-dimensional space, which is far from being a circle. An easy calculation
shows that it is a fractal object, namely, a snowflake embedding [18] of a circle in
an infinite-dimensional Hilbert space [15]. It becomes an isometric embedding if
S1 is endowed with the geodesic distance raised to some power α = 1/2. Although
this may be unexpected in view of various commonly used applications of MDS,
an explanation of this fact may be also traced back to the classical work [20] by
Neumann and Schoenberg. In their paper, all the invariant metrics on the circle
that embed isometrically into a Hilbert space are classified, including of course
the 1/2-snowflake re-obtained via MDS, which is actually credited to the earlier
work [22], see also the discussion in [9, section 7.3].

1.1. Asymptotics of MDS embeddings. In the study of asymptotical behaviour
of the spectra of matrices of squared distances between points of finite samples
Σk ⊂ X, as well as of the embedding maps Mk : Σk → Rk produced by MDS, the
linear operator T over the space L2(X,µ) defined by the following formulae plays
an important role.

(1.1)

K(x, y) := −1

2
d2(x, y),

(Ku)(x) :=
�
X

K(x, y)u(y) dµ(y),

T := PKP,
where P is the projector operator to the orthogonal complement of constant func-
tions in L2(X,µ). Both K and T are well-defined under just a mild assumption
that µ has a finite 4-th order moment, i.e.

(1.2)

�
X

d4(x0, y) dµ(y) <∞

for some x0 ∈ X (which holds for instance when µ is finite and X is bounded).
Moreover, in this case, they are self-adjoint Hilbert–Schmidt (and hence compact)
operators. What is more important is the following: Under the same assump-
tion (1.2), suppose the empirical measures µk of finite samples Σk := {xk1 , . . . , xkk}
defined by

µk :=
1

k

k∑
i=1

δxk
i
,

δy standing for the Dirac mass concentrated in y ∈ X, converge to µ as k → ∞ in
the Kantorovich1 4-distance W4, i.e. limkW4(µk, µ) = 0. Then according to [10,
theorem 5.8], the maps Mk viewed as functions from X to R∞ (with Rk canonically
identified with the subspace of R∞ having all zero coordinates except the first k
coordinates) converge to some map M : X → R∞, called further infinite MDS map,
in measure µ with respect to the product topology on R∞ (see also [12]). The latter
is given by the formula

(1.3) M(x) :=

(√
λ+1 ϕ

+
1 (x),

√
λ+2 ϕ

+
2 (x). . . . ,

√
λ+j ϕ

+
j (x), . . .

)
,

1Usually, though historically incorrectly, the distances Wp among probability measures are

called Wassertsein distances.
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where λ+1 ≥ λ+2 ≥ · · · > 0 are positive eigenvalues of T (counting multiplicity),
and {ϕ+j }j ∈ L2(X,µ) is an orthonormal system in L2(X,µ) made of the respective

eigenfunctions, i.e. Tϕ+j = λ+j ϕ
+
j . Note that the definition of M depends on the

choice of ϕ+j . Here we silently assume that if the set of positive eigenvalues of T

contains N <∞ elements, then (M(x))j := 0 for j > N .
By calculating explicitly the eigenvalues and eigenfunctions of T and using (1.3),

one shows in [10] that M gives a snowflake (Assouad-type) embedding of any m-
dimensional sphere Sm or any m-dimensional flat torus (S1)m into the Hilbert
space ℓ2 of square summable sequences (in the calculations one assumes µ to be
the respective volume measure in all these cases).

Another important observation is the following: With the stronger assumption
that T is a trace-class operator, i.e.,∑

i

|λi| < +∞,

where {λi} stands for the sequence of all eigenvalues of T , let the metric measure
space (X, d, µ) be, say, infinitesimally doubling (which includes any smooth Rie-
mannian manifold equipped with geodesic distance and volume measure, see [5,
theorem 3.4.3]). Then by [10, theorem 5.8] (see also [12]), in a sense, distances
between almost every pair of points can be recovered from the spectrum of T and
the set of the respective eigenfunctions. Namely, in this case, we have

(1.4)

∞∑
i=1

λi (ϕi(x)− ϕi(y))
2
= d2(x, y) for µ⊗ µ-a.e. (x, y),

where {ϕi} stands for an orthonormal basis in L2(X,µ) made of eigenfunctions of
T with Tϕi = λiϕi. The importance of the trace class condition on the operators T
and K for the asymptotics of the spectra of distance matrices has been also studied
recently in [19]. This condition is discussed a lot in [12] as well, the metric measure
spaces for which it holds being called traceable in the latter paper.

1.2. Questions and results. The above-cited results raise a series of curious ques-
tions. Namely, one asks whether there are natural examples of spaces (X, d, µ) such
that

(Q1) no infinite MDS map (i.e., independently on the choice of eigenfunctions
of T ) gives a topological embedding of X into a separable Hilbert space
(which of course without loss of generality may be considered ℓ2),

(Q2) the operator T is not trace-class (i.e. in terms of [12], the metric measure
space is not traceable) and/or the distance reconstruction formula (1.4) is
not valid.

We find both examples among just compact Riemannian manifolds with volume
measure (and even more, among compact symmetric spaces), namely, both (Q1)
and (Q2) are satisfied by are satisfied by odd-dimensional projective spaces of suffi-
ciently high dimension. In particular, this answers (negatively) the open Question 1
from [12]. We do so by studying the operator T , its eigenvalues and eigenfunctions
for symmetric compact Riemannian manifolds with volume measure. Note that in
general, there seems to be no easy way to find either the spectrum or eigenfunctions
of T . However, in this particular case the situation greatly simplifies since we are
able to show that T commutes with the Laplace-Beltrami operator, which allows
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us to search for its eigenfunctions among the eigenfunctions of the latter. We are
able then to show that if X is a finite product of spheres of any dimensions, the
infinite MDS map gives a snowflake embedding of X into ℓ2 thus generalizing the
results of [10], while if X is a projective space with sufficiently high dimension,
then M does not send X to ℓ2 at all, and in particular the distance reconstruction
formula (1.4) is not valid. Curiously however, as long as X is a finite product of
spheres and projective spaces, the spectrum of T contains infinitely many positive
and negative eigenvalues. This contrasts with the case that (X, d) is isometrically
embeddable in a Hilbert space, in which all the eigenvalues of T are positive.

2. Notation and preliminaries

For vectors x and y in the Euclidean space Rn, we denote by x ·y their Euclidean
scalar product. The Euclidean norm is denoted by | · |. Let ℓ2 be the usual Banach
space of square summable sequences equipped with its usual norm ∥ ·∥2. The space
R∞ stands for the linear space of all real-valued sequences (sometimes denoted by
RN in the literature), equipped with its product topology. This space is metrizable
and in fact a Polish space. The norm ∥ ·∥2 can be extended to a pseudo-distance on
R∞ taking values in [0,+∞] which will be used in Lemma 2.1 below (note that this
pseudo-distance does not induce the product topology on R∞). If X is a smooth
Riemannian manifold, we denote by C∞(X) the set of infinitely smooth functions
over X.

Throughout the paper we sometimes use the big Theta notation by D. Knuth.
For a metric measure space (X, d, µ), we will assume µ to be a Borel probability

measure. By ⟨x, y⟩ we denote both the standard scalar product in the Hilbert space
L2(X,µ). For a u ∈ L2(X,µ) we let u⊥ stand for its orthogonal complement in
L2(X,µ). The spectrum of a linear operator T counting multiplicity is denoted as
Spec(T ). Its signature sgn(T ) is written in the form (a, b, c) where the three num-
bers in the parentheses are the numbers of zero, positive and negative eigenvalues
respectively counting multiplicities.

Recall for a metric measure space (X, d, µ), the MDS map M : X → R∞ de-
fined as in (1.3) are obtained from the positive eigenvalues and their corresponding
eigenfunction the operator T . Such maps are not unique, since a different choice
of the orthonormal set {ϕ+j } yields a different map. However, they all have the
common property given by the following statement.

Lemma 2.1. If the operator T is Hilbert-Schmidt, then for any MDS maps M1,M2,
we have

∥M1(x)−M1(y)∥2 = ∥M2(x)−M2(y)∥2, for all x, y ∈ X.

Moreover, in this case the right-hand side of (1.4) is independent of the choice of
eigenfunctions ϕj of K.

Proof. Since T is compact, every non-zero eigenspace of T is finite-dimensional. A
new choice of the orthonormal set of {ϕ+j } is obtained from L2(X,µ)-orthogonal

transformation of each eigenspace Eλ+
α
, corresponding to the eigenvalue λ+α > 0. Let

{ϕαj } and {ϕ̃αj } be two orthonormal bases of Eλ+
α
. The space Eλ+

α
with L2-norm

can be identified as a Euclidean space with the standard norm, and orthogonal
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transformation on Euclidean spaces preserves Euclidean distances. Thus, we have∑
j

(
ϕαj (x)− ϕαj (y)

)2
=
∑
j

(
ϕ̃αj (x)− ϕ̃αj (y)

)2
Combining the equation above with the defining formula of MDS maps in (1.3), we
obtain the desired equality. The independence of the right-hand side of (1.4) on
the choice of eigenfunctions ϕj of K is shown in the same way. □

2.1. Review on Riemannian symmetric spaces. We give a brief review of the
basic properties of Riemannian symmetric spaces in this section. We begin by
recollecting the basic facts on Riemannian manifolds which will be used in this
paper. The metric g of a connected Riemannian manifold (Mn, g) defines a volume
measure µ and a distance function d on M , where

d(x, y) = inf{length(γ) : γ is a curve from x to y}.

This yields a metric measure space (M,d, µ). By the Hopf-Rinow theorem, (M,d)
is a complete metric space if (M, g) is geodesically complete. If (M, g) is complete
and connected, then for any x, y ∈M , there exists a distance minimizing geodesic.
For any x ∈M , the tangential cut locus at x is the set of v ∈ TxM such that exp(tv)
is a minimizing geodesic for t ∈ [0, 1], but fails to be a minimizing geodesic for any
t > 1. The cut locus Cx at x is the image of this set under the exponential map at
x. If y ∈ Cx, we have either y is conjugate to x or there is more than one distance
minimizing geodesic from x to y [14, lemma 8.2]. Therefore, we have y ∈ Cx if and
only if x ∈ Cy. Define the symmetric subset of M ×M by

C = {(x, y) ∈M ×M : x ∈ Cy}

It is a well-known fact that the function d2(x, ·) is smooth outside Cx.
By a Laplacian (operator) on the Riemannian manifold, we always mean the

Laplace-Beltrami operator.
Let (M, g) be a Riemannian manifold. Recall that a local geodesic symmetry

at p ∈ M is a local diffeomorphism rp on a neighbourhood of p such that for all
geodesics γ(t) with γ(0) = p, we have rp(γ(t)) = γ(−t).

Definition 2.2. A Riemannian manifold (M, g) is called a symmetric space if for
every p ∈ M , the local geodesic symmetry rp can be extended to a global isometry
on M fixing p.

It is obvious from the definition that all symmetric spaces are complete, and
all connected symmetric spaces are homogeneous, i.e., the isometry group G acts
transitively on (M, g). In fact, every connected symmetric space is a reductive
homogeneous space as follows. DenoteG andK the isometry group and the isotropy
of some p ∈ M , respectively. Let g and k be the corresponding Lie algebras of G
and K. The geodesic symmetry rp ∈ G at p satisfies r2p = Id, where Id stands for
the identity map. Denote by Ad(rp) the adjoint action of the element rp in the
Lie group G. We see that Ad(rp) is an involutive Lie algebra automorphism of g.
The Lie algebra g admits a decomposition g = k + m such that k and m are the
eigenspaces of Ad(rp) corresponding to the eigenvalues 1 and −1, respectively.

We close this section with some geodesic properties of symmetric spaces which
will be used later. Let γ : R → M be a complete geodesic for the symmetric
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space (M, g). Then the following family of composed maps τs = rγ(s) ◦ rγ(0) is a
1-parameter subgroup of the isometry group G. Easily we have

τs(γ(t)) = γ(t+ s).

Such maps are called geodesic transvections along γ. Although determining the
geometry of cut loci of a general Riemannian manifold can be difficult, the cut loci
of symmetric spaces have been well studied, see [6, 16, 17]. In particular, for a
compact symmetric space (Mn, g), the cut locus at any x ∈ M is a finite disjoint
union of regular submanifolds with possible different dimensions [17, theorem 3.3].
Taking the union of the submanifolds of dimension n − 1 in this decomposition of
Cx, the Riemannian volume density µ together with the perpendicular unit vector
fields define a measure µ

x
on Cx. Hence, we may view Cx as a “piecewise smooth”

manifold of dimension n− 1. Note that µ
x
can be zero if the decomposition of Cx

has no components of dimension n−1, for example whenM is the standard sphere.

3. The MDS map for closed connected symmetric spaces

From now on, we focus on the MDS maps of closed connected symmetric spaces.
Let (S, g) be a closed connected symmetric space. Denote d and µ the distance
function and Borel measure induced by g as before (i.e., the geodesic distance and
the Riemannian volume measure). Since S is compact, it is well known that there
is an orthonormal basis of L2(S) contained in C∞(S) consisting of Laplacian eigen-
functions, see e.g., [23, p. 2] and [11, theorem 2.2.17]. In addition, each eigenvalue of
the Laplace-Beltrami operator ∆ has finite multiplicity, and eigenspaces of distinct
eigenvalues are mutually orthogonal.

Several easy consequences follow from our assumption. Since S is compact,
the integral kernel of K is bounded and uniformly continuous on S × S. Thus,
each eigenfunction of K (also for T ) is continuous. In addition, for each non-zero
eigenvalue of K, the corresponding eigenspace is finite-dimensional.

As both the Laplacian operator and the integral kernelK(x, y) are closely related
to the distance function, we would like to establish a relation between them. We
begin with the following lemma leading to the symmetric property of the integral
kernel of K for symmetric spaces.

Lemma 3.1. Let µ be the volume measure on S. For a compact symmetric space
S, the integral kernel of K satisfies

∆xK(x, y) = ∆yK(x, y) for µ⊗ µ−a.e. (x, y) ∈ S × S(3.1)

Here ∆x and ∆y are the Beltrami-Laplace operators with respect to the x (i.e. first)
and y (second) coordinates, respectively.

Proof. First note that the integral kernel K(x, y) = −1

2
d2(x, y) is always symmet-

ric, i.e. K(x, y) = K(y, x). For a fixed x ∈ S, the function K(x, ·) is smooth on
S \Cx, which is an open set of full measure in S. Since x ∈ Cy if and only if y ∈ Cx,
the functions ∆xK(x, y) and ∆yK(x, y) are well defined a.e. on S×S with respect
to µ⊗ µ.

Suppose that x /∈ Cy, and let γ : [−1, 1] → S be the unique minimizing geodesic
from x to y. The geodesic symmetry r0 at the median γ(0) is an isometry inter-
changing x and y. Denote Ky the function K(·, y). Since r0 is an isometry, in a
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neighbourhood U of y we have

(3.2) (∆Ky)(r0(z)) = ∆(Ky ◦ r0)(z), for all z ∈ U.

Denote ∆1,∆2 the Laplace-Beltrami operator with respect to the first and second
coordinates in S × S, respectively. We also have

∆(Ky ◦ r0)(z) = ∆1K(r0(z), y) = ∆1K(z, r0(y)) = ∆1K(z, x) = ∆2K(x, z).

(3.3)

Combining (3.2) and (3.3) we get

(∆1K)(r0(z), x) = (∆Ky)(r0(z)) = ∆2K(x, z),

and taking z := y, so that r0(z) = r0(y) = x, we get the desired equality. □

The following statement is valid.

Proposition 3.2. Let S be a closed connected symmetric space and µ is its volume
measure. The operator T commutes with the self-adjoint extension ∆D to L2(S, µ)
of the Laplace-Beltrami operator ∆ on D, in the sense

⟨Tf,∆h⟩ = ⟨T∆f, h⟩, for all f, h ∈ C∞(S).(3.4)

In other words. ∆D(Tf) = T (∆Df) for every f ∈ C∞(S). Thus in particular T
preserves each eigenspace of the Laplace-Beltrami operator.

Proof. Since the only harmonic functions on closed manifolds are constants, the
Laplace-Beltrami operator ∆ commutes with the projection P in (1.1) when acting
on smooth functions. Since T = PKP , it suffices to show K commutes with ∆ by
the following equality.

⟨Kf,∆h⟩ = ⟨K∆f, h⟩, for all f, h ∈ C∞(S).(3.5)

From Lemma 3.1, we have

∆xK(x, y) = ∆yK(x, y)for µ⊗ µ-a.e. (x, y) ∈ S × S

For any x ∈ S, denote Cx the cut locus of the point x as before. We cut the manifold
S from Cx, and obtain a manifold Mx with boundary ∂Mx. Let ix : ∂Mx → Cx
be the canonical projection on the boundary. Using the decomposition theorem
of Cx mentioned in Section 2.1 (see [17] for details), we obtain a decomposition of
Cx (therefore, also of ∂Mx) as a finite union of disjoint regular submanifolds. Let
Cx(l) for 1 ≤ l ≤ l0 be the n − 1-dimensional components in this decomposition
of Cx. Each Cx(l) is a regular submanifold of dimension n − 1. Thus, for any
y ∈ Cx(l), there is chart ψy : Uy → Rn such that ψy(y) = 0 ∈ Rn and the pre-image
ψ−1
y (Hn−1) is exactly Cx(l)∩Uy, where Hn−1 is the hyperplane with vanishing last

coordinate in Rn. When we cut along Cx to obtain Mx, we see from the chart
ψy that the pre-image of Cx(l) under (ix)

−1 is a double cover ∂M0
x(l) ⊔ ∂M1

x(l)
(boundaries of Mx corresponding to half spaces of with positive and negative last
coordinate in the chart ψy). Thus, by restricting only to components of ∂Mx of
dimension n−1, the unit outer normal Nx defines a measure µx on ∂Mx. The space
(∂Mx, µ

x) is isomorphic to (Cx, µx
) ⊕ (Cx, µx

) as measure spaces. For a compact

symmetric space (Sn, g), the conjugate locus at any x ∈ S has dimension strictly
less than n− 1 [6, theorem 7.3.3]. Since expx is non-singular outside the tangential
conjugate locus, ∇yK(x, y) is well-defined a.e. on ∂Mx.
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For all f, h ∈ C∞(S), we can apply the divergence theorem to obtain

⟨∆DKf, h⟩ =
�
S

f(y)

�
S

∆xh(x)K(x, y)dµ(x)dµ(y)

=

�
S

f(y)

�
∂My

K(x, y)⟨∇xh,N
y(x)⟩dµy(x)dµ(y)

−
�
S

f(y)

�
S

⟨∇xh,∇xK(x, y)⟩dµ(x)dµ(y)

Note that for each y ∈ S, the integral�
∂My

K(x, y)⟨∇xh,N
y(x)⟩dµy(x) = 0

because h is smooth on S (in fact, the integrals over opposite sides of the boundary
cancel out). Therefore, we get

⟨∆DKf, h⟩ = −
�
S

f(y)

�
S

⟨∇xh,∇xK(x, y)⟩dµ(x)dµ(y).(3.6)

Analogously, we obtain

⟨K∆f, h⟩ = −
�
S

h(x)

�
S

⟨∇yf,∇yK(x, y)⟩dµ(y)dµ(x)(3.7)

On the other hand, from (3.1) and the divergence theorem, we get�
S

h(x)

(�
∂Mx

f(y)⟨∇yK,N
x
y ⟩dµx(y)−

�
S

⟨∇yf,∇yK⟩dµ(y)
)
dµ(x)

=

�
S

f(y)

(�
∂My

h(x)⟨∇xK,N
y
x ⟩dµy(x)−

�
S

⟨∇xh,∇xK⟩dµ(x)

)
dµ(y)

Comparing this with (3.6),(3.7), we need to prove

(3.8)

�
S

h(x)

�
∂Mx

f(y)⟨∇yK,N
x
y ⟩dµx(y)dµ(x)

=

�
S

f(y)

�
∂My

h(x)⟨∇xK,N
y
x ⟩dµy(x)dµ(y)

To this aim, for any y ∈ Cx(l) not conjugate to x, let yj ∈M j
x(l) be the pre-image of

y for j = 0, 1. Since distance minimizing geodesic segments starting from x cannot
intersect Cx except for the end-points, there exist distance minimizing unit speed
geodesics γj in Mx from x to yj for j = 0, 1. For simplicity, denote the geodesic in
S corresponding to γj by the same notation. The geodesic transvection τj along γj
sending x to y is an isometry. It maps Cx to Cy, and the curve γj into itself with
τj ◦ rx(y) = x. Thus, the component of Cy containing x is a regular submanifold of
dimension n− 1, and the preimage i−1

y (x) also contains exactly two points in ∂My.
Let xj be induced by the reversed curve of γj . Because yj is not conjugate to x
and xj is not conjugate to y, we have ∇yK(x, yj) and ∇xK(y, xj) are well-defined.
If we can show

1∑
j=0

⟨∇yK(x, yj), N
x
yj
⟩ =

1∑
j=0

⟨∇xK(y, xj), N
y
xj
⟩,(3.9)
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then (3.8) is just an application of the Fubini theorem and hence the proof would
be concluded. Since γj is a distance minimizing geodesic segment from x to yj , we
have

∇yK(x, yj) = −d(x, y)γ̇j(d(x, y))
Combining the equality above with the fact τj ◦ rx is an isometry mapping y to x,
we obtain

(τj ◦ rx)∗(∇yK(x, yj)) = ∇xK(xj , y), (τj ◦ rx)∗(Nx
yj
) = Ny

xj
, for all j = 0, 1

Thus (3.9) holds which proves (3.8) and therefore (3.5) which as explained concludes
the proof of the fact that T and ∆D commute as claimed..

To prove the last claim, i.e. that T preserves each eigenspace of ∆, note that for
all f1, f2 ∈ C∞(S) such that ∆fi = λif with i = 1 and 2, we have

⟨Tf1, λ2f2⟩ = ⟨Tf,∆f2⟩ = ⟨T∆f1, f2⟩ = ⟨λ1Tf1, f2⟩.
Therefore, Tf1 is perpendicular to all eigenspaces of ∆ corresponding to eigenvalues
distinct from λ1. Since there is an orthonormal basis of L2(S) consisting of ∆-
eigenfunctions, we see Tf1 is contained in the eigenspace of λ1 for ∆. This completes
the proof. □

4. MDS for elementary symmetric spaces

4.1. Products of spheres. We can derive the spectrum of T for product spaces
based on the components in the decomposition. More precisely, we can obtain the
spectrum of T for a product of finite number of spaces based on the spectra of all
the Ti which are the spectra of the MDS associated operators for component spaces
in the product. The discussion of a product of two spaces has already been given in
[10, section 6.2] (see also [12, sections 4.1, 4.3]). Here we follow their approach to
derive the general formula of a product of N spaces, which serves both as a review
of the above cited results, amd also gives us a possibility to compute explicitly the
signature of the operator T associated with the product space of spheres. These
results are summarized in Proposition 4.1 in the sequel.

To this aim, let (X, d, µ) be the metric measure space induced by the product
manifold

X =

N∏
i=1

Xi, g =

N∑
i=1

gi;

where each gi is the Riemannian metric on a compact connected manifold Xi.
Denote di and µi the Riemannian distance and the normalized Riemannian volume
on (Xi, gi). It follows that for x = (xi) ∈ X and y = (yi) ∈ X, we have

µ =

N∏
i=1

µi, d
2(x, y) =

N∑
i=1

d2i (xi, yi).

Since the space (Xi, gi) are all connected, the Hilbert spaces L2(X,µ) and L2(Xi, µi)
are all separable. One would naturally expect the MDS maps and the associated
operator to be in the form of Cartesian products of those for each component.
This is exactly the case as in [10, section 6.2]. Suppose {ϕji} is an orthonormal

basis diagonalizing the associated operator Ti for (Xi, di, µi). Then {ϕj1i1 , . . . , ϕ
jN
iN

}
is an orthonormal basis for L2(X,µ) by the Fubini theorem. According to [10,
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proposition 6.2], the associated operator T is diagonalizable with respect to this
basis. Since the constant functions are in the kernel of Ti for all 1 ≤ i ≤ N ,
we can choose {ϕji} such that the non-constant elements are in 1⊥. Then for

Φ = ϕj1i1 · · ·ϕ
jN
iN

, we have T (Φ) = 0 unless the components of Φ contain exactly 1
non-constant function. To see this, we first compute

−2K(Φ)(x) =

N∑
i=1

�
X

d2i (xi, yi)ϕ
j1
i1
(y1) · · ·ϕjNin (yN )dµ(y)

If there is more than one non-constant component in Φ, apply the Fubini theorem
to the integrals above. We can re-order the integration so that inside each integral,
the innermost term satisfy �

Xl

ϕjll dµl = 0

Therefore, if N > 1, the kernel of T is infinite dimensional.
If all components of Φ are constant, clearly T (Φ) = PKP (Φ) = 0. Assume

Φ = ϕj11 is non-constant and T1(ϕ
j1
1 ) = λj11 ϕ

j1
1 . We obtain T (Φ) = λj11 Φ. As a

result, for the non-zero spectra of T and Ti, we have

Spec(T ) \ {0} = ⊔N
i=1 (Spec(Ti) \ {0}) ,(4.1)

where both sides of the relation above are eigenvalues counted with multiplicity.
This implies T is a trace-class operator if and only if each Ti is trace-class.

Since the map T for any compact space has at least one positive eigenvalue,
the product of N Riemannian manifolds shall have at least N positive eigenvalues
counting multiplicity.

Now let X be a product of N spheres with N > 1. We know from [10, section 6.1]
that the operator Ti for each component sphere is trace-class and has signature
(1,∞,∞), where the three numbers in the parentheses denote the number of zero,
positive and negative eigenvalues counting multiplicity. The condition N > 1 im-
plies T has an infinite-dimensional kernel. From (4.1), we see T has infinitely many
strictly positive and negative eigenvalues counting multiplicity. Therefore T has
signature (∞,∞,∞). Summing up, we obtain the following statements.

Proposition 4.1. Let X =
∏N

i=1Xi and g =
∑N

i=1 gi be the product space of
compact connected Riemannian manifolds. Denote by d and µ the geodesic distance
and the volume measure induced by g respectively. Then the map T for (X, d, µ) has
at least N positive eigenvalues counting multiplicity, and T is a trace-class operator
if and only if each Ti is trace-class.

In particular, if X is a finite product of N spheres (possibly just circles), then
the operator T is trace-class and has signature (∞,∞,∞) for N > 1, i.e. T has
infinitely many zero, positive, and negative eigenvalues counting multiplicity.

Remark 4.2. Suppose X is a product of spheres (in particular just circles). Since
X is closed symmetric, by Proposition 3.2 the operator T preserves all eigenspaces
of ∆. Let Eλα

i
be an eigenspace of the Laplace-Beltrami operator for (Xi, gi) and

denote πi : X → Xi the canonical projection. The map πi pulls back the space
of functions Eλα

i
on Xi to a space of functions π∗

i

(
Eλα

i

)
on X. The operator T

preserves the space π∗
i

(
Eλα

i

)
and is self-adjoint on it with respect to the L2(X,µ)-

norm. In fact, the operator T is simply a constant scaling on π∗
i

(
Eλα

i

)
. To show
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this, denote by G the isometry group of g, then for any s ∈ G we have

K(s · f)(x) =
�
X

K(x, y)f(s · y)dµ(y)

=

�
X

K(s · x, s · y)f(s · y)dµ(y)

=

�
X

K(s · x, z)f(z)dµ(z) = K(f)(s · x).

Therefore, the natural action of G commutes with the operator K (hence T ). Let
Gi be the isometry group of (Xi, gi). Since each component (Xi, gi) is a sphere,
the isometry group Gi acts irreducibly on Eλα

i
[7, theorem 3.1], and preserves the

eigenspaces of T when viewed as a subgroup of G. Thus, T can have only one real
eigenvalue on each π∗

i

(
Eλα

i

)
. In particular, the map T has only one real eigenvalue

on each Laplacian eigenspace of standard spheres.

4.2. Projective spaces.

4.2.1. Signature of T for projective spaces. Here we consider the case X := RPn,
an n-dimensional real projective space equipped with its geodesic distance d and
Riemannian volume measure µ. Since RPn = Sn/Z2, we expect the MDS for
projective spaces to behave similarly compared to spheres. On the other hand, we
will see in this section how the global topology makes a difference in MDS maps on
projective spaces compared to the MDS on spheres. We start by determining the
signature of T for projective spaces RPn.

The Laplacian eigenfunctions on RPn are well-defined projections of spherical
harmonics. Hence, they are projections of spherical harmonics of even degree.
Clearly as for the spheres, the group SO(n) acts irreducibly on each Laplacian
eigenspace of RPn. Thus, each eigenspace of T is a direct sum of eigenspace of ∆
on RPn.

For x, y ∈ Sn, the distance between the lines [x] and [y] on RPn is arccos(|x · y|).
We know that the operators T and K share all eigenvalues and eigenfunctions except
for those corresponding to constant functions. To compute the spectrum of K for
projective spaces, let 2k be even. Then by the Funk-Hecke theorem [4, p. 98], the
eigenvalues λn2k of K for RPn corresponding to spherical harmonics of degree 2k are
given by

λn2k = σn

� 1

0

arccos2(t)Pn
2k(t)(1− t2)(n−2)/2dt,(4.2)

where Pn
2k(t) is the Legendre polynomials for Sn of degree 2k, and the numbers

σn = −vol(Sn−1)

vol(Sn)

are negative constants depending only on n. To avoid the confusion, let us empha-
size the subscript 2k in the notation λn2k does not stand for the consecutive number
of the eigenvalue in the increasing order. Inside the integral in (4.2), only the term

Fn
2k(t) = Pn

2k(t)(1− t2)(n−2)/2 = Rn
2k

(
d

dt

)2k

(1− t2)2k+(n−2)/2(4.3)
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is affected by the dimension n and even degree 2k. For 2k even, the Rodrigues
constants Rn

2k are given by [13, p. 22]

Rn
2k =

1

4k
Γ(n/2)

Γ(n/2 + 2k)
.(4.4)

These constants are all positive. Note that the equations (4.2) and (4.3)) are still
valid for the special case n = 1, where P 1

2k are given by Chebyshev polynomials of

the first kind. For n ≥ 1 and 2k ≥ 2, a substitution t = cos θ using
d

dθ
= − sin θ · d

dt
yields

Fn
2k(cos θ)

=Rn
2k

(
−1

sin θ

d

dθ

)2k [
(sin θ)4k+n−2

]
=(4k + n− 2)Rn

2k

(
−1

sin θ

d

dθ

)2k−2[
(2(2k − 1) + n− 2)(sin θ)2(2k−2)+n−2

− (2(2k − 1) + n− 1)(sin θ)2(2k−2)+n

]
=(4k + n− 2)

[
(2(2k − 1) + n− 2)

Rn
2k

Rn
2k−2

Fn
2k−2(cos θ)

−(2(2k − 1) + n− 1)
Rn

2k

Rn+2
2k−2

Fn+2
2k−2(cos θ)

]
By linearity of the integration, we combine the equation above and (4.2) to obtain

(4.5)

1

σn
λn2k =(4k + n− 2)

(
(4k + n− 4)

Rn
2k

σnRn
2k−2

λn2k−2

−(4k + n− 3)
Rn

2k

σn+2R
n+2
2k−2

λn+2
2k−2

)
Note for n ≥ 1 and 2k ≥ 2, we always have 4k + n − 4 > 0. From the signs
of the coefficients in the equation above, we see the following: If {λn2k}∞k=1 is a
sequence of alternating signs indexed by even numbers 2k, the signs of numbers
in the sequence {λn+2

2k } will also be alternating. For the basic case n = 1, the

Riemannian manifold RP1 is isomorphic to S1 by doubling the angles between lines.
For S1, the signs of eigenvalues of K corresponding to the eigenfunctions cos(mθ)
are alternating, depending on whether m is odd or even [2, section 2]. Thus, the
signs of the sequence {λ12k} indexed by even 2k are also alternating. Combined
with the argument above, we obtain the following result.

Lemma 4.3. For n odd, the MDS defining operator T on RPn has both infinitely
many positive and negative eigenvalues.

We then turn to the case of even-dimensional projective spaces, starting from
the basic case of RP2. We expect that the signature of T for even-dimensional
projective spaces is similar to the odd dimension cases. A numerical computation
for the first 6 eigenvalues (corresponding to even degree spherical harmonics up to
2k = 10) shows they have alternating signs, see the pictures below.
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Although computing the spectrum of T for projective spaces can be difficult, we
can easily obtain some information on sgn(T ) for RP2 using Mercer’s theorem.

Lemma 4.4. The operator T on RP2 has infinitely many strictly positive and
negative eigenvalues counting multiplicity.

Proof. Since RP2 is homogeneous, we only need to prove this statement for K.
Suppose K has only finitely many strictly negative eigenvalues counting multiplicity.
Let λ2k be the eigenvalue of K for RP2 corresponding to the degree 2k spherical
harmonics. Let {ϕm2k} with −2k ≤ m ≤ 2k denote the standard L2-orthonormal

basis with respect to µ of the Laplacian eigenspace H2k of RP2 corresponding to
degree 2k spherical harmonics. The function

N(x, y) =
∑

λ2k<0

λ2k

2k∑
m=−2k

ϕm2k(x)ϕ
m
2k(y)(4.6)

is smooth and bounded, since the summation above is finite. We can decompose
the integral kernel as

K(x, y) = N(x, y) +H(x, y),

where N(x, y) is a negative integral kernel and H(x, y) is a positive integral kernel.
Because the positive operator

H(f)(x) =

�
RP2

H(x, y)f(y)dµ(y)

has a continuous bounded kernel, Mercer’s theorem [3, theorem 4.10] implies the
following convergence with respect to summation of λ2kϕ

m
2k(x)ϕ

m
2k(y) is absolute
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and uniform:

H(x, y) =
∑

λ2k≥0

2k∑
m=−2k

λ2kϕ
m
2k(x)ϕ

m
2k(y).(4.7)

From the basic properties of spherical harmonics [4, theorem 3.3.3] we obtain

2k∑
m=−2k

ϕm2k(x)ϕ
m
2k(y) =dim(Hk)P2k(cos(d(x, y)))

=(4k + 1)P2k(x · y).

Here we use x, y to denote both points in RP2 and their lifts to S2 (hence also to
R3). Since P2k is even, the value of P2k(x · y) is always well-defined. Therefore, we
obtain the absolute and uniform convergence of the series

H(x, y) =
∑

λ2k≥0

λ2k(4k + 1)P2k(x · y),

and, taking io account that in (4.6) we have only a finite sum, it follows that on
(RP2)2 the series

−1

2
d2(x, y) = −1

2
arccos2(|x · y|) = K(x, y) =

∞∑
k=0

λ2k(4k + 1)P2k(x · y)(4.8)

converge absolutely and uniformly. This implies for t ∈ [0, 1], the convergence

arccos2(t) = −2

∞∑
k=0

λ2k(4k + 1)P2k(t)(4.9)

is also absolute and uniform over [0, 1].
On the other hand, from (4.2) we know the eigenvalues of K for RP1 are given

by

λ12j = − 1

π

� 1

0

arccos2(t)C2j(t)
1√

1− t2
dt,(4.10)

where the C2j are the Chebyshev polynomials of the first kind of degree 2j. Since the
convergence in (4.9) is absolute and uniform, the Lebesgue dominated convergence
theorem implies

λ12j =
2

π

∞∑
k=0

λ2k(4k + 1)

� 1

0

P2k(t)C2j(t)
1√

1− t2
dt(4.11)

According to [8, p. 96], the even degree Legendre polynomials can be expanded by
Chebyshev polynomials as

P2k(t) =

(
Γ(1/2 + k)

Γ(1/2)Γ(k + 1)

)2

C0+

2

Γ2(1/2)

k∑
i=1

(
Γ(k − i+ 1/2)Γ(k + i+ 1/2)

Γ(k − i+ 1)Γ(k + i+ 1)

)
C2i(t)

The functions C2j(t) are even, and we have� 1

0

C2i(t)C2j(t)
1√

1− t2
dt =

π

4

(
δij + δ0i δ

0
j

)
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Therefore, we obtain � 1

0

P2kC2j
1√

1− t2
dt = 0, 0 ≤ k < j,(4.12)

� 1

0

P2kC2j
1√

1− t2
dt > 0, k ≥ j.(4.13)

These equalities and (4.11) imply λ12j is always non-negative for sufficiently large

j. This leads to a contradiction. Thus, the operator K (hence also T ) for RP2

has to admit infinitely many negative eigenvalues counting multiplicity. Similarly,
we can prove that T on RP2 also has infinitely many positive eigenvalues counting
multiplicity, concluding the proof. □

We can get now the result analogous to Lemma 4.3 but for even dimensional
projective spaces.

Lemma 4.5. For n even, the MDS defining operator T on RPn has both infinitely
many positive and negative eigenvalues.

Proof. For n = 2 the statement is given by Lemma 4.4. For higher but even di-
mensions of the projective space one uses the following induction argument on the
dimension: Suppose that the operator K for RPn has infinitely many strictly pos-
itive and negative eigenvalues counting multiplicity. It follows that for arbitrarily
large k0 ≥ 1, we can find k ≥ k0 such that λn2k ≤ 0 and λn2k−2 > 0. The sign of

the coefficients in (4.5) tells that λn+2
2k−2 > 0. Therefore K (hence also T ) for RPn+2

has infinitely many strictly positive eigenalues. Similarly, we see K and T have
infinitely many negative eigenvalues. □

Combining Lemma 4.3 with Lemma 4.5 gives the following result.

Theorem 4.6. For any projective space RPn, the operator T always has both in-
finitely many positive and negative eigenvalues counting multiplicity.

4.2.2. Spectral asymptotics of T on odd-dimensional projective spaces. Now we es-
timate the norm of the eigenvalues of T for odd-dimensional projective spaces. This
will show how the MDS maps of RPn differ from the MDS maps of Sn for odd n. To
estimate the asymptotics of the eigenvalues {λn2k}, we need the following lemma.

Lemma 4.7. For odd-dimensional projective space RPn, we have

λn2k = Θ(k−(n+3)/2).

Proof. We prove this statement by induction on n. For the base case n = 1, a
simple integration by parts shows

λ12k = Θ(k−2).

Suppose λn2k = Θ(k−(n+3)/2) holds. All coefficients for the eigenvalues in (4.5) are
non-zero. Solving this equation for λn2k−2, we get

|λn+2
2k−2| ≤ C1(n, k)

(
Rn+2

2k−2

Rn
2k

)
|λn2k|+ C2(n, k)

(
Rn+2

2k−2

Rn
2k−2

)
|λn2k−2|

|λn+2
2k−2|C2(n, k) ≥ C2(n, k)

(
Rn+2

2k−2

Rn
2k−2

)
|λn2k−2|,
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where the second inequality comes from the fact that the sequence {λn2k} indexed
by 2k has alternating signs. Here C1(n, k) and C2(n, k) are positive functions such
that C1(n, k) = Θ(k−2) and C2(n, k) = Θ(1) when n is fixed. Moreover, from the
formula of Rodrigues constants, we get

0 <
Rn+2

2k−2

Rn
2k

= Θ(k) and 0 <
Rn+2

2k−2

Rn
2k−2

= Θ(k−1).(4.14)

Then these inequalities together imply λn+2
2k = Θ(k−1−(n+3)/2). □

Recall that by Lemma 2.1, for any x, y ∈ X, the value of ∥M(x) − M(y)∥2 is
independent of the choice of the eigenfunctions of K defining M. We are able to
state the following result regarding the MDS maps for odd-dimensional projective
spaces.

Theorem 4.8. For every odd n > 1, the operator T for RPn is not trace-class.
Furthermore, given any x ∈ RPn, there exists a positive volume measure set Ux

such that

(4.15) ∥M(x)−M(y)∥2 = +∞, for all y ∈ Ux,

and the distance reconstruction formula (1.4) does not hold µ⊗µ almost everywhere.

Proof. According to [4, theorem 3.1.4], the dimension of the space of degree 2k
spherical harmonics on RPn is given by

dim(Hn
2k) =

4k + n− 1

2k + n− 1

(
2k + n− 1
n− 1

)
.(4.16)

Using the relation of binomial coefficients, we easily deduce that dim(Hn
2k) is a

polynomial in k of degree n− 1. Then for all odd n, we have

|λn2k|dim(Hn
2k) = Θ(k(n−5)/2)(4.17)

Therefore, for all odd n with n > 1, the operator T on RPn is not a trace-class
operator.

First we show ∥M(x) −M(y)∥2 = +∞ when x · y = 0. Let {ϕi2k} with i ∈ In2k
be an orthonormal basis with respect to µ of Hn

2k. For x, y ∈ RPn, we have

(4.18)

∥M(x)−M(y)∥22 =
∑

λ2k>0

λ2k
∑
i∈In

2k

(ϕi2k(x)− ϕi2k(y))
2

=

∞∑
k=0

λ4k+2

∑
i∈In

4k+2

(ϕi4k+2(x)− ϕi4k+2(y))
2

=

∞∑
k=0

λ4k+2 · dim(Hn
4k+2) · 2(1− Pn

4k+2(x · y))

The Legendre polynomials have the following recurrence relation (see [4, proposi-
tion 3.3.11])

(k + n− 1)Pn
k+1(t)− (2k + n− 1)tPn

k (t) + kPn
k−1(t) = 0.(4.19)

Therefore, for fixed n we can see {|Pn
4k+2(0)|} for k ≥ 0 is a decreasing sequence

uniformly bounded away from 1. Since x · y = 0, for any n > 1, there exists some
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δn > 0 such that

∥M(x)−M(y)∥22 ≥ 2δn

∞∑
k=0

λ4k+2 · dim(Hn
4k+2).

Using (4.17), we can see ∥M(x)−M(y)∥22 = +∞ for odd n > 1.
From (4.18), we see that ∥M(x) − M(y)∥2 depends only on |x · y|. Moreover,

if x0 · x1 = 0, the triangle inequality implies there is a set of positive measure Uxi

such that ∥M(y) − M(xi)∥ = +∞ for all y ∈ Uxi and for some i = 0 or 1. The
operator T commutes with the action of the isometry group G, so the distance
∥M(x)−M(y)∥2 is invariant under the action by G. Since G acts transitively on
RPn, it follows that for every x ∈ RPn with odd n > 1, there exists a positive
measure set Ux such that (4.15) holds.

Finally, by the Fubini theorem one has that the series on the left-hand side of the
distance reconstruction formula (1.4) does not converge on a set of couples (x, y)
of positive µ⊗ µ measure, and hence (1.4) does not hold µ⊗ µ almost everywhere,
which concludes the proof. □
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