
HARNACK INEQUALITIES
FOR KINETIC INTEGRAL EQUATIONS

FRANCESCA ANCESCHI, GIAMPIERO PALATUCCI, AND MIRCO PICCININI

Abstract. We deal with a wide class of kinetic equations,[
∂t + v · ∇x

]
f = Lvf.

Above, the diffusion term Lv is an integro-differential operator, whose non-
negative kernel is of fractional order s ∈ (0, 1) having merely measurable
coefficients. Amongst other results, we are able to prove that nonnegative
weak solutions f do satisfy

sup
Q−

f ≤ c inf
Q+

f,

where Q± are suitable slanted cylinders. No a-priori boundedness is as-
sumed, as usually in the literature, since we are also able to prove a general
interpolation inequality in turn giving local boundedness which is valid even
for weak subsolutions with no sign assumptions.

To our knowledge, this is the very first time that a strong Harnack
inequality is proven for kinetic integro-differential-type equations.
A new independent result, a Besicovitch-type covering argument for very
general kinetic geometries, is also needed, stated and proved.
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1. Introduction

In the present paper we prove Harnack-type inequalities for weak solutions to
the following class of kinetic integro-differential equations,

(1.1) ft + v · ∇xf = Lvf in Ω ⊂ R×Rn ×Rn ,

where the diffusion term Lv is given by

(1.2) Lvf(t, x, v) = p. v.

�
Rn

(
f(t, x, w) − f(t, x, v)

)
K(t, x, w, v) dw ,

with K = K(t, x, w, v) ≈ |w −v|−n−2s being a symmetric kernel of order s ∈ (0, 1)
with merely measurable coefficients, whose prototype is the classical fractional
Laplacian operator (−∆v)s, with respect to the v-variables, given by

(1.3) (−∆v)sf(t, x, v) := cn,s p. v.

�
Rn

f(t, x, v) − f(t, x, w)
|v − w|n+2s

dw .

In the display above, cn,s is a positive constant only depending on the dimension n
and the differentiability exponent s; see [17, Section 2] for further details. We
also notice that the integrals in (1.2)-(1.3) may be singular at the origin and
they must be interpreted in the appropriate sense. Since we assume that the
coefficients in (1.2) are merely measurable, the related equation has to have a
suitable weak formulation; we immediately refer the reader to Section 2 below
for the precise assumptions on the involved quantities.

During the last century the validity of the classical Harnack inequality has
been an open problem in the nonlocal setting, and more in general for integro-
differential operators. The first answer, for the purely fractional Dirichlet equa-
tion, has been eventually given by Kaßmann in his breakthrough papers [24, 25],
where the strong Harnack inequality is proven to be still valid by adding an extra
term, basically a natural tail-type contribution on the right-hand side which can-
not be dropped nor relaxed even in the most simple case when Lv does coincide
with the fractional Laplacian operator (−∆v)s in (1.3); see Theorem 1.2 in [24].
Such an extra term does completely disappear in the case of nonnegative weak
solutions; see Theorem 3.1 in [25], so that one falls in the classical strong Harnack
formulation.

After the breakthrough results by Kaßmann, Harnack-type inequalities and a
quite comprehensive nonlocal De Giorgi-Nash-Moser theory have been presented
in more general integro-differential elliptic frameworks, even for nonlinear frac-
tional equations. The literature is really too wide to attempt any comprehensive
list here; we refer to [6, 7, 15, 16, 19, 29, 31] and the references therein; it is worth
presenting also the important Harnack inequalities in [27], which deals with very
irregular integro-differential kernels so that a link to Boltzmann-type collision
kernels seems veritably close.

The situation becomes more convoluted in the integro-differential parabolic
framework. Indeed, in order to prove Harnack-type results, the intrinsic scal-
ing of the involving cylinders will depend not only on the time variable t, as
in the classical pioneering work by DiBenedetto [14], but also on the differen-
tiability order s. This is not for free, as one can imagine, even for the purely
p-fractional heat equation. A few fractional parabolic Harnack inequalities are
however still available, in the case when the kernel of the leading operator is a
sort of (s, 2)-Gagliardo-type one, as, e. g., in [44] in part extending the results
in the elliptic counterpart in [15]; see also [26], the very recent paper [28], and
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the aforementioned paper [27] dealing with very intricate irregular kernels. Nev-
ertheless, notable differences in such a parabolic framework inevitably arise, and
the validity of a (strong ) Harnack inequality could fail depending on the specific
assumptions on the involved kernels, even when starting from bounded solutions;
see, e. g., [4, 5].

As noticed above, already in the nonlocal parabolic framework – that to some
extents should be seen as the space homogeneous version of (1.1) – one needs
new strategies and ideas (see, as a concrete example, the fine analysis in [42]),
and strong Harnack inequalities are still not assured (as in the case of the afore-
mentioned counter-examples). More specifically, even for purely kinetic equations
with fractional diffusion as in (1.1) the validity or not of a strong Harnack in-
equality has been an open problem. This is not a surprise because of the very form
of the equations in (1.1) which also involves a transport term, and the nonlocal-
ity in velocity has to be dealt with keeping into account the involuted intrinsic
scalings naturally arising. Indeed, to our knowledge, there is still no strong Har-
nack inequality in the whole integro-differential kinetic panorama, even when the
nonnegative solutions are assumed to be bounded a priori, and/or under other
assumptions in clear accordance (or not) with some related physical models.

In order to clarify the current situation, it is enlightening to focus on a fun-
damental class of nonlocal kinetic equations; i. e., those modeling the Boltzmann
problem without cut-off, for which very important estimates and regularity re-
sults have been recently proven, via fine variational techniques and radically new
approaches. An inspiring step in such an advance in the regularity theory relies
in the approach proposed in the breakthrough paper [32], where the authors,
amongst other results, are able to derive a weak Harnack inequality for solutions
to a very large class of kinetic integro-differential equations as in (1.1) with very
mild assumptions on the integral diffusion in velocity having degenerate kernels K
in (1.2) which are not symmetric (not in the usual way) nor pointwise bounded
by Gagliardo-type kernels; see Theorem 1.6 there. Under a coercivity condition
on Lv and other natural assumptions (see Section 1.1 in [32]), the same result for
the Boltzmann equation mentioned above follows as a corollary. Further related
regularity estimates under conditional assumptions on the solutions f have been
subsequently proven in [34]. Despite the fine estimates and the new approach
in [32,34], a strong Harnack inequality is still missing. A very recent step in this
direction, which is worth to be presented, is the following inequality obtained in
the interesting paper [37] via a quantitative De Giorgi-type approach based on
(local) trajectories, by assuming the solutions f to be globally bounded a priori,

(1.4) sup
Q̃−

f ≤ c
(

inf
Q̃+

f
)β

.

This is a nontrivial result ( [37, Theorem 1.3]), but the exponent 0 < β < 1 in
the estimate above is in fact a root, and thus a strong Harnack inequality cannot
be deduced. Also, the cylinders Q̃± in (1.4) – which are naturally slanted in
order to deal with the underlying kinetic geometry – are not the expected ones
because there is a substantial gap in time which seems to be related to the not
optimal expansion of positiveness in the proofs there (see in particular Figure 2
in [37]); compare in fact with the slanted cylinders in [32, 34, 43] as well as with
the sharp ones in our forthcoming Theorems 1.2 and 1.3 here, also pictured in
forthcoming Figure 1. Again, for integro-differential equations, the situation is
different than for classical second order equations. For this, we take the liberty to
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quote the clarifying explanation by the authors in [32, Pag. 548], «It is not true
that the maximum of a nonnegative subsolution can be bounded above by a
multiple of its L2 norm. One needs to impose an extra global restriction
(in this case we assume 0 ≤ f ≤ 1 globally). This is because of nonlocal
effects, since the positive values of the function outside the domain
of the equation may pull the maximum upwards.»

In order to overcome the nonlocality issues mentioned above which will also
prevent an almost direct strong Harnack inequality from Hölder estimates, in
the present paper we found a way to present a totally new δ-interpolation L∞-
inequality with tail for weak subsolutions to (1.1) which are not required to being
nonnegative. The parameter 0 < δ ≤ 1 in such a boundedness estimate can be
suitably chosen in order to balance in a quantitative way the local contributions
and the nonlocal ones; see in particular in the right-side of the inequality (1.5)
in the theorem below the nonlocal kinetic tail Tailp quantity, for which we imme-
diately refer to forthcoming Definition 2.1 in Section 2.2 where one can find also
related observations on the fractional framework and the underlying hypoelliptic
geometry. We are ready to state the aforementioned local boundedness result.
We have the following

Theorem 1.1 (δ-interpolative L∞-L2 estimate). For any s ∈ (0, 1), let f ∈
W be a weak subsolution to (1.1) in Ω and let Q1 ≡ Q1(0) ⊂ Ω. Then, for
any Q r

2
≡ Q r

2
(0), any δ ∈ (0, 1], there exists p⋆ = p⋆(n, s) > 2 such that for

any p > p⋆, it holds

(1.5) sup
Q r

2

f ≤ c (δr4s)− 1
2ε∗

(�
Qr

f2
+ dv dx dt

) 1
2 + δTailp(f+; 0, r, r/2) ,

where Qr := (−r2s, 0] × Br1+2s × Br, and the quantity ε∗ > 0 depends only on the
dimension n and the exponent s, whereas the positive constant c depends also on
the kernel structural constant Λ in (2.4).

The proof will rely on a precise energy estimate which will essentially involve
a Caccioppoli inequality with tail combined with a summability gain result for
subsolutions – in turn based on the fundamental solution for the fractional Kol-
mogorov equation; see forthcoming Lemma 3.1 – as well as with a fine iterative
argument taking into account both the Tailp term and the desired interpolative
effect.

Remark 1.1. For this, a comment on our turning point to attack the whole
problem via a p-Tail with very large p is in order. Basically, in most of the
aforementioned parabolic literature the nonlocal effects have been compensated
via a supremum tail, which apparently did the trick (sometimes under further
global assumptions on the solution), despite not natively coming from the scaling
of the involved parabolic equations. Such a L∞-Tail choice appears very strong
and easy to be adapted to obtain several estimates even for solutions to (1.1),
but it also reveals to be a concrete stumbling block to concretize our program
in order to obtain the desired strong Harnack inequality. On the contrary, an
L1-Tail would have been too weak, because perhaps unsuitable to control the
deterioration for large velocities following the nonlocal diffusion term. By working
on the large p summability in the p-Tail contribution we were able to find a
balance for such a discrepancy, in turn also dealing with the combined effects by
the transport term in the equation.
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Figure 1. The geometry of the Harnack inequalities for kinetic equa-
tions with integro-differential diffusion.

As expected, the result in Theorem 1.1 above will permit us to bypass the
aforementioned global boundedness assumption usually assumed in the previous
literature, in turn being fundamental in order to prove the other main results in
the present paper. We start with a weak Harnack inequality in the case when
the function f is merely a weak supersolution to (1.1).

Theorem 1.2 (The weak Harnack inequality). For any s ∈ (0, 1), let f ∈ W
be a nonnegative weak supersolution to (1.1) in Ω and let Q1(0) ≡ Q1 ⊂ Ω. Then,
there exist r0, c and ζ depending on s and the dimension n such that

(1.6)
( �

Q−
r0

f(t, x, v)ζ dv dx dt

) 1
ζ

≤ c inf
Q+

r0

f ,

where
Q+

r0
:= (−r0

2s, 0] × Br01+2s × Br0

and Q−
r0

:= (−1, −1 + r0
2s] × Br01+2s × Br0 .

(1.7)

The proof of Theorem 1.2 will be finalized by extending the De Giorgi ap-
proach; that is, by proving both a new suitable Intermediate Value lemma and a
Measure-to-Pointwise lemma. This is in the same spirit of the pioneering work [8],
as well as of recent parabolic results for fractional heat equations (as seen, e. g.,
in [35, 44]. See, also, [9] for related regularity estimates for the fractional par-
abolic obstacle problem). However, because of the difficulties naturally arising
in the hypoelliptic framework here, we have to deal with the intrinsic peculiar-
ities following by the natural scalings trichotomy: time, space and velocity. In
addition, since we are looking for clean Harnack inequalities on optimal (local )
slanted cylinders with no gap in time, we will handle all the related nonlocal
estimates in a possibly sharp way by taking into account the tail contributions in
this sort of expansion of positivity of suitable subsolutions. The δ-interpolative
L∞-L2 inequality in Theorem 1.1 will be in fact applied to a suitable (not pos-
itive) sequence g = gk approximating an auxiliary subsolutions to (1.1) which
is built starting from the supersolutions f . Also, whereas we have to operate
several modifications in usual fractional estimates, we still cannot apply the stan-
dard Krylov-Safonov covering lemma in the framework we are dealing with. For
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these reasons, we eventually complete the proof of Theorem 1.2 thanks to an
applications of the new Ink-spots Theorem by Imbert and Silvestre in [32, Sec-
tion 9] which will allow us to deal with the naturally slanted kinetic cylinders;
see Section 2.1 below.

Finally, still without requiring additional boundedness assumptions for solu-
tions f to (1.1), we are able to prove the very first strong Harnack inequality
for kinetic equations with nonlocal diffusion in velocity. Our main result reads as
follows,

Theorem 1.3 (The Harnack inequality). For any s ∈ (0, 1), let f ∈ W be a
nonnegative weak solution to (1.1) in Ω and let Q1(0) ≡ Q1 ⊂ Ω. Then, there
exist r0 and c depending on s and the dimension n such that for any 0 < r ≤ r0
it holds

(1.8) sup
Q−

r

f ≤ c inf
Q+

r

f ,

where the slanted cylinders Q± are those defined in (1.7).

The proof will follow by combining all the previous results, together with a
precise control of the Tail of the solution in accordance with the summability
exponent p⋆ in Theorem 1.1; see the beginning of Section 7. In this respect, it
is worth mentioning that our approach steps outside from the nonlocal parabolic
counterpart where one can usually take care of the nonlocality by a sort of time
slicing via a supremum tail. Here, since a (t, x)-freezing is basically not admissible
because of the transport term in the very form of the kinetic equation in (1.1),
we introduced and made use of the integral Tailp quantity.

We then will combine the weak Harnack inequality (1.6) in Theorem 1.2 with
an application of the local boundedness inequality in (1.5) by suitably choosing
the interpolation parameter δ there. A new iterative argument taking into account
the involved transport and diffusion radii is finally applied in order to complete
the estimate in (1.8). This will rely on a new Besicovitch’s covering lemma for
slanted cylinders; see forthcoming Lemma 6.1 at Page 31, which reminds to the
classical covering argument appearing in the last step of most regularity results for
both local and/or nonlocal elliptic or parabolic problems via the usual variational
approach. We believe that the latter is a very general argument that will have to
be taken into account in other results and extensions in the kinetic frameworks.

All in all, let us summarize the contributions of the present paper.
We prove the validity of the very first strong Harnack inequality for a class
of nonlocal kinetic equations, whose diffusion term in velocity is given by frac-
tional Laplacian-type operators with measurable coefficients, in turn extending to
the nonlocal framework Harnack inequalities for the classical Kolmogorov-Fokker-
Planck equation, as, e. g., in [22], as well as extending to the kinetic frame-
work Harnack inequalities for both the fractional elliptic and parabolic equation
([25,44]). Also, thanks to our strategy, no a priori boundedness is assumed on the
solutions, which in fact is proven even for subsolutions without sign assumptions,
via the introduction of an integral kinetic tail and suitable energy estimates. As
a further addition, both our strategy and proofs are feasible to be used in very
general hypoelliptic framework, and our final new slanted covering Lemma is ba-
sically untied to our equation (1.1) being in fact a purely geometric property and
the kinetic counterpart of classical Besicovitch covering-type results.
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1.1. Further developments. We believe our whole approach and new general
independent results to be the veritable starting point in order to attack several
open problems related to nonlocal kinetic equations, as, e. g., those listed below.

• By replacing the linear diffusion class of fractional operators with nonlinear
p-Laplacian-type operators, as for instance in [35, 36]. The nonlinear growth p
framework in those Gagliardo seminorms seems to be not so far from the frame-
work presented here in the superquadratic case when p > 2; the singular case
when 1 < p < 2 being trickier. However, several “linear” fractional techniques are
not disposable; it is no accident that Harnack inequalities are still not available
even in the space homogeneous counterpart; say, in the parabolic setting. Never-
theless, our estimates – and the techniques employed in order to treat nonlinear
fractional parabolic equations [35] – might be a first outset for dealing with the
fractional counterpart of nonlinear subelliptic operators.

• Coming back to purely kinetic equations, our strategy and techniques could
be repeated in order to attack the very wide class of integro-differential ker-
nels as those considered in [32, 39], and thus implying a strong Harnack-type
inequality for the Boltzmann non-cutoff equation. Such a result appears to be
very challenging, because of the weaker assumptions on the involved kernels in
the diffusion term still enjoying some subtle cancellation property, but lacking a
pointwise control as in the purely fractional framework. However, by following
our strategy one can take advantage of the fact that a sharp weak Harnack in-
equality (Theorem 1.6 in [32]) and several other important estimates are already
available; see [32, 33, 39]. Lastly, our Besicovitch covering result will be finally
applied with no modifications at all.

• Our result in Theorem 1.3 could be of some feasibility even to apparently
unrelated problems, as, a concrete example, in the mean fields game theory. It is
known that under specific assumptions, mean field games can be seen as a coupled
system of two equations, a Fokker-Planck-type equation evolving forward in time
(governing the evolution of the density function of the agents), and a Hamilton-
Jacobi-type equation evolving backward in time (governing the computation of
the optimal path for the agents). Such a forward vs. backward propagation in
time should lead to interesting phenomena in time which are present in nature but
they have not been investigated in the nonlocal framework yet. Our contribution
in the present manuscript together with other recent results and new techniques
as the ones developed in [12, 13, 21] could be unexpectedly helpful for such an
intricate investigation.

• Finally, it is well known about the many direct consequences and applications
of a strong Harnack inequality, as for instance, maximum principles, eigenvalues
estimates, Liouville-type theorems, comparison principles, global integrability, and
so on.

1.2. The paper is organized as follows. In Section 2 below we fix the no-
tation by also introducing the fractional kinetic framework. In Section 3 we
prove fundamental kinetic energy estimates which tail and our δ-interpolative
L∞-L2 estimate in Theorem (1.1). Section 4 is devoted to a nonlocal expansion
of positivity (via De Giorgi-type intermediate lemma and measure-to-pointwise
lemma) in order to accurately estimate the infimum of the subsolutions to (1.1),
which precisely takes into account the nonlocality in the diffusion via the kinetic
tail Tailp. In Section 5 we shall complete the proof of Theorem 1.2, and in
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subsequent Section 6 we state and prove the new Besicovitch-type covering result
which naturally can be applied in general kinetic geometries. Finally, in Section 7
we are able to prove the strong Harnack inequality given by Theorem 1.3.

2. Preliminaries

In this section we fix notation, and we briefly recall the necessary underlying
framework in which one needs to work in order to deal with the class of nonlocal
kinetic equations as in (1.1). For a more comprehensive analysis of Lie groups
in the kinetic setting we refer the reader to the surveys [2, 3] and the references
therein; the interested reader could also refer to the recent paper [38] which deals
with the class of operators in (1.2) by presenting an intrinsic Taylor formula in
our framework.

2.1. The underlying geometry. We start by endowing R1+2n = R×Rn ×Rn

with the group law ◦ given by

(2.1) (t0, x0, v0) ◦ (t, x, v) :=
(

t + t0, x + x0 + tv0, v + v0

)
,

so that (R1+2n, ◦) is a Lie group with identity element 0 ≡ (0, 0, 0) and inverse
element for (t, x, v) ∈ R1+2n given by (−t, −x + tv, −v).

For any r > 0, consider the usual anisotropic dilation δr : R1+2n 7→ R1+2n

defined by

(2.2) δr(t, x, v) :=
(

r2st, r1+2sx, rv
)

,

so that if u is a solution to (1.1), then the function ur = ur(t, x, v) such that

ur(t, x, v) := u
(

r2st, r1+2sx, rv
)

does satisfy the same equation in a suitably rescaled domain.

Figure 2. On the left the cylinder Qr(0) centred at the origin; on
the right a slanted cylinder Qr(t0, x0, v0) according to the invariant
transformation given in (2.3).

As customary in the hypoelliptic setting, we need to introduce a family of
fractional kinetic cylinders respecting the invariant transformations defined above.
For every (t0, x0, v0) ∈ R1+2n and for every r > 0, the slanted cylinder Qr =
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Qr(t0, x0, v0) is defined as follows,

Qr(t0, x0, v0) := (t0, x0, v0) ◦ δr

(
(−1, 0] × B1 × B1

)
≡
{

(t, x, v) ∈ R1+2n : t0 − r2s < t ≤ t0,(2.3) ∣∣(x − x0) − (t − t0)v0
∣∣ < r1+2s, |v − v0| < r

}
.

In order to simplify the notation, we denote by Qr a cylinder centred in (0, 0, 0)
of radius r; that is,

Qr ≡ Qr(0) := Ur(0, 0) × Br(0) = (−r2s, 0] × Br1+2s(0) × Br(0) .

Now, we recall a suitable covering argument in the same flavour of the Krylov-
Safonov Ink-spots theorem. Indeed, in our framework one cannot plainly apply
the usual Calderón-Zygmund decomposition, because there is no space to tile
slanted cylinders with varying slopes. This is a major difficulty in the nonlocal
kinetic framework which has been firstly addressed in an original way by Imbert
and Silvestre in [32], who were able to state and prove a custom version of the ink-
spots theorem. Such a result, that we will present right below in Theorem 2.1,
will allow us to conclude the proof of the weak Harnack inequality. Instead,
for what concerns the strong Harnack inequality in (1.8), as mentioned in the
Introduction, we will state and prove a new Besicovitch-type covering, which
is also suitable for very general kinetic-type frameworks when slanted cylinders
do naturally lead the involved geometry; see forthcoming Section 6. In order
to state Imbert-Silvestre’s Ink-Spots Theorem, we need to introduce the stacked
(and slanted ) cylinders Q̄m

r for some given m ∈ N. We have

Q̄m
r (t0, x0, v0) :=

{
(t, x, v) ∈ R1+2n : 0 < t − t0 ≤ mr2s,

∣∣(x − x0) − (t − t0)v0
∣∣ < (m + 2)r1+2s, |v − v0| < r

}
.

Notice that the cylinder Q̄m
r starts at the end (in time) of Qr and its duration

(still in time) is exactly m-times the one of Qr, whereas its spatial radius is
m + 2-times the one of Qr; see Figure 2.1 below.

Then we have the following

Theorem 2.1 (the Ink-spots Theorem with leakage; see [32, Corollary 10.2]).
Let E ⊂ F be bounded measurable sets. Assume that

(i) E ⊂ Q1,
(ii) there exists two constants µ, r0 ∈ (0, 1) and an integer m ∈ N such that

for any cylinder Q = Qσ(t0, x0, v0) ⊂ Q1 satisfying |Q ∩ E| ≥ (1 − µ)|Q|,
then Q̄m ⊂ F and also σ < r0.

Then,
|E| ≤ m + 1

m
(1 − cµ)

(
|F ∩ Q1| + Cmr2s

0

)
for some constants c and C depending only on n and s.

It is worth noticing that related Krylov-Safonov-type results both in the local
and nonlocal kinetic framework can be also found in [40, 41]. In this respect, we
refer to [1, 18] for the approach to deal with solutions to a class of Kolmogorov-
Fokker-Planck equations in non-divergence form.
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Figure 3. A stacked (and slanted) cylinder Q̄m
r . We refer to Sec-

tion 10 in [32] for a very detailed analysis and further related results.

2.2. The nonlocal energy setting. We now introduce our fractional functional
setting. Let Ωv be an open subset of Rn; for s ∈ (0, 1) recall the definition of the
classical fractional Sobolev spaces Hs(Ωv); i. e.,

Hs(Ωv) ≡ W s,2(Ωv) :=
{

f ∈ L2(Ωv) : [f ]Hs(Ωv) < +∞
}

,

where the fractional seminorm [f ]Hs(Ωv) is the usual one via Gagliardo kernels,

[f ]Hs(Ωv) :=
(�

Ωv

�
Ωv

|f(v) − f(w)|2

|v − w|n+2s
dv dw

)1/2

.

A norm of Hs(Ωv) is given by
∥f∥Hs(Ωv) := ∥f∥L2(Ωv) + [f ]Hs(Ωv) .

A function f belongs to Hs
loc(Ωv) if f ∈ Hs(Ω′

v) whenever Ω′
v ⋐ Ωv.

As mentioned in the Introduction, the kernel K : R×Rn ×R2n → [0, ∞) is a
measurable kernel having s-differentiability for any s ∈ (0, 1); that is, there exists
a positive constant Λ such that
(2.4) Λ−1|v − w|−n−2s ≤ K(v, w) ≤ Λ|v − w|−n−2s, for a. e. v, w ∈ Rn,

where we assume that the condition above hold for all t and x; we omit the t
and x dependence to clean up the notation.

It is worth noticing that most of the estimates in the rest of the paper will still
work by weakening such a pointwise control from above, by assuming appropriate
coercivity, local integral boundedness and cancelation properties. The pointwise
control from below by a Gagliardo-type kernel, on the contrary, is strongly used
in some of the needed estimates. However, for the sake of simplicity, we prefer
to present our results for the class of measurable kernel as in (2.4), so that the
reader has just to keep in mind the case when the diffusion in velocity is a purely
fractional Laplacian with coefficients. Consequently, no precise dependance on
the constant Λ will be explicitly written when not needed.
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As expected when dealing with nonlocal operators, the long-range contributions
must be taken into account.

Definition 2.1 (The kinetic nonlocal tail). Let (t0, x0, v0) ∈ Ω := (t1, t2) ×
Ωx ×Ωv ⊂ R1+2n and R > 0 be such that UR(t0, x0) ⊂ (t1, t2)×Ωx, and let f be a
measurable function on (t1, t2)×Ωx ×Rn. For any p ∈ [1, ∞] the “kinetic nonlocal
tail of f centred in (t0, x0, v0) of transport radius R and diffusion radius r” is
the quantity Tailp ≡ Tailp(f ; (t0, x0, v0), R, r) given by

Tailp(f ; (t0, x0, v0), R, r)

:=
[ �

UR(t0,x0)

(
r2s

�
Rn\Br(v0)

|f(t, x, v)|
|v0 − v|n+2s

dv
)p

dx dt

] 1
p

.(2.5)

Despite being not needed in the present manuscript, it is worth mentioning
that in the case when p = ∞ the kinetic tail definition is meant to be given by
taking the L∞-norm in (t, x) instead of the Lp one in (2.5).

The kinetic nonlocal tail reminds of the nonlocal tail quantity firstly defined
in the purely p-fractional elliptic setting in [15,16] and subsequently proven to be
decisive in the analysis of many other nonlocal problems when a fine quantitative
control of the naturally arising long-range interactions is needed; see, e. g. [6, 7,
31, 35, 44] and the references therein. Several tail related properties of nonlocal
harmonic functions are naturally expected – as for instance the fact that their
tail is finite, and that their tail is controlled by that of their negative part, and so
on – and they are proven in [30]. However, their kinetic counterparts are not for
free, and we need to operate step by step in the forthcoming proofs here; see for
instance the precise estimates in the proof of the δ-interpolative L∞ inequality
and the tail control (7.1) in the final section.

It is also worth noticing that it is usually the nonnegativeness of solutions
to interfere with the validity of Harnack inequalities in fractional settings, and
Tail((f)−) is the decisive player in such a game, as it has been firstly showed by
Kaßmann in [24,25] and then confirmed in the many subsequently related results.
On the contrary, our strategy to make use of a nonlocal L∞-L2-type estimate
does involve an auxiliary (possibly not positive) subsolution g whose error term
will be controlled by the kinetic nonlocal tail of its positive part (g)+; see the
formulation in (1.5) and the details in the related proofs in the rest of the present
paper.

Given Ω := (t1, t2) × Ωx × Ωv ⊂ R1+2n we denote by W the natural functions
space where weak solutions to (1.1) are taken. We have

(2.6) W :=
{

f ∈ L2
(

(t1, t2) × Ωx; Hs(Rn)
)

: ft + v · ∇xf ∈ L2
(

(t1, t2) × Ωx; H−s(Rn)
)}

.

Furthermore, we denote by E(·) the nonlocal energy associated with our diffu-
sion term Lv in (1.3)
E(f(t, x, ·), ϕ(t, x, ·))

:=
�
Rn

�
Rn

(
f(t, x, v) − f(t, x, w)

)(
ϕ(t, x, v) − ϕ(t, x, w)

)
K(v, w) dv dw ,

for any test function ϕ smooth enough. We are now in the position to recall the
definition of weak sub- and supersolution.
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Definition 2.2. A function f ∈ W is a weak subsolution (resp., supersolution)
to (1.1) in Ω if

� t2

t1

�
Ωx

E
(
f(t, x, ·), ϕ(t, x, ·)

)
dx dt

+
� t2

t1

�
Ωx

⟨(ft + v · ∇xf) | ϕ⟩ dx dt ≤ 0
(

≥ 0, resp.
)

,

for any nonnegative ϕ ∈ W such that supp ϕ ⋐ Ω; in the display above we denote
by ⟨· | ·⟩ the usual duality paring between Hs(Rn) and H−s(Rn).
A function f ∈ W is a weak solution to (1.1) if it is both a weak sub- and
supersolution.

3. Interpolative L∞-L2-type estimate

This section is devoted to the proof of the local boundedness estimate with
tail for subsolutions to (1.1) with no a priori sign assumptions, as stated in The-
orem 1.1.

3.1. Kinetic Energy estimates with tail. Firstly, we need a precise energy
estimate which will require to prove a Caccioppoli-type estimate with (kinetic)
tail, and a Gehring-type one for subsolutions to (1.1). We have the following

Lemma 3.1 (Gain of integrability for subsolutions). Let f be a weak
subsolution in Ω according to Definition 2.2 and let Q1 ≡ Q1(0) ⊂ Ω. For
any Qr ≡ Qr(0) ⊂ Q1, any q ∈ [2, q⋆), where q⋆ = q⋆(n, s) > 2 is the expo-
nent introduced in (3.9), and any ϱ < r, the following estimate does hold,

∥ω∥2
Lq(Qϱ) ≤ c

�
Ur

�
Rn

�
Rn

ω(v)ω(w)|φ(v) − φ(w)|2

|v − w|n+2s
dv dw dx dt

+ c

�
Qr

(|v · ∇x(φ2)| + |v · ∇xφ|2)ω2 dv dx dt + c r2s

�
Qr

(ωφ)2 dv dx dt .(3.1)

where ω := (f − k)+, for any k ∈ R, and where φ = φ(x, v) is a cut-off function
such that φ(x, v) ≡ 1 in Bϱ1+2s × Bϱ and φ ≡ 0 outside Br1+2s × Br.

Proof. For the sake of the reader, it is convenient to divide the present proof in
two separate steps.

Step 1: Kinetic Caccioppoli inequality with tail. Up to regularizing by
mollification, for any fixed t ∈ (−r2s, 0] we can assume that ωφ2 is sufficiently
regular in order to be an admissible test function compactly supported in the
cylinder (Qr)t := {(v, x) ∈ R2n : (t, x, v) ∈ Qr}. Consider now the weak
formulation in Definition 2.2 by choosing as a test function ϕ ≡ ωφ2 there; for
a. e. t ∈ (−r2s, 0] it yields

0 ≥
�

(Qr)t

(ft + v · ∇xf)ωφ2 dx dv

+
�

Br1+2s

E(f, ωφ2) dx =: I1 + I2.(3.2)

We start by considering I1. Using the fact that ∂tφ = 0, we have that
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(3.3) I1 ≥ 1
2

d
dt

�
(Qr)t

(ωφ)2 dx dv − 1
2

�
(Qr)t

|v · ∇x(φ2)|ω2 dx dv .

For what concern I2 we note that(
f(v) − f(w)

)(
ωφ2(v) − ωφ2(w)

)
=
(

(f(v) − k) − (f(w) − k)
)(

ωφ2(v) − ωφ2(w)
)

≥
(

ωφ(v) − ωφ(w)
)2

− ω(v)ω(w)|φ(v) − φ(w)|2 ,

which yields

I2 ≥
�

Br1+2s

[ωφ]2Hs(Rn) dx(3.4)

−
�

Br1+2s

�
Rn

�
Rn

ω(v)ω(w)|φ(v) − φ(w)|2

|v − w|n+2s
dv dw dx ,

where we also used the definition of the kernel K in (2.4) by neglecting a constant
depending on Λ there, for the sake of simplicity. Combining (3.3) and (3.4)
with (3.2), it yields

1
2

d
dt

�
(Qr)t

(ωφ)2 dx dv +
�

Br1+2s

[ωφ]2Hs(Rn) dx

≤ c

�
Br1+2s

�
Rn

�
Rn

ω(v)ω(w)|φ(v) − φ(w)|2

|v − w|n+2s
dv dw dx(3.5)

+c

�
(Qr)t

|v · ∇x(φ2)|ω2 dv dx ,

Then, by integrating (3.5) in [τ1, τ2], for −r2s ≤ τ1 < τ2 ≤ 0, we get
�

Br1+2s ×Br

(ωφ)2(τ2, x, v) dx dv +
� τ2

τ1

�
Br1+2s

[ωφ]2Hs(Rn) dx dt

≤ c

�
Ur

�
Rn

�
Rn

ω(v)ω(w)|φ(v) − φ(w)|2

|v − w|n+2s
dv dw dx dt(3.6)

+ c

�
Qr

|v · ∇x(φ2)|ω2 dv dx dt + c

�
Br1+2s ×Br

(ωφ)2(τ1, x, v) dx dv .

Taking the supremum over τ2 on the left-hand side and the average integral
over τ1 ∈ [−r2s, 0] on both sides of the inequality, we get

sup
t∈[−r2s,0]

�
Br1+2s ×Br

(ωφ)2 dv dx

≤ c

�
Ur

�
Rn

�
Rn

ω(v)ω(w)|φ(v) − φ(w)|2

|v − w|n+2s
dv dw dx dt(3.7)

+ c

�
Qr

|v · ∇x(φ2)| ω2 dv dx dt + c r2s

�
Qr

(ωφ)2 dv dx dt .
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Reconsidering (3.6) and evaluating with τ1 = −r2s and τ2 = 0 there, we then
have �

Ur

[ωφ]2Hs(Rn) dx dt

≤ c

�
Ur

�
Rn

�
Rn

ω(v)ω(w)|φ(v) − φ(w)|2

|v − w|n+2s
dv dw dx dt

+ c

�
Qr

|v · ∇x(φ2)|ω2 dv dx dt + c r2s

�
Qr

(ωφ)2 dv dx dt

Thus, combining the display above with (3.7), we obtain the following Caccioppoli-
type estimate,

sup
t∈[−r2s,0]

�
Br1+2s ×Br

(ωφ)2 dv dx +
�

Ur

[ωφ]2Hs(Rn) dx dt

≤ c

�
Ur

�
Rn

�
Rn

ω(v)ω(w)|φ(v) − φ(w)|2

|v − w|n+2s
dv dw dx dt(3.8)

+ c

�
Qr

|v · ∇x(φ)2|ω2 dv dx dt + cr2s

�
Qr

(ωφ)2 dv dx dt .

Step 2: Local Lq-estimate for subsolutions. Now, an Lq-estimate whose
proof is in the same spirit of the original result for solutions to the Boltzmann
equation without cut-off by Imbert and Silvestre – see in particular Lemma 6.1
and Proposition 2.2 in [32] – which in turn reminds to the strategy in [40]
and to classical Gehring-type results; see in particular Sections 2 and 3 there.
Nevertheless, for the sake of the reader, we sketch the proof below.

Furthermore, it is worth noticing that the exponent p⋆ in the statement of The-
orem 1.1 will basically show up here, being linked to the maximal gain in summa-
bility in forthcoming formula (3.9).

Consider the smooth function φ = φ(x, v) such that φ(x, v) ≡ 1 in Bϱ1+2s × Bϱ

and φ ≡ 0 outside Br1+2s × Br, with ϱ < r < 1.
Then, the function g := ωφ satisfies the following

[∂t + v · ∇x] g − Lvg ≤
(
[∂t + v · ∇x]ω

)
φ + ω

(
[∂t + v · ∇x]φ

)
− Λ−1(−∆v)sg ;

where Λ is the kernel structural constant in (2.4). Now, we can apply the result
in Lemma 6.1 in [32] – by taking H2 := Λ−1(−∆v) s

2 g and H1 :=
(
[∂t + v · ∇x]ω

)
φ+

ω
(
[∂t + v · ∇x]φ

)
there – and we get that, for any q ≥ 2 such that q < q⋆ with

(3.9) q⋆ := 2 + 2s

n(1 + s) ,

the following estimate holds,

∥g∥Lq([−r2s,0]×R2n)

≤ c

(
∥g(−r2s, ·, ·)∥L2(R2n) + ∥([∂t + v · ∇x]ω)φ∥L2([−r2s,0]×R2n)

+∥ω([∂t + v · ∇x]φ)∥L2([−r2s,0]×R2n) +
�

Ur

[g]2Hs(Rn) dx dt

)

≤ c

(
∥g(−r2s, ·, ·)∥L2(R2n) + ∥ω(v · ∇xφ)∥L2([−r2s,0]×R2n) +

�
Ur

[g]2Hs(Rn) dx dt

)
,
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where we have integrated by parts in the second integral and the positive con-
stant c also depends on n and s; recall Proposition 3.6 in [17].

Now, by recalling the definition of φ, we restate the latter estimate as follows,

∥ω∥Lq(Qϱ) ≤ c ∥ωφ(−r2s, ·, ·)∥L2(Br1+2s ×Br)(3.10)

+c ∥ω(v · ∇xφ)∥L2(Qr) + c

�
Ur

[ωφ]2Hs(Rn) dx dt .

Conclusion. It finally suffice to combine (3.10) with (3.8). □

We are now in the position to prove the δ-interpolative L∞-L2 inequality.

3.2. Proof of Theorem 1.1. Let r > 0 and, for any j ∈ N, define a decreasing
family of positive radii rj := 1

2 (1 + 2−j)r and a family of slanted cylinders Qj ≡
Qrj (0) such that Qj+1 ⋐ Qj for every j ∈ N. We will denote with Uj :=
(−r2s

j , 0] × Br1+2s
j

, so that Qj := Uj × Brj .
Consider a family {φj}j∈N of test functions φj ≡ φj(x, v) ∈ C∞

0 (Br1+2s
j

× Brj ),
such that 0 ≤ φj ≤ 1, φj ≡ 1 on Br1+2s

j+1
× Brj+1 , φj(x, ·) = 0 outside B(rj+rj+1)/2,

|∇vφj | ≤ c2j+2/r, and |v · ∇xφj | ≤ c2(j+1)(1+2s)/r2s. For any j ∈ N, let kj :=
(1 − 2−j)k0, with k0 > 0 which will be fixed later on, and define ωj := (f − kj)+.

An application of Lemma 3.1 yields, for some q ≡ q(n, s) ∈ (2, q⋆) that�
Qj+1

ω2
j+1 dv dx dt

≤

(�
Qj+1

ωq
j+1 dv dx dt

) 2
q

|Qj+1 ∩ {f ≥ kj+1}|1− 2
q

≤ c

(�
Uj

�
Rn

�
Rn

ωj+1(v)ωj+1(w)|φj(v) − φj(w)|2

|v − w|n+2s
dv dw dx dt

+
�

Qj

(|v · ∇x(φ2
j )| + |v · ∇xφj |2) ω2

j+1 dv dx dt

+ r2s
j

�
Qj

(ωj+1φj)2 dv dx dt

)
× |Qj+1 ∩ {f ≥ kj+1}|1− 2

q

=: (I1 + I2 + I3)|Qj+1 ∩ {f ≥ kj+1}|1− 2
q(3.11)

We estimate separately the last three integrals. Starting from I1, we get that

I1 = c

�
Qj

�
Bj

ωj+1(v)ωj+1(w)|φj(v) − φj(w)|2

|v − w|n+2s
dv dw dx dt

+ c

�
Qj

�
Rn\Bj

ωj+1(v)ωj+1(w)φ2
j (v)

|v − w|n+2s
dw dv dx dt

=: I1,1 + I1,2 .(3.12)

The first integral I1,1 can be treated assuming ωj+1(v) ≥ ωj+1(w), noticing
that the reverse inequality holds true when one exchanges the roles of v and w,
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as follows,

I1,1 ≤ c22(j+2)r−2
�

Qj

ω2
j+1

(�
2Bj(v)

dw

|v − w|n−2(1−s)

)
dv dx dt

≤ c22(j+2)r−2
�

Qj

ω2
j+1

(� 2r

0
ϱ2(1−s)−1 dϱ

)
dv dx dt

≤ c22(j+2)

2(1 − s)r2s

�
Qj

ω2
j dv dx dt .

As for the second integral I1,2, we have by Hölder’s Inequality for some p > 2
that

I1,2 ≤ c

�
Qj∩ supp φj

�
Rn\Bj

ωj+1(v)ωj+1(w)
|v − w|n+2s

dw dv dx dt

≤

(�
Qj

ω2
j+1 dv dx dt

) 1
2

×
[�

Qj∩ supp φj

(�
Rn\Bj

ωj+1(w)
|v − w|n+2s

dw

)2

1{f(v)>kj+1} dv dx dt

] 1
2

≤ c2j(n+2s)

(�
Qj

ω2
j dv dx dt

) 1
2

Tailp(f+; 0, r, r/2)|Qj ∩ {f > kj+1}|1− 2
p

≤ c2j(n+2s+ 2p−4
p )k2

0
δr2s

(�
Qj

ω2
j

k2
0

dv dx dt

) 3p−4
2p

,

up to choosing

(3.13) k0 ≥ δTailp(f+; 0, r, r/2) for δ ∈ (0, 1] ,

and where we have used that, for w ∈ Rn \ Bj and v ∈ supp φj (recalling that
the support in the v-variable of φj is contained in B(rj+rj+1)/2)

|w|
|v − w|

≤ 1 + |v|
|w| − |v|

≤ 1 + rj + rj+1

rj − rj+1
≤ 2j+4 .

as well as

|Qj ∩ {f > kj+1}| = |Qj ∩ {f − kj > kj+1 − kj}|

≤ |Qj ∩ {f − kj > 2−j−1k0}|

≤ 22j+2
�

Qj

ω2
j

k2
0

dv dx dt .

Combining together all the previous estimates for I1,1 and I1,2 we get that

(3.14) I1 ≤ c2j(n+2s+ 2p−4
p +2)k2

0
δr2s

�
Qj

ω2
j

k2
0

dv dx dt +
(�

Qj

ω2
j

k2
0

dv dx dt

) 3p−4
2p

 .



HARNACK INEQUALITIES FOR KINETIC INTEGRAL EQUATIONS 17

In a similar way, recalling the particular choice of the test function φj , we
have that

I2 + I3 ≤ c22j(1+2s)

r4s

�
Qj

ω2
j dv dx dt

≤ c22j(1+2s)

r4s

�
Qj

ω2
j dv dx dt = c22j(1+2s)k2

0
r4s

�
Qj

ω2
j

k2
0

dv dx dt .(3.15)

where we have used the fact that
|v · ∇x(φ2

j )| + |v · ∇xφj |2 = 2|φj ||v · ∇xφj | + |v · ∇xφj |2

≤ c2j(1+2s)

r2s
+ c22j(1+2s)

r4s
≤ c22j(1+2s)

r4s
,

recalling that r < 1.
Moreover, the measure of the superlevel set in (3.11) can be estimated as

follows,

|Qj+1 ∩ {f > kj+1}|1− 2
q = |Qj+1 ∩ {f − kj > kj+1 − kj}|1− 2

q

≤ |Qj ∩ {f − kj > 2−j−1k0}|1− 2
q

≤ 2j 2q−4
q

(�
Qj

ω2
j

k2
0

dv dx dt

)1− 2
q

.(3.16)

We now define Aj

Aj :=
�

Qj

ω2
j

k2
0

dv dx dt ,

so that, by putting (3.14), (3.15) and (3.16) in (3.11), we get

(3.17) Aj+1 ≤ c2j(n+2s+ 2p−4
2p +2+2(1+2s)+ 2q−4

q )

δr4s

(
A

1+ q−2
q

j + A
1+ 3p−4

2p − 2
q

j

)
.

Now, note that 1 − 2/q > 0, given that q > 2, and that 3p−4
2p − 2

q > 0, which is
in fact possible for p large enough, say p > p⋆ = p⋆(n, s), where clearly the latter
depends on the growth power q⋆ defined in (3.9).

Thus, we can rewrite the inequality in (3.17) as follows,

Aj+1 ≤ cbj

δr4s
A1+ε∗

j ,

for some ε∗ ≡ ε∗(n, s) and b > 1. Then, up to choosing

k0 := (δr4s)− 1
2ε∗ c

1
2ε∗ b

1
2ε2

∗

(�
Qr

f2
+ dv dx dt

)1
2

+ δ Tailp(f+; 0, r, r/2) ,

which is in clear accordance with (3.13). A standard iteration argument yields
that Aj → 0 as j → ∞, which finally gives the desired result. □

4. Towards a Harnack inequality: De Giorgi’s Intermediate Lemma
and the Measure-to-pointwise Lemma

This section is devoted to the proof of the main ingredients required to obtain
Harnack inequalities in (1.6) and (1.8); i. e., the De Giorgi Intermediate Values
lemma and the Measure-to-pointwise one, which in turn does also rely on a suit-
able application of the δ-interpolative L∞ inequality in Theorem 1.1 by carefully
estimating the tail contributions; see forthcoming Section 4.2.
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4.1. De Giorgi’s Intermediate Values Lemma. Our strategy will extend that
in the pioneering paper [8], which will help in some of the estimates on the
nonlocal energy terms arising from the diffusion in velocity. However, some
decisive modifications need to be carried out because of our kinetic framework;
that is, the novel presence of the transport term in (1.1). Also, it is worth
noticing that our methods are feasible of further generalizations when more spatial
commutators are involved.

Consider µ < 1, r3 > r2 > 0 and a cut-off function φ ≡ φ(x) ∈ C∞
0 (Rn) such

that 0 ≤ φ ≤ 1, φ ≡ 1 in Br1+2s
2

and φ ≡ 0 outside Br1+2s
3

. Then define the
following three auxiliary functions Fi = Fi(v),

F0(v) := 1
r3

max
{

−r3,
min

{
0, |v|2 − 2r2

3
}

r3

}
,

F1(v) := 1
r3

max
{

−r3,
min

{
0, |v|2 − r2

3
}

r3

}
,(4.1)

F2(v) := 1
r2

max
{

−r2,
min

{
0, |v|2 − r2

2
}

r2

}
.

The underling kinetic geometry is coming up; compare indeed with the single
Lipschitz function F which does the job in the purely fractional parabolic set-
ting in [8, Section 4]. Accordingly, we would need the three following consecutive
functions φi depending on Fi,

(4.2) φi = φi(x, v) := 2 − φ(x) + µiFi(v) , for i = 0, 1, 2.

We can state the following

Theorem 4.1 (De Giorgi’s Intermediate Values Lemma). Let f be a
weak subsolution to (1.1) in Ω according to Definition 2.2 such that f ≤ 1 and
let Q1 ≡ Q1(0) ⊂ Ω. Consider 0 < r1, r2 < r3 < 1 and 0 > t2 > t1 > −1. Define
now

Q(1) := (−1, t1] × Br1+2s
1

× Br1 , Q(2) := (t2, 0] × Br1+2s
2

× Br2

Q(3) := (−1, 0] × Br1+2s
3

× Br3 .

Given δ1, δ2 ∈ (0, 1) there exist ν, µ ≡ ν, µ(δ1, δ2, r1, r2, r3, s, n) such that if it holds

(4.3) |{f ≤ φ0} ∩ Q(1)| ≥ δ1|Q(1)| and |{f ≥ φ2} ∩ Q(2)| ≥ δ2|Q(2)| ,

then f satisfies

|{φ0 < f < φ2} ∩ Q(3)| ≥ ν|Q(3)| ,(4.4)

where φi are defined in (4.2) for i = 1, 2, 3.

Proof. The proof requires a sort of both nonlocal and kinetic approach based on
suitable choices also in order to estimate all the energy contributions by tracking
explicit dependencies on the involved quantities so that the forthcoming Harnack
inequalities will not depend on the local slanted cylinders. We divide it into three
steps.
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Step 1: The energy estimate. Up to regularize by mollification, for any
fixed t ∈ (−1, 0] we can assume that (f − φ1)+ is sufficiently regular in order
to be an admissible test function compactly supported in the cylinder (Q(3))t :=
{(v, x) ∈ R2n : (t, x, v) ∈ Q(3)}. Consider now the weak formulation in Def-
inition 2.2 by choosing as a test function ϕ ≡ (f − φ1)+η2 there, with η ∈
C∞

0 (B(2r3)1+2s) be a cut-off function so that 0 ≤ η ≤ 1 and η ≡ 1 on Br1+2s
2

; for
a. e. t ∈ (−1, 0] it yields

0 ≥
�

(Q(3))t

(ft + v · ∇xf)(f − φ1)+η2 dx dv

+
�

B
r

1+2s
3

E
(

f, (f − φ1)+η2
)

dx =: I1 + I2.

(4.5)

We start by considering I1. Using the fact that ∂tφ1 = 0 and that ∇xφ1 ̸= 0
only on Br1+2s

3
\ Br1+2s

2
, we have that

I1 = 1
2

d
dt

�
(Q(3))t

(
(f − φ1)+η

)2
dx dv

−1
2

�
(Q(3))t

v · ∇x(η2)(f − φ1)2
+ dx dv

+
�

(Q(3))t

v · ∇xφ1(f − φ1)+ dx dv

≥ 1
2 min

B
r

1+2s
3

(η2) d
dt

�
(Q(3))t

(f − φ1)2
+ dx dv(4.6)

−|Q1|(2∥v · ∇x(φ1)∥L∞ + ∥v · ∇x(η2)∥L∞)
2 µ2 ,

where we have used the fact that (f − φ1)+ ≤ µ. Moreover, choosing a proper
cut-off function η in order to control the second term in the right-hand side
of (4.6), we get

I1 ≥ 1
2c

d
dt

�
(Q(3))t

(f − φ1)2
+ dx dv − c µ2 .(4.7)

We now consider the integral I2. We start noticing that by the linearity of the
involved energy E(·), we have that

E(f, (f − φ1)+)

= [(f − φ1)+]2Hs − E((f − φ1)−, (f − φ1)+) + E(φ1, (f − φ1)+).(4.8)
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Moreover, we note that

E(φ1, (f − φ1)+) ≤ 1
2 [(f − φ1)+]2Hs

+ 2µ2
�
Rn

�
Rn

|F1(v) − F1(w)|2

|v − w|n+2s
(1Br3

(v) + 1Br3
(w)) dv dw

≤ 1
2 [(f − φ1)+]2Hs + c µ2

�
Br3

�
Br3

dv dw

|v − w|n−2(1−s)

≤ 1
2 [(f − φ1)+]2Hs + c µ2

�
Br3

�
B2r3 (v)

dv dw

|v − w|n−2(1−s)

≤ 1
2 [(f − φ1)+]2Hs + cµ2 ,(4.9)

where we have used the Lipschitz continuity of F1 – recall its definition in (4.1)
– alongside with the definition of E .

Recalling (4.7) and the fact that −I1 ≥ I2 by (4.5), it yields

(4.10) cµ2 ≥ I2 + d
dt

�
(Q(3))t

(f − φ1)2
+ dx dv.

Moreover, by combining (4.8) with (4.9), we obtain that

I2 ≤ 3
2

�
B

r
1+2s
3

[(f − φ1)+]2Hsη2 dx

−
�

B
r

1+2s
3

E((f − φ1)−, (f − φ1)+)η2 dx + c µ2.

(4.11)

Then, by summing (4.11) with (4.10), and recalling that µ < 1, it follows

cµ2 − 2I2 ≥ d
dt

�
(Q(3))t

(f − φ1)2
+ dx dv

− 3
2

�
B

r
1+2s
3

[(f − φ1)+]2Hsη2 dx

+
�

B
r

1+2s
3

E((f − φ1)−, (f − φ1)+)η2 dx ;

so that, also in view of (4.8), we finally arrive at

cµ2 ≥ d
dt

�
(Q(3))t

(f − φ1)2
+ dx dv

+ 1
2

�
B

r
1+2s
3

[(f − φ1)+]2Hsη2 dx −
�

B
r

1+2s
3

E((f − φ1)−, (f − φ1)+)η2 dx

+ 2
�

B
r

1+2s
3

E(φ1, (f − φ1)+)η2 dx.
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We now estimate the energy contribution E(φ1, (f − φ1)+). We firstly split the
contribution given by the nonlocal term as follows,

E(φ1, (f − φ1)+)

=
�

|v−w|≥1

(
φ1(v) − φ1(w)

)(
(f − φ1)+(v) − (f − φ1)+(w)

)
|v − w|n+2s

dv dw(4.12)

+
�

|v−w|<1

(
φ1(v) − φ1(w)

)(
(f − φ1)+(v) − (f − φ1)+(w)

)
|v − w|n+2s

dv dw.

Using the very definition of φ1 and the boundedness of the auxiliary function F1
in (4.1), we obtain that∣∣∣∣∣

�
|v−w|≥1

(φ1(v) − φ1(w))(f − φ1)+(v)
|v − w|n+2s

dv dw

∣∣∣∣∣
≤ cµ

�
|v−w|≥1

dw

|v − w|n+2s

�
Rn

(f − φ1)+(v) dv

≤ c µ2
� ∞

1
σ−1−2s dσ = c µ2 ,

where we have also used that (f −φ1)+ ≤ µ and it is compactly supported. Then,
the first integral in the right-hand side of (4.12) can be estimated as follows∣∣∣∣∣

�
|v−w|≥1

(φ1(v) − φ1(w))((f − φ1)+(v) − (f − φ1)+(w))
|v − w|n+2s

dv dw

∣∣∣∣∣ ≤ c µ2.

Let us consider now the second integral in the right-hand side of (4.12). By
suitable applying the Hölder inequality and the Young inequality, we can deduce
that ∣∣∣∣∣

�
|v−w|<1

(φ1(v) − φ1(w))((f − φ1)+(v) − (f − φ1)+(w))
|v − w|n+2s

dv dw

∣∣∣∣∣
≤ ε

�
|v−w|<1

|(f − φ1)+(v) − (f − φ1)+(w)|2

|v − w|n+2s
dv dw

+1
ε

�
|v−w|<1

|φ1(v) − φ1(w)|2

|v − w|n+2s
dv dw ,

for some ε > 0 which will be fixed later on. Now, the second integral in the
right-hand side of the display above can be estimated via the definition of φ1 as
well as done in previous estimate (4.11), so that�

|v−w|<1

|φ1(v) − φ1(w)|2 dv dw

|v − w|n+2s
≤ µ2

�
|v−w|<1

|F1(v) − F1(w)|2

|v − w|n+2s
1Br3

(v) dv dw

≤ µ2
�

Br3

�
|v−w|<1

dw

|v − w|n−2(1−s) dv

≤ c µ2
� 1

0
σ1+2s dσ

�
Br3

dv

≤ c µ2|Br3 |
2(1 + s) .
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All in all, from (4.12) the following estimate has been obtained,∣∣E(φ1, (f − φ1)+)
∣∣ ≤ c(ε) µ2 + ε

[
(f − φ1)+

]2
Hs ,

for a suitable positive constant c = c(ε). Choosing ε sufficiently small in order to
absorb the seminorm

[
(f − φ1)+

]
Hs in the right-hand side of the display above,

it yields

cµ2 ≥ d
dt

�
(Q(3))t

(f − φ1)2
+ dx dv

+
�

B
r

1+2s
3

[
(f − φ1)+

]2
Hs η2 dx

−
�

B
r

1+2s
3

E
(

(f − φ1)−, (f − φ1)+

)
η2 dx.

(4.13)

Moreover, recalling that (f − φ1)+(f − φ1)− = 0, we obtain that

E((f − φ1)−, (f − φ1)+) = −2
�
Rn

�
Rn

(f − φ1)+(v)(f − φ1)−(w)
|v − w|n+2s

dv dw.

Hence, the inequality in (4.13), also by recalling the fact that η ∈ C∞
0 (B(2r3)1+2s),

can be written as follows,

cµ2 ≥ d
dt

�
(Q(3))t

(f − φ1)2
+ dx dv

+
�

B
r

1+2s
3

[
(f − φ1)+

]2
Hs η2 dx

+
�

B
r

1+2s
3

�
Rn

�
Rn

(f − φ1)+(v)(f − φ1)−(w)
|v − w|n+2s

dv dw dx.

(4.14)

Notice that both the second and the third term in the inequality above in (4.14)
are nonnegative, once we define

(4.15) H(t) :=
�

(Q(3))t

(f − φ1)2
+(t, x, v) dx dv ,

it yields that for −1 < t ≤ 0 we have

H′(t) ≤ cµ2 .

Moreover, let us note that (f − φ1)+ ≤ µ1Q(3) , hence H(t) ≤ c µ2. Then, inte-
grating inequality (4.14) in time for −1 < τ1 < τ2 ≤ 0, we finally get� τ2

τ1

�
B

r
1+2s
3

�
Rn

�
Rn

(f − φ1)+(v)(f − φ1)−(w)
|v − w|n+2s

dv dw dx dt

≤ c µ2(τ2 − τ1) +
∣∣H(τ2) − H(τ1)

∣∣
≤ c µ2(τ2 − τ1) + c µ2 ≤ c µ2 .(4.16)

Step 2: Estimating time and space slices. Starting from the assumption
in (4.3), let us call Σ the set of times in (−1, t1] defined as follows,

Σ :=
{

t ∈ (−1, t1] :
∣∣∣{f(t, ·, ·) ≤ φ0

}
∩ (Q(3))t

∣∣∣ ≥ δ1|Q(1)|
4

}
.
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Such a set Σ satisfies the following estimate,

|Σ| ≥ δ1

2

(r1

r3

)2(n+s)
(t1 + 1) .

Indeed, a plain computation leads to∣∣∣∣{f ≤ φ0} ∩
(

(Q(3))t × (−1, t1]
)∣∣∣∣

=
∣∣∣{f(t, ·, ·) ≤ φ0

}
∩ (Q(3))t

∣∣∣ |Σ| +
∣∣∣{f(t, ·, ·) ≤ φ0

}
∩ (Q(3))t

∣∣∣ ∣∣∣C(−1,t1](Σ)
∣∣∣ ,

where, as customary, by C(−1,t1](Σ) we denoted the complementary set of Σ
in (−1, t1]. Thus, we get

|{f(t, ·, ·) ≤ φ0} ∩ (Q(3))t||Σ|

≥ |{f ≤ φ0} ∩ Q(1)| − |{f(t, ·, ·) ≤ φ0} ∩ (Q(3))t||C(−1,t1](Σ)|

≥ δ1|Q(1)| − δ1|Q(1)|
4 |C(−1,t1](Σ)|

≥ δ1|Q(1)| − δ1|Q(1)|
4

≥ 3
4δ1|Q(1)| >

1
2δ1|Q(1)| .

Then, dividing the previous inequality on both sides by |{f(t, ·, ·) ≤ φ0}∩ (Q(3))t|
yields

|Σ| ≥ δ1

2
|Q(1)|

|{f(t, ·, ·) ≤ φ0} ∩ (Q(3))t|

≥ δ1

2
|Q(1)|
|Q(3)|

≥ δ1

2

(r1

r3

)2(n+s)
(t1 + 1) ,

as claimed.
Starting again from estimate (4.16), we have

c µ2 ≥
� 0

−1

�
B

r
1+2s
3

�
Rn

�
Rn

(f − φ1)+(v)(f − φ1)−(w)
|v − w|n+2s

dv dw dx dt

≥ c

�
Σ

�
B

r
1+2s
3

�
Rn×Br3

(f − φ1)+(v)(f − φ1)−(w) dv dw dx dt

≥ c

�
Σ

�
B

r
1+2s
3

�
({f(·,x,t)≤φ0}∩Br3 )×Br3

(f − φ1)+(v)(φ1 − φ0)−(w) dv dw dx dt

≥ c

�
Σ

�
B

r
1+2s
3

�
({f(·,x,t)≤φ0}∩Br3 )×Br3

(f − φ1)+(v)(µF1 − F0)+(w) dv dw dx dt

≥ c(1 − µ)
�

Σ

�
B

r
1+2s
3

(�
Br3

(f − φ1)+(v) dv

)∣∣∣{f(·, x, t) ≤ φ0
}

∩ Br3

∣∣∣ dx dt

≥ c(1 − µ)|Q(1)|δ1

4µ

�
Σ

�
(Q(3))t

(f − φ1)2
+ dv dx dt ,(4.17)
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where we have also used the following estimates,∣∣∣{f(·, x, t) ≤ φ0
}

∩ Br3

∣∣∣ ≥ δ1|Q(1)|
4 a. e. on Br1+2s

3
and for t ∈ Σ ,

(f − φ1)+ ≤ µ ,

(φ1 − φ0)− = (µF1 − F0)+ ≥ 1 − µ on Br3 ,

and inf
Br3 ×Br3

|v − w|−n−2s ≥ c > 0.

Hence, we eventually get�
Σ

�
(Q(3))t

(f − φ1)2
+ dv dx dt ≤ cµ3

(1 − µ)δ1
≤ µ3−1/8 ,

if µ is sufficiently small. In particular, we have that

(4.18)
�

(Q(3))t

(f − φ1)2
+ dv dx ≤ µ3−1/4

does hold for any t ∈ (−1, t1] except on a set Υ for which we have that, by
Chebychev’s Inequality,

|Υ| :=
∣∣∣∣{t ∈ (−1, t1] : ∥(f − φ1)+(t, ·)∥2

L2((Q(3))t) > µ3−1/4
}∣∣∣∣ ≤ µ1/8.

Taking a smaller µ such that

(4.19) µ ≤
(δ1

4

)8
,

we can finally have that (4.18) holds on a set t ∈ (−1, t1] of measure greater
than 3

4δ1.

Step 3: The intermediate set for f . Assume now that there exists a time τ0 ∈
(t2, 0) such that

|{(v, x)|(f − φ2)+(τ0, ·, ·) > 0} ∩ Q(2)| >
δ2

2 |Q(2)|.

Thus, at time τ0 we have

H(τ0) =
�

(Q(3))τ0
(f − φ1)2

+(v, x, τ0) dx dv

≥
�

(Q(3))τ0
(φ2 − φ1)2(v, x, τ0)1{(f−φ2)+(·,τ0)>0} dx dv

≥
�

(Q(3))τ0
(µ2F2 − µF1)2(v, x, τ0)1{(f−φ2)+(·,τ0)>0} dx dv

≥
�

(Q(2))τ0
µ2(µF2 − F1)2(v)1{(f−φ2)+(τ0,·,·)>0} dx dv

(4.19)
≥ µ2

2 min
v∈Br2

µ≤( δ1
4 )8

(µF2 − F1)2
∣∣∣{(x, v) : (f − φ2)+(τ0, ·, ·) > 0

}
∩ Q(2)

∣∣∣
≥ c

µ2

4 δ2|Q(2)| ,(4.20)

where the positive constant c depends only on F1, F2 and δ1.
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Moreover, consider a time τ ≤ τ0 such that τ ∈ (−1, t1] such that

H(τ) =
�

(Q(3))τ

(f − φ1)2
+(v, x, τ) dv dx ≤ µ3−1/4.

In this way, we choose µ sufficiently small (up to shrink a smaller δ2 if needed)
such that

(4.21) µ1−1/4 ≥ c
|Q(2)|δ2

16 .

and thus the energy H(·) of (f − φ1)2
+(t, ·, ·) passes through the range of times

D :=
{

τ ∈ (τ , τ0) : c
|Q(2)|µ2

16 δ2 < H(τ) < c
|Q(2)|µ2

4 δ2

}
.

In such a range of times we have that

(4.22)
∣∣∣{(f − φ2)+(τ, ·, ·) > 0

}
∩ (Q(3))τ

∣∣∣ ≤ δ2

2 |Q(2)|.

Indeed, by contradiction assume that the reverse inequality holds true for some τ ∈
D. Hence, at such a time slice τ , going through the same computation as
in (4.20), we will arrive at H(τ) ≥ c |Q(2)|µ2

4 δ2 which is in contradiction with the
fact that τ ∈ D.

Thus, up to choose δ2 sufficiently small, we have that the measure of the set
appearing in (4.22) is negligible.

Now, we estimate the size of the set U of times slice of D for which∣∣∣{(f − φ0)+(τ, ·, ·) ≤ 0
}

∩ (Q(3))t
∣∣∣ ≥ δ1|Q(2)|.

By (4.16) we have

c µ2 ≥
� 0

−1

�
B

r
1+2s
3

�
Rn

�
Rn

(f − φ1)+(v)(f − φ1)−(w)
|v − w|n+2s

dv dw dx dt

≥ cδ1|Q(2)|
µ

�
U

�
B

r
1+2s
3

�
Rn

(f − φ1)2 dv dx dt

≥ cδ1δ2|U |µ|Q(2)|
16 ,

where we have followed a similar reasoning as in (4.17)–(4.20), and in the last
line we have also used the fact that τ ∈ U ⊂ D. Therefore, we obtain that

|U | ≤ cµ

δ1δ2|Q(2)|
.

Then, by choosing

(4.23) µ ≤ δ1δ2|D||Q(2)|/(2c)

we plainly deduce that

|U | ≤ |D|
2 .

Consider now those times τ ∈ D which are not in U . Hence, we have

(4.24)
∣∣∣{φ0 < f(τ, ·, ·) < φ2

}
∩ (Q(3))τ

∣∣∣ ≥ |Q(3)|
2 ,
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Indeed,∣∣∣{φ0 < f(τ, ·, ·) < φ2
}

∩ (Q(3))τ
∣∣∣

≥ |(Q(3))τ | −
∣∣∣{φ0 > f(τ, ·, ·)

}
∩ (Q(3))τ

∣∣∣−
∣∣∣{f(τ, ·, ·) > φ2

}
∩ (Q(3))τ

∣∣∣
≥ |(Q(3))τ | − δ1|Q(2)| − δ2

2 |Q(2)|

≥ |Q(3)|
2 ,

up to choose δ1 and δ2 small enough.

Hence, by (4.24), we finally deduce

|{φ0 < f < φ2} ∩ Q(3)| =
� 0

−1
|{φ0 < f(τ, ·, ·) < φ2} ∩ (Q(3))τ | dτ

≥
�

D\U

|{φ0 < f(τ, ·, ·) < φ2} ∩ (Q(3))τ | dτ

≥ |D||Q(3)|
4 ≥ ν|Q(3)| ,

up to choose a constant ν ≡ ν(δ1, δ2) sufficiently small, as desired. □

4.2. The Measure-to-pointwise Lemma. In order to prove a Measure-to-
point- wise-type lemma, we will employ Theorem 4.1 established in the previous
section, together with the nonlocal L∞-L2-type estimate with tail (1.5) stated in
the Introduction.

Theorem 4.2 (Measure-to-pointwise Lemma). Let δ̊ ∈ (0, 1) and for 0 <
r1, r2 << 1 and 0 > t2 > t1 > −1 consider

Q(1) := (−1, t1] × Br1+2s
1

× Br1 , Q(2) := (t2, 0] × Br1+2s
2

× Br2 , .

Let g be a weak subsolution to (1.1) in Ω such that g ≤ 1 in Ω and

| {g ≤ 0} ∩ Q(1)| ≥ δ̊|Q(1)|.(4.25)

Then there exists a real number ϑ ≡ ϑ(̊δ, µ, ν) ∈ (0, 1) such that

g ≤ 1 − ϑ in Qϱ(t0, x0, v0),(4.26)

for any Qϱ(t0, x0, v0) ⊆ Q(2), with ϱ ≤ min{|t2|, r2}/2, where ν and µ are the
constants introduced in Theorem 4.1.

Proof. Let us consider 0 < µ < 1 as in (4.2) and let us define a sequence of
functions

gk := 1
µ2k

(
g − (1 − µ2k)

)
= 1 − 1 − g

µ2k
, k ≥ 0.

Given g is a subsolution, then also gk is a subsolution to (1.1) for every k ≥ 0.
Additionally, since g ≤ 1, then gk ≤ 1 for every k ≥ 0, but notice that it may
also be negative.

Moreover, it is true that

{φ0 < gi < φ2} ∩ {φ0 < gj < φ2} = ∅ ∀i, j ≥ 0, with i ̸= j,(4.27)

and |{gk ≤ 0} ∩ Q(1)| ≥ δ̊|Q(1)|.
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The first relation in the display above descends from the very definition of gk

and (4.2). Indeed, for any k ≥ 0 it holds

{φ0 < gk < φ2}

:=
{

1 + µ2k
(
1 − φ(x) + F0(v)

)
< g < 1 + µ2k

(
1 − φ(x) + µ2F2(v)

)}
.

Hence, it is clear that if we consider i, j ≥ 0, with i ̸= j the claim is proved.
As far as we are concerned with the second relation in (4.27), for every k ≥ 0
the set {gk ≤ 0} is equivalent to the set {g ≤ 1 − µ2k}. Then, considering that
1 − µ2k ≥ 0 together with (4.25), the claim is proved for every k ≥ 0.

Now, we apply the boundedness estimate (1.5) to every gk, with k ≥ 0 in Q(2),
and we obtain

sup
Qϱ(t0,x0,v0)

gk ≤ c δ− 1
2ε∗

( �
Q(2)

(gk)2
+ dv dx dt

) 1
2

+ δTailp((gk)+; 0, r, r/2) ,

for any Qϱ(t0, x0, v0) ⊂ Q(2), with ϱ ≤ min{|t2|, r2}/2.
We now observe that if for some k̄ the following inequality does hold true,

c δ− 1
2ε∗

( �
Q(2)

(gk̄)2
+ dv dx dt

) 1
2

+ δTailp((gk̄)+; 0, r, r/2) <
1
2 ,

then gk̄ ≤ 1/2, and hence g ≤ 1 − µ2k̄/2 implying the thesis with ϑ := µ2k̄/2.
Hence, we are left with the proof of our statement when there exists k0 ≥ 0

such that

c δ− 1
2ε∗

( �
Q(2)

(gk)2
+ dv dx dt

) 1
2

+ δTailp((gk)+; 0, r, r/2)

>
1
2 ∀k s. t. 0 ≤ k ≤ k0 − 1 ,(4.28)

Then, for every k ∈ R such that 0 ≤ k ≤ k0 − 1 it holds

|{gk ≤ φ0} ∩ Q(1)| = |{g ≤ 1 − µ2kφ(x)} ∩ Q(1)| ≥ δ̊|Q(1)| ,

because 0 < µ < 1, F0(v) = −1 in Br, φ(x) ∈ [0, 1], and thus 1 − µ2kφ(x) ≥ 0,
allowing us to employ (4.27). Now, if we recall that φ2 = 1 − µ2 in Q(2) by
definition, we also have that, choosing δ sufficiently small,∣∣∣{gk > φ2} ∩ Q(2)

∣∣∣
|Q(2)|

≥ |{gk > 1 − µ2} ∩ Q+
r |

|Q1(0)|

= c|{gk+1 > 0} ∩ Q(2)|

≥ c

�
Q(2)

(gk+1)2
+ dv dx dt

> c δ
1

ε∗

(
1
2 − δTailp((gk)+; 0, r, r/2)

)2

> c δ
1

ε∗

(
1
2 − δωn|U1(0, 0)|

1
p

2s

)2

=: δ2 .

The estimate above comes from the fact that gk+1 ≤ 1, implying 0 ≤ (gk+1)+ ≤ 1,
combined with the definition of the indicator function 1{gk+1≥0}, the estimate
in (4.28).
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Finally, thanks to Theorem 4.1 applied to every gk, with 0 ≤ k ≤ k0 − 1, with
the choice δ1 = δ̊ there, we can deduce the existence of a constant ν ≡ ν (̊δ, n, s) >
0 (recalling the dependencies of δ2) such that∣∣∣{φ0 < gk < φ2} ∩ Q(3)

∣∣∣ ≥ ν|Q(3)|.

Bearing in mind the sets |{φ0 < gk < φ2}| are disjoint (compare with (4.27)), we
then obtain

|Q(3)| ≥
k0−1∑
k=0

∣∣∣{φ0 < gk < φ2} ∩ Q(3)
∣∣∣ ≥ k0 ν|Q(3)|.

Hence, it holds k0 ≤ 1/ν and, recalling that gk0+1 ≤ 1/2 in Qϱ(t0, x0, v0) by
definition of k0 (see (4.28)), it yields

g ≤ 1 − µ2k0+2

2 ≤ 1 − µ
2
ν +2

2 in Qϱ(t0, x0, v0).

Eventually, the claim follows by taking ϑ := µ
2
ν +2/2. □

5. Proof of the weak Harnack inequality

In view of the results in the proceeding Section, it suffices to apply the final
strategy in [32] with no fundamental modifications, except than the fact that we
can rely on our Measure-to-point Lemma, in turn relying in Theorem 1.1, and
thus we will not need the whole architecture running the propagation of minima
argument there (see, in particular, [32, Sections 6 and 9]. For the sake of the
reader, we will present the whole proof in a few steps right below.

Step 1: Propagation in measure. As a consequence of the result in Theo-
rem 4.2, we can prove that there exist two constants M > 1 and δ > 0 such that
if

(5.1) |{f ≥ M} ∩ Q1(0)| ≥ (1 − δ)|Q1(0)| ,

then f ≥ 1 on Q := [0, 22s] × B21+2s × B2. Notice that this is equivalent to prove
that if |{f ≤ 1} ∩ Q1(0)| < δ then f ≥ 1/M .

For this, we apply the measure-to-pointwise lemma to the function f(t +
22s, x, v) in appropriated cylinders shifted in time, so that we can deduce

(5.2) f ≥ 1/M in Q,

by choosing M = 1/ϑ, where ϑ is the one in Formula (4.26).

Step 2: Stacked propagation. By the same argument as in [32, Corollary 9.2],
for k ≥ 1, Tk =

∑k
i=1 22si, if f satisfies

|{f ≥ Mk} ∩ Q1(0)| ≥ (1 − δ)|Q1(0)| ,

for M and δ given by Step 1 above, then f ≥ 1 in Q[k] := [Tk−1, Tk] × B2(1+2s)k ×
B2k ; see Figure 5.
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Figure 4. The stacked propagation geometry in the proof of the
weak Harnack inequality in Theorem 1.2, as introduced in [32, Sec-
tion 9].

Step 3: Proof of the weak Harnack inequality (1.6). We prove that, for
any k ≥ 1 and for some fixed r0 ∈ (0, 1) which will be chosen later on, it holds

(5.3) |{f > M̄k} ∩ Q−
r0

| ≤ c̄(1 − δ̄)k ,

for some constants M̄ , c̄ and δ̄ ∈ (0, 1).

We start by induction. For k = 1, we simply choose c̄ and δ̄ so that

|Q−
r0

| ≤ c̄(1 − δ) and δ̄ ≤ δ.

Assume now that (5.3) holds true up to rank k and prove it for k + 1. We want
to apply the Ink-spot Theorem 2.1 with µ = δ, with some integer m (which will
be fixed later on) and with M̄ := Mm, with M and δ being the constant give by
Step 1.

Let us consider the following sets,

E := {f ≥ M̄k+1} ∩ Q−
r0

and F := {f > M̄k} ∩ Q1(0).

Clearly, by recalling the definition (1.7), we infer the sets E ⊂ F ⊂ Q1(0) are
bounded and measurable. Let us assume that for any cylinder Qσ(t0, x0, v0) ⊂
Q−

r0
, for some σ ∈ (0, r0), it holds

|Qσ(t0, x0, v0) ∩ E| > (1 − δ)|Qσ(t0, x0, v0)|.

Hence,

(5.4) |{f ≥ M̄k+1} ∩ Qσ(t0, x0, v0)| > (1 − µ)|Qσ(t0, x0, v0)|.

We apply now the Measure-to-pointwise Lemma, Theorem 4.2, to the subsolu-
tion g defined as follows,

g := 1 − f
(

(t0 + 1 − σ2s, x0, v0) ◦ ·
)

/M̄k+1,

and we get that

f
(

(t0 + 1 − σ2s, x0, v0) ◦ ·
)

≥ ϑM̄k+1 on Q+
σ/2 .
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Thus, choosing q := − log ϑ/ log(22s) > 0 we get (recalling that we can assume f
having infimum less or equal than 1)

1 ≥ ϑM̄k+1 =
(1

2

)2sq

M̄k+1 ≥
(σ

2

)2sq

M̄k+1.

Then, we get that
r0 := 2M̄− k

2sq .

Now to prove that Q̄m
σ (t0, x0, v0) ⊂ F , that is Q̄m

σ (t0, x0, v0) ⊂ {f ≥ M̄k}, we
apply the result of Step 2 with k = m to M̄−kf((t0, x0, v0) ◦ ·).

Thus, by the Ink-spot Theorem 2.1 (with µ ≡ δ and r0 ≡ 2M̄− k
2sq there) we

get

|{f ≥ M̄k+1} ∩ Q−
r0

|

≤ 1 + m

m
(1 − cδ)

(
|{f > M̄k} ∩ Q−

r0
| + Cmr2s

0

)
≤ 1 + m

m
(1 − cδ)

(
c̄(1 − δ̄)k + cmM̄− k

q

) (
by the induction step (5.3)

)
≤ c̄

1 + m

m
(1 − cδ)

(
1 + cm

c̄

)
(1 − δ̄)k

(
choosing 1 − δ̄ > M̄−1/q

)
≤ c̄(1 − δ̄)k+1 ,

up to choose m and consequently c̄ large enough. This proves the desired induc-
tion step. The proof of estimate (1.6) will then follow by a standard argument
via the layer-cake formula.

6. A new Besicovitch-type covering for slanted cylinders

In particular, as mentioned in the Introduction, we will rely on a new covering
argument for the involved slanted cylinders. Such a general Besicovitch-type
result will be presented right below.

The following properties for the slanted cylinders in (2.3) do hold true:
(1) (Monotonicity) Given a slanted cylinder Qσ(t, x, v), and ϱ > 0, there

exist a point (t′, x′, v′) and two constant κ, ε̄ ∈ (0, 1) such that

∥(t, x, v)−1 ◦ (t′, x′, v′)∥kin ≤ ε̄κσ

ϱ
,

and Qκσ
ϱ

(t′, x′, v′) ⊂ Qσ(t, x, v) ⊂ Q σ
κϱ

(t′, x′, v′) .

(2) (Exclusion) There exists γ > 0 such that for any Qϱ(t0, x0, v0) and
(t, x, v) ̸∈ Qϱ(t0, x0, v0) it holds

Qϵγ (t, x, v) ∩ Q(1−ϵ)ϱ(t0, x0, v0) = ∅ for any 0 < ϵ < 1.

(3) (Inclusion) There exists ℘ > 1 such that for 0 < σ < ϱ < 1 and
(t, x, v) ∈ Qϱ(t0, x0, v0) it holds

Q(ϱ−σ)℘(t, x, v) ⊂ Qϱ(t0, x0, v0).
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(4) (Engulfment) There exists a constant κ ≡ κ(s) such that for any Qϱ(t0, x0, v0)
and Qσ(t, x, v) with

Qϱ(t0, x0, v0) ∩ Qσ(t, x, v) ̸= ∅ and 2ϱ ≥ σ ,

it holds that
Qσ(t, x, v) ⊂ κQϱ(t0, x0, v0) ,

with

κQϱ(t0, x0, v0) :=
{

(t, x, v) : −κ2s + 1
2 ϱ2s < t − t0 ≤ κ2s − 1

2 ϱ2s

|v − v0| < κϱ,
∣∣x − x0 − (t − t0)v0

∣∣ < (κϱ)1+2s

}
.

The quantity ∥ · ∥kin is that obtained via the customary kinetic distance, firstly
seen in [33] for proving Schauder estimates for Boltzmann equations; that is,

∥(t, x, v)∥kin := max
{

|t| 1
2s , |x|

1
1+2s , |v|

}
.

Compare, also, our Engulfment with Lemma 10.4 there.

We can now state and prove the following

Lemma 6.1 (Besicovitch’s covering Lemma for slanted cylinders). Let
Ω ⊂ R2n+1 be a bounded set. Assume that for any (t, x, v) ∈ Ω there exists a
family of slanted cylinders Qr(t, x, v) with r ≤ R, for some R > 0. Then, there
exists a countable family ℑ :=

{
Qrk

(tk, xk, vk)
}

k∈N with the following properties

(i) Ω ⊂
∞⋃

k=1
Qrk

(tk, xk, vk).

(ii) (tk, xk, vk) ̸∈
⋃
j<k

Qrk
(tj , xj , vj), for any k ≥ 2.

(iii) For ϵ ∈ (0, 1), the family ℑϵ :=
{

Q(1−ϵ)rk
(tk, xk, vk)

}
k∈N

has bounded over-
laps. Moreover,

∞∑
k=1

1Q(1−ϵ)rk
(tk,xk,vk)(t, x, v) ≤ c log

(1
ϵ

)
,

where the constant c depends on the Monotonicity constants κ and ε̄, and
the Exclusion constant γ.

Proof. Let us assume with no loss of generality that R := sup
{

r : Qr(t, x, v) ∈ ℑ
}

.
We set

ℑ0 :=
{

Qr(t, x, v) : R

2 < r ≤ R, Qr(t, x, v) ∈ ℑ
}

,

and
O0 :=

{
(t, x, v) : Qr(t, x, v) ∈ ℑ0

}
.

Let us choose Qr1(t1, x1, v1) ∈ ℑ0. If O0 ⊂ Qr1(t1, x1, v1), then we stop.
Otherwise, let us choose Qr2(t2, x2, v2) so that

• Qr2(t2, x2, v2) ∈ ℑ0;
• (t2, x2, v2) ∈ O0 \ Qr1(t1, x1, v1).

Now, if O0 ⊂ Qr1(t1, x1, v1) ∪ Qr2(t2, x2, v2), then we stop, otherwise we con-
tinue to iterate such a process. In such a way, we build a subfamily ℑ′

0 :={
Qr0

j
(t0

j , x0
j , v0

j )
}

j∈N
such that (t0

k, x0
k, v0

k) ∈ O0 \
⋃
j<k

Qr0
j
(t0

j , x0
j , v0

j ).
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Now, we consider the following families,

ℑ1 :=
{

Qr(t, x, v) : R

4 < r ≤ R

2 , Qr(t, x, v) ∈ ℑ
}

,

and

O1 :=

(t, x, v) : Qr(t, x, v) ∈ ℑ1 and (t, x, v) ̸∈
∞⋃

j=1
Qr0

j
(t0

j , x0
j , v0

j )

 .

In a similar fashion as above we build a family ℑ′
1 :=

{
Qr1

j
(t1

j , x1
j , v1

j )
}

j∈N
such

that (t1
k, x1

k, v1
k) ∈ O1 \

⋃
j<k

Qr1
j
(t1

j , x1
j , v1

j ).

By iterating this process up to the kth-stage, we obtain the following two
families,

ℑk :=
{

Qr(t, x, v) : R

2k+1 < r ≤ R

2k
, Qr(t, x, v) ∈ ℑ

}
,

and

Ok :=

(t, x, v) : Qr(t, x, v) ∈ ℑk and (t, x, v) ̸∈
k−1⋃
i=0

∞⋃
j=1

Qri
j
(ti

j , xi
j , vi

j)

 .

From this, we get a family of cylinders ℑ′
k :=

{
Qrk

j
(tk

j , xk
j , vk

j )
}

j∈N
so that

(tk
ℓ , xk

ℓ , vk
ℓ ) ∈ Ok \

⋃
j<ℓ

Qrk
j
(tk

j , xk
j , vk

j ).

We now are in the position to prove that the collection of all slanted cylinders
in all ℑ′

k do satisfy the conditions of Lemma 6.1.
We start by proving that each family ℑ′

i has bounded overlapping. For this,
suppose that

(t, x, v) ∈ Qri
j1

(ti
j1

, xi
j1

, vi
j1

) ∩ ... ∩ Qri
jm

(ti
jm

, xi
jm

, vi
jm

) ,

with Qri
jℓ

(ti
jℓ

, xi
jℓ

, vi
jℓ

) ∈ ℑ′
i. Now, let Qri

0
(ti

0, xi
0, vi

0) be the cylinder with ri
0 :=

max
{

ri
jℓ

: 1 ≤ ℓ ≤ m
}

. Note that, by construction, we can also assume that
(ti

jN
, xi

jN
, vi

jN
) ̸∈ Qri

jℓ

(ti
jℓ

, xi
jℓ

, vi
jℓ

), for ℓ < N .

In view of the Monotonicity property of the slanted cylinder, we have that
there exist κ, ε̄ > 0 such that

∥(ti
jℓ

, xi
jℓ

, vi
jℓ

)−1 ◦ (t′
ℓ, x′

ℓ, v′
ℓ)∥kin ≤

ε̄κri
jℓ

ri
0

,

and Qκri
jℓ

ri
0

(t′
ℓ, x′

ℓ, v′
ℓ) ⊂ Qri

jℓ

(ti
jℓ

, xi
jℓ

, vi
jℓ

) ⊂ Q ri
jℓ

κri
0

(t′
ℓ, x′

ℓ, v′
ℓ) ,

(6.1)

for any 1 ≤ ℓ ≤ m. Recalling that (ti
jN

, xi
jN

, vi
jN

) ̸∈ Qri
jℓ

(ti
jℓ

, xi
jℓ

, vi
jℓ

), we get by
(6.1) that, for N > ℓ,

(6.2) (ti
jN

, xi
jN

, vi
jN

) ̸∈ Qκri
jℓ

ri
0

(t′
ℓ, x′

ℓ, v′
ℓ).



HARNACK INEQUALITIES FOR KINETIC INTEGRAL EQUATIONS 33

Then, by combining (6.1) with (6.2) we have that

∥(ti
jN

, xi
jN

, vi
jN

)−1 ◦ (ti
jℓ

, xi
jℓ

, vi
jℓ

)∥kin

≥ ∥(ti
jN

, xi
jN

, vi
jN

)−1 ◦ (t′
ℓ, x′

ℓ, v′
ℓ)∥kin − ∥(ti

jℓ
, xi

jℓ
, vi

jℓ
)−1 ◦ (t′

ℓ, x′
ℓ, v′

ℓ)∥kin

>
κri

jℓ

ri
0

(
1 − ε̄

)
> c(κ, ε̄) > 0 ,(6.3)

since R2−(i+1) < ri
jℓ

≤ ri
0 ≤ R2−i. Moreover, by taking into account (6.2), we

have that Qri
jℓ

(ti
jℓ

, xi
jℓ

, vi
jℓ

) is contained in a slanted cylinder QR(0), with the
radius R depending only on κ and ε̄. By (6.3), proceeding as in [10, Lemma 1],
we obtain that the overlapping in each family ℑ′

i is at most α, with α depending
only on κ, ε̄ and the dimension n only.

Now, we prove that the family ℑ′
i is finite. Since Ω is bounded and R2−(i+1) <

ri
j ≤ R2−i, there exists a constant C > 0 such that Oi ⊂ QCri

1
(ti

1, xi
1, vi

1) and
Cri

1 ≥ R2−i. Then, for any Qri
j
(ti

j , xi
j , vi

j) ∈ ℑ′
i we get

Q κ
2C

(t′
j , x′

j , v′
j) ⊂ Qri

j
(ti

j , xi
j , vi

j)

⊂ Q ri
j

Cκri
1

(t′
j , x′

j , v′
j)

⊂ Q 1
Cκ

(t′
j , x′

j , v′
j) ⊂ Qℜ(0) ,(6.4)

with ℜ depending only on C and κ.
Since ℑ′

i has overlapping bounded by α, we get
∞∑

j=1
1Q

ri
j

(ti
j
,xi

j
,vi

j
)(t, x, v) ≤ α ,

which, in view of (6.4), implies
∞∑

j=1
1Q κ

2C
(t′

j
,x′

j
,v′

j
)(t, x, v) ≤ α1Qℜ(0) .

Hence, iterating the sums above we deduce that ℑ′
i has a finite number of cylin-

ders.

We now estimate the boundedness of overlapping between different generators
of the families ℑ′

i. We start by shrinking the selected cylinders

(6.5) (t0, x0, v0) ∈
∞⋂

i=1
Q(1−ϵ)r

ei
ji

(tei
ji

, xei
ji

, vei
ji

) ,

with e1 < e2 < . . . , R2−(ei+1) < rei
ji

≤ R2−ei . Fix now, i and ℓ > i, let us
measure the gap between ei and eℓ. Since reℓ

jℓ
< rei

ji
we have that

Qκ(1−ϵ)r
eℓ
jℓ

r
ei
ji

(t′, x′, v′) ⊂ Qr
eℓ
jℓ

(teℓ
jℓ

, xeℓ
jℓ

, veℓ
jℓ

) ⊂ Q (1−ϵ)r
eℓ
jℓ

κr
ei
ji

(t′, x′, v′).

Moreover, by the Exclusion property we have that

Qϵγ (teℓ
jℓ

, xeℓ
jℓ

, veℓ
jℓ

) ∩ Q(1−ϵ)r
ei
ji

(tei
ji

, xei
ji

, vei
ji

) = ∅.
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Thus,

0 < ϵγ

< ∥(teℓ
jℓ

, xeℓ
jℓ

, veℓ
jℓ

)−1 ◦ (t0, x0, v0)∥kin

≤ ∥(t′, x′, v′)−1 ◦ (t0, x0, v0)∥kin + ∥(teℓ
jℓ

, xeℓ
jℓ

, veℓ
jℓ

)−1 ◦ (t′, x′, v′)∥kin

≤
(1 − ϵ)reℓ

jℓ

κrei
ji

+ ε̄
κ(1 − ϵ)reℓ

jℓ

rei
ji

≤ c 2ei−eℓ ,

which yields

eℓ − ei ≤ log2

(1
ϵ

)
,

where c depends only on ε̄, κ, and the Exclusion constant γ.
All in all, the number of cylinders in (6.5) is bounded by a multiple of log2

(
1
ϵ

)
,

up to a multiplicative constant which – we recall – will depend only on ε̄, κ and γ.

Now consider the family ℑ′ := {ℑ′
i}∞

i=1. Since any family ℑ′
i covers Oi, the

family ℑ′ cover Ω, so (i) follows. Moreover, up to relabel the cylinders, one can
deduce (ii). Finally, by the argument above, also (iii) is satisfied up to enlarge
the constant. □

7. Proof of the strong Harnack inequality

This section is devoted to the completion of the proof of the strong Harnack
inequality in Theorem 1.3. Armed with the weak Harnack estimate in (1.6)
obtained in the preceding section, as well as with the feasibility of the L∞-
estimates in Section 3 via their δ-interpolative parameter, in order to concretize
our final strategy we will also need a nonlocal tail control before going into
the Besicovitch-type covering argument presented in Section 6. As already said,
the whole strategy below seems feasible to attack several different kinetic integral
problems when the related ingredients will be cooked as in the preceding sections.

Proof of Theorem 1.3. This proof is divided in a few steps, in which all the
results in the rest of the paper will intervene.

Step 1: An estimate of the Tailp quantity. There exists a dilation parame-
ter λ > 1 such that the following estimate holds true for any p > 1

(7.1) Tailp(f ; (t0, x0, v0), R, r) ≤ c sup
UR(t0,x0)×Bλr(v0)

f ,

where the positive constant c depends only on n, s.

Firstly, assume that Tailp(f ; (t0, x0, v0), R, r) > 0, otherwise the desired es-
timate in (7.1) trivially follows. Now, let us start noticing that, for a. e.
(t, x) ∈ UR(t0, x0), we have (since λ > 1)
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r2s

�
Rn\Br(v0)

f(t, x, v)
|v − v0|n+2s

dv

= r2s

�
Bλr(v0)\Br(v0)

f(t, x, v)
|v − v0|n+2s

dv + r2s

�
Rn\Bλr(v0)

f(t, x, v)
|v − v0|n+2s

dv

≤ r2s
(

sup
UR(t0,x0)×Bλr(v0)

f
) �

Rn\Br(v0)

dv

|v − v0|n+2s

+(λr)2s

�
Rn\Bλr(v0)

f(t, x, v)
|v − v0|n+2s

dv

≤ c sup
UR(t0,x0)×Bλr(v0)

f + (λr)2s

�
Rn\Bλr(v0)

f(t, x, v)
|v − v0|n+2s

dv ,(7.2)

where the constant c depends only on n and s.

Finally, in view of the strictly positiveness of Tailp(f ; (t0, x0, v0), R, r), we no-
tice that one can enlarge the dilation parameter λ, so that the second term in
the right hand-side of (7.2) can be controlled as follows, a. e., in UR(t0, x0),

(λr)2s

�
Rn\Bλr(v0)

f(t, x, v)
|v − v0|n+2s

dv ≤ 9
10

(
r2s

�
Rn\Br(v0)

f(t, x, v)
|v − v0|n+2s

dv

)
.

By contradiction, if the opposite holds true for any λ > 1, then by letting λ →
+∞ one would deduce that Tailp(f ; (t0, x0, v0), R, r) = 0, which is a contradiction.
Indeed, note that using that f(t, x, ·) ∈ L2(Rn) and that |v−v0|−n−2s ≤ (λr)−n−2s

on Rn \ Bλr(v0), and thus Hölder’s Inequality yields

9
10

(
r2s

�
Rn\Br(v0)

f(t, x, v)
|v − v0|n+2s

dv

)

< (λr)2s

�
Rn\Bλr(v0)

f(t, x, v)
|v − v0|n+2s

dv

≤ (λr)2s
( �

Rn\Bλr(v0)

f(t, x, v)2

|v − v0|n+2s
dv
) 1

2
( �

Rn\Bλr(v0)

dv

|v − v0|n+2s

) 1
2

≤ c(λr)s− n
2 ∥f(t, x, ·)∥L2(Rn\Bλr(v0))

( � ∞

λr

ϱ−2s−1 dϱ
) 1

2

≤ c(λr)− n
2 ∥f(t, x, ·)∥L2(Rn\Bλr(v0)) → 0 , as λ → +∞ ,

which is a contradiction in view of the positivity of Tailp(f ; (t0, x0, v0), R, r).

Thereby, we have
Tailp(f ; (t0, x0, v0), R, r)

≤ c sup
UR(t0,x0)×Bλr(v0)

f + 9
10Tailp(f ; (t0, x0, v0), R, r) ,

which gives the desired estimate in (7.1), up to relabeling c.

Step 2: An application of the interpolative boundedness estimate and
the kinetic covering. Now, let us set 1/2 ≤ σ′ < σ ≤ 1, ϱ := (1 − ϵ)[(σ −
σ′)r0]℘, with ℘ being the Inclusion exponent in Section 6, r0 being the ra-
dius given by the weak Harnack inequality in Theorem 1.2 and ϵ given by
Lemma 6.1 (iii), depending only on the Monotonicity constants. Consider the
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cylinders Q(1−ϵ)[(σ−σ′)r0]℘(t0, x0, v0), for any (t0, x0, v0) ∈ Q−
σ′r0

. By taking into
account the Inclusion property, any cylinder of this family is contained in Q−

σr.
Now, note that, recalling the definition of ϱ := (1 − ϵ)[(σ − σ′)r0]℘

(ϱ

2

)2s
�
Rn\B ϱ

2
(v0)

f(t, x, v)
|v − v0|n+2s

dv

≤
(ϱ

2

)2s
�

B(σr0)℘ (v0)\B ϱ
2

(v0)

f(t, x, v)
|v − v0|n+2s

dv

+(σr0)2s℘

�
Rn\B(σr0)℘ (v0)

f(t, x, v)
|v − v0|n+2s

dv

≤ c sup
Uσr0 (−1+(σr0)2s,0)×B(σr0)℘ (v0)

f

+(σr0)2s℘

�
Rn\B(σr0)℘ (v0)

f(t, x, v) dv

|v − v0|n+2s
,

where we have also used that Q−
σr0

:= Uσr0(−1 + (σr0)2s, 0) × Bσr0 .
Hence, recalling the definition of Tailp in (2.1) and (7.1), we get

Tailp(f ; (t0, x0, v0), ϱ, ϱ/2)

≤ c sup
Uσr0 (−1+(σr0)2s,0)×B(σr0)℘ (v0)

f + Tailp(f ; (t0, x0, v0), [(σ − σ′)r0]℘, (σr0)℘)

≤ c sup
Uσr0 (−1+(σr0)2s,0)×Bλ(σr0)℘ (v0)

f

≤ c sup
Q−

σr0

f ,(7.3)

up to enlarging ℘, so that Bλ(σr0)℘ ⊂ Bσr0 .

We now apply Theorem 1.1 and, thanks to our Besicovitch-type covering pre-
sented in Section 6, up to renumbering the family, we can cover Q−

σ′r0
by a

countable family of slanted cylinders {Q(k) ≡ Qϱk
(tk, xk, vk)}k∈N with radii ϱk

such that ϱk ∼ (1 − ϵ)[(σ − σ′)r0]℘/2k. Moreover, since the covering has bounded
overlaps we get, by Lemma 6.1 (iii), that, for a. e. (t0, x0, v0) ∈ Q−

σ′r0
it holds

that

#
{

k ∈ N : (t0, x0, v0) ∈ Q(k)
}

≤ c log
(1

ϵ

)
,

with a slight abuse of notation, where c depends only on Monotonicity con-
stants κ, ε and the Exclusion constant γ. Thereby, for a. e. (t0, x0, v0) ∈ Q−

σ′r0
,
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we have

f(t0, x0, v0) ≤ c

#{k∈N:(t0,x0,v0)∈Q(k)}∑
j=1

(δϱ4s
j )− 1

2ε∗

( �
Q(j)

f2
+ dv dx dt

) 1
2

+
#{k∈N:(t0,x0,v0)∈Q(k)}∑

j=1
δTailp(f ; (tj , xj , vj), ϱj , ϱj/2)

≤ c δ− 1
2ε∗

[(σ − σ′)r0]
2s℘
ε∗

( �
Q−

σr0

f2
+ dv dx dt

) 1
2

+ cδ sup
Q−

σr0

f

≤ c δ− 1
2ε∗

[(σ − σ′)r0]
2s℘
ε∗

(
sup
Q−

σr0

f

)2−ζ
2
( �

Q−
σr0

fζ
+ dv dx dt

) 1
2

+ cδ sup
Q−

σr0

f

≤ 2 − ζ

2 sup
Q−

σr0

f + c δ− 1
2ε∗

[(σ − σ′)r0]
4s℘
ζε∗

( �
Q−

σr0

fζ
+ dv dx dt

) 1
ζ

+ cδ sup
Q−

σr0

f ,(7.4)

by also making use of an application of Young’s Inequality (with exponents 2/ζ
and 2/(2 − ζ)). Now, we choose δ such that

cδ <
ζ

2 ,

which together with (7.4) yields

sup
Q−

σ′r0

f ≤ ξ sup
Q−

σr0

f + c

[(σ − σ′)r0]
4s℘
ζε∗

( �
Q−

r0

fζ
+ dv dx dt

) 1
ζ

,

for some ξ ∈ (0, 1).

Step 3: An application of the weak Harnack inequality. Hence, a final
application of the usual “simple but fundamental” lemma (see, e. g., [20, Lemma
6.1]) together with the weak Harnack inequality in Theorem 1.2 yields the desired
estimate (1.8). To conclude, we just notice that in the case when ζ ≥ 2 there is
no need to apply Young’s Inequality as above, being actually enough to choose
cδ < 1/2 in order to apply the aforementioned iteration lemma. □
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