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Abstract. In this paper we prove that in R3 the minimizing movement solutions for mean
curvature motion of droplets, obtained in [6], starting from a regular droplets sitting on the
horizontal plane with a regular relative adhesion coefficient, coincide with the smooth mean
curvature flow of droplets with a prescribed contact-angle.

1. Introduction

Capillary droplets, known for their distinctive behavior resulting from the interplay of
surface tension and capillary forces, have attracted considerable interest across a range of
scientific and engineering fields, for instance in the study of wetting phenomena, energy min-
imizing drops and their adhesion properties, as well as because of their connections with
minimal surfaces (see e.g. [1, 7, 10, 18, 12, 20]).

In this paper as in [6] we are interested in the mean curvature motion of a droplet sitting
on a horizontal hyperplane with a prescribed (possibly nonconstant) relative adhesion coef-
ficient. Such evolution of droplets can be seen as mean curvature flow of hypersurfaces with
a prescribed Neumann-type boundary condition. There are quite a few results related to the
well-posedness of the classical mean curvature flow with boundary (see e.g. [28, 36] for mean
curvature flow with Dirichlet boundary conditions and [3, 25, 31] for mean curvature flow
with Neumann-type boundary conditions).

The mean curvature evolution of (bounded) smooth sets even without boundary conditions
can produce a singularity in finite time. In the literature, to continue the flow after singularity,
several notions of weak solutions have been introduced, see e.g. [2, 5, 9, 11, 19, 21, 29,
32]. These weak solutions are constructed using various qualitative characterizations of the
classical smooth flow such as comparison principles, the monotonicity of the area of the
evolving hypersurfaces, the level-set formulation, the signed-distance formulation, phase-field
approximations etc., and known to coincide with the smooth flow.

Some of those weak solutions has been extended to the case with boundary conditions, see
e.g. [22, 37] for Brakke flow with Dirichlet and/or dynamic boundary conditions, [23, 27, 31]
and [8] for viscosity flow with Neumann-type and Dirichlet boundary conditions, [6, 26] for
BV-distributional solutions with Neumann-type boundary conditions and [6] and [35] for
minimizing movements with Neumann-type and Dirichlet boundary conditions. Sometimes,
in defining these weak flows, the associated mathematical aproach may require a relaxation
of the boundary conditions. Consequently, a natural question arises: do these weak solutions
coincide with the smooth flow when the latter exists?

In this paper we study such consistency problem for the minimizing movement solution
for mean curvature evolution of droplets. Namely, as in [6] modelling the regions occupied
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by droplets by sets of finite perimeter in Ω := R2 × (0,+∞), and we introduce the capillary
analogue of the Almgren-Taylor-Wang functional

Fβ(E;E0, τ) := Cβ(E,Ω) +
1

τ

∫
E∆E0

dE0(x)dx, (1.1)

where E,E0 are sets of finite perimeter in Ω, τ > 0,

Cβ(E,Ω) := P (E,Ω) +

∫
∂Ω

βχEdHn−1

is the capillary functional [14, 20] for some β ∈ L∞(∂Ω), dE0(·) := dist(x,Ω∩∂∗E0) and ∂∗E0

is the reduced boundary of E0.
Following De Giorgi [13] we define

Definition 1.1 (GMM). Let S be a topological space, F : S × S × R+ → [−∞,+∞] be a
functional and u0 ∈ S.
(a) Given τ > 0, a family {u(τ, k)}k∈N0 is called a (discrete) flat flow starting from u0 provided

that u(τ, 0) := u0,

F(u(τ, k);u(τ, k − 1), τ) = min
v∈S

F(v;u(τ, k − 1), τ).

(b) A family {u(t)}t∈[0,+∞) is called a generalized minimizing movement (shortly, GMM)

starting from u0 if there exist a sequence τi → 0+ and flat flows {u(τi, ·)} such that

S- lim
i→+∞

u(τi, ⌊t/τi⌋) = u(t), t ≥ 0,

where ⌊x⌋ is the integer part of x ∈ R.
The collection of all GMM starting from u0 and associated to F will be denoted by
GMM(F , u0).

In [6] we have applied this definition with the metric space S = BV (Ω; {0, 1}) endowed
with the L1(Ω)-distance d(E,F ) := |E∆F | and with the functional Fβ, and provided that
∥β∥∞ < 1, we have obtained the existence and the 1/2-Hölder continuity in time of GMM
starting from any bounded droplet E0 (see [6, Theorem 7.1] and also Theorem 2.10 below).
We call any element of GMM(Fβ, E0) a minimizing movement solution for mean curvature
flow of droplets starting from E0.

Now consider the regular case. Let β ∈ C1+α(∂Ω) (for some α ∈ (0, 1]) with ∥β∥∞ < 1, the
initial set E0 be bounded and the manifold Ω ∩ ∂E0 be a C2+α-hypersurface with boundary,
satisfying the contact-angle condition (the so-called Young’s law [14, 20])

νE0(x) · e3 = −β on ∂Ω ∩ Ω ∩ ∂E0, (1.2)

where νE is the outer unit normal to E and e3 = (0, 0, 1) ∈ R3, then in view of [6, Theorem
B.1] there exists a unique family {E(t)}t∈[0,T †), defined up to a maximal time T †, such that

E(0) = E0, E(t) satisfies the contact-angle condition (1.2) with E(t) in place of E0 and the
surfaces Ω∩∂E(t) move by their mean curvature (see also Theorem 2.6 below). For simplicity,
let us call {E(t)} the smooth mean curvature flow starting from E0 with contact-angle β.

Now we are in position to state the main result of the current paper.

Theorem 1.2 (Consistency of GMM with smooth mean curvature flow). Let β ∈
C1+α(∂Ω) for some α ∈ (0, 1] with ∥β∥∞ < 1 and E0 be a bounded set such that Ω ∩ ∂E0 is a
C2+α-manifold with boundary satisfying the contact-angle condition (1.2). Let {E(t)}t∈[0,T †)

be the unique mean curvature flow starting from E0 and with contact-angle β. Then for every
F (·) ∈ GMM(Fβ, E0)

E(t) = F (t) for any t ∈ [0, T †). (1.3)
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Thus, as in the classical mean curvature flow without boundary [2, 30] the minimizing
movement solutions for the mean curvature evolution of droplets in R3, coincides with the
smooth mean curvature flow as long as the latter exists.

To prove Theorem 1.2 we mainly follow the arguments of [2, Theorem 7.3] and construct
inner and outer barriers for GMM consisting of small forced perturbations of the smooth
mean curvature flow with a slightly perturbed contact-angle (Theorem 2.6). It is worth to
notice that due to the presence of boundaries, the methods of [30], which strongly rely on the
uniform ball conditions, seem not applicable in our setting.

The paper is organized as follows. In Section 2 we provide some preliminary definitions and
results which will be important in the proof of Theorem 1.2. Namely, we study the smooth
mean curvature evolution of droplets with prescribed contact-angle β, and its various features
such as forced evolution of its small tubular neighborhoods (Theorem 2.6) and comparison
principles (Theorem 2.8). Moreover, we recall some properties of the minimizers of Fβ from
[6] (Theorem 2.9), the existence of GMM (Theorem 2.10) and study the GMM starting from
truncated balls (Theorem 2.12). We complete this section with weak comparison properties
of inner and outer barriers for minimizers of Fβ (Lemma 2.13). These results will be the key
arguments in the proof of (1.3) in the concluding Section 3.

Acknowledgements. I acknowledge support from the Austrian Science Fund (FWF) Lise
Meitner Project M2571 and Stand-Alone Project P33716. Also I am grateful to Francesco
Maggi for his discussions on the regularity of contact sets of minimizers of the capillary
functional, and in particular, showing his paper [15] with Guido De Philippis.

2. Preliminaries

Notation. In this section we introduce the notation and some definitions which will be used
throughout the paper. Unless otherwise stated, all sets we consider are Lebesgue measurable
subsets of the Euclidean space R3, in which the coordinates (x1, x2, x3) of x ∈ R3 are given
with respect to the standard basis {e1, e2, e3}. By Br(x) we denote the open ball in R3 of
radius r > 0 centered at x. The notion |F | stands for the Lebesgue measure of F ⊂ R3.

Throughout the paper we assume

Ω := R2 × (0,+∞),

and by BV (Ω; {0, 1}) we denote the collection of all sets of finite finite perimeter in Ω.
We represent droplets by elements of BV (Ω; {0, 1}) and by β ∈ L∞(∂Ω) we denote a relative

adhesion coefficient of the boundary ∂Ω = R2 × {0} of Ω, which satisfies

∃η ∈ (0, 1/2) : ∥β∥∞ ≤ 1− 2η. (2.1)

Given E ⊂ BV (Ω, {0, 1}) we denote by

- P (E,U) the perimeter of E in an open set U ⊂ Ω,
- ∂∗E the reduced boundary of E,
- νE(x) the generalized outer unit normal of E at x ∈ ∂∗E.

In what follows we assume that every E coincides with its points E(1) of density one so that
∂E = ∂∗E. We refer, for instance, to [4, 24, 33] for a more comprehensive information on sets
of finite perimeter.

Given E ∈ BV (Ω; {0, 1}), we define the distance function from the (reduced) boundary in
Ω as

dE(x) := dist(x,Ω ∩ ∂∗E), x ∈ Ω.
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Similarly, we define the signed distance as

sdE(x) =

{
dist(x,Ω ∩ ∂∗E) x ∈ Ω \ E,

−dist(x,Ω ∩ ∂∗E) x ∈ E

for E ∈ BV (Ω; {0, 1}). We also write

∂ΩE := Ω ∩ ∂E

and
E ≺ F ⇐⇒ E ⊂ F and dist(∂ΩE, ∂ΩF ) > 0

for E,F ∈ BV (Ω; {0, 1}). Note that

E ⊂ F ⇐⇒ sdE ≥ sdF in Ω resp. E ≺ F ⇐⇒ sdE > sdF in Ω. (2.2)

The following proposition shows the connection between the regular surfaces and distance
functions.

Proposition 2.1. Let Γ be a C2+α-surface (not necessarily connected, and with or without
boundary) in Ω for some α ∈ [0, 1]. Then:

(a) for any x ∈ Γ there exists rx > 0 such that Γ divides Brx(x) into two connected components
and dist(·,Γ) ∈ C2+α(Brx(x) \ Γ);

(b) if Γ is compact and has no boundary, then infx∈Γ rx > 0, i.e., the radius rx in (a) can be
taken uniform in x;

(c) if Γ = ∂ΩE for some E ⊂ Ω, then for any x ∈ Γ there exists rx > 0 such that Br(x) ⊂ Ω
and sdE ∈ C2+α(Brx(x)).

These assertions are well-known (see e.g. [17]), and can be proven using the local geometry
of Γ, i.e. passing to the local coordinates. In case of Proposition 2.1 (c) we write κE := κΓ
to denote the mean curvature of E along the boundary portion Γ with respect to the unit
normal to Γ, outer to E. We also set

∥IIE∥∞ := sup
x∈Γ

|IIΓ(x)|,

where IIΓ is the second fundamental form of Γ. In what follows we always assume that the
unit normals of ∂ΩE are outer to E so that the mean curvature of the boundaries of convex
sets are nonnegative.

2.1. Smooth mean curvature evolution of droplets. In this section we study mean
curvature flow of droplets sitting on an inhomogeneous plane. Since we are mainly interested
in droplets with a nonempty contact set on ∂Ω, it is natural to restrict ourselves to the ones
without connected components not touching to ∂Ω. Such a restriction leads to the following
definition.

Definition 2.2 (Admissibility). (a) We say a set E ⊂ Ω is admissible provided that there
exist α ∈ (0, 1], a bounded C2+α-open set U ⊂ R2 and a C2+α-diffeomorphism p ∈
C2+α(U;R3) satisfying

p[U] = Γ, p[∂U] = ∂Γ, p · e3 > 0 in U and p · e3 = 0 on ∂U,

where Γ := ∂ΩE. Any such map p is called a parametrization of Γ.
(b) Let β ∈ C1+α(∂Ω), α ∈ (0, 1], satisfy (2.1). We say E is admissible with contact angle β

if E is admissible (with the same α) and

νE · e3 = −β on ∂Ω ∩ Γ.

We call that number
hE := min

x∈Γ, νE(x)=x+e3

x · e3 (2.3)
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the minimal height of E. Since E satisfies the contact angle condition, by assumption
(2.1) hE > 0.

(c) Let Q be a compact set in Rm for some m ≥ 1. We say a family {E[q]}q∈Q of subsets
of Ω is admissible if there exist α ∈ (0, 1], a bounded C2+α-open set U ⊂ R2 and a map
p ∈ C2+α,2+α(Q× U;R3) such that p[q, ·] is a parametrization of ∂ΩE[q].

(d) We say a family {E[q, t]}q∈Q,t∈[0,T ) of subsets of Ω admissible if for any T ′ ∈ (0, T ) there

exist α ∈ (0, 1], a bounded C2+α-open set U ⊂ R2 and a map p ∈ C2+α,1+α
2
,2+α(Q ×

[0, T ′]× U;R3) such that p[q, t, ·] is a parametrization of ∂ΩE[q, t].

Remark 2.3.

(a) By definition, if E is an admissible set, then the C2+α-surface Γ := ∂ΩE is diffeomorphic
to a bounded smooth open set in R2 and not necessarily connected (clearly, boundaries
of two connected components do not touch). In particular, Γ cannot not have “hanging”
components ⋐ Ω. Moreover, its boundary ∂Γ lies on ∂Ω and the relative interior of Γ does
not touch to ∂Ω.

(b) We are slightly abusing the notion “contact angle” identifying the (true) contact angle
θ ∈ (0, π) with its cosine β = cos θ.

(c) When Q is empty in Definition 2.2 (d), then we simply write {E[t]}t∈[0,T ) to denote the
corresponding admissible family.

Recall that if E ⊂ R3 is a C2+α-set without boundary, then for sufficiently small ρ > 0
the surfaces Γr := {sdist(·, ∂E) = r} for r ∈ (−ρ, ρ) foliates the tubular ρ-neighborhood of
Γ0 := ∂E, and the map r 7→ Γr smoothly varies. In the next lemma we construct a similar
“foliation”, for admissible sets with a given contact angle.

Lemma 2.4 (Foliations). Let β ∈ C1+α(∂Ω), α ∈ (0, 1], satisfy (2.1) and E0 be an admissible
set with contact-angle β. Then there exist positive numbers ρ ∈ (0, 1) and σ ∈ (0, η), depending
only1 on ∥IIE0∥∞ and hE0 (see (2.3)), and admissible families {G±

0 [r, s]}(r,s)∈[0,ρ]×[0,σ] such

that G±
0 [0, 0] = E0 and for all (r, s) ∈ [0, ρ]× [0, σ]:

(a) dist(∂ΩG±
0 [r, s], ∂

ΩE0) ≥ r + s and

G−
0 [r, s] ⊂ E0 ⊂ G+

0 [r, s]

dist(∂ΩG±
0 [r, s], ∂

ΩG±
0 [0, s]) = r,

dist(∂ΩG±
0 [0, s], ∂

ΩE0) = s;

(b) G±
0 [r, s] is admissible with contact-angle β ± s;

(c) for all r′, r′′ ∈ [0, ρ/64]

G+
0 [3ρ/16 + r′, s] ⊂ G+

0 [ρ/2− r′′, s], G−
0 [3ρ/16 + r′, s] ⊃ G−

0 [ρ/2− r′′, s];

and

dist(∂ΩG±
0 [ρ, s], ∂

ΩG±
0 [ρ/2− r′, s]) ≥ ρ/64.

Proof. Without loss of generality we assume that E0 is admissible with the same α ∈ (0, 1].
We divide the proof into three steps.

Step 1. We first construct σ > 0 and the sets G±[0, s] for s ∈ [0, σ].
Since Γ0 := ∂ΩE0 is C2+α up to the boundary, there exists b > 0 (depending only on

the second fundamental form IIΓ0 of Γ0) and a C2+α-surface Γ̃0 ⊂ R2 × (−b,+∞) with

1We ignore the dependence on α and η.



6 SH. KHOLMATOV

∂Γ0 ⊂ {x3 = −b} and Γ0 ⊂ Γ̃0. By Proposition 2.1 (a) there exists σ ∈ (0, η/4) (depending
only on ∥II

Γ̃
∥∞ and hE0) such that for any s ∈ [−4σ, 4σ] the sets

Γ̃s =

{
{x ∈ Ω \ E0 : dist(x, Γ̃0) = s} s > 0,

{x ∈ E0 : dist(x, Γ̃0) = s} s ≤ 0

are C2+α-surfaces with boundary, depending smoothly (at least C2+α) on s.

Note that γ0 := ∂Γ0 is a finite union of planar C2+α-curves. Let F̂ ⊂ ∂Ω the bounded
planar open set enclosed by γ0. Decreasing σ is necessary (depending only on the L∞-norm
of the planar curvatures of γ0 and the minimal height hE0) such that for any s ∈ [−σ, σ] we
may assume that the sets

γs :=

{
{z ∈ F̂ : dist(z, γ0) = −4s} s < 0,

{z ∈ ∂Ω \ F̂ : dist(z, γ0) = 4s} s ≥ 0,
and ζs := Γ̃s ∩ {x3 = σ}

are a union of C2+α-curves, homotopic to γ0. By the C2+α-dependence of γs on s we can
find a bounded C2+α-open set U ⊂ R2 and a map p ∈ C2+α,2+α([−σ, σ] × ∂U;R3) such that
p[s, ∂U] = γs for any s ∈ [−σ, σ]. Now as in [6, Remark B.2] we can extend each p[s, ·] as a
diffeomorphism to an ϵ-tubular neighborhood U−

r := {u ∈ U : dist(u, ∂U) ≤ ϵ} of ∂U (for
small ϵ > 0, still keeping C2+α-regularity both in s and in u) such that the surface p[s,U−

r ] lies
in Ω, satisfies the contact-angle condition with β + s along γs and the distance to Γ0 is ≥ 3s.

Let us also parametrize the truncations Γ̃s ∩ Ωσ of the surfaces Γ̃s by some diffeomorphism
p[s, ·] : {u ∈ U : dist(u, ∂U) ≥ 8ϵ} → R3 (still keeping C2+α-regularity in s ∈ [−σ, σ]), where
Ωσ := R2× (σ,+∞). Now we extend p arbitrarily to [−σ, σ]×{u ∈ U : ϵ ≤ dist(u, ∂U) ≤ 8ϵ}
in a way that p ∈ C2+α,2+α([−σ, σ] × U), p[s, ·] is a diffeomorphism, p[0,U] = Γ0 and the
distance between surfaces p[s,U] and Γ0 is equal to s.

For s ∈ [0, σ] we denote by G+
0 [0, s] and G−

0 [0, s] the bounded sets enclosed by ∂Ω and the

C2+α-surfaces Γ+
0 [0, s] := p[s,U] and Γ−

0 [0, s] := p[−s,U], respectively.
Notice that by construction G±

0 [0, 0] = E0 and dist(∂ΩG±
0 [0, s], ∂

ΩE0) = s for any s ∈ [0, σ].

Step 2. Now we construct ρ > 0 and G±
0 [r, s] for r ∈ [0, ρ] and s ∈ [0, σ].

Since γs is C2+α-regular in s ∈ [−σ, σ], slightly decreasing σ if necessary, we find ρ > 0
depending only on σ, ∥IIE0∥∞ and hE0 such that for any r ∈ [0, ρ] the sets

γ−r,−s := {z ∈ F̂s : dist(z, γs) = 4r}, s ≤ 0

and

γ+r,s := {z ∈ ∂Ω \ F̂s : dist(z, γs) = 4r}, s ≥ 0

are finite unions of C2+α-curves homotopic to γs, where F̂s ⊂ ∂Ω is a bounded set enclosed by
γs. As above consider the truncations Γ±

0 [0, s] ∩ Ωσ. Since these truncations are smooth (at
least C2+α) family of C2+α-surfaces with boundary, using Proposition 2.1 (possibly decreasing
ρ and σ depending only on hE0) we can show that for all r ∈ [0, ρ] the sets

Σ+
r,s := {x ∈ Ωσ \G+

0 [0, s] : dist(x,Γ
+
0 [0, s]) = r}

and

Σ−
r,s := {x ∈ Ωσ ∩G−

0 [0, s] : dist(x,Γ
−
0 [0, s]) = r}

are C2+α-families in r and s of C2+α-surfaces, whose boundaries are on {x3 = σ} and a union
of C2+α-curves homotopic to γ0. Now as in step 1 we construct C2+α-surfaces Γ±

0 [r, s] with
boundary (still C2+α-regular in r and s), first starting from γ±r,s satisfying the contact-angle
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condition with β ± s, and then extending until we reach Σ±
r,s such a way that the distance

between Γ±
0 [r, s] and Γ±

0 [0, s] is r. Since

dist(γ±3ρ
16

+r′,s
, γ±ρ

2
−r′′,s

) ≥ 9ρ
32 and dist(γ±ρ,s), γ

±
ρ
2
,s
) ≥ ρ

2

for all r′, r′′ ∈ [0, ρ/64], we may assume additionally that

Γ±
0 [3ρ/16 + r′, s] ∩ Γ±

0 [ρ/2− r′′, s] = ∅ and dist(Γ±
0 [ρ, s],Γ

±
0 [ρ/2− r′, s]) ≥ ρ/64 (2.4)

for any r′, r′′ ∈ [0, ρ/64].
Now for any s ∈ [0, σ] and r ∈ [0, ρ] we denote by G±

0 [r, s] the bounded set enclosed by ∂Ω
and Γ±[r, s]. By construction and step 1, G±

0 [r, s] satisfies assertions (a) and (b). Moreover,
by (2.4) and assumption Ωσ ∩G−

0 [a, s] ⋑ Ωσ ∩G−
0 [b, s] resp. Ω

σ ∩G+
0 [a, s] ⋐ Ωσ ∩G+

0 [b, s] for
0 < a < b < ρ, the sets G±

0 [r, s] satisfy also assertion (c).
We claim that σ, ρ and {G±} satisfies the remaining assertions of the lemma. Indeed, σ

depends only on ∥IIE0∥∞, hE0 , ρ depends only on σ, hE0 and ∥IIE0∥∞, and G±[·, ·] admits
a parametrization p± ∈ C2+α,2+α(([0, ρ] × [0, σ]) × U), which satisfies the assumptions of
Definition 2.2 (c) of admissible family with Q = [0, ρ]× [0, σ]. □

Corollary 2.5. Let β ∈ C1+α(∂Ω), α ∈ (0, 1], satisfy (2.1) and {E[t]}t∈[0,T ) be an ad-
missible family contact angle β. Then for any T ′ ∈ (0, T ) there exist ρ ∈ (0, 1) and
σ ∈ (0, η) depending only supt∈[0,T ′] ∥IIE[t]∥∞ and inft∈[0,T ′] hE[t], and admissible families

{G±
0 [r, s, a]}(r,s,a)∈[0,ρ]×[0,σ]×[0,T ′] such that G±

0 [0, 0, a] = E[a] and for all (r, s, a) ∈ [0, ρ] ×
[0, σ]× [0, T ′]:

(a) dist(∂ΩG±
0 [r, s, a], ∂

ΩE[a]) ≥ r + s and

G−
0 [r, s, a] ⊂ E[a] ⊂ G+

0 [r, s, a],

dist(∂ΩG±
0 [r, s, a], ∂

ΩG±
0 [0, s, a]) = r,

dist(∂ΩG±
0 [0, s, a], ∂

ΩE[a]) = s;

(b) G±
0 [r, s, a] is admissible with contact-angle β ± s;

(c) for all r′, r′′ ∈ [0, ρ/64]

G+
0 [3ρ/16 + r′, s, a] ⊂ G+

0 [ρ/2− r′′, s, a], G−
0 [3ρ/16 + r′, s, a] ⊃ G−

0 [ρ/2− r′′, s, a];

and
dist(∂ΩG±

0 [ρ, s, a], ∂
ΩG±

0 [ρ/2− r′, s, a]) ≥ ρ/64.

Proof. By the definition of admissibility, E[·] admits a parametrization p ∈ C1+α
2
,2+α([0, T ′]×

U) for any T ′ ∈ (0, T ). Therefore, repeating the same arguments of Lemma 2.4 we construct
the required family {G±

0 [r, s, a]}(r,s,a)∈[0,ρ]×[0,σ]×[0,T ′]. □

Now we study the existence and uniqueness of the mean curvature flow starting from a
bounded droplet and its some stability properties.

Theorem 2.6. Let β ∈ C1+α(∂Ω) (for some α ∈ (0, 1]) satisfy (2.1) and E0 ⊂ Ω be an
admissible set with contact-angle β. Then there exist a maximal time T † > 0 and a unique
family {E[t]}t∈[0,T †) of admissible sets in Ω such that E[0] = E0, E[t] is admissible with

contact angle β and the hypersurfaces ∂ΩE[t] flow by mean curvature, i.e.,

vE[t](x) = −κE[t](x) for t ∈ [0, T †) and x ∈ ∂ΩE[t], (2.5)

where vE[t] is the normal velocity of ∂ΩE(t). Moreover, for T ∈ (0, T †), let ρ ∈ (0, 1), σ ∈ (0, η)

and the families {G±
0 [r, s, a]}(r,s,a)∈[0,ρ]×[0,σ]×[0,T ′] be given by Corollary 2.5. Then (possibly

decreasing ρ and σ slightly, depending only on {E(t)}) there exist unique admissible families
{G±[r, s, a, t]}(r,s,a)∈[0,ρ]×[0,σ]×[0,T ′],t∈[a,T ] such that



8 SH. KHOLMATOV

• G±[r, s, a, a] = G±
0 [r, s, a],

• G±[r, s, a, t] is admissible with contact-angle β ± s,
•

vG±[r,s,a,t](x) = −κG±[r,s,a,t](x)± s for t ∈ (a, T ) and x ∈ ∂ΩG±[r, s, a, t]. (2.6)

Furthermore,

(a) G±[0, 0, a, t] = E[t] for all t ∈ [a, T ];
(b) there exists an increasing continuous function g : [0,+∞) → [0,+∞) with g(0) = 0 such

that

max
x∈∂ΩG±[0,s,a,t]

dist(x, ∂ΩG±[0, 0, a, t]) ≤ g(s)

for all s ∈ [0, σ], a ∈ [0, T ] and t ∈ [0, T ];
(c) there exists t∗ ∈ (0, ρ/64) (independent of r, s and a) such that

G+
0 [ρ/2− t′, s, a] ⊂ G+[ρ, s, a, a+ t′] and G−

0 [ρ/2− t′, s, a] ⊃ G−[ρ, s, a, a+ t′] (2.7)

for all t′ ∈ [0, t∗] with a+ t′ ≤ T.

Thus, {G±[r, s, a, ·]} is a mean curvature flow starting from G±
0 [r, s, a] and with forcing s

and contact angle β ± s.

Proof. The solvability of (2.5) follows from [6, Theorem B.1] and the solvability of (2.6) follows
from the well-posedness of (2.5) together with its smooth dependence on initial datum (see
also [2, Theorem 7.1] in the case without boundary). Finally, the assertions (a)-(c) follow
from the smooth dependence of G± on [r, s, a, t]. □

By Proposition 2.1 and the regularity of G±[r, s, a, ·] in time, (2.6) can be rewritten as

∂

∂t
sdG±[r,s,a,t](x) = −κG±[r,s,a,t](x) + s for t ∈ (a, T ) and x ∈ ∂ΩG±[r, s, a, t]. (2.8)

Proposition 2.7. For any s ∈ (0, σ] there exists τ0(s) > 0 such that for any r ∈ [0, ρ],
a ∈ [0, T ), τ ∈ (0, τ0) and t ∈ [a+ τ, T ]

sdG+[r,s,a,t−τ ](x)

τ
> −κG+[r,s,a,t](x) +

s

2
, x ∈ ∂ΩG+[r, s, a, t], (2.9)

and
sdG−[r,s,a,t−τ ](x)

τ
< −κG−[r,s,a,t](x)−

s

2
, x ∈ ∂ΩG+[r, s, a, t].

Proof. We prove the assertion only for G+. Let

g(r, s, a, t, x) := sdG+[r,s,a,t](x), t ∈ [a, T ], x ∈ Ω.

By the C2-regularity of Γ[r, s, a, t] := ∂ΩG+[r, s, a, t] (up to the boundary) as well as its
smooth dependence on r, s, a, t, there exists R0 > 0 such that for any r ∈ [0, ρ], s ∈ [0, σ],

a ∈ [0, T ], t ∈ [a, T ], x ∈ Γ[r, s, a, t] and y ∈ Ω ∩ BR0(x) the projection π[r, s, a, t, y] onto

Γ[r, s, a, t] is a singleton. Note that if π[r, s, a, t, y] ∈ Γ(t), then y − π[r, s, a, t, y] is parallel to
the unit normal νΓ[r,s,a,t](π[r, s, a, t, y]). In particular,

g(r, s, a, t, y) =

{
(y − π[r, s, a, t, y]) · νΓ[r,s,a,t](π[r, s, a, t, y]) if π[r, s, a, t, y] ∈ Γ[r, s, a, t],

|y − π[r, s, a, t, y]| if π[r, s, a, t, y] ∈ ∂Γ[r, s, a, t].

Let p[r, s, a, t, ·] : U → R3 be a parametrization of {Γ[r, s, a, t]} (smoothly depending on
r, s, a, t). Then there exists a unique ur,s,a,t,y ∈ U such that

π[r, s, a, t, y] = p[r, s, a, t, ur,s,a,t,y], y ∈ BR0(x).
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The uniqueness of ur,s,a,t,y and the regularity of the diffeomorphism p as well as the im-
plicit function theorem at boundary [16] imply that the map t 7→ ur,s,a,t,y is continuously
differentiable in t ∈ [a, T ] uniformly in r, s, a, y. Thus, t 7→ g(r, s, a, t, y) is also continuously
differentiable in t ∈ [a, T ] and the map t 7→ gt(r, s, a, t, y) is uniformly continuous. Then in
view of (2.8), for any s ∈ (0, σ] there exists τ0(s) > 0 for which (2.9) holds for any r ∈ [0, ρ],
a ∈ [0, T ), τ ∈ (0, τ0) and t ∈ [a+ τ, T ]. □

As in the standard mean curvature flow of (compact) hypersurfaces without boundary,
the smooth mean curvature flow of droplets also enjoys comparison principles, see also [6,
Proposition B.4].

Theorem 2.8 (Strong comparison). Let {E1(t)}t∈[0,T †) and {E2(t)}t∈[0,T †) be smooth flows

with forcing s1 and s2 and contact-angles β1 and β2, respectively. Assume that E1(0) ≺ E2(0),
s1 ≤ s2 and β1 < β2 on ∂Ω. Then E1(t) ≺ E2(t) for all t ∈ [0, T †).

Proof. Let t̄ ∈ (0, T †) be the first contact time of ∂ΩE1(·) and ∂ΩE2(·). By the contact angle
condition and the assumption β1 > β2, a contact point x0 cannot be on ∂Ω. Therefore, from
the inclusion E1(t̄) ⊂ E2(t̄) we find κE1(t̄)(x0) ≥ κE2(t̄)(x0), and hence,from the evolution
equation and the assumption s1 ≤ s2 we get

vE1(t̄)(t̄, x0)− vE2(t̄)(t̄, x0) = −κE1(t̄)(x0) + s1 + κE2(t̄)(x0)− s2 ≤ 0.

Now using the Hamilton trick (see e.g. [34, Chapter 2]) we conclude that the distance between

∂ΩE1(t) and ∂ΩE2(t) is nondecreasing in (t̄ − ϵ, t̄) for small ϵ > 0. In particular, ∂ΩE1(t̄) ∩
∂ΩE2(t̄) = ∅, a contradiction. □

2.2. GMM for mean curvature flow of droplets. Notice that the capillary Almgren-
Taylor-Wang functional (1.1) can be rewritten as

Fβ(E;E0, τ) = Cβ(E,Ω) +
1

τ

∫
E
sdE0 dx− 1

τ

∫
E0

sdE0 dx. (2.10)

Let us recall some properties of Fβ and its minimizers from [6].

Theorem 2.9. Let E0 ∈ BV (Ω; {0, 1}) be bounded, τ > 0 and β ∈ L∞(∂Ω) satisfy (2.1).

(a) The functional Fβ(·;E0, τ) is L1(Ω)-lower semicontinuous.
(b) There exists a minimizer Eτ of Fβ(·;E0, τ) and every minimizer of Fβ(·;E0, τ) is bounded.
(c) There exists a bounded set E+ containing E0 such that for any F0 ⊂ E+ the minimizer of

Fβ(·;F0, τ) is a subset of E+.
(d) There exists ϑ ∈ (0, 1/2) depending only on η such that for any minimizer Eτ of

Fβ(·;E0, τ)

sup
x∈Eτ∆E0

dE(x) ≤ 1
ϑ

√
τ . (2.11)

Moreover, for any ball Br(x) centered at x ∈ Ω,

P (Eτ , Br(x)) ≤ 1
ϑ r2, r > 0,

and for any ball Br(x) centered at x ∈ ∂Eτ

ϑ ≤ |Br(x)∩Eτ |
|Br(x)| ≤ 1− ϑ and P (Eτ , Br(x)) ≥ ϑr2

whenever r ∈ (0, ϑ
√
τ). In particular, Eτ can be assumed open and H2(∂Eτ \ ∂∗Eτ ) = 0.

(e) There exist unique minimal and maximal minimizers Eτ∗ and E∗
τ of Fβ(·;E0, τ) such that

Eτ∗ ⊂ Eτ ⊂ E∗
τ for any minimizer Eτ .

(f) If F0 ⊂ E0, then for any minimizers Fτ and Eτ of Fβ(·;F0, τ) and Fβ(·;E0, τ) one has
Fτ ⊂ E∗

τ and Fτ∗ ⊂ Eτ , where Fτ∗ and E∗
τ are the minimal and maximal minimizers of

Fβ(·;F0, τ) and Fβ(·;E0, τ), respectively.
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(g) Let β be C1 on ∂Ω, Eτ be a minimizer of Fβ(·;E0, τ) and Γ := ∂ΩEτ . Then by [15,
Theorem 1.5] and the standard regularity theory for minimizers of the presribed curvature
functional, Γ is a C2+γ-hypersurface with boundary (for some γ ∈ (0, 1]) and νEτ ·e3 = −β
on ∂Γ.

Using the statements (a)-(d) in Theorem 2.9 we can establish

Theorem 2.10 (Existence of GMM [6]). For any bounded E0 ∈ BV (Ω; {0, 1}) the
GMM(Fβ, E0) is nonempty. Moreover, there exists C > 0 such that every E(·) ∈
GMM(Fβ, E0) is bounded uniformly in time and satisfies

|E(s)∆E(t)| ≤ C|t− s|1/2, t, s > 0.

If, additionally, |∂E0| = 0, then this inequality holds for all s, t ≥ 0.

2.3. Evolution of truncated balls. In this section we study the GMM starting from trun-
cated balls, which generalizes [2, Theorem 5.4]. Notice that due to the presence of Ω and β
in Fβ, we cannot directly apply [2, Theorem 5.4]. In particular, we cannot use a “passage-to-
complements” argument.

We start with the following technical lemma.

Lemma 2.11. Let τ ∈ (0, 1), E0 ∈ BV (Ω; {0, 1}) be bounded, Eτ be any minimizer of
Fβ(·;E0, τ), p ∈ Ω and r > 0. Then

Ω ∩Br(p) ⊂ E0 =⇒ Ω ∩Br− 5
2r

τ (p) ⊂ Eτ , (2.12)

Ω ∩Br(p) ∩ E0 = ∅ =⇒ Ω ∩Br− 5
2r

τ (p) ∩ Eτ = ∅ (2.13)

whenever τ < min
{
2r2

5 , ϑ
2r2

25

}
.

Proof. For shortness we write Bρ := Bρ(p) for ρ > 0. Let F0 := Br∩Ω and Fτ∗ be the minimal
minimizer of Fβ(·;F0, τ), see Theorem 2.9 (e). By (2.11)

sup
x∈Fτ∗∆F0

dist(x, ∂ΩF0) ≤ 1
ϑ

√
τ , sup

x∈Eτ∆E0

dist(x, ∂ΩF0) ≤ 1
ϑ

√
τ . (2.14)

(a) By Theorem 2.9 (f) Fτ∗ ⊂ Eτ . Since dist(∂Ba, ∂Bb) = |a− b|, by (2.14)

dist(∂ΩFτ∗, ∂
ΩB4r/5) ≥ dist(∂ΩBr, ∂

ΩB4r/5)− dist(∂ΩFτ∗, ∂
ΩBr) ≥ r

5 −
√
τ
ϑ > 0

provided that τ < ϑ2r2

25 . Further we work only with such τ. Let

ρ := sup{t ∈ (0, r] : Bt ∩ Ω ⊂ Fτ∗}.
Clearly, ρ ≥ 4r/5. Note that if ρ = r, then Br ∩ Ω ⊂ Fτ∗ ⊂ Eτ and we are done. So assume
ρ ∈ [4r/5, r).

Fix ϵ ∈ (0, r − ρ). By the definition of ρ

|Bρ+ϵ \ [Fτ∗ ∪ Ωc]| → 0 as ϵ → 0+,

where Ωc := Rn \ Ω. Moreover, by the minimality of Fτ∗ and (2.10)

0 ≤ Fβ(Fτ∗ ∪ [Bρ+ϵ ∩ Ω];F0, τ)−Fβ(Fτ∗;F0, τ) = P (Fτ∗ ∪ [Bρ+ϵ ∩ Ω])− P (Fτ∗)

+

∫
∂Ω

[β − 1]χ[Ω∩Bρ+ϵ]\Fτ∗ dH
n−1 + 1

τ

∫
[Ω∩Bρ+ϵ]\Fτ∗

sdF0 dx. (2.15)

Then for a.e. ϵ ∈ (0, r− ρ) with Hn−1(∂Ω∩ ∂Bρ+ϵ) = 0 and Hn−1(∂Fτ∗ ∩ ∂Bρ+ϵ) = 0 one has

P (Fτ∗ ∪ [Bρ+ϵ ∩ Ω])− P (Fτ∗) =P (Bρ+ϵ)− P ([Bρ+ϵ ∩ Fτ∗] ∪ [Ωc ∩Bρ+ϵ])

≤3|B1|1/3
(
|Bρ+ϵ|

2
3 −

∣∣[Bρ+ϵ ∩ Fτ∗] ∪ [Ωc ∩Bρ+ϵ]
∣∣ 23)
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=3|B1|1/3|Bρ+ϵ|
2
3

(
1−

∣∣∣1− |Bρ+ϵ\[Fτ∗∪Ωc]|
|Bρ+ϵ|

∣∣∣ 23)
≤2|B1|1/3 |Bρ+ϵ\[Fτ∗∪Ωc]|

|Bρ+ϵ|1/3
+ o(|Bρ+ϵ \ [Fτ ∪ Ωc]|)

as ϵ → 0+. Here in the first inequality we used the isoperimetric inequality. Furthermore,
since Bρ+ϵ ⊂ Br so that

−sdF0 = dF0 ≥ r − ρ− ϵ > 0

in Bρ+ϵ, ∫
[Ω∩Bρ+ϵ]\Fτ∗

sdE0 dx ≤ − r−ρ−ϵ
τ |Bρ+ϵ \ [Fτ∗ ∪ Ωc]|.

Finally, since β ≤ 1, from (2.15) we get(
2|B1|1/3
|Bρ+ϵ|1/3

+ o(1)− r−ρ−ϵ
τ

)
|Bρ+ϵ \ [Fτ∗ ∪ Ωc]| ≥ 0.

Since |Bρ+ϵ \ [Fτ∗∪Ωc]| > 0 and |Bρ+ϵ|1/3 = (ρ+ ϵ)|B1|1/3, from the last inequality we deduce

r − ρ− ϵ

τ
≤ 2

ρ+ ϵ
+ o(1).

Therefore, letting ϵ → 0+ and recalling ρ ≥ 4r/5 we deduce

ρ ≥ r − 5
2rτ,

which is positive provided that τ < 2r2

5 . This implies (2.12).
(b) By (2.14) and assumption E0 ∩Br = ∅

dist(∂ΩEτ , ∂
ΩB4r/5) ≥ dist(∂ΩE0, ∂

ΩB4r/5)− dist(∂ΩEτ , ∂
ΩE0) ≥ r

5 −
√
τ
ϑ > 0

provided that τ < ϑ2r2

25 . In particular, if

ρ = sup{r ∈ (0, r] : Bt ∩ Eτ = ∅}

then ρ ≥ 4r/5. Without loss of generality we assume that ρ < r and fix any small ϵ ∈ (0, r−ρ)
such that Hn−1(∂Bρ+ϵ ∩ (∂Ω ∪ ∂Eτ ) = 0. By the maximality of ρ, |[Eτ ∩ Ωϵ] ∩Bρ+ϵ| > 0 for
small ϵ > 0, where Ωϵ := Rn−1 × (ϵ,+∞). Let Gϵ := Bρ+ϵ ∩ Ωϵ. Then by the minimality of
Eτ and (2.10)

0 ≤ Fβ(Eτ \Gϵ;E0, τ)−Fβ(Eτ ;E0, τ) = P (Eτ \Gϵ)− P (Eτ )− 1
τ

∫
Eτ∩Gϵ

sdE0 dx. (2.16)

Since Bρ+ϵ ⊂ Br and Br ∩ E0 = ∅, for any x ∈ Eτ ∩Gϵ

sdE0(x) = dE0(x) ≥ r − ρ− ϵ > 0.

Thus, the volume term of (2.16) is estimated as

1
τ

∫
Eτ∩Gϵ

sdE0 dx ≥ r−ρ−ϵ
τ |Eτ ∩Gϵ|.

For the perimeter term, as in (a)

P (Eτ \Gϵ)− P (Eτ ) = P (Bρ+ϵ)− P (Bρ+ϵ \ [Eτ ∩ Ωϵ]) ≤
(

2
ρ+ϵ + o(1)

)
|Eτ ∩Gϵ|.

Inserting these estimates in (2.16) and letting ϵ → 0+ we get ρ ≥ r− 5
2rτ and (2.13) follows. □

Applying this lemma inductively we get
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Theorem 2.12. Let τ ∈ (0, 1), E0 ∈ BV (Ω; {0, 1}) be a bounded set, {E(τ, k)} be any flat
flows starting from E0 and associated to Fβ, and let p ∈ Ω and R > 0. Then

Ω ∩BR(p) ⊂ E0 =⇒ Ω ∩B
R−80

R kτ
(p) ⊂ E(τ, k) (2.17)

BR(p) ∩ E0 = ∅ =⇒ B
R−80

R kτ
(p) ∩ E(τ, k) = ∅ (2.18)

for all integers k ≥ 0 with kτ ≤ T̂ := min
{

7R2

640 ,
ϑ2R2

1600

}
.

Proof. For shortness, let Br := Br(p). Let r0 := R and

rk := rk−1 − 10
rk−1

τ, k ≥ 1.

By induction we can show that if mτ ≤ 7R2

640 for some m, then rm ≥ R
8 . In particular, for such

m using R = r0 > r1 > . . . > rm ≥ R/8 we get

rm = R− 10τ

m∑
k=1

1
rk

≥ R− 80
R mτ. (2.19)

Now we fix any integer m ≥ 1 and τ ∈ (0, 1) with mτ < T̂ . Then as we observed earlier,
R = r0 > r1 > . . . > rm−1 > rm ≥ R

8 . In particular, for any k = 1, . . . ,m − 1, from the
positivity of rk we deduce

τ <
r2k−1

10 (2.20)

and also from the estimate rk−1 > R/8 and the definition of T̂

τ ≤ T̂
m ≤ ϑ2

25

(
R
8

)2
≤ ϑ2r2k−1

25 . (2.21)

In view of (2.20) and (2.21) we can apply Lemma 2.11 with r = rk−1 and τ. In particular, by
induction

Ω ∩BR ⊂ E0 =⇒ Ω ∩B
rk−1−

5
2rk−1

τ
⊂ E(τ, k)

and

BR ∩ E0 = ∅ =⇒ B
rk−1−

5
2rk−1

τ
∩ E(τ, k) = ∅

for all k = 1, . . . ,m. Now by definition and the estimate (2.19) (which holds with m = k) and
the inequality rk ≥ R/8 we find

rk−1 − 5
2rk−1

τ = rk ≥ R− 80
R kτ.

Inserting this in the last two relations we deduce (2.17) and (2.18). □

2.4. Smooth barriers for minimizers of Fβ. The aim of this section is the following
analogue of [2, Lemma 7.3].

Lemma 2.13. Let β ∈ C1+α(∂Ω), α ∈ (0, 1], satisfy (2.1), E0 ∈ BV (Ω; {0, 1}) be a bounded
set, τ > 0 and Eτ be a minimizer of Fβ(·;E0, τ). Let G0 and Gτ be admissible sets (with the
same α).

(a) Assume that E0 ⊂ G0, Eτ ⊂ Gτ , Gτ satisfies the contact-angle condition with β + s for
some s ∈ (0, η) and

sdG0(x)

τ
> −κGτ (x), x ∈ ∂ΩGτ . (2.22)

Then Eτ ≺ Gτ .
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(b) Assume that G0 ⊂ E0, Gτ ⊂ Eτ , Gτ satisfies the contact-angle condition with β − s for
some s ∈ (0, η) and

sdG0(x)

τ
< −κGτ (x), x ∈ ∂ΩGτ .

Then Gτ ≺ Eτ .

Proof. (a) By the regularity of Eτ (see Theorem 2.9 (f)), ∂ΩEτ is a C2-hypersurface with
boundary, and hence, by the first variation formula,

sdE0(x)

τ
= −κEτ (x), x ∈ ∂ΩEτ , and νEτ (x) · e3 = −β(x), x ∈ ∂Ω ∩ ∂ΩEτ . (2.23)

By contradiction, let there exist x0 ∈ ∂ΩEτ ∩∂ΩGτ . By assumption Eτ ⊂ Gτ and the contact-
angle condition, x0 ∈ Ω and κEτ (x0) ≥ κGτ (x0). On the other hand, by assumption E0 ⊂ G0

and (2.2) sdE0(x0) ≥ sdG0(x0), and therefore, from (2.22) and the first equality in (2.23) it
follows that

sdG0(x0)

τ
≤ sdE0(x0)

τ
= −κEτ (x0) ≤ −κGτ (x) <

sdG0(x0)

τ
,

a contradiction.
(b) is analogous. □

3. Proof of Theorem 1.2

Let {E(t)}t∈[0,T †) be a smooth mean curvature flow starting from E0 and with contact-angle

β, and let F (·) ∈ GMM(Fβ, E0). Following [2, Theorem 7.4] we fix any T ∈ (0, T †) and show

E(t) = F (t) for any 0 < t < T. (3.1)

Let ρ ∈ (0, 1), σ ∈ (0, η), the smooth flows {G±[r, s, a, t] : (r, s, a) ∈ [0, ρ]× [0, σ]× [0, T ], t ∈
[a, T ]} starting from {G±

0 [r, s, a]}, and t∗ > 0 be given by the second part of Theorem 2.6.
Let τj ↘ 0 and flat flows {F (τj , k)}k≥0 be such that F (τj , 0) = E0, F (τj , k) for k ≥ 1 is a
minimizer of Fβ(·;F (τj , k − 1), τj) and

lim
j→+∞

|F (τj , ⌊t/τj⌋)∆F (t)| = 0 for all t ≥ 0. (3.2)

For s ∈ (0, σ] let τ0(s) > 0 be given by Proposition 2.7.
We start with an ancillary technical lemma.

Lemma 3.1. Assume that t0 ∈ [0, T ) and k0 ∈ N0 are such that

G−
0 [0, s, t0] ⊂ F (τj , k0) ⊂ G+

0 [0, s, t0]. (3.3)

Then there exists t̄ ∈ (0, t∗] depending only on t∗ and ρ such that

G−[0, s, t0, t0 + kτj ] ⊂ F (τj , k0 + k) ⊂ G+[0, s, t0, t0 + kτj ]

for all s ∈ (0, σ], j ≥ 1 with τj ∈ (0, τ0(s)) and k = 0, 1, . . . , ⌊t̄/τj⌋ with t0 + kτj < T.
Moreover, let t0 + t̄ < T, the increasing continuous function g be given by Theorem 2.6 (b)
and σ̄ ∈ (0, σ/2) be such that 4g(2σ̄) < σ. Then for any s ∈ (0, σ̄) there exists j̄(s) > 1 such
that

G−
0 [0, 4g(2s), t0 + t̄] ⊂ F (τj , k0 + k̄j) ⊂ G+

0 [0, 4g(2s), t0 + t̄] (3.4)

whenever j > j̄(s), where k̄j := ⌊t̄/τj⌋ .

Proof. By Corollary 2.5 (a) and (3.3)

G−
0 [ρ/64, s, t0] ≺ G−

0 [0, s, t0] ⊂ F (τj , k0) ⊂ G+
0 [0, s, t0] ≺ G+

0 [ρ/64, s, t0]. (3.5)

Again by Corollary 2.5 (a)

dist(∂ΩG±
0 [ρ/64, s, t0], ∂

ΩG±
0 [0, s, t0]) = ρ/64,
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and hence, by (3.5) Bρ/64(x) ⊂ F (τj , k0) if x ∈ G−
0 [ρ, s, t0] and Bρ/64(x) ∩ F (τj , k0) = ∅ if

x ∈ Ω \G+
0 [ρ, s, t0]. Therefore, using Theorem 2.12 and again (3.3) we obtainB ρ

64
− 5120

ρ
τjk

(x) ⊂ F (τj , k0 + k) x ∈ G−
0 [ρ, s, t0],

B ρ
64

− 5120
ρ

τjk
(x) ∩ F (τj , k0 + k) = ∅ x ∈ Ω \G+

0 [ρ, s, t0],
k = 0, 1, . . . , ⌊t∗∗/τj⌋ , (3.6)

where
t∗∗ := min

{
7ρ2

642·640 ,
ϑ2ρ2

642·1600

}
.

Since dist(∂ΩG±
0 [r, s, t0], ∂

ΩG±
0 [0, s, t0]) = r (Corollary 2.5 (a)), from (3.3) and (3.6) we deduce

G−
0

[
3ρ
16 + ρ

64 − 5120
ρ kτj , s, t0

]
⊂ F (τj , k0 + k) ⊂ G+

0

[
3ρ
16 + ρ

64 − 5120
ρ kτj , s, t0

]
(3.7)

for all 0 ≤ k ≤ ⌊t∗∗/τj⌋ . Now applying Corollary 2.5 (c) with r′ = ρ
64 − 5120

ρ kτj and r′′ =

kτj ≤ t∗∗ < ρ/64, we further estimate (3.7) as

G−
0 [

ρ
2 − kτj , s, t0] ⊂ F (τj , k0 + k) ⊂ G+

0 [
ρ
2 − kτj , s, t0], k = 0, 1, . . . , ⌊t∗∗/τj⌋ . (3.8)

Set
t̄ := min

{
t∗, t∗∗

}
,

where t∗ is given by Theorem 2.6 (c). Then by (2.7) and (3.8)

G−
0 [ρ, s, t0 + kτj ] ⊂ F (τj , k0 + k) ⊂ G+

0 [ρ, s, t0 + kτj ], k = 0, 1, . . . , ⌊t̄/τj⌋ , (3.9)

with t0 + kτj < T. We claim for such k and j ≥ 1 with τj ∈ (0, τ0(s))

G−[0, s, t0, t0 + kτj ] ⊂ F (τj , k0 + k) ⊂ G+[0, s, t0, t0 + kτj ].

Indeed, let

r̄ := inf
{
r ∈ [0, ρ] : F (τj , k0+k) ⊂ G+[r, s, t0, t0+kτj ] k = 0, 1, . . . , ⌊t̄/τj⌋ , t0+kτj < T

}
.

By (3.9) the infimum is taken over a nonempty set. By contradiction, assume that r̄ > 0. By
the continuity of G+[r, s, t0, t0 + kτj ] at r = r̄, there exists the smallest integer k ≤ ⌊t̄/τj⌋
(clearly, k > 0 by (3.5)) such that

∂ΩF (τj , k0 + k) ∩ ∂ΩG+[r̄, s, t0, t0 + kτj ] ̸= ∅. (3.10)

By the minimality of k ≥ 1

F (τj , k0 + k − 1) ⊂ G+[r̄, s, t0, t0 + (k − 1)τj ], F (τj , k0 + k) ⊂ G+[r̄, s, t0, t0 + kτj ].

Moreover, by construction G+[r̄, s, t0, t0+kτj ] satisfies the contact angle condition with β+ s
and by Proposition 2.7 applied with τ = τj ∈ (0, τ0(s))

sdG+[r̄,s,t0,t0+(k−1)τj ](x)

τj
> −κG+[r̄,s,t0,t0+kτj ](x) +

s

2
, x ∈ ∂ΩG+[r̄, s, t0, t0 + kτj ]

and

sdG−[r̄,s,t0,t0+(k−1)τj ](x)

τj
< −κG−[r̄,s,t0,t0+kτj ](x)−

s

2
, x ∈ ∂ΩG+[r̄, s, t0, t0 + kτj ].

However, in view of Lemma 2.13 (a), these properties imply F (τj , k0+k) ≺ G+[r̄, s, t0, t0+kτj ],
which contradicts to (3.10). Thus, r̄ = 0. Analogous contradiction argument based on Lemma
2.13 (b) shows G−[0, s, t0, t0 + kτj ] ⊂ F (τj , k0 + k) for all 0 ≤ k ≤ ⌊t̄/τj⌋ .

Finally, let us prove (3.4). Recall that by construction G−
0 [0, 2s, t0] ≺ G−

0 [0, s, t0] and
G+

0 [0, s, t0] ≺ G+
0 [0, 2s, t0], therefore, by the strong comparison principle (Theorem 2.8)

G−[0, 2s, t0, t] ≺ G−[0, s, t0, t] and G+[0, s, t0, t] ≺ G+[0, 2s, t0, t] for all t ∈ [t0, T ]. Now the
continuity of G±[0, s, t0, t] on its parameters we could find j̄ = j̄(s) > 1 such that for all j > j̄
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G−[0, 2s, t0, t+ t̄] ≺ G−[0, s, t0, t+ k̄jτj ]

⊂ F (τj , k̄j) ⊂ G+[0, s, t0, t+ k̄jτj ] ≺ G+[0, 2s, t0, t+ t̄]. (3.11)

By the definition of g,

max
x∈∂ΩG±[0,2s,t0,t+t̄]

dist(x, ∂ΩE(t+ t̄)) ≤ g(2s) (3.12)

and therefore, by construction in Corollary 2.5 (a)

dist(∂ΩG±
0 [0, 4g(2s), t0 + t̄], ∂ΩE(t+ t̄)) = 4g(2s) > 0.

Combining this with (3.12) and the construction of G±
0 we deduce

G−
0 [0, 4g(2s), t0 + t̄] ≺ G−

0 [0, 2s, t0 + t̄] and G+
0 [0, 2s, t0 + t̄] ≺ G+

0 [0, 4g(2s), t0 + t̄].

These inclusions together with (3.11) imply (3.4). □

Now we are ready to prove the equality (3.1). Let t̄ be given by Lemma 3.1,

N := ⌊T/t̄⌋+ 1

and let σ0 ∈ (0, σ/16) be such that the numbers

σl = 4g(2σl−1), l = 1, . . . , N,

satisfy σl ∈ (0, σ/16). By the monotonicity and continuity of g together with g(0) = 0, such
choice of σ0 is possible.

Fix any s ∈ (0, σ0) and let

a0(s) := s, al(s) := 4g(2al−1(s)), l = 1, . . . , N.

Note that al(s) ∈ (0, σl). In particular, the numbers j̄sl := j̄(al(s)), given by the last assertion
of Lemma 3.1, are well-defined. Let also

j̃sl := max{j ≥ 1 : τj /∈ (0, τ0(al(s)))}
and

j̄s := 1 + max
l=0,...,N

max{j̄sl , j̃sl }.

By Corollary 2.5 (a)

G−
0 [0, s, 0] ⊂ E(0) = E0 = F (τj , 0) ⊂ G+

0 [0, s, 0]

for all j > j̄s. Therefore, by Lemma 3.1 applied with k0 = 0 and t0 = 0 we find

G−[0, s, 0, kτj ] ⊂ F (τj , k) ⊂ G+[0, s, 0, kτj ], k = 0, 1, . . . , k̄j ,

where k̄j := ⌊t̄/τj⌋ . Moreover, since s ∈ (0, σ0, ) by the last assertion of Lemma 3.1

G−
0 [0, a1(s), t̄] ⊂ F (τj , k̄j) ⊂ G+

0 [0, a1(s), t̄]

for all j ≥ j̄s. Hence, we can reapply Lemma 3.1 with s := a1(s), t0 = t̄ and k0 = k̄j , to find

G−[0, a1(s), 0, t̄+ kτj ] ⊂ F (τj , k̄j + k) ⊂ G+[0, a1(s), 0, t̄+ kτj ], k = 0, 1, . . . , k̄j .

In particular, since j > j̄s > j̄(a1(s)), again by the last assertion of Lemma 3.1 we deduce

G−
0 [0, a2(s), 2t̄] ⊂ F (τj , 2k̄j) ⊂ G+

0 [0, a2(s), 2t̄].

Repeating this argument at most N times, for all j ≥ j̄s we find

G−[0, al(s), 0, lt̄+ kτj ] ⊂ F (τj , lk̄j + k) ⊂ G+[0, al(s), 0, lt̄+ kτj ], k = 0, 1, . . . , k̄j (3.13)

whenever l = 0, . . . , N and lt̄+ kτj ≤ T.
Now take any t ∈ (0, T ), and let l := ⌊t/t̄⌋ and k = ⌊t/τj⌋ − lk̄j so that lk̄j + k = ⌊t/τj⌋ .

By means of l and k, as well as the definition of k̄j we represent (3.13) as
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G−
[
0, al(s), 0, lt̄+ τj

⌊
t
τj

⌋
− lτj

⌊
t̄
τj

⌋ ]
⊂ F

(
τj ,

⌊
t
τj

⌋)
⊂ G+

[
0, al(s), 0, lt̄+ τj

⌊
t
τj

⌋
− lτj

⌊
t̄
τj

⌋ ]
(3.14)

for all j > j̄s. Since

lim
j→+∞

(
lt̄+ τj

⌊
t
τj

⌋
− lτj

⌊
t̄
τj

⌋)
= t,

by the continuous dependence of G± on its parameters, as well as the convergence (3.2) of
the flat flows, letting j → +∞ in (3.14) we obtain

G−[0, al(s), 0, t] ⊂ F (t) ⊂ G+[0, al(s), 0, t], (3.15)

where due to the L1-convergence the inclusions in (3.2) here are up to some negligible sets.
Now we let s → 0+ and recalling that al(s) → 0 (by the continuity of g and assumption
g(0) = 0), from (3.15) we deduce

G−[0, 0, 0, t] ⊂ F (t) ⊂ G+[0, 0, 0, t].

Then by Theorem 2.6 (a)

F (t) = G±[0, 0, 0, t] = E(t).
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