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Abstract. In this paper we achieve a first concrete step towards a better understanding of
the so called Bernstein problem in higher dimensional Heisenberg groups. Indeed, in the sub-
Riemannian Heisenberg group Hn, with n ⩾ 2, we show that the only entire hypersurfaces
with vanishing horizontal symmetric second fundamental form and countable characteristic set
are hyperplanes. This result relies on a sub-Riemannian characterization of a higher dimen-
sional ruling property, as well as on the study of sub-Riemannian geodesics on Heisenberg
hypersurfaces.

1. Introduction

In the present paper we achieve a first concrete step towards a better understanding of the so
called Bernstein problem in higher dimensional sub-Riemannian Heisenberg groups. Namely, we
reduce the solution of the latter to validity of suitable sub-Riemannian curvature estimates. The
characterization of entire minimal hypersurfaces in higher dimensional sub-Riemannian Heisen-
berg groups is an intriguing open problem in the framework of sub-Riemannian geometry. This
issue, which is typically known as Bernstein problem in view of its Euclidean counterpart (cf.
[28] for a complete survey of the topic), fits into the broader context of minimal hypersurfaces
in sub-Riemannian structures (cf. [9, 10, 11, 16, 19, 25, 26, 29, 39, 40, 41, 48] and references
therein). The study of this and related issues is particularly relevant in the sub-Riemannian
Heisenberg group Hn, since the latter constitutes a prototypical model in the setting of Carnot
groups (cf. [21, 6]), sub-Riemannian manifolds (cf. [2]), CR manifolds (cf. [7]) and Carnot-
Carathéodory spaces (cf. [30]). We briefly recall that the n-th Heisenberg group (Hn, ·) is R2n+1

endowed with the group law

p · p′ = (x̄, ȳ, t) · (x̄′, ȳ′, t′) = (x̄+ x̄′, ȳ + ȳ′, t+ t′ +Q((x̄, ȳ), (x̄′, ȳ′))),

where

Q((x̄, ȳ), (x̄′, ȳ′)) =
n∑

j=1

(
x′jyj − xjy

′
j

)
and where we denoted points p ∈ R2n+1 by p = (z, t) = (x̄, ȳ, t) = (x1, . . . , xn, y1, . . . , yn, t).
With this operation, Hn is a Carnot group, whose associated horizontal distribution, which we
denote by H, is generated by the left-invariant vector fields

Xj =
∂

∂xj
+ yj

∂

∂t
and Yj =

∂

∂xj
− xj

∂

∂t

for j = 1, . . . , n. The standard sub-Riemannian structure

(Hn,H, ⟨·, ·⟩)
is given by a suitable scalar product ⟨·, ·⟩ on H. One of the key differences between the
Euclidean and the Heisenberg setting is that, as pointed out in [3], the classical Federer’s notion
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of rectifiability in metric spaces (cf. [20]) is not suitable for the Heisenberg group. To solve
this issue, the authors of [22] introduced the intrinsic notion of H-regular hypersurface, together
with a related notion of intrinsic rectifiability. We recall that an H-regular hypersurface is a
subset of Hn which can be described locally as the zero locus of a C1

H-function (cf. [22] for more
precise definitions). A special class of H-regular hypersurfaces is that of non-characteristic
hypersurfaces. In this setting, given a hypersurface S of class C1, we say that a point p ∈ S is
characteristic as soon as

Hp = TpS,

and otherwise we say that p is non-characteristic. In this last case, the horizontal tangent space

HTpS = Hp ∩ TpS

is a (2n−1)-dimensional vector space. The set of characteristic points of S is denoted by S0 and
is called the characteristic set of S. After [22], it was clear that the importance of H-regular
hypersurfaces went beyond rectifiability, as proved for instance from the striking differences
between characteristic and non-characteristic setting in the approach to the sub-Riemannian
Bernstein problem in H1. A first study of the latter was carried out by [9, 44] in the class
of t-graphs of class C2. We recall that a hypersurface S is a t-graph whenever there exists
u : R2n −→ R such that

graph(u) := S = {(x̄, ȳ, u(x̄, ȳ)) : (x̄, ȳ) ∈ R2n}.

In the previous set of papers, the authors classified minimal t-graphs of class C2 in the first
Heisenberg group H1, finding examples of minimal smooth t-graphs which are not planes. These
results were generalized in [33, 16, 17] to more general embedded C2-hypersurfaces in H1. More-
over, as pointed out in [41], if one consider hypersurfaces with low regularity, the examples of
minimal hypersurfaces which are not hyperplanes increase considerably. However, the situation
is different when considering non-characteristic hypersurfaces. In this context, a meaningful
counterpart of hyperplanes in the Euclidean setting is the class of vertical hyperplanes. Let us
recall that a vertical hyperplane is a set S of the form

S = {p ∈ Hn : ⟨(x̄, ȳ), (ā, b̄)⟩ = c},

for some 0 ̸= (ā, b̄) ∈ R2n and c ∈ R. An easy computation (cf. Section 4) shows that S is
non-characteristic. Moreover, every hyperplane which is not vertical is characteristic (cf. again
Section 4). A first result in this direction was achieved in [5] in the class of intrinsic graphs
(cf. [5]). Indeed, the authors showed that the only minimal intrinsic graphs defined by a C2

function in H1 are vertical hyperplanes. This result was generalized in [23] to the class of non-
characteristic minimal C1-hypersurfaces of H1, in [38] to the class of minimal intrinsic graphs
defined by an Euclidean Lipschitz function in H1, and in [27] to the class of (X, Y )-Lipschitz
surfaces in the sub-Finsler Heisenberg group H1. We point out that, as shown in [37], weakening
the regularity of the defining function allows to find examples of minimal hypersurfaces which
are not vertical planes even in the class of intrinsic graphs. While the Bernstein problem is well
understood in H1, very few results are known in higher dimensions. On one hand, as in H1,
there is no rigidity in the class of smooth t-graphs ([47]). On the other hand, when n ⩾ 5, there
are counterexamples even in the class of smooth intrinsic graphs (cf. [5, 16]). The Bernstein
problem for non-characteristic hypersurfaces is still open when n = 2, 3, 4. In H1, a key step
consists in understanding that the non-characteristic part S \ S0 of an area-stationary surface
S is foliated by horizontal line segments in the following sense.

Ruling Property. [10, 23] Let S be an area-stationary surface of class C1 in H1. Then, S is
foliated by horizontal line segments with endpoints in S0.
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Here, by horizontal line, we mean an Euclidean line γ such that

γ̇(t) =
n∑

j=1

ajXj(γ(t)) +
n∑

j=1

bjYj(γ(t)),

for some a1, . . . , an, b1, . . . , bn ∈ R and for any t ∈ R. The importance of this ruling property
became even more evident in [49], where the author showed a Bernstein Theorem in the class of
those minimal intrinsic graphs which present the aforementioned ruling property, thus without
assuming any regularity on the surfaces. The importance of this merely differential property can
be appreciated even by a sub-Riemannian viewpoint. Indeed, in analogy with the Riemannian
setting, the sub-Riemannian structure of Hn allows to associate to the non-characteristic part of
S various notions of horizontal second fundamental forms, which act on the horizontal tangent
distribution HTS. Despite these forms have been introduced and studied by many authors
in different ways (cf. [32, 15, 12, 43, 32]), and differently from the Riemannian framework, it

is possible to distinguish a symmetric form h̃ and a non-symmetric form h. These forms has
shown to be important in various settings, for instance to introduce the so-called horizontal
mean curvature H (cf. [9, 39, 15]), a suitable notion of horizontal umbilicity (cf. [8]) and for
the study of rigid motions (cf. [12]). In the particular case of H1, the vanishing of the form h,

which coincides both with the symmetric form h̃ and with the horizontal mean curvature H, is
equivalent to the aforementioned ruling property. In the higher dimensional case, however, h
and h̃ may differ, although it is in general true that the norm of h̃ is controlled by the norm of
h (cf. Section 6).

The aim of the present paper is twofold. On one hand, we propose a generalization of the
ruling property to higher dimensional Heisenberg groups, relating this new notion with the
vanishing of the symmetric form h̃. More precisely, we will call horizontally totally geodesic
an hypersurface such that h̃ ≡ 0 on its non-characteristic part. We stress that hypersurfaces
for which h ≡ 0 are particular instances of horizontally totally geodesic hypersurfaces. On the
other hand, it is not always the case that horizontally totally geodesic hypersurfaces satisfy
h ≡ 0 (cf. Section 6). In the Riemannian framework, this name is motivated by the fact that
every geodesic of a totally geodesic hypersurface is a geodesic of the ambient manifold. This
last characterization allows to deduce that, in Rn, the only totally geodesic hypersurfaces are
hyperplanes. The second aim of this paper is to provide an analogous result in the Heisenberg
group. We stress that, at least in the non-characteristic case, hypersurfaces with h ≡ 0 are
easily vertical hyperplanes (cf. Section 6). Surprisingly, the same phenomenon continues to

hold under the weaker requirement h̃ ≡ 0. The main achievements of this paper can be then
summarized in the following result.

Theorem 1.1 (Main Theorem). Let S ⊆ Hn be an hypersurface without boundary of class C2.
The following are equivalent.

(i) S is horizontally totally geodesic.
(ii) S is ruled.

If in addition n ⩾ 2, S is (topologically) closed and S0 is countable, then (i) and (i) hold if and
only if S is a hyperplane.

In particular, in the non-characteristic setting, Theorem 1.1 constitutes an important tool in
order to approach the resolution of the Bernstein problem in the higher dimensional case.

Corollary 1.2. Let S ⊆ Hn be a non-characteristic hypersurface without boundary of class C2.
Assume that n ⩾ 2 and that S is (topologically) closed. If S is horizontally totally geodesic,
then S is a vertical hyperplane.
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Indeed, Corollary 1.2 allows to reduce the complexity of the problem to the estimate of the
norm of the horizontal second fundamental form h̃ associated to a minimal hypersurface. We
point out that an approach based on curvature estimates for minimal hypersurfaces is already
available in Rn, in view of the celebrated paper [45]. Our approach to Theorem 1.1 can be
summarized in the following steps.

Introduction of the higher dimensional ruling property. The starting point consists in
generalizing the ruling property to the higher dimensional case, which is done in Section 3 in
two equivalent ways (cf. Definition 3.1, Definition 3.1 and Proposition 3.2). After discussing
the connection between the characteristic set and this new notion (cf. Proposition 3.2), we
show that the latter is well-behaved with respect to the intrinsic geometry of Hn. Namely,
we prove that the class of ruled hypersurfaces is closed under the action of intrinsic dilations
(cf. Proposition 3.6), and the action of the so-called pseudohermitian transformations (cf.
Theorem 3.10).

Rigidity results for ruled hypersurfaces. Subsequently, we exploit the ruling property to
provide rigidity results for some classes of hypersurfaces. Basically, we show that under some
constraints on the size of the characteristic set, the higher dimensional ruling property is more
rigid than the corresponding one in H1.

Theorem 1.3. Let S be an hypersurface of class C1. Assume that n ⩾ 2 and that S is
closed and without boundary. Assume that S0 is countable and that S is ruled. Then S is an
hyperplane.

This result constitutes a first remarkable difference with H1, where there are instance of
smooth ruled non-characteristic hypersurfaces which are not planes (cf. Section 4). Another
striking difference with the first Heisenberg group can be appreciated studying the ruling prop-
erty in the class of intrinsic cones.

Theorem 1.4. Let n ⩾ 2 and let S be a ruled conical closed hypersurface. If S0 ̸= ∅, then S is
the horizontal hyperplane H0.

As a corollary of the previous characterization, it is easy to provide examples of entire minimal
characteristic hypersurfaces which are not ruled.

Theorem 1.5. Let n ⩾ 2 and let S := graph(u), where u(x̄, ȳ) = 1
2
x21 − 1

2
y21. Then S is a

minimal smooth hypersurface which is not ruled.

Introduction of the horizontal second fundamental forms. In Section 6 we begin build-
ing a bridge between the aforementioned results, which are only differential in spirit, with the
sub-Riemannian structure of Hn. To this aim, we formally introduce the two aforementioned
second fundamental forms h̃ and h. highlighting the main differences between H1 and higher
dimensional Heisenberg groups. Moreover, we prove some simple formulas for the norms of h
and h̃ (cf. Proposition 6.1 and Proposition 6.4), which allows to relate in a quantitative way
the two quantities.

Ruled if and only if horizontally totally geodesic. In view of Theorem 1.3, the main
remaining obstacle to prove Theorem 1.1 is to show the equivalence between the property of
being horizontally totally geodesic and the ruling property.

Theorem 1.6. Let S be a hypersurface without boundary of class C2. Then S is ruled if and
only if S is horizontally totally geodesic.

This result strongly relies on a local existence and uniqueness result for a particular geodesic-
type initial value problem on the hypersurface (cf. Theorem 7.5). Sub-Riemannian geodesics
have been extensively studied in the last years (cf. e.g. [35, 34, 1, 14, 36] and references therein).
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Although local existence results for sub-Riemannian geodesics are available (cf. e.g. [34]), it is
not always the case that sub-Riemannian geodesics satisfies the standard geodesic equation

∇Γ̇Γ̇ = 0,

being ∇ a suitable sub-Riemannian connection (cf. [44]). Therefore, we devote Section 7 to the
study of the initial value problem associated to this kind of equations on hypersurfaces. The
proof of Theorem 7.5 can be reduced to the study of curves in domains of suitable intrinsic
graphs, and its main difficulty lies in the fact that that the initial value problem that we need
to consider is a priori overdetermined. Once Theorem 7.5 is achieved, we are then in position
to prove Theorem 1.6, and so, in view of the previous considerations, to conclude the proof of
Theorem 1.1.

We point out that, in view of Theorem 1.6, we can read Theorem 1.4 and Theorem 1.5 from
the sub-Riemannian standpoint. Namely, when n ⩾ 2, the only horizontally totally geodesic
sufficiently smooth cone is the horizontal hyperplane, and there exist minimal characteristic
conical hypersurfaces which are not horizontally totally geodesic.

This set of results and considerations both provides a direct way to approach the Bernstein
problem via curvature estimates, and highlights once more many interesting differences between
H1 and higher dimensional Heisenberg groups. According to the authors’ hope, it may give
a burst in the grasp of such an interesting open problem as the Bernstein problem in this
anisotropic setting.

Plan of the paper. In Section 2 we collect some basic preliminaries about the sub-Riemannian
Heisenberg group. In Section 3 we introduce the higher dimensional ruling property and we
study some of its properties. In Section 4 we prove Theorem 1.3, while in Section 5 we prove
Theorem 1.4 and Theorem 1.5. In Section 6 we recall the main definition and properties of
the horizontal forms h and h̃, and we introduce the notion of horizontally totally geodesic
hypersurface. In Section 7 we introduce the relevant geodesic-type initial value problem (cf.
(7.1)) and we show a local existence and uniqueness result (cf. Theorem 7.5). Moreover, we
prove Theorem 1.6 and Theorem 1.1.

Acknowledgements. The authors thank G. Giovannardi, M. Ritoré, F. Serra Cassano, D.
Vittone and R. Young for fruitful conversations about these topics. The authors also thank D.
Vittone for suggesting them the proof of Proposition 7.1.

2. Preliminaries

2.1. The Heisenberg group Hn. In the following we denote by T the left-invariant vector
field ∂

∂t
. In this way X1, . . . , Xn, Y1, . . . , Yn, T is a basis of left-invariant vector fields. Moreover,

the only nontrivial commutation relations are

[Xj, Yj] = −[Yj, Xj] = −2T

for any j = 1, . . . , n. A vector field which is tangent to H at every point is called horizontal.
For given q ∈ Hn and λ > 0, we define the left-translation τq : Hn −→ Hn and the intrinsic
dilation δλ : Hn −→ Hn by

τq(p) := q · p and δλ(p) := (λz, λ2t)

for any p = (z, t) ∈ Hn respectively. It is well known that both τq and δλ are global diffeomor-
phisms, and that δλ is a Lie group isomorphism. Moreover, we define the complex structure J
by letting

J(Xi) = Yi, J(Yi) = −Xi and J(T ) = 0
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for any i = 1, . . . , n, and extending it by linearity for general vector fields. Given p ∈ Hn

we will often identify the vector
∑n

j=1 vjXj|p + vn+jYj|p with the point (v1, . . . , v2n, 0) ∈ Hn.

The Haar measure of Hn coincides with the (2n + 1)-dimensional Lebesgue measure L2n+1.
The homogeneity property L2n+1(δλ(E)) = λQL2n+1(E) holds for any measurable set E ⊆ Hn,
where Q = 2n+ 2 is the homogeneous dimension of Hn (cf. [46]).

2.2. Sub-Riemannian structure on Hn. We let g be the unique Riemannian metric on Hn

which makes X1, . . . , Xn, Y1, . . . , Yn, T orthonormal. For the sake of notational simplicity, we
let

Zj = Xj, Zn+j = Yj and Z2n+1 = T

for any j = 1, . . . , n, and we recall for the sake of completeness that the horizontal distribution
H is defined by

Hp = span{Z1|p, . . . , Z2n|p}
for any p ∈ Hn. If we restrict g to the horizontal distribution H, and we denote this restriction
by ⟨·, ·⟩, then Hn inherits a sub-Riemannian structure which realizes it as a sub-Riemannian
manifold. We denote by ∇ the so-called pseudohermitian connection (cf. e.g. [43]), i.e. the
unique metric connection (cf. [18]) with torsion tensor given by

(2.1) ∇XY −∇YX − [X, Y ] = 2⟨J(X), Y ⟩T
for any pair of vector fields X and Y . The most relevant feature of ∇ (cf. [42]) is the following
property:

(2.2) ∇Zi
Zj = 0

for any i, j = 1, . . . , 2n+ 1, and so can be seen as a flat connection on Hn.

2.3. Carnot-Carathéodory structure on Hn. If Γ : [a, b] −→ Hn is an absolutely continuous
curve, we say that it is horizontal whenever

(2.3) Γ̇(t) ∈ HΓ(t)

for almost every t ∈ [a, b], and we say that it is sub-unit whenever it is horizontal with |Γ̇(t)| = 1
for almost every t ∈ [a, b]. Moreover, we define

d(p, p′) := inf{T : Γ : [0, T ] −→ Hn is sub-unit, Γ(0) = p and Γ(T ) = p′}
which, by the Chow-Rashevskii theorem (cf. [13]), defines a distance on Hn, called Carnot-
Carathéodory distance. The metric space (Hn, d) is then a prototype of Carnot-Carathéodory
space (cf. [30]).

2.4. Horizontal perimeter and horizontal gradient. If Ω ⊆ Hn is open and E ⊆ Hn is
measurable with χE ∈ L1

loc(Ω), we recall (cf. e.g. [22, 24]) that the H-perimeter of E in Ω is
defined by

PH(E,Ω) := sup

{∫
E

divH(φ̄) dL2n+1 : φ̄ ∈ C1
c (Ω,H), |φ̄|p ⩽ 1 for any p ∈ Ω

}
,

where by C1
c (Ω,H) we denote the class of compactly supported C1 sections of the horizontal

distribution H, and divH is the so called horizontal divergence, defined by

divH

(
n∑

j=1

(φjXj + φn+jYj)

)
:=

n∑
j=1

(Xjφj + Yjφn+j)

for any
∑n

j=1(φjXj + φn+jYj) ∈ C1(Ω,H). Moreover, we say that a set E as above is an

H-Caccioppoli set whenever PH(E,Ω) < +∞ for any bounded open set Ω ⊆ Hn. Finally, we
recall (cf. e.g. [46]) that an H-Caccioppoli set E is an H-perimeter minimizer whenever

PH(E,Ω) ⩽ PH(F,Ω)
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for any Ω ⋐ Hn and for any H-Caccioppoli set F such that E∆F ⋐ Ω. The sub-Riemannian
structure of Hn allows to define a distributional notion of horizontal gradient (cf. [22]). More
precisely, if f ∈ L1

loc(Ω), we let

⟨∇Hf, φ⟩ := −
∫
Ω

f divH φdL2n+1

for any φ ∈ C∞
c (Ω,R2n). When f is continuous and ∇Hf is represented by a continuous vector

field, then we say that f ∈ C1
H(Ω). Moreover, in this case,

∇Hf =
n∑

j=1

XjfXj +
n∑

j=1

YjfYj.

2.5. Hypersurfaces in Hn. We say that S ⊆ Hn is an H-regular hypersurface if, for any p ∈ S,
there exists an open neighborhood U of p and a function f ∈ C1

H(U) such that

S ∩ U = {q ∈ Hn : f(q) = 0} and ∇Hf ̸= 0 on U.

Here and in the rest of the paper, whether not specified, a hypersurface will be always at least
of class C1 and without boundary. If S is an hypersurface of class C1, we define

S0 := {p ∈ S : Hp = TpS}
and we call it the characteristic set of S. Notice that, since S is of class C1 and H is a smooth
distribution, then S0 is closed in S. Moreover, let us define

HTpS := Hp ∩ TpS.
When p ∈ S0, then dim(HTpS) = 2n. On the contrary, when p ∈ S \S0, we have dim(HTpS) =
2n− 1. In this case, the horizontal normal to S at p is defined by

(2.4) vH(p) :=
NH(p)

|NH(p)|p
for any p ∈ S \ S0, where NH(p) is the a section of the horizontal bundle defined by

NH(p) :=
n∑

j=1

(⟨N(p), Xj|p⟩R2n+1Xj|p +
∑
j=1n

⟨N(p), Yj|p⟩R2n+1Yj|p,

being N(p) the Euclidean unit normal to S at p. It is clear that a hypersurface of class C1 with
empty characteristic set is H-regular (cf. e.g. [47]). When S is of class C2, it is easy to check
that

(2.5)
2n∑
h=1

vHhZk(v
H
h ) = 0

for any k = 1, . . . , 2n, where by vH we mean any C2 extension of vH|S in a neighborhood of S
such that |vH| = 1. There is a particular choice of such an extension which allows to derive
further relations. Indeed, if we let dH be the signed Carnot-Carathéodory distance from S with
respect to (Z1, . . . , Z2n), then it is well known (cf. [43]) that dH inherits the same regularity
of S in a neighborhood of any non-characteristic point p ∈ S. Moreover, since dH satisfies the
horizontal Eikonal equation in a neighborhood of S, then vH|S can be extended by letting

(2.6) vH =
n∑

j=1

Xjd
HXj +

n∑
j=1

Yjd
HYj.

With this particular extension,

(2.7) Zk(v
H
h ) = Zh(v

H
k )
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for any h, k = 1, . . . , 2n such that |h− k| ≠ n. Moreover,

(2.8) Xk(v
H
n+k) = Yk(v

H
k )− 2TdH and Yk(v

H
k ) = Xk(v

H
n+k) + 2TdH

for any k = 1, . . . , n. Finally, thanks to (2.5), (2.7) and (2.8), we see that

(2.9)
2n∑
h=1

vHhZh(v
H
k ) = −2TdHJ(vH)k

for any k = 1, . . . , 2n. Moreover, a simple computation shows that

(2.10) TdH =
N2n+1

|NH|
According to [15], we define the horizontal tangential derivatives

δiξ = Ziξ̄ − gH
(
∇H, ξ̄

)
vHi

for any i = 1, . . . , 2n, where ξ is a C1 function on an open subset of S and ξ̄ is any C1 extension
of ξ. As customary, the horizontal tangential derivatives do not depend on the chosen extension
(cf. [15]). We recall that the tangent pseudohermitian connection ∇S is defined in the non-
characteristic part of S by

∇S
XY = ∇XY − ⟨∇XY, v

H⟩vH

for any pair of tangent horizontal vector fields X and Y . Notice that ∇S is easily a metric
connection with respect to the metric ⟨·, ·⟩ restricted to HTS. We say that an hypersurface of
class C1 is H-minimal whenever it coincides with the boundary of an H-perimeter minimizer.

2.6. Intrinsic graphs. Let us denote points q ∈ R2n by q = (ξ1, . . . , ξn, η2, . . . , ηn, τ) =
(ξ̄, η̃, τ). We wish to ientify R2n with {p ∈ Hn : y1 = 0}. To this aim, we introduce the
immersion map i : R2n −→ Hn defined by

i(ξ̄, η̃, τ) = (ξ̄, 0, η̃, τ)

for any (ξ̄, η̃, τ) ∈ R2n. Moreover, we identify R with {(0̄, y1, 0̃, 0) : y1 ∈ R} by means of the
inclusion j : R −→ Hn defined by

j(y1) = (0̄, y1, 0̃, 0)

for any y1 ∈ R. The maps i and j are clearly smooth, injective and open. For a given open set
Ω ⊆ R2n and a function φ : Ω −→ R, we recall that the Y1-graph of φ on Ω is defined by

graphY1
(φ,Ω) = {(ξ̄, φ(ξ̄, η̃, τ), η̃, τ − ξ1φ(ξ̄, η̃, τ)) : (ξ̄, η̃, τ) ∈ Ω}.

Moreover, we define its parametrization map Ψ : Ω −→ Hn by

Ψ(ξ̄, η̃, τ) = (ξ̄, φ(ξ̄, η̃, τ), η̃, τ − ξ1φ(ξ̄, η̃, τ))

for any (ξ̄, η̃, τ) ∈ Ω. We introduce also the intrinsic projection map Π : Hn −→ R2n by

Π(x̄, ȳ, t) = (x̄, ỹ, t+ x1y1)

for any (x̄, ȳ, t) ∈ Hn. It is easy to check that

Π(Ψ(q)) = q and Ψ(Π(p)) = p

for any q ∈ Ω and any p ∈ graphY1
(φ,Ω). If φ ∈ C1(Ω) and S = graphY1

(φ,Ω), then

TΨ(q)S = span

(
∂Ψ

∂ξ1

∣∣∣
q
, . . . ,

∂Ψ

∂ξn

∣∣∣
q
,
∂Ψ

∂η2

∣∣∣
q
, . . . ,

∂Ψ

∂ηn

∣∣∣
q
,
∂Ψ

∂τ

∣∣∣
q

)
.

Letting Dφ = (φξ1 , . . . φξn , φη2 , . . . , φηn , φτ ), an easy computation shows that

∂Ψ

∂ξ1

∣∣∣
q
= X1|Ψ(q) + φξ1(q)Y1|Ψ(q) − 2φ(q)T |Ψ(q),
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∂Ψ

∂ξj

∣∣∣
q
= Xj|Ψ(q) + φξj(q)Y1|Ψ(q) − ηjT |Ψ(q),

∂Ψ

∂ηj

∣∣∣
q
= Yj|Ψ(q) + φηj(q)Y1|Ψ(q) + ξjT |Ψ(q)

for any j = 2, . . . , n and
∂Ψ

∂τ

∣∣∣
q
= φτ (q)Y1|Ψ(q) + T |Ψ(q).

It is easy to check that (E1, . . . , En, F2, . . . , Fn) constitutes a global frame of HTS, where

E1 = X1 +WφφY1, Ej = Xj + X̃jφY1 and Fj = Yj + ỸjφY1

for any j = 2, . . . , n, and where the family of vector fields ∇φ = (Wφφ, X̃2, . . . X̃n, Ỹ2, . . . , Ỹn)
is defined by

Wφ =
∂

∂ξ1
+ 2φT̃ , X̃j =

∂

∂ξj
+ ηjT̃ and Ỹj =

∂

∂ηj
− ξjT̃

for any j = 2, . . . , n, where we have set T̃ = ∂
∂τ
. Therefore, a quick computation implies that

(2.11) vH = W− 1
2

(
WφφX1 +

n∑
j=2

X̃jφXj − Y1 +
n∑

j=2

ỸjφYj

)
,

where we have set

W = 1 + |∇φφ|2.
Notice that, since

[X̃j, Ỹj] = −2T̃

for any j = 2, . . . , n, then (Ω, dφ) is a Carnot-Carathéodory space (cf. [30]) where Ω is any
domain of R2n and dφ is the Carnot-Carathéodory distance induced by ∇φ.

3. Higher dimensional ruled hypersurfaces

As already mentioned, a key step in the study of minimal surfaces in H1 consists in showing
that the non-characteristic part of an area-stationary surface is foliated by horizontal line
segments. This property extends to the higher dimensional case as follows.

Definition 3.1 (Local ruling property). Let S be an hypersurface of class C1. We say that S
is locally ruled at p ∈ S \ S0 if there exists a neighborhood U of p such that

p · HTpS ∩ U ⊆ S.

Moreover, we say that S is locally ruled if it is locally ruled at p ∈ S \ S0 for any p ∈ S \ S0.

Beside this local definition, we propose a global one, which will be useful in the following.

Definition 3.1 (Global ruling property). Let S be a hypersurface of class C1. We say that S
is ruled if for any p ∈ S \ S0, for any v ∈ HTpS and for any s ⩾ 0, the following property
holds. If s is maximal with the property that

p · δτ (v) ∈ S

for any τ ∈ [0, s], then

p · δs(v) ∈ S0.

The previous two definitions are actually equivalent.

Proposition 3.2. Let S be an hypersurface of class C1. Then the following are equivalent.

(i) S is locally ruled.
(ii) S is ruled.
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Proof. Assume that S is ruled. Assume by contradiction that there exists p ∈ S \ S0 and a
sequence (ph)h ⊆ p · HTpS \ S converging to p as h → +∞. Then, for any h ∈ N, there exists
λh > 0 and vh ∈ HTpS such that ph = p · δλh

(vh). If, up to a subsequence, for any h there
exists 0 < µh ⩽ λh such that p · δµh

(vh) belongs to the manifold boundary of S, then, being
the latter closed, so does p, a contradiction with p ∈ S. Therefore, since ph /∈ S and up to a
subsequence, we can assume that for any h there exists sh ⩾ 0 maximal such that p · δτ (vh) ∈ S
for any τ ∈ [0, sh]. Clearly sh ⩽ λh. Therefore, being S ruled, then qh := p · δsh(vh) ∈ S0. But
then, by construction, (qh)h converges to p as h → +∞, and so, being S0 closed, we conclude
that p ∈ S0, a contradiction. On the contrary, assume that S is locally ruled. Assume by
contradiction that that there exists p ∈ S \ S0, w ∈ HTpS and s maximal with the property
that

(3.1) p · δτ (w) ∈ S

for any τ ∈ [0, s] and
p · (sw, 0) /∈ S0.

Set p̄ := p · (sw, 0). Consider the left-invariant vector field

W =
2n∑
j=1

wjZj.

Recalling that left-translations preserve the horizontal distribution, and beingW left invariant,
we conclude that

dτ(sw,0)|p(Wp) = W |p̄ ∈ Hp̄.

Moreover, by construction, W is clearly tangent to S at p̄. We conclude that w ∈ HTp̄S. Since
S is locally ruled and p̄ ∈ S \ S0, there exists s̃ > 0 such that p̄ · (s̃w, 0) ∈ S, which implies,
recalling the definition of p̄, that

p̄ · (s̃w, 0) = p · (s̄w, 0) · (s̃w, 0) = p · ((s̄+ s̃)w, 0) ∈ S,

a contradiction with (3.1). □

Proposition 3.2. Let S be a ruled hypersurface of class C1. Assume that S is (topologically)
closed. Let p ∈ S \ S0 and v ∈ HTpS be such that

{p · δs(v, 0) : s ⩾ 0} ∩ S0 = ∅.
Then

{p · δs(v, 0) : s ⩾ 0} ⊆ S.

In particular, if
p · HTpS ∩ S0 = ∅,

then

(3.2) p · HTpS ⊆ S.

Proof. Let p ∈ S \ S0 and v ∈ HTpS be as in the statement, and assume by contradiction that
there exists λ > 0 such that q = p · δλ(v) /∈ S. Being S closed, there exists s ⩾ 0 maximal as
in Definition 3.1. Then we can argue as in the proof of Proposition 3.2 to find s ⩾ 0 such that
p · δs(v) ∈ S0, which is a contradiction. The second claim clearly follows from the first one. □

Notice that, in view of Proposition 3.2, the notion of ruled hypersurface becomes much
more simpler in the case of non-characteristic hypersurfaces. Indeed, if S is a closed, non-
characteristic ruled hypersurface of class C1 and p ∈ S, then clearly p · HTpS ∩ S0 = ∅.
Therefore a closed non-characteristic hypersurface of class C1 is ruled if and only if it satisfies
(3.2). Now let us discuss some instances of ruled hypersurfaces. We begin with the simplest
non-characteristic smooth hypersurface.
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Example 3.3 (Vertical Hyperplanes). Let S be a vertical hyperplane of the form

S = {p ∈ Hn : ⟨(x̄, ȳ), (ā, b̄)⟩ = c}
for some 0 ̸= (ā, b̄) ∈ R2n and c ∈ R. Without loss of generality, we assume that a1 ̸= 0. It is
easy to see that

TpS = span{(a2,−a1, 0, . . . , 0), (a3, 0,−a1, 0, . . . , 0), . . . , (bn, 0, . . . , 0,−a1, 0), T}
for any p ∈ S. Notice that S0 = ∅. We show that S is ruled. Indeed, noticing that T ∈ TpS for
any p ∈ S, it follows that

HTpS = span{Z2|p, . . . , Zn|p,W1|p, . . . ,Wn|p}
for any p ∈ S, where

(3.3) Zi = aiX1 − a1Xi and Wj = bjX1 − a1Yj

for any i = 2, . . . , n and j = 1, . . . , n. Let now p = (x̄, ȳ, t) ∈ S, and let w = (x̄′, ȳ′, 0) ∈ HTpS.
Then there exists αj, βj ∈ R such that

w =

(
n∑

j=2

αjaj +
n∑

j=1

βjbj,−α2a1, . . . ,−βna1, 0

)
.

We conclude noticing that

⟨(x̄′, ȳ′), (ā, b̄)⟩ = a1

n∑
j=2

αjaj + a1

n∑
j=1

βjbj −
n∑

j=2

αja1aj −
n∑

j=1

βja1bj = 0.

Next we consider an instance in the characteristic case.

Example 3.4 (Horizontal Hyperplane). Let S be the horizontal hyperplane H0. Notice that

TpS = span

{
∂

∂x1
, . . . ,

∂

∂yn

}
= span{X1 − y1T, . . . , Xn − ynT, Y1 + x1T, . . . , Yn + xnT}

for any p ∈ S. This in particular implies that S0 = {0}. Therefore, let p = (x̄, ȳ, t) ̸= 0, and
assume without loss of generality that y1 ̸= 0. This implies that

HTpS = span{y2X1 − y1X2, . . . , ynX1 − y1Xn, x1X1 + y1Y1, . . . , xnX1 + y1Yn}.
Therefore, let w = (z, 0) ∈ HTpS, and let αj, βj ∈ R be such that

z =

(
n∑

j=2

αjyj +
n∑

j=1

βjxj,−α2y1, . . . ,−αny1, β1y1, . . . , βny1

)
.

Hence it follows that

Q((x̄, ȳ), z) = y1

n∑
j=2

αjyj + y1

n∑
j=1

βjxj −
n∑

j=2

αjy1yj −
n∑

j=1

βjy1xj = 0.

With the next couple of propositions we show that the class of ruled C1-hypersurfaces is
closed under the action of left translations and intrinsic dilations.

Proposition 3.5. Let S be a ruled hypersurface of class C1. Then τq(S) is ruled for any
q ∈ Hn.

Proof. Fix q = (x̄q, ȳq, t) ∈ Hn, define S̃ := τq(S) and, given a point p̃ ∈ S̃ \ S̃0, let p ∈ S be

such that p̃ = τq(p). Being τq : S −→ S̃ a diffeomorphism, then dτq|p : TpS −→ Tp̃S̃ is an
isomorphism. Therefore we have that

dτq|p(TpS) = Tp̃S̃.
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Moreover, by definition of H, it is also the case that

dτq|p(Hp) = Hp̃.

Hence we infer that

dτq|p(HTpS) = dτq|p(Hp ∩ TpS) = dτq|p(Hp) ∩ dτq|p(TpS) = Hp̃ ∩ Tp̃S̃ = HTp̃S̃.
In particular, notice that p ∈ S \ S0. Let w ∈ p̃ · HTp̃S and assume that there exists s ⩾ 0

maximal with the property that p̃ · δτ (w) ∈ S̃ for any τ ∈ [0, s]. We claim that p̃ · δs(w) ∈ S̃0.
Let v = (ā, b̄, 0) ∈ HTpS be such that dτq|p(v) = w. By the left-invariance of the horizontal
distribution, it follows that w = (ā, b̄, 0). Therefore s is maximal with the property that
p · δτ (v) ∈ S for any τ ∈ [0, s]. Hence p · δs(v) ∈ S0, and so, since

p̃ · δs(w) = p̃ · (sā, sb̄, 0) = q · p · (sā, b̄, 0) = q · (p · δs(v))
and observing that τq(S0) = S̃0, we conclude that p̃ · δs(w) ∈ S̃0. □

Proposition 3.6. Let S be a ruled hypersurface. Then δλ(S) is ruled for any λ > 0.

Proof. Fix λ > 0, define S̃ := δλ(S) and, given a point p̃ ∈ S̃ \ S̃0, let p = (x̄, ȳ, t) ∈ S be such
that p̃ = δλ(p). Arguing as in the proof of Proposition 3.5, we get that

(3.4) dδλ|p(HTpS) = HTp̃S̃.
Therefore, again, p ∈ S \ S0. Let w ∈ p̃ · HTp̃S and assume that there exists s ⩾ 0 maximal

with the property that p̃ · δτ (w) ∈ S̃ for any τ ∈ [0, s]. We claim that p̃ · δs(w) ∈ S̃0. Let
v = (ā, b̄, 0) ∈ HTpS be such that dδλ|p(v) = w. We claim that that w = δλ(v). Indeed,
recalling that the Jacobian matrix of δλ is a diagonal matrix with diagonal (λ, . . . , λ, λ2), then

w(f)(q) =
n∑

j=1

aj
∂(f ◦ δλ)
∂xj

(p) +
n∑

j=1

bj
∂(f ◦ δλ)
∂xj

(p) +
n∑

j=1

(ajyj − bjxj)T (f ◦ δλ)(p)

=
n∑

j=1

λaj
∂f

∂xj
(p̃) +

n∑
j=1

λbj
∂f

∂xj
(p̃) +

n∑
j=1

((λaj)(λyj)− (λbj)(λxj))Tf(p̃).

(3.5)

The conclusion then follows as in the previous proof, just noticing that

δλ(p · δτ (v)) = δλ(p) · δλ(δτ (v)) = p̃ · δλτ (v) = p̃ · δτ (δλ(v)) = p̃ · δτ (w)
for any τ ∈ R, and that δλ(S0) = S̃0. □

In view of Proposition 3.5, we can enlarge the class of examples of ruled hypersurfaces.

Example 3.7 (Non-Vertical Hyperplanes). We already know that H0 is a characteristic ruled
smooth hypersurface. For any fixed q = (x̄q, ȳq, tq) ∈ Hn, we know from Proposition 3.5 that
τq(H0) is a characteristic ruled smooth hypersurface. Moreover, an easy computation shows
that

τq(H0) = {(x̄, ȳ, t) ∈ Hn : ⟨(ā, b̄), (x̄, ȳ)⟩+ t+ d = 0},
where (ā, b̄) = (−ȳq, x̄q) and d = −tq. Finally, notice that any hyperplane which is not vertical
can be obtained as left-translation of the horizontal hyperplane H0. Hence we conclude that
every hyperplane of Hn is ruled, and it is non-characteristic if and only if it is vertical. Finally,
notice that we cannot exploit Proposition 3.6 to obtain more ruled hypersurfaces, since dilations
of hyperplanes are hyperplanes.

To conclude this section, we show that the class of ruled hypersurfaces is closed under the
action of the so-called pseudohermitian transformations of Hn. To introduce this notion, we
define the map J : Hn −→ Hn by

J (x̄, ȳ, t) := (−ȳ, x̄, t)
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for any p = (x̄, ȳ, t) ∈ Hn. The map J is a global diffeomorphism which preserves the horizontal
distribution, related to the CR structure J by

dJ |H = J |H.

A global diffeomorphism φ : Hn −→ Hn is said to be a pseudohermitian transformation of Hn

if it preserves the horizontal distribution and it commutes with J , that is

dφ(H) ⊆ H and φ ◦ J = J ◦ φ.

Let us begin by considering a special subclass of pseudohermitian transformations. To this aim,
let us define the map φR : Hn −→ Hn by

(3.6) φR(x̄, ȳ, t) := (R(x̄, ȳ), t),

where R is an orthogonal matrix of the form

R =

[
A B
−B A

]
,

where A and B are real-valued n× n matrices.

Proposition 3.8. Let φR be as in (3.6). Then φR is a pseudohermitian transformation. More-
over, it holds that

dφR|p(ā, b̄, 0) = (R(ā, b̄), 0)

for any p ∈ Hn and any (ā, b̄, 0) ∈ Hp.

Proof. Let p = (x̄, ȳ, t) and (ā, b̄, 0) as in the statement, and let p̃ := φR(p) = (¯̃x, ¯̃y, t). We first
claim that

dφR|p(Xj|p) =
n∑

k=1

(
RkjXk|p̃ +R(n+k)jYk|p̃

)
and

dφR|p(Yj|p) =
n∑

k=1

(
Rk(n+j)Xk|p̃ +Rn+k)(n+j)Yk|p̃

)
for any j = 1, . . . , n. Indeed, let ψ be a C1 function defined in a neighborhood of p̃. Let us
recall that, since (¯̃x, ¯̃y) = R(x̄, ȳ) and R is orthogonal, then (x̄, ȳ) = RT (¯̃x, ¯̃y), which means,
recalling also the special block shape of R, that

−xj =
n∑

k=1

(
−Rkjx̃k −R(n+k)j ỹk

)
=

n∑
k=1

(
−R(n+k)(n+j)x̃k +Rk(n+j)ỹk

)
and

yj =
n∑

k=1

(
Rk(n+j)x̃k +R(n+k)(n+j)ỹk

)
=

n∑
k=1

(
−R(n+k)jx̃k +Rkj ỹk

)
.



14 A. PINAMONTI AND S. VERZELLESI

for any j = 1, . . . , n. Then it holds that

dφR|p(Xj|p)(ψ)(p̃) = Xj|p(ψ ◦ φR)(p)

=
∂

∂xj
(ψ ◦ φR)(p) + yjT (ψ ◦ φR)(p)

=
n∑

k=1

(
Rkj

∂ψ

∂xk
(p̃) +R(n+k)j

∂ψ

∂yk
(p̃)

)
+ yjT (ψ)(p̃)

=
n∑

k=1

(
Rkj

(
∂ψ

∂xk
(p̃) + ỹkT (ψ(p̃)

)
+R(n+k)j

(
∂ψ

∂yk
(p̃)− x̃kT (ψ)(p̃)

))

=
n∑

k=1

(
RkjXk|p̃(ψ)(p̃) +R(n+k)jYk|p̃(ψ)(p̃)

)
and, similarly,

dφR|p(Yj|p)(ψ)(p̃) =
n∑

k=1

(
Rk(n+j)Xk|p̃(ψ)(p̃) +R(n+k)(n+j)Yk|p̃(ψ)(p̃)

)
for any j = 1, . . . , n. Hence we conclude that

dφR|p(ā, b̄, 0) =
n∑

j=1

(ajdφR|p(Xj|p) + bjdφR|p(Yj|p))

=
n∑

j,k=1

(
aj
(
RkjXk|p̃ +R(n+k)jYk|p̃

)
+ bj

(
Rk(n+j)Xk|p̃ +Rn+k)(n+j)Yk|p̃

))
=

n∑
k=1

(
n∑

j=1

(
Rkjaj +Rk(n+j)bj

)
Xk|p̃ +

n∑
j=1

(
R(n+k)jaj +R(n+k)(n+j)bj

)
Yk|p̃

)
= (R(ā, b̄), 0).

□

As a consequence of the previous result, it is easy to see that the class of ruled hypersurfaces
is closed under the action of maps of the form (3.6).

Proposition 3.9. Let S be a ruled hypersurface. Then φR(S) is ruled for any φR as in (3.6).

Proof. The proof of this result, with the help of Proposition 3.8, follows as the proof of
Proposition 3.5 and Proposition 3.6, noticing that φR(S0) = (φR(S))0 and that, for a given
p = (z, t) ∈ S \ S0, (v, 0) ∈ HTpS and s ∈ R, it holds that

φR(p · δs(v, 0)) = φR(z + sv, t+Q(z, sv))

= (R(z + sv), t+ sQ(z, v))

= (Rz + sRv, t+ sQ(Rz,Rv))

= (Rz, t) · (sRv, 0))
= φR(p) · δs(Rv, 0).

□

As a corollary of Proposition 3.8, we can conclude our initial statement.

Theorem 3.10. If S is ruled, then φ(S) is ruled for any pseudohermitian transformation φ.

Proof. It follows combining Proposition 3.5, Proposition 3.9 and [?, Theorem 4.1]. □



A CHARACTERIZATION OF HORIZONTALLY TOTALLY GEODESIC HYPERSURFACES 15

4. Ruled hypersurfaces with countable characteristic set

The aim of this section is to characterise ruled hypersurfaces of Hn with countable char-
acteristic set, when n ⩾ 2. In the first Heisenberg group H1 there are examples of ruled,
non-characteristic, smooth surfaces which are not vertical planes. As an instance, let us con-
sider the surface S parametrized by the map φ : R2 −→ H1 defined by

φ(t, θ) := (t cos θ, t sin θ, θ).

Notice that φ is smooth and injective. Moreover,

∂φ

∂t
(t, θ) = cos θ

∂

∂x
+ sin θ

∂

∂y
= cos θX|φ(t,θ) + sin θY |φ(t,θ)

and

∂φ

∂θ
(t, θ) = −t sin θ ∂

∂x
+ t cos θ

∂

∂y
+ T = −t sin θX|φ(t,θ) + t cos θY |φ(t,θ) + (1 + t2)T.

This implies that S is a smooth, non-characteristic surface, and moreover

HTφ(t,θ)S = span

{
∂φ

∂t
(t, θ)

}
for any (t, θ) ∈ R2. Finally, for given t, θ, s ∈ R, it holds that

(t cos θ, t sin θ, θ) · (s cos θ, s sin θ, 0) = ((t+ s) cos θ, (t+ s) sin θ, θ) ∈ S,

and so S is ruled. However, the situation in higher dimensional Heisenberg groups is quite
different, and the ruling condition turns out to be more restrictive. Indeed, we are going to
prove that the only closed, ruled hypersurfaces with countable characteristic set in Hn, with
n ⩾ 2, are hyperplanes. To this aim, we already know that vertical hyperplanes are non-
characteristic and ruled, and that every non-vertical hyperplane

P :=

{
(x̄, ȳ, t) ∈ Hn :

n∑
j=1

ajxj +
n∑

j=1

bjyj + ct+ d = 0

}
,

where clearly c ̸= 0, is ruled and satisfies

P0 =

{(
b1
c
, . . . ,

bn
c
,−a1

c
, . . . ,−an

c
,−d

c

)}
.

Before proving Theorem 1.3 we establish some preliminary results.

Proposition 4.1. Let S be a hypersurface of class C1. Assume that S is closed and without
boundary. Assume that S is ruled and that S0 is countable. Then

p · HTpS ⊆ S

for any p ∈ S \ S0.

Proof. Let S and p as in the statement. Assume by contradiction that there exists q ∈ p ·
HTpS \ S. Combining Proposition 3.2 with the fact that S0 is countable and that S is ruled,
it is easy to construct a sequence (qh)h ⊆ S converging to q as h → ∞. Being S closed, then
q ∈ S, a contradiction. □

Proposition 4.2. Let S be a hypersurface of class C1. Assume that S is closed and without
boundary. Assume that S is ruled and that S0 is countable. Assume that 0 ∈ S \ S0. Then

S ∩H0 = HT0S.
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Proof. First, since 0 ∈ S \ S0 and in view of Proposition 4.1, then HT0S ⊆ S ∩ H0. Assume
by contradiction that there exists q = (zq, 0) ∈ (S ∩ H0) \ HT0S. If S is tangent to H0 at
q, then q ∈ S \ S0. Otherwise, since HT0S is closed and S0 is countable, it is possible to
find another point in (S \ S0) \ HT0S. In the end, we can assume that q ∈ S \ S0. Again,
thanks to Proposition 4.1, q · HTqS ⊆ S, and so q · HTqS ∩ H0 ⊆ S ∩ H0. Note that both
HT0S and q · HTqS ∩ H0 are affine subspaces of H0. Moreover, dim(HT0S) = 2n − 1 and
dim(q · HTqS ∩H0) ⩾ 2n− 2. Therefore we conclude that

dim(HT0S ∩ (q · HTqS ∩H0)) ⩾ dim(HT0S) + dim(q · HTqS ∩H0)− 2n = 2n− 3 ⩾ 1,

since n ⩾ 2. Therefore (HT0S)∩ (q · HTqS ∩H0) contains a one-dimensional affine subspace of
H0. In particular, being S0 countable, there exists p = (zp, 0) ∈ HT0S∩(q ·HTqS∩H0)∩(S\S0).
Let v ∈ HTpS be such that p · tv = q for some t ∈ R, and let γp(t) := (tzp, 0). Notice that,
by construction, then γp(t) ∈ S for any t ∈ R. Moreover, γ̇p(1) = (zp, 0) ∈ Hp, and so
w := (zp, 0) ∈ HTpS. Again, since p ∈ S \S0 and in view of Proposition 4.1, then p ·HTpS ⊆ S.
Therefore, in particular, it holds that

p · (αv + βw) ∈ S

for any α, β ∈ R. Hence, if we let γq(t) := (tzq, 0), we conclude that γ(t) ∈ S ∩ H0 for any
t ∈ R, and so γ̇q(0) = (zq, 0) ∈ T0S. Since clearly (zq, 0) ∈ H0, then q ∈ HT0S, which is a
contradiction. □

Proposition 4.3. Let S be a hypersurface of class C1. Assume that S is closed and without
boundary. Assume that S is ruled and that S0 is countable. Then either S is a t-graph or S is
a vertical hyperplane.

Proof. If S is a t-graph we are done. If S is not a t-graph, being S0 countable, there exists
p ∈ S \ S0 such that T |p ∈ TpS. Up to a left-translation, recalling Proposition 3.5, we assume
that p = 0. We show that S is a vertical hyperplane, dividing the proof into some steps.
Step 1. Thanks to Proposition 4.2, we know that there exists 0 ̸= (ā, b̄) ∈ R2n such that

HT0S = H0 ∩ S = {(x̄, ȳ, 0) ∈ Hn : ⟨(ā, b̄), (x̄, ȳ)⟩ = 0}.
We assume without loss of generality that a1 ̸= 0, and we let f(x̄, ȳ) := ⟨(ā, b̄), (x̄, ȳ)⟩. We
claim that

π(p · HTpS) ⊆ π(HT0S)
for any p ∈ HT0S ∩ (S \S0), where here and in the following the map π : Hn −→ R2n is defined
by

π(x̄, ȳ, t) := (x̄, ȳ).

Assume by contradiction that there exists p = (zp, 0) ∈ HT0S ∩ (S \S0) and v = (v, 0) ∈ HTpS
such that zp + v /∈ π(HT0S). This is equivalent to say that f(zp + v) ̸= 0. Let us define
q := p · v = (zp + v,Q(zp, v)). Since p ∈ S \ S0 and by Proposition 4.1, then q ∈ S. Moreover,
Q(zp, v) ̸= 0, since otherwise q ∈ HT0S and consequently f(zp + v) = 0. Moreover, since
zp ∈ HT0S, then, letting γ(t) := (tzp, 0), it holds that γ(t) ∈ S for any t ∈ R, and so
(zp, 0) ∈ HTpS. Hence, since p · HTpS ⊆ S, we conclude in particular that

P := {(zp, 0) + α(zp, 0) + β(v,Q(zp, v)) : α, β ∈ R} ⊆ S.

Notice that P is a vector subspace of R2n+1. Then in particular 0 ∈ P and (v,Q(zp, v)) ∈ T0S.
Therefore, as T ∈ T0S, then (v, 0) ∈ T0S, and so, since (v, 0) ∈ H0, we conclude that (v, 0) ∈
HT0S. Then f(v) = 0, and so, as p ∈ HT0S, f(zp + v) = f(zp) + f(v) = 0, a contradiction.
Step 2. Let p = (zp, 0) ∈ HT0S ∩ (S \ S0). Thanks to Step 1, we know that π(p · HTpS) ⊆
π(HT0S). Therefore, if v ∈ HTpS, then f(zp + v) = 0. Since f(zp) = 0, we conclude that
f(v) = 0, which implies that

(4.1) HTpS = HT0S
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for any p ∈ HT0S. Moreover, an easy computation shows that

HT0S = span{Z2|0, . . . , Zn|0,W1|0, . . . ,Wn|0},

where

(4.2) Zi = aiX1 − a1Xi and Wj = bjX1 − a1Yj

for any i = 2, . . . , n and j = 1, . . . , n. Then (4.1) allows to conclude that

(4.3) HTpS = span{Z2|p, . . . , Zn|p,W1|p, . . . ,Wn|p}.

Step 3. Let us define

Z := {z ∈ π(HT0S) : Q(z, w) = 0 for any w ∈ π(HT0S)}.

Notice that, being Q a bilinear map, then Z is a vector subspace of π(HT0S). We claim
that dim(Z) ⩽ 2n − 2. Indeed, assume by contradiction that dim(Z) ⩾ 2n − 1. Then, since
Z ⊆ π(HT0S) and dim(π(HT0S)) = 2n − 1, we conclude that Z = π(HT0S). We show that
this leads to a contradiction. Assume first that a2 = . . . = an = b2 = . . . = bn = 0, and set
z1 = (0,−1, 0 . . . , 0) and z2 = (0̄, 0, 1, 0, . . . , 0). Then f(z1) = f(z2) = 0 and Q(z1, z2) = 1 ̸= 0,
which implies that z1, z2 /∈ Z. If it is not the case that a2 = . . . = an = b2 = . . . = bn = 0,
then assume without loss of generality that a2 ̸= 0. Let z1 = (−a2, a1, 0, . . . , 0) and z2 =
(−b1, 0, . . . , 0, a1, 0, . . . , 0). Then f(z1) = f(z2) = 0 and Q(z1, z2) = a1a2 ̸= 0, which implies
again that z1, z2 /∈ Z. Therefore we conclude that dim(Z) ⩽ 2n− 2, and so in particular

(4.4) π(HT0S) \ K = π(HT0S).

Step 4. We claim that for any q = (zq, tq) = (xq1, . . . , x
q
n, y

q
1, . . . , y

q
n, tq) such that zq ∈ π(HT0S)\

Z there exists p = (zp, 0) = (xp1, . . . , x
p
n, y

p
1, . . . , y

p
n, 0) ∈ HT0S ∩ (S \ S0) and v ∈ HTpS such

that

(4.5) q = p · v.

Indeed, let q as above, and let p ∈ HT0S ∩ (S \ S0) and v ∈ HTpS to be chosen later. In view
of (4.3), we can express v as

v =
n∑

j=2

αjZj|p +
n∑

j=1

βjWj|p =

(
n∑

j=2

αjaj +
n∑

j=1

βjbj

)
X1|p −

n∑
j=2

αja1Xj|p −
n∑

j=1

βja1Yj|p.

for some α2, . . . , αn, β1, . . . , βn ∈ R. Therefore, we infer that

p · v =

(
xp1 +

n∑
j=2

αjaj +
n∑

j=1

βjbj, x
p
2 − α2a1, . . . , y

p
n − βna1, Q(zp, v)

)
.

Let us choose

αi =
xpi − xqi
a1

and βj =
ypj − yqj
a1

for any i = 2, . . . , n and any j = 1, . . . , n. This choice implies that (p·v)i = xqi and (p·v)j = yqj−n

for any i = 2, . . . , n and any j = n+1, . . . , 2n. Moreover, since f(zp) = f(zq) = 0, it holds that

(p · v)1 = xp1 +
n∑

j=2

αjaj +
n∑

j=1

βjbj =
1

a1

(
n∑

j=1

(ajx
p
j + bjy

p
j )−

m∑
j=2

ajx
q
j +

n∑
j=1

bjy
q
j

)
= xq1.
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Finally, notice that

Q(zp, v) =

(
n∑

j=2

αjaj +
n∑

j=1

βjbj

)
yp1 −

n∑
j=2

αja1y
p
j +

n∑
j=1

βja1x
p
j

=
1

a1

( n∑
j=2

ajx
p
jy

p
1 −

n∑
j=2

ajx
q
jy

p
1 +

n∑
j=1

bjy
p
j y

p
1 −

n∑
j=1

bjy
q
jy

p
1

−
n∑

j=2

a1x
p
jy

p
j +

n∑
j=2

a1x
q
jy

p
j + a1x

p
1y

p
1 +

n∑
j=2

a1x
p
jy

p
j −

n∑
J=1

a1x
p
jy

q
j

)
=

1

a1

(
−

n∑
j=1

ajx
q
jy

p
1 −

n∑
j=1

bjy
q
jy

p
1 +

n∑
j=1

a1x
q
jy

p
j −

n∑
j=1

a1x
p
jy

q
j

)
= Q(zp, zq),

where in the third equality we exploited the fact that f(zp) = 0, while the fourth equality follows
from f(zq) = 0. Since we assumed zq /∈ Z, then there exists uncountably many w ∈ π(HT0S)
such that Q(w, zq) ̸= 0. Therefore, since S0 is countable, it is possible to choose w ∈ π(HT0S)
such that, setting

zp =
tq

Q(w, zq)
w,

then p ∈ (S \ S0). We conclude that p ∈ HT0S ∩ (S \ S0) and Q(zp, zq) = tq.
Step 5. We are now able to conclude. Indeed, thanks to (4.5) we infer that

π(HT0S \ K)× R ⊆ S.

But then, being S closed and recalling (4.4), we conclude that

π(HT0S)× R = π(HT0S) \ K × R = π(HT0S)× R ⊆ S = S.

Therefore S contains the vertical hyperplane π(HT0S)×R. The thesis then follows in view of
the topological assumptions on S. □

Proof of Theorem 1.3. Let S be as in the statement. If S is a vertical hyperplane, we are
done. If not, in view of Proposition 4.3, S is a t-graph. Being S0 countable, and recalling
Proposition 3.5, up to a left translation we may assume that 0 ∈ S \ S0 and that T |0 /∈ T0S.
Since 0 ∈ S \ S0, we infer by Proposition 4.2 that

HT0S = H0 ∩ S = {(x̄, ȳ, 0) ∈ Hn : ⟨(x̄, ȳ), (ā, b̄)⟩ = 0}

for some 0 ̸= (ā, b̄) ∈ R2n. Again, by Proposition 3.8 we may assume that a1 ̸= 0. Being S an
entire t-graph, and since T |0 /∈ T0S and 0 ∈ S \ S0, there exists v = (zv, tv) ∈ T0S such that

f(zv) ̸= 0 and tv ̸= 0. Let us set c := −f(zv)
tv

. We claim that

S = {(z, t) ∈ Hn : f(z) + ct = 0} =: Sc.

Indeed, let p = (zp, tp) ∈ S \ S0. If tp = 0, then f(zp) = 0, and so p ∈ Sc. Assume then
tp ̸= 0. Then, being S a t-graph, we infer that f(zp) ̸= 0.. Let v1, . . . , v2n−1 be a basis of
HTpS. Since p ∈ S \ S0 and thanks to Proposition 4.1, then p · HTpS ⊆ S. We claim that
there exists j = 1, . . . , 2n − 1 such that Q(zp, vj) ̸= 0. Indeed, assume by contradiction that
Q(zp, v1) = . . . = Q(zp, v2n−1) = 0. In this case, recalling that S is ruled, it holds that

(4.6) p · HTpS =

{(
zp +

2n−1∑
j=1

αjvj, tp

)
: α1, . . . , α2n−1 ∈ R

}
⊆ S.
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We claim that

(4.7) span{(v1, 0), . . . , (v2n−1, 0)} = span{Z2|0, . . . , Zn|0,W1|0, . . . ,Wn|0},
where Z2, . . . , Zn,W1, . . . ,Wn are defined as (4.2). Indeed, if it was not the case, then (4.6)
would imply the existence of q = (zq, tp) ∈ S such that zq ∈ π(HT0S). But since tp ̸= 0 and
since (zq, 0) ∈ S, we would contradict the fact that S is a t-graph. Notice that (4.7) implies
that

Z2|0, . . . , Zn|0,W1|0, . . . ,Wn|0 ∈ Hp

and so, observing that

Zj|0 = aj
∂

∂x1
− a1

∂

∂xj
= ajX1|p − a1Xj|p + (a1yj − ajy1)T

for any j = 2, . . . , n and

Wj|0 = bj
∂

∂x1
− a1

∂

∂yj
= bjX1|p − a1Yj|p + (−a1xj − bjy1)T

for any j = 1, . . . , n, we conclude that

zp =
y1
a1

(−b1, . . . ,−bn, a1, . . . , an),

which implies in particular that f(zp) = 0, a contradiction. In this case, it holds that p ·
HTpS ∩H0∩S = p ·HTpS ∩HT0S ̸= 0. Since n ⩾ 2, a dimensional argument as in the proof of
Proposition 4.2 implies that dim(p · HTpS ∩H0 ∩ S) ⩾ 1. Therefore, being S0 countable, there
exists q = (zq, 0) ∈ (p · HTpS) ∩HT0S \ S0. Let then w ∈ HTpS be such that

(4.8) (zq, 0) = (zp + w, tp +Q(zpw)).

Arguing as in the proof of Proposition 4.2, recalling that q ∈ S \ S0 and Proposition 4.1, we
see that

P := {(zq, 0) + α(zq, 0) + β(w,Q(zq, w)) : α, β ∈ R} ⊆ S,

and so we conclude as above that (w.Q(zq, w)) ∈ T0S. This means that there exists w̃ ∈
π(HT0S) and α ∈ R such that

(w.Q(zq, w)) = (w̃ + αzv, αtv).

Therefore, recalling (4.8), we get that

(zp, tp) = (zq, 0)− (w,Q(zp, w)) = (zq − w̃ − αzv,−αtv) .
Therefore, since zq, w̃ ∈ π(HT0S) we conclude that

f(zp) + ctp = −α(f(zv) + ctv) = 0,

which implies that p ∈ Sc. Therefore we proved that S \ S0 ⊆ Sc, and so, being S0 countable
and S and Sc closed, we conclude that S ⊆ Sc. The thesis then follows by the topological
assumptions on S. □

5. Ruled intrinsic cones

In this section we study ruled hypersurfaces among the class of hypersurfaces which are
invariant under intrinsic dilations, that is the class of intrinsic cones. A set C ⊆ Hn is a cone if

δλ(C) ⊆ C

for any λ > 0. It is easy to see that, if C is a cone, then 0 ∈ C, δλ(C) = C and δλ(∂C) = ∂C
for any λ > 0. We say that S is a conical hypersurface if it is both a cone and a hypersurface.
Notice that, in view of the aforementioned properties, if C is a cone with boundary of class
Ck, then ∂C is a conical hypersurface of class Ck. The simplest instance of non-characteristic
conical hypersurfaces is given by vertical hyperplanes passing through the origin. Another
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simple instance is given by the horizontal plane H0. In this case we already know that (H0)0 =
{0}. Finally, if u is an homogeneous quadratic polynomial, then graph(u) is a conical smooth
hypersurface. Moreover, in this last case, S0 may be an infinite set. As an instance, consider
the graph associated to u(x̄, ȳ) =

∑n
j=1 xjyj. It is easy to see that

TpS = span{X1, . . . , Xn, Y1 + 2x1T, . . . , Yn + 2xnT}
for any p = (x̄, ȳ, u(x̄, ȳ)) ∈ graph(u). Therefore in this case

S0 = {(x̄, ȳ, u(x̄, ȳ)) ∈ graph(u) : x1 = . . . = xn = 0}.
When a hypersurface is a cone, we can say more about the structure of S0.

Proposition 5.1. Let S be a conical hypersurface of class C1. Then S0 is a cone.

Proof. Let p ∈ S0 and λ > 0. We prove that q := δλ(p) ∈ S0. If p = 0 the thesis is trivial.
Assume that p ̸= 0. We prove that Hq = TqS. Since S is a cone, then δλ : S −→ S is a
diffeomorphism, and consequently, recalling (3.4), dδλ|p : HTpS −→ HTqS is an isomorphism.
we conclude that dim(HTpS) = dim(HTqS), which means that q ∈ S0.

□

Proposition 5.2. Let S be a conical hypersurface of class C1. Then S0 ⊆ H0. Moreover, for
any p ∈ S0 there is a horizontal half line γ : [0,+∞) −→ S0 such that γ(0) = 0 and γ(1) = p.

Proof. Let p = (x̄, ȳ, t) ∈ S0 \ {0}, and set γ(0) = 0 and γ(λ) := δλ(p). Then γ is a smooth
curve with

γ̇(λ) = (x̄, ȳ, 2λt) =
n∑

j=1

xjXj +
n∑

j=1

yjYj + 2λtT.

Moreover, thanks to Proposition 5.1, then γ([0,+∞)) ⊆ S0. Finally, since γ(1) = p, S is a cone
and p ∈ S0, then γ̇(1) ∈ TpS = Hp, and so t = 0. □

The shape of conical hypersurfaces strongly depends on the size of the associated charac-
teristic set. Exploiting [22, Theorem 4.1], it is easy to see that vertical hyperplanes passing
through the origin are the only possible examples of non-characteristic conical hypersurfaces of
class C1. Hence, in the rest of this section we assume that S0 ̸= 0. In this case it suffices to
reduce to the analysis of t-graphs (cf. [29, Lemma 4.4]).

Proposition 5.3. Let S be a conical hypersurface of class C1. If S0 ̸= ∅, then S = graph(u)
for some u ∈ C1(R2n).

In Section 4 we exhibited two examples of ruled conical smooth hypersurfaces, namely the
horizontal hyperplane H0 and the vertical hyperplanes passing through the origin. The aim of
the rest of this section is to show that, in the class of conical hypersurfaces of class C2, these
are the only possible examples. The following characterization follows at once by Theorem 1.3,
but we give here a different proof in the spirit of [29, Lemma 4.4].

Theorem 5.4. Let S be a conical hypersurface of class C1. Assume that S0 = {0}. Then S is
ruled if and only if S is the horizontal plane H0.

Proof. For sake of notational simplicity, we prove the statement when n = 2, being the other
cases completely analogous. We already know that H0 is ruled. Conversely, let S be ruled,
and assume by contradiction that there exists p = (z, t) ∈ S with t ̸= 0. Then, thanks to
Proposition 5.2, p ∈ S \ S0. Moreover, p · HTpS ∩ S0 = ∅, since otherwise there would be an
horizontal line joining p and 0, which contradicts the fact that horizontal lines passing through
0 lie in H0. Therefore, being S ruled and thanks to Proposition 3.2, we infer that p ·HTpS ⊆ S.
It is well known (cf. e.g. [12]) that there exists an orthonormal basis u, v, w of HTpS such that

(5.1) J(u) = w and J(v) = νS(p).
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Let us set

M :=
[
u v J(u) J(v)

]T
.

Then, defining φR as in (3.6) and thanks to Proposition 3.8, we can assume that u = X1,
v = X2 and w = Y1. Let us define φ : (0,+∞)× R3 −→ S by

φ(λ, α, β, γ) := δλ

(
p ·
(
α

λ
u+

β

λ
v +

γ

λ
w

))
.

Being S a ruled cone, the map φ is well-defined. Moreover, notice that

φ(λ, α, β, γ) = δλ

(
z +

αu+ βv + γw

λ
, t+

αQ(z, u) + βQ(z, v) + γQ(z, w)

λ

)
= (λz + αu+ βv + γw, λ2t+ λαQ(z, u) + λβQ(z, v) + λγQ(z, w))

= (λx1 + α, λx2 + β, λy1 + γ, λy2, λ
2t+ λαy1 + λβy2 − λγx1).

Therefore, an easy computation shows that

Dφ(λ, α, β, γ) =


x1 1 0 0
x2 0 1 0
y1 0 0 1
y2 0 0 0

2λt+ αy1 + βy2 − γx1 λy1 λy2 −λx1


We claim that y2 ̸= 0. Otherwise, recalling that p · HTpS ⊆ S, we would have that

(x1, x2, y1, 0, t) · (α, β, γ, 0, 0) = (x1 + α, x2 + β, y1 + γ, 0, t+ αy1 − γx1) ∈ S

for any α, β, γ ∈ R. Therefore, choosing α = −x1, β = −x2 and γ = −y1, we conclude that
(0, 0, 0, 0, t) ∈ S, which is a contradiction, since 0 ∈ S and S, thanks to Proposition 5.3, is a
t-graph. Hence y2 ̸= 0, and so, since φ(0, 0, 0, 0) = p, Dφ has maximum rank in a neighborhood
of (0, 0, 0, 0). In particular,

Tφ(q)S = span

{
∂φ

∂λ
(q),

∂φ

∂α
(q),

∂φ

∂β
(q),

∂φ

∂γ
(q)

}
for any q sufficiently close to (0, 0, 0, 0). Notice that, if we define the 1-form ω by

ω = dt−
n∑

j=1

yjdxj +
n∑

j=1

xjdyj,

then v ∈ H if and only if ω(v) = 0 for any v ∈ THn. Fix q = (λ, α, β, γ) close to (0, 0, 0, 0).
Then

ω|φ(q)
(
∂φ

∂λ
(q)

)
= 2(λt+ αy1 + βy2 − γx1),

and moreover

ω|φ(q)
(
∂φ

∂α
(q)

)
= −γ, ω|φ(q)

(
∂φ

∂β
(q)

)
= 0, ω|φ(q)

(
∂φ

∂γ
(q)

)
= α.

Therefore, if we choose α = γ = 0, we conclude that

span

{
∂φ

∂α
(q),

∂φ

∂β
(q),

∂φ

∂γ
(q)

}
⊆ HTφ(q)(S).

Moreover, since y2 ̸= 0 we can choose β = −λt
y2

to conclude that

∂φ

∂λ
(q) ∈ HTφ(q)S.
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Since rank(Dφ(q)) = 4, we proved that

φ

(
λ, 0,−λt

y2
, 0

)
=

(
λx1, λx2 −

λt

y2
, λy1, λy2, 0

)
∈ S0

for any λ > 0 small enough. Since y2 ̸= 0, we proved that there exists p̃ ̸= 0 such that p̃ ∈ S0.
This is a contradiction with the assumption S0 = {0}. □

We are left with the analysis of ruled conical hypersurfaces S with infinite characteristic set.
In this case we limit ourselves to consider conical hypersurfaces of class C2. In this simpler
situation, it suffices to consider graphs of quadratic polynomials.

Proposition 5.5. Let S be a conical hypersurfaces of class C2. Assume that S0 ̸= ∅. Then
S = graph(u) for some homogeneous quadratic polynomial u.

Proof. We already know from Proposition 5.3 that S = graph(u), where u ∈ C1(R2n). More-
over, since S is a hypersurface of class C2, then u ∈ C2(R2n). Finally, since 0 ∈ S0, then
Du(0) = 0. Therefore

u(p) = P2(p) + o(|p|2),
where P2 is an homogeneous quadratic polynomial. We show that u = P2. Let p ∈ R2n, and
let α > 0. Then it holds that

|u(p)− P2(p)| =
|u(αp)− P2(αp)|

α2
= |p|2 o(α

2|p|2)
α2|p|2

as α → +∞. The thesis then follows letting α → +∞. □

Proof of Theorem 1.4. For sake of notational simplicity, we assume again that n = 2, being the
other cases completely analogous. We divide the proof into some steps.
Step 1. Thanks to Proposition 5.5, we assume that S = graph(u), where

u(x̄, ȳ) = ax21 + bx22 + cy21 + dy22 + ex1x2 + fx1y1 + gx1y2 + hx2y1 +mx2y2 + py1y2,

for some a, b, . . . ,m, p ∈ R. Let us define φ : R4 −→ graph(u) by

φ(x̄, ȳ) = (x̄, ȳ, u(x̄, ȳ)).

Then φ is a global C2 parametrization of S. Therefore, for any p = (x̄, ȳ) ∈ R4, Tφ(p)S is
generated by

∂φ

∂x1
(p) = X1 + (2ax1 + ex2 + (f − 1)y1 + gy2)T,

∂φ

∂x2
(p) = X2 + (ex1 + 2bx2 + hy1 + (m− 1)y2)T,

∂φ

∂x2
(p) = Y1 + ((f + 1)x1 + hx2 + 2cy1 + py2)T

and
∂φ

∂x2
(p) = Y2 + (gx1 + (m+ 1)x2 + py1 + 2dy2)T.

Let us define the 4× 4 real-valued matrix M by

M =


2a e f − 1 g
e 2b h m− 1

f + 1 h 2c p
g m+ 1 p 2d

 ,
and, for any j = 1, . . . , 4, we let vj be the j-th row of M . Notice that p = (z, t) ∈ S is a
characteristic point of S if and only if M · z = 0.
Step 2. We prove that rank(M) ∈ {2, 3}. Since we are assuming that S0 is infinite, then
rank(M) ⩽ 3, and so in particular S0 is a linear subspace of R4 with dim(S0) ⩾ 1. Moreover,
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rank(M) ̸= 0, since otherwise we would have that S = S0 ⊆ H0, and so S = S0 = H0, which is
impossible since 0 is the only characteristic point of H0. Moreover, we claim that rank(M) ⩾ 2.
Otherwise, if rank(M) = 1, then we can assume without loss of generality that v1 ̸= 0 and that
there exist A,B,C ∈ R such that v2 = Av1, v3 = Bv1 and v4 = Cv1. Therefore in particular
e = 2Aa, f = 2Ba− 1 and g = 2Ca. Moreover, since h = Be and h = A(f − 1), we infer that
0 = Be − A(f − 1) = 2ABa − 2ABa + 2A = 2A, and so A = 0. Moreover, since p = Bg and
p = C(f − 1), we conclude as above that C = 0. But this is impossible, since it would imply
that m− 1 = m+ 1 = 0. Therefore we conclude that rank(M) ∈ {2, 3}.
Step 3. Let now p = (z, p) ∈ S \ S0. Since then M · z ̸= 0, we can assume that ⟨v1, z⟩ ̸= 0.
Hence, there exists an open neighborhood Ũ of p such that ⟨v1, zq⟩ ≠ 0 for any q = (zq, tq) ∈ Ũ .

This implies in particular that M · zq ̸= 0 for any q ∈ Ũ , and so Ũ ∩ S ⊆ S \ S0. Let now U be

an open neighborhood of p such that U ⋐ Ũ . We are going to show that there exists an open
neighborhood W of 0 such that

(5.2) HTpS ∩W ⊆ {(x̄, ȳ) ∈ R4 : u(x̄, ȳ) = 0} =: G.

Let us define

A =
⟨v2, z⟩
⟨v1, z⟩

, B =
⟨v3, z⟩
⟨v1, z⟩

, C =
⟨v4, z⟩
⟨v1, z⟩

.

Recalling the computations of the first step, it is clear that

HTpS = span{X2 − AX1, Y1 −BX1, Y2 − CX1}.

Therefore, being S ruled and p ∈ S \ S0, it follows that

(x1, x2, y1, y2, u(x̄, ȳ)) · (−αA,−βB,−γC, α, β, γ, 0)
= (x1 − αA− βB − γC, x2 + α, y1 + β, y2 + γ,

u(x̄, ȳ)− αAy1 − βBy1 − γCy1 + αy2 − βx1 − γx2) ∈ S

for any α, β, γ ∈ R small enough. Hence, noticing that

u(x1 − αA− βB − γC, x2 + α, y1 + β, y2 + γ) =

ax21 + aα2A2 + aβ2B2 + aγ2C2 − 2aαAx1 − 2aβBx1 − 2aγCx1 + 2aαβAB

+ 2AαγAC + 2aβγBC + bx22 + 2bαx2 + bα2 + cy21 + 2cβy1 + cβ2 + dy22 + 2dγy2

+ dγ2 + ex1x2 + eαx1 − eαAx2 − eα2A− eβBx2 − eαβB − eγCx2 − eαγC

+ fx1y1 + fβx1 − fαAy1 − fαβA− fβBy1 − fβ2B − fγCy1 − fβγC

+ gx2y2 + gγx1 − gαAy2 − gαγA− gβBy2 − gβγB − gγCy2 − gγ2C

+ hx2y1 + hβx2 + hαy1 + hαβ +mx2y2 +mγx2

+mαy2 +mαβ + py1y2 + pγy1 + pβy2 + pβγ,

we infer that

aα2A2 + aβ2B2 + aγ2C2 − 2aαAx1 − 2aβBx1 − 2aγCx1 + 2aαβAB

+ 2AαγAC + 2aβγBC + 2bαx2 + bα2 + 2cβy1 + cβ2 + 2dγy2

+ dγ2 + eαx1 − eαAx2 − eα2A− eβBx2 − eαβB − eγCx2 − eαγC

+ (f + 1)βx1 − (f − 1)αAy1 − fαβA− (f − 1)βBy1 − fβ2B − (f − 1)γCy1 − fβγC

+ gγx1 − gαAy2 − gαγA− gβBy2 − gβγB − gγCy2 − gγ2C

+ hβx2 + hαy1 + hαβ + (m+ 1)γx2

+ (m− 1)αy2 +mαβ + pγy1 + pβy2 + pβγ = 0
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for any α, β, γ ∈ R small enough. Hence, recalling the definition of A,B and C, we conclude
that

+ aα2A2 + aβ2B2 + aγ2C2 + 2aαβAB + 2AαγAC + 2aβγBC + bα2

+ cβ2 + dγ2 − eα2A− eαβB − eαγC − fαβA− fβ2B − fβγC

− gαγA− gβγB − gγ2C + hαβ +mαβ + pβγ = 0

for any α, β, γ ∈ R small enough, which is equivalent to (5.2).
Step 4. Let us define

Pp := span{(−A, 1, 0, 0), (−B, 0, 1, 0), (−C, 0, 0, 1)}.
Then (5.2) implies that Pp ∩ π(W ) ⊆ G. Moreover, it is easy to see that N := (1, A,B,C)
is the Euclidean normal to Pp in R4. Let us define V = π(U). Since π is open, then V is an
open neighborhood of z. Moreover, being S a t-graph, then π|S is invertible, V = π(U ∩ S) =
π(U ∩ (S \ S0)) and U ∩ S = π−1(V ). Therefore, if z̃ ∈ V , we let z̃ = zq, where q is the unique
point in U ∩ S such that π(q) = zq. For any zq ∈ V , we define

Aq =
⟨v2, zq⟩
⟨v1, zq⟩

, Bq =
⟨v3, zq⟩
⟨v1, zQ⟩

, Cq =
⟨v4, zq⟩
⟨v1, zQ⟩

,

and we let

Pq := span{(−Aq, 1, 0, 0), (−Bq, 0, 1, 0), (−Cq, 0, 0, 1)}.
Again, Nq := (1, Aq, Bq, Cq) is the Euclidean normal to Pq in R4. Notice in particular that

Ap = A, Bp = B, Cp = C and Pp = P , and that, since U ⋐ Ũ ⊆ S \ S0, W can be chosen in
such a way that Pq ∩ π(W ) ⊆ G for any zq ∈ V . Moreover, thanks to the choice of U , Aq, Bq

and Cq are smooth functions on V .
Step 5. We claim that one between Aq, Bq, Cq is not constant in any neighborhood of z. Indeed,
let Z be a neighborhood of z, let a1, . . . , a4, b1, . . . , b4 ∈ R be such that b1x

′
1+b2x

′
2+b3y

′
1+b4y

′
2 ̸=

0 for any (x̄′, ȳ′) ∈ Z, and define

f(x̄′, ȳ′) :=
a1x

′
1 + a2x

′
2 + a3y

′
1 + a4y

′
2

b1x′1 + b2x′2 + b3y′1 + b4y′2
.

If f is constant on Z, then ∇f ≡ 0 on Z. A simple computation shows that this is equivalent
to

a1b2 − a2b1 = a1b3 − a3b1 = a1b4 − a4b2 = a2b3 − a3b2 = a2b4 − a4b2 = a3b4 − a4b3 = 0.

This implies that the matrix

M =

[
a1 a2 a3 a4
b1 b2 b3 b4

]
has rank one. Therefore, if Aq, Bq and Cq were all constant functions on Z, then we would
have that rank(M) ⩽ 1, which contradicts the fact that rank(M) > 1. Therefore without loss
of generality, we assume that Aq is not constant in any neighborhood of z.
Step 6. Since Aq is not constant in any neighborhood of z, there exists s1, s2 ∈ R with s1 < s2
such that A ∈ (s1, s2) and for any s ∈ (s1, s2) there exists qs ∈ U such that Nqs = (1, s, Bqs , Cqs).
This implies that

⋃
s∈(s1,s2) Pqs ∩ π(W ) has non-empty interior. But then, since Pq ∩ π(W ) ⊆ G

for any q ∈ U , G has non-empty interior. Being u a polynomial, the only possibility is that
u ≡ 0, and thus S = H0. □

Proof of Theorem 1.5. S is clearly a conical smooth hypersurface. Let p ∈ S \ S0. It is well-
known that

N(p) =
1√

1 + |Du(z)|2R2n

(Du(z),−1) =
1√

1 + x21 + y21
(x1, 0, . . . , 0,−y1, 0, . . . , 0,−1),
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and so

νH(p) = νH(z) =
1√

2(x1 − y1)2 +
∑n

j=2(x
2
j + y2j )

(x1 − y1,−y2, . . . ,−yn, x1 − y1, x2, . . . , xn).

Since in this case νH does not depend on t, an easy computation shows that

(5.3) divH νH(p) = divR2n νH(z) = 0

for any p ∈ S \S0. Since n ⩾ 2, (5.3) allows us to apply [11, Corollary F] and [5, Theorem 2.3],
which, together with [46, Example 5.29], imply that S is minimal. We conclude noticing that,
in view of Theorem 1.4, S is not ruled. □

6. Horizontal second fundamental forms on Hn

In the current literature, different kinds of second fundamental form are available in the sub-
Riemannian setting. We recall that the horizontal second fundamental form of S at p ∈ S \ S0

(cf. [32, 15, 12]) is the map hp : HTpS ×HTpS −→ R defined by

hp(X, Y ) = −⟨∇XY, v
H⟩ = ⟨∇Xv

H, Y ⟩

for any X, Y ∈ HTpS, the second equality following being ∇ a metric connection. We recall
that its norm is defined by

|hp|2 =
2n−1∑
i,j=1

hp(ei, ej)
2

for any p ∈ S, being e1, . . . , e2n−1 any orthonormal basis of HTpS. Notice that, in view of (2.1),
h may not be symmetric. The horizontal mean curvature Hp of S at p ∈ S \ S0 is defined by

Hp = τ(hp) =
2n−1∑
j=1

hp(ej, ej),

where here and in the following τ denote the trace operator. In analogy with the Riemannian
case, the horizontal mean curvature coincides with the divergence of the horizontal normal (cf.
[15]), meaning that

H = divH v
H(p)

for any p ∈ S. Accordingly, the following characterization of |h|2 holds.

Proposition 6.1. Let p be a non-characteristic point of S. Let vH be any unitary C2 extension
of vH|S. Then

|hp|2 =
2n∑

h,k=1

Zh(v
H
k )Zk(v

H
h ) + 4(n− 1)(TdH)2.

Moreover, if vH|S is extended as in (2.6), then

|hp|2 =
2n∑

i,j=1

(
Ziv

H
j (p)

)2 − 4(TdH)2.
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Proof. First, we show that the quantity
∑2n

h,k=1 Zh(v
H
k )Zk(v

H
h ) does not depend on the chosen

unitary C2 extension of vH|S. Indeed, in view of (2.5), we have that

2n∑
h,k=1

Zh(v
H
k )Zk(v

H
h ) =

2n∑
h,k=1

δh(v
H
k )Zk(v

H
h ) +

2n∑
h,k=1

vHh ⟨∇Hv
H
k , v

H⟩Zk(v
H
h )

=
2n∑

h,k=1

δh(v
H
k )δk(v

H
h ) +

2n∑
h,k=1

δh(v
H
k )v

H
k ⟨∇Hv

H
h , v

H⟩

=
2n∑

h,k=1

δh(v
H
k )δk(v

H
h ) +

2n∑
h,k=1

Zh(v
H
k )v

H
k ⟨∇Hv

H
h , v

H⟩ −

(
2n∑

h,k=1

vHh ⟨∇Hv
H
h , v

H⟩

)2

=
2n∑

h,k=1

δh(v
H
k )δk(v

H
h ).

The claim then follows recalling that the horizontal tangential derivatives do not depend on
the chosen extension. Let us extend vH as in (2.6). Let e1, . . . , e2n−1 be an hortonormal basis
of HTpS. For any i = 1, . . . , 2n− 1, we let a1i , . . . , a

2n
i be such that

ei =
2n∑
j=1

ajiZj.

Then, by construction,

(6.1)
2n∑
k=1

aki a
k
j = δij,

2n∑
k=1

aki v
H
k = 0 and

2n−1∑
l=1

elke
m
k = δkm − vHk v

H
m

for any i, j = 1, . . . , 2n− 1 and any l,m = 1, . . . , 2n. Hence, recalling (2.5) and (2.9),

|hp|2 =
2n−1∑
i,j=1

2n∑
h,k,l,m=1

ahi Zh(v
H
k )a

k
ja

l
iZl(v

H
m)a

m
j

=
2n∑

h,k,l,m=1

Zh(v
H
k )Zl(v

H
m)(δhl − vHh v

H
l )(δkm − vHk v

H
m)

=
2n∑

h,k=1

(
Zh(v

H
k )
)2 − 2n∑

k=1

(
2n∑
h=1

Zh(v
H
k )v

H
h

)2

=
2n∑

i,j=1

(
Ziv

H
j (p)

)2 − 4(TdH)2.

To prove the second identity, notice that

2n∑
h,k=1

Zh(v
H
k )Zk(v

H
h ) =

2n∑
h,k=1

(
Zh(v

H
k )
)2

+ 2TdH
n∑

h,k=1

Xh(v
H
n+k)− 2TdH

n∑
h,k=1

Yh(v
H
k )

=
2n∑

h,k=1

(
Zh(v

H
k )
)2

+ 2TdH
n∑

k=1

[Xk, Yk]d
H

=
2n∑

h,k=1

(
Zh(v

H
k )
)2 − 4n(TdH)2
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□

In the first Heisenberg group H1, HTS is a one dimensional distribution generated by J(vH).
In particular (cf. [44]), h completely determines the behavior of ∇J(vH)J(v

H), meaning that

∇J(vH)J(v
H) = −h(J(vH), J(vH))vH.

This consideration is a first crucial step in the study of minimal surfaces, since it allows to infer
that, when H = 0, then S is ruled by horizontal lines. A horizontal line is a horizontal curve
Γ : I −→ Hn such that

⟨Γ̈(s), Zj|Γ(s)⟩ = 0

for any s ∈ I and any j = 1, . . . , 2n, where here and in the following I is a domain of R
containing 0. Indeed the following simple characterization holds.

Proposition 6.2. Let Γ : I −→ Hn be a horizontal curve. The following are equivalent.

(i) ∇Γ̇Γ̇ = 0 along Γ.
(ii) Γ is a horizontal line.

Proof. Let A =
∑2n

j=1AjZj be any C2 extension of Γ̇. Γ is a horizontal line if and only if

t 7→ Aj(Γ(t)) is constant on I for any j = 1, . . . , 2n. Notice that

∇AA
∣∣
Γ(s)

=
2n∑
k=1

A(Ak)|Γ(s)Zk|Γ(s) =
2n∑
k=1

Γ̇(Ak)|Γ(s)Zk|Γ(s) =
2n∑
k=1

d(Ak(Γ(t))

dt

∣∣∣
s
Zk|Γ(s)

for any s ∈ I. The thesis then follows. □

The higher dimensional case is typically more involved, since it is not always true that

∇XX = −h(X,X)vH.

Nevertheless, there is a particular situation in which the second fundamental form provides
global information.

Definition 6.3. Let S be an hypersurface of class C2. We say that S is horizontally totally
geodesic when

(6.2) h(X,X) = 0

for any X ∈ C1(S,HTS), that is when h is an alternating bilinear form.

Notice that (6.2) is equivalent to require that the symmetric part of h is identically vanishing.

Let us denote the latter by h̃, that is

h̃(X, Y ) =
h(X, Y ) + h(Y,X)

2

For any X, Y ∈ C1(S,HTS). This kind of symmetric second fundamental form has already
been considered, although through different but equivalent definitions, by several authors (cf.
e.g. [15, 43]). It is clear that

hp = 0 =⇒ h̃p = 0

for any non-characteristic point p ∈ S, while the converse implication may be false in general.
More precisely, |h| and |h̃| can be related in the following way.

Proposition 6.4. Let p be a non-characteristic point of S. Let vH be any unitary C2 extension
of vH|S. Then

|h̃p|2 =
2n∑

h,k=1

Zh(v
H
k )Zk(v

H
h ) + 2(n− 1)

(
TdH(p)

)2
.
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Moreover,

|hp|2 = |h̃p|2 + 2(n− 1)
(
TdH(p)

)2
.

Finally, if vH is extended as in (2.6), then

|h̃p|2 =
2n∑

h,k=1

(
Zhv

H
k (p)

)2 − 2(n+ 1)
(
TdH(p)

)2
Proof. Let e1, . . . , e2n−1 be as in the proof of Proposition 6.1. Notice that

|h̃p|2 = τ
(
h̃p · h̃Tp

)
= τ

(
(hp + hTp )

2

4

)
=

1

2
|hp|2 +

1

2
τ
(
h2p
)
.

Arguing as in the proof of Proposition 6.1,

τ
(
h2p
)
=

2n−1∑
i,j=1

2n∑
h,k,l,m=1

ahi Zh(v
H
k )a

k
ja

l
jZl(v

H
m)a

m
i

=
2n∑

h,k,l,m=1

Zh(v
H
k )Zl(v

H
m)

2n−1∑
i=1

ahi a
m
i

2n−1∑
j=1

akja
l
j

=
2n∑

h,k,l,m=1

Zh(v
H
k )Zl(v

H
m)(δhm − vHh v

H
m)(δkl − vHk v

H
l )

=
2n∑

h,k=1

Zh(v
H
k )Zk(v

H
h ).

Exploiting Proposition 6.1, the thesis follows. □

In view of Proposition 6.1 and Proposition 6.4, non-characteristic hypersurfaces of class C2

with h ≡ 0 are trivially vertical hyperplanes, provided that n ⩾ 2. Indeed, if S is such an hyper-
surface, N is its Euclidean unit normal and vH its horizontal unit normal, then Proposition 6.4
and (2.10) imply that h̃ ≡ 0, N2n+1 ≡ 0, N = N(x̄, ȳ) and vH = (N1, . . . , N2n). Hence

0 = |h̃|2 =
2n∑

i,j=1

Ziv
H
j Zjv

H
i =

2n+1∑
i,j=1

∂Nj

∂zi

∂Ni

∂zj
,

where the last term coincides with the squared norm of the Euclidean second fundamental form
of S. Hence S is an hyperplane, which is vertical since N2n+1 ≡ 0. As already mentioned, when
n ⩾ 2 it is not in general true that h̃ = 0 implies h = 0.

Example 6.5. As an instance, consider in H2 the non-vertical hyperplane

S := {(x̄, ȳ, t) ∈ H2 : a1x1 + a2x2 + b1y1 + b2y2 + t+ d = 0}
for some a1, a2, b1, b2, d ∈ R. An easy computation shows that

N(p) =
(a1, a2, b1, b2, 1)√

1 + a21 + a22 + b21 + b22
and NH(p) =

(a1 + y1, a2 + y2, b1 − x1, b2 − x2)√
1 + a21 + a22 + b21 + b22

for any p ∈ S. Therefore, S has a unique characteristic point p0 = (b1, b2,−a1,−a2,−d). Far
from p0, v

H can be expressed by

vH(p) =
(a1 + y1, a2 + y2, b1 − x1, b2 − x2)√

(a1 + y1)2 + (a2 + y2)2 + (b1 − x1)2 + (b2 − x2)2

for any p ∈ S \ S0.
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Recalling (2.10), a tedious but simple computations shows that

4∑
h,k=1

Zh(v
H
k )Zk(v

H
h ) = − 2

(a1 + y1)2 + (a2 + y2)2 + (b1 − x1)2 + (b2 − x2)2
= −2(TdH)2.

Hence, Proposition 6.4 implies that h̃ ≡ 0 on S \ S0. Nevertheless, in view of the previous
computation and Proposition 6.1, we conclude that

|hp|2 =
2

(a1 + y1)2 + (a2 + y2)2 + (b1 − x1)2 + (b2 − x2)2

for any p ∈ S \ S0.

7. Local existence of geodesics on hypersurfaces

Let S be an hypersurface of class C2. Let p ∈ S \S0 and w ∈ HTpS. We wish to find a curve
Γ ∈ C2(I, S) solving the differential problem

(7.1)


Γ is horizontal

∇S
Γ̇
Γ̇ = 0 on I

Γ(0) = p

Γ̇(0) = w

Arguing for instance as in [33], it is not difficult to show that solutions to (7.1) are geodesics
in the Carnot-Carathéodory space associated with the sub-Riemannian structure (S, ⟨·, ·⟩S).
First, notice that, by means of [22, Theorem 6.5] and [4, Theorem 1.2] and without loss of
generality, there exists Ω ⊆ R2n and φ ∈ C(Ω) such that ∇φφ ∈ C(Ω,R2n−1), U = i(Ω) · j(R)
is an open neighborhood of p and

S ∩ U = graphY1
(φ,Ω) ∩ U.

We need the following lemma.

Proposition 7.1. φ ∈ C2(Ω).

Proof. Let us consider the map g : Hn −→ Hn defined by

g(x̄, ȳ, t) = (x̄, ȳ, t− x1y1)

for any (x̄, ȳ, t) ∈ Hn. Notice that g is smooth, bijective and and det(Dg) ≡ 1. Hence g is a

smooth diffeomorphism. Let us set Ŝ := g(S). Notice that Ŝ is of class C2. It is easy to check
that

Ŝ ∩ g(U) = {(ξ̄, φ(ξ̄, η̃, τ), η̃, τ) : (ξ̃, η̄, τ) ∈ Ω}.
Therefore the thesis follows provided that (N̂(p̂))n+1 ̸= 0 for any p̂ ∈ Ŝ ∩ g(U), being N̂(p̂) the

Euclidean normal to Ŝ at p̂. Assume by contradiction that there exists p̂ ∈ Ŝ ∩ g(U) such that

(N̂(p̂))n+1 = 0. This implies that (0̄, 1, 0̃, 0) ∈ Tp̂Ŝ. Let p ∈ S be such that g(p) = p̂. Noticing
that

(dg)|p(Y1|p) = (0̄, 1, 0̃, 0) ∈ Tp̂Ŝ,

we infer that Y1|p ∈ TpS. Since S is non-characteristic, (2.4) implies that (vH(p))n+1 = 0. On
the other hand, we know from [4, Theorem 1.2] that (vH(p))n+1 ̸= 0, a contradiction.

□

Therefore we reduce (7.1) to a differential problem for curves in Ω. To this aim, fix q ∈ Ω such
that Ψ(q) = p, and let γ(s) = (ξ̄(s), η̃(s), τ(s)) : I −→ Ω. If we lift γ to a curve Γ : I −→ Hn

by letting
Γ(s) = Ψ(γ(s)) = (ξ̄(s), φ(γ(s)), η̃(s)), τ(s)− ξ1(s)φ(γ(s)))
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for any s ∈ I, then by construction Γ(I) ⊆ S. From now on, we fix the notation α(s) := φ(γ(s)).
To give a meaning to (7.1) we need that Γ̇ is horizontal. Notice that

Γ̇ = (ξ̇1, . . . , ξ̇n, α̇, η̇2, . . . , η̇n, τ̇ − ξ̇1α− ξ1α̇)

=
n∑

j=1

ξ̇jXj + α̇Y1 +
n∑

2=1

η̇jYj +

(
τ̇ − 2αξ̇1 −

n∑
j=2

ηj ξ̇j +
n∑

j=2

ξj η̇j

)
T.

Therefore Γ̇ admits a C1 extension to the whole HTS if and only if

(7.2) τ̇ = 2αξ̇1 +
n∑

j=2

ηj ξ̇j −
n∑

j=2

ξj η̇j,

that is if and only if γ is horizontal in (Ω, dφ). Let us denote such an extension by A =∑2n
j=1 ψjZj. This means that A ∈ C1(S,HTS) and

ψj(Γ(s)) = Γ̇j(s)

for any s ∈ I and any j = 1, . . . , 2n. Thanks to the aforementioned properties of ∇S and
recalling (2.2), then

∇S
Γ̇
Γ̇
∣∣
Γ(s)

= ∇Γ̇Γ̇
∣∣
Γ(s)

−
〈
∇Γ̇Γ̇

∣∣
Γ(s)

, vH
∣∣
Γ(s)

〉
vH
∣∣
Γ(s)

=
2n∑
j=1

⟨Γ̇(s),∇Hψj(Γ(s))⟩Zj

∣∣
Γ(s)

−

(
2n∑
k=1

⟨Γ̇(s),∇Hψj(Γ(s))⟩vHk
∣∣
Γ(s)

)
vH
∣∣
Γ(s)

=
2n∑
j=1

Γ̈j(s)Zj

∣∣
Γ(s)

−

(
2n∑
k=1

Γ̈k(s)v
H
k

∣∣
Γ(s)

)
vH
∣∣
Γ(s)

for any s ∈ I. Hence ∇S
Γ̇
Γ̇ = 0 if and only if

(7.3) Γ̈j − vHj ⟨Γ̈, vH⟩ = 0

for any j = 1, . . . , 2n. We need to traduce (7.3) in terms of γ. To this aim, recalling (7.2),
notice that

Γ̈ =
n∑

j=1

ξ̈jXj + α̈Y1 +
n∑

2=1

η̈jYj.

Lemma 7.2. It holds that

⟨Γ̈, vH⟩ = −W− 1
2

(
2T̃φα̇ξ̇1 + ⟨D2φγ̇, γ̇⟩

)
.

Proof. Notice that

(7.4) α̇(s) = ⟨γ̇, Dφ(γ(s))⟩ and α̈(s) = ⟨γ̈(s), Dφ(γ(s))⟩+ ⟨D2φ(γ(s))γ̇(s), γ̇(s)⟩

for any s ∈ I. Moreover, taking derivatives in (7.2), we see that

(7.5) τ̈ = 2α̇ξ̇1 + 2αξ̈1 +
n∑

j=2

ηj ξ̈j −
n∑

j=2

ξj η̈j.
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Exploiting (2.11), (7.4) and (7.5), we see that

W
1
2 ⟨Γ̈, vH⟩ = Wφφξ̈1 +

n∑
j=2

X̃jφξ̈j +
n∑

j=2

Ỹjφη̈j − α̈

= ξ̈1φξ1 + 2ξ̈1αφτ +
n∑

j=2

ξ̈jφξj +
n∑

j=2

ηj ξ̈jφτ +
n∑

j=2

η̈jφηj −
n∑

j=2

ξj η̈jφτ

− ξ̈1φξ1 −
n∑

j=2

ξ̈jφξj −
n∑

j=2

η̈jφηj − τ̈φτ − ⟨D2φγ̇, γ̇⟩

= T̃φ

(
2αξ̈1 +

n∑
j=2

ηj ξ̈j −
n∑

j=2

η̈jξj − τ̈

)
− ⟨D2φγ̇, γ̇⟩

= −2T̃φα̇ξ̇1 − ⟨D2φγ̇, γ̇⟩.

□

In the following, we let M = 2T̃φα̇ξ̇1 + ⟨D2φγ̇, γ̇⟩. Notice that, by Lemma 7.2, the term
⟨Γ̈, vH⟩ does not involve second derivatives of γ. Therefore (7.1) is equivalent to the following
differential problem.
(7.6)

ξ̈1 +W−1WφφM = 0 on I, ξ1(0) = ξ01 , ξ̇1(0) = w1

ξ̈j +W−1X̃jφM = 0 on I, ξj(0) = ξ0j , ξ̇j(0) = wj j = 2, . . . , n

α̈−W−1M = 0 on I, α(0) = y1, α̇(0) = wn+1

η̈j +W−1ỸjφM = 0 on I, ηj(0) = η0j , η̇j(0) = wn+j j = 2, . . . , n

τ̇ = 2αξ̇1 +
n∑

j=2

ηj ξ̇j −
n∑

j=2

ξj η̇j on I, τ(0) = t+ ξ01φ(q)

A key step consist in showing that the third line of (7.6) is redundant.

Lemma 7.3. A curve γ ∈ C2(I,Ω) solves (7.6) if and only if it solves the following differential
system.
(7.7)

ξ̈1 +W−1WφφM = 0 on I, ξ1(0) = ξ01 , ξ̇1(0) = w1

ξ̈j +W−1X̃jφM = 0 on I, ξj(0) = ξ0j , ξ̇j(0) = wj j = 2, . . . , n

η̈j +W−1ỸjφM = 0 on I, ηj(0) = η0j , η̇j(0) = wn+j j = 2, . . . , n

τ̇ = 2αξ̇1 +
n∑

j=2

ηj ξ̇j −
n∑

j=2

ξj η̇j on I, τ(0) = t+ ξ01φ(q)
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Proof. If γ ∈ C2(I,Ω) solves (7.6), then clearly solves (7.7). Conversely, assume that γ ∈
C2(I,Ω) solves (7.7). Since y1 = φ(q), then α(0) = φ(γ(0)) = φ(q) = y1. Moreover, notice that

α̇(0) = ⟨γ̇(0), Dφ(q)⟩

= ξ̇1(0)φξ1(q) +
n∑

j=2

ξ̇j(0)φξj(q) +
n∑

j=2

η̇j(0)φηj(q) + τ̇(0)φτ (q)

= w1W
φφ(q) +

n∑
j=2

wjX̃jφ(q) +
n∑

j=2

wn+jỸjφ(q)

= wn+1,

where the last equality follows from (2.11) and the fact that w ∈ HTpS. Observe that, recalling
(7.5) and exploiting all the second-order equations in (7.7),

⟨γ̈, Dφ⟩ = ξ̈1φξ1 +
n∑

j=2

ξ̈jφξj +
n∑

j=2

η̈jφηj + τ̈ T̃ φ

= ξ̈1W
φφ+

n∑
j=2

ξ̈jX̃jφ+
n∑

j=2

η̈jỸjφ+ 2T̃φα̇ξ̇1

= −W−1M |∇φφ|2 + 2T̃φα̇ξ̇1.

Therefore, we conclude that

α̈−W−1M = W−1(W ⟨γ̈, Dφ⟩+W ⟨D2φγ̇, γ̇⟩ − 2T̃φα̇ξ̇1 − ⟨D2φγ̇, γ̇⟩)
= W−1(⟨γ̈, Dφ⟩+ |∇φφ|2⟨γ̈, Dφ⟩+ |∇φφ|2⟨D2φγ̇, γ̇⟩ − 2T̃φα̇ξ̇1)

= W−1(−W−1M |∇φφ|2 + |∇φφ|2⟨γ̈, Dφ⟩+ |∇φφ|2⟨D2φγ̇, γ̇⟩)

=
|∇φφ|2

1 + |∇φφ|2
(α̈−W−1M),

which is equivalent to say that

W−1(α̈−W−1M) = 0.

Being W−1 ̸= 0, the thesis follows. □

We can summarize the previous achievements in the following statement.

Proposition 7.4. The following properties hold.

(i) If Γ ∈ C2(I, S) solves (7.1), then γ : I −→ Ω defined by

γ(s) := Π(Γ(s))

for any s ∈ I solves (7.7).
(ii) If γ ∈ C2(Ω) solves (7.7), then Γ : I −→ Ω defined by

Γ(s) := Ψ(γ(s))

for any s ∈ I solves (7.1).

Proof. (ii) follows thanks to Lemma 7.3. To prove (i), notice that, if Γ is as in the statement,
then Γ = Ψ(σ), where σ = Π(Γ), and so (i) easily follows. □

Theorem 7.5. The initial value problem (7.1) admits a unique local solution Γ ∈ C2(I, S).
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Proof. In view of Proposition 7.4, it suffices to show that the initial value problem (7.7) admits
locally a unique solution. Notice that (7.7) can be seen as a fist-order initial value problem by
means of a standard doubling variable argument. More precisely, let us introduce the equations

(7.8) ξ̇1 = Ξ1, ξ̇j = Ξj and η̇j = Hj

for any j = 2, . . . , n, let us define the curve Γ̃ : I −→ R4n−1 by

Γ̃ = (ξ1, . . . , ξn, η2, . . . , ηn, τ,Ξ1, . . . ,Ξn, H2, . . . , Hn),

and let q̃ = (x1, . . . , xn, y2, . . . , yn, t− x1y1, w1, . . . , wn, wn+2, . . . , w2n). Then (7.7) is equivalent
to the first-order initial value problem

(7.9)

{
˙̃Γ(s) = F (s,Γ(s)) on I

Γ̃(0) = q̃

where F : I × R4n−1 −→ R4n−1 is defined in the obvious way taking into account (7.7) and
(7.8). Thanks to Proposition 7.1, F is of class C1 in a neighborhood of (0, q̃). Hence the thesis
follows by means of the classical Picard-Lindelöf Theorem (cf. e.g. [31]). □

Proof of Theorem 1.6. Fix p = (x̄, ȳ, t) ∈ S \ S0. Assume first that there exists an open neigh-

borhood U of p such that h̃ ≡ 0 on U . Fix w ∈ HTpS. As before, recalling also Proposition 7.1,
we can assume that there exists Ω ⊆ R2n and φ ∈ C2(Ω) such that

S ∩ V = graphY1
(φ,Ω) ∩ V,

where V = i(Ω) · j(R). In view of Theorem 7.5, there exists a small domain I ⊆ R such
that 0 ∈ I and a curve Γ ∈ C2(I, S) solving (7.1) with initial data Γ(0) = p and Γ̇(0) = w.

Since h̃ ≡ 0, and recalling Proposition 6.2, we conclude that Γ(s) := p · (sw, 0). Hence S is
locally ruled at p. Conversely, assume that S is locally ruled in a suitable neighborhood U of
p. Assume also that U ∩S0 = ∅. Fix p̄ ∈ U and w ∈ HTp̄S. Since Γ(s) := p̄ · (sw, 0) lies locally
in S, then hp̄(w,w) = 0, and so h̃p̄ = 0. □

Proof of Theorem 1.1. It follows combining Theorem 1.3 and Theorem 1.6 □
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[23] M. Galli and M. Ritoré. Area-stationary and stable surfaces of class C1 in the sub-Riemannian Heisenberg
group H1. Adv. Math., 285:737–765, 2015.

[24] N. Garofalo and D.-M. Nhieu. Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and
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Birkhäuser Verlag, Basel, 1984.
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[41] M. Ritoré. Examples of area-minimizing surfaces in the sub-Riemannian Heisenberg group H1 with low
regularity. Calc. Var. Partial Differential Equations, 34(2):179–192, 2009.
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