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Abstract

We prove an approximation result, that implies the non-occurrence of the Lavrentiev

phenomenon.
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1. Introduction

The purpose of this paper is to prove a general theorem on reparametrizations of
an interval on to itself which states that, given an absolutely continuous function x

on an interval ½a; b� and e40; under appropriate conditions on L and c; there exists a
reparametrization s ¼ seðtÞ of ½a; b� such that the composition xe ¼ x 3 se is at once
Lipschitzian and is such that

Z b

a

LðxeðtÞ; x0
eðtÞÞcðt; xeðtÞÞ dtp

Z b

a

LðxðtÞ; x0ðtÞÞcðt; xðtÞÞ dt þ e:

An application of Theorem 1 is the non-occurrence of the Lavrentiev phenomenon
for a class of functionals of the calculus of variations. We recall that in 1926
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Lavrentiev [8] published an example of a functional of the kind

Z b

a

Lðt; xðtÞ; x0ðtÞÞ dt; xðaÞ ¼ A; xðbÞ ¼ B;

whose infimum taken over the space of absolutely continuous functions was strictly
lower than the infimum taken over the space of Lipschitzian functions. The
occurrence of this phenomenon in a minimum problem is not a minor nuisance, since
de facto it prevents the possibility of computing the true absolute minimum of a
variational problem by numerical methods. In the autonomous case, sufficient
conditions to prevent the occurrence of this phenomenon were given by several
authors, by imposing enough growth conditions on the Lagrangean L to insure that
solutions themselves (exist and) are Lipschitzian, as in [4] or [2]; in this case, the
question was finally settled in a paper by Alberti and Serra Cassano [1].
Our result applies to non-autonomous problems; it applies to multidimensional

rotationally invariant problems, where the measure is rD dr; and, even in the
simple autonomous case, it applies to problems with obstacles or with other
constraints.
In Sections 3 and 4 of this paper we prove our main result. Section 5 is devoted to

applications to avoid the Lavrentiev phenomenon.

2. The main result

The following is our main result, a reparametrization theorem.

Theorem 1. Let x : ½a; b�-RN be absolutely continuous and set C ¼ fxðtÞ : tA½a; b�g:
Let L : C 
 RN-R be continuous and such that Lðx; �Þ is convex, and let c: ½a; b� 

C-½c;þNÞ be continuous, with c40: Then:
(i)

Z b

a

LðxðtÞ;x0ðtÞÞcðt; xðtÞÞ dt

exists, finite or þN;
(ii) given any e40; there exists a Lipschitzian function xe; a reparametrization of x;

such that xðaÞ ¼ xeðaÞ; xðbÞ ¼ xeðbÞ and

Z b

a

LðxeðtÞ; x0
eðtÞÞcðt; xeðtÞÞ dtp

Z b

a

LðxðtÞ; x0ðtÞÞcðt; xðtÞÞ dt þ e:

Remark 1. The only technical assumption of Theorem 1 is the hypothesis that c is
bounded below by a positive constant. However, in the proof of Theorem 1, this

assumption is used only to infer that
R b

a
LðxðtÞ; x0ðtÞÞ dt is finite. Hence the theorem
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holds under the following more general assumption: cðt; xÞX0 andR b

a
LðxðtÞ; x0ðtÞÞ dtoþN:

To verify how sharp our assumptions are, consider the following example of
Manià [3,5,9]. Consider the problem of minimizing the functional

Z 1

0

½t � xðtÞ3�2½x0ðtÞ�6 dt; xð0Þ ¼ 0; xð1Þ ¼ 1:

Then the infimum taken over the space of absolutely continuous functions (assumed

in xðtÞ ¼
ffiffi
t3

p
) is strictly lower than the infimum taken over the space of Lipschitzian

functions.
As a consequence, the result of Theorem 1 cannot hold for the functional of

Manià evaluated along xðtÞ ¼
ffiffi
t3

p
:

Setting cðt; xÞ ¼ ½t � x3�2 and Lðx; xÞ ¼ x6; we see that cX0 (but not cXc40)
and that

Z 1

0

½x0ðtÞ�6 dt ¼
Z 1

0

1=ð36t4Þ dt ¼ þN:

Hence, the assumption cðt; xÞX0 and
R b

a
LðxðsÞ; x0ðsÞÞ dsoþN cannot possibly be

dropped.

3. Preliminary results

The proof of Theorem 1 is based on some simple properties of the (set-valued)

function ðx; xÞ-fLnðx; pÞ : pA@xLðx; xÞg; where Lnðx; pÞ is the polar of L with

respect to its second variable, i.e.

Lnðx; pÞ ¼ sup
xARN

½/p; xS� Lðx; xÞ�:

To establish these properties we shall need some preliminary propositions. In what
follows, by B½x; r� we shall mean the closed ball centered at x and radius r:

Proposition 1. Let f be a convex function and pA@f ðxÞ: Then f n is finite at p and

f nðpÞ ¼ /x; pS� f ðxÞ:

Proof. See [10, p. 218]. &

Proposition 2. (i) Let f ; fn :R
N-R be convex and let fn converge pointwise to f ; let

pnA@fnðxÞ: Then the sequence fpng admits a subsequence converging to some pA@f ðxÞ:
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(ii) Let L : C 
 RN-R be continuous and such that Lðx; �Þ is convex; let xn-xAC

and set f ðxÞ ¼ Lðx; xÞ; fnðxÞ ¼ Lðxn; xÞ: Then the same conclusion as in (i) holds for

pnA@fnðxnÞ ¼ @xLðxn; xnÞ:

Proof. We prove (i) and (ii) at once setting, in case (i), xn ¼ x and noticing that, in
both cases, we have that, for every z; fnðxn þ zÞ-f ðxþ zÞ:
The sequence fpng cannot be unbounded; if it were, along a subsequence we would

have jpnj-N; choose a further subsequence so that pn=jpnj-p0; where jp0j ¼ 1: We
have

f ðxþ p0Þ ¼ lim
n-N

fnðxn þ p0ÞX lim sup
n-N

½fnðxnÞ þ/pn; p0S� ¼ þN

a contradiction, since f is finite at xþ p0: Hence, the sequence fpng is bounded and
we can select a subsequence converging to p

*
: If it were p

*
e@f ðxÞ there would exist

x0 such that f ðx0Þof ðxÞ þ/p
*
; x0 � xS: Since

f ðx0Þ ¼ f ðxþ ðx0 � xÞÞ ¼ lim
n-N

fnðxn þ ðx0 � xÞÞ

X lim sup
n-N

½fnðxnÞ þ/pn; x
0 � xS� ¼ f ðxÞ þ/p

*
; x0 � xS

we would have a contradiction. &

Proposition 3. Let f :RN-R be convex. The map t-f/xt; pS� f ðxtÞ : pA@f ðxtÞg;
from ½0;þNÞ to the closed convex subsets of R; is monotonically increasing.

Proof. (a) Assume, in addition, that f is smooth; then we have rð/x;rf ðxÞS�
f ðxÞÞ ¼ xT H; where H is the Hessian matrix of f : Hence

d

dt
ð/xt;rf ðxtÞS� f ðxtÞÞ ¼ txT HxX0;

so that t2Xt1 implies

/xt2;rf ðxt2ÞS� f ðxt2ÞX/xt1;rf ðxt1ÞS� f ðxt1Þ:

(b) In general, the map fðtÞ ¼ f ðxtÞ; being convex, is differentiable for a.e. t: Let

tþ1 4t1 and t�2 ot2 be points where f is differentiable. Approximate f by a sequence

ffng of convex smooth maps, converging pointwise to f : Set fnðtÞ ¼ fnðxtÞ: in
particular, applying the previous Proposition 2, we have that f0

nðtÞ converges to f0ðtÞ
both at tþ1 and at t�2 : Applying point (a) to fn we obtain that

t�2 f
0
nðt�2 Þ � fnðt�2 ÞXtþ1 f

0
nðtþ1 Þ � fnðtþ1 Þ
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so that, passing to the limit as n-N;

t�2 f
0ðt�2 Þ � fðt�2 ÞXtþ1 f

0ðtþ1 Þ � fðtþ1 Þ:

By the monotonicity of the subdifferential of f; for every a1A@fðt1Þ and a2A@fðt2Þ;
we have

t2a2 � fðt�2 ÞXt�2 f
0ðt�2 Þ � fðt�2 ÞXtþ1 f

0ðtþ1 Þ � fðtþ1 ÞXt1a1 � fðtþ1 Þ

and passing to the limit as tþ2 -t2 and t�1 -t1; by the continuity of f; one has

t2a2 � fðt2ÞXt1a1 � fðt1Þ:

Since [7, p. 257], @fðtÞ ¼ f/x; pS : pA@f ðxtÞg; the claim is proved. &

Proposition 4. Let f :RN-R be convex. Then the function f ðx=ð1þ �ÞÞð1þ �Þ is

convex in ð�1;NÞ: Moreover, given d there are y; 0pyp1 and pyA@f ðx=ð1þ ydÞÞ;
such that

f
x

1þ d

� �
ð1þ dÞ � f ðxÞ ¼ �df nðpyÞ:

Proof. (a) Assume, in addition, that f is C2: Then, computing the derivatives, one
obtains

d

da
f

x
1þ a

� �
ð1þ aÞ

� �
¼ rf

x
1þ a

� �
;
�x
1þ a

� �
þ f

x
1þ a

� �
¼ �f n rf

x
1þ a

� �� �

and

d2

da2
f

x
1þ a

� �
ð1þ aÞ

� �
¼ 1

ð1þ aÞ3
xT Hx;

where H is the Hessian matrix of f computed at x=ð1þ aÞ; so that the second
derivative is non-negative, and the map f ðx=ð1þ �ÞÞð1þ �Þ is convex.
(b) In the general case, approximate the convex map f by a sequence of convex

differentiable maps fn converging pointwise to f to obtain the required convexity and
to have:

f
x

1þ d

� �
ð1þ dÞ � f ðxÞ ¼ lim

n-N

fn

x
1þ d

� �
ð1þ dÞ � fnðxÞ

¼ lim
n-N

d � x
1þ ynd

;rfn

x
1þ ynd

� �� �
þ fn

x
1þ ynd

� �� 	
:
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(c) Applying Proposition 2, let pyA@f ðx=ð1þ ydÞÞ be the limit of a converging
subsequence of frfnðx=ð1þ yndÞÞg: We have

f
x

1þ d

� �
ð1þ dÞ � f ðxÞ ¼ d � x

1þ yd
; p

� �
þ f

x
1þ yd

� �� 	
¼ �df nðpÞ: &

4. Proof of Theorem 1

Proof. (i) For every tA½a; b�; LðxðtÞ; x0ðtÞÞXLðxðtÞ; 0Þ þ/p0ðtÞ; x0ðtÞS; where p0ðtÞ
is any selection from @xLðxðtÞ; 0Þ: Let E� ¼ ftA½a; b� : ðLðxðtÞ; x0ðtÞÞÞ�40g; let w� be

the characteristic function of E�: Then, in particular, �ðLðxðtÞ; x0ðtÞÞÞ� ¼
LðxðtÞ; x0ðtÞÞw�ðtÞX½LðxðtÞ; 0Þ þ/p0ðtÞ; x0ðtÞS�w�ðtÞ; henceZ b

a

�ðLðxðtÞ; x0ðtÞÞÞ�cðt; xðtÞÞ dt ¼
Z b

a

LðxðtÞ; x0ðtÞÞw�ðtÞcðt; xðtÞÞ dt

X

Z b

a

½LðxðtÞ; 0Þ þ/p0ðtÞ; x0ðtÞS�w�ðtÞcðt; xðtÞÞ dt:

Since c is bounded and, by Proposition 2, p0ðtÞ is bounded, the claim follows by
Hölder’s inequality.
(ii) In case

Z b

a

LðxðtÞ; x0ðtÞÞcðt; xðtÞÞ dt ¼ þN;

any parametrization t : ½a; b�-½a; b� that would make x 3 t Lipschitzian, is acceptable
as xe: Hence from now on we shall assume

�No
Z b

a

LðxðtÞ; x0ðtÞÞcðt; xðtÞÞ dtoþN:

We have also

þN4
Z b

a

jLðxðtÞ; x0ðtÞÞj cðt; xðtÞÞ dtXc

Z b

a

jLðxðtÞ; x0ðtÞÞj dt:

(a) C ¼ fxðtÞ : tA½a; b�g is a compact subset of RN : consider the set

V ¼ fðx; pÞ : xAC; pA@xLðx; xÞ; jxjp1g:

By (b) of Proposition 2, arguing by contradiction, we obtain that V is compact.

Then, minV Lnðx; pÞ is attained and is finite: let ðxn; pnÞ; pnA@xLðxn; xnÞ; jxnjp1; be a
minimizing sequence; we can assume that xn-x; xAC; xn-x; pn-p; pA@xLðx; xÞ:
By Proposition 1, we have that Lnðxn; pnÞ ¼ /xn; pnS� Lðxn; xnÞ-/x; pS�
Lðx; xÞ ¼ Lnðx; pÞ:
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Set

m ¼ min
V

Lnðx; pÞ:

Applying Proposition 3, we obtain that Lnðx; pÞXm; any xAC and any pA@xLðx; xÞ;
for any xARN : Hence we have that, for every xAC and any p;

Lnðx; pÞ � mX0:

Consider L̃ðx; xÞ ¼ Lðx; xÞ þ m: Since @xLðx; xÞ ¼ @xL̃ðx; xÞ; we have that L̃nðx; pÞ ¼
Lnðx; pÞ � m; and we infer that L̃nðx; pÞX0:

(b) Set c ¼
R b

a
jL̃ðxðsÞ; x0ðsÞÞj ds and let C be such that jcðs; xÞjpC;

8ðs; xÞA½a; b� 
 C:
From the uniform continuity of cð�; xð�ÞÞ on ½a; b� 
 ½a; b�; we infer that we can fix

kAN such that 8ðs1; t1Þ; ðs2; t2ÞA½a; b� 
 ½a; b�; with js2 � s1jpðb � aÞ=2k and jt2 �
t1jpðb � aÞ=2k we have

jcðs2; xðt2ÞÞ � cðs1; xðt1ÞÞjpmin
e
4c

;
e

2mðb � aÞ


 �
:

For i ¼ 0;y; 2k � 1 set Ii ¼ ½ðb � aÞi=2k; ðb � aÞði þ 1Þ=2k�; Hi ¼
R

Ii
jx0ðsÞj ds; m ¼

maxf2kþ1Hi=ðb � aÞ : i ¼ 0;y; 2k � 1g and

THi
¼ sAIi : jx0ðsÞjp2kþ1Hi

b � a


 �
;

it follows that jTHi
jXðb � aÞ=2kþ1: Set also T ¼

S2k�1
i¼0 THi

:

Since fðxðsÞ; x0ðsÞÞ : sATg belongs to a compact set and L is continuous, there
exists a constant M; such that

L̃ðxðsÞ; 2x0ðsÞÞ 1
2
� L̃ðxðsÞ; x0ðsÞÞ










pM

for all sAT :

(c) For every nAN set Si
n ¼ fsAIi : jx0ðsÞj4ng; ei

n ¼
R

Si
n
ðjx

0ðsÞj
n

� 1Þ ds and en ¼P2k�1
i¼0 ei

n: From the integrability of jx0j; we have that limn-N en ¼ 0:

(d) Having defined ei
n; for all n such that ei

npðb � aÞ=2kþ2; choose Si
nCTHi

such

that jSi
nj ¼ 2ei

n: This is possible from point (c).

(e) Define the absolutely continuous functions tn by tnðsÞ ¼ a þ
R s

a
t0nðtÞ dt; where

t0nðsÞ ¼
1þ ðjx

0ðsÞj
n

� 1Þ; sASn ¼
S2k�1

i¼0 Si
n;

1� 1
2
; sASn ¼

S2k�1
i¼0 Si

n;

1; otherwise:

8>><
>>:
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One verifies that 8i ¼ 0;y; 2k � 1; the restriction of tn to Ii is an invertible map
from Ii onto itself (in particular, each tn is an invertible map from ½a; b� onto itself). It
follows that jtnðsÞ � sjpðb � aÞ=2k:
(e) We have

Z b

a

L̃ xðsÞ; x0ðsÞ
t0nðsÞ

� �
t0nðsÞcðtnðsÞ; xðsÞÞ ds �

Z b

a

L̃ðxðsÞ; x0ðsÞÞcðs; xðsÞÞ ds

¼
Z b

a

L̃ xðsÞ; x0ðsÞ
t0nðsÞ

� �
t0nðsÞ � L̃ðxðsÞ; x0ðsÞÞ

� 	
cðtnðsÞ; xðsÞÞ ds

þ
Z b

a

L̃ðxðsÞ; x0ðsÞÞ½cðtnðsÞ; xðsÞÞ � cðs; xðsÞÞ� ds;

and, from the definition of t0n;

Z b

a

L̃ xðsÞ; x0ðsÞ
t0nðsÞ

� �
t0nðsÞ � L̃ðxðsÞ; x0ðsÞÞ

� 	
cðtnðsÞ; xðsÞÞ ds

¼
Z

Sn

L̃ xðsÞ; n
x0ðsÞ
jx0ðsÞj

� �
jx0ðsÞj

n
� L̃ðxðsÞ; x0ðsÞÞ

� 	
cðtnðsÞ; xðsÞÞ ds

þ
Z
Sn

L̃ðxðsÞ; 2x0ðsÞÞ 1
2
� L̃ðxðsÞ; x0ðsÞÞ

� 	
cðtnðsÞ; xðsÞÞ ds:

We wish to estimate the above integrals. Since SnCT ; we obtain

Z
Sn

L̃ðxðsÞ; 2x0ðsÞÞ 1
2
� L̃ðxðsÞ; x0ðsÞÞ

� 	
cðtnðsÞ; xðsÞÞ dsp2MCen:

Moreover, for every sASn

L̃ xðsÞ; n
x0ðsÞ
jx0ðsÞj

� �
jx0ðsÞj

n
� L̃ðxðsÞ; x0ðsÞÞ

p� jx0ðsÞj
n

� 1

� �
L̃n xðsÞ; p xðsÞ; n

x0ðsÞ
jx0ðsÞj

� �� �
p0;

hence

Z
Sn

L̃ xðsÞ; n
x0ðsÞ
jx0ðsÞj

� �
jx0ðsÞj

n
� L̃ðxðsÞ; x0ðsÞÞ

� 	
cðtnðsÞ; xðsÞÞ dsp0:

(f) The choice of k implies that

Z b

a

L̃ðxðsÞ; x0ðsÞÞ½cðtnðsÞ; xðsÞÞ � cðs; xðsÞÞ� dsp
e
4
:
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We have obtained

Z b

a

L̃ xðsÞ; x0ðsÞ
t0nðsÞ

� �
t0nðsÞcðtnðsÞ; xðsÞÞ ds �

Z b

a

L̃ðxðsÞ; x0ðsÞÞcðs; xðsÞÞ dsp2MCen þ
e
4
:

(g) Fix n such that 2MCenpe=4:
Then, the conclusion of (f) proves the Theorem; in fact, defining xe ¼ x 3 sn; where

sn is the inverse of the function tn; we obtain, by the change of variable formula [11],
that

Z b

a

L̃ðxeðtÞ; x0
eðtÞÞcðt; xeðtÞÞ dt ¼

Z b

a

L̃ xeðtnðsÞÞ;
dxe

dt
ðtnðsÞÞ

� �
t0nðsÞcðtnðsÞ; xeðtnðsÞÞÞ ds

¼
Z b

a

L̃ xðsÞ; x0ðsÞ
t0nðsÞ

� �
t0nðsÞcðtnðsÞ; xðsÞÞ ds

p
Z b

a

L̃ðxðsÞ; x0ðsÞÞcðs; xðsÞÞ ds þ e
2

so that

Z b

a

LðxeðtÞ; x0
eðtÞÞcðt; xeðtÞÞ dt �

Z b

a

LðxðsÞ; x0ðsÞÞcðs; xðsÞÞ ds

p
Z b

a

½LðxeðtÞ;x0
eðtÞÞ þ m�cðt; xeðtÞÞ dt �

Z b

a

½LðxðsÞ; x0ðsÞÞ þ m�cðs; xðsÞÞ ds þ e
2

¼
Z b

a

L̃ðxeðtÞ; x0
eðtÞÞcðt; xeðtÞÞ dt �

Z b

a

L̃ðxðsÞ; x0ðsÞÞcðs; xðsÞÞ ds þ e
2
pe:

Moreover, xe is Lipschitzian. In fact, consider the equality x0
eðtnðsÞÞ ¼ x0ðsÞ=t0nðsÞ

and fix s where t0nðsÞ exists; we obtain

dxe

dt
ðtnðsÞÞ












¼ n; sASn;

pm; sASn;

pn; otherwise

8><
>:

hence, at almost every s; the norm of the derivative of xe is bounded by n: This
completes the proof. &

5. Applications: the non-occurrence of the Lavrentiev phenomenon

The theorems below present some applications of Theorem 1 to prevent the
occurrence of the Lavrentiev phenomenon to different classes of minimum problems.
Denote by Lipð½a; b�Þ and by ACð½a; b�Þ; respectively, the space of all Lipschitzian

and absolutely continuous functions from ½a; b� to RN : Let ECRN and consider the
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functional

IðxÞ ¼
Z b

a

LðxðsÞ; x0ðsÞÞcðs; xðsÞÞ ds:

Call infðPÞ
N

the infimum of fIðxÞ : xALipð½a; b�Þ; xðtÞAE; xðaÞ ¼ A; xðbÞ ¼ Bg and

infðPÞ1 the infimum of fIðxÞ : xAACð½a; b�Þ; xðtÞAE; xðaÞ ¼ A; xðbÞ ¼ Bg:

Theorem 2. Let L : E 
 RN-R be continuous and such that Lðx; �Þ is convex and let

c : ½a; b� 
 E-½c;þNÞ be continuous, with c40; then infðPÞ
N

¼ infðPÞ1:

In the previous Theorem E can be any subset of RN such that the set of absolutely
continuous functions with values in E and satisfying the boundary conditions is non-
empty. In particular, xAE can describe a problem with an obstacle.
As an application to a problem with a constraint different from an obstacle, let

E ¼ R2
\f0g and call infðPiÞ

N
the infimum of fIðxÞ : xALip; xðtÞAE; xðaÞ ¼ xðbÞg

and having prescribed rotation number iðxÞ ¼ k: Call infðPiÞ1 the infimum of the

same problem but for xAAC:

Theorem 3. Let L : E 
 R2-R be continuous and such that Lðx; �Þ is convex and let

c : ½a; b� 
 E-½c;þNÞ be continuous, with c40; then infðPiÞ
N

¼ infðPiÞ1:

Proof. As it is well known the rotation number i is independent of the
parametrizations of x: &

Theorem 3 applies in particular to the case Lðx; xÞ ¼ jxj2=2þ 1=jxj; the case of the
Newtonian potential generated by a body fixed at the origin. Gordon [6] proved that
Keplerian orbits are minima to this problem with k ¼ 1:

As a further application, we consider a vectorial case. Let L : E 
 RN-R be a
continuous function such that Lðu; �Þ is convex (we shall assume that the Lagrangian
is independent of the integration variable). Suppose that Lðu; �Þ has the symmetry of
being rotationally invariant, i.e. assuming that there exists a function h : E 

½0;NÞ-R such that Lðu; xÞ ¼ hðu; jxjÞ:
Consider the functional

IðuÞ ¼
Z

S½a;b�
LðuðxÞ;ruðxÞÞ dx;

where S½a; b� ¼ fxARDþ1 : apjxjpbg: Denote by infðPÞ
N

the infimum of

fIðuÞ : uALipðS½a; b�Þ; uðxÞAE; u radial; uj@Bð0;aÞ ¼ A; uj@Bð0;bÞ ¼ Bg and infðPÞ1 the

infimum of fIðuÞ : uAW 1;1ðS½a; b�Þ; uðxÞAE; u radial; uj@Bð0;aÞ ¼ A; uj@Bð0;bÞ ¼ Bg: It is
our purpose to prove that infðPÞ

N
¼ infðPÞ1:
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Observe that if w : ½a; b�-E is such that uðxÞ ¼ wðjxjÞ then

IðuÞ ¼ CD

Z b

a

LðwðrÞ;w0ðrÞÞrD dr; wðaÞ ¼ A;wðbÞ ¼ B;

where

CD ¼ pðDþ1Þ=2

GððD þ 3Þ=2Þ ðb
Dþ1 � aDþ1Þ:

Theorem 4. Let L : E 
 RN-R be continuous and such that Lðu; �Þ is convex; then

infðPÞ
N

¼ infðPÞ1:
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