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Abstract

We prove an approximation result, that implies the non-occurrence of the Lavrentiev
phenomenon.
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1. Introduction

The purpose of this paper is to prove a general theorem on reparametrizations of
an interval on to itself which states that, given an absolutely continuous function x
on an interval [a, ] and £> 0, under appropriate conditions on L and , there exists a
reparametrization s = s,(¢) of [a,b] such that the composition x, = x o s, is at once
Lipschitzian and is such that

/ L), (W (0, (1)) < / ! L), (Ot x(1)) dt 4.

An application of Theorem 1 is the non-occurrence of the Lavrentiev phenomenon
for a class of functionals of the calculus of variations. We recall that in 1926
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Lavrentiev [8] published an example of a functional of the kind

/b L(t,x(1),x'(r)) dt, x(a)=A, x(b) =B,

whose infimum taken over the space of absolutely continuous functions was strictly
lower than the infimum taken over the space of Lipschitzian functions. The
occurrence of this phenomenon in a minimum problem is not a minor nuisance, since
de facto it prevents the possibility of computing the true absolute minimum of a
variational problem by numerical methods. In the autonomous case, sufficient
conditions to prevent the occurrence of this phenomenon were given by several
authors, by imposing enough growth conditions on the Lagrangean L to insure that
solutions themselves (exist and) are Lipschitzian, as in [4] or [2]; in this case, the
question was finally settled in a paper by Alberti and Serra Cassano [1].

Our result applies to non-autonomous problems; it applies to multidimensional
rotationally invariant problems, where the measure is r”dr, and, even in the
simple autonomous case, it applies to problems with obstacles or with other
constraints.

In Sections 3 and 4 of this paper we prove our main result. Section 5 is devoted to
applications to avoid the Lavrentiev phenomenon.

2. The main result
The following is our main result, a reparametrization theorem.
Theorem 1. Let x: [a,b|— RN be absolutely continuous and set C = {x(t):te|a,b]}.

Let L: C x RY =R be continuous and such that L(x,-) is convex, and let \: [a,b] x
C— ¢, +00) be continuous, with ¢>0. Then:

(1)
b
/ L(x(0), ()1, x(1))

exists, finite or +o0;
(i1) given any ¢>0, there exists a Lipschitzian function x,, a reparametrization of x,
such that x(a) = x.(a), x(b) = x.(b) and

b b
| L bte ) dis [ L), 00t x(0) dr o

Remark 1. The only technical assumption of Theorem 1 is the hypothesis that  is
bounded below by a positive constant. However, in the proof of Theorem 1, this

assumption is used only to infer that ff L(x(t),x'(¢)) dt is finite. Hence the theorem
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holds under the following more general assumption: ¥(z,x)>0 and
P L(x(e), ¥ (1)) di < + 0.

To verify how sharp our assumptions are, consider the following example of
Mania [3,5,9]. Consider the problem of minimizing the functional

Then the infimum taken over the space of absolutely continuous functions (assumed
in x(#) = /1) is strictly lower than the infimum taken over the space of Lipschitzian
functions.

As a consequence, the result of Theorem 1 cannot hold for the functional of
Mania evaluated along x(¢) = /7.

Setting (z,x) = [t — x°]* and L(x,&) = &°, we see that >0 (but not >¢>0)
and that

1 1
/[x’(z)]6dz:/ 1/(3%4) di = +oo.
0

0

Hence, the assumption ¥(z, x) >0 and f: L(x(s),x'(s)) ds< + oo cannot possibly be
dropped.

3. Preliminary results

The proof of Theorem 1 is based on some simple properties of the (set-valued)
function (x,&)—{L*(x,p):ped:L(x,&)}, where L*(x,p) is the polar of L with
respect to its second variable, i.e.

L*(xvp) = sup [<paé> *L(X, é)]

EeRY

To establish these properties we shall need some preliminary propositions. In what
follows, by B[, r] we shall mean the closed ball centered at £ and radius r.

Proposition 1. Let [ be a convex function and pedf (). Then f* is finite at p and
f*p) = {&p> =1 (9).

Proof. See [10, p. 218]. O

Proposition 2. (i) Let f,f, : RN - R be convex and let f, converge pointwise to f; let
DPn€0fu(E). Then the sequence {p,} admits a subsequence converging to some peof (£).
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(ii) Let L: C x RN >R be continuous and such that L(x,-) is convex; let x, —xe C
and set (&) = L(x,&), fu(&) = L(x,,&). Then the same conclusion as in (i) holds for

DPn eafn(‘fn) = aéL(xna 571)

Proof. We prove (i) and (ii) at once setting, in case (i), £, = ¢ and noticing that, in
both cases, we have that, for every z, f,,(¢, + z) > f (& + 2).

The sequence {p,} cannot be unbounded; if it were, along a subsequence we would
have |p,|— oo; choose a further subsequence so that p,/|p,| = po, where |py| = 1. We
have

F(E+po) = Jim fu(&,+po) > limsup [£(&,) + Cpurpo>] = +00

n— oo

a contradiction, since f is finite at & 4+ py. Hence, the sequence {p,} is bounded and
we can select a subsequence converging to p, . If it were p, ¢ 9f (£) there would exist

& such that (&) <f(&) + {p.,& —&). Since
J(&) =f(E+ (&= Q) = lim f,(¢ + (& =)
> limsup [f,(&,) + <pn, & = EX] =f(&) + <{p., & = &)

n— oo
we would have a contradiction. [

Proposition 3. Let f: RY - R be convex. The map t—{<{t,py —f(ét) :pedf (&)},
from [0,400) to the closed convex subsets of R, is monotonically increasing.

Proof. (a) Assume, in addition, that f is smooth; then we have V({& Vf(&)> —
1(&) = E"H, where H is the Hessian matrix of f. Hence

@ (e ven)y —f(E0) = 1€ HESO,

so that #, >1¢; implies

(C, Vf (Et) ) — f(En)= (S, Vf (En) ) — f(En).

(b) In general, the map ¢(z) = f(¢t), being convex, is differentiable for a.e. r. Let
t{ >t and #; <t be points where ¢ is differentiable. Approximate f by a sequence
{f.} of convex smooth maps, converging pointwise to f. Set ¢,(¢) =f,(¢f): in
particular, applying the previous Proposition 2, we have that ¢! () converges to ¢'(¢)
both at 7/ and at #;. Applying point (a) to f, we obtain that

t;d);(lg) - (]5”(127)21?(]5;’([?) - qsn(lir)
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so that, passing to the limit as n— oo,
L' () = ()20 (1) — d(E)).

By the monotonicity of the subdifferential of ¢, for every a; €d¢(#1) and ax € dp(t2),
we have

hay = ¢(1) 26 ¢'(y) = b)) 217 ¢ (1) = (1)) Zt1ar = (1))

and passing to the limit as 1§ —#, and 7; -1, by the continuity of ¢, one has

hay — ¢(t) =tar — ¢(t1).
Since [7, p. 257], 0¢(¢) = {{&,p> : pedf (&)}, the claim is proved. O

Proposition 4. Let f:RY >R be convex. Then the function f(¢/(1+-))(1+-) is
convex in (—1, o). Moreover, given 0 there are 0, 0<0<1 and pyedf (¢/(1 + 69)),
such that

#(55) 0+ 01 -1 = o)

Proof. (a) Assume, in addition, that f is C>. Then, computing the derivatives, one
obtains

a7 () +0) =(7 () ) ) = ((53)

and
d? ¢ 1
) e

where H is the Hessian matrix of f computed at £/(1 +«), so that the second
derivative is non-negative, and the map f(&/(1 + -))(1 + -) is convex.

(b) In the general case, approximate the convex map f by a sequence of convex
differentiable maps f, converging pointwise to f to obtain the required convexity and
to have:

1(i55)a+0-r@ = fim 4(55) 0 +0 -4

. ¢ ¢ ¢
Jm, 5[_<1 T 0,157Vf"<1 T 0,,6>> i (1 + Mﬂ’
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(c) Applying Proposition 2, let pyedf(&/(1 + 00)) be the limit of a converging
subsequence of {V/f,(¢/(1 4 0,0))}. We have

r(55)a+o-r@ o[- (=r) +1(g)| - - ©

4. Proof of Theorem 1

Proof. (i) For every te(a,b], L(x(z),x'(¢))=L(x(2),0) + {po(2),x'(¢) >, where py(z)
is any selection from 9:L(x(¢),0). Let E_ = {te[a,b] : (L(x(¢),x'(¢)))” >0}, let y_ be
the characteristic function of E_. Then, in particular, —(L(x(?),x'(?)))” =
L(x(0), ¥ ()2 (1) Z[L(x(1),0) + {po(2), X'(1) 11— (2), hence

b b
/ (L), X (1)W1, x(0) e = / L(x(0), X ()1 (00 (1,x(1)) di

b
> / [L(x(2),0) + <po(0), %' () ]z (O (1, x(1)) dt.

Since ¥ is bounded and, by Proposition 2, py(#) is bounded, the claim follows by
Holder’s inequality.
(i) In case

b
/ L(x(2),x' ()Y (1, x(2)) dt = +0

any parametrization ¢ : [a, b] — [a, b] that would make x o ¢ Lipschitzian, is acceptable
as x,. Hence from now on we shall assume

b
—o< / Lx(0), X () (¢, x(2)) di < + oo

We have also

+oo>/\L )| (e, x(2) l>c/ |L(x 1)) dt.

(a) C = {x(¢): te[a,b]} is a compact subset of R": consider the set
V={(x,p):xeC,ped:L(x,¢&),|E|<1}.

By (b) of Proposition 2, arguing by contradiction, we obtain that V' is compact.
Then, miny L*(x, p) is attained and is finite: let (x,, p,), pn € 0:L(xn, &), [Ea| <1, be a
minimizing sequence; we can assume that x,—»>x,xeC,&,—¢& p,—p,ped:L(x,§).
By Proposition 1, we have that L*(x,,p,) = <{&,pny — L(xy, &)= <Ep> —
L(x,&) = L*(x,p).
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Set

m = m}n L*(x,p).

Applying Proposition 3, we obtain that L*(x, p) =m, any xe C and any ped:L(x, &),
for any £e€R". Hence we have that, for every xe C and any p,

L*(x7p) - Wl>0

Consider L(x, &) = L(x, &) + m. Since 0:L(x, &) = 9:L(x, &), we have that L*(x, p) =
L*(x,p) —m, and we infer that L*(x, p)>0.

(b) Set /= f: |L(x(s),X'(s))|ds and let ¥ be such that [y(s,x)|<P,
Y(s,x)€ela,b] x C.

From the uniform continuity of (-, x(+)) on [a, b] X [a, b], we infer that we can fix
keN such that V(s 1), (s2,22)€la,b] x [a,b], with |s —s1|<(b —a)/2F and |t, —
H|< (b —a)/2* we have

IM&JWD¢QH())<mmL;2(;)}

Fori=0,....,2" — Iset I; = [(b — a)i/2", (b — a) (i + 1)/2"], H; = [} |X'(s)| ds, p =
max{2*'H;/(b—a):i=0,...,2K — 1} and

2k+1 .
Ty = {sel,- X (9)] < - al};
it follows that | Ty, |> (b — a) /25!, Set also T = [J%,"
Since {(x(s),x'(s)) :se T} belongs to a compact set and L is continuous, there
exists a constant M, such that

1 .
L(x(s).2¢(5) & - uwm%uﬂsM
for all seT.
(c) For every neN set S! = {sel;:|xX'(s)|>n}, & _fs, - U _1)ds and &, =
Zf 61 . From the 1ntegrab111ty of |x'|, we have that lim,_, », &, = 0.

(d) Havmg defined ¢!, for all n such that ¢ < (b — a)/2"+2, choose X' = Ty, such
that |X'| = 2¢!. This is possible from point (c).
(e) Define the absolutely continuous functions ¢, by #,(s) = a + f t(t) dt, where

1 + (‘x/(s)‘ _ 1)7 SeSn _ U2/< 1 S”“
%’ SEX, = U%:Bl Z:w
, otherwise.
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One verifies that Vi = 0, ..., 2K — 1, the restriction of ¢, to I; is an invertible map
from I; onto itself (in particular, each 7, is an invertible map from [a, b] onto itself). It
follows that |£,(s) — s|< (b — a)/2%.

(e) We have
[ £(x0. 2ot s~ [ Elato) X 65500
- [ (5025000~ £66). ¥ 00 w050 a

and, from the definition of 7,

[ T332 660 - 20 ¢ 6D wtoton x6 s

1,(5)
= /S {E <x(s),n|§8|) Ix’lis)| _ E(x(s),x/(s))} Y (ta(s), x(s)) ds
o , 1 R )
+ /2,, |:L(X(S)72x (s)) 57 L(x(s),x (s)):| Y (ta(s), x(s)) ds

We wish to estimate the above integrals. Since X, = T, we obtain

— L(x(s), x’(s))} W(ta(s), x(s)) ds<2MWe,.

N —

/| 26,2409

Moreover, for every seS,

hence
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We have obtained

b R xl(s) b - £
/a L<x(s),l/ (S))z;(s)w(zn(s),x(s))ds— / E(e(s), ¥ (5)(5,x(5)) ds <2M e, 4.

n

(g) Fix n such that 2M ¥¢,<¢/4.

Then, the conclusion of (f) proves the Theorem; in fact, defining x, = x o s,,, where
s, 1s the inverse of the function ¢,, we obtain, by the change of variable formula [11],
that

b b I
[ ity de= [ 2 (50 06D ) oW 065 0(5) ds

t

(s

/!
n

-/ E(x0). 53 ) M 0,5) (5
b &
< / E(e(s), 2 (5) s, x(5)) s+
so that
b b
/ L (1), X, () (1, 5,(1)) d — / L(x(s), ¥/ () (s, x(s)) ds
b b e
< / (L (1), X,(0)) + m (2, x,(1)) dt / L), () + (s, x(5)) ds + >
b b :
:/ E(xg(l),xg(t))lﬁ(t,xg(t))dt—/ E(x(s),x’(s))lﬁ(s,x(s))ds+§<a.

Moreover, x, is Lipschitzian. In fact, consider the equality x/(z,(s)) = x'(s)/1,(s)
and fix s where 7/ (s) exists; we obtain

i =n, SeS,,
Ti(ln(s)) ‘ SU, SELy,
<n, otherwise

hence, at almost every s, the norm of the derivative of x, is bounded by n. This
completes the proof. [

5. Applications: the non-occurrence of the Lavrentiev phenomenon

The theorems below present some applications of Theorem 1 to prevent the
occurrence of the Lavrentiev phenomenon to different classes of minimum problems.
Denote by Lip([a, b]) and by AC(]a, b]), respectively, the space of all Lipschitzian
and absolutely continuous functions from [a, 5] to RY. Let EcRY and consider the
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functional

b
10 = [ L)) s.5(5)) ds.

Call inf(P), the infimum of {/(x): xeLip([a,b]), x(t)e E,x(a) = A,x(b) = B} and
inf(P), the infimum of {I(x):xe AC([a,d]), x(t)eE,x(a) = A,x(b) = B}.

Theorem 2. Let L: E x RY R be continuous and such that L(x,-) is convex and let
W :[a,b] x E—[c,+00) be continuous, with ¢>0; then inf(P) , = inf(P),.

In the previous Theorem E can be any subset of RY such that the set of absolutely
continuous functions with values in £ and satisfying the boundary conditions is non-
empty. In particular, x€ E can describe a problem with an obstacle.

As an application to a problem with a constraint different from an obstacle, let
E = R?\{0} and call inf(P")  the infimum of {I(x):xeLip,x(t)eE,x(a) = x(b)}
and having prescribed rotation number i(x) = k. Call inf(P'), the infimum of the
same problem but for xe AC.

Theorem 3. Let L: E x R*>— R be continuous and such that L(x,-) is convex and let
Y la,b] x E—[c,+0) be continuous, with ¢>0; then inf(P') , = inf(P'),.

Proof. As it is well known the rotation number i is independent of the
parametrizations of x. [

Theorem 3 applies in particular to the case L(x, &) = |¢]*/2 + 1/|x|, the case of the
Newtonian potential generated by a body fixed at the origin. Gordon [6] proved that
Keplerian orbits are minima to this problem with k = 1.

As a further application, we consider a vectorial case. Let L: E x R¥Y >R be a
continuous function such that L(u, -) is convex (we shall assume that the Lagrangian
is independent of the integration variable). Suppose that L(u, -) has the symmetry of
being rotationally invariant, i.e. assuming that there exists a function /:FE X
[0, 00) > R such that L(u, &) = h(u, |£]).

Consider the functional

() = / L(u(x), Va(x)) dx,
Sla,b]

where S[a,b] = {xeRP™ :a<|x|<b}. Denote by inf(P), the infimum of

"
{1(u) :ueLip(S(a,b]), u(x) € E,u radial, ulyg . = A,ulype, = B} and inf(P); the
infimum of {I(u): ue W' (S[a, b)), u(x) € E,u radial, Ulppoa) = Asulopo ) = B} Itis

our purpose to prove that inf(P)_, = inf(P),.

e 0]
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Observe that if w: [a,b] - E is such that u(x) = w(|x|) then
b
I(u) = CD/ L(w(r),w (r))rP dr, w(a) = A,w(b) = B,

where

a(D+1)/2

Cp = r((D+3)/2)

(bD+l _ CZD+] )

Theorem 4. Let L: E x RN >R be continuous and such that L(u,-) is convex; then
inf(P) , = inf(P),.

o0
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