
LEVEL SETS OF EIKONAL FUNCTIONS ARE JOHN REGULAR

ELISA DAVOLI AND ULISSE STEFANELLI

Abstract. Let u be the unique viscosity solution of α(x)|∇u|= 1 in the ex-
ternal domain Rn \ K with u = 0 on K. In case α is continuous, bounded,

and uniformly positive and K is a bounded John domain, we prove that all

superlevels of u are John domains, too. Moreover, we give counterexamples
showing that John regularity is sharp in this setting.

1. Introduction

This note is concerned with the regularity of the unique viscosity solution u :
Rn → R (n ∈ N) of the external problem for the eikonal equation

α(x)|∇u| = 1 in Rn \K,

u = 0 on K.

where the coefficient α : Rn → R is assumed to be continuous, bounded, and
uniformly positive. For all given nonempty compact K ⊂ Rn, problem (1) admits
a unique viscosity solution u ∈ C(Rn) [2, 3]. We term such u eikonal function in
the following. Note that u takes nonpositive values only. More precisely, u(x) = 0
if x ∈ K and u(x) < 0 elsewhere.

The aim of this note is to investigate the regularity of the open superlevels

Ut := {x ∈ Rn : u(x) > −t}
of the eikonal function u, where t > 0.

To start with, let us record that, in the reference case α ≡ 1, eikonal functions
have interior-ball regular superlevels. A nonempty open set U ⊂ Rn is called
interior-ball regular if there exists a radius r > 0 such that for all x ∈ ∂U there
exists y ∈ U with |x−y|= r so that Br(y) := {z ∈ Rn : |x−z|< r} ⊂ U . In fact, in
case α ≡ 1 the eikonal function u in Rn \K is simply the signed distance from K,
namely, u(x) = −d(x, ∂U) := − infy∈K |x − y|. Correspondingly, for all t > 0 one
has that Ut = K + Bt(0). These sets are clearly interior-ball regular with respect
to the radius t. Note that if α ≡ 1 the interior-ball-regularity radius increases as
t → ∞.

The interior-ball regularity of superlevels holds in the case of a nonconstant α,
too, as long as one assumes the smoothness α ∈ C1,1(Rn) and that K is interior-ball
regular. Under these assumptions, Lorenz [9] proves that all sets Ut are interior-
ball regular. Note however that in the case of a nonconstant α the interior-ball
regularity radius may degenerate as t → ∞ in contrast with the case of a constant
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α ≡ 1, see [9] and Section 3.2. The reader is also referred to [1, 5, 6] for closely
related interior-ball-regularity results for smooth α.

The focus of this note is on a weaker regularity frame, where α is asked to be
continuous, bounded, and uniformly positive only, possibly not C1,1. If ∇α is not
Lipschitz-continuous, the arguments of [5, 9], which are based on the properties of
the optimal control ODE system underlying (1), cannot be applied and the interior
ball-regularity of Ut may fail. We present some counterexamples to interior-ball
regularity (or even to interior-cone regularity) in Section 3 below.

We recall that a nonempty bounded domain U ⊂ Rn is said to be a John domain
(equivalently, John regular) with respect to a fixed point x0 ∈ U and a given John
constant κ > 0 if it satisfies an internal twisted cone condition: for all points x ∈ U
one can find an arc-length parametrized curve ρ : [0, Lρ] → U such that ρ(0) = x,
ρ(Lρ) = x0, and d(ρ(s), ∂U) ≥ κ s for all s ∈ [0, Lρ]. Note that John domains are
connected.

Our main result states that the superlevels Ut are John domains for all t > 0,
provided that K is a bounded John domain. In addition, the John constant can be
explicitly quantified, independently of t. We have the following.

Theorem 1.1 (John regularity). Let α : Rn → R be continuous with 0 < α∗ ≤
α(x) ≤ α∗ for all x ∈ Rn, K ⊂⊂ Rn be a John domain of John constant κ0 with

respect to the point x0 ∈ K̊, and u be the eikonal function from the problem (1).
Then, all superlevels Ut are John domains with respect to x0 with John constant

κ :=
α∗

2α∗ + α∗
min{κ0, 1}. (2)

The proof of Theorem 1.1 is given in Section 2 below.

Compared with the analysis in [9], Theorem 1.1 addresses the case of less regular
data α and initial sets K. While in [9] the focus is on the related optimal-control
problems, we argue here on a more geometrical level instead. Our quantitive regu-
larity estimate of the John constant from (2), albeit expectedly not optimal, does
not degenerate as t → ∞. This differs from [9], where the lower bound on the
interior-ball radius goes to 0 as t → ∞. In Section 3, we provide some examples
illustrating the sharpness of the result of Theorem 1.1. Note that, in the interior-
ball-regular case, sharpness with respect to initial regularity and t-dependence of
the interior-ball radius may be difficult to establish, as the different behaviors in
the reference cases α = 1 and α ∈ C1,1(Rn) show.

Before closing this introduction, let us mention that Ut can be seen as reachable
set for a controlled ODE system, see Section 3. In this connection, we mention [4, 7]
where ∂Ut is proved to be negligible with respect to the n-dimensional Lebesgue
measure, under different regularity requirements for K.

Our result provides an alternative and sharper take to this fact: By checking
that Ut is John regular and by applying [8, Cor. 2.3] one directly obtains that

dimH(∂Ut) < n,

where dimH denotes the classical Hausdorff dimension. This entails thatHs(∂Ut) =
0 for all dimH(∂Ut) < s ≤ n, where Hs is the s-dimensional Hausdorff measure.
By taking s = n we recover the results of [4, 7].
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2. Proof of Theorem 1.1

Let us start by recalling [2] that the eikonal equation from problem (1) turns out
to be Lipschitz continuous, hence almost-everywhere differentiable, with bounds

0 <
1

α∗ ≤ |∇u(x)|≤ 1

α∗
for a.e. x ∈ Rn.

Moreover, u is variationally characterized by the formula

u(x) = − inf

{∫ Lρ

0

ds

α(ρ(s))
: ρ ∈ W 1,∞(0, Lρ),

|ρ′|= 1 a.e., ρ(0) = x, ρ(Lρ) ∈ K

}
. (3)

The sublevels Ut are open since u is continuous. For convenience of the Reader, we
subdivide the remaining part of the proof into three Steps.

Step 1: We first prove that

K +Btα∗(0) ⊂ Ut ⊂ K +Btα∗(0) ∀t > 0. (4)

To check that the sets Ut are bounded for all t > 0 one uses the above bounds on
∇u and the characterization in (3) in order to get that

− d(x,K)

α∗
≤ u(x) ≤ −d(x,K)

α∗ ∀ x ∈ R. (5)

Indeed, for any given x ∈ K, by considering the straight curve

ρ(t) = x− t(x− x)/|x− x|
for t ∈ [0, |x− x|] we get

−u(x) ≤
∫ |x−x|

0

ds

α(ρ(s))
≤ |x− x|

α∗
.

Passing to the minimum with respect to x ∈ K (which is possible, since K is
compact) one gets the first inequality in (5). On the other hand, for all ε > 0 one
can find ρε ∈ W 1,∞(0, Lρε

) with |ρ′ε|= 1 a.e., ρε(0) = x, ρε(Lρε
) ∈ K and

−u(x) + ε ≥
∫ Lρε

0

ds

α(ρε(s))
≥ Lρε

α∗ ≥ d(x,K)

α∗

so that the second inequality in (5) follows by taking ε → 0.

In particular, inequalities (5) imply (4). Indeed, if x ∈ K + Btα∗(0) one uses
the first inequality in (5) to get u(x) ≥ −d(x,K)/α∗ > −tα∗/α∗ = −t, which
implies that x ∈ Ut. On the contrary, if x ∈ Ut the second inequality in (5) gives
d(x,K) ≤ −α∗u(x) < tα∗, namely, x ∈ K + Btα∗(0). Note that in case α ≡ 1, the
inclusions (4) indeed allow to recover ut = K +Bt(0).

Step 2: We now show that the sets Ut are connected. By contradiction, let
t ∈ (0, T ] be given such that Ut has at least two connected components. Call

Û an open connected component of Ut which does not contain K. At any point

x ∈ Û ⊂ Ut one has u(x) > −t. On the other hand, any curve from x to K neces-

sarily contains points on ∂Û ⊂ ∂Ut, where u ≡ −t by continuity. Hence, u(x) ≤ −t
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Figure 1. The construction for the proof of Theorem 1.1
.

by formula (3), a contradiction.

Step 3: We are left with proving that Ut with t > 0 is a John domain with respect
to x0 with constant κ from (2). This follows from a geometric construction, which
is illustrated in Figure 1. Let x ∈ Ut be such that

0 < δ < u(x) + t < 2δ (6)

for some small δ < t/2. In view of formula (3) we find an arc-parametrized curve
ρ : [0, Lρ] → Rn with ρ(0) = x and ρ(Lρ) =: x ∈ K such that

u(x) ≤ −
∫ Lρ

0

ds

α(ρ(s))
+ δ. (7)

Note that, in principle, the curve ρ might not be entirely contained in Ut. Taking
any r ∈ [0, Lρ], we start by checking that, actually,

d(ρ(r), ∂Ut) >
α∗
α∗ r ∀r ∈ [0, Lρ]. (8)

In particular, from (8) we infer that the curve ρ cannot intersect ∂Ut. Since x ∈ Ut,
this yields that ρ(r) ∈ Ut for every r ∈ [0, Lρ].

In fact, let ℓ : [0, Lℓ] → Rn be any arc-length parametrized curve connecting
ρ(r) to ∂Ut, namely, such that ℓ(0) ∈ ∂Ut and ℓ(Lℓ) = ρ(r). The curve resulting
from following ℓ(s) for s ∈ [0, Lℓ] and then ρ(s − Lℓ + r) for s ∈ (Lℓ, Lρ + Lℓ − r]
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connects ∂Ut to K. Hence, formula (3) and the fact that u = −t on ∂Ut give

t ≤
∫ Lℓ

0

ds

α(ℓ(s))
+

∫ Lρ+Lℓ−r

Lℓ

ds

α(ρ(s− Lℓ + r))
=

∫ Lℓ

0

ds

α(ℓ(s))
+

∫ Lρ

r

ds

α(ρ(s))
.

From (7) and (6) we have∫ r

0

ds

α(ρ(s))
+

∫ Lρ

r

ds

α(ρ(s))
=

∫ Lρ

0

ds

α(ρ(s))
≤ −u(x) + δ < t.

Putting the two inequalities together we obtain∫ r

0

ds

α(ρ(s))
<

∫ Lℓ

0

ds

α(ℓ(s))
.

By using the bounds on α, the latter gives

r

α∗ <
Lℓ

α∗
.

This proves that the length Lℓ of any curve connecting ρ(r) to ∂Ut is strictly
bounded from below by α∗r/α∗. In particular, the lower bound (8) follows by
considering a straight curve from ρ(r) to ∂Ut.

Recall now that K is a John domain with respect to x0 with constant κ0

and denote by ρ0 : [0, Lρ0 ] → K an arc-parametrized curve fulfilling ρ0(0) = x̄,
ρ0(Lρ0) = x0, as well as d(ρ0(s), ∂K) ≥ κ0s for all s ∈ [0, Lρ0 ]. We now concate-
nate the curves ρ and ρ0 to define the curve ρ̃(s) : [0, Lρ + Lρ0

] → Rn as

ρ̃(s) =

{
ρ(s) for s ∈ [0, Lρ],
ρ0(s− Lρ) for s ∈ (Lρ, Lρ + Lρ0

].

We aim at showing that, by choosing κ as in (2), one has that

d(ρ̃(s), ∂Ut) ≥ κs for all s ∈ [0, Lρ + Lρ0
]. (9)

In order to check (9), we distinguish three cases, depending on the possible values
of s in the interval [0, Lρ + Lρ0 ]:

• Case s ∈ [0, Lρ]: Property (9) follows from inequality (8) since

κ
(2)
≤ α∗

2α∗ + α∗
<

α∗
α∗ .

• Case s ∈ [Lρ, s
∗] with

s∗ := min
{
Lρ

(
1 +

α∗
2α∗

)
, Lρ + Lρ0

}
.

As s− Lρ ≤ s∗ − Lρ ≤ α∗Lρ/(2α
∗) we have that

|x− ρ̃(s)| = |x− ρ0(s− Lρ)|≤ |x− ρ0(s
∗ − Lρ)|

= |ρ0(0)− ρ0(s
∗ − Lρ)|≤ α∗Lρ/(2α

∗),

where in the latter inequality we have used that ρ0 is parametrized by arc-length,
see also Figure 1. On the other hand, we have d(x, ∂Ut) ≥ α∗Lρ/α

∗ from (8). We
can hence conclude that d(ρ̃(s), ∂Ut) ≥ α∗Lρ/(2α

∗) and property (9) follows as

α∗Lρ

2α∗ =
α∗

2α∗ + α∗
Lρ

(
1 +

α∗
2α∗

) (2)
≥ κ s∗ ≥ κ s.
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• Case s ∈ [s∗, Lρ + Lρ0
]. Note that this case is solely relevant in case

s∗ = Lρ

(
1 +

α∗
2α∗

)
< Lρ + Lρ0

. (10)

We prove the John property (9) at s ∈ [s∗, Lρ + Lρ] by using again that K is a
John domain, namely,

d(ρ̃(s), ∂Ut) > d(ρ̃(s), ∂K) = d(ρ0(s− Lρ), ∂K) ≥ κ0(s− Lρ).

Property (9) then follows from

κ0(s− Lρ) = κ0

(
1− Lρ

s

)
s ≥ κ0

(
1− Lρ

s∗

)
s = κ0

α∗
2α∗ + α∗

s
(2)
≥ κ s.

This concludes the proof of the theorem. □

Before closing this section, let us remark that (10) occurs for small t only. Indeed,
(10) corresponds to

α∗Lρ

2α∗ ≤ Lρ0
. (11)

The left-hand side of (11) can be bounded from below as follows

α∗Lρ

2α∗ ≥ α∗d(x,K)

2α∗

(5)
≥ − α2

∗
2α∗

u(x) >
α2
∗

2α∗
(t− 2δ),

where the latter inequality is a consequence of (6). On the other hand, as K is a
John domain one has that Bκ0Lρ0

(x0) ⊂ K. Letting R = sup{r > 0 : Br(x0) ⊂ K}
we have that κ0Lρ0

≤ R and the right-hand side of (11) can be bounded above by
R/κ0. Hence, for t large enough so that α2

∗(t − 2δ)/(2α∗) > R/κ0 inequality (11)
does not hold. Hence, s∗ > Lρ + Lρ0 and the case s ∈ [s∗, Lρ + Lρ0 ] need not be
considered.

3. Counterexamples to regularity

We present here some examples illustrating the sharpness of John regularity in
the setting of Theorem 1.1.

In all of this section, we discuss different choices for the function α, all of which
are Lipschitz continuous. This allows to draw a connection between the eikonal
problem (1) and an optimal control problem for differential systems. Up to sign, the
eikonal function u turns out to be the value function of the minimal-time problem
[5, 9] driven by the controlled ODE system ẏ = α(y)v, where the measurable
control t 7→ v(t) is such that |v|≤ 1 almost everywhere. Indeed, when α is Lipschitz
continuous one has that the latter differential problem admits a unique strong
solution for any such controls v and any given initial datum x. One hence has that

u(x) = −min
{
t ≥ 0 : y(t) = x, ẏ = α(y)v a.e. in (0, t), v : (0, t) → Rn (12)

measurable with |v|≤ 1 a.e., y(0) ∈ K
}
.
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Correspondingly, Ut turns out to be the reachable set at time t starting from K for
the same controlled ODE system, namely,

Ut =
⋃
s<t

{
y(s) : ẏ = α(y)v a.e. in (0, t), for some v : (0, t) → Rn

measurable with |v|≤ 1 a.e. and some y(0) ∈ K
}
. (13)

Note that the sets Ut are generally not smooth, regardless of the smoothness of α.
In the smooth case one can equivalently qualify the evolution of ∂Ut in time at point
x as driven by the normal velocity α(x)ν(x), where ν(x) is the outward-pointing
normal to ∂Ut at x.

In all examples below, we indicate points x ∈ Rn by x = (x′, xn), where x′ ∈
Rn−1 and xn ∈ R, and use (e1, . . . , en) for the basis of Rn. The initial set K is
assumed to be smooth, contained in the half space {xn ≤ 0}, rotationally symmetric
with respect to {x′ = 0}, and such that the boundary ∂K contains the (d − 1)-
dimensional ball {(x′, 0) : |x′|< R} for R > 0 given and large.

3.1. No lower bound on the interior-ball radius. We present a first example
proving that if α ̸∈ C1,1 one cannot expect to provide a lower bound for the interior-
ball radius of Ut as t → ∞. Let 0 < α∗ < α∗, and consider the Lipschitz continuous
function

α(x) =


α∗ for |x′|≤ δ,

α∗
(
1− |x′|−δ

εδ

)
+ α∗

|x′|−δ

εδ
for δ < |x′|< (1 + ε)δ,

α∗ for |x′|≥ (1 + ε)δ.

The parameter δ > 0 will be chosen later (in relation with t > 0), while ε > 0 is
arbitrarily small. Note that α is Lipschitz continuous with ∥∇α∥∞= (α∗−α∗)/(εδ).

In what follows, we assume that

α∗ >
√
5α∗ (14)

as this somewhat simplifies computations. Note however that such constraint could
be removed and one could treat the general case α∗ > α∗ as well, at the expense of
a more involved argument.

As α is Lipschitz continuous and radially symmetric with respect to x′, the
supersets Ut are well-defined and radially symmetric, as well. In particular, due to
radial symmetry and by (3) one has that u(0, α∗t) = t for every t ≥ 0, namely that
the point (0, α∗t) ∈ ∂Ut for all t ≥ 0, recall that K ⊂ Ut and see Figure 2. In fact,
the infimum in (3) is always attained by taking the straight line from (0, α∗t) to
the origin.

We first show that, for all t > 0 there exists δ > 0 large enough, so that the
superset Ut does not contain a ball with radius 2δ touching ∂Ut only at (0, α∗t).
Note that, by symmetry, such ball is necessarily B := B2δ(0, α

∗t − 2δ). We argue
as follows: we consider a point x0 = (x′

0, α
∗t− 2δ) with |x′

0|= 2δ, which belongs to
B, and prove that u(x0) ≤ −t. Since we are assuming that ∂Ut ∩B = (0, α∗t), this
in particular entails that x0 ̸∈ Ut, hence B ̸⊂ Ut.

In order to check that u(x0) ≤ −t one has to prove that no curve γ can connect
K and x0 in time smaller or equal to t. More precisely, cf. (13), we show that for
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x0

γ

(0, α∗t)

(0, α∗t− 2δ)
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Figure 2. The example of Section 3.1

all γ0 = γ(0) ∈ K and all measurable v : (0, t) → Rn with |v|≤ 1 and γ̇ = α(γ)v
a.e. one has that γ(t) ̸= x0. Indeed, if γ is such that |(γ(·))′|≥ (1 + ε)δ for
all times (recall that the notation γ′ refers to the first n − 1 components of the
vector γ), then, in view of (12) the minimal time to connect x0 with K (recall that
{(x′, 0) : |x′|< R} ⊂ ∂K with R large) is (α∗t − 2δ)/α∗. This is however strictly
larger than t for

(α∗ − α∗)t > 2δ, (15)

that is, for δ large enough, given t. As a consequence, no curve with |(γ(·))′|≥
(1 + ε)δ for all times can connect x0 to K.

We are left with the case of a curve γ with |γ(·)′|< (1+ε)δ at least for some times.
As ε is assumed to be arbitrarily small, in the simple geometry of this example an
optimal curve connecting K and x0 is arbitrarily close to the curve γ following the
line {x′ = x′

0/2} up to some time s < t and then the straight segment between
(x′

0/2, α
∗s) and x0, namely,

γ(τ) =


(x′

0/2, α
∗τ) for 0 ≤ τ < s,

t− τ

t− s
(x′

0/2, α
∗s) +

(
1− t− τ

t− s

)
x0 for s ≤ τ ≤ t.

Note that the distance between γ(s) = (x′
0/2, α

∗s) and x0 is ((α∗(t − s) − 2δ)2 +
δ2)1/2. In order to cover such segment in time t− s one would need(

(α∗(t− s)− 2δ)2 + δ2
)1/2

=

∫ t−s

0

α(γ(τ)) dτ

=

∫ t−s

0

max

{
−α∗ − α∗
ε(t− s)

τ + α∗, α∗

}
dτ < (εα∗ + (1−ε)α∗)(t− s).
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The inequality between the first and the last term above is equivalent to(
(α∗)2 − (εα∗ + (1−ε)α∗)

2
)
(t− s)2 + 5δ2 < 4δα∗(t− s).

This is however false, regardless of the value s < t, as soon as ε is chosen small
enough. Indeed, we can equivalently rewrite the latter as(

(α∗)2 − (εα∗ + (1− ε)α∗)
2 − 4

5
(α∗)2

)
(t− s)2 +

(
2√
5
α∗(t− s)−

√
5δ

)2

< 0.

As the second term in the left-hand side above is nonnegative, the inequality is false
as soon as the coefficient of (t− s)2 in the first term is positive, namely,

(α∗)2 − (εα∗ + (1− ε)α∗)
2 − 4

5
(α∗)2 > 0

which follows from (14) for ε small enough.

We have eventually proved that x0 ∈ ∂B cannot be reached from K in time t,
which entails that x0 ̸∈ Ut and, ultimately, B ̸⊂ Ut. In particular, Ut does not
fulfill the interior-ball condition with radius 2δ.

Assume now on the contrary that δ is given. Relation (15) reveals that Ut does
not fulfill the interior-ball condition with radius 2δ for t > 0 large enough. In
particular, this entails that no uniform-in-time lower bound on the interior-ball
radius of Ut can be inferred from α∗ and α∗ only.

3.2. No interior-ball regularity. Let us now consider problem (1) in the open
set Rn−1 × {xn < α∗T} for some arbitrary but fixed final time T > 0. For any
α∗ > α∗ > 0 choose 0 < β < η < π/2 in such a way that

sin(η − β)

cosβ
≥ α∗

α∗ (16)

by possibly taking η large and β small enough. Moreover, let ε > 0 be arbitrarily
small with (1+ε)β < η.

Define the Lipschitz continuous function

α(x) =


α∗ if x ∈ A∗,

(1− θ(x))α∗ + θ(x)α∗ if x ∈ Aε,

α∗ if x ∈ A∗,

(17)

where the regions A∗, Aε, and A∗ are defined as

A∗ :=

{
(x′, xn) ∈ Rn × {xn < α∗T} :

|x′|
α∗T − xn

≤ tanβ

}
,

Aε :=

{
(x′, xn) ∈ Rn × {xn < α∗T} : tanβ <

|x′|
α∗T − xn

< tan((1+ε)β)

}
,

A∗ :=

{
(x′, xn) ∈ Rn × {xn < α∗T} : tan((1+ε)β) ≤ |x′|

α∗T − xn

}
,

and θ(x) ∈ (0, 1) for x ∈ Aε is given by

θ(x) =

|x′|
α∗T − xn

− tanβ

tan((1+ε)β)− tanβ
,

see Figure 3.
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x0

γ

(0, α∗T )

β

(1+ε)β

η

K

UT

C

A∗

Aε Aε

A∗

γ0

A∗

(0, 0)

(γ′0, α
∗s)

Figure 3. The example of Section 3.2

By symmetry, and by (3) one has that u(0, α∗T ) = T , namely that (0, α∗T ) ∈
∂UT . Additionally, we have that (0, α∗t) ∈ UT for every 0 ≤ t < T . We aim at
showing that UT ⊂ C locally, where C is the cone with vertex at (0, α∗T ), axis
−en, and opening η, namely,

C =

{
(x′, xn) ∈ Rn × {xn < α∗T} :

|x′|
α∗T − xn

< tan η

}
,

see Figure 3. In order to prove that UT ⊂ C locally, we show that all x0 ∈ ∂C with
x0 ̸= (0, α∗T ) and (x0)n > α∗T cannot be reached in time T from K.

Consider a curve γ connecting γ0 := γ(0) ∈ K with x0. Assume first that γ(t)
is in region A∗ for all times. Then necessarily (γ(t))n ≤ α∗t for all times t ∈ [0, T ].
In particular (γ(T ))n ≤ α∗T < (x0)n so that x0 cannot be reached by γ in time T .

Assume on the contrary that γ enters the region A∗ ∪ Aε for some times. As
ε is arbitrarily small, in the geometry of this example, one has that the optimal
curve in this class is arbitrary close to the curve γ following the line {x′ = γ′

0} with
γ′
0 = x′

0α
∗(T − s) sinβ/|x′

0| up to some time s < T and then the straight segment
between (γ′

0, α
∗s) and x0, namely,

γ(t) =


γ0 + α∗ten for 0 ≤ t < s,(
T − t

T − s

)
(γ′

0, α
∗s) +

(
1− T − t

T − s

)
x0 for s ≤ t ≤ T.
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The distance between γ(s) = (γ′
0, α

∗s) and x0 is

α∗(T − s)
sin(η − β)

cosβ
.

On the other hand, by using condition (16) and choosing ε small enough depending
on α∗, α∗, η, and β one finds that the latter quantity is strictly greater than(

sin(η − (1+ε)β)

sin(η − β)
α∗ +

(
1− sin(η − (1+ε)β)

sin(η − β)

)
α∗

)
(T − s),

which bounds from above the maximum distance that the curve γ can travel in
region A∗ ∪Aε in time T − s. We hence conclude that the curve γ cannot reach x0

in time T . This proves that UT is locally contained in the cone C. In particular,
UT is not interior-ball regular.

Before closing this section, let us remark that α is defined in Rn−1×{xn < α∗T}
only and cannot be continuously extended to the whole Rn.

3.3. No interior-cone regularity. The example of Section 3.2 is not interior-ball
regular but still interior-cone regular. We rework the example in order to prove that
even interior-cone regularity may fail. To this aim, we still use the choice of α, β, η,
and θ from (17), but redefining the regions A∗, Aε, and A∗ as in Figure 5 (see details
below). In this case, one can prove that there exists a time T ∗ such that UT∗ is not
interior-cone regular, but merely John regular.

(0, 0)

(0, 1)

Vβ

(0, 0)

(0, 1)
(1/2, 1)

Qβ

Figure 4. A two-dimensional representation of the sets Vβ and Qβ

In order to give some details, let us start by defining the union of balls

Vβ :=
⋃

s∈[0,1]

B(tan β)(2−s)(sen)

see Figure 4. The parameter β > 0 plays the role of the opening of a cone, see
Section 3.2, and will later be chosen to be small. Correspondingly, for β < η < π/2
and ε > 0 arbitrarily small we analogously define Vη and V(1+ε)β .

Moreover, we let

Qβ := Vβ ∪
(
1

2
JVβ + (0, . . . , 0, 1))

)
,
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where J is a rotation, mapping en to e1, see Figure 4. Correspondingly, for β < η <
π/2 and ε > 0 arbitrarily small we analogously define Qη and Q(1+ε)β by replacing
β by η or (1+ε)β, respectively.

Finally, we let A∗ and Aε be given by

A∗ :=

∞⋃
i=0

 1

4i
Qβ +

i∑
j=1

1

4j−1

(
1

2
, 0, . . . , 0, 1

) ,

Aε :=

 ∞⋃
i=0

 1

4i
Q(1+ε)β +

i∑
j=1

1

4j−1

(
1

2
, 0, . . . , 0, 1

) \A∗.

One has that A∗, Aε ⊂ Rn−1 × {xn < 4/3} and defines A∗ = Rn−1 × {xn <
7α∗/3} \ (A∗ ∪Aε).

Consider now the point

x∗ =

∞∑
j=1

1

4j−1

(
1

2
, 0, . . . , 0, 1

)
=

(
2

3
, 0, . . . , 0,

4

3

)
.

Clearly, x∗ ∈ A∗ can be reached from K in finite time T ∗ by a curve entirely in A∗,
see Figure 5. Assume now that α∗ > α∗ > 0 are given in such a way that one can
choose η with η > β > 0 small and still fulfilling (16) (this is, for instance, the case
for α∗ << α∗) and define

α(x) =


α∗ for x ∈ A∗,

α∗ d(x,A∗) + α∗ d(x,A∗)
max{d(x,A∗), d(x,A∗)} for x ∈ Aε,

α∗ for x ∈ A∗.

Note that α is locally Lipschitz continuous in Rn−1 × {xn < 4/3} as one has that
max{d(x,A∗), d(x,A∗)} is uniformly positive in Aε.

For ε small one can then argue as in Section 3.2 in order to check that in a
neighborhood of x∗ the superlevel UT∗ is contained in the set

Aη :=

∞⋃
i=0

 1

4i
Qη +

i∑
j=1

1

4j−1

(
1

2
, 0, . . . , 0, 1

) .

Since Aη is (John regular but) not interior-cone regular, so is UT∗ , for x∗ ∈ Aη∩UT∗ .

Once again, such Lipschitz continuous α cannot be continuously extended to Rn.
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K

A∗A∗ A∗

(0, 0)

x∗

Aε Aε

Figure 5. The example of Section 3.3 in R2
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