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Abstract

We consider a variational problem modeling transition between flat and wrinkled region in
a thin elastic sheet, and identify the Γ-limit as the sheet thickness goes to 0, thus extending
the previous work of the first author [Bella, ARMA 2015]. The limiting problem is scalar
and convex, but constrained and posed for measures. For the Γ − lim inf inequality we first
pass to quadratic variables so that the constraint becomes linear, and then obtain the lower
bound using Reshetnyak’s theorem. The construction of the recovery sequence for the Γ −
lim sup inequality relies on mollification of quadratic variables, and careful choice of multiple
construction parameters. Eventually for the limiting problem we show existence of a minimizer
and equipartition of the energy for each frequency.

1 Introduction

This paper is about fine analysis of minimizers of a nonconvex variational problem which describes
wrinkling of thin elastic sheets.

Motivated by physical experiments with thin elastic sheets [27,28,30], the first author, in his PhD
thesis [12] (see also [8]), considered a specific variational problem describing deformations of a thin
elastic sheet of thickness h and cross section of annular shape Ω = {x ∈ R2 : Rin < |x| < Rout}. If
dead loads are applied on the inner and outer boundary of Ω in the radial direction with magnitude
Tin pointing inwards and Tout pointing outwards, the membrane will stretch mainly in the radial
direction. Moreover, if the inner loads Tin are much larger than the outer Tout, the material close
to the inner boundary will move inwards and will occupy much less space than favored. To relieve
the compression in the angular direction the sheet becomes unstable and wrinkles out-of-plane
(Figure 1 left). Analysis of this wrinkled region is the main object of the present study.

In the reduced two-dimensional Kirkhhoff-Love setting, the elastic energy, corresponding to a
deformation of the cross section v : Ω → R3, consists of a membrane term, measuring stretching
and compression of the sheet, a bending term, which penalizes curvature, and a boundary term
representing the boundary loads. As a proxy for the energy one can think of

Eh(v) =

ˆ
Ω
W (∇v) dx+ h2

ˆ
Ω
Q(∇ν) dx+B(v) , (1.1)

where ν is the normal to the deformed surface v(Ω), W is a nonlinear energy density, Q a quadratic
function, and

B(v) = Tin

ˆ
|x|=Rin

v · x

Rin
dS − Tout

ˆ
|x|=Rout

v · x

Rout
dS
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Figure 1: Left: Elastic annular membrane stretched in the radial direction. The blue dotted curve
represents the free boundary that separates the outer stretched region from the inner wrinkled one.
Right: Rectangular piece of the membrane intersecting the free boundary curve.

describing the dead loads applied in the radial direction on the inner and outer boundary. The
membrane part is non-convex, possibly giving rise to oscillations. In contrast, the bending part is
convex and of higher-order, thus regularizing the problem. Since the bending resistance is related
to the sheet thickness h, the magnitude of this contribution asymptotically vanishes in the limit
h↘ 0.

The physics approach to tackle these problems consists of a specific choice of an ansatz (guess) for
the form of a minimizer. In other words, one restricts the analysis to a class of competitors having
specific characteristics, and look for a minimizer of the energy within that class. On the other hand,
the rigorous analytical approach does not make any assumptions on the form of a minimizer, i.e.,
the energy is minimized over all possible deformations. The problem in (1.1) being non-convex,
hence possibly possessing many (local) minimizers or critical points, the first step is to understand
the minimal value of the energy, with possibly learning some clues by which deformations is this
minimal value, at least approximately, achieved.

Hence, we first try to identify the minimal value of the energy. Precisely, in the present situation,
the goal is to understand its dependence on the (small) sheets thickness h. It turns out that the
minimal value minv Eh(v) consists of a leading zeroth-order term E0 (coming from the stretching of
the sheet) plus a linear correction in h, which corresponds to the cost of wrinkling of the sheet [8,12].
More precisely, there exist two constants 0 < C0 < C1 < ∞ such that for any thickness 0 < h < 1
there holds

E0 + C0h ≤ min
v
Eh(v) ≤ E0 + C1h . (1.2)

The wrinkling serves as a mechanism to relieve compressive stresses in the inner region of the
annulus (see Figure 1), which are caused by specific geometrical effects. An alternative to wrinkling
would be simply compression, which contributes to the membrane part at the order O(1). Hence,
in the case of small thickness (present situation) compression is much less energetically favorable
(O(1) vs O(h2)), and thus not expected.

The identified linear scaling law (1.2) in h for the minimal value of the energy raised a lot
of discussion among the physics community, having improved their ansatz-based prediction by a
factor of log h (i.e. h in [8] vs h(| log h|+ 1) in [27]). It turns out that this discrepancy is related to
a suboptimal choice of the ansatz close to the interface between the wrinkled and the flat region.
Moreover, the upper bound in (1.2) is achieved through a complex construction involving branching
effects at the transition between the wrinkled and the flat region, a pattern which was not observed
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experimentally.
There might be several reasons for the discrepancy between the upper bound construction in [8]

and the experiments. Maybe the experimental sheet is not thin enough for the additional log h
factor to loose the battle against (possibly large) prefactor C1 in (1.2)? Maybe there are some
additional effects which are neglected in the mathematical study? Or this discrepancy is related to
dynamics leading to the deformation, i.e., one it can be trapped in a local minima of the energy.
Finally, due to non-convexity of the energy there is no reason for the construction achieving the
upper bound (1.2) being unique. Actually, inspired by the study of wrinkling in twisted ribbons [37],
in [9] a different fold-like construction achieving the optimal scaling without branching is sketched.

To understand which of possibly many different constructions is energetically optimal as well as
which of the terms neglected in the force-balance approach [27] should not be ignored, the first
author considered a variational toy problem modelling the transition region [13] with the aim of
better understanding the behavior of the minimizer in that region. Precisely, in [13] the author
restricts the analysis to a rectangular piece of the elastic annulus (see Figure 1), thus neglecting
some terms due to circular geometry. In fact, wrinkles are caused by the compression in the
angular direction, which is related to movement of the inner circles towards the center. To avoid
the need to work in radial coordinates, for example to avoid the need to include that the circles with
different radii have different lengths, in [13] the first author instead decided to phrase the problem
in rectangular domain while prescribing a non-euclidean metric together with periodic boundary
conditions in the y-variable. Let us point out that the metric we prescribe is not coming from the
change from radial to rectangular setting, but rather from the fact that the circles move inwards and
are therefore compressed. In particular, already the rectangular model includes essential features
of the problem, while being less technical to be analysed compared to the original radial geometry.
We believe that the present arguments can be used with minor modifications also in the original
circular setting.

Then, working at the level of the energy, one considers the quantity minv Eh(v)−E0
h (where now Eh

is a simplified version of (1.2) coming from Föppl-von Kármán theory, and v is the displacement,
see formula (2.1)), which is not only bounded away from 0 and ∞ (see (1.2)), but as h ↘ 0 it
actually converges to some value σ (as proven in [13]). Even though the value σ is characterized
as a limit of minima of simpler scalar and convex variational problems, it does not provide any
information on the form of sequence of minimizers.

In that respect, the goal of this paper is to overcome this shortcoming by identifying the Γ −
lim of Eh−E0

h as h ↘ 0 combined with a compactness result. As usual, as a consequence we
obtain convergence of minimizers uh of Eh to a minimizer of the limiting problem, hence providing
information on uh, at least for 0 < h ≪ 1. Denoting by F∞ the Γ-limit functional (see (2.9)
below), it turns out that as expected from [13], F∞ is scalar and convex, thus possibly much easier
to analyze than the original Eh. Nevertheless, the study of minimizers of F∞ is still far from trivial
and we postpone it to a future work – except for some preliminary results collected in Section 6. As
actually mentioned above, by learning the form of (the) minimizer of F∞, hence also asymptotic
form of minimizers of Eh, we hope to understand how is the transition between the planar and the
wrinkled region precisely achieved, and which terms in the force balance can not be neglected.

While analysis of the form of minimizer(s) of F∞ will be pursued elsewhere, in the present
article we directly show existence of a minimizer (which alternatively also follow from compactness
of minimizing sequence and Γ-convergence) and equipartition between membrane and bending
energies. While equipartition of the energy had been observed in several problems on energy
driven pattern formation with competing energetic parts, here we show much stronger statement:
it actually holds for every frequency separately. This observation should later be important for the
analysis of the form of minimizer (e.g. its asymptotic self-similarity), since it is usually easier to
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control one part of the energy than the other: here the bending part should be easier to handle
since it depends on the values of the coefficients and not its derivative. As a first implication of
this fact we show that any minimizer of F∞ will not possess any long-frequencies.

There are many areas of material science, most of them falling within a class of energy-driven
pattern formation [35], where the idea to study energy scaling laws for variational problems turned
out to be very fruitful. The common features of these problems is the presence of a nonconvex
term in the energy, which is regularized by a higher-order term with a small prefactor. This
small parameter (for now denoted ε) has different meanings: thickness in the case of elastic films,
inverse Ginzburg-Landau parameter in the theory of superconductors, strength of the interfacial
energy for models of shape-memory alloys or micromagnetics, to name just few. As ε ↘ 0, the
oscillations caused by the nonconvexity are less penalized, giving the energy more freedom to form
patterns/microstructure.

The first paper in this direction, in the context of shape memory alloys, is a seminal work of Kohn
and Müller [34], where they studied a toy problem to model the interface in the austenite-martensite
phase transformation. They showed that the energy minimum scales like ε2/3, which was in contrast
with the scaling ε1/2, widely accepted in the physics community. More precisely, the physics
arguments were based on an ansatz of “one-dimensional” structure of minimizers, whereas Kohn
and Müller used a branching construction to achieve lower energy. While they did not show the
form of minimizers, they provided localized (in one direction) estimates on the energy distribution
for the minimizer – thus providing hints on scales used for branching. Subsequently, Conti [24]
used an intricate upper bound construction to show localized energy bounds (in both directions),
which in particular implies asymptotical self-similarity of the minimizer close to the interface.
The analysis of the toy model was later generalized in several directions, for example analysis
based on energy scalings laws for the cubic-to-tetragonal phase transformation - e.g. rigidity of
the microstructure [21, 22] or study of the energy barrier for the nucleation in the bulk [33] and
at the boundary [6]. In that respect it is worth to also mention recent works of Rüland and
Tribuzio [51,52], where a novel use of Fourier Analysis allows to obtain sharp lower bounds on the
energy on a more advanced model.

The work of Kohn and Müller initiated many developments in other areas of material science to
study pattern formation driven by the energy minization, for example in micromagnetics [20,45,49],
island growth on epitaxially strained films [7], diblock copolymers [23], optimal design [38, 39],
superconductors [54], dislocations in crystals (see e.g. [25, 29]), fractures in solids (see e.g. [2–4,
42]) and phase-separation [41]. Picking one of them as an example, the Ginzburg-Landau model
describes behavior of superconductors in different regimes of the applied magnetics field. While
for extreme values of the magnetic field (very small or very large) there is only one (normal or
superconducting) phase, for intermediate values of the field the mixed states consisting of many
vortices are observed. There the leading order energy characterizes the number of vortices, and the
next order in the energy describes interaction between them (see [54] for a survey, [50] for analysis
in three spatial dimensions, and [47] for a similar work in the context of 2d Coulomb gases).

The models for wrinkling of thin elastic films have similar feature, with the leading order term
in the energy expansion encoding the wrinkled regions while the next term in the energy expansion
being related to the form (e.g. lengthscale) of wrinkling. The relevant physical object being a two
dimensional (thickened) surface in R3, the local energy expense of a deformation v is encoded using
two principal values of a 3 × 2 matrix ∇v – heuristically, singular value greater or smaller than 1
corresponds to a tension or a compression, respectively. Wrinkling being an energetically efficient
alternative to a compression, we expect it to appear in the case of (at least) one singular value
being less than one.

A compressed elastic sheet can feel the compression in one (“tensile wrinkling”) or both directions
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(“compressive wrinkling”). A class of problems falling into the latter category for which the energy
scaling laws were identified include for instance blistering/delamination problem (with [5,18,36,46]
or without [16, 17, 32] substrate effects), crumpling of elastic sheets [26, 58], or analysis of conical
singularities in elastic sheets [43,44]. A common feature of this problem is degeneracy of the relaxed
energy: the minimum of the relaxed energy E0 equals zero, and more importantly it is achieved
by many different minimizers, making the analysis of the next order expansion of the energy often
difficult.

In contrast, tensile wrinkling problems usually have relaxed problem with unique minimizer,
making the analysis of the next order term (which describes wrinkling) more accessible. The need
for compression usually comes from the prescribed boundary conditions (as for example in the raft
problem [19,31], twisted ribbon [37], hanging drapes [10,57], or compressed cylinder [55]), through
prescribed incompatible strain [14,40] or curvature effects [11,15,56].

The model we consider here is a mixture of the first and the second case, i.e., it is driven both
by the boundary conditions as well as prescribed nontrivial metric (prestrain). The latter should
mimic the need to “waste the length” in one direction, this need coming from geometric effects
in our original motivation [8]. More precisely, in [8] an elastic annulus is stretched radially with
stronger inner loads, forcing some of the concentric circles of material to move closer to the center.
Pushing some circles into less space naturally force compression or wrinkling out of plane, while
the circles towards the outer boundary stay planar, and are actually stretched in the azimuthal
direction. Phrased differently, the excess length of circles (i.e. the amount of material which needs
to be “wasted”) is positive close to the inner boundary (compression) and negative on the outer edge
(tension). As a continuous (smooth) function it passes through 0, which is exactly the region which
we analyze in this paper (blue dotted circle in Figure 1 left). The excess length can be obtained as
a minimizer of a one-dimensional variational problem [8], in particular is non-degenerate close to
its 0 – for simplicity we approximate it with a linear function (its first-order Taylor polynomial).

As we will see, it is crucial that the amount of arclength grows linearly in the distance from the
free boundary (between the wrinkled and planar region) and not slower (e.g. quadratically) – the
latter case is expected to be quite boring with the minimizer using only one frequency. In contrast,
the present problem requires infinitely many frequencies, in particular near the transition higher
and higher frequencies are needed.

The rest of this section will provide an overview of our results and organization of the paper. As
in [13], we consider a specific thickness dependent energy Eh (see (2.1) for its precise definition),
a model problem describing transition between planar and wrinkled region in thin elastic sheet,
and are interested to understand structure of minimizers of the energies as h ↘ 0. We consider
a thin elastic sheet of thickness h and cross section of rectangular shape [−1, 1] × [−1, 1] ⊂ R2,
which represents a piece of the elastic annulus depicted above in Figure 1 by a green region, and
assume the sheet is i) stretched in the x-direction, and ii) stretched/compressed in the y-direction
proportional to x (i.e., it is unstrained for x = 0, stretched in the y-direction in the left half and
compressed in the right half of the domain). The stretching/compression in the y-direction is
modelled via prescribed metric together with periodic boundary conditions at the top and bottom
boundary.

To relax the compression in the region {x > 0} we expect the sheet to wrinkle, with the length-
scale of wrinkles of order h1/2 [8]. In order to analyse the limit of Eh−E0

h as h ↘ 0, we rescale

the y-variable by h−1/2 so that the wrinkles lengthscales stay of order 1, and the out-of-plane
displacement has chance to converge to some limiting shape. A consequence of the rescaling is a
change of the reference domain to the domain [−1, 1] × [−L,L] which is getting larger and larger
as L := h−1/2 → ∞, and so it is not clear how to perform the Γ-convergence analysis of the
corresponding functionals. In order to avoid these complications we pass to the Fourier space.
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More precisely, we rewrite the energy using Fourier expansion in y, with L appearing through the
summation set πZ

L . Heuristically, as L → 0 the Fourier sum will turn into an integral, hence there
is a hope for a limiting functional to make sense.

An alternative to the rescaling in the y-variable would be to keep the domain fixed, and after
passing to the Fourier space to perform a blow-up of the coefficients in the k-variable – this being
necessary since we know that the wrinkles live on lengthscale h1/2, i.e. in the limit h → 0 the
Fourier coefficients will concentrates on higher and higher frequencies. Naturally, this would be
nothing else than what we actually do here – we will only commute the passage to Fourier and
rescaling in the y(k)-variable.

Another natural question is whether it would possible, after rescaling in y and sending L →
∞, to avoid the need to work on changing (growing) domains. The motivation for this is an
expectation guided by our intuition that minimizers (low-energy configurations) should be relatively
homogeneous in the sense that the wrinkles are spread evenly in the y-variable. This homogeneity
being plausible, since the contraint measures the deformation along the whole interval, it would be
very difficult, if not impossible, to relate the global behavior (constraint) with a local one (form of
wrinkles on a fixed interval).

The rescaling was successfully pursued by the first author in [13], by observing i) the out-of-
plane displacement u being the only relevant quantity to be monitored in this limit, and ii) for
fixed (large) L = h−1/2 the minimum of the excess energy Eh−E0

h is well approximated by minimum
of a scalar, convex, and constrained variational problem for u of the form

SL(u) :=

ˆ 1

0

 L

−L
u2,x + u2,yy dx dy subject to

 L

−L
u2,y(x, y) dy = 2x+ o(1) for a.e. x ∈ (0, 1)

(1.3)
Denoting by ak(x) the Fourier coefficients in y of u(x, ·), we can rewrite

SL(u) =

ˆ 1

0

∑
k∈πZ

L

(ȧ2k(x) + a2k(x)k
4) dx, and

 L

−L
u2,y(x, y) dy =

∑
k∈πZ

L

a2k(x)k
2 , (1.4)

where “dot” denotes the derivative. The main achievements of [13] was to show that minima
of SL converge, and then to construct a recovery sequence for the original energy Eh, including
construction of the in-plane displacement. Since the elastic energy Eh includes all second derivatives
of u, and not only u,yy which appears in SL, regularity statement for the minimizers of SL’s played
a crucial role for the construction of the recovery sequence.

The analysis of minima of SL from [13] completely avoided the notion of convergence of minimiz-
ers, which needs to be an integral part of a Γ-convergence which we study here. To avoid the issue
of nonlinear constraint we use quadratic variables (i.e. monitoring bk := a2k instead of ak), which
turns the constraint into a linear one. The second term in the energy SL becomes also linear, while

the first term can be rewritten as (ḃk)
2

4bk
. One disadvantage of this approach is the L1-framework,

which naturally leads the limit functional to be defined on the space of measures. However, the
constraint provides a good pointwise control in x, in particular the limiting measure can be written
as a product of dx and x-dependent measures in k. The lower bound argument (Proposition 4.2)
is obtain using Reshetnyak Theorem.

The upper bound (construction of a recovery sequence) is much more tricky since it needs to be
done for any “limiting” measure with finite energy, in contrast with [13], where it was done just for
one (more regular) minimizer. The proof of the upper bound (Proposition 5.1) consists of several
steps:

1. Given a limiting measure, to obtain ak’s we will “discretize” the measure in the k-variable
(Lemma 5.3). Moreover, using smoothing of ak’s (more precisely of a2k), for which we need
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to extend the coefficients ak from [0, 1] via dilation into larger interval [0, 1+], we get a good
starting point for the construction.

2. Careful choice of the smoothing scale ε(L) together with few other parameters allow for defini-
tion of the out-of-plane displacement (see Lemma 5.4), which is then basis for the construction
of the in-plane displacement as well as estimates on the excess energy (Proposition 5.1). While
relatively complicated, the idea behind the definition of the in-plane displacement and the
correspoding estimates are very similar to the one used in [13].

The paper is organized as follows: in the next Chapter we provide a derivation of the energy,
including the functional-analytical framework in form of measures with well-behaved distributional
derivatives in x, as well as rewriting the energy to a form compatible also with this framework.

Afterwards we state the main result (Theorem 2.5), which consists of two, somehow independent,
parts. The first is compactness result, coupling notion of convergence (Definition 2.3) and coercivity
of the functionals. Said differently, it shows that the notion of convergence is a good one in the
sense, that any sequence (wL, uL) with equibounded “energies” FL will possess a subsequence which
converges with respect to that convergence. In particular, the notion of convergence is weak enough
to follow from the boundedness of energies. The second part of the result (Γ-convergence) shows
that at the same time the choice of convergence is strong enough to allow the passage to the limiting
functional F∞, including preservation the constraint in the limit L→ ∞.

After stating the main result, in the subsequent Chapter 3 we show how to disintegrate the
limiting measures, and then continue with the arguments for the compactness (Proposition 4.1).
With the help of Reshetnyak’s Theorem we then show the lower bound (Proposition 4.2). The
upper bound construction is content of Chapter 5. Eventually, in the last Chapter we state and
prove existence of minimizer (as a measure) for the limiting energy as well as pointwise (in k)
equipartion of the energy for this minimizer (see Theorem 6.2). A finer analysis of this minimizer
will be pursued in a future work of the authors.

2 Setting of the problem and main results

We start by collecting some notation we will use throughout the paper.

Notation.

(a) a ≲ b denotes a ≤ Cb for some constant C > 0;

(b) χA denotes the characteristic function of the set A;

(c) L1 denotes the 1-dimensional Lebesgue measure;

(d) δk denotes the Dirac measure on k ∈ R;

(e) Mb(A) denotes the space of bounded Radon measures on A with A ⊂ R2 Borel measurable;

(f) M+
b (A) denotes the subspace of Mb(A) of positive bounded Radon measures;

(g) For a function f : A ⊂ R → R we denote by ḟ(x) and f̈(x) the first and the second derivative,
respectively;

(h) For a function u : A ⊂ R2 → R we denote by u,x . . . x︸ ︷︷ ︸
i times

y . . . y︸ ︷︷ ︸
j times

its partial derivative

Di+ju(x, y) =
dj

dyj
di

dxi
u(x, y) , i, j ∈ N, 1 ≤ i+ j ≤ 3 ;
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Figure 2: Domain with the boundary conditions

(i) For a measure µ ∈ Mb(A) we denote by µ,x its distributional derivative with respect to the
first variable;

(j) For a measure µ ∈ Mb(A) we denote by |µ| ∈ M+
b (A) its total variation;

(k) For µ̃ = (µ1, µ2) ∈ (Mb(A))
2 we analogously denote by |µ̃| ∈ M+

b (A) its total variation;

(l) For µ1 ∈ Mb(A), µ2 ∈ M+
b (A) we write µ1 ≪ µ2 if µ1 is absolute continuous with respect to

µ2 and we indicate by dµ1

dµ2
∈ L1(A,µ2) the associated density (Radon-Nikodým derivative);

(m) f ∗ g(x) denotes the convolution between two functions f and g.

The Model. Let us now describe the model (energy) for the transition between the flat and
wrinkled region, which the first author started analyzing in [13]. Instead of considering the annular
elastic sheet as in [8], we consider only a rectangular piece (cut off from the sheet) near the transition
region, represented by the domain [−1, 1]× [−1, 1] ⊂ R2, in particular simplifying the problem by
avoiding the need to work in the radial geometry. The annular sheet in [8] is stretched in the
radial direction and the concentric circles close to the transition region are stretched/compressed
proportional to the distance from the free boundary. We will model the radial stretching by dead
tension loads in the horizontal direction with magnitude T = 1, while the stretching/compression
in the vertical direction will be modeled by prescribing a non-euclidean metric of the form dx +
(1 + δx) dy for some δ > 0 1. Moreover, the rectangle modelling part of the annulus, we prescribe
periodic boundary conditions in the vertical direction (see Figure 2). The choice of rectangular
domain and the metric should prevent the arguments becoming too technical, but such that this
simplified setting already includes the essential features of the problem. In particular, we believe
that our arguments could be extended also to the original setting of an annular domain and metric
with linear growth near the transition.

It is physically natural [27] and mathematically convenient to use “small-slope” geometrically
linear Föppl-von Kármán theory. In the membrane part of the energy the in-plane displacement is
represented via the linear strain while the out-of-plane displacement is kept non-linear (quadratic).
The bending part is modeled by simply L2 norm of the Hessian of the out-of-plane displacement
instead of L2 norm of the second fundamental form. Denoting by w = (w1, w2) and u the in-plane
and out-of-plane displacement respectively, the elastic energy Eh (normalized per unit thickness)

1The parameter δ is exactly value of the derivative of the excess length at the transition.
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has the form

Eh(w, u) :=
1

2

ˆ 1

−1

ˆ 1

−1
|e(w) + 1

2
∇u⊗∇u− δxe2 ⊗ e2|2 dx dy

+
1

2

ˆ 1

−1

ˆ 1

−1
h2|∇2u|2 dx dy −

ˆ 1

−1
(w1(1, y)− w1(−1, y)) dy.

(2.1)

Here e(w) := (∇w+∇Tw)/2 denotes the symmetric gradient of w and xe2 ⊗ e2 is the deviation of
the prescribed metric from the euclidean one. Since we are using the small-slope theory, in (2.1)
we omitted the prefactor δ coming from the metric as it can be included into small prefactors used
by the derivation of the FvK theory. Alternatively, it would be possible to keep such prefactor
in (2.1), but its value would anyway have different meaning than δ in the definition of the metric.
The third integral models the applied tensile dead loads in the horizontal direction. The factor
1/2 in front of the elastic energy is chosen for convenience, and can be changed to any factor using
simple rescaling of w and u, at the expense of changing the metric prefactor as well. Finally, we
assume the displacement (w, u) is 2-periodic in the second variable.

The behavior of Eh as h → 0 at the leading order is well understood using relaxation tech-
niques [48] (also called tension-field theory in the mechanics community). Applied to Eh from (2.1),
in the limit h → 0 the bending term simply disappears, and the integrand in the membrane term
gets relaxed to

(e(w)− xe2 ⊗ e2)
2
+ := min

A≥0
|e(w)− xe2 ⊗ e2 +A|2,

where “A ≥ 0” stays for positive semi-definite 2× 2 matrix. Hence, one can explicitly compute the
(unique) minimizer of the relaxed energy (w2 = 0 and w1 = x) and its minimum −2+ 1

3 = −5
3 =: E0.

From [8] we know that the next term in the energy Eh scales linearly in h, hence the right
quantity to look at is the rescaled excess energy Eh−E0

h . For x > 0 one expects that the sheet
wrinkles out-of-plane in the y-direction, in order to offset −xe2 ⊗ e2 with u2,y. The linear scaling

in h predicts h2|∇2u|2 ∼ h, in particular u,yy (its largest component) to be of order h−1/2. As a
consequence, the scale of wrinkles in the bulk should be reciprocal of this value, i.e., h1/2. Not
surprisingly, this is also the scale used in the upper bound construction in [8].

In order to analyze the limiting form of the wrinkles as h → 0 we rescale the y-variable by a
factor L := h−1/2, so that the characteristic lengthscale of wrinkles becomes 1. Precisely, after
performing the change of variables

ŵ1(x, y) := w1(x, L
−1y), ŵ2(x, y) := Lw2(x, L

−1y), û(x, y) := Lu(x, L−1y),

the energy Eh becomes (see [13, page 630] for a straightforward algebraic manipulation)

EL(w, u) :=
 L

−L

ˆ 1

−1

((
w1,x +

u2,x
2L2

− 1

)2

− 1

)
dx dy +

 L

−L

ˆ 1

−1

(
w2,y +

u2,y
2

− x

)2

dx dy

+
1

L2

 L

−L

ˆ 1

−1

(
L2w1,y + w2,x + u,xu,y

)2
dx dy +

1

L2

 L

−L

ˆ 1

−1

(
u2,x + u2,yy

)
dx dy (2.2)

+
1

L4

 L

−L

ˆ 1

−1

(
2u2,xy +

1

L2
u2,xx

)
dx dy . (2.3)

Thus, the functional is defined as EL : Ain
L ×Aout

L → [0,+∞], where the function spaces describing
admissible deformations have the form

Ain
L :=

{
w = (w1, w2) ∈W 1,2

loc ((−1, 1)× R;R2) : w(x, ·) is 2L-periodic ∀x ∈ (−1, 1)
}
, (2.4)
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Aout
L :=

{
u ∈W 2,2

loc ((−1, 1)× R) : u(x, ·) is 2L-periodic ∀x ∈ (−1, 1)
}
. (2.5)

Furthermore, Eh−E0
h turns into FL : Ain

L ×Aout
L → R defined as

FL(w, u) := L2(EL(w, u)− E0) , (2.6)

where E0 = −5
3 is as above the minimum of the relaxed energy, so that

FL(w, u) = L2

 L

−L

ˆ 1

−1

(
w1,x +

u2,x
2L2

− 1

)2

dx dy − L2

3
+ L2

 L

−L

ˆ 1

−1

(
w2,y +

u2,y
2

− x

)2

dx dy

+

 L

−L

ˆ 1

−1

(
L2w1,y + w2,x + u,xu,y

)2
dx dy +

 L

−L

ˆ 1

−1

(
u2,x + u2,yy

)
dx dy

+
1

L2

 L

−L

ˆ 1

−1

(
2u2,xy +

1

L2
u2,xx

)
dx dy .

Before we rigorously proceed further, let us discuss heuristically the form of functional FL and
its implications. Most of the terms in the energy are of quadratic nature, and since in addition we
are dealing with oscillatory objects defined on longer and longer intervals, it is natural to look at
the problem in the Fourier space.

Expecting the limit of FL to exist (in particular having the minimizing sequence bounded as
L → ∞), both integrals on the first line need to (quickly) converge to 0. The first integral
can easily achieve that by simply choosing w1 ∼ x + o(L−1) and u,x not too big, the smallness
of the second integral (after integration in y and using periodicity of w) implies the constraintffl L
−L u

2
,y dy = 2x+ o(L−1).

In order to have continuity of the constraint in the limit L → ∞, and also for other reasons
which will be apparent later, we will work with squares of the Fourier coefficients and suitably
defined measures as primary objects of studies. In the following we denote by k ∈ R the variable
corresponding to the Fourier transform in the y-variable. Moreover, we use the same notation to
denote the second variable when working with measures.

Definition 2.1 (Measures µL and µL,x). Let u ∈ Aout
L . We denote by µL(u) ∈ M+

b ((−1, 1) × R)
the measure given by

µL(u) :=
∑
k∈πZ

L

a(x, k)L1 (−1, 1)× δk ,

with
a(x, k) := k2a2k(x) ,

and ak ∈W 2,2(−1, 1) being the k-th Fourier coefficient of u(x, ·) for all x ∈ (−1, 1), that is

ak(x) :=



√
2

 L

−L
u(x, y) sin(ky) dy k ∈ πZ

L
, k > 0 ,

√
2

 L

−L
u(x, y) cos(ky) dy k ∈ πZ

L
, k < 0 ,

 L

−L
u(x, y) dy k = 0 .

(2.7)

Moreover we denote by µL,x(u) the distributional x-derivative of µL(u).
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Remark 2.2. (i) The distributional x-derivative of a measure µ ∈ M+
b ((−1, 1) × R) is defined

as follows: for all φ ∈ C∞
c ((−1, 1)× R) we have

⟨µ,x, φ⟩ := −
ˆ
(−1,1)×R

φ,x dµ .

Moreover by a density argument µ,x can be extended to functions φ(x, k) = ϕ(x)χA(k) with
ϕ ∈ C∞

c (−1, 1) and A ⊂ R bounded and measurable as

⟨µ,x, ϕ(x)χA(k)⟩ := −
ˆ
(−1,1)×A

ϕ̇(x) dµ ;

(ii) Let µ ∈ M+
b ((−1, 1)× R) be of the form

µ =
∑
k∈K

a(x, k)L1 (−1, 1)× δk ,

with K ⊂ R countable and a(·, k) ∈W 1,1(−1, 1) for all k ∈ K. Then

µ,x =
∑
k∈K

a,x(x, k)L1 (−1, 1)× δk .

Moreover as a,x(·, k) = 0 a.e. in {x ∈ (−1, 1) : a(x, k) = 0} it follows µ,x ∈ M((−1, 1) × R)
and µ,x ≪ µ.

Definition 2.3 (Convergence). For L > 0 let (wL, uL) ∈ Ain
L ×Aout

L . We say a sequence (wL, uL)
converges as L→ ∞ to µ ∈ M+

b ((−1, 1)× R), if (µL(uL), µL,x(uL)) weakly-* converge to (µ, µ,x).

We introduce the class of measures

M∞ :=

{
µ ∈M+

b ((−1, 1)× R) : µ((−1, 0]× R) = 0, µ,x ∈ Mb((−1, 1)× R) ,

µ,x ≪ µ ,

ˆ
(0,1)×R

ϕ(x) dµ(x, k) =

ˆ 1

0
2xϕ(x) dx ∀ϕ ∈ C∞

c (0, 1)

}
,

(2.8)

and the functional F∞ : M∞ → [0,+∞]

F∞(µ) =

ˆ
(0,1)×R

[
k2 +

1

4k2

( dµ,x
dµ

(x, k)
)2]

dµ(x, k) . (2.9)

Remark 2.4. (i) Above
dµ,x

dµ denotes the Radon-Nikodym derivative, existence of which follows
from absolute continuity of µ,x w.r.t. µ. Moreover, if µL from definition 2.1 is supported in
(0, 1]× R, then

F∞(µL) =
∑
k∈πZ

L

ˆ 1

0
(ȧ2k(x) + a2k(x)k

4) dx ,

i.e., via Plancherel equality (see equation (3.3)) it is equal to SL from (1.3). We farther

observe that (1.4) combined with the above heuristic expectation
ffl L
−L u

2
,y dy = 2x + o(L−1)

imply in the limit L→ ∞ the integral constraint in (2.8).
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(ii) When convenient we will identify the class M∞ with the class of measures{
µ ∈ M+

b ((0, 1)× R) : µ,x ∈ Mb((0, 1)× R) , µ,x ≪ µ ,

ˆ
(0,1)×R

ϕ(x) dµ(x, k) =

ˆ 1

0
2xϕ(x) dx ∀ϕ ∈ C∞

c (0, 1)

}
;

(2.10)

(iii) For later convenience we observe that F∞ can be rewritten as follows

F∞(µ) =

ˆ
(0,1)×R

k2 dµ+

ˆ
(0,1)×R

1

4k2

( dµ

d|µ̃|

)−1( dµ,x
d|µ̃|

)2
d|µ̃| , (2.11)

where µ̃ = (µ, µ,x) and |µ̃| denote its total variation. Indeed, since µ,x ≪ µ≪ |µ̃|, we have

dµ,x
d|µ̃|

=
dµ,x
dµ

dµ

d|µ̃|
,

from which we deduceˆ
(0,1)×R

1

4k2

( dµ,x
dµ

)2
dµ =

ˆ
(0,1)×R

1

4k2

( dµ,x
dµ

)2 dµ

d|µ̃|
d|µ̃|

=

ˆ
(0,1)×R

1

4k2

( dµ

d|µ̃|

)−2( dµ,x
d|µ̃|

)2 dµ

d|µ̃|
d|µ̃|

=

ˆ
(0,1)×R

1

4k2

( dµ

d|µ̃|

)−1( dµ,x
d|µ̃|

)2
d|µ̃| .

We are now ready to state our main result.

Theorem 2.5. Let FL and F∞ be as in (2.6) and (2.9) respectively. Then the following holds:

a) (Compactness). For L > 0 let (wL, uL) ∈ Ain
L × Aout

L be such that supLFL(w
L, uL) < +∞.

Then there exists a subsequence (not relabeled) and µ ∈ M∞ such that (wL, uL) converges as
L→ +∞ in the sense of Definition 2.3 to µ.

b) (Γ-convergence). As L→ +∞ the functionals FL Γ-converge, with respect to the convergence
in Definition 2.3, to the functional F∞.

3 Preliminaries

Let u ∈ Aout
L and let ak(x) be defined as in (2.7). Then we have

u(x, y) = a0(x) +
∑

k∈πZ
L

,k>0

ak(x)
√
2 sin(ky) +

∑
k∈πZ

L
,k<0

ak(x)
√
2 cos(ky)

= a0(x) +
∑

k∈πZ
L

,k>0

sign(ak(x))

√
a(x, k)

k

√
2 sin(ky) +

∑
k∈πZ

L
,k<0

sign(ak(x))

√
a(x, k)

−k
√
2 cos(ky) .

(3.1)
Then Plancherel equality yields

 L

−L
u2 dy = a20(x) +

∑
k∈πZ

L
,k ̸=0

a2k(x) = a20(x) +
∑

k∈πZ
L

,k ̸=0

a(x, k)

k2
. (3.2)
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The same holds for partial derivatives of u, that is

 L

−L
(Dαu)2 dy = (Dαa0(x))

2 +
∑

k∈πZ
L

,k ̸=0

( dα1

dxα1
ak(x)k

α2

)2
= (Dαa0(x))

2 +
∑

k∈πZ
L

,k ̸=0

( ∂α1

∂xα1

(√
a(x, k)

)
kα2−1

)2
,

(3.3)

with α = (α1, α2) multi-index with |α| ≤ 2. In case u has higher regularity, i.e., u ∈W k,2((−1, 1)×
R) with k > 2, then the same applies for the higher derivatives, i.e., for |α| ≤ k. For later
convenience we also note that

∂

∂x

(√
a(x, k)

)
=

a,x(x, k)

2
√
a(x, k)

,
∂2

∂x2
(√

a(x, k)
)
=

a,xx(x, k)

2
√
a(x, k)

− (a,x(x, k))
2

4
√
a3(x, k)

. (3.4)

We now recall the definition of disintegration of measures only in a specific case that we will be
used throughout the paper, and we refer to [1] for a complete treatment of the subject.

Definition 3.1 (Disintegration of measures in the x-variable). Let I ⊂ R be an interval and let
µ ∈ Mb(I × R). We say that the family

(νx, g(x))x∈I ⊂ Mb(R)× R

is a disintegration of µ (in the x-variable) if x 7→ νx is Lebesgue measurable, |νx|(R) = 1 for every
x ∈ I, g ∈ L1(I), and ˆ

I×R
f(x, k) dµ =

ˆ
I

ˆ
R
f(x, k) dνx(k)g(x) dx , (3.5)

for every f ∈ L1(I × R; |µ|).

Formally it simply means dµ(x, k) = dνx(k)g(x) dx.

Lemma 3.2. Let I ⊂ R be an interval and let µ ∈ M+
b (I × R). Then

ˆ
I×R

ϕ(x) dµ =

ˆ
I
g(x)ϕ(x) dx ∀ϕ ∈ C∞

c (I) , (3.6)

for some non-negative g ∈ L1(I), if and only if there exists x 7→ νx ∈ M+
b (R) Lebesgue measurable

such that (νx, g(x))x∈I is a disintegration of µ.

Proof. Let (νx, g(x))x∈I ⊂ M+
b (R)× R+ be a disintegration of µ. Then (3.5) holds with f(x, k) =

ϕ(x) ∈ C∞
c (I) and since |νx|(R) = νx(R) = 1 we readily deduce (3.6).

Assume instead that (3.6) holds true. Let π1 : I × R → I be the canonical projection and let
(π1)♯µ ∈ M+

b (I) be the push-forward of µ with respect to π1. By the Disintegration Theorem
(cf. [1, Theorem 2.28]) there exists x 7→ νx ∈ M+

b (R) measurable with νx(R) = 1 such that

ˆ
I×R

f(x, k) dµ(x, k) =

ˆ
I

ˆ
R
f(x, k) dνx(k) d(π1)♯µ(x) ,

for all f ∈ L1(I ×R;µ). On the other hand (3.6) implies that (π1)♯µ(x) = g(x)L1 I and therefore
(νx, g(x))x∈I is a disintegration of µ.

13



Corollary 3.3 (Disintegration of µ ∈ M∞ in the x-variable). Let µ ∈ M∞. Then there exists
x 7→ νx ∈ M+

b (R) measurable such that (νx, 2x)x∈(0,1) is a disintegration of µ.

Proof. The proof follows by Lemma 3.2 and from the fact thatˆ
(0,1)×R

ϕ(x) dµ =

ˆ 1

0
2xϕ(x) dx ∀ϕ ∈ C∞

c (0, 1) . (3.7)

4 Compactness and lower bound

In this section we prove compactness and the Γ− lim inf inequality.

Proposition 4.1 (Compactness). Let for L > 0 be (wL, uL) ∈ Ain
L×Aout

L such that supLFL(w
L, uL) <

+∞. Then there exist a, not relabeled, subsequence and µ ∈ M∞ such that (wL, uL) converges to
µ, as L→ +∞, in the sense of Definition 2.3.

Proof. Let (wL, uL) be as in the statement. Let µL := µL(uL) and µL,x := µL,x(u
L) be defined

accordingly to Definition 2.1, i.e., there exist aL(x, k) such that a(·, k) ∈W 1,1(−1, 1) and

µL =
∑
k∈πZ

L

aL(x, k)L1 (−1, 1)× δk , µL,x =
∑
k∈πZ

L

aL,x(x, k)L1 (−1, 1)× δk .

Step 1: we show that there exists µ ∈ M+
b ((−1, 1)×R) with µ,x ∈ Mb((−1, 1)×R) and such that

(µL, µL,x)
∗
⇀ (µ, µ,x). To this aim we observe that by taking 0 < C0 := supLFL(w

L, uL) < +∞ we
have

FL(w
L, uL) ≤ C0 ,

so that in particular

C0 ≥ FL(w
L, uL) ≥ L2

 L

−L

ˆ 1

−1

(
wL
2,y +

(uL,y)
2

2
− x

)2

dx dy − L2

3

+

 L

−L

ˆ 1

−1
(uL,x)

2 + (uL,yy)
2 dx dy .

(4.1)

By Fubini’s theorem, Jensen’s inequality and the fact that wL(x, ·) is 2L-periodic we get

L2

 L

−L

ˆ 1

−1

(
wL
2,y +

(uL,y)
2

2
− x

)2

dx dy ≥ L2

ˆ 1

−1

(  L

−L

(
wL
2,y +

(uL,y)
2

2
− x
)
dy

)2

dx

= L2

ˆ 1

0

(  L

−L

(uL,y)
2

2
dy − x

)2

dx+ L2

ˆ 0

−1

( L

−L

(uL,y)
2

2
dy − x

)2

dx

≥ L2

ˆ 1

0

(  L

−L

(uL,y)
2

2
dy − x

)2

dx+ L2

ˆ 0

−1

( L

−L

(uL,y)
2

2
dy

)2

dx+ L2

ˆ 0

−1
x2 dx ,

(4.2)

where the last inequality follows by using that (a + b)2 ≥ a2 + b2 provided that ab > 0 with a =
1
2

ffl L
−L(u

2
,x) dy and b = −x for x ∈ (−1, 0). Combining (4.1) with (4.2) and using that

´ 0
−1 x

2 dx = 1
3

we find

C0 ≥ FL(w
L, uL) ≥L2

ˆ 1

0

( L

−L

(uL,y)
2

2
dy − x

)2

dx

+ L2

ˆ 0

−1

(  L

−L

(uL,y)
2

2
dy

)2

dx+

 L

−L

ˆ 1

−1
(uL,x)

2 + (uL,yy)
2 dx dy .

(4.3)
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Thus from (3.3) it follows

C0

L2
≥
ˆ 1

0

( L

−L

(uL,y)
2

2
dy − x

)2

dx =

ˆ 1

0

(
1

2

∑
k∈πZ

L

aL(x, k)− x

)2

dx

≥ C

(ˆ 1

0

(
1

2

∑
k∈πZ

L

aL(x, k)

)2

dx− 1

3

)
,

(4.4)

and
C0

L2
≥
ˆ 0

−1

(  L

−L

(uL,y)
2

2
dy

)2

dx =

ˆ 0

−1

(
1

2

∑
k∈πZ

L

aL(x, k)

)2

dx . (4.5)

Hence we obtain

|µL|((−1, 1)× R) = µL((−1, 1)× R) =
ˆ 1

−1

∑
k∈πZ

L

aL(k, x) dx ≤ C ,

from which we deduce the existence of a (not relabeled) subsequence and µ ∈ M+
b ((−1, 1) × R)

such that µL
∗
⇀ µ. In addition (4.3) together with (3.3) and (3.4) yield

C ≥
ˆ 1

−1

 L

−L
(uL,x)

2 + (uL,yy)
2 dy dx

≥
ˆ 1

−1

( ∑
k∈πZ

L

aL(x, k)k2 +
∑

k∈πZ
L

,k ̸=0

1

4k2
(aL,x(x, k))

2

aL(x, k)

)
dx

≥
ˆ 1

−1

∑
k∈πZ

L

|aL,x(x, k)|dx = |µL,x|((−1, 1)× R) ,

(4.6)

where the last inequality follows by Young’s inequality. Hence, up to subsequence, we may deduce
that there exists µ̃ ∈ Mb(×(−1, 1)×R) such that µL,x

∗
⇀ µ̃. Moreover given any φ ∈ C∞

c ((−1, 1)×R),
it holdsˆ

(−1,1)×R
φdµ̃ = lim

L→+∞

ˆ
(−1,1)×R

φdµL,x = − lim
L→+∞

ˆ
(−1,1)×R

φ,x dµ
L = −

ˆ
(−1,1)×R

φ,x dµ ,

which in turn implies µ̃ = µ,x.

Step 2: we show that µ,x ≪ µ. By Remark 2.2 (ii) we have that µL,x ≪ µL. Now let N ∈ N be

fixed and let µLN := µL (−1, 1) × (−N,N) and µN := µ (−1, 1) × (−N,N). Then the following
properties hold:

µLN,x := µL,x (−1, 1)× (−N,N) , µN,x := µ,x (−1, 1)× (−N,N) ,

µLN,x ≪ µLN , (µLN , µ
L
N,x)

∗
⇀ (µN , µN,x) , (4.7)

and
dµLN,x

dµLN
(x, k) =

dµL,x
dµL

(x, k) (−1, 1)× (−N,N) .
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Moreover recalling the definition of µL and (4.6) we have

ˆ
(−1,1)×(−N,N)

1

4N2

( dµLN,x

dµLN
(x, k)

)2
dµLN ≤

ˆ
(−1,1)×(−N,N)

1

4k2

( dµL,x
dµL

(x, k)
)2

dµL

≤
ˆ 1

−1

∑
k∈πZ

L
,k ̸=0

1

4k2
(aL,x(x, k))

2

aL(x, k)
dx ≤ C .

(4.8)

From (4.7), (4.8) and [1, Example 2.36 pg. 67, and discussion at pg. 66] we deduce that µN,x ≪ µN
for every N ∈ N and hence µ,x ≪ µ.

Step 3: we show that µ ∈ M+
b ((0, 1)× R), that is, µ((−1, 0]× R) = 0, and that

ˆ
(0,1)×R

ϕ(x) dµ =

ˆ 1

0
2xϕ(x) dx, (4.9)

for all ϕ ∈ C∞
c ((0, 1)). To this purpose for fixed δ ∈ (0, 1) by (4.3) we have

µL((−1, δ)× R) =
ˆ δ

−1

∑
k∈πZ

L

aL(x, k) dx

≤ C

ˆ 0

−1

( ∑
k∈πZ

L

aL(x, k)

)2

dx+ C

ˆ δ

0

( ∑
k∈πZ

L

aL(x, k)− x

)2

dx+ C

ˆ δ

0
x2 dx

≤ C

L2
+ Cδ3.

This together with the lower semicontinuity with respect to the weak* convergence give

µ((−1, 0]× R) ≤ µ((−1, δ)× R) ≤ lim inf
L→∞

µL((−1, δ)× R) ≤ Cδ3.

By sending δ → 0 we deduce µ((−1, 0] × R) = 0. It remains to show (4.9). Given ϕ ∈ C∞
c (0, 1) it

holds ˆ
(0,1)×R

ϕ(x) dµL =

ˆ 1

0
ϕ(x)

( ∑
k∈πZ

L

aL(x, k)− 2x
)
dx+

ˆ 1

0
2xϕ(x) dx.

From (4.4) it follows that

ˆ 1

0
|ϕ(x)|

∣∣∣ ∑
k∈πZ

L

aL(x, k)− 2x
∣∣∣ dx ≤ C∥ϕ∥∞

( ˆ 1

0

(1
2

∑
k∈πZ

L

aL(x, k)− x
)2

dx

)1/2

≤ C

L
→ 0,

as L→ +∞, so that

lim
L→+∞

ˆ
(0,1)×R

ϕ(x) dµL =

ˆ 1

0
2xϕ(x) dx. (4.10)

Next we fix R ≥ 1 and take ψR ∈ C∞
c (R) such that 0 ≤ ψR ≤ 1, ψR(k) ≡ 1 if |k| < R and

ψR(k) ≡ 0 if |k| > R+ 1. We have

ˆ
(0,1)×R

ϕ(x) dµL =

ˆ
(0,1)×R

ϕ(x)ψR(k) dµ
L +

ˆ
(0,1)×R

ϕ(x)(1− ψR(k)) dµ
L . (4.11)
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The weak* convergence yields

lim
L→+∞

ˆ
(0,1)×R

ϕ(x)ψR(k) dµ
L =

ˆ
(0,1)×R

ϕ(x)ψR(k) dµ ,

whereas for the second term on the right hand-side of (4.11) we get

ˆ
(0,1)×R

|ϕ(x)(1− ψR(k))|dµL ≤
ˆ 1

0
|ϕ(x)|

( ∑
k∈πZ

L
,|k|>R

aL(x, k)
)
dx

≤ ∥ϕ∥∞
R2

ˆ 1

0

( ∑
k∈πZ

L
,|k|>R

aL(x, k)k2
)
dx

≤ ∥ϕ∥∞
R2

ˆ 1

0

 L

−L
(u,yy)

2 dy dx ≤ C

R2
,

where the last to inequalities follow from (3.3) and (4.3). Thus passing to the limit as L→ +∞ in
(4.11) we obtain

ˆ
(0,1)×R

ϕ(x)ψR(k) dµ− C

R2
≤ lim

L→+∞

ˆ
(0,1)×R

ϕ(x) dµL ≤
ˆ
(0,1)×R

ϕ(x)ψR(k) dµ+
C

R2
.

Eventually by letting R→ +∞ we deduce

lim
L→+∞

ˆ
(0,1)×R

ϕ(x) dµL =

ˆ
(0,1)×R

ϕ(x) dµ ,

which together with (4.10) yield (4.9).

Proposition 4.2 (Lower bound). Let FL and F∞ be as in (2.6) and (2.9) respectively. Let for
L > 0 be (wL, uL) ⊂ Ain

L ×Aout
L a sequence converging to µ ∈ M∞ in the sense of Definition 2.3.

Then there holds
lim inf
L→∞

FL(w
L, uL) ≥ F∞(µ). (4.12)

Proof. Let (wL, uL) be as in the statement and let µL := µL(uL) and µL,x := µL,x(u
L) be defined

accordingly to Definition 2.1, that is,

µL =
∑
k∈πZ

L

aL(x, k)L1 (−1, 1)× δk , µL,x =
∑
k∈πZ

L

aL,x(x, k)L1 (−1, 1)× δk .

Recalling (4.3), (3.3) and (3.4) we have that

FL(w
L, uL) ≥

ˆ 1

−1

 L

−L
(uL,x)

2 + (uL,yy)
2 dy dx

≥
ˆ 1

0

( ∑
k∈πZ

L
,k ̸=0

1

4k2
(aL,x(x, k))

2

aL(x, k)
+
∑
k∈πZ

L

aL(x, k)k2
)
dx

=

ˆ
(0,1)×R

(
k2 +

1

4k2

( dµL,x
dµL

(x, k)
)2)

dµL

=

ˆ
(0,1)×R

k2 dµL +

ˆ
(0,1)×R

1

4k2

( dµL

d|µ̃L|
(x, k)

)−1( dµL,x
d|µ̃L|

(x, k)
)2

d|µ̃L| ,

(4.13)
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where µ̃L := (µL, µL,x), and the last equality follows from Remark 2.4 (iii). By Reshetnyak Theorem
(cf. [1, Theorem 2.38]) there hold

lim inf
L→+∞

ˆ
(0,1)×R

k2 dµL ≥
ˆ
(0,1)×R

k2 dµ , (4.14)

and

lim inf
L→+∞

ˆ
(0,1)×R

1

4k2

( dµL

d|µ̃L|
(x, k)

)−1( dµL,x
d|µ̃L|

(x, k)
)2

d|µ̃L|

≥
ˆ
(0,1)×R

1

4k2

( dµ

d|µ̃|
(x, k)

)−1( dµ,x
d|µ̃|

(x, k)
)2

d|µ̃| ,
(4.15)

with µ̃ := (µ, µ,x). Gathering together (4.13), (4.14) and (4.15) we find

lim inf
L→∞

FL(w
L, uL) ≥

ˆ
(0,1)×R

k2 dµ+

ˆ
(0,1)×R

1

4k2

( dµ

d|µ̃|
(x, k)

)−1( dµ,x
d|µ̃|

(x, k)
)2

d|µ̃| = F∞(µ) .

5 Upper bound

In this section we prove the Γ− lim sup inequality.

Proposition 5.1 (Upper bound). Let µ ∈ M∞. Then for L > 0 there exists a sequence (wL, uL) ∈
Ain

L ×Aout
L that converges to µ ∈ M∞ in the sense of Definition 2.3 and such that

lim sup
L→∞

FL(w
L, uL) ≤ F∞(µ) ,

with FL and F∞ defined as in (2.6) and (2.9) respectively.

The proof of Proposition 5.1 is quite long and technical, for this reason we divide it into a number
of intermediate steps. Let us now summarize the main steps of the upper bound construction. Let
µ ∈ M∞ be given. We first construct a sequence of out-of-plane displacements (uL)L>0 by defining
the corresponding Fourier coefficients aLk , with k ∈ πZ

L . The latter have to satisfy at the same time:

• be regular enough in order to ensure uL ∈ Aout
L ;

• the constraint should be (at least approximately) satisfied

2AL(x) :=

 L

−L
(uL,y(x, ·))2 dy =

∑
k∈πZ

L

(aLk (x))
2k2 ≃ 2x for a.e. x ∈ (0, 1) ;

• be such that we have good control of partial derivatives of uL needed to estimate the energy
functional FL.

In order to do that we proceed as follows. We first dilate the measure µ in the x-variable by a factor
of λ > 1 and get a new measure µλ, defined on a larger interval [−1, λ] instead of [−1, 1] while
keeping the constraint intact. This operation is useful to have enough space near x = 1 to mollify
in the sequel (Lemma 5.2). As a second step, we discretize µλ in the k-variable to obtain a sequence
of measures (µL)L>0 of the form

∑
k∈πZ

L
b̄L(x, k)L1 (0, λ)× δk (Lemma 5.3). In the third step we

18



regularise each b̄L(x, k) by convolution with a mollification kernel ρε(x) at scale ε = ε(L) → 0. Then
we set aLk (x) :=

1
k

√
(b̄L(·, k) ∗ ρε)(x) and define uL accordingly (cf. Lemma 5.4). The mollification

procedure possibly produces small error in the constraint, i.e., AL(x) = x + o(1), hence in the
construction of the recovery sequence we rescale uL by a factor fL(x) :=

√
x/AL(x) to recover

back the constraint. Once we construct the out-of-plane displacement we follow the ideas from [13]
to construct the in-plane displacement (see proof of Proposition 5.1).

For any λ ≥ 1 we define the following class of measures

Mλ
∞ :=

{
µ ∈M+

b ((0, λ)× R) : µ,x ∈ Mb((0, λ)× R) , µ,x ≪ µ ,

ˆ λ

0
2xϕ(x)dx =

ˆ
(0,λ)×R

ϕ(x) dµ(k, x) ∀ϕ ∈ C∞
c (0, λ)

}
,

(5.1)

and the functional Fλ
∞ : Mλ

∞ → [0,+∞]

Fλ
∞(µ) =

ˆ
(0,λ)×R

[
k2 +

1

4k2

( dµ,x
dµ

)2]
dµ . (5.2)

Then we have M∞ = M1
∞ and F∞ = F1

∞.

Lemma 5.2 (Dilation of µ). Let µ ∈ M∞. Then for each λ ∈ (1, 2) there exists µλ ∈ Mλ
∞ such

that
(µλ, µλ,x) ((0, 1)× R) ∗

⇀ (µ, µ,x) as λ↘ 1 , (5.3)

and
ˆ
(0,λ)×R

k2 dµλ = λ2
ˆ
(0,1)×R

k2 dµ ,

ˆ
(0,λ)×R

1

4k2

( dµλ,x
dµλ

)2
dµλ =

ˆ
(0,1)×R

1

4k2

( dµ,x
dµ

)2
dµ (5.4)

so that, in particular
lim
λ↘1

Fλ
∞
(
µλ
)
= F∞(µ) . (5.5)

Moreover (ν x
λ
, 2x)x∈(0,λ) is a disintegration of µλ where νx ∈ M+

b (R) for x ∈ (0, 1) is the measure
given by Corollary 3.3.

Proof. Let µλ ∈ M+
b ((0, λ)× R) be defined via duality as follows

ˆ
(0,λ)×R

ψ(x, k) dµλ = λ2
ˆ
(0,1)×R

ψ(λx, k) dµ , (5.6)

for every ψ ∈ C((0, λ)× R). Notice that µλ,x ∈ Mb((0, λ)× R) and is given by

ˆ
(0,λ)×R

ψ(x, k) dµλ,x = λ

ˆ
(0,1)×R

ψ(λx, k) dµ,x . (5.7)

Hence µλ,x ≪ µλ and
dµλ,x
dµλ

(x, k) =
1

λ

dµ,x
dµ

(x
λ
, k
)
.

Moreover (5.6) together with the change of variable x = λx̂ imply

ˆ λ

0
2xϕ(x) dx =

ˆ
(0,λ)×R

ϕ(x) dµλ ∀ϕ ∈ C∞
c (0, λ) .
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It follows that µλ ∈ Mλ
∞. Moreover from (5.6) and (5.7) we deduce that

(µλ, µλ,x) (R× (0, 1))
∗
⇀ (µ, µ,x) as λ→ 1 ,

and (5.4) which implies (5.5). The fact that (ν x
λ
, 2x)x∈(0,λ) is a disintegration of µλ follows again

by a change of variable.

Lemma 5.3 (Discretisation of µ). Let µ ∈ M∞ with F∞(µ) < +∞ and let λ = λ(L) ↘ 1 as
L→ ∞. Then there exists (µL) ⊂ Mλ

∞ with the following properties:

(i) µL =
∑

k∈πZ
L
b
L
(x, k)L1 (0, λ)× δk with

b
L
(·, k) ∈W 1,1(0, λ) and

∑
k∈πZ

L

b
L
(x, k) = 2x , ∀x ∈ (0, λ) , (5.8)

Fλ
∞(µL) =

ˆ λ

0

∑
k∈πZ

L

k2b
L
(x, k) dx+

ˆ λ

0

∑
k∈πZ

L
,k ̸=0

1

4k2
(b

L
,x(x, k))

2

b
L
(x, k)

dx ; (5.9)

(ii) (µL, µL,x) ((0, 1)× R) ∗
⇀ (µ, µ,x);

(iii) lim supL→∞Fλ
∞(µL) ≤ F∞

(
µ
)
.

Proof. For each L > 1 let µλ ∈ Mλ
∞ be the measure given by Lemma 5.2 and let (ν x

λ
, 2x)x∈(0,λ) be

the corresponding disintegration. We then define µL ∈ M+
b ((0, λ)× R) as

µL :=
∑
k∈πZ

L

b
L
(x, k)L1 (0, λ)× δk , (5.10)

where for (x, k) ∈ (0, λ)× πZ
L we set

b
L
(x, k) :=


0 if k = 0 ,

2xν x
λ
(ILk ) if k ̸= 0 ,

and ILk :=

(k − π
L , k] if k > 0 ,

[k, k + π
L) if k < 0 .

(5.11)

Now, for each k ∈ πZ
L , b

L
(·, k) ∈W 1,1(0, λ) with

b
L
,x(x, k) =


0 if k = 0 ,

2x

ˆ
ILk

dµλ,x
dµλ

(x, k̂) dν x
λ
(k̂) if k ̸= 0 .

Indeed if k = 0 there is nothing to prove. If instead k ̸= 0, for ϕ ∈ C∞
c (0, λ) from the definition of

ν x
λ
and recalling Remark 2.2 we get

ˆ λ

0
b
L
(x, k)ϕ̇(x) dx =

ˆ λ

0

ˆ
R
χILk

(k̂)ϕ̇(x) dν x
λ
(k̂) 2x dx

=

ˆ
(0,λ)×R

χILk
(k̂)ϕ̇(x) dµλ = −

ˆ
(0,λ)×R

χILk
(k̂)ϕ(x) dµλ,x

= −
ˆ
(0,λ)×R

χILk
(k̂)ϕ(x)

dµλ,x
dµλ

(x, k̂) dµλ = −
ˆ λ

0

ˆ
ILk

dµλ,x
dµλ

(x, k̂) dν x
λ̃
(k̂) 2xϕ(x) dx ;
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furthermore by Young’s inequality and (5.5)

ˆ λ

0
|bL,x(x, k)|dx ≤

ˆ
ILk ×(0,λ)

∣∣∣∣ dµλ,xdµλ

∣∣∣∣ dµλ ≤ 1

2

ˆ
ILk ×(0,λ)

(
k2 +

1

k2

(
dµλ,x
dµλ

)2
)

dµλ ≤ C .

Thus in particular ˆ λ

0

∑
k∈πZ

L

|bL,x(x, k)|dx ≤ Fλ
∞(µλ) ≤ C .

As a consequence we have that µL,x ∈ Mb((0, λ)× R), and

µL,x =
∑
k∈πZ

L

b
L
,x(x, k)L1 (0, λ)× δk ,

and by Remark 2.2 (ii) µ̃L,x ≪ µ̃L. Moreover, as ν x
λ
is a probability measure, there holds

∑
k∈πZ

L

b
L
(x, k) = 2x

( ∑
k∈πZ

L
,k ̸=0

ν x
λ
(ILk )

)
= 2x , ∀x ∈ (0, λ) .

Note in particular that µL ∈ Mλ
∞. Moreover (5.9) readily follows and (i) is proved. We next show

(ii). Take φ ∈ C∞
c ((0, 1)× R), so that from (5.11) we obtain

ˆ
(0,1)×R

φdµL =

ˆ 1

0

∑
k∈πZ

L
,k ̸=0

φ(x, k)ν x
λ
(ILk ) 2x dx

=

ˆ 1

0

∑
k∈πZ

L
,k ̸=0

ˆ
ILk

(
φ(x, k)− φ(x, k̂)

)
dν x

λ
(k̂) 2x dx+

ˆ
(0,1)×R

φdµλ .

(5.12)

Since φ is uniformly continuous for every ε > 0 there is L0 > 1 such that for all L ≥ L0

|φ(x, k)− φ(x, k̂)| < ε ∀x ∈ (0, λ) , ∀k ∈ πZ
L
, ∀k̂ ∈ ILk ,

from which we readily deduce that

ˆ 1

0

∑
k∈πZ

L
,k ̸=0

ˆ
ILk

∣∣φ(x, k)− φ(x, k̂)
∣∣ dν x

λ
(k̂) 2x dx ≤ µλ((0, λ)× R)ε = λ2µ((0, 1)× R)ε . (5.13)

From (5.12), (5.13),(5.3) and the arbitrariness of ε we infer µL ((0, 1)× R) ∗
⇀ µ as L→ +∞. By

analogous arguments we get µL,x ((0, 1) × R) ∗
⇀ µ,x as L → +∞. It remains to prove (iii). We

start by observing that for all δ > 0 and all k̂ ∈ ILk we have

k2 ≤
(
k̂ +

π

L

)2
≤ (1 + δ)k̂2 + (1 + δ−1)

π2

L2
,
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so that

ˆ λ

0

∑
k∈πZ

L

k2b
L
(x, k) dx =

ˆ λ

0

∑
k∈πZ

L
,k ̸=0

ˆ
ILk

k2 dν x
λ
(k̂) 2x dx

=
∑

k∈πZ
L

,k ̸=0

ˆ
(0,λ)×ILk

k2 dµλ(x, k̂)

≤
∑

k∈πZ
L

,k ̸=0

ˆ
(0,λ)×ILk

(
(1 + δ)k̂2 + (1 + δ−1)

π2

L2

)
dµλ(x, k̂)

= (1 + δ)

ˆ
(0,λ)×R

k̂2 dµλ + µλ((0, λ)× R)(1 + δ−1)
π2

L2
.

(5.14)

Moreover there holds

ˆ λ

0

∑
k∈πZ

L
,k ̸=0

1

4k2
(b

L
,x(x, k))

2

b
L
(x, k)

dx =

ˆ λ

0

∑
k∈πZ

L
,k ̸=0

1

4k2

(
b
L
,x(x, k)

b
L
(x, k)

)2

b
L
(x, k) dx . (5.15)

Since 1/|k| ≤ 1/|k̂| for k̂ ∈ ILk the following inequality follows

1

2|k|
b
L
,x(x, k)

b
L
(x, k)

=
1

2|k|

 
ILk

dµλ,x
dµλ

(x, k̂) dν x
λ
(k̂) ≤

 
ILk

1

2|k̂|
dµλ,x
dµλ

(x, k̂) dν x
λ
(k̂) . (5.16)

Now combining (5.15) with (5.16) we obtain

ˆ λ

0

∑
k∈πZ

L
,k ̸=0

1

4k2
(b

L
,x(x, k))

2

b
L
(x, k)

dx =

ˆ λ

0

∑
k∈πZ

L
,k ̸=0

(  
ILk

1

2|k̂|
dµλ,x
dµλ

(x, k̂) dν x
λ
(k̂)

)2

ν x
λ
(ILk ) 2x dx

≤
ˆ λ

0

∑
k∈πZ

L
,k ̸=0

ˆ
ILk

1

4k̂2

(
dµλ,x
dµλ

(x, k̂)

)2

dν x
λ
(k̂) 2x dx

=

ˆ
(0,λ)×R

1

4k̂2

(
dµλ,x
dµλ

(x, k̂)

)2

dµλ

=

ˆ
(0,1)×R

1

4k̂2

(
dµ,x
dµ

(x, k̂)

)2

dµ ,

(5.17)

where the inequality follows by Jensen’s inequality. Finally gathering together (5.14) and (5.17)
and recalling (5.5) we infer

lim sup
L→∞

Fλ
∞(µL) ≤ (1 + δ) lim sup

L→∞
Fλ
∞
(
µλ
)
≤ (1 + δ)F∞(µ) .

By arbitrariness of δ, (iii) follows by letting δ → 0.

In the next Lemma we continue our quest towards definition of the in-plane displacement. Picking
up the construction of Fourier coefficients from Lemma 5.3, to conclude we require its higher
regularity (in particular in the x-variable). A natural idea would be to mollify the coefficients, but
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since we want to preserve the constraint (or at least not to change it much), we will mollify squares
of the coefficients – in the end the constraint is sum (integral) of these squares, so it behaves well
w.r.t to their mollification. Unfortunately, we could not use simple compactly supported smoothing
kernel, since for our kernel we require that its derivative can be controlled by the kernel itself – this
satisfies e.g. an exponentially decaying kernel, but not compactly supported kernel. Using e−|x| as
kernel works well provided one can reasonably extend the coefficients (precisely their squares) to
the whole R. This is trivial for x < −1 (zero extension) and also for x > λ (extension by a suitable
constant). Even though obviously anywhere in x < 0 and x > λ the constraint is not equal x, which
would be enough to show using symmetry of the kernel that the constraint after mollification stays
intact, as long as x stays away from these two sets the violation from the constraint being x, denoted
by fL, is exponentially small. Since we need to focus on the interval [0, 1], we definitely stay away
from the set x > λ (at least measured at the ε-scale). Near x = 0 the situation is completely
different (the constraint violation fL is far from 1 there), but this critical region is relatively small
(which helps to get the estimates). We therefore use multiplication by fL to completely recover
the constraint, but also cut-off near x = 0 on scale even smaller than the convolution scale (see
proof of Proposition 5.1 below).

Though it might look strange to first mollify the coefficients which destroys the constraint, and
then multiply by the error to recover the constraint back, it is very natural: for the error we have
basically explicit formula, since it is expressed in terms of mollification of the constraint and not
of single coefficients, and we can therefore control it very well – including its higher derivatives, so
that we can still control the regularity.

Lemma 5.4 (Construction of u). Let µ ∈ M∞ be such that F∞(µ) < +∞. Let ε = ε(L) > 0 and
n = n(L) ∈ N be such that

lim
L→+∞

ε(L) = 0 , lim
L→+∞

n(L) = lim
L→+∞

L

n(L)
= +∞ .

Then there exists ûL ∈ Aout
L ∩ Aout

L0
with L0 := L/n(L) that satisfies the following properties: let

AL(x) :=
1

2

 L

−L
(ûL,y(x, ·))2 dy and fL(x) :=

√
x

AL(x)
.

Then for all x ∈ (0, 1) and N ∈ N there holds

max{x, ε} ≲ AL(x) ≲ max{x, ε} ; (5.18)

(fL(x))2 ≲
x

max{x, ε}
, (fL(x))2 ≤ 1 + oL(1) ; (5.19)

(fL(x))2 ≥ 1 + oN (1) if x ∈ (Nε, 1) ; (5.20)

(ḟL(x))2 ≲
max{e−

x
ε , e

− 1√
ε }

xε
, (f̈L(x))2 ≲

1

x3ε
; (5.21)

there exists a continuous increasing function ω : [0,+∞) → [0,+∞) with ω(0) = 0 such that

 L

−L
(ûL(x, ·))2 dy ≲

{
max{x, ε}(ω(2Nε) +Ne−N ) if x ∈ (0, Nε)

x if x ∈ (Nε, 1)
; (5.22)

 L

−L
(ûL(x, ·))4 dy ≲ L2

0(max{ε, x})2 ; (5.23)
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 L

−L

(
(ûL,yy(x, ·))2 + (ûL,x(x, ·))2

)
dy ≲

1

ε
. (5.24)

Moreover
(µL(ûL), µL,x(û

L))
∗
⇀ (µ, µ,x) in Mb((−1, 1)× R)2 ; (5.25)

lim sup
L→∞

 L

−L

ˆ 1

−1

(
(ûL,x)

2 + (ûL,yy)
2
)
dx dy ≤ F∞(µ) ; (5.26)

 L

−L

ˆ 1

−1

(
(ûL,xy)

2 + (ûL,xx)
2 + (ûL,yyx)

2
)
dx dy ≲

1

ε2
; (5.27)

 L

−L

ˆ 1

−1
(ûL,x)

4 dx dy ≲
L2
0

ε2
. (5.28)

Finally since ûL and all its derivatives are 2L0-periodic in the y-variable the above estimates still
hold true if we replace the average integral on [−L,L] with the average integral on [−L0, L0].

Proof. Let µ ∈ M∞, ε = ε(L), n = n(L) and L0 be as in the statement. We set

λ = λ(L) := (1 +
√
ε) ↘ 1 as L→ +∞ ,

hence in particular λ ↘ 1 as L0 → +∞. We construct ûL ∈ Aout
L0

and then we extend it period-
ically in [−1, 1] × [−L,L], without relabelling it. In this way, since L = n(L)L0 with n(L) ∈ N,
we have ûL ∈ Aout

L . The main idea is that of discretizing the measure µ in the variable k to get a
measure concentrated on lines R × {k} with k ∈ πZ

L0
where the weight on each line is a coefficient

bL0(x, k). Afterwards we define ûL as in such a way that its Fourier coefficients aLk (x) are as close

as possible to
√
bL0(x, k)/k but at the same time have better regularity to ensure ûL ∈ Aout

L .
In order to do that we first dilate µ with a factor λ in the x-variable as in Lemma 5.2, then we
discretize using Lemma 5.3, and finally we mollify bL0(·, k) at scale ε after a suitable extension in R.

To this purpose we let (µL0) ⊂ Mλ
∞ be the sequence of Lemma 5.3 for the parameter L0, which is

of the form
µL0 =

∑
k∈ πZ

L0

b
L0
(x, k)L1 (0, λ)× δk .

By the mean value theorem, for each λ, we can find λ̄ ∈ (λ+1
2 , λ) such that

∑
k∈ πZ

L0

b
L0
(λ̄, k)k2 ≤

 λ

λ+1
2

∑
k∈ πZ

L0

b
L0
(x, k)k2 dx . (5.29)

By truncating b̄L0 at x = λ̄ we can define bL0 : R× πZ
L0

→ R as

bL0(x, k) :=


0 if x ≤ 0,

b̄L0(x, k) if 0 < x < λ̄,

b̄L0(λ̄, k) if x ≥ λ̄ .

(5.30)

Let ρε(x) :=
1
2εe

−|x|
ε and note that in particular

|ρ̇ε(x)| =
1

ε
ρε(x) . (5.31)
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Finally we let aL : R× πZ
L0

→ R be defined as

aL(x, k) := (bL0(·, k) ∗ ρε)(x) ,

and ûL ∈ Aout
L0

be the function

ûL(x, y) :=
∑

k∈ πZ
L0

,k>0

√
aL(x, k)

k

√
2 sin(ky) +

∑
k∈ πZ

L0
,k<0

√
aL(x, k)

k

√
2 cos(ky) .

Eventually we extend ûL, without relabelling it, periodically in [−1, 1]× [−L,L].

Step 1: in this step we show (5.18)–(5.21). By (3.3) and (5.8) we have that

2AL(x) =

 L

−L
(û,y)

2 dy =

 L0

−L0

(û,y)
2 dy

=
∑
k∈ πZ

L0

aL(x, k) =
( ∑

k∈ πZ
L0

bL0(·, k)
)
∗ ρε(x)

= 2
(
xχ(0,λ̄) + λ̄χ(λ̄,+∞)

)
∗ ρε(x) = 2xχ{x≥0} + ε

(
e

−|x|
ε − e

x−λ̄
ε

)
,

(5.32)

for all x ∈ [−1, 1]. Then for ε small enough we have

ε

2e
≤ 2AL(x) ≤ 3ε if x ∈ (0, ε) ,

x ≤ 2x+ ε
(
e

−1
ε − e

1−λ̄
ε
)
≤ 2AL(x) ≤ 3x if x ∈ (ε, 1) ,

so that
1

2e
max{x, ε} ≤ 2AL(x) =

 L

−L
(û,y)

2 dy ≤ 3max{x, ε} .

We have that
(fL(x))2 =

x

AL(x)
,

and by estimates above

(fL(x))2 ≲
x

max{x, ε}
≲
x

ε
if x ∈ (0, ε) .

Observing that (e
−x
ε − e

x−λ̄
ε ) ≥ 0 if and only if x ∈ (0, λ̄/2) we have

(fL(x))2 =
x

x+ ε
2(e

−x
ε − e

x−λ̄
ε )

≤ 1 in (0, λ̄/2) ,

and

(fL(x))2 ≤ x

x+ ε
2(e

−1
ε − e

1−λ̄
ε )

≤ 1 +
ε
2 |e

−1
ε − e

1−λ̄
ε |

1
2 + ε

2(e
−1
ε − e

1−λ̄
ε )

= 1 +
ε

8
for x ∈ (λ̄/2, 1) .

Moreover we have that

(fL(x))2 ≥ x

x+ ε
2e

−N
= 1−

ε
2e

−N

x+ ε
2e

−N
≥ 1−

ε
2e

−N

Nε
= 1 + oN (1) for x ∈ [Nε, 1) .
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A direct computation shows that

(ḟL(x))2 =

(
AL(x)− xȦL(x)

)2
4x(AL(x))3

≲
(max{x, ε})2max{e−

x
ε , e

1−λ̄
ε }

x(max{x, ε})3
≲

max{e−
x
ε , e

1√
ε }

xmax{x, ε}
≲

max{e−
x
ε , e

1√
ε }

xε
,

where the second inequality follows from 1−λ̄
ε ≤ 1−λ+1

2
ε = 1

2
√
ε
. Furthermore we have

(f̈L(x))2 ≲
x(ÄL(x))2

(AL(x))3
+

1

x3AL(x)
+

(ȦL(x))2

x(AL(x))3
+
x(ȦL(x))4

(AL(x))5

≲
xε−2e−

x
ε

(max{x, ε})3
+

1

x3max{x, ε}
+

1

x(max{x, ε})3
+

x

(max{x, ε})5
.

(5.33)

Hence

(f̈L(x))2 ≲
1

ε4
+

1

x3ε
+

1

xε3
≲

1

x3ε
if x ∈ (0, ε) ,

and

(f̈L(x))2 ≲
e−

x
ε

x2ε2
+

1

x4
≲

1

x3ε
if x ∈ (ε, 1) .

Step 2: in this step we show (5.22). By (3.2) it holds

 L

−L
(ûL(x, ·))2 dy =

 L0

−L0

(ûL(x, ·))2 dy =
∑

k∈ πZ
L0

,k ̸=0

aL(x, k)

k2

=

( ∑
k∈ πZ

L0
,k ̸=0

bL0(·, k)
k2

)
∗ ρε(x)

=

ˆ +∞

0

( ∑
k∈ πZ

L0
,k ̸=0

bL0(z, k)

k2

)
ρε(x− z) dz .

(5.34)

Moreover by the fundamental theorem of calculus and Hölder’s inequality we have

bL0(z, k) =

(√
bL0(z, k)

)2

=

(ˆ z

0

bL0
,x (ẑ, k)

2
√
bL0(ẑ, k)

dẑ

)2

≤ z

ˆ z

0

(bL0
,x (ẑ, k))2

4bL0(ẑ, k)
dẑ . (5.35)

Combining (5.34) with (5.35) we find

 L

−L
(ûL(x, ·))2 dy ≤

ˆ +∞

0

( ∑
k∈ πZ

L0
,k ̸=0

ˆ z

0

(bL0
,x (ẑ, k))2

4k2bL0(ẑ, k)
dẑ

)
zρε(x− z) dz

By definition of bL0 it follows that

∑
k∈ πZ

L0
,k ̸=0

ˆ z

0

(bL0
,x (ẑ, k))2

4k2bL0(ẑ, k)
dẑ =

∑
k∈ πZ

L0
,k ̸=0

ˆ z∧λ̄

0

(b̄L0
,x (ẑ, k))2

4k2b̄L0(ẑ, k)
dẑ

≤
ˆ
(0,z∧λ̄)×R

1

4k2

(
dµL0

,x

dµL0

)2

dµL0 =: ω(z) ,

(5.36)
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where the last inequality can be obtained by arguing exactly as in (5.17). Therefore we deduce
that  L0

−L0

(ûL(x, ·))2 dy ≤
ˆ +∞

0
ω(z)zρε(x− z) dz .

Note that ω(z) → 0 as z → 0 and ω(z) ≤ ω(λ̄) ≤ (λ2)F∞(µ) ≤ C. Let N ≥ 2 be a natural number.
Assume x ∈ (0, Nε]. Since ω is increasing we have

ˆ +∞

0
ω(z)zρε(x− z) dz ≤ ω(2Nε)

ˆ 2Nε

0
zρε(x− z) dz + ω(λ̄)

ˆ +∞

2Nε
zρε(x− z) dz

≤ ω(2Nε)max{x, ε}+ CNe−Nε

≲ max{x, ε}(ω(2Nε) +Ne−N ) .

(5.37)

If instead x ∈ (Nε, 1), we get

ˆ +∞

0
ω(z)zρε(x− z) dz ≤ ω(λ̄)

ˆ +∞

0
zρε(x− z) dz ≲ x. (5.38)

Step 3: in this step we show (5.23). By the mean value theorem and the fact that uL(x, ·) is
2L0-periodic, for fixed x, we can find y0 = y0(x) ∈ [−L0, L0] such that

ûL(x, y0) =

 L0

−L0

ûL(x, ŷ) dŷ = 0 ,

where the second equality follows by the definition of ûL and the fact that

 L0

−L0

sin(kŷ) dŷ =
k

2L0
(− cos(kL0) + cos(kL0)) = 0 ,

 L0

−L0

cos(kŷ) dŷ =
k

2L0
(sin(kL0)− sin(kL0)) = 0 ,

for all k ∈ πZ
L0

. Thus by the fundamental theorem of calculus, Hölder’s inequality and Plancherel it
holds

|ûL(x, y)| =
∣∣∣∣ˆ y

y0

ûL,y(x, y
′) dy′

∣∣∣∣ ≤√2L0

(ˆ L0

−L0

(ûL,y)
2 dy′

) 1
2

= 2
√
2L0

√
AL(x) .

This together with steps 1 and 2 yield

 L

−L

ˆ 1

−1
(ûL)4 dx dy =

 L0

−L0

ˆ 1

−1
(ûL)4 dx dy ≲ L2

0A
L(x)

 L0

−L0

ˆ 1

−1
(ûL)2 dx dy ≲ L2

0(max{x, ε})2 .
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Step 4: in this step we show (5.24). By (3.3) the definition of aL and (5.29)

 L

−L
(ûL,yy)

2 dy =

 L0

−L0

(ûL,yy)
2 dy =

∑
k∈ πZ

L0

k2aL(x, k) =
∑
k∈ πZ

L0

k2bL0(x, ·) ∗ ρε(x)

=
∑
k∈ πZ

L0

(
k2

ˆ λ̄

0
b̄L0(z, k)ρε(x− z) dz

)
+
∑
k∈ πZ

L0

b̄L0(λ̄, k)k2
ˆ +∞

λ̄
ρε(x− z) dz

≤ ∥ρε∥∞
ˆ λ̄

0

∑
k∈ πZ

L0

b
L0
(x, k)k2 dx+ e

x−λ̄
ε

 λ

λ+1
2

∑
k∈ πZ

L0

b
L0
(x, k)k2 dx

≲

(
1

ε
+

1

λ− 1
e

x−λ̄
ε

)ˆ λ

0

∑
k∈ πZ

L0

b
L0
(x, k)k2 dx

≲

(
1

ε
+

1

λ− 1
e

x−λ̄
ε

)
Fλ
∞(µL0) ≲

1

ε
.

(5.39)

Since the function (z1, z2) 7→ z21/z2 is convex by Jensen’s inequality we have

(aL,x(x, k))
2

aL(x, k)
=

(
bL0
,x (·, k) ∗ ρε(x)

)2
bL0(·, k) ∗ ρε(x)

≤
(bL0

,x (·, k))2

bL0(·, k)
∗ ρε(x) .

This together with (3.3) and (3.4) imply

 L

−L
(uL,x)

2 dy =

 L0

−L0

(uL,x)
2 dy =

∑
k∈ πZ

L0
,k ̸=0

1

4k2
(aL,x(x, k))

2

aL(x, k)
≤

∑
k∈ πZ

L0
,k ̸=0

1

4k2
(bL0

,x (·, k))2

bL0(·, k)
∗ ρε(x)

=
∑

k∈ πZ
L0

,k ̸=0

(
1

4k2

ˆ λ̄

0

(bL0
,x (z, k))2

bL0(z, k)
ρε(x− z) dz

)

≤ ∥ρε∥∞
ˆ λ̄

0

∑
k∈ πZ

L0
,k ̸=0

1

4k2
(bL0

,x (x, k))2

bL0(x, k)
dx ≤ 1

ε
Fλ
∞(µL0) ≲

1

ε
.

(5.40)

Thus combining (5.39) with (5.40) we infer (5.24).

Step 5: in this step we show (5.25). By recalling Definition 2.1 we have

µ̂L := µL(ûL) =
∑
k∈ πZ

L0

aL(x, k)L1 (−1, 1)× δk ,

and
µ̂L,x = µL,x(û

L) =
∑
k∈ πZ

L0

aL,x(x, k)L1 (−1, 1)× δk ,

Let φ ∈ C∞
c ((−1, 1)× R). Then

ˆ
(−1,1)×R

φdµ̂L =

ˆ
(−1,1)×R

φdµ̂L −
ˆ
(0,1)×R

φdµL0 +

ˆ
(0,1)×R

φdµL0 .

28



By Lemma 5.3 we have that

lim
L→∞

ˆ
(0,1)×R

φdµL0 =

ˆ
(0,1)×R

φdµ ,

hence it suffices to show that

lim
L→+∞

(ˆ
(−1,1)×R

φdµ̂L −
ˆ
(0,1)×R

φdµL0

)
= 0 .

Indeed by (5.32) and (5.8) we have∣∣∣∣ˆ
(−1,1)×R

φdµ̂L−
ˆ
(0,1)×R

φdµL0

∣∣∣∣ ≤ ∥φ∥∞

∣∣∣∣∣
ˆ
(−1,1)×R

dµ̂L −
ˆ
(0,1)×R

dµL0

∣∣∣∣∣
= ∥φ∥∞

∣∣∣∣∣
ˆ 1

−1

∑
k∈ πZ

L0

aL(x, k) dx−
ˆ 1

0

∑
k∈ πZ

L0

b̄L(x, k) dx

∣∣∣∣∣
= ∥φ∥∞

∣∣∣∣ˆ 1

−1
ε
(
e−

|x|
ε − e

x−λ̄
ε

)
dx

∣∣∣∣ ≤ Cε2 → 0 as L→ +∞ .

Moreover we haveˆ
(−1,1)×R

φdµ̂L,x = −
ˆ
(−1,1)×R

φ,x dµ̂
L → −

ˆ
(−1,1)×R

φ,x dµ =

ˆ
(−1,1)×R

φdµ,x .

Step 6: in this step we show (5.26). By (3.3), (5.30) we have
 L0

−L0

ˆ 1

−1
(ûL,yy)

2 dx dy =

ˆ 1

−1

∑
k∈ πZ

L0

aL(x, k)k2 dx =

ˆ 1

−1

∑
k∈ πZ

L0

bL0(·, k) ∗ ρε(x)k2 dx

=

ˆ 1

−1

∑
k∈ πZ

L0

(
k2

ˆ λ̄

0
b̄L0(z, k)ρε(x− z) dz

)
dx+

∑
k∈ πZ

L0

b̄L0(λ̄, k)k2
ˆ 1

−1

ˆ +∞

λ̄
ρε(x− z) dz .

(5.41)

Fubini’s theorem yields
ˆ 1

−1

∑
k∈ πZ

L0

(
k2

ˆ λ̄

0
b̄L0(z, k)ρε(x− z) dz

)
dx ≤

ˆ λ̄

0

∑
k∈ πZ

L0

b̄L0(x, k)k2 dx . (5.42)

while from (5.29) we deduce∑
k∈ πZ

L0

b̄L0(λ̄, k)k2
ˆ 1

−1

ˆ +∞

λ̄
ρε(x− z) dz dx ≤ ε

2

(
e

1−λ̄
ε − e

−1−λ̄
ε

) λ

λ+1
2

∑
k∈ πZ

L0

b
L0
(x, k)k2 dx . (5.43)

Analogously from (3.3), (3.4) and Jensen’s inequality it holds
 L0

−L0

ˆ 1

−1
(ûL,x)

2 dx dy =

ˆ 1

−1

∑
k∈ πZ

L0
,k ̸=0

1

4k2
(aL,x(x, k))

2

aL(x, k)
dx

≤
ˆ 1

−1

∑
k∈ πZ

L0
,k ̸=0

1

4k2
(bL0

,x (·, k))2

bL0(·, k)
∗ ρε(x) dx

≤
ˆ λ̄

0

∑
k∈ πZ

L0
,k ̸=0

1

4k2
(b̄L0

,x (x, k))2

b̄L0(x, k)
dx .

(5.44)
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Gathering together (5.41)–(5.44) we obtain

 L

−L

ˆ 1

−1

(
(ûL,x)

2 + (ûL,yy)
2
)
dx dy ≤

(
1 +

Cε(e
1−λ̄
ε

−e
−1−λ̄

ε )

1− λ

)
Fλ
∞(µL0) , (5.45)

and hence by letting L→ +∞ and recalling Lemma 5.3 (iii) we deduce (5.26).

Step 7: in this step we show (5.27). By (3.3), (3.4)
 L

−L

ˆ 1

−1
(ûL,xy)

2 dx dy =

 L0

−L0

ˆ 1

−1
(ûL,xy)

2 dx dy =

ˆ 1

−1

∑
k∈ πZ

L0
,k ̸=0

1

4

(aL,x(x, k))
2

aL(x, k)
dx . (5.46)

Next we observe that (5.31) yields

(aL,x(x, k))
2 = (bL(·, k) ∗ ρ̇ε(x))2 ≤ (bL(·, k) ∗ |ρ̇ε|(x))2 =

1

ε2
(bL(·, k) ∗ ρε(x))2 ≤

1

ε2
(aL(x, k))2 ,

(5.47)
so that combining (5.46) with (5.47) and recalling (5.32) we obtain L

−L

ˆ 1

−1
(ûL,xy)

2 dx dy ≤ 1

4ε2

ˆ 1

−1

∑
k∈ πZ

L0

(aL(x, k))2 dx ≲
1

ε2
. (5.48)

In a similar way (3.3) and (3.4) give L

−L

ˆ 1

−1
(ûL,xx)

2 dx dy =

 L0

−L0

ˆ 1

−1
(ûL,xx)

2 dx dy =

ˆ 1

−1

∑
k∈ πZ

L0
,k ̸=0

1

k2

[(√
aL(x, k)

)
,xx

]2
dx

≲
ˆ 1

−1

∑
k∈ πZ

L0
,k ̸=0

1

k2
(aL,xx(x, k))

2

aL(x, k)
dx+

ˆ 1

−1

∑
k∈ πZ

L0
,k ̸=0

1

k2
(aL,x(x, k))

4

(aL(x, k))3
dx

≲
1

ε2

ˆ 1

−1

∑
k∈ πZ

L0
,k ̸=0

1

4k2
(aL,x(x, k))

2

aL(x, k)
dx

≲
1

ε2

ˆ 1

−1

 L0

−L0

(ûL,x)
2 dy dx ≲

1

ε2
Fλ
∞(µL0) ≲

1

ε2
,

(5.49)

where the second inequality follows from

(aL,x(x, k))
4 = (aL,x(x, k))

2(bL(·, k) ∗ ρ̇ε(x))2 ≤
1

ε2
(aL,x(x, k))

2(aL(x, k))2 ,

and

(aL,xx(x, k))
2 = (bL,x(·, k) ∗ ρ̇ε(x))2 ≤

1

ε2
(aL,x(x, k))

2 .

Moreover appealing again to (5.47) we find L

−L

ˆ 1

−1
(ûL,yyx)

2 dx dy =

 L0

−L0

ˆ 1

−1
(ûL,yyx)

2 dx dy =

ˆ 1

−1

∑
k∈ πZ

L0
,k ̸=0

k2
[(√

aL(x, k)
)
,x

]2
dx

=

ˆ 1

−1

∑
k∈ πZ

L0
,k ̸=0

k2

4

(aL,x(x, k))
2

aL(x, k)
dx ≲

1

ε2

ˆ 1

−1

∑
k∈ πZ

L0
,k ̸=0

k2aL(x, k) dx

≲
1

ε2

ˆ 1

−1

 L0

−L0

(ûL,yy)
2 dy dx ≲

1

ε2
Fλ
∞(µL0) ≲

1

ε2
.

(5.50)
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Eventually gathering together (5.48)–(5.50) we deduce (5.27).

Step 8: in this step we show (5.28). Analogously to step 3 we can find y0 ∈ [−L0, L0] such that

ûL,x(x, y0) =

 L0

−L0

ûL,x(x, ŷ) dŷ = 0 ,

so that by the fundamental theorem of calculus, Hölder’s inequality it holds

|ûL,x(x, y)| =
∣∣∣∣ˆ y

y0

û,xy(x, y
′) dy′

∣∣∣∣ ≤√L0

(ˆ L0

−L0

(ûL,xy)
2 dy′

) 1
2

=
√
2L0

( ∑
k∈πZ

L
,k ̸=0

1

4

(aL,x(x, k))
2

aL(x, k)

) 1
2

≲ L0

(
1

4ε2

∑
k∈πZ

L
,k ̸=0

aL(x, k)

) 1
2

≲
L0

ε
, /

(5.51)

where the last two inequalities follow from (5.47) and (5.32). Therefore (5.51) gives

 L0

−L0

ˆ 1

−1
(ûL,x)

4 dx dy ≲
L2
0

ε2

 L0

−L0

ˆ 1

−1
(ûL,x)

2 dx dy ≲
L2
0

ε2
,

and the proof is concluded.

We are now in a position to prove Proposition 5.1.

Proof of Proposition 5.1. Let µ ∈ M∞ be as in the statement. Let ε = ε(L) > 0 and n = n(L) ∈ N
be such that

lim
L→+∞

ε(L) = 0 , lim
L→+∞

n(L) = lim
L→+∞

L

n(L)
= +∞ , (5.52)

to be chosen later. Let ûL ∈ Aout
L ∩ Aout

L0
with L0 := L/n(L) be the function given by Lemma 5.4.

Recall that

AL(x) =
1

2

 L

−L
(ûL,y)

2 dy and fL(x) =

√
x

AL(x)
for x ≥ 0 .

Furthermore we let M = M(L) ∈ N, M ≥ 2 to be chosen later such that setting δ = δ(L) :=
ε(L)
M(L) < ε(L) we have

lim
L→+∞

M(L) = +∞ , and lim
L→+∞

δ(L) = lim
L→+∞

M2(L)δ(L) = 0 . (5.53)

We consider ψδ ∈ C∞(R) such that

ψδ ≡ 0 in (−∞, δ] , ψδ ≡ 1 in [2δ,+∞) , |ψ̇δ(x)| ≤ Cδ−1 , |ψ̈δ(x)| ≤ Cδ−2 .

Note that ψ̇δ = ψ̈δ = 0 in (δ, 2δ)c. We next define (wL, uL) =
(
(wL

1 , w
L
2 ), u

L
)
as follows:

uL(x, y) := ψδ(x)f
L(x)ûL(x, y) ,

wL
2 (x, y) := ψ2

δ (x)xy +BL(x)− 1

2

ˆ y

0
(uL,y)

2 dy′ ,

wL
1 (x, y) := x− 1

L2

ˆ y

0
(wL

2,x + uL,xu
L
,y) dy

′ ,
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where

BL(x) :=
1

2

 L0

−L0

ˆ y

0
(uL,y)

2 dy′ dy −
 L0

−L0

ˆ x

0
uL,xu

L
,y dx

′ dy .

Clearly uL ∈ Aout
L ∩ Aout

L0
. We show that wL ∈ Ain

L ∩ Ain
L0
. Precisely to see that wL(x, ·) is 2L0

periodic we use the following fact:

A differentiable function h is T -periodic if h′ is T -periodic and h(t) = h(t+ T ) for some t.

The function wL
2,y(x, ·) is 2L0-periodic, since u

L
,y is, and from (3.3) satisfies

wL
2 (x, L0)− wL

2 (x,−L0) = 2L0ψ
2
δ (x)x−

ˆ L0

−L0

(uL,y)
2 dy

= 2L0ψ
2
δ (x)(x− (fL(x))2AL(x)) = 0 ,

from which we deduce wL
2 (x, ·) is 2L0-periodic. Using this periodicity, and in particular also of

wL
2,x, we see that wL

1,y(x, ·) is 2L0-periodic. Moreover we have

wL
1 (x, L0)− wL

1 (x,−L0) = − 1

L2

ˆ L0

−L0

(wL
2,x + uL,xu

L
,y) dy

= − 1

L2

(
2L0Ḃ

L(x)−
ˆ L0

−L0

ˆ y

0
uL,yu

L
,xy dy

′ dy +

ˆ L0

−L0

uL,xu
L
,y dy

)
= 0 ,

where the second and the third equalities follow from

wL
2,x = (ψ2

δ (x)x)
′y + ḂL(x)−

ˆ y

0
uL,yu

L
,xy dy

′ ,

and

2L0Ḃ
L(x) = 2L0

( L0

−L0

uL,yu
L
,xy dy −

 L0

−L0

uL,xu
L
,y dy

)
.

Thus we deduce that wL
1,y is 2L0-periodic. For the reader convenience we divide the rest of the proof

into several steps. We will repeatedly use that the averaged integral over (−L,L) of a 2L0-periodic
function is equal to the averaged integral over (−L0, L0) of the same function.

Step 1: we show that (wL, uL) converges to µ in the sense of Definition 2.3. We have that

ûL(x, y) =
∑

k∈ πZ
L0

,k>0

aLk (x) sin(ky) +
∑

k∈ πZ
L0

,k<0

aLk (x) cos(ky) ,

so that

uL(x, y) =
∑

k∈ πZ
L0

,k>0

ψδ(x)f
L(x)aLk (x) sin(ky) +

∑
k∈ πZ

L0
,k<0

ψδ(x)f
L(x)aLk (x) cos(ky) .

Therefore we get

µL := µL(uL) =
∑
k∈ πZ

L0

ψ2
δ (x)(f

L(x))2(aLk (x))
2k2L1 (−1, 1)× δk

=
∑
k∈ πZ

L0

ψ2
δ (x)(f

L(x))2(aLk (x))
2k2L1 (δ, 1)× δk .
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We show µL
∗
⇀ µ. We fix φ ∈ C∞

c ((−1, 1)× R) and we write

ˆ
(−1,1)×R

φdµL =

(ˆ
(−1,1)×R

φdµL −
ˆ
(−1,1)×R

φdµL(ûL)

)
+

ˆ
(−1,1)×R

φdµL(ûL) .

By Lemma 5.4 it holds

lim
L→+∞

ˆ
(−1,1)×R

φdµL(ûL) =

ˆ
(−1,1)×R

φdµ .

Therefore it is sufficient to show that

lim
L→+∞

(ˆ
(−1,1)×R

φdµL −
ˆ
(−1,1)×R

φdµL(ûL)

)
= 0 .

Recalling that ψδ = 0 in (−1, δ), ψδ = 1 in (2δ, 1) and Mε =Mδ2 ≥ 2δ, we have∣∣∣∣ ˆ
(−1,1)×R

φdµL −
ˆ
(0,1)×R

φdµL(ûL)

∣∣∣∣ = ∣∣∣∣ˆ 1

0

∑
k∈ πZ

L0

φ(x, k)(aLk (x))
2k2
(
ψ2
δ (x)(f

L(x))2 − 1
)
dx

∣∣∣∣
≤ ∥φ∥∞

∣∣∣∣ˆ Mε

0

(
ψ2
δ (x)(f

L(x))2 − 1
) ∑

k∈ πZ
L0

(aLk (x))
2k2 dx

∣∣∣∣
+ ∥φ∥∞

∣∣∣∣ˆ 1

Mε

(
(fL(x))2 − 1

) ∑
k∈ πZ

L0

(aLk (x))
2k2 dx

∣∣∣∣ .
Since ∑

k∈ πZ
L0

(aLk (x))
2k2 = AL(x) =

1

2

 L

−L
(û,y(x, ·))2 dy ,

by (5.18) and (5.19) we have(
ψ2
δ (x)(f

L(x))2 − 1
) ∑

k∈ πZ
L0

(aLk (x))
2k2 ≤

(
ψ2
δ (x)(1 + oL(1))− 1

)
max{x, ε}

which together with (5.53) imply

∥φ∥∞
∣∣∣∣ ˆ Mε

0

∑
k∈ πZ

L0

(aLk (x))
2k2(ψ2

δ (x)(f
L(x))2 − 1) dx

∣∣∣∣ ≤ CMε = CM2δ → 0 as L→ +∞ .

Whereas (5.19), (5.20) with N =M and the fact that M =M(L) → +∞ imply

(fL(x))2 = 1 + oL(1) in [Mε, 1) ,

so that

∥φ∥∞
∣∣∣∣ ˆ 1

Mε

∑
k∈ πZ

L0

aLk (x)k
2(fL(x)− 1) dx

∣∣∣∣ ≤ oL(1) → 0 as L→ +∞ .

Eventually by duality we haveˆ
R×(−1,1)

φdµL,x = −
ˆ
R×(−1,1)

φ,x dµ
L → −

ˆ
R×(−1,1)

φ,x dµ =

ˆ
R×(−1,1)

φdµ,x ,
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which in turn implies µL,x
∗
⇀ µ,x.

Step 2: we show that

lim sup
L→+∞

 L

−L

ˆ 1

−1
((uL,x)

2 + (uL,yy)
2) dx dy ≤ F∞(µ) + C lim

L→+∞
ω(2M2δ) logM . (5.54)

To this purpose we note that

uL,x(x, y) = ψδ(x)f
L(x)ûL,x(x, y) + ψ̇δ(x)f

L(x)ûL(x, y) + ψδ(x)ḟ
L(x)ûL(x, y) . (5.55)

Therefore by Young’s inequality

 L

−L

ˆ 1

−1
(uL,x)

2 dx dy ≤ (1 + α)

 L

−L

ˆ 1

δ
(fL(x))2(ûL,x)

2 dx dy

+ 2(1 + α−1)
1

δ2

 L

−L

ˆ 2δ

δ
(fL(x))2(ûL)2 dx dy

+ 2(1 + α−1)

 L

−L

ˆ 1

δ
(ḟL(x))2(ûL)2 dx dy ,

(5.56)

for any α > 0. In this way by recalling (5.19) (5.22) and (5.21) we have

 L

−L

ˆ 1

−1
(fL(x))2(ûL,x)

2 dx dy ≤ (1 + oL(1))

 L

−L

ˆ 1

−1
(ûL,x)

2 dx dy , (5.57)

1

δ2

 L

−L

ˆ 2δ

δ
(fL(x))2(ûL)2 dx dy ≲

1

δ2
δ(ω(2Mε) +Me−M )

ˆ 2δ

δ
dx ≲ (ω(2Mε) +Me−M ) , (5.58)

and

 L

−L

ˆ 1

δ
(ḟL(x))2(ûL)2 dx dy ≲

ˆ ε

δ

1

xε
ε(ω(2Mε) +Me−M ) dx

+

ˆ √
ε

ε

e−
x
ε

xε
x(ω(2Mε) +Me−M ) dx+

ˆ 1

√
ε

e
− 1√

ε

xε
x dx

≲ (log
ε

δ
+ 1)(ω(2Mε) +Me−M ) +

e
− 1√

ε

ε
.

(5.59)

Gathering together (5.56)–(5.59) and recalling that δ = ε/M we deduce

 L

−L

ˆ 1

−1
(uL,x)

2 dx dy ≤ (1 + ᾱ)

 L

−L

ˆ 1

−1
(ûL,x)

2 dx dy + C(logM + 1)(ω(2M2δ) +Me−M ) + oL(1) ,

(5.60)
with ᾱ := α+ αoL(1) + oL(1). Moreover as uL,yy = ψδ(x)f

L(x)ûL,yy we get

 L

−L

ˆ 1

−1
(uL,yy)

2 dx dy ≤
 L

−L

ˆ 1

−1
(fL(yy))2(ûL,yy)

2 dx dy ≤
 L

−L

ˆ 1

−1
(ûL,x)

2 dx dy . (5.61)

By (5.60), (5.61), (5.26) and the fact that M2δ → 0 we finally deduce

lim sup
L→+∞

 L

−L

ˆ 1

−1
((uL,x)

2 + (uL,yy)
2) dx dy ≤ (1 + α)F∞(µ) + C lim

L→+∞
ω(2M2δ) logM .
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Eventually by the arbitrariness of α we infer the desired estimate.

Step 3: we show that

L2

 L

−L

ˆ 1

−1

(
wL
1,x +

(uL,x)
2

2L2
− 1

)2

dx dy ≲
L4
0

L2

1

δ2ε
≲
L4
0

L2

1

δ3M
. (5.62)

By Young’s inequality we have

L2

 L

−L

ˆ 1

−1

(
wL
1,x +

(uL,x)
2

2L2
− 1

)2

dx dy ≲
 L

−L

ˆ 1

−1

(uL,x)
4

L2
dx dy + L2

 L

−L

ˆ 1

−1

(
wL
1,x − 1

)2
dx dy .

(5.63)

We estimate the first term on the right hand-side of (5.63). By (5.55) it follows

 L

−L

ˆ 1

−1
(uL,x)

4 dx dy ≲
 L

−L

ˆ 1

−1
(fL(x))4(ûL,x)

4 dx dy

+
1

δ4

 L

−L

ˆ 2δ

δ
(fL(x))4(ûL)4 dx dy +

 L

−L

ˆ 1

δ
(ḟL(x))4(ûL)4 dx dy .

(5.64)

By (5.19) and (5.28) we have

 L

−L

ˆ 1

−1
(fL(x))4(ûL,x)

4 dx dy ≲
L2
0

ε2
, (5.65)

whereas from (5.19), (5.23), and the fact that x ∈ (δ, 2δ) we get

1

δ4

 L

−L

ˆ 2δ

δ
(fL(x))4(ûL)4 dx dy ≲

1

δ4
δ2

ε2
L2
0

ˆ 2δ

δ
(max{x, ε})2 dx ≲

L2
0

δ
. (5.66)

Finally by (5.21) and (5.23)

 L

−L

ˆ 1

δ
(ḟL(x))4(ûL)4 dx dy ≲ L2

0

ˆ 1

δ

1

x2ε2
(max{x, ε})2 dx ≲ L2

0

(
1

δ
+

1

ε2

)
. (5.67)

Thus gathering together (5.64)–(5.67) we infer

 L

−L

ˆ 1

−1

(uL,x)
4

L2
dx dy ≲

L2
0

L2

(
1

δ
+

1

ε2

)
. (5.68)

We now pass to estimate the second term on the right hand side of (5.63). To this aim we observe
that integrating by parts it holds

wL
2,x + uL,xu

L
,y = (xψ2

δ (x))
′y + ḂL(x)−

ˆ y

0
uL,yu

L
,xy dy

′ + uL,xu
L
,y(x, y)

= (xψ2
δ (x))

′y + ḂL(x) +

ˆ y

0
u,yyu,x dy

′ + uL,xu
L
,y|y=0

= (xψ2
δ (x))

′y +

ˆ y

0
u,yyu,x dy

′ + CL(x) ,

(5.69)

where

CL(x) := −
 L

−L

ˆ y

0
u,yyu,x dy

′ dy = −
 L0

−L0

ˆ y

0
u,yyu,x dy

′ dy ,
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and the last equality is a consequence of the following identity

ḂL(x) + uL,xu
L
,y|y=0 =

 L

−L

(ˆ y

0
uL,yu

L
,xy dy

′ − uL,xu
L
,y + uL,xu

L
,y|y=0

)
dy = CL(x) .

Using (5.69) and the definition of ω we get

wL
1,x − 1 = − 1

L2

ˆ y

0

(
(xψ2

δ (x))
′′y′ +

ˆ y′

0
(uL,yyu

L
,xx + uL,yyxu

L
,x) dy

′′ + ĊL(x)

)
dy′

= − 1

L2

(
(xψ2

δ (x))
′′ y

2

2
+

ˆ y

0

ˆ y′

0
(uL,yyu

L
,xx + uL,yyxu

L
,x) dy

′′ dy′ + ĊL(x)y

)
.

This together with Young’s inequality give

L2

 L

−L

ˆ 1

−1

(
wL
1,x − 1

)2
dx dy = L2

 L0

−L0

ˆ 1

−1

(
wL
1,x − 1

)2
dx dy

≲
1

L2

 L0

−L0

ˆ 1

−1
((xψ2

δ (x))
′′)2y4 dx dy

+
1

L2

 L0

−L0

ˆ 1

−1

(ˆ y

0

ˆ y′

0
(uL,yyu

L
,xx + uL,yyxu

L
,x) dy

′′ dy′
)2

dx dy

+
1

L2

 L0

−L0

ˆ 1

−1
(ĊL(x))2y2 dx dy .

(5.70)

As (xψ2
δ (x))

′′ = 4ψδ(x)ψ̇δ(x) + 2xψδ(x)ψ̈δ(x) + 2x(ψ̇δ(x))
2 in (δ, 2δ) and (xψ2

δ (x))
′′ = 0 otherwise,

we have

1

L2

 L0

−L0

ˆ 1

−1
((xψ2

δ (x))
′′)2y4 dx dy ≲

L4
0

L2

ˆ 2δ

δ
((xψ2

δ (x))
′′)2 dx ≲

L4
0

L2

1

δ
. (5.71)

We now estimate the second term on the right hand-side of (5.70). We first observe that if a, b, c, d
are 2L0-periodic then by applying in order Hölder, Young and Jensen inequalities we have[ˆ y

0

ˆ y′

0
(ab+ cd) dy′′ dy′

]2
≤
[ˆ y

0
∥a∥L2(0,y′)∥b∥L2(0,y′) + ∥c∥L2(0,y′)∥d∥L2(0,y′) dy

′
]2

≲

[ˆ y

0
∥a∥L2(0,y′)∥b∥L2(0,y′) dy

′
]2

+

[ˆ y

0
∥c∥L2(0,y′)∥d∥L2(0,y′) dy

′
]2

≲ L2
0

 L0

−L0

∥a∥2L2(0,y′)∥b∥
2
L2(0,y′) dy

′ + L2
0

 L0

−L0

∥c∥2L2(0,y′)∥d∥
2
L2(0,y′) dy

′

≲ L4
0

[( L0

−L0

a2 dy′′
)( L0

−L0

b2 dy′′
)
+

(  L0

−L0

c2 dy′′
)(  L0

−L0

d2 dy′′
)]

.

Therefore it follows that

1

L2

 L0

−L0

ˆ 1

−1

(ˆ y

0

ˆ y′

0
(uL,yyu

L
,xx + uL,yyxu

L
,x) dy

′′ dy′
)2

dx dy

=
1

L2

 L0

−L0

ˆ 1

δ

(ˆ y

0

ˆ y′

0
(uL,yyu

L
,xx + uL,yyxu

L
,x) dy

′′ dy′
)2

dx dy

≲
L4
0

L2

ˆ 1

δ

(  L0

−L0

(uL,yy)
2 dy′′

)(  L0

−L0

(uL,xx)
2 dy′′

)
dx

+
L4
0

L2

ˆ 1

δ

(  L0

−L0

(uL,yyx)
2 dy′′

)(  L0

−L0

(uL,x)
2 dy′′

)
dx .

(5.72)
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Next we show separately that:

 L0

−L0

(uL,yy)
2 dy′′ ≲

1

ε
,

 L0

−L0

(uL,x)
2 dy′′ ≲

1

xε
max{x, ε} , (5.73)

ˆ 1

δ

 L0

−L0

(uL,xx)
2 dy′′ dx ≲

1

δ2
,

ˆ 1

δ

 L0

−L0

(uL,yyx)
2 dy′′ dx ≲

1

δε
. (5.74)

Since uL,yy = ψδ(x)f
L(x)ûL,yy by (5.19) and (5.24) we have

 L0

−L0

(ûL,yy)
2 dy ≲

1

ε
.

By (5.55), (5.19), (5.24), (5.22) and (5.21) we have

 L0

−L0

(uL,x)
2 dy ≲

 L0

−L0

(fL(x))2(ûL,x)
2 dy +

1

δ2

 L0

−L0

χ(δ,2δ)(f
L(x))2(ûL)2 dy +

 L0

−L0

(ḟL(x))2(ûL)2 dy

≲
1

ε
+

1

δ2
δ

ε
max{x, ε}χ(δ,2δ) +

1

xε
max{x, ε}

≲
1

ε
+

1

δ
χ(δ,2δ) +

1

xε
max{x, ε} ≲

1

xε
max{x, ε} .

From (5.55) it follows

uL,xx(x, y) = ψδ(x)f
L(x)ûL,xx(x, y) + ψδ(x)f̈

L(x)ûL(x, y) + ψ̈δ(x)f
L(x)ûL(x, y)

+ 2ψ̇δ(x)f
L(x)ûL,x(x, y) + 2ψ̇δ(x)ḟ

L(x)ûL(x, y) + 2ψδ(x)ḟ
L(x)ûL,x(x, y) .

Hence by (5.19), (5.27), (5.21), (5.22) and (5.26) we have

ˆ 1

δ

 L0

−L0

(uL,xx)
2 dy dx ≲

ˆ 1

δ

 L0

−L0

(fL(x))2(ûL,xx)
2 dy dx+

ˆ 1

δ

 L0

−L0

(f̈L(x))2(ûL)2 dy dx

+

ˆ 1

δ

 L0

−L0

(ḟL(x))2(ûL,x)
2 dy dx+

1

δ4

ˆ 2δ

δ

 L0

−L0

(fL(x))2(ûL)2 dy dx

+
1

δ2

ˆ 2δ

δ

 L0

−L0

(ḟL(x))2(ûL)2 dy dx+
1

δ2

ˆ 2δ

δ

 L0

−L0

(fL(x))2(ûL,x)
2 dy dx

≲
1

ε2
+

ˆ 1

δ

1

x3ε
max{x, ε} dx+

1

δε
+

1

δ4

ˆ 2δ

δ

x

ε
max{x, ε} dx

+
1

δ2

ˆ 2δ

δ

1

xε
max{x, ε} dx+

1

δ2
≲

1

ε2
+

1

δ2
+

1

δε
≲

1

δ2
.

(5.75)

Analogously by (5.55) it follows

uL,yyx(x, y) = ψδ(x)f
L(x)ûL,yyx(x, y) + ψ̇δ(x)f

L(x)ûL,yy(x, y) + ψδ(x)ḟ
L(x)ûL,yy(x, y) ,

from which together with (5.27), (5.19), (5.24) and (5.21)

ˆ 1

δ

 L0

−L0

(uL,yyx)
2 dy dx ≲

ˆ 1

δ

 L0

−L0

(fL(x))2(ûL,yyx)
2 dy dx+

1

δ2

ˆ 2δ

δ

 L0

−L0

(fL(x))2(ûL,yy)
2 dy dx

+

ˆ 1

δ

 L0

−L0

(ḟL(x))2(ûL,yy)
2 dy dx ≲

1

ε2
+

1

δ2
δ

ε

δ

ε
+

1

δε
≲

1

δε
.
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Now (5.73) and (5.74) yield

L4
0

L2

ˆ 1

δ

( L0

−L0

(uL,yy)
2 dy′′

)(  L0

−L0

(uL,xx)
2 dy′′

)
dx ≲

L4
0

L2

1

δ2ε
, (5.76)

and

L4
0

L2

ˆ 1

δ

(  L0

−L0

(uL,yyx)
2 dy′′

)(  L0

−L0

(uL,x)
2 dy′′

)
dx ≲

L4
0

L2

(
1

δ
+

1

ε

)
1

δε
≲
L4
0

L2

1

δ2ε
. (5.77)

Gathering together (5.72), (5.76) and (5.77) we find

1

L2

 L0

−L0

ˆ 1

−1

(ˆ y

0

ˆ y′

0
(uL,yyu

L
,xx + uL,yyxu

L
,x) dy

′′ dy′
)2

dx dy ≲
L4
0

L2

1

δ2ε
. (5.78)

It remains to estimate the third term on the right hand-side of (5.70). In a similar way, see in
particular (5.76) and (5.77), we have

1

L2

 L0

−L0

ˆ 1

−1
(ĊL(x))2y2 dx dy ≲

L2
0

L2

ˆ 1

−1

( L0

−L0

ˆ y

0
(uL,yyu

L
,xx + uL,yyxu

L
,x) dy

′ dy

)2

dx

≲
L4
0

L2

ˆ 1

−1

 L0

−L0

(  L0

−L0

(uL,yy)
2 dy′′

)( L0

−L0

(uL,xx)
2 dy′′

)
dy dx

+
L4
0

L2

ˆ 1

−1

 L0

−L0

(  L0

−L0

(uL,yyx)
2 dy′′

)(  L0

−L0

(uL,x)
2 dy′′

)
dy dx

≲
L4
0

L2

1

δ2ε
.

(5.79)

Gathering together (5.70), (5.71), (5.78) and (5.79) we infer

L2

 L

−L

ˆ 1

−1

(
wL
1,x − 1

)2
dx dy ≲

L4
0

L2

1

δ2ε
,

which together with (5.68) and (5.63) implies

L2

 L

−L

ˆ 1

−1

(
wL
1,x +

(uL,x)
2

2L2
− 1

)2

dx dy ≲
L2
0

L2

(
1

δ
+

1

ε2

)
+
L4
0

L2

1

δ2ε
≲
L4
0

L2

1

δ2ε
.

Step 4: we show that

L2

 L

−L

ˆ 1

−1

(
wL
2,y +

(uL,y)
2

2
− x
)2

dx dy ≤ L2

(
1

3
+ Cδ3

)
. (5.80)

Recalling the definition of wL
2 it holds wL

2,y +
(uL

,y)
2

2 − x = ψ2
δ (x)x− x, so that

 L

−L

ˆ 1

−1

(
wL
2,y +

(uL,y)
2

2
− x
)2

dx dy =

ˆ 1

−1
(ψ2

δ (x)x− x)2 dx ≤
ˆ 2δ

−1
x2 dx =

8

3
δ3 +

1

3
.

Step 5: we show that  L

−L

ˆ 1

−1

(
L2wL

1,y + wL
2,x + uL,xu

L
,y

)2
dx dy = 0 . (5.81)
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This is a trivial consequence of the following identity

wL
1,y = − 1

L2
(wL

2,x + uL,xu
L
,y) ,

which follows from the definitions of wL
1 and wL

2 .

Step 6: we show that

1

L2

 L

−L

ˆ 1

−1

(
2(uL,xy)

2 +
1

L2
(uL,xx)

2

)
dx dy ≲

(
1

L2
+

1

L4

)
1

δ2
. (5.82)

We have

uL,xy(x, y) = ψδ(x)f
L(x)ûL,xy(x, y) + ψ̇δ(x)f

L(x)ûL,y(x, y) + ψδ(x)ḟ
L(x)ûL,y(x, y) .

Thus by (5.18), (5.19), (5.27), (5.26) and (5.21)

 L

−L

ˆ 1

−1
(uL,xy)

2 dx dy ≲
 L

−L

ˆ 1

δ
(fL(x))2(ûL,xy)

2 dx dy

+
1

δ2

 L

−L

ˆ 2δ

δ
(fL(x))2(ûL,y)

2 dx dy

+

 L

−L

ˆ 1

δ
(ḟL(x))2(ûL,y)

2 dx dy ≲
1

ε2
+ 1 +

1

ε
+
ε

δ
≲

1

δε
.

This together with (5.75) imply (5.82).

Conclusions. By Step 1 we have that (ωL, uL) converges to µ in the sense of Definition 2.3. Moreover
by collecting the estimates showed in Steps 2–6, i.e., (5.54), (5.62), (5.80), (5.81) and (5.82) we find

lim sup
L→+∞

L2(EL(wL, uL)− E0) ≤ F∞(µ) + C lim
L→+∞

ω(2M2δ) logM

+ C lim
L→+∞

(L4
0

L2

1

δ3M
+ L2δ3 +

1

L2δ2

)
.

(5.83)

We now proceed with the choice of the parameters. We start by noticing that for every M ∈ N
there exists LM ≥M

1/2
such that

ω(2M
2
L−2/3) ≤M

−1 ∀L ≥ LM . (5.84)

Since LM+1 ≥ LM we set

M =M(L) :=M if L ∈ [LM , LM+1)

Next we define
δ :=

ε

M
= L−2/3M−1/8 ⇐⇒ ε = L−2/3M7/8 ,

and we choose

L0 :=
L

n
∈ [M1/8, 2M1/8) ⇐⇒ n ∈

[ L

2M1/8
,

L

M1/8

)
.

These choices ensures the validity of (5.52) and (5.53). Indeed we have

ε =
1

L2/3M−7/8
=

1

L2/3M
−7/8

≤ 1

M
3
M

−7/8
if L ∈ [LM , LM+1) ,
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where the last inequality follows from the fact that L ≥ LM ≥ M
1/2

. Hence ε → 0 and δ → 0 as
L→ +∞. In a similar way we have M2δ → 0 and L0, n→ +∞ as L→ +∞.
Recalling that ω is monotone we find

ω(2M2δ) = ω(2M2L−2/3M−1/8) ≤ ω(2M2L−2/3) = ω(2M
2
L−2/3) if L ∈ [LM , LM+1) ,

which together with (5.84) imply

logMω(2M2δ) ≤ log(M)M
−1

if L ∈ [LM , LM+1) . (5.85)

Moreover if L ∈ [LM , LM+1) it holds

L2δ3 = L2L−2M−3/8 =M
−3/8

, (5.86)

1

L2δ2
=
L4/3M1/4

L2
=
M1/4

L2/3
=
M

1/4

L2/3
≤ M

1/4

(M
1/2

)2/3
=M

−1/12
, (5.87)

and
L4
0

L2

1

δ3M
≤ 16M1/2

MM−3/8
= 16M−1/8 = 16M

−1/8
, (5.88)

Eventually collecting (5.83)–(5.88) we infer

lim sup
L→+∞

FL(w
L, uL) = lim sup

L→+∞
L2(EL(wL, uL)− E0) ≤ F∞(µ) .

6 Existence and regularity of minimizers of F∞

In this section we address the existence of minimizers of the limiting functional F∞ and we discuss
some properties such as equipartition of the energy. In order to do that we need to introduce
the definition of disintegration of measures in the k-variable, which is slightly different from the
disintegration in the x-variable introduced in Section 3.

In the following for a given interval I ⊂ R we denote by L0(I) the space of functions g : I → R that
are Lebesgue measurable. Moreover the map π2 : I ×R → R denotes the canonical projection, and
for any µ ∈ Mb(I × R) we indicate by (π2)♯µ ∈ M+

b (R) its push-forward with respect to the map
π2.

Definition 6.1 (Disintegration of measures in the k-variable). Let I ⊂ R be an interval and let
µ ∈ Mb(I × R). We say that the family(

λ , (gk)k∈R
)

with λ ∈ Mb(R) and gk ∈ L0(I) ∀k ∈ R ,

is a disintegration of µ (in the k-variable) if k 7→ gk is λ-measurable,
´ 1
0 gk dx = 1 for λ-a.e. k ∈ R

and ˆ
I×R

f(x, k) dµ =

ˆ
R

ˆ
I
f(x, k)gk(x) dx dλ(k) , (6.1)

for every f ∈ L1(I × R; |µ|).
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With this definition at hand we can state the main result of this section.

Theorem 6.2 (Minimizers of F∞). Let M∞ and F∞ be as in (2.8) and (2.9) respectively. Then
there exists µ̂ ∈ M∞ such that

F∞(µ̂) = inf
µ∈M∞

F∞(µ) .

Moreover, every minimizer µ̂ satisfies the following properties: there exist a constant C > 0 and a
(π2)♯µ̂-measurable map k 7→ gk with gk ∈ BV (0, 1) for (π2)♯µ̂ a.e. k ∈ R, such that(

(π2)♯µ̂ , (gk)k∈R
)

is a disintegration of µ̂ ,

ˆ 1

0
k2gk(x) dx =

ˆ 1

0

1

4k2

(
dµ̂,x
dµ̂

)2

gk(x) dx for (π2)♯µ̂ a.e. k ∈ R , (6.2)

and
(π2)♯µ̂

({
|k| < C

})
= 0 . (6.3)

As a direct consequence minimizers of F∞ satisfy equipartition of the energy.

Corollary 6.3 (Equipartition of the energy). Let µ̂ ∈ M∞ be a minimizer of F∞. Then it holds
ˆ
(0,1)×R

k2 dµ̂ =

ˆ
(0,1)×R

1

4k2

( dµ̂,x
dµ̂

)2
dµ̂ .

Proof. By Theorem 6.2 it holds

ˆ
(0,1)×R

k2 dµ̂ =

ˆ
R

ˆ 1

0
k2gk(x) dx d(π2)♯µ̂

=

ˆ
R

ˆ 1

0

1

4k2

(
dµ̂,x
dµ̂

)2

gk(x) dx d(π2)♯µ̂ =

ˆ
(0,1)×R

1

4k2

( dµ̂,x
dµ̂

)2
dµ̂ .

We divide the proof of Theorem 6.2 into several steps. Precisely we need to show that the
functional F∞ is convex and lower semi-continuous and that the class of measures M∞ admits a
disintegration in the k-variable of the form

(
(π2)♯µ̂ , (gk)k∈R

)
. First of all we recall that by Remark

2.4 (ii) we have

F∞(µ) =

ˆ
(0,1)×R

k2 dµ+

ˆ
(0,1)×R

1

4k2

( dµ

d|µ̃|

)−1( dµ,x
d|µ̃|

)2
d|µ̃| ,

with µ̃ = (µ, µ,x) and |µ̃| its total variation. This alternative formulation turns out to be more
convenient, in particular the term

ˆ
(0,1)×R

1

4k2

( dµ

d|µ̃|

)−1( dµ,x
d|µ̃|

)2
d|µ̃|

is reminiscent of the Benamou-Brenier functional used in optimal transport which enjoys nice
properties such as lower semicontinuity and convexity. Here we consider a specific case and we
refer to [53, Section 5.3.1] for a general treatment of this topic.

For any ρ,E ∈ Mb((0, 1)× R) the Benamou-Brenier functional is defined as

B2(ρ,E) := sup

{ˆ
(0,1)×R

a(x, k) dρ+

ˆ
(0,1)×R

b(x, k) dE : (a, b) ∈ Cb((0, 1)× R;K2)

}
, (6.4)
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where

K2 :=

{
(z1, z2) ∈ R2 : z1 +

1

2
z22 ≤ 0

}
.

We next recall some properties of B2 which follow from [53, Proposition 5.18]. Then we state and
prove two intermediate Lemmas (cf. Lemma 6.5 and Lemma 6.6) which will be used to show the
validity of Theorem 6.2.

Proposition 6.4 (Properties of B2). The functional B2 is convex and lower semi-continuous on
the space (Mb((0, 1)× R))2. Moreover, the following property hold: if both ρ and E are absolutely
continuous w.r.t. a same positive measure λ on (0, 1)× R, then

B2(ρ,E) =

ˆ
(0,1)×R

1

2

( dρ

dλ

)−1( dE

dλ

)2
dλ .

Lemma 6.5 (Properties of F∞). The functional F∞ is 1-homogeneous, convex and lower semi-
continuous on the space Mb((0, 1) × R). Moreover let (µj) ⊂ M∞ be a minimizing sequence,
i.e.,

F∞(µj) → inf
µ∈M∞

F∞(µ) .

Then (µj) is pre-compact in M∞, i.e., there exists µ̂ ∈ M∞ such that, up to subsequence, µj
∗
⇀ µ̂.

Thus, in particular,
F∞(µ̂) = inf

µ∈M∞
F∞(µ) .

Proof. 1-homogeneity. Let α > 0 and let µ ∈ M∞. Then a direct computation shows that

d(αµ,x)

d(αµ)
=

dµ,x
dµ

,

from which we readily deduce F∞(αµ) = αF∞(µ).
Convexity. Let µ1, µ2 ∈ M∞, t ∈ (0, 1). Assume that F∞(µ1),F∞(µ1) < +∞, otherwise there is
nothing to prove. Clearly µ3 = tµ1 + (1− t)µ2 ∈ M∞ and

F∞(µ3) =

ˆ
(0,1)×R

k2 dµ3 +

ˆ
(0,1)×R

1

4k2

( dµ3
d|µ̃3|

)−1( dµ3,x
d|µ̃3|

)2
d|µ̃3| .

We have ˆ
(0,1)×R

k2 dµ3 = t

ˆ
(0,1)×R

k2 dµ1 + (1− t)

ˆ
(0,1)×R

k2 dµ2 . (6.5)

Next for i = 1, 2 set ρi := µi, Ei :=
1√
2k
µ1,x, λi = |µ̃i|, and note that they belong to Mb((0, 1)×R).

Indeed ρi, λi are bounded by definition, whereas by Young inequality, it holds

Ei((0, 1)× R) =
ˆ
(0,1)×R

1√
2k

dµi,x =

ˆ
(0,1)×R

1√
2k

( dµi,x
dµi

)
dµi

≤
ˆ
(0,1)×R

1

4k2

( dµi,x
dµi

)2
dµi +

1

2

ˆ
(0,1)×R

dµi ≤ F∞(µi) + µi((0, 1)× R) < +∞ .

Thus we can invoke Proposition 6.4 and getˆ
(0,1)×R

1

4k2

( dµ3
d|µ̃3|

)−1( dµ3,x
d|µ̃3|

)2
d|µ̃3| = B2

(
µ3,

1√
2k
µ3,x

)
≤ tB2

(
µ1,

1√
2k
µ1,x

)
+ (1− t)B2

(
µ2,

1√
2k
µ2,x

)
≤ t

ˆ
(0,1)×R

1

4k2

( dµ1
d|µ̃1|

)−1( dµ1,x
d|µ̃1|

)2
d|µ̃1|+ (1− t)

ˆ
(0,1)×R

1

4k2

( dµ2
d|µ̃2|

)−1( dµ2,x
d|µ̃2|

)2
d|µ̃2| .

(6.6)
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Finally combining (6.5) with (6.6) we get

F∞(µ3) ≤ tF∞(µ1) + (1− t)F∞(µ2) .

Lower semi-continuity. Let (µj) ⊂ M∞ be such that µj
∗
⇀ µ for some µ ∈ M∞. Let φ ∈

C∞
c ((0, 1)× R), then by duality we have

lim
j→+∞

ˆ
(0,1)×R

φdµj,x = − lim
j→+∞

ˆ
(0,1)×R

φ,x dµj = −
ˆ
(0,1)×R

φ,x dµ = −
ˆ
(0,1)×R

φdµ,x ,

so that µj,x
∗
⇀ µ,x. Then by applying Reshetnyak Theorem [1, Theorem 2.38] exactly as in (4.14)

and (4.15) we deduce
lim inf
j→+∞

F∞(µj) ≥ F∞(µ) .

Compactness. Let (µj) ⊂ M∞ be a minimizing sequence for F∞. Then by Corollary 3.3 for every
j there exists x 7→ νj,x with νj,x probability measure on R such that

|µj |((0, 1)× R) =
ˆ
(0,1)×R

dµj =

ˆ 1

0

ˆ
R
dνj,x2x dx =

ˆ 1

0
2x dx = 1 .

Thus, up to subsequence, µj
∗
⇀ µ̂. Moreover by Young’s inequality and [1, Proposition 1.23] we

have

C ≥ F∞(µj) ≥
ˆ
(0,1)×R

∣∣∣∣ dµj,xdµj

∣∣∣∣ dµj = |µj,x|((0, 1)× R).

Thus, up to subsequence and arguing as in the proof of Proposition 4.1, we can deduce that
µj,x

∗
⇀ µ̂,x and µ̂ ∈ M∞.

Minimality of µ̂. By lower semi-continuity and compactness we have

inf
µ∈M∞

F∞(µ) = lim
j→+∞

F∞(µj) ≥ F∞(µ̂) ≥ inf
µ∈M∞

F∞(µ) ,

so that
F∞(µ̂) = inf

µ∈M∞
F∞(µ) .

Lemma 6.6 (Disintegration of µ ∈ M∞ in the k-variable). Let µ ∈ M∞ with F∞(µ) < +∞.
Then there exists k 7→ gk (π2)♯µ-measurable such that

(
(π2)♯µ̂ , (gk)k∈R

)
is a disintegration of µ (in

the k-variable). Moreover for (π2)♯µ a.e. k ∈ R

gk ∈W 1,1(0, 1) with ġk =
dµ,x
dµ

(·, k)gkL1 .

Proof. By the Disintegration Theorem (cf. [1, Theorem2.28]) there exists k 7→ νk ∈ M+
b (0, 1)

(π2)♯µ-measurable with νk(0, 1) = 1 such that

ˆ
(0,1)×R

f(x, k) dµ(x, k) =

ˆ
R

ˆ 1

0
f(x, k) dνk(x) d(π2)♯µ(k) , (6.7)

for all f ∈ L1((0, 1)× R;µ). Let φ(x, k) = ϕ(x)χA(k) with ϕ ∈ C∞
c (0, 1) and A ⊂ R bounded and

measurable. Then, being φ,x(x, k) = ϕ̇(x)χA(k), from Remark 2.2 (i) we have

ˆ
(0,1)×R

φdµ,x = −
ˆ
(0,1)×R

φ,x dµ = −
ˆ
R

ˆ 1

0
φ,x dνk(x) d(π2)♯µ(k) .
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Moreover, since µ,x ≪ µ,

ˆ
(0,1)×R

φdµ,x =

ˆ
(0,1)×R

φ
dµ,x
dµ

dµ =

ˆ
R

ˆ 1

0
φ
dµ,x
dµ

dνk(x) d(π2)♯µ(k) .

Therefore we deduce

−
ˆ
A

ˆ 1

0
ϕ̇(x) dνk(x) d(π2)♯µ(k) =

ˆ
A

ˆ 1

0
ϕ(x)

dµ,x
dµ

dνk(x) d(π2)♯µ(k) .

By the arbitrariness of A this implies

−
ˆ 1

0
ϕ̇(x) dνk(x) =

ˆ 1

0
ϕ(x)

dµ,x
dµ

(·, k) dνk(x) for (π2)♯µ a.e. k ∈ R ,

from which, in turn, it follows that (νk),x ≪ νk and

(νk),x =
dµ,x
dµ

(·, k) νk for (π2)♯µ a.e. k ∈ R . (6.8)

We next claim that (6.8) implies that νk ≪ L1 (0, 1) and there exists gk ∈ W 1,1(0, 1) such that
νk = gkL1 (0, 1) for (π2)♯µ a.e. k ∈ R. This is enough to conclude the proof since (6.7) becomes

ˆ
(0,1)×R

f(x, k) dµ(x, k) =

ˆ
R

ˆ 1

0
f(x, k)gk(x) dx d(π2)♯µ(k) .

It remains to show the claim. Let δ > 0 and let ρδ(x) =
1
δρ(

x
δ ) be a smooth mollifier at scale δ.

From (6.8) we have

(νk ∗ ρδ),x =
( dµ,x

dµ
(·, k) νk

)
∗ ρδ for (π2)♯µ a.e. k ∈ R ,

where here is implicitly assumed νk to be extended to 0 in (0, 1)c. Thus

|νk ∗ ρδ(x)| =
∣∣∣∣ˆ x

−∞

( dµ,x
dµ

(·, k) νk
)
∗ ρδ dt

∣∣∣∣ ≤ ˆ 1

0

∣∣∣ dµ,x
dµ

(·, k)
∣∣∣ dνk < +∞ ,

so that, in particular νk∗ρδ ∈ L∞(0, 1). This together with νk∗ρδ
∗
⇀ νk, this imply νk = gkL1 (0, 1)

for some gk ∈ L∞(0, 1). In addition, given ψ ∈ C∞
c (0, 1),

ˆ 1

0
ψ̇gk dx =

ˆ 1

0
ψ̇ dνk = −

ˆ 1

0
ψ
dµ,x
dµ

(·, k) dνk ,

from which we infer ġk =
dµ,x

dµ (·, k)νk =
dµ,x

dµ (·, k)gkL1. Eventually by Young’s inequality

ˆ 1

0
|ġk(x)|dx =

ˆ 1

0

|ġk(x)|√
2k
√
gk(x)

√
2k
√
gk(x) dx

≤
ˆ 1

0

[
k2gk(x) +

1

4k2
(ġk(x))

2

gk(x)

]
dx

≤
ˆ 1

0

[
k2 +

1

4k2

( dµ,x
dµ

(·, k)
)2]

gk(x) dx < +∞

for (π2)♯µ a.e. k ∈ R, and thus in particular gk ∈W 1,1(0, 1).
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W are now ready to prove the main result of this section.

Proof of Theorem 6.2. By Lemma 6.5 we know there exists µ̂ ∈ M∞ minimizer of F∞. Moreover
by Lemma 6.6 there exists k 7→ gk (π2)♯µ̂ measurable with gk ∈ W 1,1(0, 1) for (π2)♯µ̂ a.e. k ∈ R,
such that

(
(π2)♯µ̂ , (gk)k∈R

)
is a disintegration of µ̂. Therefore, in particular we can rewrite

F∞(µ̂) =

ˆ
R

ˆ 1

0

[
k2 +

1

4k2

( dµ̂,x
dµ̂

)2]
gk(x) dx d(π2)♯µ̂ .

Step 1: we show (6.2). Assume by contradiction that (6.2) does not hold true. Then the set

E :=

{
k ∈ R :

ˆ 1

0
k2gk(x) dx ̸=

ˆ 1

0

1

4k2

( dµ̂,x
dµ̂

)2
gk(x) dx

}
is such that (π2)♯µ̂(E) > 0. Assume, without loss of generality, that the subset

E+
1 :=

{
k ∈ R+ :

ˆ 1

0
k2gk(x) dx <

ˆ 1

0

1

4k2

( dµ̂,x
dµ̂

)2
gk(x) dx

}
⊂ E

satisfies (π2)♯µ̂(E
+
1 ) > 0 (the other cases can be treated in a similar way). Since

´ 1
0 gk(x) dx = 1

we can rewrite

E+
1 =

{
k ∈ R+ : 1 <

1

4k4

ˆ 1

0

( dµ̂,x
dµ̂

)2
gk(x) dx

}
.

Then there exists σ > 0 such that

Eσ :=

{
k ∈ R+ : 1 + σ ≤ 1

4k2

ˆ 1

0

( dµ̂,x
dµ̂

)2
gk(x) dx

}
⊂ E+

1

with (π2)♯µ̂(Eσ) > 0. Next fix δ > 0 such that (1 + δ)2 < 1 + σ and let µ̃ ∈ Mb((0, 1) × R) be
defined as follows

µ̃ := µ̂ (0, 1)× (R \ Eσ) + µδ , (6.9)

where µδ := (τδ)♯µ ((0, 1) × Eσ) is the push-forward of µ ((0, 1) × Eσ) with respect to the map
τδ : (0, 1) × R → (0, 1) × R, τδ(x, k) := (x, k(1 + δ)). Note that µ̃ is a positive measure. Setting

Eδ
σ := (1 + δ)Eσ, then the support of µδ is contained in (0, 1)× Eδ

σ, andˆ
(0,1)×Eδ

σ

f(x, k) dµδ =

ˆ
(0,1)×Eσ

f(x, k(1 + δ)) dµ̂

for every f summable with respect to µδ. Hence, by duality and using that µ̂,x ≪ µ̂ we have

ˆ
(0,1)×Eδ

σ

φ(x, k) d(µδ),x = −
ˆ
(0,1)×Eδ

σ

φ,x(x, k) dµδ = −
ˆ
(0,1)×Eσ

φ,x(x, k(1 + δ)) dµ̂

=

ˆ
(0,1)×Eσ

φ(x, k(1 + δ)) dµ̂,x =

ˆ
(0,1)×Eσ

φ(x, k(1 + δ))
dµ̂,x
dµ̂

(x, k) dµ̂

=

ˆ
(0,1)×Eδ

σ

φ(x, k)
dµ̂,x
dµ̂

(
x,

k

1 + δ

)
dµδ ,

for all φ ∈ C∞
c ((0, 1)× Eδ

σ). As a consequence we readily deduce that (µδ),x ≪ µδ with

d(µδ),x
dµδ

(x, k) =
dµ̂,x
dµ̂

(
x,

k

1 + δ

)
, (6.10)
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so that, in particular, µ̃,x ≪ µ̃. Moreover for every ϕ ∈ C∞
c (0, 1) we have

ˆ 1

0
2xϕ(x) dx =

ˆ
(0,1)×R

ϕ(x) dµ̂ =

ˆ
(0,1)×Ec

σ

ϕ(x) dµ̂+

ˆ
(0,1)×Eσ

ϕ(x) dµ̂

=

ˆ
(0,1)×Ec

σ

ϕ(x) dµ̂+

ˆ
(0,1)×Eδ

σ

ϕ(x) dµδ =

ˆ
(0,1)×R

ϕ(x) dµ̃ ,

and thus µ̃ ∈ M∞. We next show that

F∞(µ̃) < F∞(µ̂) ,

which contradicts the fact that µ̂ is a minimizer. To this purpose it is convenient to define the
localized functional

F∞(µ,A) :=

ˆ
(0,1)×A

[
k2 +

1

4k2

( dµ,x
dµ

)2]
dµ ,

for any bounded measure µ with µ,x ≪ µ and any A ⊂ R measurable. Observing that µ̃ = µ̂ on
(0, 1)× (R \ (Eσ ∪ Eδ

σ)) and µ̃ = µδ on (0, 1)× (Eδ
σ ∩ Eσ) we have

F∞(µ̃) = F∞(µ̂,R \ (Eσ ∪ Eδ
σ)) + F∞(µ̃, Eδ

σ \ Eσ) + F∞(µδ, E
δ
σ ∩ Eσ) . (6.11)

By Lemma 6.5 we know that F∞ is convex and 1-homogeneous, which together with

µ̃ =
2µ̂+ 2µδ

2
on (0, 1)× (Eδ

σ \ Eσ) ,

yield

F∞(µ̃, Eδ
σ \ Eσ) = F∞(µ̃ ((0, 1)× Eδ

σ \ Eσ))

≤ F∞(µ̂ ((0, 1)× Eδ
σ \ Eσ)) + F∞(µδ ((0, 1)× Eδ

σ \ Eσ))

= F∞(µ̂, (Eδ
σ \ Eσ)) + F∞(µδ, (E

δ
σ \ Eσ)) .

Combining this together with (6.11) we get

F∞(µ̃) ≤ F∞(µ̂,R \ Eσ) + F∞(µδ, E
δ
σ)

= F∞(µ̂) + F∞(µδ, E
δ
σ)−F∞(µ̂, Eσ) .

Therefore we would conclude the proof if we show that

F∞(µδ, E
δ
σ)−F∞(µ̂, Eσ) < 0 . (6.12)

By the change of variable k = k̂(1 + δ) and recalling (6.10) it holds

F∞(µδ, E
δ
σ) =

ˆ
(0,1)×Eδ

σ

[
k2 +

1

4k2

( d(µδ),x
dµδ

)2]
dµδ

=

ˆ
(0,1)×Eσ

[
k2(1 + δ)2 +

1

4k2(1 + δ)2

( dµ̂,x
dµ̂

)2]
dµ̂ ,

from which it follows

F∞(µδ, E
δ
σ)−F∞(µ̂, Eσ) =

ˆ
(0,1)×Eσ

[
k2((1 + δ)2 − 1) +

1− (1 + δ)2

4k2(1 + δ)2

( dµ̂,x
dµ̂

)2]
dµ̂

=
(1 + δ)2 − 1

(1 + δ)2

ˆ
(0,1)×Eσ

[
k2(1 + δ)2 − 1

4k2

( dµ̂,x
dµ̂

)2]
dµ̂ .
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Being δ > 0 we have that ((1 + δ)2 − 1)/(1 + δ)2 > 0. Moreover, by disintegration we can rewrite
the integral as

ˆ
(0,1)×Eσ

[
k2(1 + δ)2 − 1

4k2

( dµ̂,x
dµ̂

)2]
dµ̂

=

ˆ
Eσ

ˆ 1

0

[
k2(1 + δ)2 − 1

4k2

( dµ̂,x
dµ̂

)2]
gk(x) dx d(π2)♯µ̂ .

The above quantity is strictly negative if

ˆ 1

0

[
k2(1 + δ)2 − 1

4k2

( dµ̂,x
dµ̂

)2]
gk(x) dx < 0 for (π2)♯µ̂ a.e. k ∈ Eσ .

From
´ 1
0 gk(x) dx = 1, this is equivalent to

(1 + δ)2 <
1

4k4

ˆ 1

0

( dµ̂,x
dµ̂

)2
gk(x) dx for (π2)♯µ̂ a.e. k ∈ Eσ ,

which holds thanks to the choice of δ and the definition of Eσ, and thus we infer (6.12).

Step 2: we show (6.3). By Lemma 6.6 we have ġk =
dµ̂,x

dµ̂ (·, k)gkL1, so that from (6.2) we have

k2
ˆ 1

0
(
√
gk(x))

2 dx = k2
ˆ 1

0
gk(x) dx =

1

4k2

ˆ 1

0

(ġk(x))
2

gk(x)
dx =

1

k2

ˆ 1

0

( d

dx

√
gk(x)

)2
dx . (6.13)

Since µ̂ ∈ M∞, then in particular µ̂({0} × R) = 0 from which it follows gk(0) = 0 for (π2)♯µ̂ a.e.
k ∈ R. Thus we apply Poincaré’s inequality to get

ˆ 1

0
(
√
gk(x))

2 dx ≤ C

ˆ 1

0

( d

dx

√
gk(x)

)2
dx ,

for some constant C > 0. Now combining the above inequality with (6.13) we find that

ˆ 1

0
(
√
gk(x))

2 dx ≤ Ck4
ˆ 1

0
(
√
gk(x))

2 ⇐⇒ k4 ≥ C−1 .

Hence (6.2) holds true if k4 ≥ C−1 which in turn implies (π2)♯µ̂(|k| ≤ C−1/4) = 0.
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Kármán theory of isotropically compressed plates, J. Nonlinear Sci. 10 (2000), no. 6, 661–683.

[17] H. Ben Belgacem, S. Conti, A. DeSimone, and S. Müller, Energy scaling of compressed elastic
films—three-dimensional elasticity and reduced theories, Arch. Ration. Mech. Anal. 164 (2002),
no. 1, 1–37.

48

https://math.nyu.edu/~kohn/pcmi/annulus-problem-notes-for-pcmi.pdf


[18] D. Bourne, S. Conti, and S. Müller, Folding patterns in partially delaminated thin films, pp. 25–
39, Springer International Publishing, Cham, 2016.

[19] J. Brandman, R. V. Kohn, and H.-M. Nguyen, Energy scaling laws for conically constrained
thin elastic sheets, J. Elasticity 113 (2013), no. 2, 251–264.
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