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Abstract

We deal with the relaxed area functional in the strict BV -convergence of non-smooth maps defined
in domains of generic dimension and taking values into the unit circle. In case of Sobolev maps, a
complete explicit formula is obtained. Our proof is based on tools from Geometric Measure Theory
and Cartesian currents. We then discuss the possible extension to the wider class of maps with
bounded variation. Finally, we show a counterexample to the locality property in case of both
dimension and codimension larger than two.
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Introduction

In this paper, we continue the analysis of the explicit formula for the relaxed area functional with respect
to the strict convergence for non-smooth vector-valued functions u : Bn → R2.

For a smooth function u : Bn → R2, we denote by A(u,Bn) the area of the graph of u, given by

A(u,Bn) :=

∫
Bn

√
1 + |∇u|2 + |M2(∇u)|2 dx

where |M2(∇u)|2 is the sum of the square of all 2×2 minors of the gradient matrix∇u, so that |M2(∇u)| =
|det∇u| if n = 2. In the sequel we shall write simply A(u) = A(u,Bn).

Working with the natural L1-convergence, the relaxed area functional is defined for every summable
function u ∈ L1(Bn,R2) by

AL1(u) := inf
{
lim inf
k→∞

A(uk) | {uk} ⊂ C1(Bn,R2), uk → u strongly in L1
}
. (0.1)

If AL1(u) < ∞, then necessarily u is a function of bounded variation. However, even in low dimension
n = 2, it turns out that the localized functional A 7→ AL1(u,A) fails to be subadditive, and hence it
cannot be extended to a Borel measure. This behavior was conjectured by De Giorgi in [15] and proved
by Acerbi and Dal Maso in [1], where it is shown that non-subadditivity phenomena arise even for very
simple cases like the vortex map uV (x) = x/|x| and the symmetric triple junction map uT . A precise
computation of the values AL1(uV ) and AL1(uT ) can be found in [7](see also [8]) and [9,35] respectively.
Moreover, for the analysis of the triple junction map without symmetry assumptions, we refer to [6],
where the authors provide an upper bound for the respective L1-relaxed area (0.1), conjectured to be
optimal. Other interesting upper bounds were recently obtained in [12] for Sobolev maps valued in S1
and in [36] for piecewise constant maps taking three values.

The non-locality feature previously outlined makes quite challenging the relaxation analysis of A. For
this reason, it is interesting to consider some variants of (0.1), for example by strengthening the topology
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of the convergence of uk to u (see [10, 11, 17, 21]). In recent years it has been proposed to impose the
strict BV -convergence. Referring to e.g. [2] for the notation adopted in this paper, we only recall here
that a sequence {uk} ⊂ BV (Bn,R2) is said to converge to u ∈ BV (Bn,R2) strictly in the BV -sense, say

uk
BV→ u, if uk → u in L1(Bn,R2) and |Duk|(Bn) → |Du|(Bn), where |Du| denoted the total variation of

the distributional derivative Du.
For u ∈ BV (Bn,R2), we thus denote

ABV (u) := inf
{
lim inf
k→∞

A(uk) | {uk} ⊂ C1(Bn,R2), uk
BV→ u strictly inBV

}
. (0.2)

The reason for this choice is that we expect that whenever ABV (u) < ∞, then the localized functional
A 7→ ABV (u,A) gives rise to a Borel measure. In case of low dimension n = 2, partial results concerning
the explicit formula of ABV (u) have been obtained in [4, 5, 14].

In this paper, we focus on the class of BV -maps taking values into the unit circle. More precisely, we
denote by

S1 := {y ∈ R2 : |y| = 1} , D2 := {y ∈ R2 : |y| < 1}
the unit circle and disk in the target space, and for X = BV or W 1,1, we let

X(Bn,S1) := {u ∈ X(Bn,R2) | |u(x)| = 1 for Ln-a.e. x ∈ Bn}

where Ln is the Lebesgue measure, and we focus on the class of Sobolev maps W 1,1(Bn,S1).
In low dimension n = 2, the following result was obtained in [4].

Theorem 0.1. Let u ∈W 1,1(B2,S1), and let Det∇u denote the distributional determinant of u. Then,

ABV (u) <∞ ⇐⇒ |Det∇u|(B2) <∞ .

In that case, moreover, one has:

ABV (u) =

∫
B2

√
1 + |∇u|2 dx+ |Det∇u|(B2) .

The previous result says that the energy gap is detected by the distributional determinant. Referring
to the next section for the notation adopted here, we recall that in any dimension n ≥ 2, the current
carried by the graph of a Sobolev map u ∈ W 1,1(Bn,S1) is an integer multiplicity rectifiable n-current
Gu in Bn × S1, with finite mass

M(Gu) =

∫
Bn

√
1 + |∇u|2 dx <∞ .

Moreover, the relevant singularities of u are detected by the current Gu, i.e., they can be described by
homological arguments.

More precisely, denoting by ω2 the closed 1-form in S1

ω2 :=
1

2

(
y1 dy2 − y2 dy1

)
the singularities are read by the (n− 2)-dimensional current P(u) ∈ Dn−2(B

n) defined by

P(u)(η) := − 1

π
Gu(dη ∧ ω2) , η ∈ Dn−2(Bn) .

Therefore, in low dimension n = 2 one has

π · P(u)(η) = ⟨Det∇u, η⟩ ∀ η ∈ C∞
c (B2) .

If e.g. u(x) = x/|x|, one gets P(u) = δ0R2 , the unit Dirac mass at the origin.

In our Main Result, we extend the previous explicit formula to any high dimension n.

Theorem 0.2. Let n ≥ 2 and u ∈ W 1,1(Bn,S1). Then, ABV (u) < ∞ if and only if the (n− 2)-current
P(u) is i.m. rectifiable and with finite mass, M(P(u)) <∞. In that case, moreover, one has:

ABV (u) =

∫
Bn

√
1 + |∇u|2 dx+ πM(P(u)) .
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For our purposes, we exploit in our context a result taken from [30]. It says that if u ∈W 1,1(Bn,S1)
satisfies ABV (u) < ∞, then there exists a unique optimal Cartesian current Tu that encloses the graph
of u, and it is given by

Tu = Gu + (−1)n−2P(u)× [[D2 ]] .

Therefore, the proof of the energy lower bound readily follows: by Federer’s closure-compactness theorem,
for every smooth sequence {uh} strictly converging to u, the graph Guh

weakly converges to Tu (up to
extracting a subsequence), and one concludes from the semicontinuity of the mass. On the other hand,
the energy upper bound holds true as a consequence of the following approximation result:

Theorem 0.3. Let n ≥ 2 and u ∈W 1,1(Bn,S1) be a Sobolev map with finite relaxed energy (0.2). Then,
there exists a smooth sequence {uh} ⊂ C∞(Bn,R2) such that Guh

⇀ Tu weakly in Dn(B
n × R2) and

M(Guh
) → M(Tu) as h→ ∞.

In Section 1, we collect some notation and preliminary results. In Section 2, we give an explicit
example, showing the strategy we follow in the proof of the relaxed formula. In Section 3 we prove our
Main Result, Theorem 0.2. The proof of the approximation theorem 0.3 is based on several technical
results, the proof of which is postponed to Section 4, for the sake of clarity. The fundamental step at
the base of Theorem 0.3 is contained in Theorem 3.4 and consists to reduce the proof to the case u is
smooth outside a “nice” singular set, precisely P(u) is a polyhedral chain. This reduction can be done
provided that the mass of the singularities current P(uk) of the modified map uk converges to the mass
of P(u). We point out that by a direct application of Bethuel’s approximation theorem [13, Thm. 2] and
Hardt-Pitts results in [25], one obtains the flat norm convergence of P(uk) to P(u), which is not enough
for our purpose. The actual proof requires a deeper use of Bethuel’s result in a more involved construction
argument, based on Federer’s strong polyhedral approximation theorem. Once u can be supposed to be
smooth out of the support of the polyhedral (n − 2)-chain P(u), by a standard argument based on the
dipole construction idea, we can build a recovery sequence for the energy (Theorem 3.5), taking care of
removing higher codimension singularities generated in the dipole construction (Theorems 3.6 and 3.7).

Finally, in Section 5 we briefly discuss some related open questions, mainly concerning the validity
of an explicit formula of the relaxed energy in the wider class of maps in BV (Bn,S1). Moreover, we
show the non-locality of ABV in dimension and codimension greater than 2. Precisely, the set function
A → ABV (u,A) fails to be subadditive for u : B3 → R3, even in the Sobolev case, as provided by the
vortex map uV (x) = x/|x|.

1 Notation and preliminary results

In this section, we collect some background material and preliminary results.

1.1 Functions of bounded variation

Referring to [2] for the notation on BV -functions, we recall that u belongs to BV (Bn,R2) if u ∈
L1(Bn,R2) and the distributional derivative Du is an R2×n-valued Borel measure with finite total vari-
ation. The usual decomposition

Du = Dau+DCu+DJu

into the mutually singular absolutely continuous, Cantor, and Jump components is adopted. In particular,
Dau = ∇u dLn, where ∇u ∈ L1(Bn,Rn×2) is the approximate gradient and Ln the Lebesgue measure.
The Jump component is given by DJu = (u+−u−)⊗νHn−1 Ju, where Hn−1 is the Hausdorff measure,
Ju is the Jump set of u, a countably (n − 1)-rectifiable set of Bn, ν a unit normal to Ju, and u± the
approximate limits of u at points in Ju w.r.t. the given unit normal. The Cantor component satisfies
|DCu|(B) = 0 for each Borel set B ⊂ Bn such that Hn−1(B) = 0. Therefore, if DJu = DCu = 0,

actually u is a Sobolev function in W 1,1(Bn,R2). Finally, we recall that the strict convergence uk
BV→ u

in BV (Bn,R2) is given by the strong convergence uk → u in L1(Bn,R2) joined with the total variation
convergence |Duk|(Bn) → |Du|(Bn), as k → ∞.

1.2 Rectifiable currents

For a given open set U ⊂ RN , the space Dk(U) of k-dimensional currents in U is the strong dual of the
space Dk(U) of compactly supported smooth k-forms in U , for k = 0, . . . , N . For any T ∈ Dk(U), we
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define its mass M(T ) as
M(T ) := sup{T (ω) | ω ∈ Dk(U) , ∥ω∥ ≤ 1} ,

where ∥ω∥ is the comass norm.
The weak convergence Th ⇀ T in Dk(U) is defined by the convergence

lim
h→∞

Th(ω) = T (ω) ∀ω ∈ Dk(U)

and in that case one has
M(T ) ≤ lim inf

h→∞
M(Th) .

For k ≥ 1, the boundary of T ∈ Dk(U) is the (k − 1)-current ∂T defined by relation

∂T (η) := T (dη) , η ∈ Dk−1(U)

where dη is the differential of η, and we set ∂T = 0 if k = 0. For k ≥ 1, a k-current T with finite mass is
called rectifiable if there exist a k-rectifiable set M in U , an Hk M-measurable function ξ : M → ΛkRm

such that ξ(x) is a simple unit k-vector orienting the approximate tangent space to M at Hk-a.e. x ∈ M,
and an Hk M-summable and non-negative function θ : M → [0,+∞) such that

T (ω) =

∫
M
θ ⟨ω, ξ⟩ dHk ∀ω ∈ Dk(U) .

We thus get M(T ) =
∫
M θ dHk < ∞. In addition, if the multiplicity function θ is integer-valued, the

current T is called i.m. rectifiable and the corresponding class is denoted by Rk(U). If e.g. M is a
smooth k-manifold in U with Hk(M) < ∞, taking θ = 1 we obtain the current [[M ]] ∈ Rk(U) whose
action on k-forms agrees with the classical notation from Differential Geometry. In particular, for k = 0,
a current T in R0(U) is given by

T =

m∑
i=1

di δai

where m ∈ N+, di ∈ Z, ai ∈ U for i = 1, . . . ,m, and δa is the unit Dirac mass at a point a ∈ U .
Finally, a current T is called integral if both T and ∂T are i.m. rectifiable currents. By the boundary
rectifiability theorem (cf. [34, 30.3]), if T is i.m. rectifiable and M(∂T ) <∞, then T is integral. We refer
to [34, Ch. 6] and [20, Ch. 2] for further details.

1.3 Graph currents

If u ∈ C1(B
n
,R2), the graph current Gu in Rn(B

n × R2) is given by integration on the oriented graph
n-manifold Gu. Therefore, by the area formula we equivalently have

Gu(ω) :=

∫
Bn

(Id ▷◁ u)#ω , ω ∈ Dn(Bn × R2) (1.1)

where (Id ▷◁ u)(x) := (x, u(x)) is the graph map, and its mass satisfies

M(Gu) = Hn(Gu) = A(u) =

∫
Bn

√
1 + |∇u|2 + |M2(∇u)| dx . (1.2)

To every Sobolev map u ∈ BV (Bn,S1), we associate the n-current Gu in Rn(B
n × R2) carried by

the “graph” of u. It is given again by (1.1), where this time the pull-back makes sense in terms of the
approximate gradient ∇u of u. Every n-form ω ∈ Dn(Bn × R2) splits as ω(0) + ω(1) + ω(2) according
to the number of “vertica” differentials. Writing ω(0) = ϕ(x, y) dx for some ϕ ∈ C∞

c (Bn × R2), where
dx := dx1 ∧ · · · ∧ dxn, we have

Gu(ϕ(x, y) dx) =

∫
Bn

ϕ(x, u(x)) dx .

Setting moreover d̂xi := dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn, we may write

ω(1) =

n∑
i=1

2∑
j=1

(−1)n−iϕji (x, y) d̂x
i ∧ dyj (1.3)
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for some ϕji ∈ C∞
c (Bn × R2), and we obtain

Gu(ω
(1)) =

2∑
j=1

n∑
i=1

∫
Bn

∇iu
j(x)ϕji (x, u(x)) dx .

Finally, by the area formula we have

Gu(ω
(2)) = 0 ∀ω ∈ Dn(Bn × R2) .

In particular, we get

M(Gu) =

∫
Bn

√
1 + |∇u|2 dx .

In general, the graph current Gu of a Sobolev map u ∈ W 1,1(Bn,S1) has a non zero boundary in
Bn × R2. Taking for example n = 2 and u(x) = x/|x|, we have:

∂Gu B2 × R2 = −δ0R2 × [[ S1 ]] .

However, a density argument shows that the boundary current ∂Gu is null on every (n − 1)-form in
Bn × R2 which has no “vertical” differentials. Moreover, Gu is an integral flat chain in Bn × R2 with
support contained in B

n × S1. Therefore, by Federer’s flatness theorem we can see Gu as a current in
Rn(B

n × S1), and actually
(∂Gu) Bn × R2 = (∂Gu) Bn × S1 . (1.4)

1.4 Singularities

If u ∈W 1,1(Bn,R2) ∩ L∞(Bn,R2), it is well defined the distribution

Divᾱ mu :=
1

2

2∑
j=1

∑
i∈α

∂

∂xi

(
uj(x) ((adj∇u)α)ji

)
(1.5)

for each ordered multi-index α of length n− 2 in {1, . . . , n}, where ᾱ is the complementary ordered index
of length two. For n = 2, the right hand side of definition (1.5) reduces to the distributional determinant
Det∇u. In high dimension n ≥ 3, instead, we obtain the ᾱ-component of the distributional Jacobian
J(u), which can be viewed as an Rd(n)-valued distribution, with d(n) = n(n − 1)/2. The notion of
distributional Jacobian was first introduced in [27] (see also [3, 31, 33]) to analyse singularities of non-
smooth maps and has been widely studied in the literature, together with the related notion of relaxed
Jacobian total variation [16,17,19,28,29,32]. Notice that

Divᾱ mu =M2(∇u)ᾱ if u is smooth,

where M2(∇u)ᾱ is the 2× 2 minor of the gradient matrix ∇u ∈ R2×n with columns detected by ᾱ.
The measure Divᾱ mu can be defined also for any BV -map u with finite relaxed energy (0.2), by consid-
ering Du in place of ∇u, see [30] for further details.
Now suppose that u ∈ W 1,1(Bn,S1). We can easily relate the distributional Jacobian J(u) to an i.m.
rectifiable current P(u) defined as follows. Let π : Bn × R2 → Bn and π̂ : Bn × R2 → R2 denote the
orthogonal projections onto the first and second factor, respectively. The current P(u) ∈ Dn−2(B

n) of
the singularities of u is given by

P(u)(η) := − 1

π
Gu(π

#dη ∧ π̂#ω2) , η ∈ Dn−2(Bn), (1.6)

where ω2 denote the closed 1-form in S1

ω2 :=
1

2

(
y1 dy2 − y2 dy1

)
, (1.7)

so that ω2 is a generator of the first cohomology group of S1, and dω2 = dy := dy1 ∧ dy2, as a form in
R2. In the sequel, when it is clear from the context we omit to write the action of the projection maps.
Since d(η ∧ ω2) = dη ∧ ω2 + (−1)n−2η ∧ dy, whereas

Gu(dη ∧ ω2) = −π · P(u)(η) , Gu(η ∧ dy) = 0,
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on account of (1.4) we obtain:

(∂Gu) Bn × R2 = (∂Gu) Bn × S1 = −P(u)× [[ S1 ]] . (1.8)

Moreover, by the very definition it turns out that

∂P(u) Bn = 0 . (1.9)

This property is trivial when n = 2, whereas in high dimension n ≥ 3, for every φ ∈ Dn−3(Bn) we get

∂P(u)(φ) = P(u)(dφ) = − 1

π
Gu(π

#d(dφ) ∧ π̂#ω2) = 0,

since d(dφ) = 0.
For future use, we recall that a Cartesian current T in Bn×S1 with underlying map u inW 1,1(Bn,S1)

is given by
T = Gu + L× [[ S1 ]] (1.10)

for some i.m. rectifiable current L ∈ Rn−1(B
n), with finite mass, satisfying the boundary condition

(∂L) Bn = P(u), compare [23, Sec. 1.5] or [21, Sec. 6.2.2].

Example 1.1. If u ∈ W 1,1(B2,S1), we have π P(u) = Det∇u. In particular, if u is smooth outside a
finite set of points Σ = {a1, . . . , am}, we obtain

P(u) =
m∑
i=1

deg(u, ai) δai
, (1.11)

where deg(u, ai) ∈ Z is the Brouwer degree1 of u around the point ai. For example, with u(x) = x/|x|, we
get P(u) = δ0R2 . In high dimension n ≥ 3, for any u ∈ W 1,1(Bn,S1) we get π P(u) = J(u). In Section 2,
we deal with the map

u(x) =
x̃

|x̃|
, x = (x̃, x̂) ∈ R2 × Rn−2 ,

so that P(u) = (−1)n−2[[ ∆n−2 ]], where [[∆n−2 ]] is the (n−2)-current given by integration on the naturally
oriented (n− 2)-disk

∆n−2 := {(0, 0, x̂) ∈ Rn : |x̂| ≤ 1} .

1.5 Stratification

If n ≥ 3, a current T ∈ Rn(B
n × R2) is identified by the measures

µh[T ] := T dx , µj
i [T ] := T (−1)i−1dyj ∧ d̂xi ,

µᾱ
v [T ] := T σ(α, ᾱ) dxα ∧ dy , dy := dy1 ∧ dy2

for each i = 1, . . . , n, j = 1, 2, and each ordered multi-index α of length n−2 in {1, . . . , n}, where the sign
σ(α, ᾱ) = ±1 is such that dxα∧dxᾱ = σ(α, ᾱ) dx. We also fix an order on the set of the d(n) := n(n−1)/2
multi-indexes ᾱ of length two in {1, . . . , n}, and we correspondingly denote by µv[T ] the Rd(n)-valued
measure in Bn × R2 with components µᾱ

v [T ]. If n = 2, then µv[T ] := T dy.
Notice that if T = Gu for some smooth function u ∈ C1(B

n
,R2), by (1.1) we readily obtain µh[Gu] =

(Id ▷◁ u)#(Ln Bn), µj
i [Gu] = (Id ▷◁ u)#(∇iu

j Ln Bn), and also

µᾱ
v [Gu] = (Id ▷◁ u)#(M2(∇u)ᾱ Ln Bn) ∀α.

1.6 The optimal lifting Cartesian current

Assume now that u ∈ W 1,1(Bn,S1) has finite relaxed energy (0.2). Then, viewing Gu as a current
in B2 × R2, by the results from [30], it turns out that there exists a unique i.m. rectifiable current
Tu ∈ Rn(B

n × R2) satisfying the following properties:

i) M(Tu) <∞ and (∂Tu) Bn × R2 = 0;

1We refer to [20, Sec. 3.1] for the definition of Brouwer degree of a Sobolev map, see also [4, Sec. 2.3].
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ii) if Su := Tu − Gu, then Su is completely vertical, i.e., Su(ω) = 0 for every ω ∈ Dn(Bn × R2) such
that ω(2) = 0.

In particular, Tu is a Cartesian current in cart(Bn × R2), see [20, Ch. 4], and

M(Tu) = M(Gu) +M(Su) .

More precisely, the horizontal component of Tu satisfying µh[Tu] = (Id ▷◁ u)#(Ln Bn), we require
that the intermediate components only depend on u through formulas

µj
i [Tu] = µj

i [u] ∀ i, j (1.12)

where µj
i [u] is the minimal lifting measure in the sense of Jerrard-Jung [26]. Therefore,

µj
i [u] = (Id ▷◁ u)#(∇iu

j Ln Bn) .

For each multi-index α of length n− 2 as above, we thus get∫
Bn

g(x) dµᾱ
v [Tu] = ⟨Divᾱ mu, g⟩ ∀ g ∈ C∞

c (Bn), (1.13)

where Divᾱ mu is defined in (1.5), so that actually

P(u)(g(x) dxα) =
1

π
(−1)n−2σ(α, ᾱ) ⟨Divᾱ mu, g⟩ ∀ g ∈ C∞

c (Bn) . (1.14)

We are now in position to prove the following

Theorem 1.2. Let n ≥ 2 and u ∈W 1,1(Bn,S1) be a Sobolev map with finite relaxed energy (0.2). Then

Su = (−1)n−2P(u)× [[D2 ]] (1.15)

where P(u) is an i.m. rectifiable current in Rn−2(B
n) with finite mass and no inner boundary, see (1.9).

Proof. By (1.13), for every α we get the total variation bound:

|Divᾱ mu|(Bn) ≤ |µᾱ
v [Tu]|(Bn × R2) <∞ .

As a consequence, equation (1.14) implies that the current P(u) has finite mass.
On the other hand, by [22] we already know that the relaxed total variation energy of u as a map

in BV (B2,S1) is finite, whence the class of Cartesian currents in Bn × S1 with underlying map equal to
u is non-empty, see (1.10). Therefore, there exists L ∈ Rn−1(B

n) such that (∂L) Bn = P(u), i.e., it
turns out that P(u) is an integral flat chain. As a consequence, by the boundary rectifiability theorem,
see [34, Sec. 30], we infer that P(u) is i.m. rectifiable in Rn−2(B

n). Furthermore, we already know that
P(u) has no inner boundary, see (1.9).

Setting now
T = Gu + Su

where Su is the n-current given by (1.15), it suffices to show that T is a Cartesian current. Since in fact
Su is completely vertical, by uniqueness of the optimal lifting Cartesian current we readily obtain that
T = Tu. By the structure theorem, see [20, Ch. 4], since we have just obtained that Su is i.m. rectifiable
in Rn(B

n × R2), it suffices to show that T satisfies the null-boundary condition

(∂T ) Bn × R2 = 0 . (1.16)

In fact, we have:

(∂T ) Bn × R2 = (∂Gu) Bn × R2 + (−1)n−2(∂(P(u)× [[D2 ]])) Bn × R2

where by the definition of boundary of a product of currents

(∂(P(u)× [[D2 ]])) Bn × R2 = (∂P(u)) Bn × [[D2 ]] + (−1)n−2P(u)× ∂[[D2 ]]

so that (1.16) follows from (1.8), (1.9), and property ∂[[D2 ]] = [[ S1 ]].

Remark 1.3. As a consequence, in high dimension n ≥ 3, by the previous result we infer that the
distributional Jacobian J(u) can be viewed as an Rd(n)-valued measure, with d(n) = n(n − 1)/2, that
is concentrated on the (n − 2)-rectifiable set of points of positive multiplicity of the current P(u), and
actually

|J(u)|(Bn) = π ·M(P(u)) <∞ .
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2 Examples

In this section, we give an easier example showing the strategy in our proof. We then show the existence
of Sobolev maps in W 1,1(Bn,S1) for which the relaxed energy is not finite.

2.1 A model example

Let u ∈W 1,1(Bn,S1) be defined as

u(x) =
x̃

|x̃|
, x = (x̃, x̂) ∈ R2 × Rn−2.

If n ≥ 3, the singular set of u is the (n− 2)-disk

∆n−2 := {(0, 0, x̂) ∈ Rn : |x̂| ≤ 1}.

With the previous notation we get P(u) = (−1)n−2[[ ∆n−2 ]], so that by (1.8)

(∂Gu) Bn × R2 = (−1)n−1[[ ∆n−2 ]]× [[ S1 ]].

This way we can equivalently write the lower bound for the relaxed energy as∫
Bn

√
1 + |∇u|2 dx+ |J(u)|(Bn)

where in low dimension n = 2 we clearly have J(u) = Det∇u.
For the upper bound estimate, we define a recovery sequence by constructing for each ε > 0 small a

suitable cone shaped neighborhood Uε of ∆n−2 in the following way:

Uε := {x ∈ Bn : |x̃| ≤ ε(1− |x̂|)}

and by defining uε ∈ C1(Bn,R2) as

uε(x) :=


u(x) if x ∈ Bn \ Uε,

|x̃|
ε(1− |x̂|)

u(x) if x ∈ Uε.
(2.1)

In the case n = 3, Uε is a (double) cone of basis the disk B̃ε := {x ∈ B3 : x = (x̃, 0), |x̃| ≤ ε} and of
vertices the North and South Poles of B3 (see Fig. 1).
Let us check that uε → u in W 1,1(Bn,R2) as ε → 0. Clearly,

∫
Uε

|uε| dx → 0, since |uε| ≤ |u| = 1.
Therefore, it is enough to prove that

lim
ε→0

∫
Uε

|∇uε(x)|dx = 0 . (2.2)

In cylindrical coordinates

ūε(ρ, θ, x̂) := uε(ρ cos θ, ρ sin θ, x̂), ρ ∈ [0, 1], θ ∈ [0, 2π), x̂ ∈ Rn−2 ,

where |x̂| ≤ 1, we have

ūε(ρ, θ, x̂) =
ρ

ε(1− |x̂|)
(cos θ, sin θ) if ρ ≤ ε(1− |x̂|) .

Compute the partial derivatives of ūε:

∂ρūε(ρ, θ, x̂) =
1

ε(1− |x̂|)
(cos θ, sin θ),

∂θūε(ρ, θ, x̂) =
ρ

ε(1− |x̂|)
(− sin θ, cos θ),

∂x̂ūε(ρ, θ, x̂) =
ρ

ε(1− |x̂|)2
(cos θ, sin θ)⊗ x̂

|x̂|
.
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Figure 1: The cone shaped neighborhood Uε depicted in dimension n = 3.

Moreover, by identifying the set {x̂ ∈ Rn−2 : |x̂| ≤ 1} with ∆n−2, we have∫
Uε

|∇uε(x)|dx =

=

∫
∆n−2

∫ 2π

0

∫ ε(1−|x̂|)

0

ρ

√
|∂ρūε|2 +

|∂θūε|2
ρ2

+ |∂x̂ūε|2 dρdθdx̂

=

∫
∆n−2

∫ 2π

0

∫ ε(1−|x̂|)

0

ρ

√
2

ε2(1− |x̂|)2
+

ρ2

ε2(1− |x̂|)4
dρdθdx̂

≤
∫
∆n−2

∫ 2π

0

∫ ε(1−|x̂|)

0

[
2ρ

ε(1− |x̂|)
+

ρ2

ε(1− |x̂|)2

]
dρdθdx̂

≤
∫
∆n−2

∫ 2π

0

∫ ε(1−|x̂|)

0

[2 + ε] dρdθdx̂→ 0 as ε→ 0+,

where we used that ρ = |x̃| ≤ ε(1− |x̂|) in Uε. Therefore, (2.2) holds, and by dominated convergence

lim
ε→0

∫
Bn

√
1 + |∇uε|2 dx =

∫
Bn

√
1 + |∇u|2 dx . (2.3)

It remains to check that

lim sup
ε→0

∫
Bn

|M2(∇uε)|dx ≤ πHn−2(∆n−2) = πM(P(u)) .

We have |M2(∇uε)| = |M2(∇ūε)|, where we compute the components of M2(∇ūε) w.r.t. the basis in
cylindrical coordinates:

M2(∇ūε)12 =
1

ρ
∂ρūε ∧ ∂θūε =

1

ε2(1− |x̂|)2
,

M2(∇ūε)1j = ∂ρūε ∧ ∂xj
ūε = 0 ∀j = 3, . . . , n ,

M2(∇ūε)2j =
1

ρ
∂θūε ∧ ∂xj

ūε = − ρ

ε2(1− |x̂|)3
xj
|x̂|

∀ j = 3, . . . , n ,

M2(∇ūε)ij = ∂xi
ūε ∧ ∂xj

ūε = 0 ∀ i, j = 3, . . . , n, i ̸= j .

9



Therefore, ∫
Bn

|M2(∇uε)|dx =

=

∫
Uε

|M2(∇uε)|dx =

∫
∆n−2

∫ 2π

0

∫ ε(1−|x̂|)

0

ρ |M2(∇ūε)| dρdθdx̂

≤
∫
∆n−2

∫ 2π

0

∫ ε(1−|x̂|)

0

[
ρ

ε2(1− |x̂|)2
+

ρ2

ε2(1− |x̂|)3

]
dρdθdx̂

=

∫
∆n−2

∫ 2π

0

1

2
dθdx̂+

∫
∆n−2

∫ 2π

0

∫ ε(1−|x̂|)

0

ρ2

ε2(1− |x̂|)3
dρdθdx̂

= πHn−2(∆n−2) +O(ε) → πHn−2(∆n−2) as ε→ 0+.

Using (2.3), we conclude

lim sup
ε→0

M(Guε
) ≤ lim

ε→0

∫
Bn

√
1 + |∇uε|2dx+ lim sup

ε→0

∫
Bn

|M2(∇uε)|dx

≤
∫
Bn

√
1 + |∇u|2dx+ πHn−2(∆n−2) .

Remark 2.1. In the previous example, the choice of the cone shaped neighborhood is not crucial for the
computation of the upper bound estimate. We could have followed essentially the same argument also
by taking Uε of cylindrical shape, i.e. by defining Uε := (B̃ε ×∆n−2) ∩ Bn. The advantage of the cone
shaped construction is that the width of Uε shrinks at the boundary of ∆n−2, which will be useful in the
case the singular set of u is polyhedral.

2.2 Sobolev maps with unbounded relaxed energy

We show the existence of Sobolev maps u ∈W 1,1(Bn,S1) which do not have finite relaxed energy.
In low dimension n = 2, it suffices to find a sequence {Bj} of pairwise disjoint balls contained in

B2 such that the restriction u|Bj
behaves like a vortex map around the center of Bj . Therefore, by the

superadditivity of the set function corresponding to the localization of the relaxed energy, we obtain a
contribution equal to π around each singular point. In particular, |Det∇u|(B2) = ∞.

The counterexample in high dimension n ≥ 3 is trivially obtained by setting u(x) = u(x1, x2), for
x ∈ Bn. In that case, we clearly have |J(u)|(Bn) = ∞.

Following an example by [28], we set Bj := B2(cj , 2
−(j+1)), where

cj = (1− 21−j , 0) , j = 1, 2, . . .

Moreover we define u|Bj
:= u(j) : Bj → R2 by

u(j)(x) :=


x− cj
|x− cj |

if j = 1, 3, 5, . . .

ψ

(
x− cj
|x− cj |

)
if j = 2, 4, 6, . . .

where ψ : S1 → S1 is defined (in terms of the angle function θ on S1) by

ψ(θ) := −θ + π .

If Qj := cj + [−2−(j+1), 2−(j+1)] 2 denotes the square circumscribing Bj , we extend u|Bj
to Qj as the

continuous map which is constant in the x1-variable (note that Qj ⊂ B2 for every j ≥ 1, see Fig. 2).
Then u ≡ (1, 0) and u ≡ (−1, 0) over all the upper and respectively lower sides of the boundary of the
Qj ’s which are parallel to the x1-axis, whereas on the sides parallel to the x2-axis,

Lk
j := cj + {((−1)k 2−(j+1), x2) | −2−(j+1) ≤ x2 ≤ 2−(j+1)} , k = 1, 2 ,

both u|L2
j
and u|L1

j+1
parameterize the same half of the circle S1 with the same orientation. We can thus

define u over the convex hull of L2
j and L1

j+1, the right-hand side of ∂Qj and the left-hand side of ∂Qj+1,
as the continuous map which is constant along the straight lines connecting the corresponding points in
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Figure 2: The construction in the source disk B2. On each disk Bj the vortex map is replicated with
alternating orientation.

L2
j and L1

j+1 (points on which u takes the same value). We finally define u in the strip connecting L1
1 to

the boundary of B2 as the continuous map constant in the x1-variable, and set u ≡ (1, 0) or u ≡ (−1, 0)
in the two remaining components of B2. Then, it is not difficult to show that u ∈W 1,1(B2,R2). On the
other hand, by the result from [4] we know that for each j, the relaxed energy of u(j) on Bj is greater
than π. Therefore, by the superadditivity of the (localized) relaxed functional it turns out that the map
u does not have a finite relaxed energy.

3 The explicit formula

The Main Result of this paper is the following

Theorem 3.1. Let n ≥ 2 and u ∈ W 1,1(B2,S1). Then, ABV (u) < ∞ if and only if the (n− 2)-current
P(u) is i.m. rectifiable and with finite mass, M(P(u)) <∞. In that case, moreover, one has:

ABV (u) =

∫
Bn

√
1 + |∇u|2 dx+ πM(P(u)) .

In dimension n = 2, recalling that πM(P(u)) = |Det∇u|(Bn), the latter result was proved in [4]. In
high dimension n ≥ 3, the energy gap, πM(P(u)), agrees with the total variation of the distributional
Jacobian J(u).

3.1 Energy lower bound

By the previous results, we readily obtain the energy lower bound:

Proposition 3.2. If u ∈W 1,1(Bn,S1) has finite relaxed energy (0.2), then

ABV (u) ≥
∫
Bn

√
1 + |∇u|2 dx+ πM(P(u)) .

Proof. Choose any smooth sequence {uh} ⊂ C∞(Bn,R2) such that uh → u in L1(Bn,R2) and
∫
Bn |∇uh| dx→∫

Bn |∇u| dx as h→ ∞, and such that

sup
h

∫
B2

|M2(∇uh)| dx <∞ .
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Possibly taking a not relabeled subsequence, we may and do assume that

lim inf
h→∞

A(uh) = lim
h→∞

A(uh) <∞ .

Since (∂Guh
) Bn × R2 = 0 and the mass of Guh

is given by (1.2), with u = uh, by applying Federer-

Fleming’s closure theorem, see [34, Sec. 32], and on account of the strict convergence uh
BV→ u, it turns

out that possibly passing to a subsequence, Guh
⇀ Tu weakly in Dn(B

n × R2) to the unique optimal
lifting Cartesian current Tu, so that by lower semicontinuity of the mass

M(Tu) ≤ lim inf
h→∞

M(Guh
) = lim

h→∞
A(uh) .

Since we already know that

M(Tu) = M(Gu) +M(Su) =

∫
Bn

√
1 + |∇u|2 dx+ πM(P(u))

the energy lower bound readily follows.

3.2 The approximation theorem

The energy upper bound, which yields to the validity of Theorem 3.1, is an immediate consequence of
the following approximation result:

Theorem 3.3. Let n ≥ 2 and u ∈W 1,1(Bn,S1) be a Sobolev map with finite relaxed energy (0.2). Then,
there exists a smooth sequence {uh} ⊂ C∞(Bn,R2) such that Guh

⇀ Tu weakly in Dn(B
n × R2) and

M(Guh
) → M(Tu) as h→ ∞.

In fact, the weak convergence with the mass implies the strict BV -convergence2 and the energy limit

lim
h→∞

A(uh) =

∫
Bn

√
1 + |∇u|2 dx+ πM(P(u)) .

Therefore, if ABV (u) < ∞, by the explicit formula we obtain that M(P(u)) < ∞. On the other hand,
when M(P(u)) < ∞, the approximation theorem 3.3 continues to hold, yielding to the optimal upper
bound and hence to condition ABV (u) <∞. Therefore, Theorem 3.1 holds true.

In low dimension, the approximating sequence is readily obtained:

Proof of Theorem 3.3, case n = 2. By Bethuel’s results in [13], we can find a sequence {uh} ⊂W 1,1(B2,S1)
strongly converging to u in W 1,1(B2,R2) and such that each uh is smooth outside a finite set of points.
Furthermore, we have

lim
h→∞

M(P(uh)) = M(P(u)) . (3.1)

In fact, for any square F of the grid in Bethuel’s proof, the restriction of u to the boundary of F is a
continuous function with Brouwer degree dF ∈ Z satisfying |dF | ≤ M(P(u) int(F )). As a consequence,
it turns out that M(P(uh)) ≤ M(P(u)) for each h. Therefore, by lower semicontinuity we obtain (3.1).

We now show that for each h we can find a smooth sequence {u(h)k } in C∞(B2,R2) strongly converging
to u in W 1,1(B2,R2) and such that

lim
k→∞

A(u
(h)
k ) =

∫
B2

√
1 + |∇uh|2 dx+ πM(P(uh)) .

Since we make use of a local argument, without loss of generality we may and do assume that v = uh
is smooth outside the origin and P(v) = d δ0R2 for some d ∈ Z.

For every ε > 0 small, the restriction v|∂B2
ε
is a smooth map of degree d. Therefore, we can find a

smooth homotopy map H : [0, 1] × [0, 2π] → S1 such that H(0, θ) = (cos(dθ), sin(dθ)) and H(1, θ) =
v(ε cos θ, ε sin θ), where we have introduced the standard polar coordinates x = ρ(cos θ, sin θ). Define now
vε : B

2
ε → R2 as

vε(ρ cos θ, ρ sin θ) :=

{
H
(
2ρ/ε− 1, θ

)
if ε/2 ≤ ρ ≤ ε

(2ρ/ε)
(
cos(dθ), sin(dθ)

)
if ρ ≤ ε/2 .

2The strata of Guh must converge to the corresponding ones of Tu in measure and in total variation.
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It is readily checked that

A(vε) ≤
∫
B2

√
1 + |∇v|2 dx+ π |d|+O(ε)

where O(ε) → 0 as ε → 0. Since moreover the graph currents Gvε weakly converge to the Cartesian
current T := Gv + d δ0 × [[D2 ]] along a sequence εh → 0, by lower semicontinuity we obtain

lim
h→∞

A(vεh) = lim
h→∞

M(Gvεh
) = M(T ) =

∫
B2

√
1 + |∇v|2 dx+ π |d|

where |d| = M(P(u)). Further details are omitted.

In the sequel we therefore assume n ≥ 3. Theorem 3.3 is obtained by applying the following technical
results, the proof of which is collected in the next section.

3.3 Reduction to maps with a nice singular set

Firstly, we find an approximating sequence which is smooth outside a singular set given by (the support
of) a polyhedral chain, in such a way that we have mass convergence of the current of the singularities.

Let Qn =] − 1, 1[n denote the open n-cube in Rn of side two, and let u ∈ W 1,1(Qn,S1). Denote by
R∞(Qn,S1) the subclass of maps u in W 1,1(Qn,S1) which are smooth outside a nice singular set sing u
of codimension two. This means that sing u is given by the support of some polyhedral (n − 2)-chain P
in Qn, and actually P(u) = P. More precisely, we have

P =

m∑
i=1

di[[ ∆i ]] , M(P) =
m∑
i=1

|di|Hn−2(∆i) <∞ (3.2)

for some m ∈ N+, where di ∈ Z and ∆i is an oriented (n − 2)-simplex contained in the closure of Qn,
for each i. Notice that di coincides with the degree of u around ∆i up to a sign, precisely deg(u,∆i) =
(−1)n−2di. The support sptP of P is the union of the closures of the simplices ∆i. Moreover, after a
subdivision we may and do assume that int(∆i) ∩ int(∆j) = ∅ for 1 ≤ i < j ≤ m, so that the simplices
∆i and ∆j possibly intersect at points in the common (n− 3)-skeleton.

By Bethuel’s theorem, the class R∞(Qn,S1) is dense in W 1,1(Qn,S1) strongly in W 1,1(Qn,R2). To
our purposes, we shall see that for maps with finite relaxed energy, something more can be said.

Theorem 3.4. Assume that u ∈ W 1,1(Qn,S1) has finite relaxed energy. Then, we can find a sequence
{uk} ⊂ R∞(Qn,S1) strongly converging to u in W 1,1(Qn,R2) and such that

lim
k→∞

M(P(uk)) = M(P(u)) .

3.4 Energy approximation at the singular set

Assume now that n ≥ 3 and u ∈ R∞(Qn,S1) satisfies M(P(u)) <∞, with P(u) = P as in (3.2). Without

loss of generality, we assume that for e.g. i = 1 we have ∆1 = {0R2} × ∆̂. Let

∆ε := {(x̃, x̂) ∈ R2 × ∆̂ : |x̃| ≤ εy(x̂)} , ε > 0

where we have denoted
y(x̂) := dist(x̂, ∂∆̂) , (3.3)

so that for ε > 0 small, the cone ∆ε intersects the other simplices ∆i only at points in ∂∆i, for i = 2, . . . ,m.
Since moreover u ∈ W 1,1(Qn,S1) is smooth outside the support of P(u), for a.e. ε > 0 the restriction of
u to the boundary of ∆ε is in W 1,1. Furthermore, recalling the definition of the current P(u), it turns

out that for all x̂ ∈ ∆̂ the degree of u(·, x̂) around 0R2 is constantly equal to d = di ∈ Z.
The following result allows to remove the dipole ∆ := ∆1, by paying an amount of energy essentially

equal to π |d|Hn−2(∆). Of course, the argument will be applied to each simplex ∆i in the proof of
Theorem 3.3.

Theorem 3.5. For a.e. ε > 0 small, there exists a smooth map vε : ∆ε → R2 such that vε|∂∆ε
= u|∂∆ε

in the sense of the traces, and

M(Gvε
∆ε × R2) ≤ π |d|Hn−2(∆) +O(ε) . (3.4)
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3.5 Removal of point singularities

In dimension n = 3, we also need the following argument that allows to remove point singularities by
paying a small amount of energy.

Theorem 3.6. Let n ≥ 3 and u ∈ W 1,1(Qn,R2) be smooth outside a discrete set. Then there exists a

sequence {uk} ⊂ C∞(Bn,R2) such that uk
BV→ u strictly, and

lim
k→∞

∫
Qn

√
1 + |∇uk|2 + |M2(∇uk)|2 dx =

∫
Qn

√
1 + |∇u|2 + |M2(∇u)|2 dx .

3.6 Removal of high codimension singularities

In high dimension n ≥ 4, instead, we first have to remove singularities of codimension greater than two.
More precisely, let k = 3, . . . n − 1, integer, and let ∆ denote an (n − k)-dimensional simplex contained

in the closure of Qn. Without loss of generality, assume ∆ = {0Rk} × ∆̂. For ε > 0 small, define again

∆ε := {(x̃, x̂) ∈ Rk × ∆̂ : |x̃| ≤ εy(x̂)}

where y(x̂) is the distance function in (3.3).

Theorem 3.7. Let u ∈ W 1,1(Bn,R2) be smooth in int(∆ε0) \∆ for some ε0 > 0 small. Then, for a.e.
ε > 0 small, there exists a smooth map vε : int(∆ε) → R2 such that vε|∂∆ε

= u|∂∆ε
in the sense of the

traces, and

M(Gvε ∆ε × R2) ≤ O(ε) . (3.5)

3.7 Proof of the approximation theorem

We are now in position to give the:

Proof of Theorem 3.3, case n ≥ 3. Since the weak convergence of currents with supports contained in the
closure of Bn ×D2 is metrizable, compare [34, Sec. 31], we can apply a diagonal argument. Moreover,
since Bn is bilipschitz homeomorphic to Qn, we may and do assume u : Qn → S1.
Step 1. By Theorem 3.4, we reduce to the case in which u ∈ R∞(Qn,S1) and u is smooth outside the
support of P(u), a polyhedral (n− 2)-chain in Qn.
Step 2. By applying iteratively Theorem 3.5, for each ε > 0 we find a Sobolev map uε ∈ W 1,1(Qn,R2)
that is smooth outside an (n− 3)-dimensional polyhedral chain Σε and such that∫

Qn

√
1 + |∇uε|2 + |M2(∇uε)|2 dx ≤

∫
Qn

√
1 + |∇u|2 dx+ πM(P(u)) + ε

with uε
BV→ u strictly and M(P(uε)) → M(P(u)), as ε→ 0.

Step 3. If n = 3, the finite set Σε of point singularities of uε is removed by means of Theorem 3.6. In
high dimension n ≥ 4, we first apply Theorem 3.7, with k = 3, to each (n− 3)-simplex of Σε, and reduce
to the case of a map that is smooth outside an (n− 4)-dimensional polyhedral chain, given by the union
of the faces F of the (n − 3)-simplices of Σε that lie inside Qn. If n ≥ 5, we then iteratively repeat the
same argument, by applying Theorem 3.7 for k = 4, . . . , n − 1. Finally, we apply Theorem 3.6 in order
to remove the finite set of point singularities.
Step 4. By a diagonal argument, we find a good approximating sequence given by Lipschitz-continuous
functions, where the weak convergence as currents readily follows. By a standard convolution argument,
the proof is complete.

4 Proofs

In this section we collect the proofs of the technical results leading to Theorem 3.3. Recall that we assume
n ≥ 3.
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Figure 3: The polyhedral chain Pσ (in blue), the current P(uσ) (in green) and the pyramidal neighbor-
hoods φi

−1(∆i
ε), depicted in dimension n = 3. Notice that both Pσ and P(uσ) are boundaryless and have

support contained in the open cube Q3, since we are assuming that u is smooth near the boundary of
Q3.

4.1 Reduction to maps with a nice singular set

Proof of Theorem 3.4. We first consider the case when u is smooth in a neighborhood of the boundary of
Qn. Therefore, P(u) can be viewed as a current in Rn−2(Rn) satisfying ∂P(u) = 0, see Theorem 1.2, and
with support a closed set contained in the open cube Qn. In the sequel, c(n) will denote a real positive
constant only depending on the dimension n, possibly varying from line to line.

Let σ > 0 small. By Federer’s strong polyhedral approximation theorem, see [18, 4.2.2], see also [20,
Sec. 2.2.6], there exists a diffeomorphism φσ of Qn onto itself and an (n − 2)-dimensional polyhedral
chain Pσ with support in Qn, such that φσ#P(u) − Pσ = ∂Rσ for some current Rσ ∈ Rn−1(Q

n) with
M(Rσ) +M(∂Rσ) < σ. Moreover, Lipφσ ≤ 1 + σ, Lipφσ

−1 < 1 + σ, and φσ(x) = x if the distance of x
to the support of P(u) is greater than σ.

Letting uσ := u ◦ φσ
−1, then uσ ∈ W 1,1(Qn,S1), uσ → u strongly in W 1,1(Qn,R2) as σ → 0, and

P(uσ) = φσ#P(u) (see Fig. 3), so that

P(uσ)− Pσ = ∂Rσ , M(Rσ) +M(∂Rσ) < σ . (4.1)

As a consequence, the open set

Uσ = Qn \ sptPσ

has full measure, and

M(P(uσ) Uσ) = M((∂Rσ) Uσ) ≤ M(∂Rσ) < σ . (4.2)

For any σ > 0 small, we now write u = uσ, P = Pσ, and U = Uσ, for the sake of simplicity, and we
write P as in (3.2). After a rigid motion φi in Rn we have

φi(∆i) = {0R2} × ∆̂i ∀ i = 1, . . . ,m .

If x̃ = (x1, x2) ∈ R2, we let ∥x̃∥ := |x1|+ |x2|, and for ε > 0 small

∆i
ε := {(x̃, x̂) ∈ R2 × ∆̂i : ∥x̃∥ ≤ εyi(x̂)}

15



where we have denoted yi(x̂) := dist(x̂, ∂∆̂i). Therefore, there exists ε0 > 0 such that if ε ∈]0, ε0[, for
any 1 ≤ i < j ≤ m the cones ∆i

ε and ∆j
ε are interiorly disjoint, and only intersect at points in the

(n− 2)-dimensional set ∆i ∩∆j .
Denote by Σi

ε(ℓ) the ℓ-dimensional skeleton of φi
−1(∆i

ε) (see Fig. 3). By a slicing argument, it turns
out that for a.e. ε ∈]0, ε0[ the restriction u|F of u to any ℓ-face F of Σi

ε(ℓ) is a Sobolev map inW 1,1(F,S1),
for each ℓ = 1, . . . , n− 1 and i = 1, . . . ,m. In the sequel, we shall tacitly assume that ε ∈]0, ε0[ is chosen
as above.

Claim: For x ∈ int(∆i), let F
i
ε(x) denote the square obtained by the intersection of φi

−1(∆i
ε) with the

affine plane orthogonal to ∆i and containing x. Then, for each i = 1, . . . ,m there exists a Borel set
Σi ⊂ ∆i, with

∑m
i=1 Hn−2(Σi) < c(n)σ for some absolute real constant c(n) > 0, such that for every

x ∈ ∆i \ Σi, the 2-dimensional restriction of u to the square F i
ε(x) is a Sobolev map with values into S1

and with no homological singularities outside the center x of the square. The validity of this claim can
be checked as a consequence of the mass estimate (4.2) and of a slicing argument.

We now modify the map u as follows. For each i = 1, . . . ,m, let vi,ε : ∆
i
ε → S1 be given by

vi,ε(x̃, x̂) := u
(
ε yi(x̂)

x̃

∥x̃∥
, x̂

)
(4.3)

and define uε : Q
n → S1 by

uε(x) =

{
vi,ε(φi(x)) if x ∈ φi

−1(∆i
ε) , i = 1, . . . ,m

u(x) elsewhere in Qn .

We can find a sequence {εh} ↘ 0 such that uh := uεh ∈W 1,1(Qn,S1) for each h, and {uh} converges
to u strongly in W 1,1. The proof of this fact is omitted, since it follows by using arguments as in the
next sections. To this purpose, we only observe that in Theorem 3.7, the computation in (4.15) holds
true even in case k = 2. Therefore, setting

Vh := Qn \
m⋃
i=1

φi
−1(∆i

εh
) , h ∈ N ,

then Vh is an open subset of U with Lipschitz boundary (except at the points of the (n− 3)-skeleton of
P), and Ln(Vh) → Ln(U) = Ln(Qn), as h→ ∞.

Denote by Pu,h the slice of the current P(u) to the (n− 1)-dimensional boundary ∂Vh. Without loss
of generality, we may and do choose the sequence {εh} in such a way that Pu,h is an (n − 3)-rectifiable
current satisfying

εh M(Pu,h) ≤ ah ∀h (4.4)

where ah → 0 as h→ ∞.

We now apply the approximation theorem by Bethuel [13, Thm. 2], see also [24, Thm. 1.3], to the
Sobolev map u|Vh

: Vh → S1 where, we recall, uh = u on Vh. This way, for each h we find a sequence

{v(h)k }k ⊂ R∞(Vh,S1) strongly converging to u|Vh
in W 1,1.

Denote by P(v(h)k ) the (n−2)-current of the singularities of the Sobolev map v
(h)
k , so that sptP(v(h)k ) ⊂

V̄h and (∂P(v(h)k )) Vh = 0 for each k. By an inspection to the construction of the approximating sequence
from [13,24], it turns out that

sup
k

M(P(v(h)k )) ≤ c(n)M(P(uh) Vh) .

In fact, the construction makes use of a slicing argument, where the degree of v
(h)
k at the boundary

of the 2-faces of the grid is bounded (up to an absolute constant) in terms of mass of the current of

the singularities times δ1−n, where δ is the mesh of the grid. Therefore, the map v
(h)
k being given by

homogeneous extension on “bad” sets, one obtains the inequality in the last centered formula.
Therefore, since by (4.2) we can estimate

M(P(uh) Vεh) ≤ M(P(u) U) ≤ σ ∀h

we infer that
sup
k

M(P(v(h)k )) ≤ c(n)σ ∀h . (4.5)
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Moreover, viewing P(v(h)k ) as a current in Qn, since the mass of the restriction of P(v(h)k ) to the
boundary of Vh is bounded (up to an absolute constant factor) in terms of the mass of the restriction of
P(u) to ∂Vh, we also have:

sup
k

M(∂P(v(h)k )) ≤ c(n)M(Pu,h) ,

so that by (4.4) we can estimate

sup
k

M(∂P(v(h)k )) ≤ c(n)
ah
εh

∀h . (4.6)

In a way similar to definition (4.3), we now take for each i the zero-homogeneous extension of v
(h)
k

in φi
−1(∆i

εh
) with respect to the coordinates x̃ orthogonal to the (n − 2)-simplex ∆i. We thus find a

sequence {w(h)
k } ⊂ R∞(Qn,S1) strongly converging to u in W 1,1(Qn,R2) as k tends to ∞. Since

M(P(w(h)
k )) (U \ Vh) ≤ c(n) εh M(∂P(v(h)k )) ,

by (4.5) and (4.6) we obtain the mass estimate

sup
k

M
(
(P(u)− P(w(h)

k )) U
)
≤ c(n) (σ + ah) ∀h . (4.7)

By a diagonal argument, we thus find a sequence {wh} ⊂ R∞(Qn,S1) strongly converging to u = uσ
in W 1,1(Qn,R2) and such that by (4.7) and (4.2)

M
(
P(wh) U

)
≤ c(n) (σ + ah) ∀h . (4.8)

Now, recall that P = Pσ satisfies (3.2). By means of a slicing argument, we deduce that for Hn−2-
almost every x ∈ int∆i, where i = 1, . . . ,m, the degree of wh around x is a well-defined integer, that we
denote by dih(x). Therefore, we have:

P(wh) = P(wh) U + Ph (4.9)

where Ph is an integral polyhedral chain with sptPh ⊂ sptP, whose action is given by

Ph(η) =

m∑
i=1

∫
∆i

dih ⟨η, ξi⟩ dHn−2 ∀ η ∈ Dn−2(Qn)

where ξi is a unit (n− 2)-vector orienting ∆i, for i = 1, . . . ,m.
Denote by θ the multiplicity of the current P(u). By the previous Claim, we find a measurable set

Kσ contained in sptP such that Hn−2(Kσ) ≤ c(n)σ and

sup
h

|dih(x)| ≤ θ(x)

for each i = 1, . . . ,m and x ∈ int(∆i) \Kσ. Moreover, we also estimate

sup
h

∫
Kσ

|dih(x)| dHn−2(x) ≤ c(n)E(σ) , E(σ) := M(P(uσ) U)

so that E(σ) ≤ σ. Therefore, we obtain

sup
h

M(Ph) ≤ M(Pσ) + c(n)σ

and hence, on account of (4.8) and (4.9),

M(P(wh)) ≤ c(n) (σ + ah) +M(Pσ) ∀h ,

where, we recall, ah → 0 as h→ ∞.
Letting σ ↘ 0 along a sequence, recalling that M(Pσ) → M(P(u)), by a further diagonal argument we

find a sequence {uk} ⊂W 1,1(Qn,S1) strongly converging to u inW 1,1 and such that lim supk M(P(uk)) ≤

17



M(P(u)). Since by lower semicontinuity M(P(u)) ≤ lim infk M(P(uk)), we have proved Theorem 3.4
under the assumption that u is smooth near the boundary of Qn.

It the general case, we make use of a slicing argument as follows. Let ∥x∥ := sup1≤i≤n |xi| and
Qn

λ = {x ∈ Rn : ∥x∥ < λ}, so that Qn = Qn
1 . For a.e. 0 < λ < 1 the restriction P(u) Qn

λ satis-
fies M(∂(P(u) Qn

λ)) < ∞. Therefore, the boundary rectifiability theorem (cf. [34, 30.3]) implies that
P(u) Qn

λ is an integral (n− 2)-current in Qn, with support a closed set contained in the open cube Qn.
We then apply again Federer’s strong polyhedral approximation theorem, obtaining for each σ > 0 small
a diffeomorphism φσ of Qn onto itself and an (n − 2)-dimensional polyhedral chain Pσ with support in
Qn such that φσ#(P(u) Qn

λ)−Pσ = ∂Rσ for some current Rσ ∈ Rn−1(Q
n) with M(Rσ)+M(∂Rσ) < σ.

Setting now uλ,σ(x) := u ◦φσ
−1(x), x ∈ φσ(Q

n
λ), we have P(uλ,σ) = φσ#(P(u) Qn

λ). Therefore, arguing
as before, we find a sequence {wk} ⊂ R∞(φσ(Q

n
λ),S1) strongly converging to uλ,σ in W 1,1(φσ(Q

n
λ),R2)

and such that M(P(wk)) → M(P(uλ,σ)). Setting for v = wk or v = uλ,σ

v(x) := v(φσ(λx)) , x ∈ Qn ,

and taking λ↗ 1, the claim follows through a diagonal argument.

4.2 Energy approximation at the singular set

Proof of Theorem 3.5. Due to the condition on the degree around ∆, setting for simplicity

rε(x̂) := εy(x̂), (4.10)

we can find a smooth homotopy map H : [0, 1]× [0, 2π]×∆̂ → S1 such that H(0, θ, x̂) = (cos(dθ), sin(dθ))
and H(1, θ, x̂) = u(rε(x̂)(cos θ, sin θ), x̂). Since u|∂∆ε

∈ W 1,1, we can assume that H ∈ W 1,1([0, 1] ×
[0, 2π]× ∆̂,S1). Define now in cylindrical coordinates x̃ = ρ(cos θ, sin θ) the map vε : ∆ε → R2 as

v̄ε(ρ, θ, x̂) :=

{
H
(
2ρ/rε(x̂)− 1, θ, x̂

)
if rε(x̂)/2 ≤ |x̃| ≤ rε(x̂)

2ρ/rε(x̂) (cos(dθ), sin(dθ)) if |x̃| ≤ rε(x̂)/2 .

Notice that vε is smooth on ∂∆ε and vε = u on ∂∆ε. We claim that (3.4) holds.
In fact, for rε(x̂)/2 < ρ < rε(x̂), setting t(ρ) = 2ρ/rε(x̂)− 1, we compute

∂ρv̄ε(ρ, θ, x̂) = ∂tH(t(ρ), θ, x̂) · 2

rε(x̂)
, ∂θv̄ε(ρ, θ, x̂) = ∂θH(t(ρ), θ, x̂)

whereas

∇x̂v̄ε(ρ, θ, x̂) = ∇x̂H(t(ρ), θ, x̂)− 2ρ

rε(x̂)2
∂tH(t(ρ), θ, x̂)⊗∇rε(x̂) .

We have ∫
∆ε∩{rε(x̂)/2<ρ<rε(x̂)}

|∇vε| dLn

=

∫
∆̂

∫ 2π

0

∫ rε(x̂)

rε(x̂)/2

ρ

√
|∂ρv̄ε|2 +

|∂θv̄ε|2
ρ2

+ |∇x̂v̄ε|2dρdθdx̂

≤
∫
∆̂

∫ 2π

0

∫ rε(x̂)

rε(x̂)/2

ρ
[ 2

rε(x̂)
|∂tH|+ |∂θH|

ρ
+ |∇x̂H|

+
2ρ

rε(x̂)2
|∂tH||∇rε|+

2
√
ρ

rε(x̂)

√
|∇x̂H||∂tH||∇rε|

]
dρdθdx̂,

where all the partial derivatives of H are computed at (t(ρ), θ, x̂) and ∇rε is computed at x̂. Using that
ρ ≤ rε(x̂) on ∆ε and |∇rε(x̂)| = ε, for some absolute real constant C, we get∫

∆ε∩{rε(x̂)/2<ρ<rε(x̂)}

|∇vε| dLn ≤ C

∫
∆̂

∫ 2π

0

∫ rε(x̂)

rε(x̂)/2

|∇H(t(ρ), θ, x̂)|dρdθdx̂

= Cε

∫
[0,1]×[0,2π]×∆̂

|∇H(t, θ, x̂)|dtdθdx̂ = O(ε),
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where we performed the change of variable t = t(ρ) and we used that rε(x̂) ≤ ε.
On the other hand, by the area formula∫

∆ε∩{rε(x̂)/2<ρ<rε(x̂)}

|M2(∇vε)| dLn = 0 .

Moreover, for ρ ≤ rε(x̂)/2 we get

∂ρv̄ε(ρ, θ, x̂) =
2

rε(x̂)
(cos(dθ), sin(dθ)),

∂θv̄ε(ρ, θ, x̂) =
2dρ

rε(x̂)
(− sin(dθ), cos(dθ)),

∇x̂v̄ε(ρ, θ, x̂) = − 4ρ

rε(x̂)2
(cos(dθ), sin(dθ))⊗∇rε(x̂).

Therefore ∫
∆ε∩{ρ<rε(x̂)/2}

|∇vε| dLn ≤
∫
∆̂

∫ 2π

0

∫ rε(x̂)/2

0

ρ

[
2

rε(x̂)
+

2|d|
rε(x̂)

+
4ρε

rε(x̂)2

]
dρdθdx̂

≤ 2π

∫
∆̂

∫ rε(x̂)/2

0

[
1 + |d|+ ε

rε(x̂)

]
= O(ε),

where we used that |∇rε(x̂)| = ε and ρ ≤ rε(x̂)/2. Finally we get

∫
∆ε∩{ρ<rε(x̂)/2}

|M2(∇vε)| dLn =

∫
∆̂

∫ 2π

0

∫ rε(x̂)/2

0

ρ|M2(∇v̄ε)|dρdθdx̂

≤
∫
∆̂

∫ 2π

0

∫ rε(x̂)/2

0

[
4|d|ρ
rε(x̂)2

+
8|d|ρ2ε
rε(x̂)2

]
dρdθdx̂

=

∫
∆̂

∫ 2π

0

|d|
2
dθdx̂+O(ε)

= π |d|Hn−2(∆) +O(ε),

so that (3.4) readily follows.

4.3 Removal of point singularities

Proof of Theorem 3.6. The argument being local, we may and do assume Σ = {0Rn}. For r > 0 small,
we choose v : Bn

r → R2 smooth and such that v = u on ∂Bn
r . We then define w : Qn → R2 by taking

w(x) =

 u(x) if |x| ≥ r
u(rx/|x|) if δ < |x| < r
v(rx/δ) if |x| ≤ δ

where δ ∈ (0, r) is small, and we first estimate the energy of w on Bn
r \Bn

δ .
Denoting by ∇τ the tangential component of the derivative at x ∈ ∂Bn

ρ , we get

|∇w (x)| = r

ρ

∣∣∣∣∇τu

(
r
x

|x|

)∣∣∣∣ , x ∈ Bn
r \Bn

δ

and also

|M2(∇w (x)) | =
( r
ρ

)2
∣∣∣∣M2

(
∇τu

(
r
x

|x|

))∣∣∣∣ , x ∈ Bn
r \Bn

δ
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so that

M(Gw (Bn
r \Bn

δ )× R2) =

∫
Bn

r \Bn
δ

√
1 + |∇w|2 + |M2(∇w)|2dx

≤|Bn
r |+

∫
Bn

r

|∇w| dx+

∫
Bn

r

|M2(∇w)| dx

=|Bn
r |+

∫ r

0

r

ρ

∫
∂Bn

ρ

∣∣∣∣∇τu

(
r
x

|x|

)∣∣∣∣ dHn−1dρ

+

∫ r

0

( r
ρ

)2
∫
∂Bn

ρ

∣∣∣∣M2

(
∇τu

(
r
x

|x|

))∣∣∣∣ dHn−1dρ

=|Bn
r |+

∫ r

0

(ρ
r

)n−2

dρ

∫
∂Bn

r

|∇τu(y)| dHn−1

+

∫ r

0

(ρ
r

)n−3

dρ

∫
∂Bn

r

|M2(∇τu(y))| dHn−1

=|Bn
r |+

r

n− 1

∫
∂Bn

r

|∇τu(y)| dHn−1

+
r

n− 2

∫
∂Bn

r

|M2(∇τu(y))| dHn−1 .

Now, setting

F1(r) :=

∫
∂Bn

r

|∇τu| dHn−1, F2(r) :=

∫
∂Bn

r

|M2(∇τu)| dHn−1

we have ∫ 1

0

F1(r) dr ≤
∫
Bn

|∇u|dx <∞ ,

∫ 1

0

F2(r) dr ≤
∫
Bn

|M2(∇u)|dx <∞ .

Thus we get necessarily that lim inf
r→0

r
(
F1(r) + F2(r)

)
= 0 and hence, definitely,

lim inf
r→0

M(Gw (Bn
r \Bn

δ )× R2) = 0 .

It remains to estimate the energy of w on Bn
δ . We have

∇w(x) = r

δ
∇v

(r
δ
x
)
, M2(∇w) =

r2

δ2
M2

(
∇v

(r
δ
x
))

, x ∈ Bn
δ .

Then
M(Gw Bn

δ × R2) ≤

|Bn
δ |+

r

δ

∫
Bn

δ

∣∣∣∇v (r
δ
x
)∣∣∣ dx+

r2

δ2

∫
Bn

δ

∣∣∣M2

(
∇v

(r
δ
x
))∣∣∣ dx =

|Bn
δ |+

(δ
r

)n−1
∫
Bn

r

|∇v(y)|dy +
(δ
r

)n−2
∫
Bn

r

|M2(∇v(y))|dy <∞ .

Therefore, recalling that n ≥ 3, letting rj → 0 along a suitable sequence, and choosing δ = δ(rj) small
w.r.t. rj we find wj : B

n
rj → R2 smooth with wj = u on ∂Bn

rj such that:

lim
j→∞

M(Gwj
Bn

rj × R2) = 0

and the proof is complete.

4.4 Removal of high codimension singularities

Proof of Theorem 3.7. Without loss of generality, we can assume that Σ = ∆, with ∆ an (n−k)-simplex,

and that ∆ = {0Rk} × ∆̂, where we use the notation x = (x̃, x̂) ∈ Rk × Rn−k.

Consider the neighborhood ∆ε = {(x̃, x̂) ∈ Rn : x̂ ∈ ∆̂ , |x̃| ≤ rε(x̂)}, where rε is given by (4.10), and

for r > 0 denote B̃r := {x̃ ∈ Rk : |x̃| ≤ r}.
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Let δ = δ(ε) < ε and v : ∆ε → R2 be smooth such that v|∂∆δ
= u|∂∆δ

, and define the map
wε : B

n → R2 as

wε(x) =


u(x) in Bn \∆ε,

u (rε(x̂)x̃/|x̃|, x̂) in ∆ε \∆δ,

v(εx̃/δ, x̂) in ∆δ.

In order to estimate the energy on ∆ε \∆δ, let us start proving that

lim inf
ε→0

∫
∆ε\∆δ

|∇wε(x)|dx = 0. (4.11)

For this purpose, we introduce an adapted orthonormal basis (ν, τ1, . . . , τk−1) in Rk so that ν is the

outward unit normal to ∂B̃r at a point ỹ ∈ ∂Br. Then, for any x ∈ ∆ε \∆δ, with

ỹ = ỹ(x) = rε(x̂)
x̃

ρ
∈ ∂Brε(x̃) , ρ := |x̃| (4.12)

we obtain ∂νwε(x̃, x̂) = 0,

∂τawε(x̃, x̂) =
rε(x̂)

ρ
∂τau(ỹ(x), x̂) , α = 1, . . . , k − 2 (4.13)

and denoting x̂ = (xk+1, . . . , xn)

∂xβ
wε(x̃, x̂) = ∂xβ

u(ỹ(x), x̂) + ∂νu(ỹ(x), x̂) ∂xβ
rε(x̂) , β = k + 1, . . . , n . (4.14)

Therefore, since the distance function is 1-Lipschitz and rε(x̂) ≤ ε, there exists a positive constant c, only
depending on k and n, such that

|∇wε(x̃, x̂)| ≤ c
ε

ρ
|∇u(ỹ(x), x̂)| .

Using the change of variable in (4.12) and Fubini’s theorem, we estimate:∫
∆ε\∆δ

|∇wε(x)| dx ≤ c ε

∫
∆ε

ρ−1 |∇u(ỹ(x), x̂)| dx

= c ε

∫
∆̂

( rε(x̂)∫
0

ρ−1
(∫

∂B̃ρ

|∇u(ỹ(x), x̂)| dHk−1
)
dρ

)
dx̂

= c ε

∫
∆̂

( rε(x̂)∫
0

ρk−2

rε(x̂)k−1

( ∫
∂B̃rε(x̂)

|∇u(ỹ, x̂)| dHk−1
)
dρ

)
dx̂

=
c

k − 1
ε

∫
∆̂

( ∫
∂B̃rε(x̂)

|∇u(ỹ, x̂)| dHk−1
)
dx̂ ,

(4.15)

where we used that k > 2. Setting

F (ε) :=

∫
∆̂

(∫
∂B̃rε(x̂)

|∇u(ỹ, x̂)| dHk−1
)
dx̂

since for each ε0 > 0 small ∫ ε0

0

F (ε) dε =

∫
∆ε0

|∇u(x)| dx <∞ ,

then, necessarily lim infε→0 ε F (ε) = 0 and we obtain (4.11).
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We now show that

lim inf
ε→0

∫
∆ε\∆δ

|M2(∇wε(x))|dx = 0. (4.16)

We use again the adapted frame. This time, with an obvious notation, recalling that ∂νwε(x̃, x̂) = 0, by
(4.13) we get for 1 ≤ α1 < α2 ≤ k − 1

|M2(∇wε(x̃, x̂))τα1τα2
| =

(rε(x̂)
ρ

)2

|M2(∇u(ỹ(x), x̂))τα1τα2
| ,

whereas by (4.14), for each k + 1 ≤ β1 < β2 ≤ n we can estimate

|M2(∇wε(x̃, x̂))xβ1
xβ2

| ≤ |M2(∇u(ỹ(x), x̂))xβ1
xβ2

|
+|∂xβ1

rε(x̂)| |M2(∇u(ỹ(x), x̂))νxβ2
|

+|∂xβ2
rε(x̂)| |M2(∇u(ỹ(x), x̂))νxβ1

| .

Finally, for each α = 1, . . . , k − 1 and β = k + 1, . . . , n we have:

|M2(∇wε(x̃, x̂))ταxβ
| ≤

rε(x̂)

ρ

(
|M2(∇u(ỹ(x), x̂))ταxβ

|+ |∂xβ
rε(x̂)| |M2(∇u(ỹ(x), x̂))ταν |

)
.

We thus definitely obtain the upper bound:

|M2(∇wε(x̃, x̂))| ≤ c
(
1 + ε+

rε(x̂)

ρ
+

(rε(x̂)
ρ

)2)
|M2(∇u(ỹ(x), x̂))|

for some absolute constant c, possibly depending on ∆. Therefore, as in (4.15), this time we estimate:∫
∆ε\∆δ

|M2(∇wε(x̃, x̂))| dx ≤ c

∫
∆ε

(
1 + ε+

rε(x̂)

ρ
+

(rε(x̂)
ρ

)2)
|M2(∇u(ỹ(x), x̂))| dx

= c

∫
∆̂

rε(x̂)∫
0

(
1 + ε+

rε(x̂)

ρ
+
(rε(x̂)

ρ

)2) ∫
∂B̃ρ

|M2(∇u(ỹ(x), x̂))| dHk−1dρ dx̂

= c

∫
∆̂

∫
∂B̃rε(x̂)

|M2(∇u(ỹ, x̂))| dHk−1dx̂ ·
rε(x̂)∫
0

(
1 + ε+

rε(x̂)

ρ
+

(rε(x̂)
ρ

)2)( ρ

rε(x̂)

)k−1

dρ

≤ cC(k) εG(ε)

for some dimensional constant C(k), where we used again that k > 2, rε(x̂) ≤ ε, and we have denoted

G(ε) :=

∫
∆̂

(∫
∂B̃rε(x̂)

|M2(∇u(ỹ, x̂))| dHk−1
)
.

Since again for ε0 > 0 small ∫ ε0

0

G(ε) dε =

∫
∆ε0

|M2(∇u(x))|dx <∞ ,

then, necessarily lim infε→0 εG(ε) = 0 and we obtain (4.16).
On the other hand, for almost every x ∈ ∆δ

∇x̃wε(x) =
ε

δ
∇x̃v

(ε
δ
x̃, x̂

)
, ∇x̂wε(x) = ∇x̂v

(ε
δ
x̃, x̂

)
.

whereas for 1 ≤ i < j ≤ n, with an obvious notation,

M2(∇wε)ij =
ε2

δ2
M2

(
∇v

(ε
δ
x̃, x̂

))
ij

i, j ≤ k,

M2(∇wε)ij =
ε

δ
M2

(
∇v

(ε
δ
x̃, x̂

))
ij

i ≤ k, j > k,

M2(∇wε)ij =M2

(
∇v

(ε
δ
x̃, x̂

))
ij

i, j > k,
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so that (recalling that 0 < δ < ε) definitely

|∇wε(x̃, x̂)| ≤
ε

δ
|∇v(ỹ(x), x̂)| , |M2(∇wε(x̃, x̂))| ≤

(ε
δ

)2

|M2(∇v(ỹ(x), x̂))| ,

where we have denoted
ỹ = ỹ(x) =

ε

δ
x̃ . (4.17)

Therefore, changing variable by (4.17), we get

M(Gwε
∆δ × R2) ≤

≤ |∆δ|+
ε

δ

∫
∆δ

|∇v(ỹ(x), x̂)| dx̃ dx̂+
(ε
δ

)2
∫
∆δ

|M2(∇v(ỹ(x), x̂)| dx̃ dx̂

= |∆δ|+
(δ
ε

)k−1
∫
∆ε

|∇v(ỹ, x̂)| dx̃ dx̂+
(δ
ε

)k−2
∫
∆ε

|M2(∇v(ỹ, x̂)| dx̃ dx̂ .

In conclusion, since k ≥ 3, letting εj → 0 along a suitable sequence, and choosing δ = δ(εj) small w.r.t.
εj , on account of (4.11) and (4.16) we find

lim
j→∞

M(Gwεj
∆εj × R2) = 0

and the proof is complete.

5 Final remarks and open questions

In this final section, we briefly discuss whether our approach in terms of currents extends (with the
expected modifications) to the wider class of maps u ∈ BV (Bn,S1) with finite relaxed energy (0.2). We
then show that in case of both dimension and codimension at least equal to three, the corresponding
relaxed area functional fails to be subadditive as a set function, even in the Sobolev case.

5.1 The BV case.

The optimal lifting Cartesian current satisfies again (1.13) (see [30]), where the distribution Divᾱ mu is
defined as in (1.5), with an obvious extension of the adjoint notation to the R2×n-valued measure Du.
In case DJu = 0, recalling that Diu

j = ∇iu
j Ln+(DCu)ji , we define the graph current Gu in such a way

that for every (n− 1)-form ω = ω(1) as in (1.3), this time we have

Gu(ω
(1)) =

2∑
j=1

n∑
i=1

∫
Bn

ϕji (x, u(x)) dDiu
j .

It turns out that properties (1.4) and (1.14) continue to hold. Therefore, the lower bound given by
Proposition 3.2 readily extends. On the other hand, the upper bound inequality holds true provided that
one is able to find a sequence {uk} ⊂W 1,1(Bn,S1) converging to u strictly in the BV -sense and satisfying
limk M(P(uk)) = M(P(u)), compare [22]. In conclusion, we expect that our Main Result, Theorem 0.2,
extends to the wider class of maps u ∈ BV (Bn,S1) such that DJu = 0.

When DJu ̸= 0, instead, even in low dimension n = 2, we are very far from having an explicit
formula, and even a characterization of the class of maps in BV (B2,S1) with finite relaxed energy (0.2).
The situation is much more complicate, since homological tools similar to the ones exploited in this paper
fail to detect the energy gap.

For example, let u ∈ BV (B2,S1) be the symmetric triple junction map, so that u is constant in each
third of the unit disk, with the three constant values α, β, γ equal to the vertices of an equilateral triangle
Tαβγ inscribed in the unit circle S1. According to (1.5) and using the decomposition formula [30, (4.6)],
we get |Divmu|(B2) = |Tαβγ |, i.e. the area of the triangle Tαβγ , recovering the exact energy gap
(compare [4]).

On the other hand, by slightly modifying Example 4.5 from [5], so that the vertices of the two triangles
in the target space belong to S1, one obtains a piecewise constant map in BV (B2,S1), with jump set
equal to the union of twelve radii, in such a way that |Divmu|(B2) = 0, but the energy gap is positive.
By enforcing this modification also in Example 4.6 of [5], one obtains even a piecewise constant map in
BV (B2,S1) with infinite energy gap. Therefore, the relevant (topological) singularity at the origin is not
seen by any reasonable definition of the current of the singularities P(u).
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5.2 A counterexample to the measure property

We finally come back to the main conjecture in this framework: for each function u ∈ BV (Bn,R2) with
finite relaxed energy (0.2), the localized functional B 7→ ABV (u,B) is subadditive on open sets, and
hence it can be extended to a Borel measure on Bn. That property should follow since the topology
induced by strict convergence in BV is stronger enough, compared to the L1-topology, see (0.1).

On the other hand, we now see that locality fails to hold when both dimension and codimension are
strictly larger than two. This drawback is due to the fact that energy concentration in the relaxation
process may occur on one-dimensional sets. Therefore, strict convergence fails to be strong enough in
order to guarantee uniqueness of the Cartesian current enclosing the graph of Sobolev functions u in
W 1,1(B3,R3). As in [1], we build up our counterexample by means of the vortex map.

Denote by S2 the unit sphere in R3, and let u : B3 → S2 be given by u(x) = x/|x|. Then,
u ∈ W 1,p(B3,S2) for each exponent 1 ≤ p < 3. Moreover, the cofactor function cof∇u belongs to
W 1,q(B3,R3×3) for 1 ≤ q < 3/2, and det∇u = 0 L3-a.e. on B3, by the area formula. Then, for each
open set B ⊂ B3, the 3-dimensional area of the graph of the restriction u|B satisfies:

A(u,B) =

∫
B

√
1 + |∇u|2 + |cof∇u|2 dx <∞ .

The graph 3-current Gu is well-defined as before, in terms of the pull back of the graph map w.r.t.
the approximate gradient, and actually Gu is i.m. rectifiable in R3(B

3 ×R3), with finite mass M(Gu) =
A(u,B3), and a non zero boundary,

(∂Gu) B3 × R3 = −δ0R3 × [[ S2 ]] ,

see [20, Sec. 3.2.2]. Roughly speaking, there are two qualitatively different ways to fill the hole in the
graph of u: inserting a ball δ0R3 × [[D3 ]], where D3 is the (naturally oriented) unit ball in the target
space, or a cylinder [[L ]]× [[ S2 ]], where [[ S2 ]] := ∂[[B3 ]] and L is any oriented line segment connecting a
point in the boundary ∂B3 of the domain to the origin 0R3 . Therefore both the 3-currents T1 and T2,

T1 := Gu + δ0R3 × [[D3 ]] , T2 := Gu + [[L ]]× [[ S2 ]] ,

are Cartesian currents in B3 × R3. Furthermore, it is not difficult to find two sequences {u(i)k } ⊂
C∞(B3,R3), where i = 1, 2, satisfying the following properties:

� u
(i)
k → u strongly in W 1,1(B3,R3), and hence strictly in BV ;

� G
u
(i)
k

⇀ Ti weakly in D3(B
3 × R3);

� A(u
(i)
k ) → M(Ti), as k → ∞, where

M(T1) = A(u) +
4π

3
, M(T2) = A(u) + 4π .

The smooth functions u
(1)
k are equal to x/|x| outside the ball B3

1/k, where they cover once and with

the appropriate orientation the ball D3 in the target space.

The smooth functions u
(2)
k , instead, take values in the unit sphere S2. They are equal to x/|x| outside

the ball B3
1/k and a small conical neighborhood Uk of the segment L with opening angle 1/k, so that

L3(Lk) → 0. Moreover, they are smoothly extended on Uk \ B3
1/k in such a way that on each radius

r ∈ (1/k, 1) they cover almost all the unit sphere S2. This can be done in such a way that the Brouwer

degree of the smooth map u
(2)
k |∂B3

r
: ∂B3

r → S2 is equal to zero, for any r ∈ (1/k, 1). Therefore, each u
(2)
k

can be smoothly extended to the smaller ball B3
1/k by taking values in S2 and hence by paying a small

amount of extra energy.

Remark 5.1. In dimension n = 2, instead of n = 3, the analogous to sequence {u(2)k } does not converge
to the vortex map u(x) = x/|x| in the strict BV sense, and hence in W 1,1, too. In fact, the gradient of

u
(2)
k in Uk is of the order of cnk

2−n for some absolute constant cn > 0, and hence in case n = 2 we get

|Du(2)k |(B2) =

∫
B2

|∇u(2)k | dx→
∫
B2

|∇u| dx+ c2 > |Du|(B2) ,

as k → ∞. Whence, only L1-convergence (or weak*-BV convergence) of u
(2)
k to u holds, see also [30].
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By the previous construction, denoting for each open set B ⊂ B3

ABV (u,B) := inf
{
lim inf
k→∞

A(uk, B) | {uk} ⊂ C1(B,R3), uk
BV→ u

}
,

clearly ABV (u,B
3) < ∞. Let now B3

r be the open ball centered at the origin and with radius r. Using

the sequence {u(1)k } and a slicing argument, as e.g. in [1, Lemma 5.2], we can find a radius r3 ∈ (0, 1)
such that if r > r3, then

ABV (u,B
3
r ) = A(u,B3

r ) +
4π

3
.

On the other hand, using the sequence {u(2)k } we obtain for any 0 < r ≤ 1 the inequality

ABV (u,B
3
r ) ≤ A(u,B3

r ) + 4π r .

In conclusion, arguing exactly as in [1, Thm. 5.1], it turns out that the localized functional B 7→
ABV (u,B) fails to be subadditive.
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