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Introduction

The optimization of the eigenvalues of the Laplace operator with respect to
the domain is one of the most developed topics in the �eld of the shape op-
timization. If shape optimization problems involving Dirichlet and Neumann
boundary conditions have been widely studied (and partially solved, see for
instance the textbooks [17], [58], [59] and [60]), on the other hand we still
have a great amount of open problems involving the third kind of boundary
conditions, the so-called Robin conditions. The purpose of this thesis is to
investigate some of those open problems and try to solve them.

The starting point of our analysis is the eigenvalue problem for the Robin
Laplacian on a Lipschitz domain Ω, i.e.−∆u = λu in Ω

∂u

∂n
+ βu = 0 on ∂Ω

(where β ∈ R is said boundary parameter and the value of λ clearly depends
on Ω). Its weak formulation in H1(Ω) leads to the variational representation
for the k-th eigenvalue of the Robin-Laplacian on Ω with boundary parameter
β via the usual Courant-Fischer min-max formula (see [34])

λk,β(Ω) = min
S∈Sk

max
u∈S\{0}

∫
Ω

|∇u|2 dx+ β

∫
∂Ω

u2 dHd−1∫
Ω

u2 dx

,

where Sk denotes the family of all subspaces of H1(Ω) with dimension k. This
representation is crucial in our work, since it allows to approach the shape
optimization problems via the direct methods of the Calculus of Variations;
in addition, it allows to study some remarkable properties of the eigenvalues.
The presence of both a boundary and a volume integral at the numerator of
the Rayleigh quotient for λk,β(Ω) is the reason why the approach to Robin
eigenvalues is usually technically di�cult: in general, we have neither a com-
pletely controlled behaviour under rescaling of the domain (above all if the
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boundary parameter is negative, as we will see in Chapter 2), nor monotonic-
ity under set inclusions, in general. These two properties are crucial in solving
classical shape optimization problems; see for instance the main result in [29],
where a general existence result is given under the hypotheses of decreasing
monotonicity under set inclusions, or Chapter 6 (in particular Corollary 6.1.6)
in [17], where functionals involving Dirichlet eigenvalues are analysed. In our
framework, these properties are lacking; for that reason, the shape optimiza-
tion of the Robin eigenvalues turns out to be technically challenging. Indeed,
in general, it is not possible to prove for the Robin eigenvalues a result of shape
optimization just by adapting the proof of its Dirichlet or Neumann counter-
part. For instance, the isoperimetric inequality for the �rst Robin eigenvalue
can not be proved via the same symmetrization argument used in the classi-
cal Faber-Krahn inequality, since the behaviour of the boundary integral in
the Rayleigh quotient is not completely controlled. In view of these di�cul-
ties, many authors have been encouraged to �nd completely new techniques
to approach the shape optimization of the Robin eigenvalues.

As already said, throughout our work we made large use of direct methods
of Calculus of Variations to obtain our existence results. Our main goal has
been to prove the existence of optimal shapes, possibly in a relaxed setting,
obtaining in some cases additional information on the structure of optimal
shapes. We focused mostly on functionals involving also higher Robin eigen-
values (not only the �rst one), then we did not look for Faber-Krahn (or
reversed Faber-Krahn) inequalities even for technical reasons. Indeed, isoperi-
metric inequalities for eigenvalues of higher order are generally harder to be
obtained and rarer in literature. Indeed, up to our knowledge, only for the
second Robin eigenvalue with positive boundary parameter there is a Faber-
Krahn-type inequality, due to James Kennedy, see [64]; for higher eigenvalues
no similar results are available.

The structure of the thesis is the following.
In Chapter 1, we recall some of the basic tools used in the variational

approach to the shape optimization problems; we mainly refer to classic text-
books about the di�erent topics, e.g. [2] for a survey on measure theory and
functions of bounded variation, [60] for some properties of the Hausdor� con-
vergences and of some remarkable classes of open domains, [17] for further
properties of the Hausdor� convergences and for the convergence in the sense
of Mosco of the functional spaces.

In Chapter 2 we refer principally to [23] in order to recall the de�nition
and the variational formulation of the Robin eigenvalues; we point out the
most important properties, their analogies with the best-known Dirichlet or
Neumann eigenvalues and we report some well known Faber-Krahn (or reversed
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Faber-Krahn) inequality for the Robin eigenvalues. We will recall above all
the surprising result of Freitas and Kreijcirik in the case of negative boundary
parameter (see [50]). As we will see in detail, it is, up to our knowledge,
the �rst result in literature of shape optimization of the eigenvalues of the
Laplacian whose solution is not the ball, in general. This surprising fact,
together with the almost complete lack of results for higher eigenvalues (see
[23], Open Problem 4.33), suggested us to look for some existence result for
higher eigenvalues with negative boundary conditions.

This analysis is reported in Chapter 3; here we prove, in di�erent settings,
the existence of optimal shapes maximizing Robin eigenvalues with negative
boundary parameter. Most of results presented are contained in a recent paper
(see [18]), where we also proved some geometric controls of the spectrum that
are even crucial to prove the existence of maximizers. Our work is inspired
by the approach of Bogosel, Bucur and Giacomini for the maximization of the
Steklov eigenvalues [11], where they proved both existence result and geometric
control of the eigenvalues.

In Chapter 4 we present a result of existence and regularity for a shape
optimization problem on the class convex sets. More precisely, we consider
a family of functionals involving the Robin eigenvalues with positive boun-
dary parameter, with a perimeter penalization, and prove that optimal convex
shapes exist and have smooth boundary of class C1. Our main reference is [31],
in which we used a rather intuitive cutting technique to obtain the regularity
of the boundary of optimal convex shapes.

In Chapter 5 we follow two di�erent approaches to minimize λk,β(·) + P (·)
among Lipschitz domains. As usual, we tried to relax the problem in a suitable
functional setting, in particular, inspired by [24], [25], [26] and [27], we chose
the framework of SBV 1/2-functions. The well posedness itself of the problem
has not been trivial and the existence results at the moment are available only
for the principal eigenvalue and under the hypothesis of bounded design re-
gion, that ensures additional compactness; the elimination of such additional
hypothesis and the existence results for higher eigenvalues can be two perspec-
tives of research.

In Chapter 6 we reformulate in the setting of generalized polygons (recalled
from [22]) many of the results of the previous chapters. Here, we obtained a
nice surprise: the cutting technique developed in [31] to obtain the regularity
of the boundary of optimal convex shapes can be transposed on generalized
polygons to obtain a sharp estimate on the number of sides of some optimal
shapes.

For the sake of completeness, in the �rst chapter of the appendix we pre-
sented some (local) optimality conditions that are valid, in case of simple
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eigenvalues, for every optimal shape with su�ciently smooth boundary.
We also studied some transposition of the classical properties of the Robin

Laplacian (selfadjointness, spectral representation, etc...) and of its eigenval-
ues in the non-local setting (more precisely, in the framework of the fractional
Sobolev spaces). We provide some properties of the general Robin linear prob-
lem, we prove that the non-local Robin eigenvalues admit a variational rep-
resentation via a min-max formula and we show some basic properties of the
eigenvalues. We even prove a non-local version (for fractional Sobolev spaces)
of Chenais' uniform extension theorem (see [30]) for classical Sobolev spaces.
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Chapter 1

Some basic tools in shape

optimization

The study of shape optimization problems can �nd its historical origin in Dido's
Problem. Even though lots of the traditional problems came out by �purely ge-
ometric� ideas, this �eld of study has been developed mostly using techniques
of calculus of variation and geometrical analysis. In this introductory chapter,
we are going to recall some important de�nitions and results that will be used
throughout the thesis. We consider as known the very basic notions about
measure theory, real analysis (Lp and Sobolev spaces, absolute continuity and
mutual singularity of measures, etc...), approximate continuity and di�erentia-
bility and functional analysis (dual spaces, weak convergences, etc...). We will
focus only on that classic results and de�nitions that are directly used in our
proofs, mostly if it is worth to emphasize some examples or counterexamples.
Our choice is due on one hand to recall some less known results and, on the
other hand, to remove ambiguities on some de�nitions.

Notation. Let us start �xing some notation.

For x ∈ Rd and and r > 0, Br(x) will denote the ball of radius r centered
in x and, for every E,F ⊂ Rd, we will denote the Euclidean distance between
x and E by dist(x,E) := inf {|x − y| : y ∈ E} and the Euclidean distance
between E and F by dist(E,F ) := inf {|x− y| : x ∈ E, y ∈ F}. We will use
the symbol Sd−1 to denote the unit sphere of Rd.

For every measurable set E ⊆ Rd, we will use the symbols χE for the
characteristic function of E, Ec for its complement and tE for the rescaled
set {tx : x ∈ E} and by |E| its Lebesgue measure. We will denote by B(Rd)

the σ-algebra of Borel sets of Rd. We will denote by Lp(Ω;RN) the space of
RN -valued functions that are p-summable on Ω with respect to the Lebesgue
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measure on Rd and by W k,p(Ω;RN) the Sobolev space of RN -valued functions
that are p-summable on Ω together with their �rst k weak derivatives. For
brevity, we set Hk(Ω;RN) := W k,2(Ω;RN) and we omit RN in all the above
spaces if N = 1. If u is a measurable function, we will denote by Su the set
of approximate discontinuity of u and by Ju its set of jump points, according
to the notion of approximate limit (for details, see Section 3.6 in [2]). For
every Lipschitz function f : Rd → Rk, we will denote by Lip(f) its Lipschitz
constant.

In the �eld of shape optimization, problems are usually set on the class of
open Lipschitz domains. To avoid ambiguities about the meaning of Lipschitz
domain, we recall their de�nition (we will use the approach of [35]).

De�nition 1.0.1 (Lipschitz domain). Let E ⊂ Rd be an open set. We say
that E is a Lipschitz domain if, for every p ∈ ∂E, there exist r > 0 and a
bi-Lipschitz bijection Tp : Br(p)→ B1(0) such that

Tp(∂Ω ∩Br(p)) = {x ∈ B1(0) : xn = 0}

and
Tp(Ω ∩Br(p)) = {x ∈ B1(0) : xn > 0} .

Roughly speaking, a Lipschitz domain E is an open bounded set such that
∂E is locally the graph of a Lipschitz function and E lies locally only at one
side of ∂E. Open sets whose topological boundary is even a �nite union of
Lipschitz curves are not Lipschitz domains. For instance, the set

E :=
{

(x, y) ∈ R2 : xy < 0
}

is not a Lipschitz domain, even if ∂E is a �nite union of Lipschitz curves: for
the point p = (0, 0) ∈ ∂E there is no bi-Lipschitz map Tp satisfying De�nition
1.0.1.

1.1 A short survey on Measure Theory and Ge-

ometric Measure Theory

In the following section we summarize some basic notions of Measure Theory
and Geometric Measure Theory. For further details, see Chapters 1 and 2 in
[2].

A �rst important tool used throughout the thesis is the s-dimensional Haus-
dor� measure. We recall its de�nition and some of the main properties we are
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going to use in the following (for more details see [2], Chapter 2, Section 8).
Throughout the section, we will set

ωs :=
πs/2

Γ(1 + s/2)

(where Γ(t) =
∫ +∞

0
st−1e−s ds is the Euler Γ function); if s ∈ N, ωs is the

Lebesgue measure of the unit ball of Rs.

De�nition 1.1.1 (Hausdor� pre-measure). Let s ≥ 0 and E ⊂ Rd. For every
�xed δ ∈]0,+∞], we de�ne the s-dimensional δ-Hausdor� pre-measure

Hs
δ(E) :=

ωs
2s

inf

{∑
i∈I

[diam(Ei)]
s : diam(Ei) < δ,

}
,

where the in�mum is computed among all �nite or countable covers {Ei}i∈I of
E and with the convention that diam(∅) = 0.

Notice that the map δ 7→ Hs
δ(E) is decreasing in ]0,+∞].

De�nition 1.1.2 (Hausdor� measure). Let s ≥ 0 and E ⊂ Rd. We de�ne
s-dimensional Hausdor� measure of E by

Hs(E) := lim
δ→0+

Hs(E).

Here we summarize some of the main properties of the Hausdor� measures.

Proposition 1.1.3 (main properties of Hausdor� measures). The following
properties hold for Hausdor� measures.

(i) Hs is an outer measure on Rd for every s ≥ 0 and, in particular, it is a
positive measure on B(Rd).

(ii) Hs is invariant under translation and s-homogeneous under homotheties,
i.e.

Hs(E + x) = Hs(E) ∀x ∈ Rd, Hs(λE) = λsHs(E) ∀λ > 0.

(iii) If s > d, Hs(E) = 0 for any E ⊂ Rd.

(iv) If s > s′, then
Hs(E) ≥ 0 ⇒ Hs′(E) = +∞.

(v) If f : Rd → Rd′ is a Lipschitz function, then, for any E ⊂ Rd,

Hs(f(E)) ≤ [Lip(f)]sHs(E).
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De�nition 1.1.4 (Hausdor� dimension). Let E ⊆ Rd. The Hausdor� dimen-
sion of E is given by

H− dim(E) := inf {s > 0 : Hs(E) = 0} .

Remark 1.1.5. In some remarkable cases, the Hausdor� s-dimensional mea-
sure coincides with well known measures and it is explicitly computable.

(i) H0 is the counting measure on Rd.

(ii) For every piecewise regular set E with H−dim(E) = 1 (e.g. a piecewise
regular curve), H1 is the length of E.

(iii) For every piecewise regular set E with H− dim(E) = 2, H2 is the area
of E.

(iv) For every Lebesgue-measurable set E ⊆ Rd, Hd(E) = |E|.

(iii) For every piecewise regular hypersurface E ⊂ Rd, it holds

H− dim(E) = d− 1

and Hd−1(E) is the (d− 1)-dimensional area measure of E.

In the following we will use the term �nite (real or vector valued) measure
to denote a signed measure with �nite total variation (see De�nition 1.4 in
[2]).

De�nition 1.1.6 (Borel and Radon measures on Rd). A positive measure µ
on B(Rd) is called a Borel measure. If µ is �nite on the compact sets, it is
called a positive Radon measure.

More generally, a (real or vector valued) set function µ de�ned on the
relatively compact sets in B(Rd) that is also a (real or vector valued) �nite
measure on B(K) for any compact set K ⊂ Rd is said a Radon measure on Rd;
if, in addition, µ is a (real or vector valued) �nite measure on B(Rd), we call
µ a �nite Radon measure on Rd.

We denote by [Mloc(Rd)]m (respectively [M(Rd)]m) the space of the Rm-
valued Radon (respectively Rm-valued Radon) measures on Rd.

If µ is a Radon measure on Rd and A ⊆ Rd is a µ-measurable set, we
will denote by µbA the restriction of µ to A, i.e. the measure de�ned by
(µbA)(E) := µ(E ∩ A) for every measurable set E.

Remark 1.1.7. The Hausdor� measure Hs is a Borel measure on Rd for every
s ≥ 0, but it is a positive Radon measure on Rd only if s ≥ d.
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Hausdor� measures allow to generalize the classical notion of recti�able
set.

De�nition 1.1.8 (Hs-recti�ability). Let s ∈ [0, d] be an integer and let E ⊆
Rd be Hs-measurable. We say that E is countably Hs-recti�able if there exist
countably many Lipschitz functions fn : Rs → Rd such that

Hs

(
E \

⋃
n∈N

fn(Rs)

)
= 0.

If, in addition, Hs(E) < +∞, we say that E is Hs-recti�able.

Now we give a useful de�nition of weak convergence of measures; we denote
by Cc(Rd) the space of continuous functions with compact support and by
C0(Rd) its completion with respect to the sup-norm ‖ · ‖∞.

De�nition 1.1.9 (weak* convergence of Radon measures). Let (µn)n ⊂ [Mloc(Rd)]m

and µ ∈ [Mloc(Rd)]m; we say that (µn)n locally weakly* converges to µ if

lim
n→+∞

∫
Rd
u dµn =

∫
Rd
u dµ

for every u ∈ Cc(Rd). If (µn)n ⊂ [M(Rd)]m and µ ∈ [M(Rd)]m, we say that
(µn)n weakly* converges to µ if

lim
n→+∞

∫
Rd
u dµn =

∫
Rd
u dµ

for every u ∈ C0(Rd).

We recall some important results about derivation of measures which will
be used in some proofs where a measure theoretical approach is required.

Theorem 1.1.10 (Radon-Nikodym). Let µ be a positive measure and ν a Rm-
valued measure on Rd such that µ is σ-�nite. Then, there exists a unique pair
νa, νs of Rm-valued measures such that νa is absolutely continuous with respect
to µ, νs and µ are mutually singular and ν = νa + νs. In addition, there exists
a unique function f ∈ L1(Rd;Rm) such that νa = fµ.

The function f is called the density of ν with respect to µ and is denoted by
ν/µ or by dν/dµ. In some situations it is useful to write explicitly the density
function; to this aim, we recall the following well known theorem.
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Theorem 1.1.11 (Besicovitch derivation Theorem). Let µ be a positive Radon
measure in an open set Ω ⊆ Rd and ν a Rm-valued Radon measure. Then, for
µ-a.e. x in the support of µ, the limit

f(x) := lim
ρ→0+

ν(Bρ(x))

µ(Bρ(x))

exists in Rm and, moreover, the Radon-Nikodym decomposition ν = νa + νs is
given by

νa = fµ, νs = νbE,

where E is the µ-negligible set

E = (Ω \ supp(µ)) ∪
{
x ∈ supp(µ) : lim

ρ→0+

|ν|(Bρ(x))

µ(Bρ(x))
= +∞

}
.

1.2 A short survey on functions of bounded vari-

ation

In this section, we refer to Chapters 3 (to recall the �rst de�nitions and results
about functions of bounded variation and sets of �nite perimeter) and 4 (for
a short survey on special functions of bounded variation) in [2].

To begin, we recall the de�nition of function of bounded variation (see
De�nition 3.1 in [2]).

De�nition 1.2.1. Let Ω ⊆ Rd be an open set and let u ∈ L1(Ω). We say that
u is a function of bounded variation if Du = (D1u, . . . , Ddu), the distributional
derivative of u, is a �nite Rd-valued Radon measure, i.e. if∫

Ω

u
∂g

∂xi
dx = −

∫
Ω

g dDiu ∀g ∈ C∞c (Ω)

for every i = 1, . . . , d. The vector space of all functions of bounded variation
on Ω is denoted by BV (Ω); it is a normed space, endowed with the BV -norm,
de�ned by

‖u‖BV (Ω) := ‖u‖L1(Ω) + |Du|(Ω).

for any u ∈ BV (Ω).

We recall that the Sobolev space W 1,1(Ω) is contained in BV (Ω) and that,
if u ∈ BV (Ω) and Du = 0, u is constant in any connected component of Ω.

In the following result we give a more precise representation of the Radon-
Nikodym decomposition of the gradient measure Du of u ∈ BV (Ω). Indeed,
according to Radon-Nykodim Theorem, every Radon measure µ on an open
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set Ω can be splitted, into an absolutely continuous part µa and a singular part
µs with respect to Ld; in our case, the measure Du can be splitted into such
two measures Dau and Dsu, but it is interesting to investigate some suitable
splitting of the singular part Dsu. To this aim, we introduce the following
measures

Dju := DsubJu, Dcu := Dsub(Ω \ Su),

called respectively the jump part and the Cantor part of the measure Ju. The
following Theorem gives us a complete decomposition ofDu (for our purposes).

Theorem 1.2.2 (decomposition of the gradient of a BV function). Let u ∈
BV (Ω). Then the distributional derivative Du is decomposable as follows:

Du = Dau+Dju+Dcu,

i.e. Dsu = Dju+Dau; in addition, Dau, Dju and Dcu are mutually singular,
then

|Du| = |Dau|+ |Dju|+ |Dcu|.

Moreover, Dau and Dju can be explicited by

Dau = ∇uLd,

where ∇u is the approximate gradient of u and by

Dju = (u+ − u−)νuHd−1bJu,

where νu is the direction of the jump and u+, u− are the approximate limits
on the two sides of Ju. Finally, Du has the following representation

Du = ∇uLd + (u+ − u−)νuHd−1bJu +Dcu.

Notice that the decomposition Dsu = Dju + Dau is due to the fact that
Du vanishes on the Hd−1-negligible set Su \Ju (see Sections 3.6 and 3.7 in [2]).

Remark 1.2.3. The three parts Dau, Dsu, Dju of the decomposition of Du
have di�erent interpretations. Roughly speaking, Dau is linked with volume
integrals, Dju with (d−1)-dimensional surface integrals and Dcu with �fractal
objects�. This behaviour is even clearer looking at the respective total varia-
tions. Let us consider u ∈ C1

c (Rd). Obviously, u ∈ BV (Rd), and its distribu-
tional derivative coincides with the classical gradient, thenDu = Dau = ∇uLd.
Moreover

|Du|(Rd) = |Dau|(Rd) =

∫
Rd
|∇u| dx.
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Let us consider now the characteristic function u := χB of a ball B ⊂ Rd. It
is easy to verify that Du = Dju = νBHd−1b∂B and that

|Du|(Rd) = |Dju|(Rd) =

∫
∂B

dH = Hd−1(∂B).

Finally, if we consider the well known Cantor-Vitali function u, it belongs
to BV ((0, 1)) and its distributional derivative consists only in its Cantor part
(concentrated on the Cantor middle third set), since u is continuous (Dju = 0)
and piecewise constant (Dau = 0 on any interval where u is constant).

1.2.1 The space SBV

The representation formula introduced at the end of the previous section al-
lows us to de�ne a remarkable subspace of BV . Indeed, the Cantor part is
usually hard to handle and not very frequent to be found in shape optimization
problems; especially in our thesis, we will deal only with surface and volume
energies. According to the ideas roughly presented in Remark 1.2.3, it is con-
venient to consider functions in BV whose Cantor derivative is null. For the
results presented in this section, we refer the reader to Chapter 4 in [2].

De�nition 1.2.4 (space SBV (Ω)). Let u ∈ BV (Ω). We say that u is a special
function of bounded variation if its distributional derivative consists only in
the absolutely continuous part Dau and in the jump part Dju, i.e. if

Du = ∇uLdb(Ω \ Ju) + (u+ − u−)νuHd−1bJu,

namely if Dcu = 0. The set of all special functions of bounded variations is a
vector space denoted by SBV (Ω).

We recall that the space SBV (Ω) is a closed subspace of BV (Ω) with re-
spect to the BV -norm. An very useful (and used!) result in variational prob-
lems involving the SBV -spaces is due to L. Ambrosio and ensures compactness
of suitable sequences in SBV .

Theorem 1.2.5 (compactness and lower semicontinuity). Let Ω ⊂ Rd be open
and bounded and let (uk)k be a sequence in SBV (Ω) such that, for some p ∈
]1,+∞[:

sup
k∈N

{
‖uk‖∞ +

∫
Ω

|∇uk|p dx+Hn−1(Suk)

}
< +∞.

There, there exist a subsequence (ukh)h and a function u ∈ SBV (Ω) such that

ukh → u strongly in L1
loc(Ω),
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∇ukh⇀∇u weakly in Lp(Ω,Rn)

and

Hn−1(Ju) ≤ lim inf
h→+∞

Hn−1(Jukh ).

Moreover, Dukh
∗
⇀ Du in M(Ω;Rd) and the absolutely continuous part and

the jump part converge separately, i.e ∇ukh ⇀ ∇u weakly in L1(Ω;Rd) and
Djukh

∗
⇀ Dju inM(Ω;Rd).

Remark 1.2.6. The previous theorem holds even if you replace the L∞-norm
by the BV -norm (A. Braides, Theorem 2.3 in [14]).

The inequality p > 1 is strict: if you consider p = 1 the theorem does not
hold. Indeed, considering the usual sequence (uk)k ⊂ SBV (0, 1) of piecewise
linear functions converging to the Cantor Vitali function u, they converge in
the sense of Ambrosio's Theorem to u, but u /∈ SBV (0, 1).

1.2.2 Sets of �nite perimeter

Among measurable sets, an important role in our work will be played by sets
of �nite perimeter. We recall the results in Chapter 3, Sections 3 and 4 in [2].

De�nition 1.2.7 (sets of �nite perimeter). Let E ⊆ Rd be measurable and
let Ω ⊆ Rd be open. We de�ne the perimeter of E in Ω as

P (E,Ω) :=

{∫
E

div(ϕ) dx : ϕ ∈ C1
c (Ω;Rd), ‖ϕ‖∞ ≤ 1

}
and we say that E is of �nite perimeter in Ω if P (E,Ω) < +∞. If Ω = Rd we
simply say that E is of �nite perimeter and denote its perimeter by P (E).

Looking at the de�nition of perimeter, it can be easily checked that, if
two measurable sets E and F coincide in Ω up to a Ld-negligible set (i.e. if
|Ω ∩ \(E∆F )| = 0), then P (E,Ω) = P (F,Ω) (see Proposition 3.38 in [2]).

An important notion to generalize the topological boundary of a Lipschitz
domain and that is strictly linked with the perimeter of a measurable set is
the reduced boundary. This allows us to generalize the concept of normal unit
vector and, above all, will make us able to relax shape optimization problems
involving boundary terms, handling reduced boundaries of �nite perimeter sets
in the same way as topological boundaries of Lipschitz domains.

De�nition 1.2.8 (reduced boundary). Let E ⊂ Rd be a measurable set and
let Ω the largest open set such that E is locally of �nite perimeter in Ω.
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The reduced boundary of E, denoted by ∂∗E, is the set of the points x ∈
supp|DχE| ∩ Ω such that the limit

νE(x) := lim
ρ→0+

DχE(Bρ(x))

|DχE(Bρ(x))|

exists in Rd and satis�es |νE(x)| = 1. The function νE : ∂∗E → Sd−1 is called
the generalized inner normal vector to E.

It can be proved that ∂∗E is a Borel set and that νE is a Borel function. We
can also show, via the Besicovitch derivation Theorem, that DχE = νE|DχE|
and that the measure |DχE| is concentrated on ∂∗E. The link among perime-
ter, reduced boundary and topological boundary of smooth sets is given in the
following proposition.

Proposition 1.2.9. Let E ⊂ Rd be a set of �nite perimeter; then, the re-
duced boundary ∂∗E is countably Hd−1-recti�able and |DχE| = Hd−1b∂∗E. In
addition,

P (E,Ω) = |DχE|(Ω) = Hd−1(∂∗E ∩ Ω)

for every open set Ω. If E is a Lipschitz domain, then it is a set of �nite
perimeter, Hd−1(∂E \ ∂∗E) = 0 and P (E) = Hd−1(∂E).

The choice of sets of �nite perimeter is usually the most natural to relax
a variational shape optimization problem. Indeed, under suitable hypotheses,
sequences of sets of �nite perimeters are compact with respect to the conver-
gence in measure and lower semicontinuity of the perimeters is guaranteed.
This good behaviour is often useful to prove the existence of optimal shapes,
at least in a relaxed setting. The following proposition will be frequently used
when dealing with sets of �nite perimeter; for its statement, see Proposition
3.39 in [2]; for the proof, we refer to Proposition 3.23 and Proposition 3.38(b)
in [2].

Proposition 1.2.10 (Compactness of uniformly bounded sequences of sets of
�nite perimeter). Let A ⊂ Rd an open bounded set and let (En)n be a sequence
of subsets of A with �nite perimeter such that

sup
n
P (En, A) < +∞.

Then, there exists E ⊆ A with �nite perimeter in A such that, up to subse-
quences,

χEn → χE

and
P (E,A) ≤ lim inf

n→∞
P (En, A).
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Remark 1.2.11. The previous compactness theorem is often used under the
hypothesis that En ⊂⊂ A, so that we can replace the perimeters in A with the
perimeters in the whole of Rd. This will be the case of many existence results
in the thesis: in many cases our e�ort will be to prove that the sets of any
optimizing sequence are contained in a �xed bounded open set (e.g. a big ball)
and that the perimeters are uniformly bounded. This idea is very recurrent in
shape optimization problems; in that cases, the open bounded set A is often
said a bounded design region.

1.3 Variational representation of the eigenvalues

and other tools of Functional Analysis

The core of this PhD Thesis is the study of some shape problems involving the
eigenvalues of a well known elliptic operator: the Laplace operator with Robin
boundary conditions. The study of this shape optimization spectral problems
has its basis on a good representation of the eigenvalues of such functionals.
Fortunately, via some results of Functional Analysis, we are able to represent
the eigenvalues of an elliptic operator by a variational formula. The de�nitions
and spectral results presented in this section are taken from [56] and [68].1 In
the following, for every linear operator T , we will denote by D(T ) its domain.

De�nition 1.3.1 (closed operator). Let X, Y be two complex Banach spaces
and let T : X → Y be a linear operator. We say that T is closed if its graph

GT := {(u, v) ∈ X × Y |u ∈ D(T ), v = Tu}

is closed in X × Y .

De�nition 1.3.2 (spectrum and resolvent of a Linear operator). Let X be a
complex Banach space and let T : X → X be a linear operator. We de�ne the
resolvent set of T by

ρ(T ) := {λ ∈ C : λI − T is invertible} .

We de�ne the spectrum of T by

σ(T ) := C \ ρ(T ).

1Both references are lecture notes of two courses given at the University of Paris-Sud; an

extended version of [56] has been published as a book, see [57].
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If T is invertible, the operator T−1 is often said resolvent operator of T . Let
us recall that, in view of the previous de�nition, all the possible eigenvalues of
T belong to σ(T ). Now, we introduce a property that is strictly linked with
the variational representation of eigenvalues that we will use throughout the
thesis.

De�nition 1.3.3 (operator with compact resolvent). Let X be a complex
Banach space and let T : X → X be a linear operator. We say that T has
compact resolvent if there exists λ ∈ ρ(T ) such that (λI − T )−1 is a compact
operator.

In the following we will set lots of our problems in the functional spaces
H1(Ω), with Ω a bounded Lipschitz domain or Ω = Rd. The next proposition
(see Corollary 4.10 in [68]) gives us a criterion to obtain the compactness of
the resolvent for closed operators and will be very useful in the setting of
H1-spaces.

Proposition 1.3.4 (criterion for the compact resolvent of a closed operator
on a Banach space). Let X be a Banach space, T : D(T ) ⊆ X → X be a closed
operator and let λ ∈ ρ(T ). Then, the operator (λI − T )−1 is compact if and
only if the embedding DT ↪→ X is compact.

In this section we are going to set the results in Hilbert spaces; to avoid
ambiguities, we will use the symbol 〈·, ·〉H to denote the scalar product in H
and the symbol ‖ · ‖H to denoted the induced norm.

De�nition 1.3.5 (selfadjoint operators). Let H be an Hilbert space and let
A : H → H be a linear operator on H. We say that A is selfadjoint if

〈Au, v〉H = 〈u,Av〉H

for any u, v ∈ H.

We remark that a selfadjoint operator is also a closed operator. It is worth
to emphasize that the selfadjointness is a property depending not only on
the form of the operator but also on the particular Hilbert space where the
operator is de�ned.

Now, we recall some de�nitions concerning the boundedness of linear oper-
ators and bilinear forms. We refer again to [68] (Section 2.2) and [56] (Section
4.1).

De�nition 1.3.6 (bounded, coercive and semibounded forms). A bilinear
form a : H ×H → R is said to be
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• bounded, if there exists C > 0 such that |q(u, v)| ≤ C‖u‖H‖v‖H for
every u, v ∈ H;

• coercive (or elliptic), if there exists C > 0 such that |q(u, u)| ≥ C‖u‖2
H

for every u ∈ H;

• semibounded from below, if there exists C ∈ R such that q(u, u) ≥
C‖u‖2

H for every u ∈ H.

De�nition 1.3.7 (semibounded operator). We say that a selfadjoint operator
A : D(A) ⊂ H → H is semibounded from below if the bilinear form

q(u, v) := 〈Au, v〉H

is semibounded from below.

The next fundamental result is the so called min-max or max-min princi-
ple (also said Poincaré principle or Courant-Fischer formulae) and gives us a
suitable representation for our purposes. We will present the same statement
as in Section 13.4 in [56], combining Theorem 13.4.1 and Remark 13.4.2. To
�nd more details on the ideas leading to the following formulae we refer the
reader to [34].

Theorem 1.3.8 (variational representation formula of the eigenvalues). Let
H an Hilbert space and let A : H → H be a selfadjoint operator, semibounded
from below and with compact resolvent. Then its eigenvalues consist of an
increasing sequence

λ1 ≤ λ2 ≤ . . .→ +∞,

where every eigenvalue is counted with its multiplicity. Moreover, the eigen-
values can be obtained via the min-max formula

λk = min
S∈Sk

max
u∈S\{0}

〈Au, u〉H
‖u‖H

, (1.1)

or the max-min formula

λk = max
S⊥∈Sk−1

min
u∈S\{0}

〈Au, u〉H
‖u‖H

, (1.2)

where Sk (resp. Sk−1) denotes the family of all subspaces of H with dimension
k (resp. k − 1). Finally, the min-max and max-min are attained only at the
corresponding eigenfunctions.

The quantity 〈Au,u〉H‖u‖H
is called Rayleigh quotient.
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Remark 1.3.9. In many spectral shape optimization problems the k-dimensional
subspaces involved in the min-max formula can be considered as subspaces of a
suitable subspace of the maximal domain D(A). Indeed, if A is not selfadjoint
on the whole of D(A), we restrict A in such a way that all the hypotheses of
Proposition 1.3.8 are satis�ed. For instance, as we will see in the next chapter,
we will set in H1(Ω) the min-max formula for the eigenvalues the Robin Lapla-
cian −∆β on a Lipschitz domain Ω: the maximal domain D(−∆β) is a proper
subspace of L2(Ω), but −∆β is selfadjoint only if we are allowed to integrate
by part the expression 〈−∆βu, v〉, namely if we consider u, v ∈ H1(Ω).

Remark 1.3.10 (weak formulation of spectral functionals). Proposition 1.3.8
has a double utility. On one hand, it represents a very good tool to write
explicitly the spectral functional to optimize. On the other hand, it allows us
to relax the functional to minimize (resp. maximize), i.e. to �nd the larger
(resp. smaller) lower (resp. upper) semicontinuos functional that is smaller
(resp. larger) than the given functional. In other words, one can enlarge
the Hilbert space where the operator is de�ned, possibly obtaining a problem
having some optimizers. We will often make use of a sort of �formal� relaxation,
i.e. a weak formulation of the given problem where we will consider a formally
similar functional. Such a functional will be de�ned on a wider class of domains
or on some suitable functional spaces. This will help us if the problem is not
(apparently) solvable directly, possibly concluding that the solution found in
this relaxed framework is in fact a solution to the original problem (or it has a
one-to-one correspondence). It is worth to emphasize that lots of the �relaxed�
functionals we are going to introduce are not proper relaxations of the given
functionals; for many details about a rigorous approach to relaxation see, for
instance, Chapter 3 in [17], where the authors link relaxation with Optimal
Control Problems.

Another important tool in Functional Analysis is the Krein-Rutman The-
orem. In spite of its abstract nature, one of its most remarkable applications
is to prove the simplicity of the principal eigenvalues of the Laplace operator
−∆Ω with suitable boundary conditions on a bounded connected Lipschitz
domain Ω. We report the same statement as in Theorem 1.2.6 in [58].

Theorem 1.3.11 (Krein-Rutman). Let X be a Banach space and C ⊂ X a
closed cone vertexed in 0 such that C̊ 6= ∅ and C∩(−C) = {0}. Let T : X → X

be a compact operator such that T (C \{0}) ⊂ C̊. Then, the greatest eigenvalue
of T is simple and the corresponding eigenvectors are in C̊ ∪ (−C̊).

To prove the above cited simplicity of the �rst eigenvalue, one applies
previous theorem taking as T the resolvent operator of −∆Ω, once it is proved
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that T is compact on a suitable Banach space and that for some cone of
functions C it holds T (C \ {0}) ⊂ C̊ (it is often done via some maximum
principle). Then, since the eigenvalues of T are the reciprocal of the eigenvalues
of −∆Ω, we can conclude that the principal eigenvalue of −∆Ω is simple. A
sketch of that kind of argument, applied to Dirichlet-Laplacian eigenvalues,
can be found in [58], Theorem 1.2.5.; in Chapter 2 we will apply an analogous
argument to the Robin-Laplacian operator on a connected Lipschitz domain.

1.4 Hausdor� convergences

In this section we introduce a very useful notion of distance among closed sets,
the so-called Hausdor� distance, and we will introduce some topologies on
open and closed sets induced by that distance; we refer mostly to Chapter 2 in
[60] and Section 2.4 and 4.6 in [17]. Indeed, the class of sets of �nite perime-
ter enjoys good properties in terms of compactness and lower semicontinuity
under suitable topologies, which are fundamental when one works with direct
methods of calculus of variation. The only disadvantage is that no topological
properties of converging sequences can be a priori ensured for the limit set in
this framework. We can only deduce measure theoretical properties: in general
we are not able to say if a convergent sequence of open (or connected, compact,
etc...) sets of �nite perimeter converges to an open (or connected, compact,
etc...) set. This di�culty may be overcome choosing a priori a suitable class
of sets satisfying some topological property and a compact topology on this
class of sets. The idea is to choose such a compact topology so that also the
functional involved in our minimization problem turns out to be semicontinuos.

1.4.1 Hausdor� distance, H-convergence of compact sets,

Hc-convergence of bounded open sets

De�nition 1.4.1 (Hausdor� topology on closed sets). Let A,B ⊆ Rd be
closed. We de�ne the Hausdor� distance between A and B by

dH(A,B) := max

{
sup
x∈A

dist(x,B), sup
x∈B

dist(x,A)

}
.

The topology induced by this distance is called Hausdor� topology (or simply
H-topology) on closed sets.

This topology turns out to be good for our purposes since, under not so
restrictive hypotheses on the functional, it guarantees compactness and semi-
continuity required to apply direct methods of calculus of variation. Moreover,
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it preserves some topological properties when we consider the limit set of a se-
quence of sets enjoying that property. In the next proposition are summarized
some remarkable properties of the H-convergence presented in Section 2.2.3 of
[60].

Proposition 1.4.2 (Properties of the H-convergence). 1

(i) A decreasing sequence of non-empty compact sets H-converges to its in-
tersection.

(ii) An increasing sequence of non-empty compact sets contained in a compact
B H-converges to the closure of its union.

(iii) If (Kn)n is a sequence of compact sets contained in a compact B and

Kn
H−→ K, then

K =
⋂
n∈N

(⋃
p≥n

Kp

)
=
{
x ∈ B : ∃xnp ∈ Knp , xnp

p→∞−→ x
}

=
{
x ∈ B : ∃xn ∈ Kn, xn

n→∞−→ x
}

(iv) The inclusion is stable for the Hausdor� convergence: if Kn
H→ K, Gn

H→
G and Kn ⊆ Gn for every n ∈ N, then K ⊆ G.

It is worth emphasizing an important compactness result involving the
Hausdor� convergence (see Theorem 2.2.23 in [60]).

Proposition 1.4.3. Let B ⊂ Rd a �xed compact set. Then, the class of the
closed sets contained in B is compact in the Hausdor� topology.

In the following, we will use some corollaries of this result, adding some
topological constraints and showing that the obtained class of sets are still
compact with respect to Hausdor� convergence.

Remark 1.4.4. Let us consider A ⊂ Rd and An ⊂ Rd for every n ∈ N. We
say that An → A uniformly if, for every ε > 0, there exists nε ∈ N such that

A ⊆ An +Bε(0), An ⊆ A+Bε(0) ∀n ≥ nε.

The remarkable fact is that, for closed sets, uniform convergence and Haus-
dor� convergence coincide (see Remark 2.4.2 in [17]); more precisely

dH(A,B) = inf {ε > 0 : A ⊆ B +Bε(0), B ⊆ A+Bε(0)} .
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This is an immediate consequence of the straightforward equivalence

A ⊆ B +Bε(0) ⇔ sup
x∈B

dist(x,A) ≤ ε.

This equivalence will be useful when we will try to get compactness results in
the Hausdor� convergence in some particular classes of domains with topolog-
ical constraints.

In shape optimization problems we often have to work with particular
classes of open sets and we will would like to endow this classes with a suitable
topology recalling the good properties of the Hausdor� topology on closed sets.
The counterpart for open sets of the Hausdor� topology is de�ned below.

De�nition 1.4.5 (Hausdor� topology on open sets). Let D ⊂ Rd be compact
and let A,B ⊂ D be open. We de�ne the Hausdor�-complementary distance
between A and B by

dHc(A,B) := dH(D \ A,D \B).

The topology induced by this distance is calledHausdor�-complementary topol-
ogy (or simply Hc-topology) on open sets.

The previous de�nition is independent of the choice of the �xed compact
�box� D; in view of this, many authors adopt the notation dH(Ac, Bc) instead
of dH(D \ A,D \B).

Now let us state some remarkable properties of the Hc-convergence (see
Section 2.2.3 of [60] for their proofs).

Proposition 1.4.6 (Properties of the Hc-convergence). 1

(i) An increasing sequence of open sets contained in a compact B Hc-converges
to its union.

(ii) A decreasing sequence of open sets Hc-converges to the interior of its
intersection.

(iii) Let (An)n be a sequence of open sets and A an open set such that An
Hc

−→
A. Then, for every x ∈ ∂A, there exists a sequence of points xn ∈ ∂An
such that xn → x.

(iv) The inclusion is stable for the Hc-convergence for open sets: if An
H→ A,

Vn
H→ V and An ⊆ Vn for every n ∈ N, then A ⊆ V .

Similarly to the case of H-topology for compact sets, under reasonable
hypotheses we have a compactness result for open sets in the Hc-topology
(See Corollary 2.2.24 in [60]).
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Proposition 1.4.7. Let D ⊂ Rd a �xed compact set. Then, the class of the
open sets contained in D is compact in the Hausdor�-complementary topology.

Remark 1.4.8. It holds that, if (Ωn)n is a sequence of open sets that Hc-
converges to Ω and if K is a compact contained in Ω, then K ⊂ Ωn for n
su�ciently large (see Proposition 2.2.15 in [60]). This assertion is straightfor-
wardly veri�ed observing that infx∈K dist(x,Ωc) > 0 and that dist(x,Ωc) ≤
dist(x,Ωc

n) +dHc(Ωn,Ω), and so also infx∈K dist(x,Ωc
n) > 0 for n large enough.

This result will be useful to prove the convexity of a Hc-limit set of open
convex sets.

The preservation of topological properties sometimes is not enough to guar-
antee the compactness of an optimizing sequence in a variational problem; in
fact, if we have some constraints on the Lebesgue measure or on the perime-
ter, we would like that the limit sets of an optimizing sequence satis�es the
same constraint. In other words, we require some kind of (semi)continuity of
the Lebesgue measure or of the perimeters with respect the Hausdor� con-
vergences. We will immediately see that the results are not always positive:
this bad behaviour in general can also a�ect the semicontinuity of the shape
functionals in the problem. For the following results and counterexamples, we
refer to Section 2.2.3 in [60].

Remark 1.4.9 (Semicontinuity of the Lebesgue measure). The Lebesgue mea-
sure is lower semicontinuos with respect to the Hc-convergence (see pag. 34 or
Proposition 2.2.21 in [60]), but not continuous, in general. Take, for instance

Ωn :=]0, 1[\
n−1⋃
k=1

{
k

n

}
;

we have Ωn
Hc

−→ ∅, |Ωn| = 1 for every n ∈ N, but |∅| = 0 < lim infn |Ωn| = 1.
On the other hand, the Lebesgue measure is upper semicontinuos for the

H-topology (it is enough to apply the Hc-lower semicontinuity of the Lebesgue
measure to the sets Kc

n and Kc), but it is not lower semicontinuos in general.
Take for instance an enumeration {xn}n of the rational points in [0, 1] and set
Kn := xk : k ≤ n. All this compact sets have null Lebesgue measure, but they
H-converge to K := [0, 1], whose Lebesgue measure is 1.

Remark 1.4.10 (Semicontinuity of the perimeter). In the Hc-complementary
topology, the perimeter is neither upper nor lower semicontinuos, in general.
As a counterexample for the upper semicontinuity, it is enough to take a se-
quence of saw-toothed squares Ωn, with side length 1 and n isosceles right
triangular teeth per side. All their perimeters are equal to 4

√
2, but they
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Hc-converge to the open square Ω with side length 1 and perimeter equal to
4.

To show the lack of lower semicontinuity, we consider in R2 the annulus

Ω = B1((0, 0)) \B1/2((0, 0))

and the sequence of open sets (Ωn)n ⊂ R2 de�ned as follows. For every �xed
n ∈ N, let us consider all the points of the form

xnj,k :=

(
j

n
,
k

n

)
with j, k ∈ Z. Let us denote by xn1 , . . . , x

n
p(n) all the points xnj,z such that

xnj,k ∈ B1/2((0, 0)). Then, we set

Ωn := B1((0, 0)) \

p(n)⋃
i=1

{
xnj
} .

It is easily veri�able that Ωn H
c-converges to Ω. But

P (Ωn) = 2π < 3π = P (Ω)

so we do not have lower semicontinuity of the perimeters, in general.

The previous examples shows that, in general, we only have upper (resp.
lower) semicontinuity of the Lebesgue measure in the H-convergence (resp.
Hc-convergence), but we do not have continuity of the measures nor semicon-
tinuity of the perimeters in general. One can obtain the required properties
only adding some other hypotheses, e.g. on the number of the connected com-
ponents of the topological boundary of the involved sets, as the following result
shows (for a proof, we refer the reader to Theorem 4.4.17 in [3] or Theorem
3.18 in [47]).

Theorem 1.4.11 (Golab). Let (Kn)n be a sequence of compact connected sets
in Rd such that Kn → K in the Hausdor� metric. Then, K is connected and

H1(K) ≤ lim inf
n→+∞

H1(Kn).
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Notice that the previous result involves only the one dimensional Hausdor�
measure, and so it is really useful only when the sets Kn and K are curves
in Rd; in particular, we will use Theorem 1.4.11 when dealing with classes of
open bounded sets in R2 whose boundaries are compact curves of R2.

Once seen that bothH andHc-topology are compact on uniformly bounded
sets (respectively compact and open), a natural question arises: which topo-
logical properties are preserved to the limit set? A �rst answer has already
been given: if all sets are in a big (compact) box, compact sets H-converge
to compact sets, open sets Hc-converge to open sets. We are interested in
knowing if other properties are maintained. For the following subsections we
refer principally to Chapter 2 in [60].

1.4.2 Convexity and Hausdor� convergence

In this subsection we study how convexity and Hausdor� convergence are
linked. We start this with an important remark (see Item 8 in section 2.2.3 of
[60]).

Remark 1.4.12. If we consider a Hc-convergent sequence (Ωn)n of convex
open sets, then also the limit set Ω is convex. In fact, for every x, y ∈ Ω, the
compact set {x, y} is contained in Ω and so, as remarked in 1.4.8, {x, y} ⊂ Ωn

for n su�ciently large. Then, as Ωn is convex, [x, y] ⊂ Ωn, and thanks to the
stability of the Hc-convergence with respect to inclusions, [x, y] ⊂ Ω and so Ω

is convex.
Using the same argument, it can be proved that, if a sequence (Kn)n of

convex compact sets H-converge to K, then K is a convex compact set.

Notice that in the previous remark we assume a priori that the sequences
are convergent, so it is not a compactness theorem. Under the hypotheses of
bounded design region (see Remark 1.2.11) we gain the following compactness
result (combining Theorem 2.2.23 and Corollary 2.2.24 in [60] with the previous
remark).

Theorem 1.4.13. The class of closed (resp. open) convex sets contained in
a bounded design region is compact with respect to the H-convergence (resp
Hc-convergence).

Next proposition shows that, for convex sets, we have continuity for Lebesgue
measure and perimeters, which in general is not true, as seen in the previous
section. For a proof see Proposition 2.4.3 in [17].

Proposition 1.4.14. The following results hold for convex sets:
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(i) If A ⊆ B, then Hd−1(∂A) ≤ Hd−1(∂B);

(ii) If An, A are closed (respectively open) and An → A with respect to the
H-topology (respectively Hc-topology), then χAn → χA in L1; moreover,
if H− dim(A) = H− dim(An), then Hd−1(∂An)→ Hd−1(∂A).

(iii) |A| ≤ ρHd−1(∂A), where ρ is the radius of the biggest ball contained in
A.

We close this short section recalling an important result due to F. John (see
[61]), involving convex sets; this result allows, under some suitable hypotheses,
the compactness of a sequence of convex sets with non-empty interior to a
convex set with non-empty interior.

Theorem 1.4.15 (John's ellipsoid Theorem). Let K ⊂ Rd a compact convex
set with non-empty interior. Then, there exists an ellipsoid E ⊂ Rd centered
in x0 ∈ E such that

E ⊆ K ⊆ x0 + d(E − x0)

(where the ellipsoid x0 + d(E − x0) is obtained by a dilation of E of a factor
of d and with center c).

The ellipsoid E is often said John's ellipsoid and it is the ellipsoid of max-
imal volume contained in K.

1.4.3 Connectedness and Hausdor� convergence

If convexity is preserved by Hausdor� convergences for both open and closed
sets, we do not have the same result for the connectedness (see Item 9 in section
2.2.3 of [60]).

Remark 1.4.16. The Hc-convergence does not preserve the connectedness of
the open sets, unless you are in dimension one (in R convexity and connection
coincide). As counterexamples, we can take in R2

Ω1
n :=]0, 2[×]0, 1[\ {1} ×

[
1

n
, 1

]
or

Ω2
n := B2(0) \

{
e
ikπ
n : 0 ≤ k < n

}
(see [60], pag. 33, �g. 2.2), which converge respectively to

Ω1 :=]0, 1[×]0, 1[∪]1, 2[×]0, 1[

and
Ω2 := B2(0) \ ∂B1(0).
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On the other hand, connection is preserved by the H-convergence of com-
pact sets. In fact, the following proposition holds (see Proposition 2.2.17 in
[60]).

Proposition 1.4.17. Let (Kn)n a sequence of compact connected sets con-
verging to a compact set K. Then K is connected. More generally, if Kn

has at most p ≥ 1 connected components, then K has at most p connected
components.

Remark 1.4.18 (see Remark 2.2.18 in [60]). The previous proposition does
not have a counterpart for the Hc-topology (as seen in the counterexample
1.4.16). The only result that we can gain is an application of Proposition
1.4.17 to the complements (in a �xed compact box) of the open sets of a Hc-

converging sequence. Precisely, if Ωn
Hc

−→ Ω into a �xed compact B, then
#(Ωc ∩B) ≤ lim infn #(Ωc

n ∩B).
In dimension d = 2 this remark allows us to obtain some important topo-

logical information; we remark that if a bounded open set in R2 is disjoint
union of simply connected open sets, then its complement (in the compact B)
is a compact connected set. This allow us to prove that the Hc-limit of unions
of simply connected set is union of simply connected set. Indeed, let Ωn ⊂ R2

be a bounded disjoint union of simply connected open sets for every n ∈ N; if
Ωn

Hc

−→ Ω, then

1 ≤ #(Ωc ∩B) ≤ lim inf
n

#(Ωc
n ∩B) = 1

and so Ω is union of simply connected open sets.

Figure 1.1: The open set Ω is simply connected, its complement Ωc is connected (the

interior small disk and the complement of the bigger disk are connected by the

point of tangency).



Chapter 1. Some basic tools in shape optimization 23

1.4.4 Uniform cone properties and Hausdor� convergence

In this section we focus on a class of opens sets satisfying some uniform regu-
larity conditions. For the proofs of this section and for some other references,
see Section 2.4 in [60].

In particular, we require that the cones have uniform direction. We intro-
duce the following notation. For every y ∈ Rd, ξ unit vector and ε > 0, we
de�ne open cone with vertex y, direction ξ and size ε the open set:

C(y, ξ, ε) :=
{
z ∈ Rd : (z − y) · ξ > cos(ε)|z − y|, 0 < |z − y| < ε

}
.

Notice that such cones have height and opening depending on the same pa-
rameter ε.

De�nition 1.4.19 (ε-cone property). Let Ω ⊂ Rd be open. We say that Ω

has the ε-cone property if, for every x ∈ ∂Ω, there exists a unit vector ξx such
that, for every y ∈ Ω ∩ Bε(x), one has C(y, ξx, ε) ⊂ Ω. We denote by Cε the
family of all sets in Rd satisfying the ε-property.

Figure 1.2: ε-cone property in R2.

It is worth to emphasize that in the previous de�nition the direction of the
cone is uniform for all the cone vertexed in Bε(x) ∩ Ω.

Remark 1.4.20. If Ω ∈ Cε, then Ω
c ∈ Cε.

Indeed, let us consider x ∈ ∂Ω and let us prove that C(y,−ξx, ε) ⊂ Ωc

for every y ∈ Ω
c ∩ Bε(x). Let us �x y ∈ Ω

c ∩ Bε(x), z ∈ C(y,−ξx, ε) and
let us suppose that z ∈ Ω. Since Ω ∈ Cε, then C(z, ξx, ε) ⊂ Ω; moreover, by
construction, y ∈ C(z, ξx, ε) ⊂ Ω and this is in contradiction with y ∈ Ωc.
Then, even Ω

c
satis�es the ε-cone property.
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The following proposition links the ε-cone property with the Lipschitz do-
mains (see Proposition 2.4.7 in [60]).

Proposition 1.4.21. Let Ω ⊂ Rd be an open set such that ∂Ω is bounded.
Then, Ω is a Lipschitz domain if and only if there exists ε > 0 such that
Ω ∈ Cε.

In other words, Lipschitz domains satisfy some ε-cone property and vice
versa.

Remark 1.4.22 (see Remark 2.4.8 in [60]). The sets in Cε are equilipschitz,
i.e. the Lipschitz constants in De�nition 1.0.1 are the same for all sets in Cε
and depend only on ε.

Remark 1.4.23. The fact that the direction of the axes of the cones are locally
uniform is necessary in order to have the equivalence stated in 1.4.21. Indeed,
the open set

E =
{

(x, y) ∈ R2 : xy > 0
}

satisfy a uniform interior and exterior π/2-cone property if we allow the cones
to rotate even locally, but it is not a Lipschitz domain. Then, E /∈ Cε for any
ε: the point (0, 0) does not satisfy the property in De�nition 1.4.19 for any
choice of ε > 0.

Remark 1.4.24. All the previous properties remain valid even if the uniform
height of the cone or the uniform size of the neighbourhood of the boundary
point in De�nition 1.4.19 are chosen not equal to ε, but still uniformly, see
[30]. In other words, if we choose cones of opening ε in De�nition 1.4.19, we
can choose a suitable uniform height h for the cones and a suitable uniform
radius r for the neighbourhoods instead of ε itself. Since this does not modify
the validity of the results above, in the following, once chosen the uniform
opening ε of the cones, we will only speak of �uniform cone property� or �ε-
cone property�, without specifying the uniform height and radius chosen.

Since the natural setting for many shape optimization problems is the fam-
ily of Lipschitz domains of Rd, possibly satisfying some constraints (e.g., the
family of Lipschitz domain with �xed measure or perimeter), we ask ourselves
if the class Cε is compact under some suitable topology. In the next result (see
Proposition 2.4.10 in [60]) we give a positive answer to that question.

Proposition 1.4.25 (compactness and semicontinuity under Hausdor� con-
vergences). For any ε > 0, the class Cε is Hc-compact, i.e., for every equi-
bounded sequence (Ωn)n ⊂ Cε, there exists Ω ∈ Cε such that, up to subsequences,
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Ωn H
c-converges to Ω. Moreover, χΩn → χΩ in L1(Rd) (i.e. the convergence

is also in measure) and, up to the same subsequence above, the compact sets
Ωn and ∂Ωn H-converge respectively to Ω and ∂Ω.

Remark 1.4.26. Let (An)n be a uniformly bounded sequence of open sets of
Rd satisfying a ε-cone property with |An| ≥ m > 0 for every n ∈ N; it is easy
to show that

An
H−→ A ⇔ Ån

Hc

−→ Å.

The implication �⇐� follows by the previous proposition. The converse impli-
cation follows by the de�nition of uniform convergence of sets and its equiv-
alence with the H-topology on compact sets. Let us �x δ > 0. Since An, A
are contained in a compact set B ⊂ Rd, we have that there exists nδ ∈ N such
that, for every n ≥ nδ

An ⊂ A+Bδ, A ⊂ An +Bδ.

Since An, A have regular boundaries, we deduce that

D \ Ån ⊂ (D \ Å) +Bδ, D \ Å ⊂ (D \ Ån) +Bδ.

Then D \ Ån H-converges to D \ Å and so Ån Hc-converges to Å.
In view of the previous equivalence, in lots of problems involving uniformly

regular sets, we will speak only of Hausdor� convergence, specifying if the
involved sets are open or closed only where necessary.

A very important result is the following uniform extension theorem for
Hk-spaces on Cε. It has been proved by D. Chenais in 1975, see [30].

Theorem 1.4.27 (uniform extension theorem for Hk(Ω)). Let ε > 0 and
D ⊂ Rd be a bounded design region. Then, there exist a positive constant C
depending on ε, D and k such that, for every Ω ⊂ D, Ω ∈ Cε, there exists an
extension operator

EΩ : Hk(Ω)→ Hk(Rd)

such that
‖EΩ‖ ≤ C.

Roughly speaking, the previous theorem ensures that Hk-functions of uni-
formly regular sets can be extended to the whole of Rd with the same constant.
This theorem turns out to be very useful in the case ofHc-converging sequences
of uniformly regular open sets. For instance, we will use this result in Theorem
4.1.3, where the uniformly regular sets are bounded convex sets. It is worth
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to emphasize that the result is still valid for fractional Sobolev spaces Hs: we
will give a proof of the result in Theorem B.3.4 in Appendix2.

Even though lots of shape optimization problems are set in the class of
Lipschitz domains (possibly satisfying some constraint), it is not possible to
use the previous compactness result in such a general class. When we study
that problems using direct methods of Calculus of Variations, one of the main
di�culty is to prove that any optimizing sequence of Lipschitz domains con-
verge to a Lipschitz set; one way could be to show that all the set in the
sequence enjoy some ε-cone property, but it is usually hard, a priori. For that
reason, two di�erent approaches are used: either the ε-cone regularity is a
priori inferred to obtain existence in some subclasses of Cε, or the problem is
relaxed in a more general setting (open sets, �nite perimeter sets,...) to obtain
compactness with respect to other topologies.

1.5 Continuity under deformations: Mosco con-

vergence

In this section we will summarize some necessary tools to study the so-called
shape continuity, i.e. the continuity (or, at least, the semicontinuity) of a shape
functional when the admissible domains vary in a class of sets endowed with a
suitable topology; we refer principally to Sections 4.5 and 7.2 in [17]. Indeed, in
many shape optimization problems solved via direct methods of the Calculus of
Variation, the most challenging part in proving existence of optimal shapes is to
prove that there is (semi)continuity of the functional with respect to the chosen
topology, at least for an optimizing sequence (Ωn)n, and that such sequence
is compact with respect to the same topology. This problem, as we will see
in the following chapters, is often linked with the behaviour of the functional
spaces X(·) (e.g. H1(·) or H1

0 (·)) involved in the variational formulation of
the problem. In other words, we need to study how the functional spaces
X(Ωn) vary and whether they converge to X(Ω), whenever Ωn converge to Ω

in some sense. The idea is to deduce that information directly working on
some convergence (in the sense of Hausdor�, in measure, etc.) on the class of
admissible domains.

The key point in this setting is to look for some topology that is weak
enough to guarantee the compactness of optimizing sequences but strong enough
to ensure at least semicontinuity of the shape functional. Moreover, such a
topology has to entail the convergence of the functional spaces described above.

2The result is proved with a slightly di�erent statement.
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A good idea is to look at an important notion of convergence of functionals
introduced by E. De Giorgi and T. Franzoni in [45].

De�nition 1.5.1 (Γ-convergence). Let X be a topological space and let

Fn : X → [0,+∞[

be a functional on X for every n ∈ N. We say that the sequence (Fn)n Γ-
converges to a functional F : X → [0,+∞[ if the following two conditions are
satis�ed:

(i) for every sequence (xn)n ⊂ X converging to some x ∈ X, it holds

F (x) ≤ lim inf
n→+∞

Fn(xn);

(ii) for every x ∈ X, there exists a sequence (xn)n ⊂ X converging to x such
that

F (x) ≥ lim sup
n→+∞

Fn(xn).

In this case, F is said the Γ-limit of Fn.

In terms of minimization, Γ-convergence is very useful. Indeed, it has been
proved that the Γ-limit functional F is lower semicontinuos; moreover, if xn is a
minimizer for Fn, every cluster point of the sequence (xn)n is a minimizer for F
(roughly speaking, as some authors say, �minimizers converge to minimizers�).

Now, our aim is to �nd a convergence of functional spaces that recalls the
good variational properties of the Γ-convergence and that is strongly linked
to some convergence of domains. The following notion of convergence of Ba-
nach spaces is very useful in shape optimization problems. In particular, in
our research work, it will be used to obtain convergence of H1 spaces of Hc-
converging domains. For the following de�nition and further details we refer
the reader to Section 4.5 in [17], where the general case and some applications
to the H1

0 spaces are treated.

De�nition 1.5.2 (convergence in the sense of Mosco). Let X be a Banach
space and (Gn)n a sequence of closed subsets of X. We de�ne weak upper and
strong lower limits in the sense of Kuratowski the spaces

w − lim sup
n→+∞

Gn := {u ∈ X : ∃ (nk)k, ∃ unk ∈ Gnk s.t. unk ⇀ u weakly in X} ,

s− lim inf
n→+∞

Gn := {u ∈ X : ∃ unk ∈ Gnk s.t. un → u strongly in X} .
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We say that Gn converges to the closed subspace G in the sense of Mosco (or
brie�y: Gn Mosco-converges to G) if

w − lim sup
n→+∞

Gn ⊆ G

and
G ⊆ s− lim inf

n→+∞
Gn,

i.e. if
w − lim sup

n→+∞
Gn = G = s− lim inf

n→+∞
Gn.

The convergence in the sense of Mosco is really useful to handle the H1

spaces on moving domains: under suitable topological constraints, Mosco con-
vergence is equivalent to convergence in measure and Hausdor� convergence.
An important result is the following theorem holding in R2 (see [17], Theorem
7.2.1).

Proposition 1.5.3. Let (Ωn)n be a sequence of open domains in R2 such that
#Ωc

n ≤ l such that Ωn H
c-converges to some Ω. Then H1(Ωn) converges in the

sense of Mosco to H1(Ω) if and only if |Ωn| converges to |Ω|. In particular, the
Mosco convergence holds if supn (#Ωn) < +∞ and supnHd−1(∂Ωn) < +∞.

Recalling the results in previous sections linking Hausdor� convergences to
convergence in measure, the previous proposition turns out to be very useful
when dealing with some classes of planar domains where some extra topological
constraint is a priori inferred and guarantees the convergence in measure. For
instance, taking into account a sequence (Ωn)n of disjoint unions of simply
connected open sets of R2 thatHc-converge to an open set Ω, if the convergence
is also in measure, then we also have H1(Ωn) → H1(Ω). If we require some
regularity of the boundary, we have a Mosco convergence result holding in any
dimension d (see Proposition 7.2.7 in [17]).

Proposition 1.5.4. Let Ωn,Ω be open domains in a bounded design region
B ⊂ Rd satisfying a uniform cone condition. If Ωn H

c-converges to Ω, then
H1(Ωn) converges in the sense of Mosco to H1(Ω).

Remark 1.5.5. Let us take Ωn,Ω as in Proposition 1.5.4 and un ∈ H1(Ωn)

such that ‖un‖H1(Ωn) < C, with C > 0 independent on n. Using De�nition
1.5.2, it is possible to prove that there exists u ∈ H1(Ω) such that, up to
subsequences, ũn → ũ strongly in L2(Rd) and ∇̃un → ∇̃u weakly in L2(Rd;Rd),
where we denoted by f̃ the zero extension of the function f outside its domain
(Ωn and Ω for un,∇un and u,∇u, respectively).
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So far, we recalled some important tools used in many shape optimization
problems solved via direct methods of Calculus of Variations. In the next
chapter, we start focusing on the Robin eigenvalues and their properties, the
main topic of the thesis.
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Chapter 2

The Robin Laplacian and its

eigenvalues

In this chapter we summarize the main properties of the eigenvalues of the
Robin Laplacian and we recall some remarkable results in shape optimization
problems involving such eigenvalues. We will principally refer to [23], were one
can �nd most of the results stated about Robin eigenvalues, their proofs (here
omitted or only sketched) and further references to get acquainted about the
topic. In the �rst section, we recall the properties of the operator that allow
us to use the variational formula (1.1) and we highlight some properties of
the eigenfunctions. In Section 2, we focus on some remarkable properties of
the eigenvalues, mostly that properties that are related to the variation of the
domains (monotonicity under inclusions, behaviour under dilatations, etc.).
Finally, in Section 3, we recall some well known results in shape optimization,
introducing the problems studied in the next chapters.

2.1 De�nition of the eigenvalues, variational for-

mula and some properties of the eigenfunc-

tions

De�nition 2.1.1. Let β ∈ R be a �xed real number and Ω ⊂ Rd be a bounded
Lipschitz domain. A number λ ∈ R is an eigenvalue of the Robin problem for
the Laplace operator (or, brie�y, a Robin eigenvalue) with boundary parameter
β if there exists a non-zero function u ∈ H1(Ω) solving the problem−∆u = λu in Ω

∂u

∂n
+ βu = 0 on ∂Ω

(2.1)
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(here n is the outer normal on ∂Ω), i.e., in the weak sense:∫
Ω

∇u · ∇v dx+ β

∫
∂Ω

uv dHd−1 = λ

∫
Ω

uv dx ∀v ∈ H1(Ω).

To handle the Robin eigenvalues in shape optimization problems via di-
rect methods of Calculus of Variations, it is very useful to use a variational
representation based on the bilinear form associated to weak formulation of
problem (2.1) above. To this aim, let us consider the symmetric bilinear form
a : H1(Ω)×H1(Ω)→ R de�ned by

a(u, v) :=

∫
Ω

∇u · ∇v dx+ β

∫
∂Ω

uv dHd−1.

It is the bilinear form associated to problem (2.1) in H1(Ω). Due to the
trace inequality in H1(Ω), the corresponding quadratic form a(u) := a(u, u)

is bounded from above and semibounded from below: there exist two positive
constants c1, c2, depending only on Ω and β, such that, for all u ∈ H1(Ω),

a(u) + c1‖u‖2
L2(Ω) ≥ c2‖u‖2

H1(Ω),

i.e. a is L2(Ω)-elliptic. If we consider the operator on L2(Ω) associated with
a, given by

D(−∆β) =
{
u ∈ L2(Ω) : ∆u ∈ L2(Ω),

∃ ∂u
∂n

(in the sense of distributions) and = −βu in L2(∂Ω)
}
,

−∆βu = −∆u,

it is selfadjoint and bounded from below in H1(Ω) and its resolvent is compact,
as the embedding H1(Ω) ↪→ L2(Ω) is compact. By the spectral theorem for
selfadjoint operators with compact resolvent (Proposition 1.3.8), its eigenvalues
form an increasing sequence

λ1,β ≤ λ2,β ≤ . . .→ +∞

(where each eigenvalue is repeated according to its multiplicity, which is �nite).
Moreover, since −∆β is self-adjoint, for every k ∈ N the k-th eigenvalue, that
we will denote by the symbol λk,β(Ω), is given by the usual min-max formula
(1.1)

λk,β(Ω) = min
S∈Sk

max
u∈S\{0}

〈−∆βu, u〉
‖u‖2

L2(Ω)

= min
S∈Sk

max
u∈S\{0}

a(u)

‖u‖2
L2(Ω)

= min
S∈Sk

max
u∈S\{0}

∫
Ω

|∇u|2 dx+ β

∫
∂Ω

u2 dHd−1∫
Ω

u2 dx

,

(2.2)
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or by the max-min formula (1.2)

λk,β(Ω) = max
S⊥∈Sk−1

min
u∈S\{0}

〈−∆βu, u〉
‖u‖2

L2(Ω)

= max
S⊥∈Sk−1

min
u∈S\{0}

a(u)

‖u‖2
L2(Ω)

= max
S⊥∈Sk

min
u∈S\{0}

∫
Ω

|∇u|2 dx+ β

∫
∂Ω

u2 dHd−1∫
Ω

u2 dx

,

(2.3)

where Sk (resp.Sk−1) denotes the family of all subspaces of H1(Ω) with dimen-
sion k (resp. k− 1). Notice that λk,β(Ω) is achieved only at the corresponding
eigenfunctions. For technical simplicity, throughout the thesis we will always
use the min-max formula (2.2) to handle λk,β(Ω). It is worth to emphasize
that Problem (2.1) (and then the eigenvalues) are invariant under rotations
and translations of the set Ω.

Remark 2.1.2 (regularity of eigenfunctions, see Proposition 4.1 in [23]). Let
us observe that, as the eigenfunctions solve the Helmholtz equation −∆u = λu

in Ω, then they are analytic in Ω; moreover, the eigenfunctions are continuous
on the whole of Ω. To prove that assertion in the case of positive boundary
parameter β ≥ 0 we refer to Corollary 5.5 in [36], where it has been proved
that every eigenfunction ψ is in L∞(Ω), and to Corollary 2.9 in [71], where
it is proved that weak solutions of the inhomogeneous Robin problem are
continuous on Ω. An alternative proof of this fact is given in Lemma 2.1 in [19],
where it is proved that every eigenfunction ψ of a more general problem belongs
to C(Ω)∩C1(Ω). The case of negative boundary parameter is a particular case
of Corollary 4.2 in [38], where it has been proved that eigenfunctions are in
C(Ω) ∩ C∞(Ω).

As the eigenfunctions are continuous on Ω, we ask ourselves if it is possible
to know some a priori estimates on the maximal and minimal value, or at
least some information on the sign of the eigenfunctions. We will see in the
following chapters that above all the second request is technically important in
some problems involving particular classes of Lipschitz domains. Even if the
previous two request are not solvable, in general, it is worth to emphasize a
very useful result in that direction. It provides a strictly positive lower bound
for an eigenfunction for the �rst Robin eigenvalue of a connected Lipschitz
domain when the boundary parameter β is positive. A proof of this result is
contained in [6], Theorem 6.11(j), where the authors use a technique based on
C0-semigroups.
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Proposition 2.1.3 (Strictly positive �rst eigenfunctions). Let Ω be a con-
nected Lipschitz domain and let β > 0. Then there exist α > 0 and a �rst
Robin eigenfunction u ∈ C(Ω) such that u ≥ α.

If we consider a Lipschitz domain consisting in more than one connected
component, the previous result holds for the restriction of u on each of the
connected components where u is not identically zero.

2.2 Properties of the eigenvalues

In this section we will summarize some remarkable properties of λk,β(Ω), refer-
ring mainly to Sections 4.2, 4.3 and 4.4 in [23]. We will emphasize the analogies
and the di�erences between the Robin-Laplacian eigenvalues and the eigenval-
ues of the Laplacian with other well known boundary conditions (e.g. Dirichlet
or Neumann). It will be highlighted that some good properties, for instance
non-negativity or monotonicity, cannot be a priori inferred, unlike it happens
for other problems.

The technical interest in studying the Robin problems is that, in lots of
cases, the presence of the boundary term in the variational representation
(2.2) does not allow to simplify some arguments in the proofs or to remove
the dependence of some estimates on the boundary parameter β (or other
parameters of the problem). In view of these peculiarities, authors looked
(and still look!) for approaches that are di�erent from the standard ideas
(used mostly in Dirichlet or Neumann problems).

In the following we will use the notation R(u,Ω, β) to denote the Rayleigh
quotient in (2.2) and (2.3). If one or two variables are omitted, it means that
they are a priori �xed. Moreover, we will denote by λk(Ω), µk(Ω) and σk(Ω)

respectively the k-th Dirichlet eigenvalue, the k-th Neumann eigenvalue and
the k-th Steklov eigenvalue for the Laplacian.

To begin, we summarize some properties of the map β 7→ λk,β(Ω).

Remark 2.2.1 (dependence the boundary parameter). Let us �x a bounded
Lipschitz domain Ω ⊆ Rd and a function u ∈ H1(Ω), u 6= 0; then, the function

β 7→ R(u,Ω, β)

is increasing in R. Consequently, passing to the min-max formula (2.2), even
the function

β 7→ λk,β(Ω)

is increasing in R. More precisely, it is a piecewise analytic function of β
(the points of non analyticity given by the intersections of the eigencurves
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when λβ,k(Ω) is not simple); if λβ,k(Ω) is simple, its derivative is given by the
formula

d

dβ
λk,β(Ω) =

∫
∂Ω
ψ2
k dσ∫

Ω
ψ2
k dx

,

where ψk is an eigenfunction for λβ,k (a proof of this fact is given in [4] for
β > 0, but the poof holds also for β ≤ 0). In particular, in β = 0, for the �rst
eigenvalue it holds

d

dβ
λ1,β(Ω)

∣∣∣∣
β=0

=
Hd−1(∂Ω)

|Ω|
(2.4)

(see, for instance, [52],[54] and [66]). The asymptotic behaviour of the map is
described by the following equalities (see [23], resp. Prop. 4.5 and Prop. 4.8):

lim
β→+∞

λβ,k(Ω) = sup {λβ,k(Ω) : β ∈ R} = λk(Ω),

lim
β→−∞

λβ,k(Ω) = −∞.

Moreover, the map β 7→ R(u,Ω, β) is linear in β, then the function β 7→
λ1,β(Ω), as in�mum of linear functions, is concave.

Remark 2.2.2 (link with Dirichlet, Neumann and Steklov eigenvalues). Let
us observe that µk(Ω) = λk,0(Ω), i.e., if β = 0, the Robin eigenvalue coincide
with the k-th Neumann eigenvalue. Moreover, if we replace H1(Ω) by the
smaller space H1

0 (Ω) in (2.2), we obtain λk,β(Ω) ≤ λk(Ω) for every β ∈ R.
Then, for every β > 0, it holds

µk(Ω) ≤ λk,β(Ω) ≤ λk(Ω),

where the lower estimate is a consequence of the increasing monotonicity of the
map β 7→ λk,β(Ω). Notice that the upper estimate could be even found heuris-
tically letting β go to +∞ in (2.1) and using again the fact that β 7→ λk,β(Ω)

is increasing (see also the asymptotic behaviour of λk,β(Ω) at the bottom of
Remark 2.2.1).

Finally, if β = −σk(Ω) < 0, then λk,β(Ω) = 0.

Before studying the positivity of the Robin eigenvalues, we recall that
Dirichlet eigenvalues λk(Ω) and Neumann eigenvalues µk(Ω) are non-negative
for every possible choice of the Lipschitz domain Ω. In particular, Dirichlet
eigenvalues are all strictly positive, Neumann eigenvalues are strictly positive
if k ≥ N + 1, where #Ω (the number of connected components of Ω) equals
N . We ask ourselves if some information on the sign of the Robin eigenvalues
can be found.
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Remark 2.2.3 (sign of the Robin eigenvalues). If β ≥ 0, it is clear that every
eigenvalue of every bounded, Lipschitz, connected, domain is non negative.
Let us focus on the case of β < 0. By (2.2), for the �rst eigenvalue we have
that

λ1,β(Ω) = min
u∈H1(Ω)\{0}

∫
Ω

|∇u|2 dx+ β

∫
∂Ω

u2 dHd−1∫
Ω

u2 dx

.

If we consider a constant non-zero function, for instance χΩ ∈ H1(Ω), we have

λ1,β(Ω) ≤ β
Hd−1(∂Ω)

|Ω|
< 0. (2.5)

In the same way, if we take a Lipschitz domain Ω consisting at least in k ≥ 1

connected components Ω1, . . . ,Ωk, we can consider as a test space for the
computation of λk,β(Ω) the k-dimensional subspace V := span {χΩ1 , . . . , χΩk}
and obtain again

λk,β(Ω) ≤ β
Hd−1(∂Ω)

|Ω|
< 0.1

By the previous estimates we deduce that we can not say if λk,β(Ω) is non-
negative, in general, when the boundary parameter is negative. It is obvious
that, for every �xed Lipschitz domain Ω and boundary parameter, there exists
a maximal order k ∈ N such that we have λj,β(Ω) ≤ 0 for every j ≤ k and
λj,β(Ω) ≥ 0 for every j ≥ k. In the same way, �xed k ∈ N and the domain
Ω, letting β vary in R−, in view of the increasing monotonicity of the map
β 7→ λk,β(Ω), we obtain that λk,β(Ω) ≥ 0 if and only if −σk(Ω) ≤ β ≤ 0 and
the equality holds if and only if β = −σk(Ω).

Once we studied some information about the sign of the eigenvalues, we are
interested in understanding some information about simplicity of eigenvalues.
An important tool in that direction is the Krein-Rutman Theorem 1.3.11.

Remark 2.2.4 (simplicity of the �rst eigenvalue). If Ω is connected, then the
�rst eigenvalue is simple: this is a consequence of the Krein-Rutman Theorem
1.3.11, applied taking as T the resolvent operator of −∆β on Ω, C the closed
cone C :=

{
u ∈ C(Ω) : u ≥ 0

}
and the condition T (C \ {0}) ⊂ C̊ satis�ed

in view of the strong maximum principle. Passing to the reciprocal of the
eigenvalues of T , i.e. to the eigenvalues of −∆β, we conclude that λ1,β(Ω) is
simple. We can highlight that simplicity of the �rst eigenvalue occurs only if
Ω is connected. If Ω has k > 1 connected components, say Ω1, . . . ,Ωk, one

1A sharper estimate will be presented in Chapter 3.
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can consider an eigenfunction u ∈ H1(Ω) for λ1,β(Ω) and, for every j ≤ k, the
j-dimensional subspace

Vj := span
{
uχΩ1 , uχΩ2 , . . . , uχΩj−1

, uχΩj∪...∪Ωk

}
⊂ H1(Ω)

as a test space to compute λj,β(Ω) via the min-max formula (2.2). Then, we
easily obtain

λ1,β(Ω) = . . . = λk,β(Ω).

Let us emphasize another di�erence of Robin eigenvalues with Dirichlet
and Neumann eigenvalues. Let Ω ⊂ Rd be a Lipschitz domain; let us �x t ≥ 0

and consider the set tΩ := {tx : x ∈ Ω}. It is well known that, for every k ≥ 1,
Dirichlet eigenvalue λk and Neumann eigenvalue µk rescale as follows:

λk(tΩ) =
1

t2
λk(Ω), µk(tΩ) =

1

t2
µk(Ω).

How do Robin eigenvalues rescale?

Remark 2.2.5 (scaling property and behaviour under dilations). To perform
the rescaling of the Robin eigenvalues, we consider the standard change of
variables

tΩ 3 x 7→ x′ := x/t ∈ Ω.

Hence, for every u ∈ H1(tΩ), we obtain

R (u(·), tΩ, β) =

∫
tΩ

|∇u(x)|2 dx+ β

∫
∂(tΩ)

u2(x) dHd−1(x)∫
tΩ

u2(x) dx

=

td−2

∫
Ω

|∇u(tx′)|2 dx′ + td−1β

∫
∂Ω

u2(tx′) dHd−1(x′)

td
∫

Ω

u2(tx′) dx′

=
1

t2
R (u (t ·) ,Ω, tβ) .

Then, apply the min-max formula (2.2) and observe that all the functions of
H1(Ω) can be expressed as u (tx), where u ∈ H1(tΩ) and x ∈ Ω; even the vice
versa holds. Then, the previous equality leads, for every k ∈ N and for every
t > 0, to the following scaling formula

λk,β(tΩ) =
1

t2
λk,tβ(Ω), (2.6)
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holding for every real value of the boundary parameter β. In particular, if
β ≥ 0 and t > 1, we obtain

R (u(·), tΩ, β) =

td−2

∫
Ω

|∇u(tx′)|2 dx′ + td−1β

∫
∂Ω

u2(tx′) dHd−1(x′)

td
∫

Ω

u2(tx′) dx′

≤
t−2

∫
Ω

|∇u(tx′)|2 dx′ + t−1β

∫
∂Ω

u2(tx′) dHd−1(x′)∫
Ω

u2(tx′) dx′

≤

∫
Ω

|∇u(tx′)|2 dx′ + β

∫
∂Ω

u2(tx′) dHd−1(x′)∫
Ω

u2(tx′) dx′

= R (u (t ·) ,Ω, β) .

Passing to the min-max formula (2.2), we obtain the inequality

λk,β(tΩ) ≤ λk,β(Ω), (2.7)

i.e. the Robin eigenvalues with positive boundary parameter are monotonically
decreasing under dilatations.

To conclude this remark, we emphasize that we do not have any scale invari-
ance property in general (di�erently from Dirichlet or Neumann eigenvalues)
nor any rescaling of the eigenvalues if we let t vary, since also the boundary pa-
rameter is rescaled (see (2.6)). Moreover, the monotonicity under dilatations
(2.7) holds only for eigenvalues with positive boundary parameter; no general
results are known in the case of negative boundary parameter.

Let us recall that, for Dirichlet eigenvalues, it holds λk(Ω1) ≤ λk(Ω2) if Ω2 ⊆
Ω1, but for Neumann eigenvalues there is no monotonicity under inclusions, in
general (for some example see Section 1.3.2 in [58]). In Remark 2.2.5 there is a
result of decreasing monotonicity under inclusions; is there any general result
in that direction? The answer is negative; some counterexamples for the �rst
eigenvalue are presented in [69], for both positive and negative β. If one takes
a disk D ⊂ R2 and a set T ⊂ R2 obtained by the disk D and the union of
�tentacles� (i.e. rapidly oscillating smooth boundary, see �gure below), it holds
D ⊂ T and, for a suitable choice of the parameters describing the boundary,
one has λ1,β(D) ≤ λ1,β(T ) for β > 0 (see [39]).

On the other hand, ifD1 andD2 are concentric disks withD1 ⊂ D2, it holds
λ1,β(D1) ≥ λ1,β(D2) in view of the monotonicity under dilatations. Then, no
general results of monotonicity under inclusions can be stated for β > 0.
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In an analogous way, for β < 0, taking the same sets D ⊂ T above, one
can choose the parameters in such a way that one has λ1,β(D) ≥ λ1,β(T ).
On the contrary, if D1 and D2 are concentric disk with D1 ⊂ D2, it holds
λ1,β(D1) ≤ λ1,β(D2) (see, e.g., Theorem 1 or Corollary 4 in [52]). Then, also
for β < 0, there is no monotonicity under inclusions, in general.

Both previous examples are based on the fact that a rapid oscillation of
the boundary, in general, causes the eigenvalues to increase if β > 0 and to
decrease if β < 0 (in view of the large increase of the term

∫
∂Ω
u2 dHd−1, see

[39]).
We ask ourselves if there exist some result of monotonicity under inclusion,

holding at least for some classes of sets or for some particular value of the
boundary parameter. Next result is one of the most general ones involving
domain monotonicity for the principal Robin eigenvalue (see [52], Theorem 1).
From now on, in this section, we will always consider the dimension d ≥ 2.

Theorem 2.2.6. Let B ⊂ Rd a ball and let Ω ⊂ Rd be a Lipschitz domain
contained in B. Then, for every β > 0, we have

λ1,β(B) ≤ λ1,β(Ω)

and, for every β < 0,
λ1,β(Ω) ≤ λ1,β(B).

We ask ourselves if the previous result holds also for higher eigenvalues.
The answer, in general, is negative, as we can see by the following proposition
(see [23], Proposition 4.2).

Theorem 2.2.7. Let k ≥ 2 and let Ω ⊂ Rd be a bounded Lipschitz domain
with at most k connected components. Then, for every ball B ⊂ Rd, there
exists β > 0 such that

λk,β(B) ≥ λk,β(Ω).

In particular, for any ball B containing Ω, there exists β > 0 such that the
previous inequality is satis�ed.
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2.3 Isoperimetric inequalities

In this section we summarize some of the most important isoperimetric re-
sults concerning the Robin eigenvalues. We �rst recall two of the best-known
isoperimetric inequalities for spectral problems of the Laplace operator (see
[17] for a complete discussion):

• Faber-Krahn inequality for the �rst Dirichlet eigenvalue: λ1(B) ≤ λ1(Ω),
i.e. among smooth sets of prescribed measure, the ball is the only mini-
mizer of λ1;

• Szëgo-Weinberger inequality for the second Neumann eigenvalue: µ2(B) ≥
µ2(Ω), i.e. among smooth sets of prescribed measure, the ball is the only
maximizer of µ2.

Notice that for the Dirichlet eigenvalues one deals with a minimization problem
and for the Neumann eigenvalues, on the contrary, one deals with a maximiza-
tion problem. Also for the Robin problem we have two possible behaviours,
depending on the sign of β; for that reason we split the discussion in two parts.

2.3.1 The case of positive boundary parameter

When β > 0, Robin eigenvalues are bounded from below (by zero), then it is
reasonable to loon for minimizers of λ1,β among sets of prescribed measure.
The �rst important result in that direction is the Faber-Krahn inequality for
λ1,β. It is due to Bossel and Daners; a prove was given in [13] for smooth
domains in two dimensions and, in higher dimension, in [37].

Theorem 2.3.1 (Bossel-Daners). Let Ω ⊂ Rd be a bounded Lipschitz domain
and let B ⊂ Rd be a ball such that |B| = |Ω|. Then, for any β > 0,

λ1,β(B) ≤ λ1,β(Ω) (2.8)

and the equality holds if and only if Ω is a ball.

In 2010 it has been proved by Bucur and Giacomini that the previous
result remains valid in the class of measurable sets of prescribed measure m
(see [24]); more precisely, de�ning the eigenvalues in a weaker sense involving
SBV -functions, they proved that the principal eigenvalue is still minimized
by the ball of measure m (more precisely, by the zero extension of the �rst
eigenfunction of a ball of measure m).
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Theorem 2.3.2 (Bucur-Giacomini). Let m > 0 be given and let u : Rd → R,
u ∈ SBV (Rd) ∩ L2(Rd). Assume that | {u 6= 0} | = m. Then, if B is the ball
of measure m, it holds∫

Rd
|∇u|2 dx+ β

∫
Ju

[
(u+)2 + (u−)2

]
dHd−1 ≥ λ1,β(B)

∫
Rd
u2 dx.

The equality holds if and only if u is the �rst Robin eigenfunction of a ball of
measure m, extended by zero outside the ball.

This variational formulation suggested to the same authors a free disconti-
nuity approach to prove the existence of minimizers for higher eigenvalues with
measure constraint (see [27]). The techniques and the tools used to obtain that
result are reprise in Chapter 5, where we replace the measure constraint with
the penalization of the perimeter. For that reason, we refer to Chapter 5 for
the weak formulation of the functional and for a short survey on the existence
results in the setting.

In the following, when referring to Theorem 2.3.1 or Theorem 2.3.2, we
will often write �Faber-Krahn inequality�, in view of the analogous result in
the Dirichlet case.

Remark 2.3.3 (global estimates on λ1,β(Br)). It is worth to highlight the
following estimates on the �rst eigenvalue on a ball of radius r (see e.g. [65]);
for every β > 0 it holds

β

4r(1 + βr)
≤ λ1,β(Br) ≤

Cdβ

r(1 + βr)
, (2.9)

where Cd > 0 is a dimensional constant. This implies that λ1,β(Br) is in�nites-
imal as the radius r explodes and explodes as the radius r tends to zero. The
same estimates hold replacing Br by a bounded convex domain Ω and r by the
inradius rΩ of Ω.

For higher eigenvalues, some results go in the same direction of the Dirichlet
case. In the following theorem is proved that λ2,β is minimized by the disjoint
union of two equal balls (for a proof we refer to [64] and [63]).

Theorem 2.3.4 (Kennedy). Let Ω ⊂ Rd be a bounded Lipschitz domain and
let B2 ⊂ Rd be any disjoint union of two equal balls each of volume |Ω|/2.
Then, for any β > 0,

λ2,β(B2) < λ2,β(Ω) (2.10)

and the equality holds if and only if Ω is a disjoint union of two equal balls.
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For higher eigenvalues, the situation is more involved, due to the di�erent
behavior of the eigenvalues as β > 0 becomes larger (λk,β(Ω) is close to its
Dirichlet counterpart λk(Ω)) and as β > 0 becomes smaller (λk,β(Ω) is close to
its Neumann counterpart µk(Ω)), see Remark 2.2.2. Some results depending
on the value of β are expected, and the following theorem, proved in [64], goes
in that direction.

Theorem 2.3.5 (Kennedy). Let Ω ⊂ Rd be a bounded Lipschitz domain and
let Bk ⊂ Rd be any disjoint union of k equal balls each of volume |Ω|/k. Then,
there exists β0(Ω) > 0 such that

λk,β(Bk) < λk,β(Ω) (2.11)

for every β ∈ [0, β0(Ω)) and the equality holds if and only if Ω is a disjoint
union of k equal balls.

Notice that the threshold β0(Ω) depends on the set Ω; it would be inter-
esting to remove that dependence, proving that the threshold β0 in Theorem
2.3.5 depends only on k, on the �xed measure m > 0 of the admissible domains
and on the dimension d.

2.3.2 The case of negative boundary parameter: the con-

jecture of Bareket and the result of Freitas and

Kreijcirik

In the following section we summarize some well known facts about optimal
shapes in the case of negative boundary parameter. We start noticing that
for β < 0, the principal Robin eigenvalues are bounded from above but un-
bounded from below. Indeed, it is possible to consider a sequence (Ωn)n of
Lipschitz domains having the same measure m and such that Hd−1(∂Ωn) posi-
tively diverges (e.g., Lipschitz domains having rapidly oscillating boundaries).
Then, by (2.5), we have λ1,β(Ωn) → −∞ and we conclude that λ1,β cannot
have minimizers among sets of given measure. This behaviour suggests to look
for maximizers of λ1,β in suitable classes of admissible sets.

Let us recall the longstanding Conjecture of Bareket (1977, see [9]):

Let Ω ⊂ Rd be a bounded and su�ciently smooth domain and denote by B
a ball of Rd with |B| = |Ω|. Then, for every β < 0, λ1,β(Ω) ≤ λ1,β(B).2

2This version of the statement is due to F. Brock and D. Daners, see [15]. The original

conjecture of M. Bareket was stated in dimension 2.
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In other words, M. Bareket conjectured that a reversed Faber-Krahn inequal-
ities holds for any negative value of the boundary parameter. For many years
the conjecture has been supported. Indeed, recalling the derivation formula
of the principal eigenvalue with respect to β in zero, see (2.4), one can notice
that the derivative attains its smallest value on the ball B, among Lipschitz
domains of measure m. Moreover, since

λ1,0(Ω) = µ1(Ω) = 0 = µ1(B) = λ1,0(B),

in view of the smoothness of the eigencurves, this yields that the inequality
conjectured by Bareket holds for every β in a small neighbourhood of 0, a
priori depending on Ω:

λ1,β(Ω) ≤ λ1,β(B) ∀β ∈ [β0(Ω), 0]. (2.12)

Further evidences of the conjecture are provided by Bareket herself in [9]. More
recently, in 2015, V. Ferone, C. Nitsch and C. Trombetti proved in[48] the local
maximality of the ball in any space dimension, a result that seemed to support
Bareket's conjecture.

It was thus surprising when, again in 2015, P. Freitas and D. Kreijcirik
disproved the general validity of the conjecture in [50]. More precisely they
proved that the ball is not a maximizer among sets of given measure, in general,
even in R2. They showed that there exists a spherical shell of the same measure
of the ball whose principal eigenvalue is strictly larger than λ1,β(B) for large
values of β (depending on the shell). The result is the following (for a proof
see the Theorem 1 in [50] or Theorem 4.31 in [23]).

Theorem 2.3.6. Let Br ⊂ Rd be a ball of radius r > 0. Then, there exist a
spherical shell

Ar1,r2 :=
{
x ∈ Rd : r1 < |x| < r2

}
,

with the same volume as Br, such that

λ1,β(Br) < λ1,β(Ar1,r2)

for every su�ciently large negative value of β.

The previous theorem is very important in literature, since it is the �rst
well known result of optimization of the principal eigenvalue of the Laplace
operator where the optimizer is not a ball, in general. The proof is based on
an asymptotic expansion of λ1,β(Br) and λ1,β(Ar1,r2) as β → −∞ and on a
comparison of the expansions. More precisely, one has (see Theorem 3 in [50])

λ1,β(Br) = −β2 +
d− 1

r
β + o(β),
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λ1,β(Ar1,r2) = −β2 +
d− 1

r2

β + o(β),

as β → −∞; subtracting side by side we have that, for large negative values
of β, the di�erence λ1,β(Br)− λ1,β(Ar1,r2) has to be negative.

On the other hand, for smooth domains in the plane, a reverse Faber-Krahn
inequality holds for small negative values of β (see Theorem 2 in [50]).

Theorem 2.3.7. Let m > 0 and let Bm ⊂ R2 the disk of measure m. Then,
there exist a negative constant β0 depending only on m such that

λ1,β(Ω) ≤ λ1,β(Bm)

for every β ∈ [β0, 0] and every Ω of measure m with C2 boundary.

In other words, the estimate in the previous theorem improves (2.12) in
the plane, removing the dependence of b0 on Ω and then making the estimate
uniform.

In addition to the previous result, several aspects of the problem to max-
imize λ1,β have been investigated by Antunes, Freitas and Krejcirik in an in-
teresting work of 2017 (see [5]). One of the most remarkable ones is that the
ball maximizes λ1,β among smooth sets of �xed perimeter (see Theorem 2 in
[5]).

Theorem 2.3.8. For every β ≤ 0 and for every bounded domain Ω ⊂ R2 with
C2 boundary, we have

λ1,β(Ω) ≤ λ1,β(B),

where B is a disk having the same perimeter as Ω.

For higher eigenvalues, there are very few results; some of those are based
again on the asymptotic expansion of the eigenvalues of balls and spherical
shells (see Section 4.5.2, Theorem 4.21 and the following Proposition 4.42 in
[23]).

Proposition 2.3.9 ([23], Proposition 4.42). Let k ≥ 1 and let B ⊂ Rd a ball.
There exist a spherical shell

Ar1,r2 :=
{
x ∈ Rd : r1 < |x| < r2

}
,

with the same volume as B and a constant β0(k) < 0 such that

λk,β(B) < λk,β(Ar1,r2)

for β < β0(k).
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We can notice that a general existence result for maximizers of λk,β for any
k ∈ N and β < 0 has been an open problem for some years (see [23], Open
Problem 4.33). In the next chapter we give some answers to that question, at
least in a relaxed setting or inferring some extra topological information. More
precisely, we will prove existence of maximizers for λk,β among measurable
sets with either �xed measure or perimeter and we will study also particular
cases, when we restrict ourselves to simply connected sets of R2 or to domains
satisfying some geometric constraint.
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Chapter 3

Shape optimization problems for

the k-th eigenvalue of the Robin

Laplacian with negative boundary

parameter

3.1 Introduction

In this chapter it will be given a �rst answer to the question set at the end
of Chapter 2: we will prove that, for every β < 0, maximizers for λk,β exist
among suitable classes of measurable sets of given volume (or given perimeter,
or satisfying some topological constraints). An approach via direct methods
of Calculus of Variations to this problem is new, up to our knowledge, even if
some important results have been found, above all for the principal eigenvalue.
As seen in Chapter 2, M. Bareket conjectured in 1977 that for k = 1 the ball
maximizes λ1,β. In 2015, Freitas and Krejcirik proved in [50] that even in R2

the solution is, in general, not the disc. Precisely, if the boundary parameter
β is larger than a �xed threshold β1 (depending on the area m), then the
�rst eigenvalue of a suitably chosen annulus is strictly greater than the same
eigenvalue computed for the disk of the same measure. On the opposite sense,
if β is smaller than another threshold β2, then the ball is the only maximizer.

We are interested in studying the following problem

max
{
F (λ1,β(Ω), . . . , λk,β(Ω)) : Ω ⊂ Rd bounded and Lipschitz, |Ω| = m

}
,

(3.1)
where F : Rk → R is non-decreasing in each variable and upper semicontinuos
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and |Ω| the Lebesgue measure of Ω. Notice that the motivating problem

max
{
λk,β(Ω) : Ω ⊂ Rd bounded and Lipschitz, |Ω| = m

}
,

is a particular case of (3.1).
The core of this Chapter are the results in [18], where we give the proof

of the existence of an optimal solution to problem (3.1) (independent of the
precise knowledge of its shape) and to the two dimensional problem in the
class of simply connected sets. Precisely, we will prove an existence result for
(3.1) in a relaxed sense, obtaining also some information about the structure of
the optimal sets. To this aim, we extend the variational de�nition of λk,β(Ω)

to measurable sets with �nite perimeter and to arbitrary simply connected
sets in R2 having a topological boundary of �nite length in the spirit of the
relaxation of the Steklov eigenvalues in [11]. At the moment, we are not able
to prove any regularity of those optimal sets, but we prove some properties of
the optimal sets: they are bounded with a controlled diameter, they have a
controlled perimeter and not more than a number of "connected" components
depending on m, k, d and β. Surprisingly, one could expect that this number is
not larger than k, but we are not able to prove it, since a strange phenomenon
due to the uncontrolled behaviour of the eigenvalues to rescaling occurs. In
two dimensions of the space, we prove also existence of a solution in the class
of unions of pairwise disjoint open, simply connected sets. As expected for
Robin boundary conditions, the geometry of optimal sets will depend on the
mass m.

We will gain the existence of maximizers as a consequence of some geometric
control of the spectrum. For the Steklov spectrum, such results have been
proved by Colbois, Girouard and El Sou� [32] where they get upper bounds
for the eigenvalues by a quantity involving the isoperimetric ratio of the set and
by Bogosel, Bucur and Giacomini [11] where such bounds are obtained in terms
of diameter. The case of Robin boundary conditions is more tricky. Contrary
to the Steklov problem, we have simultaneously both negative and positive
eigenvalues and they do not obey any homogeneity law. Consequently, the
control of the spectrum by homogeneous geometric quantities is more involved
and less explicit. Nevertheless, roughly speaking, both results state that larger
is either the isoperimetric ratio or the diameter of a connected set, then lower is
its k-th Robin eigenvalue. We point out that, for positive boundary parameter,
the isoperimetric ratio and the diameter do not play any role on the control of
the spectrum.

Throughout the chapter, to emphasize that the boundary parameter is
negative, we will denote by −β < 0 the boundary parameter and we still write
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λk,β instead of λk,−β. Then, for every k ∈ N, the k-th eigenvalue is given by
the min-max formula

λk,β(Ω) = min
S∈Sk

max
u∈S\{0}

∫
Ω

|∇u|2 dx− β
∫
∂Ω

u2 dHd−1∫
Ω

u2 dx

, (3.2)

where Sk denotes the family of all k-dimensional subspaces of H1(Ω).

3.2 Some preliminary tools and properties

In the following, an important role will be played by the spherical shells of Rd;
as in the two dimensional case, we will use often the term annulus to denote
a spherical shell of Rd for any dimension d. To simplify the notation, we will
denote the annulus centred in x and of radii r < R with the symbol Ar,R(x).

A �rst important result concerning spherical shells is the following relative
isoperimetric inequality, proved in [11], Lemma 2.2. In this inequality, the
isoperimetric constant depends neither on the measure of the set, nor on the
annulus involved, but depends only on the dimension of the space.

Lemma 3.2.1 (Uniform relative isoperimetric inequality in annuli). Let m > 0

be given. Then there exist two positive constants c = c(d) and w = w(m, d)

such that, for every r ≥ 0, l ≥ w and every measurable set E ⊆ Ar,r+l(0) with
|E| ≤ m, we have

|E|
d−1
d ≤ cP (E,Ar,r+l(0)).

Remark 3.2.2. Looking at the proof of the previous lemma (see the proof of
Lemma 2.2 in [11], in particular the Steps 2 and 3), we notice a consequence
of the choice of w: this constant is chosen in such a way that, if we consider a
measurable set E containing the spherical shell Ar,r+l(0) for some r ≥ 0, then
we necessarily have |E| > m. This remark will allow us to understand the
structure of possible optimal sets in the crucial Lemma 3.4.1.

In order to use the direct methods of the Calculus of Variation to maximize
(3.1), we need some upper semicontinuity properties. The following proposi-
tion, proved in [11], Proposition 2.3, gives us a lower semicontinuity result
which will be useful in Section 3.6 to gain an existence result in dimension d.

Proposition 3.2.3. Let (En)n∈N be a sequence of sets of �nite perimeter of
Rd and let E ⊂ Rd of �nite perimeter such that

lim sup
n→∞

Hd−1(∂∗En) < +∞ and χEn
L1(Rd)−→ χE.



50 Maximization of λk,β(Ω) (β < 0)

Let (un)n∈N ⊂ H1(Rd) and u ∈ H1(Rd) such that un ⇀ u weakly in H1(Rd).
Then ∫

∂∗E

u2 dHd−1 ≤ lim inf
n→∞

∫
∂∗En

u2
n dHd−1.

The fact that we can use neither non-negativity nor monotonicity or rescal-
ing properties to get the existence of maximizers is the one of the greatest di�-
culties in solving the problem; indeed, in many well known proofs of existence
for spectral shape optimization problems, we can rescale optimizing sequences
or make topological assumptions thanks to some properties here lacking. As
we will see in the further sections, we will overcome this obstacle, at least in a
relaxed setting.

Remark 3.2.4. Using the strict negativity of the �rst eigenvalue, we can
emphasize another di�erence between the Robin-negative and the Dirichlet
case. We focus on the optimal shapes for the second eigenvalue in both cases
and we remark that optimal shapes are di�erent, in general. Indeed, we know
that the union of two and equal disjoint balls of measure m/2 minimizes the
second eigenvalue of the Dirichlet Laplacian among all shapes of prescribed
Lebesgue measure m. Moreover, if we compute the second eigenvalue of the
Robin Laplacian with any negative boundary parameter −β for the union of
two disjoint equal balls of measure m/2, this eigenvalue is necessarily strictly
negative, as it coincides with the �rst Robin eigenvalue of each ball. On
the other hand, the second eigenvalue of a ball of measure m can be strictly
positive, if β is below a certain threshold. More precisely, for any admissible Ω,
when β equals the second Steklov eigenvalue σ2(Ω), it holds λ2,β(Ω) = 0 (see
[11] for details). Then, as the Robin eigenvalues are increasing functions of
the boundary parameter, λ2,β(Ω) > 0 if and only β < σ2(Ω) (i.e. the negative
boundary parameter −β takes values in ]− σ2(Ω), 0[). Then, we can conclude
that it is not possible, in general, that the union of two equals balls maximizes
λ2,β.

3.3 The relaxed Robin eigenvalues

In order to get an existence result, we need to extend the notion of Robin eigen-
values. In the classical setting, in facts, it turns out to be hard to �nd directly
an existence result in the class of Lipschitz domain, as neither compactness
nor upper semicontinuity of the Rayleigh quotient are preserved (unless you
do not add some topological constraints, see Section 3.8). A natural way to
proceed is to consider a larger class of sets which includes Lipschitz domains
and which is endowed of a topology which guarantees upper semicontinuity of
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the relaxed eigenvalues and compactness of the maximizing sequences. To this
aim, it is useful the choice of sets of �nite perimeter.

De�nition 3.3.1 (Relaxed Robin eigenvalues). Let Ω ⊂ Rd a set of �nite
perimeter and let k ∈ N. We de�ne the k-th relaxed eigenvalue for the Robin
problem with parameter −β the quantity

λ̃k,β(Ω) := inf
S∈Sk

max
u∈S\{0}

∫
Ω

|∇u|2 dx− β
∫
∂∗Ω

u2 dHd−1∫
Ω

u2 dx

,

where Sk denotes the class of all k-dimensional subspaces of H1(Rd) which are
also k-dimensional subspaces of L2(Ω).

We compute λ̃k,β(Ω) considering the above de�ned class Sk since we want
that, if Ω is bounded and Lipschitz, then λ̃k,β(Ω) = λk,β(Ω). Indeed, if we
do not require that the admissible k-dimensional subspaces of H1(Rd) are also
k-dimensional subspaces of L2(Ω), we could �nd a k-dimensional subspace
generated by k functions u1, . . . , uk which are linearly independent in H1(Ω)

and such that there exists j ∈ {1, . . . , k} for which uj restricted on Ω is null.
In this case we would �nd a subspace of H1(Ω) with dimension less than or
equal to k − 1, and it is not admissible in the min-max formula to compute
λk,β(Ω).

It is useful to recall the following de�nition by Section 2.1 in [11].

De�nition 3.3.2 (well separated sets). Let A,B ⊆ Rd. We say that A and
B are well separated if there exist two open sets EA, EB such that, up to
negligible sets, A ⊆ EA, B ⊆ EB and dist(EA, EB) > 0.

In other words, if you have two su�ciently regular �nite perimeter sets
A and B which are well separated, you can extend any uA ∈ H1(A) and
uB ∈ H1(B) in such a way that their supports lie at positive distance.

Remark 3.3.3. If a Vk = span {ϕ1, . . . , ϕk} is an admissible k-dimensional
subspace of H1(Rd) for the computation of λ̃k,β(Ω) and ϕ1, . . . , ϕk have disjoint
support, then we can assume that there exists an index 1 ≤ j ≤ k such that
the Rayleigh quotient attains its maximum in Vk on ϕj.

This follows from the inequalities

min
i=1,...,k

ai
bi
≤ a1 + . . .+ ak
b1 + . . .+ bk

≤ max
i=1,...,k

ai
bi
, (3.3)
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where a1, . . . , ak, b1, . . . , bk ∈ R with b1, . . . , bk > 0. To prove (3.3) let us
suppose by contradiction that either

a1 + . . .+ ak
b1 + . . .+ bk

< min
i=1,...,k

ai
bi

(3.4)

or
a1 + . . .+ ak
b1 + . . .+ bk

> max
i=1,...,k

ai
bi
. (3.5)

Let us see the �rst inequality; it can be written equivalently as
a1 + . . .+ ak
b1 + . . .+ bk

<
a1

b1

. . .

a1 + . . .+ ak
b1 + . . .+ bk

<
ak
bk

Then, multiplying both sides of each inequality by the product of the denom-
inators we have 

(a1 + . . .+ ak)b1 < a1(b1 + . . .+ bk)

. . .

(a1 + . . .+ ak)bk < ak(b1 + . . .+ bk)

Summing the inequalities side by side we obtain

(a1 + . . .+ ak)(b1 + . . .+ bk) < (a1 + . . .+ ak)(b1 + . . .+ bk),

which is false, then (3.4) is not true. Reasoning in the same way, we prove
that (3.5) is not true, then we can conclude that (3.3) holds.

Now, let Vk and ϕ1, . . . , ϕk be as above and let

ϕ :=
k∑
i=1

aiϕi

attaining the maximum for the Rayleigh quotient in Vk. Since the functions
ϕi have disjoint supports, we have(

k∑
i=1

aiϕi

)2

=
k∑
i=1

a2
iϕ

2
i

and ∣∣∣∣∣
k∑
i=1

ai∇ϕi

∣∣∣∣∣
2

=
k∑
i=1

a2
i |∇ϕi|2.
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Then,

max
u∈Vk\{0}

∫
Ω

|∇u|2 dx− β
∫
∂∗Ω

u2 dHd−1∫
Ω

u2 dx

=

∫
Ω

|∇ϕ|2 dx− β
∫
∂∗Ω

ϕ2 dHd−1∫
Ω

ϕ2 dx

=

k∑
i=1

a2
i

(∫
Ω

|∇ϕi|2 dx− β
∫
∂∗Ω

ϕ2
i dHd−1

)
k∑
i=1

∫
Ω

a2
iϕ

2
i dx

≥ min
i=1,...,k

∫
Ω

|∇ϕi|2 dx− β
∫
∂∗Ω

ϕ2
i dHd−1∫

Ω

a2
iϕ

2
i dx

.

We can straightforwardly verify that relaxed eigenvalues enjoy some prop-
erties which recall those of classical eigenvalues.

Proposition 3.3.4 (properties of the relaxed eigenvalues). Let Ω ⊂ Rd be a
set of �nite perimeter and β > 0 be �xed.

(a) If Ω is open, bounded and Lipschitz, then for every k ∈ N it holds

λ̃k,β(Ω) = λk,β(Ω)

(classical setting).

(b) For every k ∈ N and for every t > 0 one has

λ̃k,β(tΩ) =
1

t2
λ̃k,tβ(Ω)

(scaling property).

(c) For every Ω of �nite perimeter and for every β > 0 one has

λ̃1,β(Ω) ≤ −βH
d−1(∂∗Ω)

|Ω|
< 0

(strict negativity of the �rst relaxed eigenvalue).

(d) For every Ω of �nite perimeter given by a disjoint union of N ≥ k well
separated sets with positive Lebesgue measure and for every β > 0 one
has

λ̃k,β(Ω) ≤ − β

ωd

(
N − k
|Ω|

)1/d

< 0.
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Proof. Item (a) is a consequence of the choice of the admissible subspaces for
the computation of λ̃k,β(Ω). Item (b) and item (c) follow by the same compu-
tations made in the classical setting in (2.5) and (2.6), replacing the topological
boundary with the reduced one. To prove item (d), we start remarking that
there exist k of the N well separated parts of Ω, say Ω1, . . . ,Ωk, with measure
less than |Ω|/(N − k). Then, we consider the k-dimensional test space V for
λk,β spanned by the k characteristic functions χΩ1 , . . . , χΩk ∈ H1(Rd). Since
we can suppose that the maximum is attained on one of these functions, say
χΩj (see 3.3.3), we have

λk,β(Ω) ≤ max
u∈V

∫
Ω

|∇u|2 dx− β
∫
∂∗Ω

u2 dHd−1∫
Ω

u2 dx

= max
(c1,...,ck)∈Rk

−β

k∑
i=1

c2
iHd−1(∂∗Ωi)

k∑
i=1

c2
i |Ωi|

= −βH
d−1(∂∗Ωj)

|Ωj|

≤ − β

ωd

1

|Ωj|1/d
≤ − β

ωd

(
N − k
|Ω|

)1/d

.

Observe that we are not able to say what is the lowest non negative relaxed
eigenvalue; it is neither possible to deduce any monotonicity with respect to
the domain or scale invariance property in general for λ̃k,β(·), as remarked for
λk,β(·).

3.4 A fundamental lemma and some properties

of good candidates

In this section we will prove Lemma 3.4.1, which involves well separated sets
and will be crucial in our analysis. This lemma will give us an important
alternative to distinguish �good� and �bad� sets in terms of maximization of
λ̃k,β(Ω). We refer to Lemma 4.1 in [11], where a similar kind of result has been
proved for the Steklov eigenvalues. The main di�erence (and di�culty) with
respect to the Steklov case is that, in our situation, we do not have mono-
tonicity under homotheties; then our result is valid for sets of �nite perimeter
whose measure is smaller than a �xed value depending on the parameters of
the problem.
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Lemma 3.4.1. Let β > 0, A > 0, c = c(d) > 0 the isoperimetric constant for

the uniform relative isoperimetric inequality in annuli, m ∈
]
0,
(
β
Ac

)d
21−2d

]
and w = w(m, d) > 0 the width constant in the uniform relative isoperimetric
inequality in annuli. Then, there exists L = L(m, d, β,A) > w such that, for
every r ≥ 0, l ≥ L and for every measurable set E ⊆ Ar,r+l(0) with �nite
perimeter and with |E| ≤ m, we have at least one of the following possibilities.

(a) There exists ϕ ∈ H1
0 (Ar,r+l(0)) such that∫
∂∗E

ϕ2 dHd−1 > 0,

∫
E

ϕ2 dx > 0

and ∫
E

|∇ϕ|2 dx− β
∫
∂∗E

ϕ2 dHd−1∫
E

ϕ2 dx

≤ −A.

(b) We have ∣∣∣E ∩ Ar+ l−w
2
,r+ l+w

2
(0)
∣∣∣ = 0,

i.e., up to negligible sets, E lies outside an annulus of width w.

Proof. Let L > 0 such that

L− w
2

>

√
2c

β
m

1
2d

∞∑
j=1

1(
2

1
2d

)k . (3.6)

Let r ≥ 0, l ≥ L and E ⊆ Ar,r+l(0) measurable, with �nite perimeter and such
that |E| ≤ m. Moreover, let us assume that |E| > 0, otherwise situation (b)
would occur trivially.

Let us suppose that assertion (a) does not hold and let us show that sit-
uation (b) occurs. Let us consider the functions m1 and p1 de�ned, for every
t ∈
[
0, l−w

2

]
, by

m1(t) := |E ∩ (Ar,r+t(0) ∪ Ar+l−t,r+l(0))|

and
p1(t) := P (E,Ar+t,r+l−t(0)) .

If p1(t) = 0 for some t, situation (b) takes place trivially. Then, we can assume
p1(t) > 0 and consider, for every t > 0, the function ϕ1,t ∈ H1

0 (Ar,r+l(0))

de�ned by

ϕ1,t(x) :=

[
1

t
dist

(
x,Acr,r+l(0)

)]
∧ 1.
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Notice that
∫
E
ϕ2

1,t dx > 0 (|E| > 0 and ϕ1,t is not the zero function) and that∫
∂∗E

ϕ2
1,t dHd−1 ≥ p1(t) > 0

for any t. Then, since situation (a) cannot occur, we have that

−A <

∫
E

|∇ϕ1,t|2 dx− β
∫
∂∗E

ϕ2
1,t dHd−1∫

E

ϕ2
1,t dx

≤

1

t2
m1(t)− βp1(t)∫

E

ϕ2
1,t dx

.

Observe that there exists t1 ∈
]
0, l−w

2

]
such that 0 < m(t1) = |E|

2
. We claim

that t1 < l−w
2
. To prove this fact, consider ϕ1 := ϕ1,t1 ; we obtain

−A <

1

t21

|E|
2
− βp1(t1)∫

E

ϕ2
1 dx

.

If the numerator is non negative we have

1

t21

|E|
2
≥ βp1(t1) ≥ β

c

(
|E|
2

) d−1
d

,

where we used the uniform relative isoperimetric inequality in annuli and the
fact that both E ∩ (Ar,r+t1(0) ∪ Ar+l−t1,r+l(0)) and E ∩ Ar+t1,r+l−t1(0) have
measure |E|

2
. Last inequality yields the estimate

t1 ≤
√
c

β
|E|

1
2d

1

2
1
2d

<

√
2c

β
m

1
2d

1

2
1
2d

<
l − w

2
.

On the other hand, if 1
t21

|E|
2
− βp1(t1) < 0, it holds

−A <

1
t21

|E|
2
− βp1(t1)

m
≤

1
t21

m
2
− β

c

(
m
2

) d−1
d

m
.

By an easy computation we have

1

t21

m

2
− β

2c

(m
2

) d−1
d
>

β

2c

(m
2

) d−1
d − Am ≥ 0,

since m ≤
(
β
Ac

)d
21−2d. Thus we obtain the estimate

t1 <

√
2c

β
m

1
2d

1

2
1
2d

<
l − w

2
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and this completely proves the claim on t1.
We now proceed as above, reasoning on the annulus Ar+t1,r+l−t1(0) and the

set E ∩ Ar+t1,r+l−t1(0), whose measure is |E|
2
. For every t ∈

[
0, l−w

2
− t1

]
we

de�ne the quantities

m2(t) := |E ∩ (Ar+t1,r+t1+t(0) ∪ Ar+l−t1−t,r+l−t1(0))|

and
p2(t) := P (E,Ar+t1+t,r+l−t1−t(0)) .

As a test function, we consider

ϕ2,t(x) :=

[
1

t
dist

(
x,Acr+t1,r+l−t1(0)

)]
∧ 1.

Using the same arguments as above, we can �nd t2 ∈
]
0, l−w

2
− t1

[
such that

|E ∩ (Ar+t1,r+t1+t2(0) ∪ Ar+l−t1−t2,r+l−t1(0))| = |E ∩ Ar+t1,r+l−t1(0)| = |E|
4

and such that the following estimate is satis�ed:

t2 <

√
2c

β
m

1
2d

1(
2

1
2d

)2 <
l − w

2
− t1.

Thanks to the choice of L, we can carry out the argument in�nitely many
times, obtaining a sequence (tn)n ⊂

]
0, l−w

2

[
such that

|E ∩ Ar+t1+···+tn,r+l−t1−...−tn| =
|E|
2n

and
E ∩ Ar+ l−w

2
,r+ l+w

2
⊆ E ∩ Ar+t1+···+tn,r+l−t1−...−tn

for every n ∈ N. Letting n go to in�nity, we obtain that situation (b) occurs,
completing the proof.

Remark 3.4.2. Let us notice that the bound a priori on the measure of E is
not restrictive in the general application of the previous lemma (we will use
a trick to overcome this restriction on the admissible volumes in Proposition
3.4.3). In particular, the �critical measure� depends decreasingly on the mod-
ulus A of the threshold for the Rayleigh quotients. We do not know if it is
possible to prove an analogous result removing this bound (as in Lemma 4.1
in [11]), since, as mentioned before, the problem is not scale invariant and it
is not known if there is any monotonicity property, in general. Notice that, as
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A decreases to 0, the bound on the volumes goes to +∞ and then the lemma
is applicable with a wider range of volumes.

Nevertheless, the meaning of Lemma 3.4.1 is that, within a certain range
of measures, if the Rayleigh quotient for a set E is greater than a �xed bound
(and reasonably better for the maximization), then, up to negligible sets, E
must lie in a small annulus or in two well separated small annuli at distance
greater than a constant depending only on the measure and on the dimension
of the space.

The following proposition allows us to understand some properties that
good candidates to be maximizers for λ̃k,β(Ω) have to satisfy. We will follow
the ideas of Proposition 5.4 in [11]; in that proof, authors apply Lemma 4.1
of [11] (whose counterpart for Robin eigenvalues is the previous Lemma 3.4.1)
relatively to the measure m of the given set. In our context, there is a crucial
di�erence: we can not apply Lemma 3.4.1 directly with the measure m of the
given set Ω, since such measure does not satisfy the bound in the statement of
Lemma 3.4.1, in general. The idea to overcome the di�culty is rather natural:
we thought to cut Ω by intersection with a suitable family of annuli, in such a
way that at least k �slices� of Ω have volume less than the �xed threshold.

Proposition 3.4.3 (a priori bound on the diameter). Let Ω ⊂ Rd of �nite
perimeter, |Ω| = m and let A > 0 such that λ̃k,β(Ω) > −A. Then, up to negli-
gible sets, Ω is union of N well separated and bounded sets of �nite perimeter

Ω = Ω1 ∪ . . . ∪ ΩN ,

with N < mAdωd

βd
+ k, with ω = ω(d) > 0 isoperimetric constant in Rd and

diam(Ωj) ≤ D(m,β, d, k, A), i.e. the diameters of the well separated sets are
uniformly bounded.

Proof. Without loss of generality, we can consider the origin as a point of
density one for Ω. Let c = c(d) > 0 be the dimensional constant in the relative

isoperimetric inequality for annuli and set m∗ :=
(
β
Ac

)d
21−2d. Let us consider

the constants w = w(m∗, d) = w(A, β, d) and L = L(m∗, d, β, A) = L(d, β, A)

of Lemma 3.4.1 applied to m∗ and de�ne the annuli

Aj := AjL,(j+1)L(0) :=
{
x ∈ Rd : jL < |x| < (j + 1)L

}
for j = 0, . . . ,

⌊
m
m∗

⌋
+ k. By construction, there exist k of this annuli, say

An1 , . . . , Ank , such that |Ω ∩ Anh| ≤ m∗. For each h = 1, . . . , k, let us apply
Lemma 3.4.1 to each set Ω ∩ Anh : either there exist ϕh ∈ H1

0 (Anh) such that∫
∂∗(Ω∩Anh )

ϕ2
h dHd−1 > 0,

∫
Ω∩Anh

ϕ2
h dx > 0
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and ∫
Ω∩Anh

|∇ϕh|2 dx− β
∫
∂∗(Ω∩Anh )

ϕ2
h dHd−1∫

Ω∩Anh

ϕ2
h dx

≤ −A

or ∣∣∣Ω ∩ Anh ∩ AnhL+
nhL−w

2
,nhL+

nhL+w

2

∣∣∣ = 0.

Observe that there exists one of the sets Ω∩Anh in which the �rst case is not
satis�ed. In fact, if the �rst situation occurred in all Ω ∩ Anh , there would
exist ϕ1, . . . , ϕk as above, with trivial extension to the whole space belonging
to H1(Rd) and disjoint supports. Moreover, such ϕh would be supported in
Anh and would have null trace on ∂Anh , then∫

Ω∩Anh

|∇ϕh|2 dx =

∫
Ω

|∇ϕh|2 dx,

∫
∂∗(Ω∩Anh )

ϕ2
h dHd−1 =

∫
∂∗Ω

ϕ2
h dHd−1

and ∫
Ω∩Anh

ϕ2
h dx =

∫
Ω

ϕ2
h dx.

Hence, for each h = 1, . . . , k, we would have∫
Ω

|∇ϕh|2 dx− β
∫
∂∗Ω

ϕ2
h dHd−1∫

Ω

ϕ2
h dx

≤ −A.

In view of the Remark 3.3.3, we could assume that the maximum of the
Rayleigh in span {ϕ1, . . . , ϕk} is attained in some ϕj. Then, by the usual
minimax formula, we would obtain that λ̃k,β(Ω) ≤ −A, in contradiction with
the hypotheses.

Let now be p ∈ {1, . . . , k} such that Anp does not satisfy the �rst alternative
and let us set

Ω1 := Ω ∩BnpL+L
2
(0).

Observe that Ω1 is bounded, with �nite perimeter and well separated from
Ω \ Ω1, with

dist(Ω1,Ω \ Ω1) ≥ w.

Moreover
diam(Ω1) ≤ 2

(⌊ m
m∗

⌋
+ k + 1

)
L,
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with the right hand side depending on A,m, β, d, k.

Let us now consider the set Ω\Ω1, whose measure is less than m, translate
the set in such a way that the origin is a point of density one for Ω \ Ω1 and
repeat the same arguments as above to build Ω2; with the same bound on the
diameter.

The argument could be carried on to build the following well separated
parts of Ω, whose diameters are still uniformly bounded by 2

(⌊
m
m∗

⌋
+ k + 1

)
L.

Notice that we cannot repeat the argument in�nitely many times. In fact, if
this was the case, up to negligible sets we would have

Ω =
⋃
n∈N

Ωn, m = |Ω| =
∑
n∈N

|Ωn|

and, for each well separated set Ωn we consider its characteristic function whose
Rayleigh quotient is less than or equals − β

ωd
|Ωn|−

1
d . Notice that |Ωn| → 0; so,

if we take k of these well separated sets, say Ω1
n, . . . ,Ω

k
n, with measure smaller

than a threshold, we obtain λ̃k,β(Ω) < −A (taking span
{
χΩ1

n
, . . . , χΩkn

}
as a

test space for λ̃k,β(Ω)).

Moreover, the number N of the well separated parts is controlled by a
constant depending on m,β, d, k, A. Indeed, we can assume that Ω = Ω1 ∪
. . . ∪ ΩN with N ≥ k (possibly counting also Ωj which are negligible). Then,
we can order the sets Ωj in such a way that |Ωj| ≤ m

N−k for every j ≤ k and
consider k test functions ϕ1, . . . , ϕk ∈ H1(Rd) with disjoint supports and such
that 0 ≤ ϕj ≤ 1, ϕj = 1 on Ωj and ϕj = 0 on Ω \ Ωj. Let us consider V :=

span {ϕ1, . . . , ϕk} and, without loss of generality, assume that the Rayleigh
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quotient attains in ϕ1 its maximum for the space V . Then we have

−A < λ̃k,β(Ω) ≤ max
u∈V \{0}

∫
Ω

|∇u|2 dx− β
∫
∂∗Ω

u2 dHd−1∫
Ω

u2 dx

≤

∫
Ω

|∇ϕ1|2 dx− β
∫
∂∗Ω

ϕ2
1 dHd−1∫

Ω

ϕ2
1 dx

≤ −βH
d−1(∂∗Ω1)

|Ω1|
≤ −β

ω
|Ω1|−

1
d ≤ −β

ω

(
m

N − k

)− 1
d

and this yields

N <
mAdωd

βd
+ k,

completing the proof.

Remark 3.4.4. Notice that, as A decreases to 0, the bound on the number of
well separated components goes to k: this fact suggests that, if λ̃k,β(Ω) is non
negative, it is union of at most k well separated parts (up to negligible sets).

Observe that we have again a result depending on the measure of the set
Ω: both diameters and number of connected components are bounded by a
quantity depending on |Ω|. We would have expected this behaviour, since, as
already said, the problem is not scale invariant.

3.5 Isoperimetric and isodiametric control of the

spectrum

The next step for our purposes is to have some uniform control on the perime-
ters to ensure compactness of maximizing sequences. For our approach, we
have been inspired by [32], where authors proved several results for the isoperi-
metric control of the Steklov spectrum of Riemannian manifolds satisfying
some additional hypotheses. A crucial tool in this setting is the following
Lemma 3.5.1, proved in [55], Corollary 3.12, in a more general setting.

We will use the following notation: if A is the annulus Ar,R(x), we will
denote with 2·A the annulus A r

2
,2R(x).

Lemma 3.5.1. Let ν be a �nite, non negative, non atomic Radon measure on
Rd. Then, for every k ∈ N, there exist a family A of k annuli in Rd such that
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(a) there exists a positive constant γd depending only on the dimension d

such that

ν(A) ≥ γd
ν(Rd)

k
;

(b) the annuli {2·A}A∈A are disjoint.

Lemma 3.5.2 (Isoperimetric control of the relaxed spectrum). Let Ω ⊂ Rd

of �nite perimeter and let |Ω| = m. Then, there exist two a positive constants
C1 = C1(d), C2 = C2(d) such that

λ̃k,β(Ω) ≤ −C2

k
2
d |Ω|

d−2
d − β

C1

Hd−1(∂∗Ω)

|Ω|


−

+
C1k

2|Ω| 2d
χ]0,+∞[

(
k

2
d |Ω|

d−2
d − β

C1

Hd−1(∂∗Ω)

)
Remark 3.5.3. Lemma 3.5.2 could be equivalently stated in the following
way: under the hypotheses above, there exists two positive constants C1 and
C2, depending only on d, such that if

Hd−1(∂∗Ω) >
C1

β
k

2
d |Ω|

d−2
d ,

then

λ̃k,β(Ω) ≤
C2k

2
d |Ω|

d−2
d − C2

C1

βHd−1(∂∗Ω)

|Ω|
,

otherwise, if

Hd−1(∂∗Ω) ≤ C1

β
k

2
d |Ω|

d−2
d ,

then

λ̃k,β(Ω) ≤ C1k

2|Ω| 2d
.

Proof of Lemma 3.5.2. Let us consider Ω as in the hypotheses and apply Lemma
3.5.1 to the �nite non atomic measure ν := Hd−1b∂∗Ω: there exist 2k annuli
A1, . . . , A2k in Rd and a positive constant γd depending only on the d such
that, for every i = 1, . . . , 2k

Hd−1(∂∗Ω ∩ Ai) ≥ γd
Hd−1(∂∗Ω)

2k
(3.7)

and, if i 6= j,
2·Ai ∩ 2·Aj = ∅. (3.8)
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In particular, we can order the 2k annuli in such a way that

|Ω ∩ 2·Ai| ≤
|Ω|
k
. (3.9)

Now let us write each annulus as

Ai = {r1,i < |x− xi| < r2,i}

and consider the functions hi de�ned as follows

hi(x) :=


1

r2,i

dist(x,Rd \ 2·Ai) if x /∈ Br2,i(xi),

1 if x ∈ Ai,
1

r1,i

dist(x,Rd \ 2·Ai) if x ∈ Br1,i(xi).

(3.10)

Observe that hi ∈ H1(Rd), hi = 0 on Rd \ 2·Ai and

|∇hi| =


1

r2,i

in B2r2,i(xi) \Br2,i(xi),

0 in Ai ∪ (2·Ai)c,
1

r1,i

in Br1,i(xi) \B r1,i
2

(xi).

Denoting by R(u) the Rayleigh quotient for any admissible function u, we
estimate for every i = 1, . . . , k the quantity R(hi) as follows:

R(hi) =

∫
Ω

|∇hi|2 dx− β
∫
∂∗Ω

h2
i dHd−1∫

Ω

h2
i dx

≤

(∫
2·Ai
|∇hi|d dx

) 2
d

|Ω ∩ 2·Ai|
d−2
d − βHd−1(∂∗Ω ∩ Ai)∫

Ω

h2
i dx

,

(3.11)

where we used the Hölder inequality. Observe that the quantity(∫
2·Ai
|∇hi|d dx

) 2
d

is a positive constant depending only on d. So, using estimates (3.7) and (3.8),
we obtain by (3.11)

R(hi) ≤

(∫
2·Ai
|∇hi|d dx

) 2
d
(
|Ω|
k

) d−2
d

− βγd
Hd−1(∂∗Ω)

2k∫
Ω

h2
i dx

. (3.12)



64 Maximization of λk,β(Ω) (β < 0)

Let us consider now the positive constants

C2(d) := max
i=1,...,2k

(∫
2·Ai
|∇hi|d dx

) 2
d

, C1(d) :=
2C2

γd
,

which depend only on the dimension d. Observe that, if

Hd−1(∂∗Ω) >
C1

β
k

2
d |Ω|

d−2
d ,

then the numerator of the right hand side of (3.12) is negative, then we can
continue the estimate using again (3.9):

R(hi) ≤
C2

(
|Ω|
k

) d−2
d

− C2

C1

β
Hd−1(∂∗Ω)

k

|Ω ∩ 2·Ai|

≤
C2

(
|Ω|
k

) d−2
d

− C2

C1

β
Hd−1(∂∗Ω)

k

|Ω|
k

≤
C2k

2
d |Ω|

d−2
d − C2

C1

βHd−1(∂∗Ω)

|Ω|
.

(3.13)

Since h1, . . . , hk have disjoint supports in view of (3.8), we achieve the thesis
in the �rst case by considering the space Sk := span {h1, . . . , hk}.

Now, let Hd−1(∂∗Ω) ≤ C1

β
k

2
d |Ω| d−2

d . In view of Lemma 3.5.1 applied to the
�nite non atomic measure LdbΩ, there exists a family of k annuli B1, . . . , Bk

such that

|Ω ∩Bi| ≥ γd
|Ω|
k

(3.14)

and, if i 6= j,

2·Bi ∩ 2·Bj = ∅. (3.15)

Consider the test functions l1, . . . , lk for the annuli B1, . . . , Bk, constructed in
the same way as the hi in (3.10), and observe that their supports are disjoint,
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thanks to (3.15). Now, let us estimate R(li):

R(li) =

∫
Ω

|∇li|2 dx− β
∫
∂∗Ω

l2i dHd−1∫
Ω

l2i dx

≤ C2|Ω|
d−2
d − βHd−1(∂∗Ω ∩Bi)∫

Ω

l2i dx

.

(3.16)

If the numerator of the last fraction is negative, then R(li) < 0. Otherwise we
can estimate R(li) using (3.14):

R(li) ≤
C2|Ω|

d−2
d − βHd−1(∂∗Ω ∩Bi)

|Ω ∩Bi|

≤ C2|Ω|
d−2
d − βHd−1(∂∗Ω ∩Bi)

γd
|Ω|
k

≤ C2k

γd|Ω|
2
d

=
C1k

2|Ω| 2d
.

In both cases R(li) ≤ C1k

2|Ω|
2
d
; reasoning as above on span {l1, . . . , lk}, we com-

plete the proof.

Remark 3.5.4. Let us observe that we have two di�erent situations (then two
di�erent estimates) depending again on the measure of Ω. Fortunately, as we
will see in the existence theorem 3.6.1, this will not prevent us to prove that
maximizing sequences of admissible sets have uniformly bounded perimeters.
In other words, Lemma 3.5.2 will give us the needed isoperimetric control of
the spectrum that ensures the compactness of maximizing sequences.

Furthermore, we point out that Lemma 3.4.1, Proposition 3.4.3 and Lemma
3.5.2 hold also for Lipschitz domains, replacing the reduced boundary with
the topological boundary: this allows us to have the same results also in the
classical setting.

Now, recalling the ideas in Proposition 4.3 in [11], we would like to obtain
also an isodiametric control of the Robin spectrum. This will be done in the fol-
lowing Proposition 3.5.5, where we give an upper estimate for λk,β(Ω)diam(Ω)

for every open, bounded, Lipschitz and connected set Ω of prescribed measure
m. This estimate depends only on the dimension d of the space, the measure
m of Ω, the index k and the boundary parameter β and it is valid both for
λk,β(Ω) ≥ 0 and for λk,β(Ω) < 0.
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Proposition 3.5.5 (isodiametric control of the spectrum). Let m > 0 and
A > 0, Ω ⊂ Rd be an open, bounded, Lipschitz and connected set of measure
m, let C1 = C1(d), C2 = C2(d) > 0 the dimensional constants in Lemma 3.5.2,
ω = ω(d) the Lebesgue measure of the unit ball in Rd, c = c(d) the dimensional
constant in the isoperimetric inequality in annuli 3.2.1, m∗ and L as in Lemma
3.4.1. Then, if

diam(Ω) > 2
(
k +

⌊ m
m∗

⌋
+ 1
)
L,

it holds
λk,β(Ω) < −A (3.17)

otherwise,

λk,β(Ω)diam(Ω)

≤ ω

(
2C2

(ωm)1/d
k2/d − 2C2βd

C1

)
χ]0,+∞[

(
Hd−1(∂Ω)− C1

β
m

d−2
d k2/d

)
+
C1L

m2/d

[
2k2 +

(
22dcdm+ 2βd

βd

)
k

] [
1− χ]0,+∞[

(
Hd−1(∂Ω)− C1

β
m

d−2
d k2/d

)]
.

(3.18)

Proof. The proof is obtained following the same arguments as in Proposition
4.3 in [11], recalling the �slicing trick by annuli� in Proposition 3.4.3 and treat-
ing separately the two di�erent situations of Lemma 3.5.2 (see Remark 3.5.3).

Without loss of generality, let us consider the origin as a point of density
1 for Ω. Let us suppose that

diam(Ω) > 2
(
k +

⌊ m
m∗

⌋
+ 1
)
L

and de�ne the k +
⌊
m
m∗

⌋
+ 1 concentric annuli

Aj := AjL,(j+1)L(0) :=
{
x ∈ Rd : jL < |x| < (j + 1)L

}
, j = 0, . . . ,

⌊ m
m∗

⌋
+k.

By construction, there exist k of this annuli, say An1 , . . . , Ank , such that |Ω ∩
Anh| ≤ m∗. For each h = 1, . . . , k, let us apply Lemma 3.4.1 to each set Ω∩Anh
and observe that, as Ω is connected, in each annulus the �rst alternative takes
place. Then, there exist k functions ϕ1, . . . , ϕk ∈ H1(Ω) such that supp(ϕj) ⊂
Anj and ∫

Ω

|∇ϕj|2 dx− β
∫
∂Ω

ϕ2
j dσ∫

Ω

ϕ2
j dx

≤ −A

for every j = 1, . . . , k. Then, the space S := span {ϕ1, . . . , ϕk} is admissible
for the computation of λk,β(Ω) and, in view of the Remark 3.3.3, we could
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assume that the maximum of the Rayleigh quotient in S is attained in some
ϕj. Then we have

λk,β(Ω) ≤ max
u∈S\{0}

= R(ϕj) ≤ −A

i.e., passing to the minimum among admissible subspaces, (3.17).
Let now be

diam(Ω) ≤ 2
(
k +

⌊ m
m∗

⌋
+ 1
)
L

and suppose that the �rst case of Lemma 3.5.2 (see Remark 3.5.3) holds true,
so

Hd−1(∂Ω) <
C1

β
m

d−2
d k2/d.

Then, again by Lemma 3.5.2,

λk,β(Ω) ≤
C2k

2
d |Ω|

d−2
d − C2

C1

βHd−1(∂Ω)

|Ω|
< 0,

i.e. λk,β(Ω) is necessarily strictly negative. Using the isoperimetric inequality
and the isodiametric inequality

|Ω| ≤ ωd

(
diam(Ω)

2

)d
we obtain

λk,β(Ω)diam(Ω) ≤
C2k

2
d |Ω|

d−2
d − C2

C1

βHd−1(∂Ω)

|Ω|
2|Ω|1/d

ω1/d

≤
C2k

2
d |Ω|

d−2
d − C2

C1

βdω1/d|Ω|
d−1
d

|Ω| d−1
d

2

ω1/d

=
2C2

(ωm)1/d
k2/d − 2C2βd

C1

.

Let us suppose now that the second case of Lemma 3.5.2 holds true, i.e.

Hd−1(∂Ω) ≥ C1

β
m

d−2
d k2/d.

In that case, if λk,β(Ω) < 0, we trivially have λk,β(Ω)diam(Ω) < 0; otherwise,
if λk,β(Ω) ≥ 0, using the upper bound on diam(Ω) we have

λk,β(Ω)diam(Ω) ≤ C1L

m2/d

[
2k2 +

(
22dcdm+ 2βd

βd

)
k

]
,

getting (3.18) and completing the proof of the proposition.
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Remark 3.5.6. In Proposition 3.4.3 we proved that, if a set Ω is a good
candidate to maximize λ̃k,β, it must have controlled diameter (notice that
3.4.3 still holds in the classical setting). Another evidence of this behaviour
of good candidates is given by Proposition 3.5.5: we proved that if the di-
ameter of a Lipschitz connected domain Ω is not controlled by the constant
2
(
k +

⌊
m
m∗

⌋
+ 1
)
L, then Ω is not a good candidate to maximize λk,β(Ω).

3.6 Existence of optimal shapes in the class of

measurable sets

In this section, following Section 5 of [11], we will get an existence result for a
relaxed version of the problem (3.1), involving the relaxed Robin eigenvalues.

We focus ourselves on the maximization problem

max
{
F (λ̃β1 (Ω), . . . , λ̃k,β(Ω)) : Ω ⊂ Rd has �nite perimeter and |Ω| = m

}
,

(3.19)
where F : Rk → R non decreasing in each variable and upper semicontinuos
(as in (3.1)). To avoid trivial situations, we will infer another reasonable
hypothesis on F .1 Our existence result is based on an adaptation of Theorem
5.6 in [11] to our setting, with an important di�erence: in our case, the uniform
bound on the perimeters of a maximizing sequence have to be deduced treating
separately the two situation in Lemma 3.5.2. Nevertheless, in both situation,
we are able to get such a uniform bound and then to gain the compactness of
a maximizing sequence.

In this context, we will denote with Bm the ball of measure m > 0.

Theorem 3.6.1 (Existence of optimal domains). Let F : Rk → R non de-
creasing in each variable and upper semicontinuos. Moreover, assume that
there exist Ω0 admissible, A > 0 and A1, . . . , Ak ∈]0, A[ such that

F (λ̃1,β(Ω0), . . . , λ̃k,β(Ω0)) > F (−A1, . . . ,−Ak). (3.20)

Then, Problem (3.19) has at least a solution. Moreover, up to negligible
sets, each optimal set is bounded and can be written as the union of at most
m|λk,β(Bm)|dωd

βd
+ k equibounded well separated sets of �nite perimeter.

Proof. Let (Ωn)n be a maximizing sequence for F (λ̃1,β(·), . . . , λ̃k,β(·)). In
view of the assumption, we observe that any admissible domain E such that

1In [18] the additional hypothesis is given in a smarter form, involving the coercivity

of the function F ; here, the further hypothesis is given in a slightly weaker form in the

statement of Theorem 3.6.1.
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λ̃h,β(E) ≤ −Ah for every j = 1, . . . , k can not be optimal. Then, it is not
restrictive to assume that λ̃h,β(Ωn) > −Ah for every h = 1, . . . , k. Moreover,
without loss of generality, we can assume that λ̃h,β(Ωn) ≥ λ̃h,β(Bm) = λh,β(Bm)

for every n ∈ N.2 By Lemma 3.5.2 we have that either the perimeter of Ωn is
less than a constant depending on m, d, β, k or

λh,β(Bm) ≤ λ̃h,β(Ωn) ≤
C2h

2
dm

d−2
d − C2

C1

βHd−1(∂∗Ωn)

m
.

Via a straightforward computation, we obtain that also in this second case it
holds Hd−1(∂∗Ωn) ≤ C = C(m, d, β, k). Hence, we deduce that

sup
n∈N
Hd−1(∂∗Ωn) < +∞. (3.21)

Thanks to proposition 3.4.3, we can write

Ωn = Ω1
n ∪ . . . ∪ ΩNn

n , Nn ≤
m|λk,β(Bm)|dωd

βd
+ k,

with Ω1
n, . . . ,Ω

Nn
n equibounded and well separated. Up to translations, we can

assume that the Ωn are contained in a �xed ball of Rd; so, by (3.21) and
Proposition 1.2.10, we deduce that there exists Ω ⊂ Rd of �nite perimeter
such that, up to subsequences, that χΩn → χΩ strongly in L1, |Ω| = m and
P (Ω) ≤ lim infn P (Ωn).

Using the same arguments as in Theorem 5.6 in [11], let us show that such
admissible set Ω is a solution of the problem (3.19). We claim that

lim sup
n→∞

λ̃h,β(Ωn) ≤ λ̃h,β(Ω). (3.22)

To prove it, let us �x ε > 0 and let Vh := span {u1, . . . , uh} ⊂ H1(Rd) be an
admissible subspace for the computation of λ̃h,β(Ω) such that

λ̃h,β(Ω) ≤ max
u∈Vh\{0}

R(u)− ε.

For each n ∈ N, let

un :=
h∑
j=1

αnj uj

2If λh,β(Bm) < −Ah the assumption comes trivially from the previous remark on opti-

mal sets; if λh,β(Bm) ≥ −Ah, we can assume again λ̃h,β(Ωn) ≥ λh,β(Bm) since F is non

decreasing and (Ωn)n is a maximizing sequence.
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attaining the maximum

max
v∈Vh\{0}

∫
Ωn

|∇v|2 dx− β
∫
∂∗Ωn

v2 dHd−1∫
Ωn

v2 dx

.

We can also assume that
h∑
j=1

(αnj )2 = 1

(it is not restrictive). So, up to subsequences, there exist α1, . . . , αh such that
αnj converges to αj as n goes to in�nity. Hence, set

u :=
h∑
j=1

αjuj,

we have that un → u strongly in H1(Rd). By the convergence of χΩn to χΩ

and Proposition 3.2.3 we obtain that

lim
n→∞

∫
Ωn

|∇un|2 dx =

∫
Ω

|∇u|2 dx

lim
n→∞

∫
Ωn

u2
n dx =

∫
Ω

u2 dx

lim inf
n→∞

∫
∂∗Ωn

u2
n dHd−1 ≥

∫
∂∗Ω

u2 dHd−1.

(3.23)

We �nally have

lim sup
n→∞

λ̃h,β(Ωn) ≤ lim sup
n→∞

∫
Ωn

|∇un|2 dx− β
∫
∂∗Ωn

u2
n dHd−1∫

Ωn

u2
n dx

≤

∫
Ω

|∇u|2 dx− β
∫
∂∗Ω

u2 dHd−1∫
Ω

u2 dx

≤ λ̃h,β(Ω) + ε.

Letting ε→ 0 we get the required upper semicontinuity (3.22).
Thanks to the assumptions on F we deduce that

F (λ̃1,β(Ω), . . . , λ̃k,β(Ω)) ≥ lim sup
n→∞

F (λ̃1,β(Ωn), . . . , λ̃k,β(Ωn))

= sup
|E|=m

Hd−1(∂∗E)<+∞

F (λ̃1,β(E), . . . , λ̃k,β(E)).
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Then Ω is optimal. Finally, the bound on the number of well separated
parts Ω1, . . . ,ΩN and the uniform bound on the diameters of the sets Ωj,
j = 1, . . . , N , can be achieved reasoning as in Proposition 3.4.3, replacing Ah
with |λh,β(Bm)| for each h = 1, . . . , k.

As said above, the assumption (3.20) has been made to avoid trivial sit-
uation such as F constant on Rk, for which every admissible Ω would be a
solution.

Remark 3.6.2 (Isoperimetric control for the �rst eigenvalue). Observe that,
if k = 1, the uniform bound on the perimeters of a maximizing sequence
would be straightforwardly achieved. In fact, considering a maximizing se-
quence (Ωn)n∈N such that, without loss of generality, λ̃1,β(Ωn) ≥ λ1,β(Bm), by
computing the Rayleigh quotient on a test function constant on Ω we have

−|λ1,β(Bm)| ≤ λ̃1,β(Ωn) ≤ −βH
d−1(∂∗Ωn)

|Ωn|
= −βH

d−1(∂∗Ωn)

m
.

It implies that

Hd−1(∂∗Ωn) ≤ m

β
|λ1,β(Bm)|,

which gives us the required equiboundedness of the perimeters.

To conclude this section, we state a straightforward corollary to Theorem
3.6.1.

Corollary 3.6.3. The problem

max
{
λk,β(Ω) : Ω ⊂ Rd has �nite perimeter and |Ω| = m

}
has at least a solution Ω for every k ∈ N. Moreover, up to negligible sets, each
optimal set is bounded and can be written as the union of at most m|λk,β(Bm)|dωd

βd
+

k equibounded and well separated sets of �nite perimeter.

Proof. It is straightforward consequence of Theorem 3.6.1 applied with

F (x1, . . . , xk) := xk.
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3.7 Existence among (union of) simply connected

open sets in R2

A natural idea in shape optimization problems is to look for optimal domains
belonging to classes of open sets of R2, possibly relaxing the functional in-
volved. In the case of the Robin eigenvalues with negative boundary parame-
ter, it is interesting to consider the class of open, bounded sets Ω ⊂ R2 that are
and union of simply connected sets, with Hd−1(∂Ω) < +∞. In the following,
for the sake of brevity, as habitual in the �eld of shape optimization, we will
say that an open set Ω is �simply connected� if it is union of simply connected
sets, even if Ω is not connected by arcs. For instance, a disjoint union of two
balls will be considered simply connected.

In the framework of simply connected sets, it is convenient to de�ne the
relaxed eigenvalues by using the topological boundary and not the reduced
one. We will work in H1(Ω), extending the function by zero in Ωc and de�ning
the traces on the boundary as in the SBV setting.

The idea to restrict ourselves on the class of unions of simply connected
open sets has been inspired by the existence results in Section 6 of [11]. In that
case, authors proved that in the class of open sets with �xed measure and whose
topological boundaries have �nite length, maximizers for the (relaxed) Steklov
eigenvalues exist and are union of at most k simply connected sets (Theorem
6.4). Their argument is based on the fact that, for Steklov eigenvalues, starting
from an admissible domain Ω of measurem, with possible holes, one can always
build a simply connected competitor Ω̃ whose Steklov eigenvalues are larger
than the respective eigenvalues of Ω (see Lemma 6.5 and Lemma 6.6 in [11]).
More precisely, Ω̃ is built by �lling in the possible holes of Ω, obtaining a set
Ω̂ whose relaxed Steklov eigenvalues are larger than the Steklov eigenvalues
of Ω; then, rescaling Ω̂ (by a scaling factor less than 1) in order to satisfy
the measure constraint, we obtain the simply connected competitor Ω̃ whose
eigenvalues are still larger (since the scaling factor is less than 1, see Item (b)
in Lemma 6.2 of [11]). In our framework, it is not possible to proceed in the
same way, since we are not able to compare the Robin eigenvalues of Ω and Ω̂

(built as above) and we do not have any good scaling property. So, the simply
connectedness of admissible domains will be a priori required.

We �rst give a suitable de�nition of relaxed eigenvalues.

De�nition 3.7.1 (relaxed eigenvalues for simply connected open sets in R2).
Let Ω ⊆ R2 be open, bounded and simply connected such that H1(∂Ω) < +∞.
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For every k ∈ N we set

λ̄k,β(Ω) := inf
S∈Sk

sup
u∈S\{0}

∫
Ω

|∇u|2 dx− β
∫
∂Ω

[
(u+)2 + (u−)2

]
dH1∫

Ω

u2 dx

, (3.24)

where Sk denotes the space of all k-dimensional subspaces of H1(Ω)∩L∞(Ω).

Remark 3.7.2. Let us observe that the de�nition above is correct. Indeed,
as ∂Ω is H1-recti�able and u ∈ H1(Ω) ∩ L∞(Ω), if we consider the extension
by zero on Ω, we obtain a function in SBV (R2) ∩ L∞(R2) (still denoted by
u) which has the jumps on ∂Ω. In other words, we can speak about u+ and
u− on ∂Ω, the upper and lower approximate limits of u pointwisely H1-a.e.
on ∂Ω. In general, u+(x) and u−(x) are not di�erent, since ∂Ω can be larger
than the jump set Ju of u. For smooth domains, {u+(x), u−(x)} = {u(x), 0},
where u(x) is the value of the boundary trace of u from the inside and 0 is th
trace of the zero function outside the domain. We remark that it is necessary
to work with the whole topological boundary, not only with the reduced one,
to consider also simply connected sets with fractures where some functions in
H1(Ω) have di�erent traces on the two sides of the fracture: this behavior is
possible when dealing with the Hc-topology on this class of sets.

Figure 3.1: The sequence of open annular sectors (Ωn)n Hc-converges to the set Ω, an

annulus cut on a radial segment. The function given by the polar coordinate ϑ

(counted counter-clockwise starting from the cut) is H1(Ω), but it has traces

0 and 2π respectively on the left side and the right side of the segment.

Moreover, in terms of the application of the min-max formula, the H1

spaces of simply connected open sets having the same connected components
with a di�erent placement in the space, are equivalent, even if the connected
components lie at null distance.

In view of this, we can assume that the connected components of the ad-
missible sets are well separated.
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Figure 3.2: Two sets Ω and Ω′ given by di�erent disjoint unions of the open sets Ωn :=

B1/2n (n ∈ N). Both unions are simply connected according to our de�nition

and the two spaces H1(Ω) ∩ L∞(Ω) and H1(Ω′) ∩ L∞(Ω′) are equivalent for

the computation of λk,β .

The problem we are going to study is the following:

max
{
F (λ̄1,β(Ω), . . . , λ̄k,β(Ω)) :

Ω ⊂ R2 open, bounded, simply connected, H1(∂Ω) < +∞, |Ω| = m
}
,

(3.25)

where F : Rk → R as in the hypotheses of Theorem 3.6.1.
It is a well known fact (see 1.4.18) that the class of sets of R2 which are

contained in a box and are union simply connected open sets is compact with
respect to the Hc-topology. Then, we need some conditions that ensure us
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that the limit set is still admissible for our problem. Moreover, we need some
upper semicontinuity result for λ̄k,β; to this aim it is necessary to gain the lower
semicontinuity of the curvilinear integral

∫
∂Ω

[(u+)2 + (u−)2] dH1. The next
theorem provides us the required semicontinuity of the boundary integral and
is based on the ideas in Proposition 2.6 in [11], but there are some technical
di�erences that it is worth to emphasize. The main di�erence is that in next
theorem we consider functions with possible jumps, while in the above cited
proposition authors proved the lower semicontinuity result for functions in
H1(R2), then without jumps.

Theorem 3.7.3. Let Ω ⊆ R2 be open, k ∈ N, and (Kn)n, K ⊂ Ω be compact
sets with at most k connected components, such that lim supnH1(Kn) < +∞
and Kn → K in the Hausdor� metric. Let un ∈ H1(Ω \Kn) be such that

lim sup
n→+∞

‖un‖H1(Ω\Kn) +

∫
Kn

[
(u+

n )2 + (u−n )2
]
dH1 < +∞. (3.26)

Then, there exists u ∈ H1(Ω \K) such that, up to subsequences, we have

un → u strongly in L2
loc(Ω),

∇un ⇀ ∇u weakly in L2(Ω;R2),

and ∫
K

[
(u+)2 + (u−)2

]
dH1 ≤ lim inf

n→+∞

∫
Kn

[
(u+

n )2 + (u−n )2
]
dH1. (3.27)

Proof. Our proof is based on the same ideas as in Proposition 2.6 in [11], with
some technical di�erences that will be highlighted step by step.

Without loss of generality we can assume un ≥ 0 and k = 1 (i.e. Kn, K are
connected). In view of the weak compactness in L2(Ω) (‖un‖L2(Ω) is uniformly
bounded), of the convergence in the sense of Hausdor� and in measure of the
open set Ω \Kn to Ω \K and then of the convergence in the sense of Mosco
of H1(Ω \ Kn) to H1(Ω \ K), there exists u ∈ H1(Ω \ K) such that, up to
subsequences,

un ⇀ u weakly in L2(Ω;R2),

∇un ⇀ ∇u weakly in L2(Ω;R2).

Moreover, by (3.26), since lim supnH1(Kn) < +∞, each function u2
n belongs to

SBV (Ω) and then, by Proposition 5.1.4 (see Theorem 3.3 in [24]), we get that
un → u strongly in L2

loc(Ω). Notice that Proposition 5.1.4 is not su�cient to
obtain (3.27), as in general Kn and K are larger than Jun and Ju, respectively.
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Notice that we can not use directly Proposition 2.6 in [11] as there authors
consider functions un ∈ H1(R2), then without jumps on Kn.

Without loss of generality, we can assume, by truncation, that there exists
M > 0 such that, for every n ∈ N, un ≤M a.e.; moreover, we can assume that
Ω is bounded and smooth in order to work in a smooth neighbourhood of K.

We divide the proof of (3.27) in several steps.

Step 1. In view of the hypotheses on un, u, we deduce that un, u, u2
n, u

2 ∈
SBV (Ω),

Ju2
n

= Jun ⊆ Kn, Ju2 = Ju ⊆ K

and that the SBV -traces u±n , u
± are well de�ned, as the functions are in L∞ and

Kn, K are H1-countably recti�able. Following the measure theoretic approach
in Step 1 of the proof of Proposition 2.6 in[11], let us de�ne the sequence of
positive Radon measures (µn)n ⊂Mb(Ω) by setting, for any Borel set A ⊆ Ω

µn(A) :=

∫
A∩Kn

[
(u+

n )2 + (u−n )2
]
dH1

(in the above cited result the measure µn is de�ned considering the boundary
integral of a function un that has no jumps onKn; here, we consider both SBV -
traces u±n ). In view of the previous assumptions, the sequence (|µn|(Ω))n is
equibounded, then we can assume that there exists µ ∈ Mb(R2) such that
µn

∗
⇀ µ. Let now be ν := H1bK. Since u ∈ SBV (Ω) and K is H1-countably

recti�able, for H1-a.e. point x ∈ K the following facts hold true:

(a) K admits an approximate tangent line lx at x, since K is H1-countably
recti�able;

(b) x is either an approximate jump point or a an approximate continuity
point for u;

(c) the Radon-Nikodym derivative dµ/dν is given by

dµ

dν
(x) = lim

ρ→0+

µ
(
Q2ρ(x)

)
ν
(
Q2ρ(x)

) .
Let us prove that

dµ

dν
(x) ≥ u+(x)2 + u−(x)2. (3.28)
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for H1-a.e. x ∈ K. Indeed, if (3.28) holds, denoting by µa and µs respectively
the absolutely continuous and the singular part of µ with respect to ν we have∫

K

[
(u+)2 + (u−)2

]
dH1 ≤

∫
K

dµ

dν
dH1 = µa(Ω) ≤ µa(Ω) + µs(Ω)

= µ(Ω) ≤ lim inf
n→+∞

µn(Ω) = lim inf
n→+∞

∫
Kn

[
(u+

n )2 + (u−n )2
]
dH1

i.e. the required lower semicontinuity in (3.27).

Step 2. Let x ∈ K satisfying the previous properties (a), (b), (c) and show
some geometric properties of K near x, using the same blow up argument
as in Step 2 of Proposition 2.6 in [11] (the only di�erence is that, since we
could have two di�erent traces of the function u across K, a further rotation
could be needed to associate u+ and u− respectively to the upper and lower
halfplanes determined by lx). Without loss of generality, we can suppose that
x = 0 (we will then prove (3.28) in the form dµ

dν
(0) ≥ u+(0)2 +u−(0)2) and that

the approximate tangent line to K at the point 0, say l := l0, is horizontal
(i.e. l ⊂ {x2 = 0}). Moreover, possibly rotating by π, we can assume that the
approximate limit associated to the upper halfplane {x2 > 0} is u+. For every
ε > 0, let us set

Kε :=
1

ε
K;

by the de�nition of approximate tangent line, we obtain that

H1bKε
∗
⇀ H1bl (3.29)

weakly* inMb(R2) as ε goes to 0. Let us prove that, for every r > 0

Kε ∩Q2r(0)→ l ∩Q2r(0) (3.30)

in the Hausdor� topology as ε goes to 0.
Let (εn)n ⊂ R+ with εn → 0. Since the Hausdor� topology is compact on

the class of compact connected sets, for every �xed m ∈ N, the sequence of
compact connected sets (

Kεn ∩Q2m(0)
)
n

converge to a compact connected set Km
0 up to a subsequence (possibly de-

pending on m). In particular, we can choose, via a diagonal argument, a
subsequence (εnh)h ⊆ (εn)n that realizes the above H-convergence for every
m ∈ N, i.e.

Kεnh
∩Q2m(0)

h→∞−→ K0
m ∀m ∈ N



78 Maximization of λk,β(Ω) (β < 0)

in the Hausdor� topology. Let us remark that, for every m ∈ N, it holds

Km
0 ⊆ Km+1

0

and

Km+1
0 ∩Q2m(0) = Km

0 ∩Q2m(0).

Let us set

K0 :=
⋃
m∈N

Km
0

and prove that K0 = l.

• K0 ⊆ l. Let us assume by contradiction that there exists ξ ∈ K0 \ l.
Since l is closed, there exists η > 0 such that Bη(ξ) ∩ l = ∅. Since
H1bKεnh

∗
⇀ H1bl weakly* inMb(R2), then

0 = (H1bl)(Bη(ξ)) ≥ lim sup
h→+∞

(H1bKεnh
)(Bη(ξ)) = lim

h→+∞
H1(Kεnh

∩Bη(ξ)).

(3.31)
Kεnh

is connected and H1-recti�able; hence, it is also connected by arcs.
Let us consider a sequence (ξεnh )h, converging to ξ, with ξεnh ∈ Kεnh

.
For su�ciently large h ∈ N, every point ξεnh is connected to 0 ∈ Kεnh

by

an arc of positive length contained in Kεnh
∩Bη(ξ), against (3.31).

• l ⊆ K0. If we assume by contradiction that there exists ξ ∈ l \K0, then,
for some η > 0, we have Bη(ξ) ∩ Kεnh

= ∅ for su�ciently large h ∈ N,
against the weak* convergence H1bKε

∗
⇀ H1bl.

Then K0 = l and this implies (3.30).

Step 3. Now, we follow the same ideas as in Step 3 of Proposition 2.6 in
[11] and look for a su�cient estimate to get 3.28 and conclude the proof of
the theorem via a slicing argument. Such a su�cient estimate (see (3.34)) will
be obtained with the same blow up argument in [11]. The main di�erence
with our proof is that the limit function of our blow up is a piecewise constant
function, with a possible jump on the line {x2 = 0}, while the limit function
in [11] is a constant function.

Let us observe that

lim
ε→0+

H1(Q2ε(0) ∩K)

2ε
= lim

ε→0+

H1(Q2ε(0) ∩K)

H1(Q2ε(0) ∩ l)
· H

1(Q2ε(0) ∩ l)
2ε

= 1.
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Then, for every positive, decreasing, in�nitesimal sequence (εm)m, it holds

dµ

dν
(0) = lim

m→+∞

µ
(
Q2εm(0)

)
ν
(
Q2εm(0)

) = lim
m→+∞

µ
(
Q2εm(0)

)
H1
(
Q2εm(0) ∩K

)
= lim

m→+∞

µ
(
Q2εm(0)

)
2εm

.

Moreover, by the weak* convergence µn
∗
⇀ µ we have

µ
(
Q2εm(0)

)
≥ lim sup

m→+∞
µn

(
Q2εm(0)

)
.

Hence, there exists a sequence of index (nm)m such that

ε2
m + µ

(
Q2εm(0)

)
≥ µnm

(
Q2εm(0)

)
and that, setting

K̂m :=
1

εm
Knm ∩Q2(0),

we have the convergence
K̂m → l ∩Q2(0)

in the Hausdor� metric.
Let us de�ne the function vm by

vm(y) := unm(εmy) (y ∈ Q2(0)).

Observe that, in view of the strong L2-convergence un → u, we can choose the
sequence (nm)m in such a way that

vm → u± strongly in L2(Q2(0)) (3.32)

where u± is the piecewise constant function given by

u±(x1, x2) :=

{
u+(0) if x2 > 0

u−(0) if x2 < 0

(instead, in Step 3 of Proposition [11], the limit function of the blow up is
the constant function u(0)). Moreover, the absolutely continuous part of the
gradients of the functions vm satisfy the convergence

∇vm → 0 strongly in L2(Q2(0)) (3.33)
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Indeed, (3.32) is a consequence of the strong L2-convergence un → u and of
the convergence of K̂m to l ∩ Q2(0). Convergence (3.33) is due to the strong
L2-convergence ∇un → ∇u and to the equality∫

Q2(0)

|∇vm(y)|2 dy =

∫
Q2(0)

|∇(unm(εmy))|2 dy =

∫
Q2εm (0)

|∇unm(x)|2 dx;

in addition, (3.33) implies that (∇um)m is uniformly bounded in L2(Q2(0);R2).
In view of the choice of (nm)m, we obtain

dµ

dν
(0) = lim

m→+∞

µ
(
Q2εm(0)

)
2εm

≥ lim inf
m→+∞

µnm

(
Q2εm(0)

)
2εm

= lim inf
m→+∞

1

2εm

∫
Knm∩Q2εm (0)

[
(u+

nm)2 + (u−nm)2
]
dH1

=
1

2
lim inf
m→+∞

∫
K̂m

[
(v+
m)2 + (v−m)2

]
dH1.

Hence, if we prove that

1

2
lim inf
m→+∞

∫
K̂m

[
(v+
m)2 + (v−m)2

]
dH1 ≥ u+(0)2 + u−(0)2, (3.34)

we will get estimate (3.28), concluding the proof of the theorem. We point out
that all the arguments to perform the previous extractions of subsequences are
the same as in Step 3 of Proposition 2.6 in [11].

Step 4. To prove (3.34), we consider the one-dimensional sections of the
functions vm and u. We follow again the approach of Proposition 2.6 in [11],
more precisely of the Step 4; the main di�erence is that now we have to consider
�piecewise Sobolev� functions with a �nite number of jumps. So, an impor-
tant di�culty is that we have to gain some convergence of the traces of that
functions across their jump sets. The key point of that approach is to prove
that, up to subsequences, the piecewise Sobolev functions weakly converge in
their intervals of approximate continuity. In such a way, since the weak H1

convergence entails the uniform convergence, we gain the required continuity
of the traces.

Now, in view of the countably H1-recti�ability of K̂m, we can apply the
area formula (Theorem 2.71 in [2]) to the left hand side below, obtaining the
inequality

lim inf
m→+∞

∫ 1

−1

∫
(K̂m)x1

[
v+
m(x1, s)

2 + v−m(x1, s)
2
]
dH0(s) dx1

≤ lim inf
m→+∞

∫
K̂m

[
(v+
m)2 + (v−m)2

]
dH1,
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where
(K̂m)x1 :=

{
s ∈ [−1, 1] : (x1, s) ∈ K̂m

}
.

Let us consider a sequence (mk)k realizing the liminf in the left hand side
above, i.e.

lim
k→+∞

∫ 1

−1

∫
(K̂mk )x1

[
v+
mk

(x1, s)
2 + v−mk(x1, s)

2
]
dH0(s) dx1

≤ lim inf
m→+∞

∫
K̂m

[
(v+
m)2 + (v−m)2

]
dH1.

(3.35)

Notice that we can assume

lim sup
m→+∞

∫
K̂m

[
(v+
m)2 + (v−m)2

]
dH1 < +∞ (3.36)

and that, for a.e. x1 ∈ [−1, 1], H0((K̂m)x1) < +∞. We deduce that, for a.e.
x1 ∈ [−1, 1], v2

mk
(x1, ·) is a SBV (−1, 1) function, with a �nite number of jumps

(in (K̂m)x1) (so that it is piecewise H1 in (−1, 1)) and it holds

vmk(x1, ·)→ u± strongly in L2(−1, 1) (3.37)

where we denoted for brevity again by u± the one dimensional section of the
piecewise constant function u±. Now, let us assume that, for every x1 ∈]−1, 1[,
the slices (K̂mk)x1 are de�nitely non-empty, i.e. there exists N(x1) ∈ N such
that

(K̂mk)x1 6= ∅ (3.38)

for every k ≥ N(x1). Then, it makes sense to consider the convergence

(K̂mk)x1 → (x1, 0) (3.39)

in the Hausdor� metric (it is a consequence of the fact that K̂mk → l∩Q2(0)).
Now, let us de�ne

i(x1, k) := inf
{
y : y ∈ (K̂mk)x1

}
,

s(x1, k) := sup
{
y : y ∈ (K̂mk)x1

}
.

Notice that vmk(x1, ·) ∈ H1
(

]− 1, 1[\(K̂mk)x1

)
, then, in particular, the func-

tion is in both in H1(]−1, i(x1, k)[) and H1(]s(x1, k), 1[). Moreover, since both
points i(x1, k) and s(x1, k) converge to 0, the open interval ]i(x1, k), s(x1, k)[

converges to the empty set and the intervals ]−1, i(x1, k)[ and ]s(x1, k), 1[ con-
verge respectively to ]−1, 0[ and ]0, 1[. Combining all this facts, we deduce that
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it is su�cient to prove that vmk(x1, ·) converges weakly in H1(] − 1, i(x1, k)[)

and H1(]s(x1, k), 1[) respectively to u−(0) and u−(0), then uniformly. More
precisely, we apply the same arguments as in Step 4 of Proposition 2.6 in [11]
on each one of the intervals ] − 1, i(x1, k)[ and ]s(x1, k), 1[, possibly rescaling
all the moving domains in such a way that all the intervals have length 1.

Let us �x ε > 0. In view of and of the equiboundedness of (‖∇vm‖L2(Q2(0)))m,
we observe that the absolutely continuous parts of the derivatives of vmk
are equibounded in L2(−1, 1); then, applying estimates (3.35), (3.36) Fatou's
Lemma we have

∫ 1

−1

lim inf
k→+∞

[
ε
(∫ 1

−1

|∂2vmk(x1, s)|2ds
)

+

∫
(K̂mk )x1

[
v+
mk

(x1, s)
2 + v−mk(x1, s)

2
]
dH0(s)

]
dx1

≤ lim inf
k→+∞

[
ε
(∫

Q2(0)

|∂2vmk |2dx
)

+

∫ 1

−1

∫
(K̂mk )x1

[
v+
mk

(x1, s)
2 + v−mk(x1, s)

2
]
dH0(s)

]
dx1 < +∞.

The integrand function on the left hand side is �nite for a.e. x1 ∈]−1, 1[; then,
there exists a subsequence (vmkh )h (possibly depending on x1) that realizes the
above liminf and so

lim
h→+∞

[
ε
(∫ 1

−1

|∂2vmkh (x1, s)|2ds
)

+

∫
(K̂mkh

)x1

[
v+
mkh

(x1, s)
2 + v−mkh

(x1, s)
2
]
dH0(s)

]
< +∞.

(3.40)

We deduce that (vmkh (x1, ·))h is uniformly bounded in H1
(

(−1, 1) \ (K̂mk)x1

)
and then that the sequences

(
‖vmkh (x1, ·)‖H1(]−1,i(x1,k)[)

)
h

,
(
‖vmkh (x1, ·)‖H1(]s(x1,k),1[)

)
h

are uniformly bounded. In view of the previous remarks, we deduce that we
have the required convergence of the traces.

Now, we can conclude the proof recalling again the same arguments as in
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Proposition 2.6 in [11]. Applying Fatou's Lemma we get

u+(0)2 + u−(0)2 =

∫
(x1,0)

u+(0)2 + u−(0)2 dH0(s)

≤ lim inf
h→+∞

∫
(K̂mkh

)x1

v+
mkh

(x1, s)
2 + v−mkh

(x1, s)
2 dH0(s)

≤ lim inf
k→+∞

[
ε
(∫ 1

−1

|∂2vmk(x1, s)|2ds
)

+

∫
(K̂mk )x1

[
v+
mk

(x1, s)
2 + v−mk(x1, s)

2
]
dH0(s)

]
.

Integrating in the variable x1 and using Fatou's Lemma and (3.35), we conclude
that

2
(
u+(0)2 + u−(0)2

)
=

∫ 1

−1

[
u+(0)2 + u−(0)2

]
dx1

≤ lim inf
k→+∞

[
ε
(∫

Q2(0)

|∂2vmk |2dx
)

+

∫ 1

−1

∫
(K̂mk )x1

[
(v+
mk

)2 + (v−mk)
2
]
dH0(s) dx1

]
≤ εC + lim inf

m→+∞

∫
K̂m

[
(v+
m)2 + (v−m)2

]
dH1.

Let us assume that (3.38) does not hold, i.e. that there exist a ∈] − 1, 1[

and a subsequence (mkh)h (generally depending on a) such that (K̂mkh
)a = ∅.

Then, for every x1 6= a (take for instance x1 > a) and h ∈ N su�ciently
large, it necessarily holds (K̂mkh

)x1 6= ∅; otherwise, in view of the Hausdor�

convergence K̂mkh
→ l ∩Q2(0), we would have

K̂mkh
∩ (]a, x1[×R) 6= ∅

and then the set Kmkh
would not be connected, obtaining a contradiction.

Hence, we apply the previous argument to x1 6= a to get (3.34) also in this
case, concluding the proof.

To ensure compactness of maximizing sequences, we need some results anal-
ogous to Proposition 3.4.3 and Lemma 3.5.2. Fortunately, these results are still
valid in our context, with analogous proofs. The only di�erence is that, in the
integrals over the curves ∂Ω, we have to estimate the traces of an admissible
function possibly from both sides of ∂Ω.
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Proposition 3.7.4. Let Ω ⊂ R2 open and simply connected with |Ω| = m; let
A > 0 such that λ̄k,β(Ω) > −A. Then, Ω has at most N connected components
Ω1, . . . ,ΩN , with N = N(m,β, k, A), and diam(Ωj) ≤ D(m,β, k, A), i.e. the
diameters of connected components are uniformly bounded.

Proof. The proof is based on the same argument as in the proof of Proposition
3.4.3 (see also Proposition 6.3 in [11]): we use the counterpart of Lemma
3.4.1 for two-dimensional simply connected sets with H1-�nite boundary; to
be precise, in this context, we can consider as critical measure m∗ := 1

2

(
β
Ac

)2
.

Then, we prove the uniform bound on the number of well separated parts of
Ω (again as in Proposition 3.4.3) and, �nally, we deduce by Remark 3.7.2 that
the well separated sets are exactly the connected components of Ω.

Lemma 3.7.5 (Isoperimetric control of the relaxed spectrum). Let Ω ⊂ R2 an
open simply connected set with H1(∂Ω) < +∞ and let |Ω| = m. Then, there
exist two a positive constants C1, C2 such that

λ̄k,β(Ω) ≤ −C2

k −
β

C1

H1(∂Ω)

|Ω|


−

+
C1k

|Ω|
χ]0,+∞[

(
k − β

C1

H1(∂Ω)

)

Proof. The proof of this lemma is based on the same arguments as in the proof
of Lemma 3.5.2 in the case d = 2. We apply Lemma 3.5.1 to the �nite non-
atomic measures H1b∂Ω and L2bΩ and, after de�ning the annuli Ai and the
test functions hi, we obtain the constants

C2 := max
i=1,...,2k

∫
2·Ai
|∇hi|2, C1 :=

C2

γ2

(notice that the constant C1 here is half the constant C1 found in Lemma 3.5.2,
because we consider both traces of hi on ∂Ω).

Remark 3.7.6. Another interesting way to prove the bound on the diameter
of good candidates is to use Lemma 3.7.5 and the fact that we are in dimen-
sion two. Indeed, Lemma 3.7.5, applied to the sets of a maximizing sequence
(Ωn)n, implies that the sequence (H1(∂Ωn))n is uniformly bounded, with at
most N(A,m, β, k) connected components. In view of this fact, the sum of
the diameters of the connected components of Ωn is bounded by a constant
independent of n ∈ N. Moreover, for every admissible set Ω, the variational
expression of λ̄k,β(Ω) involves the functional space H1(Ω) ∩ L∞(Ω), that is
invariant under translations of the connected components of Ω. Notice that
N is independent on n; then we can conclude that (diam(Ωn))n is uniformly
bounded.
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Now we are able to prove the main result in this section.

Theorem 3.7.7. Problem (3.25) admits at least a solution Ω ⊂ R2 in the class
of open, bounded, simply connected sets with |Ω| = m and H1(∂Ω) < +∞.
Moreover, Ω has at most N(k, β,m) connected components, the uniform bound
given as in Proposition 3.7.4.

Proof. Let (Ωn)n be a maximizing sequence of open, simply connected sets
in R2 such that H1(∂Ωn) < +∞ and |Ωn| = m for every n ∈ N. Let us
prove that there exists an open, simply connected set Ω ⊂ R2 such that, up
to subsequences, Ωn → Ω in the Hc-topology, H1(Ω) < +∞, |Ω| = m and, for
every h ∈ N it holds

λ̄h,β(Ω) ≥ lim sup
n∈N

λ̄h,β(Ωn). (3.41)

Let us observe that, as in Theorem 3.6.1, we can suppose that λ̄h,β(Ωn) ≥
λβ,k(Bm) and then, in view of Lemma 3.7.5, we have

sup
n∈N
H1(∂Ωn) < +∞.

Moreover, as shown in Proposition 3.7.4, Ωn has at most N(h, β,m) uniformly
bounded (and possibly empty) connected components, say Ω1

n, . . . ,Ω
N
n . Then,

the sequence (Ωn)n is uniformly bounded in a �xed open bounded set B ⊂ R2,
since supn∈NH1(∂Ωn) < +∞ implies that supn∈N diam(Ωn) < +∞ in R2.
Moreover, as #(Ωc

n) = 1, there exists an open set Ω ⊂ B such that Ωn → Ω

in the Hc-topology and #(Ωc) = 1, i.e. Ω is simply connected (see Remark
1.4.18). In view of the structure of the well separated parts of Ωn, the boundary
of each of them is connected (#(∂Ωj

n) = 1) and then #(∂Ωn) ≤ N(h, β, d,m).
In view of Golab Theorem 1.4.11, we deduce that H1(∂Ω) < +∞. These
uniform bounds on #(∂Ωn) and H1(∂Ωn) ensure us that χΩn → χΩ in L1(R2)

(see, for instance, Theorem 7.4.7 in [17]), then

|Ω| = lim
n→+∞

|Ωn| = m,

i.e Ω is an admissible set for (3.25). Moreover, the Hc-convergence of Ωn to Ω

implies that H1(Ωn)→ H1(Ω) in the sense of Mosco (see Proposition 1.5.3).
Let now ε > 0 and let S an admissible vector space in the min-max formula

for λ̄h,β(Ω) such that

λ̄h,β(Ω) ≥ max
u∈S\{0}

∫
Ω

|∇u|2 dx− β
∫
∂Ω

[
(u+)2 + (u−)2

]
dH1∫

Ω

u2 dx

− ε. (3.42)
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Let {uj : j = 1, . . . , h} a L2(Ω)-orthonormal basis for S. Then, for every j =

1, . . . , h, there exists vnj ∈ H1(Ωn) such that, denoting by the same symbol
the extension by zero of a function outside its support, vnj → uj strongly
in L2(R2) and ∇vnj → ∇uj strongly in L2(R2;R2). Now, since {u1, . . . , uh}
is L2(Ω)-orthonormal and Ωn → Ω in L1(R2), we deduce that, for n ∈ N
su�ciently large, {vn1 , . . . , vnh} can be chosen linearly independent in L2(Ω).
Let Sn := span {vn1 , . . . , vnh}; it is an admissible subspace for the computation
of λ̄h,β(Ω). Let

vn =
h∑
j=1

αnj v
n
j ∈ Sn

realizing the maximum for the relaxed Rayleigh quotient R̄ on Sn:

max
w∈Sn

R̄(w) = R̄(vn).

Without loss of generality, we can assume

h∑
j=1

(αnj )2 = 1.

Then, up to subsequences, αnj → αj in R, with

h∑
j=1

(αj)
2 = 1.

Setting

v =
h∑
j=1

αjuj,

we have that v ∈ S \ {0}, vn → v strongly in L2(R2) and ∇vn → ∇v in
L2(R2;R2). Using (3.42), the continuity of the volume integrals and the lower
semicontinuity of the boundary integral (see Theorem 3.7.3), we have

lim sup
n→+∞

λ̄h,β(Ωn) ≤ lim sup
n→+∞

sup
w∈Sn

R̄(w) ≤ lim sup
n→+∞

R̄(vn) + ε

≤ R̄(v) + ε ≤ max
u∈S\{0}

R̄(u) ≤ λ̄h,β(Ω) + ε.

Letting ε → 0+ we obtain that λ̄h,β(·) is upper semicontinuos for maximizing
sequences, which are also compact; then reasoning in 3.6.1, we conclude that
(3.25) admits a solution.
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3.8 Existence of maximizers under geometric con-

straints

So far we took into account weak formulations of Problem (3.1) in di�erent
setting by the class of Lipschitz domains. In this sections we will restrict our-
selves to families of Lipschitz domains satisfying some geometrical constraints.
In particular, we will present some results holding in any dimension d for
uniformly regular sets and for convex sets.

3.8.1 Existence among uniformly regular sets

An existence result for Problem (3.1) is obtained when we focus on the class of
Lipschitz domains of �xed volume satisfying some ε-cone property. Recalling
the notation of Chapter 1, we denote by Cε,ε the cone of height ε and opening
ε.

To begin, let us �x m > 0 and ε > 0 such that the family{
Ω ⊂ Rd : |Ω| = m,Ω ∈ Cε

}
is non-empty.3 That assumption is usual when the admissible sets satisfy some
ε-cone property and, at the same time, a measure constraint (see, for instance
the statement of Theorem 4.3.1 in [60]).

We consider the maximization problem

max
{
F (λ1,β(Ω), . . . , λk,β(Ω)) : Ω ⊂ Rd, |Ω| = m,Ω ∈ Cε,

}
, (3.43)

where F : Rk → R is as in the hypotheses of Theorem 3.6.1.
Observe that, instead of considering the relaxed version of the eigenvalues

λ̃k,β, we can work with the classical eigenvalues λk,β, since for Lipschitz domains
the two de�nitions coincide. To prove the following theorem we follow again
the ideas in Theorem 5.6 in [11] and in Section 3.6.

Theorem 3.8.1 (existence of maximizers in Cε). Let F : Rk → R satisfying the
hypotheses ofm > 0 and ε > 0 such that the family

{
Ω ⊂ Rd : |Ω| = m,Ω ∈ Cε

}
is non-empty. Then, Problem (3.43) has at least a solution. Moreover, every
solution is a bounded Lipschitz domain with at most N connected components,
with the bounds on the diameter and on the number of connected components
depending only on m,β, d, k, ε.

3The family of sets above is empty, e.g., if m is smaller than the volume of a cone

C(x, ξ, ε), see De�nition 1.4.19.
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Proof. The proof uses the same arguments as in Theorem 3.6.1. First of all, let
us observe that, in view of the assumptions on m and ε, there exists at least an
admissible set E ∈ Cε such that |E| = m. Let (Ωn)n be a maximizing sequence
for (3.43); we can assume without loss of generality that λk,β(Ωn) ≥ λk,β(E)

for every n ∈ N. As in the case of measurable sets, by Proposition 3.5.2 we
have that

sup
n
Hd−1(∂Ωn) < +∞. (3.44)

Moreover, by 3.4.3, Ωn is disjoint union of at most N equibounded open Lips-
chitz sets Ωj

n satisfying the ε-cone property. In view of the uniform regularity,
the uniform bound on diam(Ωj

n) depends also on ε and even the upper bound
N on the number of the connected components depends on ε (N cannot exceed
the value m/|C(x, ξ, ε)| for any x ∈ Rd and ξ ∈ Sd−1, since every connected
component has to contain at least a cone of the same size).

So, by Proposition 1.4.25, we deduce that there exists an open set Ω ∈ Cε
such that, up to subsequences,

Ωn
Hc

−→ Ω, χΩn

L1(Rd)−→ χΩ and Hd−1(∂Ωn)→ Hd−1(∂Ω)

(so, in particular, |Ω| = m).
To show that such admissible set Ω is a solution of the problem (3.43), we

argue in the same way as in Theorem 3.6.1.

Notice that the bound m/|C(x, ξ, ε)| for #Ω is not sharp: a deeper analysis
could give us a strictly smaller value.

3.8.2 Existence among convex sets

If we restrict ourselves on convex sets of given volume, Problem (3.1) still ad-
mits a solution. The interest in studying the problem is that the convexity
hypothesis provides extra compactness that make some arguments very imme-
diate. For instance, isoperimetric control of the spectrum and uniform bounds
on the diameter can be obtained in a di�erent and easier way than in the case
of measurable sets (and than also di�erently than in [11]). In the following of
this paragraph, we will mainly point out such simpli�cations.

Let us �x m > 0 and consider the maximization problem

max
{
F (λ1,β(Ω), . . . , λk,β(Ω)) : Ω ⊂ Rd convex, |Ω| = m

}
, (3.45)

where F : Rk → R is as in the hypotheses of Theorem 3.6.1.
First, we state Lemma 3.8.2 and Lemma ??, that are the counterpart we

already proved in the context of sets of �nite perimeter.



Maximization of λk,β(Ω) (β < 0) 89

Lemma 3.8.2. Let Ω ⊂ Rd be an open convex set such that |Ω| = m and let
A > 0 such that λk,β(Ω) > −A. Then the diameter of Ω is less than a positive
constant D = D(m,β, d, k, A).

Proof. The proof follows by Lemma 3.5.2, but in this framework it can be
obtained even arguing by contradiction. Indeed, if we suppose that there
exists a sequence (Ωn)n of admissible convex sets of measure m such that
λk,β(Ωn) > −A and diam(Ωn) diverges, this implies, in view of John's Ellipsoid
Theorem 1.4.15, that the sequence (ρn)n of the inradii of the inscribed ellipsoids
(In)n vanishes as n goes to +∞ (and then, the sequence (dρn)n of inradii of
the circumscribed ellipsoids (Cn)n vanishes, too). By 1.4.14(iii) we have that
both Hd−1(∂In) and Hd−1(∂Cn) diverge, and then Hd−1(∂Ωn) diverges too
(notice that Hd−1(∂Ωn) has the same asymptotic behaviour of Hd−1(∂In) and
Hd−1(∂Cn)). Then, λk,β(Ωn) negatively diverges, in contradiction with the
lower bound −A.

Remark 3.8.3. A shorter way to prove the previous lemma by contradiction
is the following. If the diameter for good candidates to maximize λk,β(Ω) was
not unifromly bounded, then Hd−1(∂Ωn) → +∞ as in the previous Lemma,
obtaining a contradiction with the following Lemma 3.8.4.

Lemma 3.8.4 (Isoperimetric control for convex sets). Let Ω ⊂ Rd a closed
convex set such that |Ω| = m. Then, there exist two positive constants C1 =

C1(d), C2 = C2(d) such that

λk,β(Ω) ≤ −C2

k
2
d |Ω|

d−2
d − β

C1

Hd−1(∂Ω)

|Ω|


−

+
C1k

2|Ω| 2d
χ]0,+∞[

(
k

2
d |Ω|

d−2
d − β

C1

Hd−1(∂Ω)

)
.

Remark 3.8.5 (uniform bound on the perimeters of good candidates). As in
Theorem 3.6.1, the previous lemma provides the estimate

sup
n
Hd−1(∂Ωn) < +∞.

This last uniform bound could also be deduced by proposition 1.4.14(i): as all
the convex sets Ωn are all contained in a ball whose diameter is given in 3.8.2,
all their perimeters are uniformly bounded by the surface area of the boundary
of that ball.

The main result of this section is the following.
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Theorem 3.8.6 (existence of a convex maximizer). Problem (3.45) has at
least a solution.

Proof. The thesis is achieved once seen that every maximizing sequence is
compact and using the upper semicontinuity of the functional.

3.9 Existence results with perimeter constraints

If we infer a priori a uniform bound on the perimeter, a result of optimality can
be found in all situations we has been found replacing the volume constraint
with a perimeter constraint; in such cases the isoperimetric control of the
spectrum is already achieved, as we bound a priori the perimeters of admissible
sets. A result of such type can be found in Proposition 4.1 in [20], where
authors give the proof of the existence of a �nite perimeter set maximizing

max
{
λ̃1,β(Ω) : |Ω| < +∞, P (Ω) ≤ c

}
,

basing their arguments on the analysis of maximizing sequences presented in
[18]. Moreover, in [20], authors point out that is not clear whether optimal
shapes saturate the constraint on the perimeter, i.e. we do not know whether
an optimal shape Ω satisfy the equality P (Ω) = c. This fact is due to the
uncontrollable behaviour of λ1,β(Ω) under rescaling. The following proposition
generalizes Proposition 4.1 in [20] (having, essentially, the same proof) to the
same family of functionals in Theorem 3.6.1; we only sketch the proof, for
which we refer to Proposition 4.1 in [20] and Theorem 3.6.1.

Proposition 3.9.1. Let F : Rk → R satisfy the same hypotheses as in Theo-
rem 3.6.1. Then,

max
{
F (λ̃1,β(Ω), . . . , λ̃k,β(Ω)) : |Ω| < +∞, P (Ω) ≤ c

}
(3.46)

admits a solution of �nite perimeter with a uniformly bounded number of well
separated sets of �nite perimeter lying at positive distance.

Proof. The compactness of a maximizing sequence (Ωn)n with respect to the
convergence in measure can be achieved in the same way as in Proposition
4.1 of [20], since the sequence (P (Ωn))n is uniformly bounded from above
(by c) and also the diameters are uniformly bounded in view of Proposition
3.4.3. Moreover, using the same arguments as in Proposition 4.1 of [20], we
can observe that there exist two positive constants 0 < m1 < m2 such that
m1 < |Ωn| < m2. Naming Ω a limit set of the compact sequence (Ωn)n, we
deduce that Ω is a set with �nite and, above all, strictly positive measure.
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Moreover, since the perimeters are lower semicontinuos (see again the proofs
of Theorem 3.6.1 or Proposition 4.1 in [20]), we deduce that P (Ω) ≤ c; then, Ω

is an admissible set and, in view of the upper semicontinuity of every relaxed
eigenvalue λ̃1,β(·), we can conclude that Ω is a maximizer for Problem (3.46).

Remark 3.9.2. In the same way, every other existence theorem throughout
the chapter (see Theorem 3.7.7 for planar simply connected sets, Theorem
3.8.1 for uniformly regular sets and Theorem 3.8.6 for convex sets in any di-
mension) can be rephrased replacing the measure constraint with an upper
bound on the perimeters. We omit the proofs of this new results since they are
a straightforward adaptation of the proofs of the original theorems (where the
admissible sets satisfy a measure constraint), keeping into account the same
remarks as in of Proposition 3.9.1 and in Proposition 4.1 in [20] (in order to
consider admissible sets satisfying an upper bound on the perimeter).

3.10 Further remarks

The smoothness of the boundary of optimal sets is an unsolved problem, which
probably is very di�cult. For now, progress in this direction was done only
for the spectral problems involving Dirichlet boundary conditions or Robin
boundary conditions with positive parameter (but in this last case only for
local minimizers of energy type functionals). Provided the optimal set was
smooth and λk,β was simple, the optimality condition reads (see [5])∫

∂Ω

(
|∇∂Ωu|2 − (λk,β(Ω) + β2 + βH)u2

)
V · n dHd−1 = 0, (3.47)

for every smooth vector �eld satisfying
∫
∂Ω
V · n dHd−1 = 0. Above, H stands

for the mean curvature of ∂Ω.
The following inequality holds true

λ1,β(Ω) ≤ −β2.

We refer the reader to Giorgi and Smits [53, Theorem 2.3] and to Daners and
Kennedy [40, Lemma 2.1] in the context of Lipschitz sets, but it can naturally
be extended to the �rst relaxed eigenvalue in both frameworks of measurable
or simply connected sets. For smooth planar domains the following inequality
was proved in [5]

λ1,β(Ω) < −β2 − 2π

H1(∂Ω)
β.
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It remains unclear how many connected components (or well separated sets)
should have the solution of problem (3.1). Even for k = 1 the connectedness
of the optimal shape is not straightforward. Assume that the optimal set
consists on two well separated sets. One of them will give the �rst eigenvalue,
and the second one could possibly be cancelled. Nevertheless, erasing some
connected component would make that the measure of the set is not anymore
satisfying the constraint. Contrary to the case of positive boundary parameter,
the behavior of the eigenvalues to dilations is not controlled, then we cannot
dilate the remaining components.

Assuming the smoothness of the boundary of the optimal set for λ1,β in
two dimensions of the space, one can prove its connectedness 4. Indeed, if
the connected component Ω1 giving the �rst eigenvalue uses less measure than
allowed, then the constraint

∫
∂Ω1

V · n dHd−1 = 0 on the admissible vector
�elds can be removed, leading to |∇∂Ω1u|2 − (λk,β(Ω1) + β2 + βH)u2 = 0 on
∂Ω1. Consequently,

λ1,β(Ω1) + β2 + βH ≥ 0

at almost every point of the boundary. This would contradict λ1,β(Ω1) <

−β2 − 2π
H1(∂Ω1)

β, after summation over ∂Ω1.

4This remark, due to James Kennedy, can be found in Section 6 of [18].



Chapter 4

Existence and regularity of

optimal convex shapes for

functionals involving the Robin

eigenvalues

We closed the previous chapter emphasizing that sometimes it looks very di�-
cult to prove the regularity of optimal shapes when the boundary parameter is
negative. In this chapter we consider a di�erent situation in which it is possible
to prove the regularity of the optimal shapes. In particular, we present the
results in [31], where we prove the existence of convex solutions for a problem
involving Robin eigenvalues with positive boundary parameter and we show
the C1 regularity of their boundaries.

We are interested in solving in Rd the following problem

min
{
F (λ1,β(Ω), . . . , λk,β(Ω)) + ΛP (Ω) : Ω ⊂ Rd bounded and convex

}
,

(4.1)
where Λ > 0, F : Rk → R is non decreasing and upper semicontinuos in each
variable and P (Ω) is the perimeter in the sense of De Giorgi (for Lipschitz set
it holds P (Ω) = Hd−1(∂Ω)). The prototypic problem of this family is

min
{
λ1,β(Ω) + . . .+ λk,β(Ω) + ΛP (Ω) : Ω ⊂ Rd bounded and convex

}
.

We will prove an existence result for the problem (4.1) and, under slightly
stronger hypotheses on F , we will be able to gain also regularity of the optimal
sets. The main result of the chapter is the following theorem.

Theorem 4.0.1. Let F : Rk → R be non decreasing and lower semicontinuos
in each variable. Then, Problem (4.1) admits at least a solution.
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Moreover, if F is di�erentiable and its partial derivative with respect to the
�rst variable is strictly positive, then every optimal solution has C1 boundary.

The result presented in the chapter, up to our knowledge, is new in litera-
ture, although similar problems have already been studied in di�erent settings
(e.g. with Dirichlet boundary conditions) and using di�erent techniques. The
proof of existence of optimal convex shapes (Theorem 4.1.3) follows a standard
approach used in shape optimization problems with geometrical constraints:
the idea is to work with the Hausdor� topologies and show that minimizing
sequences of open convex sets enjoy some properties that assure compactness.
The proof of the regularity of the convex solutions (Theorem 4.3.3) is based
on a cutting argument that allow us to show that, in order to minimize (4.1),
it is more convenient to remove corners.

The structure of the chapter is the following. In Section 4.1 we obtain
the existence of optimal convex shapes minimizing (4.1) via direct methods
of calculus of variations, proving that λk,β is lower semicontinuos and that
minimizing sequences are compact and do not degenerate or stretch inde�nitely
in any direction. Then, in Section 4.2, we estimate the gap between λk,β(Ω) and
λk,β(Ωε), where Ω is an admissible set with a singularity point on the boundary
and Ωε is another convex competitor obtained by a suitable cut of Ω around
the singularity point. Finally, in 4.3, we introduce the family of convex energy
subsolutions for (4.1), that generalizes the de�nition of solutions, then we
complete the proof of Theorem 4.0.1 showing the regularity of the boundaries
of the energy subsolutions. We close the chapter showing some related results
and making some remarks about the use of the technique presented.

4.1 Existence of convex minimizers

In this section we will prove the existence of bounded convex minimizers for
the problem (4.1) using the direct methods of calculus of variations. In view
of this strategy, we need the lower semicontinuity of the functional in (4.1)
with respect the Hausdor� topology, that ensures compactness of minimizing
sequences of convex sets. We even prove a continuity result for the eigenvalues
(Proposition 4.1.1, as a consequence of a deep analysis made in [28]) and we
show that a minimizing sequence satisfy some uniform cone property; then, in
view of Remark 1.4.26, the results presented the following sections are valid
even for convex closed sets.

The �rst step to prove the existence of minimizers is the following proposi-
tion, whose prove is obtained in [28] as a consequence of more general stability
results for elliptic problems with some Robin-type boundary condition (we re-
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fer the reader in particular to Theorem 3.2 and Corollary 3.4 in [28], where
the convergence of the spectrum of the Robin Laplacian is proved).

Proposition 4.1.1 (Continuity of λk,β). Let (Ωn)n be a sequence of open con-
vex sets converging to an open, non empty, convex set Ω in the Hausdor�
topology and let Ωn,Ω be contained in a compact set B ⊂ Rd. Then, for every
k ∈ N,

λk,β(Ω) = lim
n→+∞

λk,β(Ωn).

Proof. The proof of this result is a direct consequence of Theorem 3.2 and
Corollary 3.4 in [28], once proved that Hd−1(∂Ωn) converges to Hd−1(∂Ωn). In
view of the hypotheses, the sets Ωn and Ω satisfy a uniform cone property;
then, by Proposition 1.4.25, we deduce the convergence of the perimeters.

Remark 4.1.2 (Lower semicontinuity of λk,β). Even if the previous proposi-
tion provides the continuity of the eigenvalues, in order to prove the existence
of minimizers it is su�cient to have the lower semicontinuity of the eigenvalues.
Indeed, in [31] we proved (independently by the results in [28]) the following
lower semicontinuity result.

Let (Ωn)n be a sequence of open convex sets converging to an open, non
empty, convex set Ω in the Hausdor� topology and let Ωn,Ω be contained in
a compact set B ⊂ Rd. Then, for every k ∈ N,

λk,β(Ω) ≤ lim inf
n→+∞

λk,β(Ωn).

Proof. Without loss of generality, we can suppose lim infn→+∞ λk,β(Ωn) < +∞.
Let Vn be an admissible space for the computation of λk,β(Ωn) such that

λk,β(Ωn) = max
Vn

RΩn .

Let {un1 , . . . , unk} ⊂ H1(Ωn) an L2(Ωn)-orthonormal basis for Vn. Without loss
of generality we can suppose the sequence (λk,β(Ωn))n bounded. So, for every
i = 1, . . . , k, ∫

Ωn

|∇uni |2 dx+ β

∫
∂Ωn

(uni )2 dσ < C.

Then, supn ‖uin‖H1(Ωn) < +∞ for every i = 1, . . . , k. Moreover, by Proposition
1.5.4, H1(Ωn) converges toH1(Ω) in the sense of Mosco; then, by Remark 1.5.5,
there exist u1, . . . , uk ∈ H1(Ω) such that, up to subsequences, ũin → ui strongly
in L2(Rd) and ∇̃uni ⇀ ∇̃ui weakly in L2(Rd;Rd). Notice that u1, . . . , uk are
linearly independent in H1(Ω), since Ωn converges to Ω also in measure; hence,
the linear space V := span {u1, . . . , uk} is a competitor for the computation of
λk,β(Ω). Let w =

∑
αiui realizing the maximum of the Rayleigh quotient RΩ(·)
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on V and let wn :=
∑
αiu

n
i ∈ Vn. Observe that, up to subsequences, wn → w

strongly in L2(Rd) and χΩn∇wn ⇀ χΩ∇w weakly in L2(Rd;Rd). Since Ω,Ωn

are convex, uniformly bounded and converge to a convex set, they satisfy a
uniform cone property. Then, in view of Theorem 1.4.27, there exists a family
of uniformly bounded operators that extends wn and w to the whole of Rd in
such a way that wn ⇀ w weakly in H1(Rd). We can thus apply Proposition
3.2.3 to wn, w and ∂Ωn, ∂Ω to have the lower semicontinuity of the boundary
integrals. Finally, we have the convergence of the volume integrals at the
denominator and the lower semicontinuity of the L2-norms of the gradients in
the Rayleigh quotient. Using the fact that wn ∈ Vn, we conclude that

λk,β(Ω) ≤ max
V

RΩ = RΩ(w) ≤ lim inf
n→+∞

RΩn(wn) ≤ lim inf
n→+∞

max
Vn

RΩn

= lim inf
n→+∞

λk,β(Ωn),

obtaining the required lower semicontinuity of the eigenvalues.

We are now in a position to prove the existence of solutions of (4.1). The
key point of the following theorem is to proof that the diameters of the sets of
a minimizing sequence are uniformly bounded and that the limit set does not
degenerate in any direction.

Theorem 4.1.3. Problem (4.1) admits at least a bounded convex minimizer.

Proof. Let (Ωn)n be a minimizing sequence of admissible sets. From the opti-
mality of (Ωn)n, we have that supnHd−1(∂Ωn) < +∞. Then, via isoperimetric
inequality, we also have supn |Ωn| < +∞. Without loss of generality, up to
translations and rotations we can suppose that

diam(Ωn) = H1(Ωn ∩ {x2 = . . . = xd = 0})

and that

min
i=2,...,d

(
max

Ωn
xi −min

Ωn
xi

)
= max

Ωn
xd −min

Ωn
xd

i.e. the width of Ωn is minimal on the direction of the axe xd. We claim that
supn diam(Ωn) < +∞ and that, up to subsequences,

lim
n

(
max

Ωn
xd −min

Ωn
xd

)
> 0. (4.2)

We start proving (4.2) arguing by contradiction. Let us suppose that the limit
in (4.2) is zero; de�ne

Ω0
n := Ωn ∩ {xd = 0}
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and, for every x′ ∈ Ω0
n, the segment

ln(x′) := {(x′, xd) ∈ Ωn} .

Let us consider an admissible function u ∈ H1(Ωn) for the computation of
the Robin eigenvalues of Ωn and observe that, for every x′ ∈ Ω0

n, the function
xd 7→ u(x′, xd) is admissible for the computation of the Robin eigenvalues of
ln(x′). Then we have

R(u) =

∫
Ωn

|∇u|2 dx+ β

∫
∂Ωn

u2 dσ∫
Ωn

u2 dx

=

∫
Ωn0

dx′
∫

ln(x′)

[
|∇x′u|2 +

(
∂u

∂xd

)2
]
dxd + β

∫
Ωn0

dx′
∫

∂ln(x′)

u2(x′, xd)dH0(xd)

∫
Ωn0

dx′
∫
ln(x′)

u2 dxd

≥

∫
Ωn0

(∫
ln(x′)

(
∂u

∂xd

)2

dxd + β

∫
∂ln(x′)

u2(x′, xd) dH0(xd)

)
dx′∫

Ωn0

(∫
ln(x′)

u2 dxd

)
dx′

≥ min
x′∈Ω0

n

∫
ln(x′)

(
∂u

∂xd

)2

dxd + β

∫
∂ln(x′)

u2(x′, xd) dH0(xd)∫
ln(x′)

u2 dxd

.

(4.3)

Now, the term on the last side is a minimum computed among one dimensional
Rayleigh quotients on segments. Thanks to the monotonicity under homoth-
eties (2.7) and to the fact that all the ln(x′) are homothetical, we can conclude
that the required minimum is achieved on the longest segment lmaxn := ln(xmax),
so

R(u) ≥

∫
lmaxn

(
∂u

∂xd

)2

dxd + β

∫
∂lmaxn

u2(xmax, xd) dH0(xd)∫
ln(x′)

u2 dxd

≥ λ1,β(lmaxn )

as u(xmax, ·) is a competitor in the computation of λ1,β(lmaxn ). Let us observe
that, as we are contradicting (4.2), the length of lmaxn tends to zero as n goes
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to in�nity; then, by estimates (2.9), λ1,β(lmaxn ) tends to +∞, so R(u) = +∞
for every admissible function u ∈ H1(Ωn), which is impossible.

To prove that the diameters of the Ωn sets are uniformly bounded, we
argue straightforwardly by contradiction. If the sequence of the diameters
was unbounded, as the Ωn are convex and uniformly bounded in measure, the
product

d∏
j=1

(
max

Ωn
xj −min

Ωn
xj

)
has to be uniformly bounded in measure. In view of our assumptions, as
the diameter of Ωn tends to in�nity, necessarily the �rst term of the product
diverges and so at least the smallest among the remaining d− 1 terms has to
vanish; in other words, we would have

lim
n

(
max

Ωn
xd −min

Ωn
xd

)
= 0,

in contradiction with (4.2).
Then (Ωn)n is an equibounded sequence of convex sets which converge (up

to subsequences) to a bounded convex set Ω in the Hausdor� topology; more-
over, by Proposition 1.4.14, the convergence is also in measure. In addition,
thanks to (4.2), the limit set Ω is not degenerate (i.e. it has positive measure)
and

P (Ω) ≤ lim inf
n→+∞

P (Ωn).

Finally, thanks to the continuity of the Robin eigenvalues (Proposition 4.1.1,
but the lower semicontinuity is su�cient, see Remark 4.1.2) and to the mono-
tonicity and lower semicontinuity of the function F in each variable, we obtain

F (λ1,β(Ω), . . . , λk,β(Ω)) ≤ lim inf
n→+∞

F (λ1,β(Ωn), . . . , λk,β(Ωn)),

so we can conclude that Ω is a minimizer of (3.1).

Remark 4.1.4. The previous existence theorem is still valid if, instead of
penalizing the perimeter as in Problem (4.1), we imposee a uniform constraint
on the measures, on the perimeters or on the diameters of the admissible
convex sets and minimize only the functional F (λ1,β(Ω), . . . , λk,β(Ω)).

4.2 Estimates on the cut set

The aim of the results presented in this section is to show that, under some
additional hypotheses, the optimal convex shapes have C1 boundary. We will



Existence and regularity of optimal convex shapes 99

prove this regularity result for a larger class of sets, the so-called energy sub-
solutions for Problem (4.1) (see De�nition 4.3.1); we will see that optimal sets
for Problem (4.1) are also energy subsolutions. The technique to prove the reg-
ularity of the boundary is rather intuitive: supposing, by contradiction, that
an energy subsolution Ω has a singularity point x0 for its boundary, we cut
a suitable �ε-neighbourhood� of x0, obtaining a convex competitor Ωε. Then,
comparing the values of (3.1) for Ω and Ωε, we observe that there exists a cut
set strictly better than the optimal set Ω, obtaining a contradiction. The key
point of this approach is to estimate the gap between λh,β(Ω) and λh,β(Ωε), for
every h ∈ N.

We will distinguish between the case d = 2 and d > 2, since the arguments
used are based on 2-dimensional sections and on a lower bound on the ratio
between two surface areas; in dimension larger than two this is not immediate
as in R2.

4.2.1 The case d = 2

In the planar setting, many assumptions can be done. First of all, as the boun-
dary of a convex 2-dimensional set is a Lipschitz curve, the only singularity
points for the outer normal are sharp corners, in which we can distinguish two
di�erent tangent lines. In the following, without loss of generality, we will
assume that Ω has only a singularity point coinciding with the origin, that Ω

lies in the halfplane {x1 > 0} and that the bisector of the corner between the
distinguished tangent lines is {x2 = 0}.

In any dimension d the situation is more involved. In this case, the singu-
larity set for the outer normal is at most a (d−2)-dimensional locally Lipschitz
variety and it can happen that we have in every singularity point more than
one couple of distinguished tangent hyperplanes (e.g., in R3 the vertex of a cir-
cular cone has in�nite couples of tangent planes). In every case, without loss
of generality, we can assume that, chosen a singularity point for the boundary,
it coincides with the origin and that Ω lies in the halfspace {x1 > 0}; more-
over, we can rotate Ω and chose one of the couples of distinguished tangent
hyperplanes in such a way that their bisector is the hyperplane {xd = 0}.

Under these assumptions, for every dimension d and every ε > 0, we de�ne
the following sets:

Ωε := Ω∩{x1 > ε} , mε := Ω\Ωε, σε := Ω∩{x1 = ε} , sε := ∂Ω\∂Ωε. (4.4)

Let us observe that, in view of our choice, the origin turns out to realize
the maximum

max
x∈mε

dist(x, σε) = ε.
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Figure 4.1: Cutting procedure in dimension d = 2.

Lemma 4.2.1. Let Ω ⊂ R2 be an admissible set for (3.1) with a singularity
point for the outer normal. Then, there exist ε0 > 0 and C = C(Ω) > 0 such
that for every 0 < ε < ε0, we have

λ1,β(Ωε) ≤ λ1,β(Ω)− Cε. (4.5)

Proof. First of all let us remark that both H1(σε) and H1(sε) are in�nitesimal
of the same order of ε and that |mε| is in�nitesimal of the same order of ε2 as
ε goes to 0; moreover, there exists a constant C1 > 1, depending only on the
set Ω, such that H1(sε) ≥ C1H1(σε).

Under the same assumptions of the beginning of the section and using the
same notation as in (4.4), let us compare λ1,β(Ωε) with λ1,β(Ω). Let us consider
u ∈ H1(Ω) a L2(Ω)-normalized eigenfunction for λ1,β(Ω) positively bounded
from below (it exists in view of Proposition 2.1.3); its restriction on Ωε is a
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test function for λ1,β(Ωε) and it holds

λ1,β(Ωε) ≤

∫
Ωε

|∇u|2 dx+ β

∫
∂Ωε

u2 dσ∫
Ωε

u2 dx

≤

∫
Ω

|∇u|2 dx+ β

∫
∂Ω

u2 dσ + β

∫
σε

u2 dσ − β
∫
sε

u2 dσ

1−
∫
mε

u2 dx

≤
[
λ1,β(Ω) + β

∫
σε

u2 dσ − β
∫
sε

u2 dσ

](
1 + 2

∫
mε

u2 dx

)
≤ λ1,β(Ω) + β

(∫
σε

u2 dσ −
∫
sε

u2 dσ

)
+ C2ε

2

(4.6)

for ε small enough. Fixed δ > 0, with (u(0) + δ)2 ≤ C1(u(0)− δ)2, there exists
ε0 > 0 such that

0 < u(0)− δ < u(x) < u(0) + δ

for every x ∈ mε0 , since u ∈ C(Ω) and u(0) > 0. In particular, as mε is
decreasing in ε with respect to inclusions, we can choose ε0 small enough to
satisfy (4.6). Then we obtain

λ1,β(Ωε) ≤ λ1,β(Ω) + β
(
H1(σε)(u(0) + δ)2 −H1(sε)(u(0)− δ)2

)
+ C2ε

2

≤ λ1,β(Ω) + βH1(σε)
(
(u(0) + δ)2 − C1(u(0)− δ)2

)
+ C2ε

2

≤ λ1,β(Ω)− βC3ε+ C2ε
2 ≤ λ1,β(Ω)− Cε,

where the last constant C takes into account all the previous constants and
depends only on the domain Ω.

The behaviour of higher order eigenvalues is studied in the following lemma.

Lemma 4.2.2. Let Ω ⊂ R2 be an admissible set for (3.1) with a singularity
point for the outer normal. Then, for every h ∈ N, h ≥ 2,

λh,β(Ωε) ≤ λh,β(Ω) + o(ε). (4.7)

Proof. Let us consider h eigenfunctions for the Laplacian Robin, say u1, . . . , uh,
associated to λ1,β(Ω), . . . , λh,β(Ω) such that they form an L2-orthonormal ba-
sis of S := span {u1, . . . , uh}. Let us consider S as a test space for the
computation of λh,β(Ωε); precisely, we can restrict ourselves to the subset of
span {u1|Ωε , . . . , uh|Ωε} of functions of the form

∑h
i=1 α

ε
iui with

∑h
i=1 (αεi )

2 = 1.



102 Existence and regularity of optimal convex shapes

This compactness hypothesis on the coe�cients ensures us that, up to subse-
quences, αεi → αi ∈ [−1, 1] and

h∑
i=1

αεiui −→
h∑
i=1

αiui

strongly inH1(Ω). In the following we will denote by (αε1, . . . , α
ε
h) and (α1, . . . , αh)

two h-ple of coe�cients that maximizes Rβ
Ωε

and Rβ
Ω in S. We claim that

αεi → 0 if λi,β(Ω) < λh,β(Ω). To prove this claim, observe �rst that λh,β(Ω) =

maxu∈S R(u), since at least uh ∈ S is associated to λh,β(Ω). Then we have

λh,β(Ω) = max
α1,...,αh∈R∑

i α
2
i=1

∫
Ω

∣∣∣∑
i

αi∇ui
∣∣∣2 dx+ β

∫
∂Ω

(∑
i

αiui

)2

dσ∫
Ω

(∑
i

αiui

)2

dx

=
∑
i,j

αiαj

(∫
Ω

∇ui · ∇uj dx+ β

∫
∂Ω

uiuj dσ

) (4.8)

Let us compute the quantity between brackets using the Robin boundary con-
ditions, integrating by parts and recalling that the ui and uj belong to an
orthonormal basis of eigenfunctions:

∫
Ω

∇ui · ∇uj dx+ β

∫
∂Ω

uiuj dσ =

∫
Ω

∇ui · ∇uj dx−
∫
∂Ω

ui
∂uj
∂n

dσ

= −
∫

Ω

ui∆uj dx = λj,β(Ω)

∫
Ω

uiuj dx = λj,β(Ω)δij.

So, by (4.8), we obtain

λh,β(Ω) =
∑
i,j

αiαjλj,β(Ω)δij =
∑
i

α2
iλi,β(Ω),

that implies that all the coe�cients related to λi,β(Ω) < λh,β(Ω) have to be 0.

In view of this remark, for any ε > 0 su�ciently small, we estimate λh,β(Ωε)
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using S as a test space:

λh,β(Ωε) = max
αε1,...,α

ε
h
∈R∑

i(α
ε
i )

2=1

∫
Ωε

∣∣∣∑
i

αεi∇ui
∣∣∣2 dx+ β

∫
∂Ωε

(∑
i

αεiui

)2

dσ∫
Ωε

(∑
i

αεiui

)2

dx

≤

∫
Ω

∣∣∣∑
i

αεi∇ui
∣∣∣2 dx+ β

∫
∂Ω

(∑
i

αεiui

)2

dσ

1−
∫
mε

(∑
i

αεiui

)2

dx

+

β

∫
σε

(∑
i

αεiui

)2

dσ − β
∫
sε

(∑
i

αεiui

)2

dσ

1−
∫
mε

(∑
i

αεiui

)2

dx

≤ λh,β(Ω) + β

∫
σε

(∑
i

αεiui

)2

dσ − β
∫
sε

(∑
i

αεiui

)2

dσ + C|mε|.

(4.9)

Observe that, for every i = 1, . . . , h, αεi − αi → 0; moreover, following the re-
mark at the beginning of Lemma 4.2.1 about the in�nitesimal order of H1(σε),
H1(sε) and |mε|, by (4.9) we have

λh,β(Ωε) ≤ λh,β(Ω) + β

[∫
σε

(∑
i

(αεi − αi)ui + αiui

)2

dσ

−
∫
sε

(∑
i

(αεi − αi)ui + αiui

)2

dσ

]
+ Cε2

≤ λh,β(Ω) + β

(∫
σε

(∑
i

αiui

)2

dσ −
∫
sε

(∑
i

αiui

)2

dσ

)
+ o(ε).

(4.10)

To estimate the boundary integrals in the last term, we have to distinguish
two cases. If (∑

i

αiui(0)
)2

6= 0,

then, for any su�ciently small ε, we can proceed as in Lemma 4.2.1 and con-
clude that ∫

σε

(∑
i

αiui

)2

dσ −
∫
sε

(∑
i

αiui

)2

dσ ≤ 0.

If (∑
i

αiui(0)
)2

= 0,
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the uniform continuity of the eigenfunctions ui on mε implies that both inte-
grands go to zero as ε goes to zero and so the boundary integrals are in�nites-
imal of higher order than ε. In both cases, by (4.10) we obtain

λh,β(Ωε) ≤ λh,β(Ω) + o(ε).

Remark 4.2.3. Let us compare the results of the previous lemmas. In Lemma
4.2.1 we proved that, after a small cut, the �rst eigenvalue decreases by a term
of the same order as the perimeter. On the other hand, in Lemma 4.2.2,
we proved that a small cut could at most increase λh,β (h ≥ 2) by a term
in�nitesimal of higher order than the perimeter. In other words, the possible
increase of λh,β (h ≥ 2) is in�nitesimal of higher order than the decrease of
λ1,β.

4.2.2 The case d > 2

The case of higher dimension is quite di�erent. Recalling the notation intro-
duced in (4.4), the key point is to prove that the ratio Hd−1(sε)/Hd−1(σε) has
a lower bound strictly greater than 1, as in the planar case. It is not trivial at
a �rst sight, but fortunately this obstacle can be overcome taking into account
suitable 2-dimensional sections of Ω around the singularity point of the boun-
dary. We will get the required lower estimate in the following lemmas, the
�rst holding in dimension 3, the second holding in any dimension. We chose
to expose separately the cases of dimension d = 3 and of higher dimension for
a better clarity for the reader, although the proofs are quite similar.

Lemma 4.2.4. Let Ω ⊂ R3 be an admissible set for (3.1) with a singularity
point at the origin for the outer normal and let us consider sε and σε as in
(4.4). Then there exists C > 1 such that H2(sε)/H2(σε) ≥ C for every ε > 0.

Proof. Let us use the same convention as in (4.4), so that the origin is a
singularity point for ∂Ω, and let us assume that the outer normal to ∂Ω is
discontinuous in the origin with respect to the direction of the x2 axe. Let
us consider two distinguished tangent hyperplanes at the singularity point;
without loss of generality we can assume that the bisector of the two planes
is the plane {x2 = 0} their intersection V is the line {x1 = x2 = 0, }. Under
these assumptions, the orthogonal projection Vε of V onto σε is a segment on
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the line {x1 = ε, x2 = 0}, and it can be expressed by


x1 = 0

x2 = 0

aε ≤ x3 ≤ bε

with aε ≤ 0 ≤ bε. Moreover, the orthogonal space V ⊥ is a 2-dimensional plane
and the section cε := sε ∩V ⊥ is given by a Lipschitz curve with a corner point
in the origin. Notice that

V ⊥ = {x3 = 0}

and that, denoting by lε the segment σε ∩ V ⊥, the curve cε is the graph of a
concave function de�ned on lε. So, as in the planar setting (see 4.2.1), there
exists α > 0 such that

H1(cε)

H1(lε)
≥ 1 + α (4.11)

for every ε > 0 su�ciently small.

The idea to estimate H2(σε) in terms of H2(sε) is based on the Fubini's
theorem: we will split the 2-dimensional surface integral in two 1-dimensional
integrals in the variables x2, x3 and we will estimate uniformly from above
the 1-dimensional sections of sε with the 1-dimensional sections of σε. Let us
de�ne

lε(x3) := σε ∩ (V ⊥ + x3)

the 1-dimensional slice of σε passing through (0, 0, x3) and parallel to lε = lε(0).
If we denote by

cε(x3) := σε ∩ (V ⊥ + x3),

then cε(0) = cε. Moreover, by continuity and (4.11), the above constant α > 0

can be chosen in such a way that

H1(cε(x3))

H1(lε(x3))
≥ 1 + α (4.12)

for every aε/2 ≤ x3 ≤ bε/2. Let us remark that, in every case, the ratio above
is greater or equal than 1 for every x3 ∈]aε, bε[.

Recalling that sε is the graph of a concave function φ = φ(x2, x3) on σε, let
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us estimate from below the area of sε ∩ {x3 ≥ 0}:

H2(sε ∩ {x3 ≥ 0})

=

∫
σε∩{0≤x3≤bε/2}

√
1 + |∇φ|2 dx2 dx3 +H2(sε ∩ {bε/2 ≤ x3 ≤ bε})

≥
∫ bε/2

0

dx3

∫
lε(x3)

√
1 + |∇φ|2 dx2 +H2(σε ∩ {bε/2 ≤ x3 ≤ bε})

≥
∫ bε/2

0

dx3

∫
lε(x3)

√
1 + (∂x2φ)2 dx2 +H2(σε ∩ {bε/2 ≤ x3 ≤ bε})

≥
∫ bε/2

0

H1(cε(x3)) dx3 +H2(σε ∩ {bε/2 ≤ x3 ≤ bε})

≥ (1 + α)

∫ bε/2

0

H1(lε(x3)) dx3 +H2(σε ∩ {bε/2 ≤ x3 ≤ bε})

≥ (1 + α)H2(σε ∩ {0 ≤ x3 ≤ bε/2}) +H2(σε ∩ {bε/2 ≤ x3 ≤ bε})
= H2(σε ∩ {x3 ≥ 0}) + αH2(σε ∩ {0 ≤ x3 ≤ bε/2}).

(4.13)

Let us notice that, as σε ∩ {x3 ≥ 0} is convex, there exists a positive constant
γ < 1 depending only on Ω such that

H2(σε ∩ {0 ≤ x3 ≤ bε/2}) ≥ γH2(σε ∩ {x3 ≥ 0}).

Then, replacing the estimate in (4.13), we obtain

H2(sε ∩ {x3 ≥ 0}) ≥ (1 + αγ)H2(σε ∩ {x3 ≥ 0}). (4.14)

Reasoning for x3 ≤ 0 as above we obtain

H2(sε ∩ {x3 ≤ 0}) ≥ (1 + αγ)H2(σε ∩ {x3 ≤ 0}),

that combined with (4.14) gives us the thesis (with C = 1 + αγ).

In higher dimension we obtain the same result, after noticing that we can
reason similarly to the previous Lemma on each dimension that is orthogonal
to a suitable 2-dimensional section.

Lemma 4.2.5. Let Ω ⊂ Rd (d > 3) be an admissible set for (3.1) with a
singularity point at the origin and let us consider sε and σε as in (4.4). Then,
there exists C > 1 such that Hd−1(sε)/Hd−1(σε) ≥ C for every ε > 0.

Proof. Let us start remarking that, in view of the assumptions below (4.4),
the intersection V between two distinguished tangent (d− 1)-dimensional hy-
perplanes at the singularity point is a (d − 2)-dimensional hyperplane whose
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orthogonal projection onto σε, say Vε, is a convex, (d − 2)-dimensional set.
Let us observe also that cε := sε ∩ V ⊥ is given by a Lipschitz curve with a
corner point in the origin and that, told lε := σε ∩ V ⊥, there exists a constant
α > 0 such that the same estimate as in (4.11). To achieve the thesis, it is
enough to repeat the same argument in the second part of 4.2.4 on each of
d− 2 (orthogonal) segments passing by the orthogonal projection of the origin
onto σε and parallel to the �rst d− 2 Cartesian axes.

Now we are in a position to state the analogous of 4.2.1 and 4.2.2; we omit
the proof as it is straightforward, replacing ε by the surface area Hd−1(σε).

Lemma 4.2.6. Let Ω ⊂ Rd be an admissible set for (3.1) with a singularity
point for the outer normal. Then, there exists ε0 > 0 ad C = C(Ω) > 0 such
that, for every 0 < ε < ε0, we have

λ1,β(Ωε) ≤ λβ1 (Ω)− CHd−1(σε).

Moreover, for every h ∈ N, h ≥ 2

λh,β(Ωε) ≤ λβh(Ω) + o(Hd−1(σε)).

4.3 Regularity of optimal convex shapes

The aim of this section is to prove a regularity result for the optimal shape
whose existence has been proved in 4.1, to complete the proof of Theorem 4.0.1.
We will prove a more general result, i.e. the C1-regularity of the boundary for
a larger class of sets.

De�nition 4.3.1 (Energy subsolutions). Let Ω ⊂ Rd be a convex bounded
set. Ω is said an energy subsolution for problem (3.1) if, for every convex set
Ω̃ ⊆ Ω, it holds

F (λ1,β(Ω), . . . , λk,β(Ω)) ≤ F (λ1,β(Ω̃), . . . , λk,β(Ω̃)).

Remark 4.3.2. Intuitively, a convex set Ω is an energy subsolution when its
�energy� F (λ1,β(Ω), . . . , λk,β(Ω)) is minimal compared to his convex subsets.
Roughly speaking, thanks to the monotonicity of F and of λh,β under dilata-
tions, if Ω̃ ⊂ Ω is an admissible set and we focus only on the energy term, it
is convenient to rescale Ω̃ to obtain a wider convex set with lower energy; on
the other hand, this increases the perimeter term in (3.1), as the two terms
seem to be in competition. This behaviour suggests us that a convex solution
should balance the two competing terms with the lowest energy possible. In
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view of this, let us remark that every minimizer Ω of (3.1) is also an energy
subsolution; in fact, for every Ω̃ ⊂ Ω, using the monotonicity of the perimeter
of convex sets under inclusions, we have

F (λ1,β(Ω), . . . , λk,β(Ω)) + ΛP (Ω) ≤ F (λ1,β(Ω̃), . . . , λk,β(Ω̃)) + ΛP (Ω̃)

≤ F (λ1,β(Ω̃), . . . , λk,β(Ω̃)) + ΛP (Ω),

that implies F (λ1,β(Ω), . . . , λk,β(Ω)) ≤ F (λ1,β(Ω̃), . . . , λk,β(Ω̃)).

The following theorem will give us the required regularity for energy subso-
lutions. To prove it, we will argue by contradiction, supposing that an energy
subsolution Ω has at least a singularity point for the outer normal and cutting a
piece of Ω around this point; the obtained cut subset will give a strictly smaller
energy than Ω, in contradiction with the de�nition of energy subsolution.

Theorem 4.3.3 (regularity of the energy subsolutions). Let F : Rk → R
satisfy the same hypotheses as in (3.1) and, in addition, let it be di�erentiable
in each variable each variable with strictly positive derivative with respect to
the �rst variable. Then, every energy subsolution for problem (3.1) has C1

boundary.

Proof. Let Ω be an energy subsolution for (3.1) and consider Ωε and σε as in
(4.4). Considering a Taylor expansion of F and the results in Lemma 4.2.6,
we obtain for su�ciently small ε

F (λ1,β(Ωε), . . . , λk,β(Ωε))

= F (λ1,β(Ω), . . . , λk,β(Ω))

+
k∑

h=1

∂F

∂xh
(λ1,β(Ω), . . . , λk,β(Ω)) · (λh,β(Ωε)− λh,β(Ω)) + o(Hd−1(σε))

≤ F (λ1,β(Ω), . . . , λk,β(Ω))− ∂F

∂x1

(λ1,β(Ω), . . . , λk,β(Ω)) · (CHd−1(σε))

+ o(Hd−1(σε))

< F (λ1,β(Ω), . . . , λk,β(Ω))

in contradiction with the fact that Ω is an energy subsolution.

Proof of Theorem 4.0.1. Problem (3.1) admits a convex bounded solution Ω

thanks to 4.1.3; by Remark 4.3.2, this solution is also an energy subsolution,
then, under the additional hypotheses of F , by Theorem 4.3.3, Ω has C1 boun-
dary.
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4.3.1 Further remarks

Using analogous techniques, it is possible to prove an existence and regularity
result for the problem

min {λ1,β(Ω) : Ω ⊆ D,Ω open and convex, |Ω| ≤ m} , (4.15)

where D is a bounded design region. In this case, if the ball of measure m is
not contained in D, the problem is not trivially solved.

Proposition 4.3.4. Problem (4.15) admits a convex solution with C1 boun-
dary.

Proof. The existence of a convex solution is due to a standard compactness
argument for uniformly bounded, open, convex sets and to the lower semicon-
tinuity of the Rayleigh quotient; the regularity arises from the estimate

λ1,β(Ωε) ≤ λ1,β(Ω)− CHd−1(σε)

in Lemma 4.2.6.

Figure 4.2: An admissible solution to problem (4.15) in a rectangular domain D; even the

possible junctions with the boundary of the bounded design region must be

C1.

The interesting fact of the previous result is that the regularity of the
optimal shapes does not depend on the regularity of the boundary of the
bounded design region. Indeed, even if we consider a bounded design region
with rough domain, the optimal shapes still have C1 boundary.

In a similar way, the problem

min {λk,β(Ω) + ΛP (Ω) : Ω bounded and convex} , (4.16)

with Λ > 0, admits a regular solution.
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Proposition 4.3.5. Problem (4.16) admits a convex solution with C1 boun-
dary.

Proof. The existence is gained with the same arguments in 4.1.3. The reg-
ularity is obtained by contradiction as a consequence of 4.2.6: the gap be-
tween P (Ω) and P (Ωε) decreases to zero more slowly than the di�erence
λk,β(Ω)− λk,β(Ωε).

Existence and regularity of convex solutions for Problem (4.16) are almost a
byproduct of the deeper analysis made throughout the chapter for more general
problems. In next chapter we will set (4.16) in a more general framework and
we will see that it is neither of easy solution nor of immediate formulation.



Chapter 5

Minimization of the k-th

eigenvalue of the Robin-Laplacian

with perimeter penalization

In [27] the authors minimize λk,β with a measure constraint in a relaxed setting.
Our aim is to replace the measure constraint with some constraint on the
perimeter. More precisely, in continuity with the problem studied in Chapter
4, we chose to use a penalization term and to study the problem

min
{
λk,β(Ω) +Hd−1(∂Ω)|Ω ⊂ Rd is an open Lipschitz domain

}
. (5.1)

In Chapter 4 we studied existence and regularity of minimizers in the class of
convex domains, but here we would like to have a more general result, possibly
relaxing the problem.

A �rst idea could be to relax the eigenvalues in any dimension d in the same
sense of the relaxed eigenvalues λ̃k,β in Chapter 3, taking into account sets
of �nite perimeter and boundary integrals de�ned on the reduced boundary.
Unfortunately, this strategy leads to a ill posed problem. Indeed, even for
the �rst eigenvalue, a minimizing sequence could converge in some sense to
an admissible set but the eigenfunctions could not converge to a function in
H1(Rd) (see the example presented in �gure 3.1, page 73). On the other hand,
also the idea to use the relaxed eigenvalues in the sense of λ̄k,β fails in general,
as we should have additional topological hypotheses to obtain some existence
result, even in R2.

To avoid those situations, we have to move into suitable spaces of func-
tions of bounded variation and relax Problem (5.1) to obtain a well posed free
discontinuity problem.
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5.1 The SBV
1
2-spaces: a good setting for the

weak formulation

In this section, we recall some facts and some de�nitions about SBV
1
2 -spaces,

that are very useful to handle free discontinuity problems involving boundary
integrals. Our main references are two papers by D. Bucur and A. Giacomini:
[24], where the SBV

1
2 -framework is introduced to approach in a variational

way the Faber-Krahn inequality and [27], where many results are generalized
to vector valued functions whose components are (in some sense) in a SBV

1
2 -

space.
The de�nition of the space SBV 1/2(Rd) is recalled below (see De�nition

3.1 in [24]).

De�nition 5.1.1 (the space SBV 1/2(Rd)). Let u : Rd → R be a measurable
function. We say that u ∈ SBV 1

2 (Rd) if u ≥ 0 a.e. in Rd and u2 ∈ SBV (Rd).

Now, we recall some �ne properties of the functions in SBV
1
2 (Rd); we refer

the reader to Lemma 1 in [24], where such properties are stated and proved. In
order to avoid ambiguities between positive (resp. negative) part and interior
(resp. exterior) trace, throughout this chapter, for any measurable function
u, we will denote by γ1(u) and γ2(u) the traces on the two sides of the jump
set Ju from the directions of −νu and νu (whenever the traces and νu are well
de�ned).

Proposition 5.1.2. Let u ∈ SBV 1
2 (Rd). The following items hold true

(i) u is a.e. approximately di�erentiable with approximate gradient ∇u such
that

∇(u2) = 2u∇u a.e. in Rd.

(ii) Ju is Hd−1-countably recti�able with normal vector νu such that Dj(u2)

is given by

Dj(u2) = [γ2(u)2 − γ1(u)2]νuHd−1bJu.

(iii) For every ε > 0 we have (u− ε)+ ∈ SBV (Rd).

Now, to cover also the case of higher eigenvalues, we recall the SBV
1
2
± (Rd;Rk)

spaces, introduced in [27], De�nition 3.4, in order to consider also vector valued
functions whose components change sign.
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De�nition 5.1.3 (the space SBV
1
2
± (Rd;Rk)). Let u = (u1, . . . , uk) : Rd → Rk

be a measurable function. We say that u ∈ SBV
1
2
± (Rd;Rk) if (ui)

+, (ui)
− ∈

SBV
1
2 (Rd) for every i = 1, . . . , k and∫

Rd
|∇u|2 dx+

∫
Ju

[|γ1(u)|2 + |γ2(u)|2] dHd−1 < +∞.

If k = 1, we denote the space simply by SBV
1
2
± (Rd).

Now, we recall an important compactness and lower semicontinuity result
in the functional space SBV

1
2 (Rd). For the detailed proof see Theorem 3.3 in

[24].

Proposition 5.1.4 (compactness and lower semicontinuity in SBV
1
2 (Rd)).

Let (un)n ⊂ SBV
1
2 (Rd) such that∫

Rd
|∇un|2 dx+

∫
Jun

[
γ1(un)2 + γ2(un)2

]
dHd−1 +

∫
Rd
u2
n dx ≤ C

for some C > 0. Then, there exists u ∈ SBV
1
2 (Rd), Φ ∈ L2(Rd;Rd) and a

subsequence (unk)k such that the following items hold true.

(i) Compactness: unk → u strongly in L2
loc(Rd) and

∇unk ⇀ Φ weakly in L2(Rd;Rd)

with
Φχsupp(u) = ∇u

(ii) Lower semicontinuity: for every open set A ⊆ Rd we have∫
A

|∇u|2 dx ≤ lim inf
k→+∞

∫
A

|∇unk |2 dx

and∫
Ju∩A

[
γ1(u)2 + γ2(u)2

]
dHd−1

≤ lim inf
k→+∞

∫
Junk

∩A

[
γ1(unk)

2 + γ2(unk)
2
]
dHd−1.

The counterpart of the previous result for the functional space SBV
1
2
± (Rd;Rk)

is the following proposition (see Proposition 3.6 in [27]).
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Proposition 5.1.5 (compactness and lower semicontinuity in SBV
1
2
± (Rd;Rk)).

Let (un)n ⊂ SBV
1
2
± (Rd;Rk) such that∫

Rd
|∇un|2 dx+

∫
Jun

[
|γ1(un)|2 + |γ2(un)|2

]
dHd−1 +

∫
Rd
|un|2 dx ≤ C

for some C > 0. Then, there exists u ∈ SBV
1
2
± (Rd;Rk), Φ ∈ L2(Rd;Rkd) and

a subsequence (unh)h such that the following items hold true.

(i) Compactness: unh → u strongly in L2
loc(Rd;Rk) and

∇unh ⇀ Φ weakly in L2(Rd;Rkd)

with

Φχsupp(u) = ∇u

(ii) Lower semicontinuity: for every open set A ⊆ Rd we have∫
A

|∇u|2 dx ≤ lim inf
h→+∞

∫
A

|∇unh |2 dx

and∫
Ju∩A

[
|γ1(u)|2 + |γ2(u)|2

]
dHd−1

≤ lim inf
h→+∞

∫
Junh

∩A

[
|γ1(unh)|2 + |γ2(unh)|2

]
dHd−1.

In the following, for every vector valued function u = (u1, . . . , uk), we will
denote by

V (u) := {u1, . . . , uk} .

In [27] the authors introduced the functional space SBV
1
2
± (Rd;Rk) in order to

give a weak formulation of the k-th Robin eigenvalue. A key point in their
free discontinuity approach is to ensure that the k components of a function

in SBV
1
2
± (Rd;Rk) are L2(Rd)-linearly independent, in order to recall a k-ple

of L2(Ω)-linearly independent functions in H1(Ω) that generate an admissi-
ble space for λk,β(Ω). To this aim, we recall a useful functional space (see
De�nition 3.9 in [27]).

De�nition 5.1.6 (the space Fk(Rd)). Let u ∈ SBV
1
2
± (Rd;Rk). We say that

u ∈ Fk(Rd) if {u1, . . . , uk} are linearly independent in L2(Rd).
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In [24], [25] and [27] authors relaxed Robin eigenvalues using SBV
1
2 -functions

in order to prove the existence of minimal �shapes� among sets of prescribed
measure respectively for the �rst Robin eigenvalue (see [24] for an approach
similar to the proof of the Bossel-Daners inequality and [25] for a completely
variational approach) and for the higher eigenvalues (see [27]). The idea is clas-
sical when using a free discontinuity approach: one replaces the dependence on
a domain Ω with the dependence on a SBV -function u, whose support will be
�identi�ed� with Ω and whose jump set u will be identi�ed with ∂∗Ω (or ∂Ω, if
Ω is a su�ciently smooth domain). In particular, in [24] authors introduced a
weak formulation for the �rst eigenvalue involving functions in SBV

1
2 (Rd); the

idea is that, since the �rst eigenfunction of a Lipschitz domain can be taken
of constant sign (in particular non negative), then the admissible functions
in the weak formulation can be taken a priori non negative. For the higher
eigenvalues the situation is a bit more complicated, since the eigenfunctions
can change their sign in general; moreover, every k-dimensional subspace Vk is
admissible for λk,β(Ω) and can be spanned by a basis {u1, . . . , uk} of functions
that are linearly independent L2(Ω), so it is reasonable to choose for the weak
formulation of the k-th eigenvalue a family vector valued functions whose com-
ponents are L2-linearly independent. Reasoning in that way, in [27], De�nition
3.9, the authors relaxed the Robin eigenvalues as follows.

De�nition 5.1.7 (relaxed eigenvalues). Let u ∈ Fk(Rd). We de�ne the k-th
relaxed Robin eigenvalue for the function u by

Rk,β(u) := max
v∈V (u)\{0}

∫
Rd |∇v|

2 dx+ β
∫
Ju

[(v+)2 + (v−)2] dHd−1∫
Rd v

2 dx
.

Remark 5.1.8. The functional Rk,β(u) is �nite and well de�ned for every

u ∈ Fk(Rd), since it holds V (u) ⊂ SBV
1
2
± (Rd) (see Lemma 3.8 in [27]) and

then term
∫
Rd |∇v|

2 dx+β
∫
Ju

[(v+)2 +(v−)2]dHd−1 is �nite for every v ∈ V (u).
Notice that, if Ω ⊂ Rd is a Lipschitz domain and u1, . . . , uk ∈ H1(Ω) are

the �rst k Robin eigenfunction on Ω with boundary parameter β > 0, then
u = (u1, . . . , uk), extended by zero outside Ω, belongs to Fk(Rd) and it holds

Ju = ∂Ω

and
Rk,β(u) = λk,β(Ω).

(see Remark 3.11 in [27]).
It is worth to highlight that, if v =

∑k
j=1 ajuj realizes Rk,β(u) in V (u),

then also λv realizes Rk,β(u) for every λ 6= 0; in particular, v can be chosen
such that ‖v‖L2(Rd) = 1.
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A key result in our proofs is the lower semicontinuity of the term Rk,β. We
omit the proof as it is contained in Proposition 3.12 in [27].

Proposition 5.1.9 (lower semicontinuity of Rk,β). Let (un)n ⊂ Fk and u ∈ Fk
such that un → u strongly in L2(Rd;Rk). Then

Rk,β(u) ≤ lim inf
n→+∞

Rk,β(un).

Once we replace λk,β(Ω) by Rk,β(u), we need to understand how to relax
the boundary term. We found two possible ways to replace the boundary term:

• penalizing the perimeter of a set where an admissible function is non-null
(�free Robin� problem);

• penalizing all the jumps of the admissible functions (�jump Robin� prob-
lem).

In both cases we have to pay attention to the way we relax the problem,
as the starting ideas above are not su�cient for the well-posedness of the
problems. The following sections are aimed to this; we will prove some starting
existence results (only for the �rst eigenvalue and in abounded design region),
highlighting what are the technical di�culties to overcome and the research
perspectives to study the problem.

Remark 5.1.10. Even if we are able to prove the lower semicontinuity of
the weak functionals for a general order k ∈ N (see Propositions 5.2.1 and
5.3.1), the existence results in the following sections involve only the �rst
weak eigenvalue. The problem is that, at the moment, we do not know if
a (minimizing) sequence in Fk converge to an admissible function in Fk. If,
k = 1 and we prescribe ‖un‖L2(Rd) = C for some positive constant C, then we
are sure that the possible limit function u belongs to F1(Rd). For k > 1, even
if we assume that each component satisfy ‖ujn‖L2(Rd) = C, this is not true.
Indeed, as we will see, for minimizing sequences we can assume that∫

Rd
|∇un|2 dx+

∫
Jun

[(u+
n )2 + (u−n )2]dHd−1 +

∫
Rd
u2
n dx ≤ C

for some positive constant C. So (see Proposition 3.8 in [27]), there exists u ∈
SBV

1
2
± (Rd;Rk) such that, up to subsequence, un → u strongly in L2(Rd;Rk).

But it is not said, in general, that u ∈ Fk(Rd) if k > 1. An example in R2 can
be given by the sequence of functions

un(x, y) =

{
(x, x1+ 1

n ) in [0, 1]2,

0 otherwise.
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Indeed, (un)n ⊂ F2(R2) and un converges strongly in L2(R2;R2) to

u(x, y) =

{
(x, x) in [0, 1]2,

0 otherwise,

that is not a function in F2(R2).

Notice that the equality SBV
1
2
± (Rd) \ {0} = F1(Rd) holds. That means

that, if we are able to prove that the limit sequence of functions in F1(Rd)

is non null (e.g., if it has strictly positive L2(Rd)-norm), this is su�cient to
conclude that such function is also in F1(Rd) (this is not possible for higher k,
as seen in the previous example).

5.2 The �free Robin� problem

We would like to relax in SBV Problem (5.1) taking into account the reduced
boundary of the set where an admissible function is non-null. Intuitively, we
start taking into account the minimization problem

min
{
Rk,β(u) +Hd−1(∂∗ {u 6= 0})|u = (u1, . . . , uk) ∈ SBV

1
2
± (Rd;Rk)

}
. (5.2)

Even though it seems a very natural relaxation of Problem (5.1), Problem
(5.2) is not well posed. Indeed, it is possible to consider a concave Lipschitz
set Ω with strictly positive �rst Robin eigenfunction and then to consider an
admissible SBV function vε which holds v on Ω and ε > 0 on conv(Ω) \Ω. In
this way the value of Rk,β(vε) is very close to Rk,β(vε) but the term of perimeter
can sensibly decrease.

This example shows that Problem (5.2) is not stable under small pertur-
bations of the variable u. To avoid this phenomenon, our idea is to link the
boundary term with the perimeter of a set of �nite measure Ω where u is
supported, i.e. such that u = 0 outside Ω. In such a way, we allow the sup-
port of the function u to �invade� the set Ω (even if it is not clear whether
this phenomenon actually occurs, in general). More precisely, we study the
problem

min
{
Rk,β(u) + P (Ω) | Ω ⊂ Rd, |Ω|+ P (Ω) < +∞,

u ∈ Fk(Rd), u = 0 ∈ Ωc
}
.

(5.3)

where the bound on the measure is to avoid trivial situations (e.g., taking
Ω = Rd). In other words, we box a priori the support of an admissible function
u in an unknown set Ω and then perform the minimization among all admissible
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couples (u,Ω). Notice that, if Ω is a bounded Lipschitz domain and u is an
eigenfunction for λk,β(Ω) we have

Rk,β(u) + P (Ω) = λk,β(Ω) +Hd−1(∂Ω),

i.e. we are in the classical setting.
The weak formulation (5.3) is not the most natural we could imagine, as

one of the main ideas in the �eld of free discontinuity problems is to replace
n-ples of variables of di�erent nature (open sets, curves, functions) with only
one variable function (think to the weak formulation of the Mumford-Shah
functional, see [41]). On the other hand, as we will see, some very useful
information about optimal sets (if they exist) can be found

• if Ω is a solution of the problem, then it turns out to be a perimeter
supersolution (in the sense of De Philippis and Velichkov, see [42]);

• if a set is a perimeter supersolution, then it satis�es a density estimate,
so we gain some regularity ([42]).

The plan to study the problem is the following. We start looking for some
lower semicontinuity theorem involving both Rk,β(u) and P (Ω); then, we focus
on proving the existence in a bounded design region in the case k = 1. Finally,
recalling the results in [42], we prove that, for every minimizing pair (u,Ω),
the set Ω can be chosen open.

5.2.1 A lower semicontinuity result

In the next proposition we obtain lower semicontinuity of the functionalRk,β(u)+

P (Ω) with respect to both variables, in some product topology. In particular,
Rk,β(u) +P (Ω) is lower semicontinuos u with respect to the L2(Rd;Rk) strong
topology and in Ω with respect to the convergence in measure.

Proposition 5.2.1. Let (Ωn)n a sequence of uniformly bounded sets of �nite
perimeter such that

sup
n∈N

P (Ωn) < +∞.

Let un, u ∈ Fk(Rd) such that un → u strongly in L2(Rd;Rk) and un = 0 in
Ωc
n. Then, there exists Ω ⊂ Rd bounded set of �nite perimeter such that, up to

subsequences, χΩn → χΩ in L1
loc(Rd), u = 0 in Ωc and

Rk,β(u) + P (Ω) ≤ lim inf
n→+∞

Rk,β(un) + P (Ωn). (5.4)
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Proof. By Proposition 2.3.6 and Proposition 2.3.10 in [58], we have that, up
to subsequences, χΩn → χΩ in L1

loc(Rd) and

P (Ω) ≤ lim inf
n→+∞

P (Ωn). (5.5)

Moreover, by Proposition 3.12 in [27], we have that

Rk,β(u) ≤ lim inf
n→+∞

Rk,β(un). (5.6)

Summing (5.5) and (5.5) and using the superadditivity of the liminf, we obtain
(5.4). Finally, the L2-convergence of un to u implies that u = 0 in Ωc.

5.2.2 Existence of optimal shapes in a bounded design

region

In this short section we provide a �rst existence result for (5.3), under the
hypotheses of bounded design region and in the case k = 1.

Theorem 5.2.2. Let D ⊂ Rd open and bounded. Then, the problem

min
{
R1,β(u) + P (Ω)|Ω ⊂ D, P (Ω) < +∞, u ∈ F1(Rd), u = 0 in Ωc

}
(5.7)

admits a solution.

Proof. Let (Ωn, un)n be a minimizing sequence for Problem (5.7). Without
loss of generality, we can suppose that

R1,β(un) + P (Ωn) ≤ C,

for some positive constant C independent of n, and that ‖un‖L2(Rd) = 1 for
every n ∈ N. Then, both (P (Ωn))n and (un)n are uniformly bounded, respec-

tively in R and in SBV
1
2
± (Rd) (i.e.∫

Rd
|∇un|2 dx+

∫
Jun

[(u+
n )2 + (u−n )2]dHd−1 +

∫
Rd
u2
n dx ≤ C

for some positive constant C). So, by Proposition 5.1.5, there exists u ∈
SBV

1
2
± (Rd) such that, up to subsequences, un → u strongly in L2(B). More-

over, by Proposition 1.2.10, possibly passing to a subsequence, there exists
Ω ⊂ B of �nite perimeter such that χΩn → χΩ in L1(B). Let us remark that,
in view of both convergences, we have that u = 0 in Ωc (see the last part of the
proof of Proposition 5.2.1). Then, the couple (u,Ω) turns out to be admissible
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for (5.7) and, in view of the lower semicontinuity of the functional (Proposition
5.2.1), we obtain

R1,β(u) + P (Ω) ≤ lim inf
n→+∞

R1,β(un) + P (Ωn) = inf
(v,A)
{R1,β(v) + P (A)} ,

so (u,Ω) is a solution for (5.7).

Remark 5.2.3. We are not able, in general to prove that optimal shapes
have to be bounded, except if we are in R2. In that case, we can remove
the hypotheses of bounded design region: the bound on the diameter will be a
consequence of the uniform bound on the perimeters of the sets on a minimizing
sequence, assumed without loss of generality in the proof of Theorem 5.2.2.

5.2.3 A regularity issue

In this section we prove some topological regularity of the solutions to Problem
(5.3), if they exist (for k = 1, in a bounded design region it is true, as seen
in the previous section). More precisely, we will see that an optimal �nite
perimeter set Ω can always be replaced by an open set strictly linked with Ω.
We start the section de�ning an important class of sets.

De�nition 5.2.4 (perimeter supersolution). Let Ω ⊂ Rd a set of �nite perime-
ter. We say that Ω is a perimeter supersolution if |Ω| < +∞ and, for every
Ω̃ ⊃ Ω of �nite perimeter, then P (Ω̃) ≥ P (Ω).

It is immediate to prove the following result.

Proposition 5.2.5. If (u,Ω) is a minimizing couple for the problem (5.3),
then Ω is a perimeter supersolution.

Proof. Let Ω̃ ⊂ Rd be a set of �nite perimeter such that Ω̃ ⊃ Ω. Since u = 0

in Ωc ⊃ Ω̃c, the couple (u, Ω̃) is admissible for (5.3). Using the optimality of
(u,Ω) we obtain

Rk,β(u) + P (Ω) ≤ Rk,β(u) + P (Ω̃),

i.e. P (Ω) ≤ P (Ω̃).

Remark 5.2.6. As highlighted in [42] by the authors, perimeter supersolutions
are sets having positive mean curvature (see De�nition A.1.3) at least in a
weak sense. For instance, a bounded convex set Ω is an example of perimeter
supersolution. Notice that in that case, if (u,Ω) is a minimizing couple for
(5.3), then also (u,Ω) and (u, Ω̊) are optimal.

Now, we introduce the following density estimate.
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De�nition 5.2.7 (exterior density estimate). Let Ω ⊂ Rd a set of �nite
perimeter. We say that Ω satis�es an exterior density estimate if there ex-
ists a positive dimensional constant c = c(d) such that, for every x ∈ Rd, one
of the following situations occurs:

(i) there exists r > 0 such that Br(x) ⊂ Ω a.e.;

(ii) for every r > 0, it holds |Br(x) \ Ω| > c|Br(x)|.

The next results link the previous density estimate with the perimeter su-
persolutions, ensuring that there exist open optimal shapes for (5.3). The
proofs of the following two propositions (holding for any perimeter supersolu-
tion, not only for the solutions of (5.3)) are omitted, as they can be found in
[42].

Proposition 5.2.8. Let Ω ⊂ Rd be a perimeter supersolution. Then, Ω satis-
�es an exterior density estimate. In particular, if (u,Ω) is a solution of (5.3),
then Ω satis�es an exterior density estimate.

Proposition 5.2.9. Let Ω ⊂ Rd a set of �nite perimeter satisfying an exterior
density estimate. Then, the set of the points of density 1 for Ω

Ω1 =

{
x ∈ Rd : ∃ lim

r→0+

|Ω ∩Br(x)|
|Br(x)|

}
is open. In particular, for every perimeter supersolution Ω, Ω1 is open.

Now, we are ready for the main theorem of this short section.

Theorem 5.2.10 (existence of an open solution). Let (u,Ω) a solution for
(5.3). Then, (u,Ω1) is also a solution for (5.3) and Ω1 is open.

Proof. It is su�cient to remark that the couple (u,Ω1) is admissible for (5.3),
P (Ω1) = P (Ω) since |Ω∆Ω1| = 0 and Ω1 is open in view of Proposition 5.2.9.

5.2.4 Further remarks and perspectives

We have been able to prove only an existence result for the principal �eigen-
value�, because, as seen in Remark 5.1.10, it could happen that a sequence in

Fk(Rd) converge to a function u ∈ SBV
1
2
± (Rd;Rk) \ Fk(Rd). It would also be

interesting to remove the bounded design region hypotheses, but it seems tech-
nically di�cult in view of the presence of a couple of variables. Nevertheless,
we think that both questions could be linked with some condition ensuring the
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L2-orthonormality (or, at least, linear independence) of the components of the
function u (see the proof of Theorem 4.6 in [27]).

Once one has the existence of minimizers, even in a bounded design region,
one of the most challenging problems is to understand if the couple (u, supp(u))

can be considered optimal for (5.3), i.e. if u is de�ned a.e. in the optimal do-
main Ω. For k = 1, we expect the minimizer should be the couple (u, supp(u)),
where u is the �rst eigenfunction of a ball B; the fact that B is a perimeter
supersolution supports our conjecture. For higher eigenvalues, to conjecture a
possible result about the optimality of the couple (u, supp(u)), we made some
numerical simulations on the second eigenvalue using the software FreeFem++.
We focused on a two dimensional case: we compared the numerical values of
(5.3) on the couples (u1,Ω) and (u2,Ω), where u1 and u2 are respectively sec-
ond eigenfunction of the disjoint union of two tangent disks of radium 1 and
the second eigenfunction of the respective stadium Ω. The results are summa-
rized in the following table, where we omitted the term P (Ω) (that is the same
for both couples):

β R2,β(u1) R2,β(u2)

0 0.21046 0.76095
0.5 0.88508 1.57319
1 1.73291 2.18306
1.5 2.25629 2.64573
2 2.67311 3.00244
5 4.01315 4.07245
10 4.77408 4.62919
20 5.24496 4.95788
100 5.67036 5.24609
1000 5.77229 5.31400

It turns out that, for large values of β, it is convenient to de�ne the function
u on the whole of the perimeter supersolution Ω, otherwise, for small values
of β, u can be considered supported on a subset of Ω that could not be a
perimeter supersolution.
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That situation suggests us to follow a research direction to �nd a critical
value β̄ > 0 for the boundary parameter such that, if 0 < β < β̄, then
|Ω \ supp(u)| > 0, while, if β > β̄, then supp(u) = Ω.

Notice that the �free Robin� approach on one hand gives a certain regularity
of the optimal shapes, but, on the other hand, does not model a relaxed version
of the original problem (5.1), in general. Indeed, as seen above, it can happen
that in some optimal couples (u,Ω), even if Ω is a Lipschitz domain, u is not
an eigenfunction for λβ,k(Ω). To overcome the problem and link the variable
function u with the boundary term, we found another weak formulation of
(5.1) that we present in the following section.

5.3 The �jump Robin� problem

In this section we relax again Problem (5.1) in the SBV setting, linking also
the boundary term with the support of the relaxed �eigenfunction�. Since we
are intuitively led to identify the support of a SBV function with an �admis-
sible set� and the jump set of the function with some (topological or reduced)
boundary of this set, we start taking into account the minimization problem

min
{
Rk,β(u) +Hd−1(Ju)|u = (u1, . . . , uk) ∈ Fk

}
. (5.8)

Problem (5.8) is not well posed. Take, for instance, the sequence of concentric
balls (Bn(0))n and consider, for each ball, vn = (vn1 , . . . , v

n
k ), where vn1 , . . . , v

n
k

are the �rst k linearly independent Dirichlet eigenfunction for Bn(0) (whose
trivial extension by zero is continuous on the whole of Rd). Then we have

Rk,β(vn) +Hd−1(Jvn) = λk(Bn(0)) −→ 0.

This example shows us that the right way to replace the perimeter is to con-
sider not only the jump set for an admissible function v, but also the reduced
boundary of the set where the components of v are non null. In particular, we
will study the problem

min

{
Rk,β(u) +Hd−1

(
Ju ∪

k⋃
i=1

∂∗({vi 6= 0})

)
|u ∈ Fk(Rd)

}
. (5.9)

5.3.1 A compactness and lower semicontinuity result

We start proving a compactness and lower semicontinuity result for the func-
tional.
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Proposition 5.3.1. Let Ω ⊂ Rd open and bounded and let un ∈ SBV
1
2
± (Rd;Rk)

such that ∫
Ω

|∇un|2 dx+

∫
Ω

|un|2 dx+

∫
Jun

[(un)+]2 + [(un)−]2 dHd−1

+Hd−1

(
Jun ∪

k⋃
i=1

∂∗({uni 6= 0})

)
< C

for some C > 0 independent on n ∈ N. Then, there exists u ∈ SBV
1
2
± (Rd;Rk)

such that un weakly converges to u in the sense of Proposition 5.1.5 and, in
addition,

Rk,β(u) +Hd−1

(
Ju ∪

k⋃
i=1

∂∗({ui 6= 0})

)

≤ lim inf
n→+∞

Rk,β(un) +Hd−1

(
Jun ∪

k⋃
i=1

∂∗({uni 6= 0})

)
.

Proof. Let us observe that, since (un)n satis�es the hypotheses of Proposition

5.1.5, there exists a function u ∈ SBV
1
2
± (Rd;Rk) realizing the required weak

convergence. In particular, un → u strongly in L2(Rd;Rk); then, in view of
Proposition 5.1.9, one has

Rk,β(u) ≤ lim inf
n→+∞

Rk,β(un).

We need to prove the lower semicontinuity of the boundary term. For every

ε > 0 and every v ∈ SBV
1
2
± (Rd;Rk), we denote by vε the function whose

components satisfy

vεi := (v+
i ∨ ε) · χ{vi>0} + (v−i ∨ ε) · χ{vi<0}.

Let us observe that vεi ∈ SBV (Ω) (Proposition 5.1.2) and that, for every
su�ciently small ε > 0, uεn → uε strongly in L2(Rd;Rk). In addition,

Juε ⊆ Ju ∪
k⋃
i=1

∂∗({ui 6= 0})

and, for every n ∈ N,

Juεn ⊆ Jun ∪
k⋃
i=1

∂∗({uni 6= 0}), (5.10)
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the above set inclusions holding up to a Hd−1-negligible set. Let us observe
that

lim
ε→0+

Hd−1(Juε) = Hd−1

(
Ju ∪

k⋃
i=1

∂∗({ui 6= 0})

)
(5.11)

and, for every n ∈ N,

lim
ε→0+

Hd−1(Juεn) = Hd−1

(
Jun ∪

k⋃
i=1

∂∗({uni 6= 0})

)
,

Let us use the Ambrosio-Braides compactness and lower semicontinuity the-
orem (Theorem 1.2.5 and Remark 1.2.6) to conclude the proof. We need to
show that ∫

Ω

|∇uεn|2 dx+Hd−1(Juεn) + ‖uεn‖BV (Ω) < C

for some C > 0 independent on n. It holds∫
Ω

|∇uεn|2 dx ≤
∫

Ω

|∇un|2 dx < C,

Hd−1
(
Juεn
)
≤ Hd−1

(
Jun ∪

k⋃
i=1

∂∗({uni 6= 0})

)
< C

and

‖uεn‖BV (Ω) = ‖uεn‖L1(Ω) + |Duεn|(Ω)

=

∫
Ω

|uεn| dx+

∫
Ω

|∇uεn| dx+

∫
Juεn

∣∣(uεn)+ − (uεn)−
∣∣ dHd−1

≤ |Ω|1/2
(∫

Ω

|uεn|2 dx
)1/2

+ C2|Ω|1/2
(∫

Ω

|∇un|2 dx
)1/2

+ C3

(
εHd−1(Juεn) +

∫
Jun

∣∣(un)+ − (un)−
∣∣ dHd−1

)
≤ |Ω|1/2

(∫
Ω

|uεn|2 dx
)1/2

+ C2|Ω|1/2
(∫

Ω

|∇un|2 dx
)1/2

+ C3

(
εHd−1(Juεn) +Hd−1(Jun)1/2

(∫
Jun

|(un)+|2 + |(un)−|2 dHd−1

)1/2
)

≤ C4 + C5

(∫
Ω

|∇un|2 dx+

∫
Jun

|(un)+|2 + |(un)−|2 dHd−1

)1/2

≤ C6,
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were the constants are independent on n ∈ N. In view of the Ambrosio-Braides
compactness and lower semicontinuity theorem and in view of the inclusion
(5.10), we have

Hd−1(Juε) ≤ lim inf
n→+∞

Hd−1(Juεn) ≤ lim inf
n→+∞

Hd−1

(
Jun ∪

k⋃
i=1

∂∗({uni 6= 0})

)
.

Then, by equality (5.11), since ε > 0 is arbitrary small it holds

Hd−1

(
Ju ∪

k⋃
i=1

∂∗({ui 6= 0})

)
≤ lim inf

n→+∞
Hd−1

(
Jun ∪

k⋃
i=1

∂∗({uni 6= 0})

)
,

concluding the proof.

Notice that, to gain the previous lower semicontinuity result, we use the
hypotheses that all the functions are supported in the same bounded design
region Ω, in order to apply the result of Ambrosio and Braides.

5.3.2 Existence of minimizers in a bounded design region

If we look at the proof of Proposition 5.3.1 and we try to repeat the same
arguments for a sequence of functions in Fk(Rd), it not said that their limit is
still a function in Fk(Rd), as seen in Remark 5.1.10. Since at the moment we
are not able to prove that linear independence of the components is somehow
preserved, we prove an existence result k = 1 under the hypothesis of bounded
design region. More precisely, we �x an open bounded set D ⊂ Rd and study
the problem

min
{
Rk,β(u) +Hd−1 (Ju ∪ ∂∗({u 6= 0})) |u ∈ F1(Rd), u = 0 a.e. in Bc

}
.

(5.12)

Proposition 5.3.2. Problem (5.12) admits a solution.

Proof. Let B ⊂ Rd be open and bounded and let (un)n ⊂ F1(Rd) be a min-
imizing sequence for (5.12) in the bounded design region B. Without loss of
generality, we can assume that ‖un‖L2(B) = 1 and that the sequence(

Rk,β(un) +Hd−1 (Jun ∪ ∂∗({un 6= 0}))
)
n

is uniformly bounded; then∫
B

|∇un|2 dx+

∫
B

|un|2 dx+

∫
Jun

|(un)+|2 + |(un)−|2 dHd−1

+Hd−1 (Jun ∪ ∂∗({un 6= 0})) ≤ C
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for some positive constant C > 0. In view of Proposition 5.3.1, there exists

u ∈ SBV
1
2
± (Rd) such that un → u strongly in L2(Rd;Rk) realizing the lower

semicontinuity of the functional. Then, since ‖u‖L2(Ω) = 1, we deduce that
u ∈ F1(Rd) and then u is a minimizer for (5.12).

5.4 Further remarks and perspectives

As clearly repeated throughout the chapter, even for Problem (5.9) at the
moment we are able to prove only an existence result for k = 1 in a bounded
design region. It reasonable to expect that such a minimizer could be a suitable
ball B, or better, a function supported in B (we guess the �rst eigenfunction of
B itself). The perspective is to approach to this Faber-Krahn type inequality
following the ideas in [24] and [25], where a similar functional framework has
been treated.

To remove the hypotheses of bounded design region, we can prove some
boundedness result; for instance, as done in Theorem 4.6 in [27], we can show
that some family of minimizers have to be necessarily with bounded support.
It would imply the choice of minimizing sequences with uniformity bounded
support.

In both sections, we had the problem to ensure that sequences in Fk(Rd)

converge to functions in Fk. The fact that it is not possible, at a �rst sight,
suggest us to investigate on that direction, �nding some arguments ensuring
linear independence of the components of the limit function. For instance, it
could be an idea to build minimizing sequences in Fk(Rd) that converge to
a function still in Fk(Rd) starting from a suitable sequence of orthonormal
eigenfunctions. This idea has been used in [27], to obtain the existence of min-
imizers (in a weak sense) for λk,β among sets satisfying a measure constraint.
In this paper, authors used a density argument based on a result of G. Corte-
sani and R. Toader (see Theorem 3.1 in [33]) to show that the in�mum of the
original problem coincide with the in�mum of the free discontinuity problem.
Then, they consider a sequence (Ωn)n minimizing λk,β and build a minimizing
sequences (un)n for Rk,β setting un = (u1

n, . . . , u
k
n), where u1

n, . . . , u
k
n are the k

�rst eigenfunction of Ωn (assumed orthonormal and extended by zero outside
Ωn). In such a way it is assured that the possible limit function is in Fk(Rd).
Such a strategy provides a good tool to prove boundedness of the supports of
minimizers built via this procedure. We would like to obtain a similar result
in our framework, at least to �nd an argument assuring that the in�ma of
Problems (5.1) and (5.9) coincide. To this aim, we conjecture that, for every
u ∈ Fk(Rd), there exists a sequence (Ωn)n of bounded Lipschitz domains in Rd
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such that

lim inf
n→+∞

λk,β(Ωn) + P (Ωn) ≤ Rk,β(u) +Hd−1

(
Jun ∪

k⋃
i=1

∂∗({uni 6= 0})

)
.

If we prove this result, we have the required equality of the in�ma.



Chapter 6

The case of polygons

In this chapter we focus our interest on some problems studied in the previous
chapters, now in the framework of suitable families of polygons. For the choice
of the class of admissible polygons and for some preliminary result we refer to
[22], where an appropriate family of admissible polygons have been used. We
start de�ning the family of simple polygons.

De�nition 6.0.1 (simple polygon, see [21]). A simple polygon is the open
bounded planar region P delimited by a �nite number of not self-intersecting
line segments (called sides) which are pairwise joined (at their endpoints called
vertices) to form a closed path.

Let us denote by PN the family of simple polygons with at most N sides.
Notice that simple polygons are connected and simply connected.

In the following, we will use as a key tool theHc-convergence, as it preserves
many topological properties of polygonal domains. The only disadvantage of
this approach is that, in general, a sequence of simple polygons in PN does not
Hc-converge to a simple polygon in PN , as shown in the �gures below.

Figure 6.1: The sequence (Pn)n ⊂ P5 H
c-converges to P , that is not a simple polygon.

To overcome this problem and for the sake of well posedness, we choose to
follow the approach in [21] and set our shape optimization problems in a wider
class of sets in order to admit polygons in a more general sense.
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Figure 6.2: The sequence (Pn)n ⊂ P7 H
c-converges to the �degenerate polygon� P , which

has a boundary given by line segments, but is not a simple polygon.

De�nition 6.0.2 (generalized polygon, see [21]). We say that an open set
P ⊂ R2 is a generalized polygon with at most N sides if there exists a sequence
(Pn)n of simple polygons in PN such that Pn locally Hc-converges to P , i.e. if
the sequence (Pn ∩B)n H

c-converges to P ∩B for every ball B ⊂ R2.

We denote by PN the class of generalized polygons with at most N sides.

Remark 6.0.3. The following facts hold true for the family PN (see [21] for
details).

(i) PN is closed with respect to the local Hc-convergence (in the sense of
De�nition 6.0.2).

(ii) Every Ω ∈ PN is simply connected, since Ωc is connected (see Proposition
1.4.17 and Remark 1.4.18).

(iii) Ω ∈ PN may be disconnected; each connected component of Ω is de-
limited by a �nite number of line segments (still called the sides of Ω),
which are pairwise joined at their endpoints (still called vertices of ) to
form a closed path, possibly containing self-intersections; in particular,
Ω has at most N sides, counted with their multiplicity.

(iv) Every Ω ∈ PN has has �nite Lebesgue measure (see Proposition 2.2.21
in [60]) and is bounded (otherwise, in view of the bound on the number
of sides, necessarily Ω would have two parallel sides with in�nite length,
contradicting the fact that |Ω| < +∞.

Remark 6.0.4. Let us observe that the number of sides is lower semicontinuos
for locally Hc-converging sequences (Pn)n ⊂ PN .

Notice that this fact does not hold if the number of sides is not bounded a
priori (the sequence (Rn)n of regular n-gons of measure m centered at a point
x0 ∈ R2 Hc-converges to the disk of measure m centered at x0).
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Now we need to set the variational problem, possibly relaxing the de�nition
of λk,β in order to consider the case of generalized polygons and to preserve the
semicontinuity of the spectral functionals. Following the approach of Section
3.7 in Chapter 3, we set, for every β ∈ R

λ̄k,β(P ) := inf
S∈Sk

sup
u∈S\{0}

∫
Ω

|∇u|2 dx+ β

∫
∂Ω

[
(u+)2 + (u−)2

]
dH1∫

Ω

u2 dx

,

where Sk denotes the set of all k-dimensional subspaces of H1(P ) ∩ L∞(P ),
u+ and u− are the approximate limsup and liminf of u and the boundary
integral on ∂P is considered in the sense of the SBV traces. As remarked in
the previous chapters, this de�nition is well posed. Moreover, if P is a simple
polygon, then λ̄k,β(P ) = λk,β(P ). Since the kind of optimization depends on
the sign of the boundary parameter β, we split the discussion into two parts.

6.1 Positive boundary parameter: existence re-

sults and open problems

Let us �x β > 0 and let us study the problem

min
{
F (λ̄1,β(P ), . . . , λ̄k,β(P )) : P ∈ PN , |P | ≤ m

}
, (6.1)

where F : Rk → R is lower semicontinuos and non decreasing in each variable.
We start proving a preliminary lemma concerning the number of sides of possi-
ble optimal generalized polygons. The idea is to compare the value of (6.1) on
a given generalized polygon P ∈ Pn and on another polygon obtained cutting
P around a convex corner. That idea recalls the technique used in Chapter 4
to prove regularity of convex minimizers.

Remark 6.1.1. In next lemma we will make use of a recent weaker version of
Theorem 2.1.3, due to D. Bucur (see [16]) and di�erent by other results giving
lower bounds for the �rst Robin eigenfunction (e.g., in [6] and [51] is given the
original version of Theorem 2.1.3, with argument based on semigroup acting
on the Lipschitz boundary). We state such more general result in a suitable
way for our purposes: if P is a connected generalized polygon and a function
u ∈ H1(P ) realizes λ̄1,β(P ) for some β > 0, then there exists α > 0 such that
u ≥ α.

Lemma 6.1.2. Let F : Rk → R satisfy the same hypotheses as in (6.1) and, in
addition, let it be di�erentiable in each variable with strictly positive derivative
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with respect to the �rst variable. For every polygon P ∈ PN , there exists a
generalized polygon P ′ ∈ PN+1 such that |P ′| ≤ m and

F (λ̄1,β(P ′), . . . , λ̄k,β(P ′)) < F (λ̄1,β(P ), . . . , λ̄k,β(P )).

In particular, P ∈ PN can not be a minimizer for (6.1) in PN+1.

Proof. The proof is based on a similar argument as in Theorem 4.3.3. Let us
consider a function u realizing λ1,β and choose a connected component of P
where u is non null (in order to apply the result in Remark 6.1.1). Let us
consider a convex corner with vertex x0 and suppose that, up to a rotation
and a translation, x0 = 0 and the bisector of the corner in x0 is the line x1 = 0.
Without loss of generality, in view of Remark 6.1.1, we can assume that there
are no sides vertexed in x0 that have self-intersections (otherwise, one applies
the following arguments only at one side of the self-intersection, see �gure
below).

Figure 6.3: In the polygon P all convex corners are determined by self-intersected sides;

choosing x0 as above, without loss of generality, we can apply the arguments

of the proof only on one of the corners α+ and α−.

For every ε > 0 let us de�ne the sets

Pε := Ω∩{x2 < −ε} , mε := P\Pε, bε := P∩{x2 = −ε} , lε := ∂P\∂Pε. (6.2)

Notice that, for ε su�ciently small, Pε has N + 1 sides.
In view of Remark 6.1.1, we can choose a strictly positive �eigenfunction�

for λ̄1,β(P ) to obtain that

λ̄1,β(Pε) ≤ λ̄1,β(P )− Cε
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Figure 6.4: The cutting procedure of P ∈ P7.

for su�ciently small ε, in an analogous way to Lemma 4.2.1. To estimate the
higher eigenvalues, in view of our assumptions we can proceed as in Lemma
4.2.2 obtaining

λ̄k,β(Pε) ≤ λ̄k,β(P ) + o(ε).

The hypotheses on F lead to the �rst assertion, once we set P ′ := Pε ∈ PN+1

for a suitable value of ε > 0.
In particular, if we consider a generalized polygon P ∈ PN ⊂ PN+1, the

corresponding generalized polygon P ′ (built as above) gives us a strictly lower
value for Problem (6.1) in PN+1, then P cannot be a minimizer in PN+1.

The following theorem gives us an existence result in PN .

Theorem 6.1.3. Problem (6.1) admits a solution P ∈ PN with exactly N

sides. Moreover, the sequence of the minima (mN)N for (6.1) (labelled on the
number of sides), is strictly decreasing in N .

Proof. Let us consider a minimizing sequence (Pn)n for (6.1). Let us suppose
that the diameters of the polygons Pn are not uniformly bounded. Since the
number of sides is uniformly bounded, the polygons Pn can have at most N/3
well separated components (in the case that Pn is union of N/3 open triangles).

Then, under the assumption supn diam(Pn) = +∞, the only possible be-
haviour is that Pn becomes longer (since the diameters diverge) and thinner
(since the measure is bounded a priori) along some directions, creating sharp
spikes. Take one of such directions, say the line x2 = 0. Hence, any projection
lCn of the set Pn on the line x1 = C, has to be union of segments of length tend-
ing to 0, if C is su�ciently large. Proceeding as in Theorem 4.1.3, we obtain
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that a lower bound for every admissible relaxed Rayleigh quotient R̄Pn(u) is
given by λ̄1,β(lmaxn ), where lmaxn is the longest among the lnC sets. In particular,
by the generalized Faber-Krahn inequality (Theorem 2.3.2),

R̄Pn(u) ≥ λ1,β(Blmaxn
),

where Blmaxn
is the segment (1-dimensional ball) with the same length as lmaxn .

Since H1(Blmaxn
) vanishes as n tends to in�nity, we obtain that λ1,β(Blmaxn

)

positively diverges, obtaining that any sequence R̄Pn(u) of admissible Rayleigh
quotients on Pn diverges, against the hypotheses of minimality on (Pn)n.

Hence, we can suppose that the sequence (Pn)n is uniformly bounded, say
Pn ⊂ BR(0) for some R > 0 and every n ∈ N. In view of Remark 6.0.3, there
exists a generalized polygon P ∈ PN , P ⊂ BR(0), such that Pn → P in the
Hc-topology and |P | ≤ m. Moreover, the Hc-convergence of Pn to P implies
that H1(Pn)→ H1(P ) in the sense of Mosco (see Proposition 1.5.3).

To prove that P is a minimizer for (6.1), let us �x ε > 0 and consider an
admissible h-dimensional test space Vn for λ̄h,β(Pn) such that

max
w∈Vn

R̄Pn(w) ≤ λ̄h,β(Pn) + ε.

Let us consider a L2(Pn)-orthonormal basis of Vn, say {un1 , . . . , unh}. In view
of Mosco convergence, for every j = 1, . . . , h there exist uj ∈ H1(P ) such
that ujn → uj strongly in L2(R2) and ∇upj ⇀ ∇uj weakly in L2(R2;R2) (here
we denote with the same symbol the extension of the functions outside their
domains). Let V be the h-dimensional vector space spanned by {u1, . . . , uh}
(in view of the L2-convergence we can suppose the uj functions linearly inde-
pendent) and let us consider v :=

∑h
j=1 αjuj such that

R̄P (v) = max
w∈V

R̄P (w).

Let us consider vn :=
∑h

j=1 αju
n
j ∈ Vn and observe that vn → v strongly in

L2(R2) and ∇vn ⇀ ∇v weakly in L2(R2;R2). Thanks to continuity of the
volume integrals at the denominator and to the lower semicontinuity of the
gradient integral and of the boundary integral (see Theorem 3.7.3), we obtain

λk,β(P ) ≤ max
w∈V

R̄P (w) = R̄P (v) ≤ lim inf
n→+∞

R̄Pn(vn)

≤ lim inf
n→+∞

max
w∈Vn

R̄Pn(w) ≤ lim inf
n→+∞

λh,β(Pn) + ε.

Letting ε go to 0, we obtain that P is a minimizer for Problem (6.1).
Moreover, P has exactly N sides. Indeed, if it had less than N sides, say

N −K sides, we can apply K times Lemma 6.1.2 to obtain a polygon P ′ with
exactly N sides, |P ′| ≤ m and

F (λ̄1,β(P ′), . . . , λ̄k,β(P ′)) < F (λ̄1,β(P ), . . . , λ̄k,β(P )),
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contradicting the minimality of P .
We also deduce that every minimizer in PN cannot be a minimizer in PN+1

and this implies that the sequence of minima (mN)N is strictly decreasing.

Remark 6.1.4. If we do not require that the number of sides of the admissible
polygons is bounded, than Problem (6.1) does not have a solution in general.
An easy counterexample is given by

min
{
λ̄1,β(P ) : P generalized polygon, |P | ≤ m

}
,

whose in�mum is given by λ1,β(Bm), where Bm is the ball of measure m: this
value is not attained on any �nite perimeter set of measure m, except on the
ball itself.

If we require a little more regularity on the admissible polygons, it is natural
to study the following problem:

min {F (λ1,β(P ), . . . , λk,β(P )) : P ∈ PN , |P | ≤ m,P convex} . (6.3)

Notice that, in view of the convexity hypotheses, it is not necessary to consider
also degenerate polygons. An existence result is obtainable as a corollary to
Theorem 6.1.3.

Corollary 6.1.5. Problem (6.3) admits a solution with exactly N sides. More-
over, the sequence of the minima (mN)N for (6.3), is strictly decreasing in N .

Proof. The proof is a consequence of Theorem 6.1.3 applied with the regularity
hypotheses in (6.3).

6.1.1 Further remarks and open problems

Our choice to set problem (6.1) in a relaxed setting ensures us a more general
existence result; whether the problem is or not a relaxation of

min {F (λ1,β(P ), . . . , λk,β(P )) : P ∈ PN , |P | ≤ m}

is not clear. In other words, we would like to understand if optimal shapes
for (6.1) are simple polygons. An idea could be to assume that a minimizer
P is in PN \ PN and build admissible simple polygons that are better than P
in term of optimization (e.g. deleting some fractures). If we are able to prove
that, we can conclude that solutions to (6.1) are, in fact, simple polygons.

It could be interesting to �nd some isoperimetric inequalities on polygons,
at least for a low number of sides. The main di�culty in a �rst approach to
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the problem is that it is not possible to transpose the same argument used
to prove the Faber-Krahn inequality for the �rst Robin eigenvalue in [13] and
[37]. Indeed, their results are based on the radiality of the �rst eigenfunction
of the disk and on a comparison between the level sets of such function (that
are smooth) and the level sets of an eigenfunction of any domain.

It seems that very few results on isoperimetric inequalities on polygons are
already available. An interesting work in that direction is the recent paper [49]
by P. Freitas and J. Kennedy, where the authors proved that, for every β > 0,
the square minimizes λ1,β and the union of two equal square minimizes λ2,β

in the class of disjoint unions of rectangles with prescribed area A > 0 ([49],
Theorem 4.1 and Corollary 4.2). In addition, for higher eigenvalues they proved
that the union of k disjoint equal squares minimizes λk,β only for small values of
the β, the bound of beta being directly proportional to the ratio (k/A)1/2 ([49],
Theorem B). The proof of such results are based on the explicit expression of
the eigenvalues for such particular domains (the choice to work on rectangles is
due to the possibility to represent explicitly the eigenfunctions via separation
of variables). A smart technique could be to �nd an explicit expression of the
�rst eigenfunction for the regular N -gone RN and then to compute via smooth
transformations any �rst eigenfunction u ∈ H1(PN) for the λ1,β(PN), where
PN is a general, admissible N -gone PN , hoping to obtain some estimates like
λ1,β(RN) ≤ RPN (u). In that sense, for N = 3, a book by McCartin [67] seems
to be useful; in that reference are given explicit representations of the Robin
eigenfunctions for the equilateral triangle. One could try to manipulate them
in order to obtain eigenfunctions of general triangles, even if it seems very
technical.

6.2 Negative boundary parameter: existence re-

sults and open problems

If the amount of references for the Robin problems with positive boundary
parameter on polygons is very limited, for β < 0 nothing seems to be done.
In this short section we give some existence result and some properties of the
optimal sets. In the following we use the notation of Chapter 3: we consider
a negative boundary parameter −β < 0 and write λk,β instead of λk,−β. We
focus on the problem

max
{
F (λ̄1,β(P ), . . . , λ̄k,β(P )) : P ∈ PN , |P | = m

}
(6.4)

where F : Rk → R is non increasing and upper semicontinuos in each variable.
The following theorem gives us an existence results for polygons with at most
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N sides.

Theorem 6.2.1. Problem (6.4) admits a solution P ∈ PN with at most

min

{
N

3
,
m|λk,β(RN

m)|dωd

βd
+ k

}
well separated components, where RN

m is the regular N-gon of measure m.

Proof. Let us consider a maximizing sequence (Pn)n for (6.4). Using the same
tools as in Chapter 3, we can assume that supnH1(∂Pn) < +∞ and so, since
we are in R2, also supn diam(Pn) < +∞. Then, up to subsequences, the
sequence (Pn)n H

c-converge to a polygon P ∈ PN,ε. The convergence is also
in measure and then, by Proposition 1.5.3, H1(Pn) converges to H1(P ) in
the sense of Mosco. Then, repeating the same arguments in Theorem 3.7.7,
we can conclude that problem (6.4) admits P as a solution. Moreover, the
number of well separated components of every solution is less than both N/3

and m|λk,β(RNm)|dωd
βd

+ k: the �rst bound depends on the fact that P has at most
N sides, the second is a consequence of the same arguments in 3.7.7, replacing
the admissible set Bm (the ball of measurem) by the regular N -gon of measure
m RN

m.

Notice that, in view of the de�nition of the class PN , we speak only of well
separated components, not of connected components, as we are not allowed to
separate connected components having some shared sides.

If we require a little more regularity on the admissible polygons, it is natural
to study the problem

min {F (λ1,β(P ), . . . , λk,β(P )) : P ∈ PN , |P | = m,P convex} , (6.5)

where we can remove the uniform cone hypothesis. A trivial corollary to
Theorem 6.2.1 is the following.

Corollary 6.2.2. Problem (6.5) admits a solution.

Proof. The proof is given combining Theorems 6.2.1 and 3.8.6.

6.2.1 Further remarks and open problems

A �rst interesting problem to study could be to prove that optimizers for (6.4)
have exactly N sides, we are not able to apply a similar version Lemma 6.1.2:
the argument used in the case of positive boundary parameter fails in this
setting.
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It could be interesting to �nd some isoperimetric inequalities on polygons,
at least for a low number of sides. At the moment no results are known (up to
our knowledge), but we can imagine that they are based on the explicit repre-
sentation of the eigenfunctions. For instance, an idea to study isoperimetry of
triangles can start from such a representation. Starting from any triangle of
�xed area, one takes the isosceles triangle with same basis and height and, via
an a�ne transformation, modify the eigenfunction of such isosceles triangle
into an admissible function for the generic triangle. A good starting point in
that direction could be the study of Chapter 7 in [67].

We end this chapter reporting a recent �eld of research involving polygons
with Robin conditions on the boundary: the study of the honeycomb conjec-
ture (roughly speaking, �the optimal shape for the cells of an honeycomb is the
regular hexagon�) for the Robin Laplacian eigenvalues. Indeed, trying to prove
that conjecture, some authors prove isoperimetric inequalities on convex poly-
gons for some functionals linked with Robin eigenvalues. To get acquainted
on the topic see [22], where some isoperimetric results are shown and where
authors highlight the lack of more general Faber-Krahn inequalities for Robin
eigenvalues on polygons.



Appendix A

Some necessary conditions of

optimality

In this brief chapter we are going to recall (mostly from Chapter 5 in [60], in
particular Sections 5.4, 5.6 and 5.7) a procedure to obtain necessary conditions
on optimal sets for some spectral shape optimization problem. In particular,
we will focus on the Robin eigenvalues, recalling some necessary conditions of
optimality when the involved sets are regular. We will focus also on the case
of multiple eigenvalues as, up to our knowledge, this situation has not been
treated in detail yet, although it does not seem unreasonable to generalize some
similar results obtained for other spectral problems involving the Dirichlet
Laplacian eigenvalues (see, for instance [10]). We started from the question:
if a problem admits optimal shapes (possibly satisfying additional topological
conditions), do the optimal shapes are also �local optima�? In other words, do
the shape functional can be derived in some sense to have optimality condition
in an analogous way to real valued functions de�ned on Rk?

A.1 Optimality condition for a simple eigenvalue

A.1.1 Shape derivative: de�nitions and key results

An important tool used to obtain optimality conditions is the so called shape
derivative, that is a sort of �rst variation of a shape functional under deforma-
tions by smooth vector �elds. In this short survey we refer mostly to Section
5.4 in [60]; we will recall the de�nitions of the main tools used to derive a boun-
dary value problem; in particular, we will focus on the derivation of eigenvalue
of the Laplace operator with Robin conditions.

We �rst recall the de�nition of tangential gradient (see De�nition 5.4.5 in
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[60]).

De�nition A.1.1 (tangential gradient). Let Ω ⊂ Rd be an open domain with
C1 boundary and let g ∈ C1(∂Ω). The tangential gradient of g on ∂Ω is de�ned
by

∇∂Ωg := ∇g̃ − (∇g̃ · n)n,

where n is the outer normal unit vector on ∂Ω and g̃ : Rd → R is a C1 extension
of g.

It can be proved that the de�nition above is independent on the extension
g̃ (we refer again to [60], more precisely yo the remark just below De�nition
5.4.5). It is convenient to recall also the de�nition of tangential divergence
(see De�nition 5.4.6 in [60]).

De�nition A.1.2 (tangential divergence). Let Ω ⊂ Rd be an open domain
with C1 boundary and let V ∈ C1(∂Ω;Rd). We de�ne the tangential divergence
of V by

div∂ΩV := divṼ − Ṽ ′n · n,
where n is the outer normal unit vector on ∂Ω and Ṽ : Rd → Rd is a C1

extension of V .

As in the case of the tangential gradient, the de�nition is independent on
the extension Ṽ .

Another important notion in this framework is the mean curvature of a
surface (here we recall De�nition 5.4.7 in [60]).

De�nition A.1.3 (mean curvature). Let Ω ⊂ Rd be an open domain with C2

boundary. We de�ne the mean curvature of ∂Ω by

H := div∂Ωn,

where n is the outer normal unit vector on ∂Ω.

To extend the tangential gradient and the tangential divergence to a more
general functional setting, we recall the de�nition of Sobolev spaces on a
smooth topological boundary.

De�nition A.1.4 (Sobolev Spaces on ∂Ω). Let Ω ⊂ Rd be an open domain
with C2 boundary. We de�ne the Sobolev Space W 1,1(∂Ω;Rk) as the closure
of C1(Ω;Rk) with respect to the norm

‖u‖W 1,1(∂Ω;Rd) :=

∫
∂Ω

|u| dHd−1 +

∫
∂Ω

|∇∂Ωu| dHd−1,

omitting Rk if k = 1. We de�ne the Sobolev Space W 2,1(∂Ω) by

W 2,1(∂Ω) :=
{
u ∈ W 1,1(∂Ω) : ∇∂Ωu ∈ W 1,1(∂Ω;Rd)

}
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As remarked in Section 5.4 of [60], the de�nitions of tangential gradient and
tangential divergence can be extended respectively to real valued functions in
W 1,1(∂Ω) and to vector valued functions in W 1,1(∂Ω;Rd).

Now, we recall the de�nition of Laplace-Beltrami operator, that generalizes
to a smooth hypersurface the notion of Laplace operator (see De�nition 5.4.11
in [60])

De�nition A.1.5 (Laplace-Beltrami operator). Let Ω ⊂ Rd be an open do-
main with C2 boundary. We de�ne the Laplace-Beltrami operator on ∂Ω by

∆∂Ωu := div∂Ω (∇∂Ωu) ,

for every u ∈ W 2,1(∂Ω).

Remark A.1.6 (see Proposition 5.4.12 and Theorem 5.4.13 in [60]). For every
domain of class C2 and every u ∈ C2(Ω), the next decomposition of the Laplace
operator on ∂Ω holds (see Formula (5.54) in [60]):

∆u = ∆∂Ωu+H∂u
∂n

+
∂2u

∂n2
.

By density, we can extend that formula to functions in H3(Ω). Moreover, for
every f ∈ H2(Ω) and every g ∈ H3(Ω), the following integration by parts
formula holds (see Formula (5.59) in [60])∫

∂Ω

∇∂Ωf · ∇∂Ωg dHd−1 = −
∫
∂Ω

f∆∂Ωg dHd−1. (A.1)

A.1.2 How to derive a boundary value problem

In the following section we refer to Section 5.6 and Paragraph 5.4.4 of [60],
in order to give survey on how to derive (heuristically!) a boundary value
problem when a domain varies under smooth perturbations. Our aim is to
give to the reader a short user's guide to derive every boundary value problem,
even if it is not linear.

We start de�ning the normed space (see Paragraph 5.4.4 in [60])

C1,∞(Rd;Rd) := C1(Rd;Rd) ∩W 1,∞(Rd;Rd)

endowed with theW 1,∞-norm. Let us �x a smooth vector �eld V ∈ C∞(Rd;Rd)

and let us consider a function Φ de�ned by

[0, T [→ C1,∞,

t 7→ Φ(t),
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where Φ(t) is a function in C1,∞, derivable in 0, such that

Φ(0) = I, Φ′(0) = V.

For instance, an admissible Φ is given, for every t ∈ [0, T [, by

Rd → Rd,

x 7→ [Φ(t)](x) := x+ tV (x).

Let us denote by
Ωt := [Φ(t)](Ω) (A.2)

the family of smooth domains obtained as images of Ω by the function Φ(t)

(for all the previous notation we refer to the whole of Chapter 5 in [60]).
The �rst step is to de�ne the outer normal unit vector on every boundary

∂Ωt in such a way that the family of normal unit vectors (nt)t varies smoothly
in t and that, for t = 0, we obtain the outer normal unit vector to ∂Ω. To this
aim, we recall the following result (see Proposition 5.4.14 in [60]).

Proposition A.1.7 (extension of a normal vector �eld on a varying domain).
Let Ω be a domain of class C2 and let (Ωt)t the family of domains de�ned in
(A.2). Let n ∈ C1(Rd;Rd) an extension of the outer normal unit vector to ∂Ω

(still denoted by n). Let us de�ne

w(t) :=
[
t(DΦ(t)−1)n

]
◦ Φ(t)−1;

then, the function

nt :=
w(t)

‖w(t)‖
is an extension of n to ∂Ωt, nt ∈ C0(Rd;Rd) and the map t 7→ nt is continuous
in [0, T [ and admits right �rst derivative in 0. Moreover, for every continuous
extension ñt of n to ∂Ωt, the �rst derivative in t = 0 is given by

∂ñt
∂t

∣∣∣∣
t=0

= −∇∂Ω(V · n)− (Dñ0 · n)(V · n)

on Rd. In particular, considering the extension nt above, it holds

∂nt
∂t

∣∣∣∣
t=0

= −∇∂Ω(V · n)− (Dn · n)(V · n)

Once we de�ne the above extension of the normal unit vector, we are able
to pass to a derivation of a large family of boundary value problems; for all
the following arguments we refer to Section 5.6 in [60]. Let us consider{

A(t, ut) = f in Ωt,

B(t, ut) = g in ∂Ωt,
(A.3)
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on Ωt, where ut is a solution of Problem (A.3) and the operators A(t, ·) and
B(t, ·) act on suitable functional spaces respectively on Ωt and ∂Ωt. The idea
is to derive the boundary value problem with respect to t in t = 0. Before
starting with the formal derivation of the problem, let us remark that the
map t→ ut is di�erentiable (by an application of implicit function theorem, as
explained in Section 5.6 of [60]). Once shown such derivability, we can consider
the function

u′ :=
∂ut
∂t

∣∣∣∣
t=0

.

Under suitable hypotheses of regularity on A,B, f, g (that allow the deriva-
tion of the problem below, see the end of Section 5.6 in [60], also for further
references), it can be proved that u′ is a solution to the problem∂tA(0, u) + ∂uA(0, u) · u′ = 0 in Ω,

∂tB(0, u) + ∂uB(0, u) · u′ = ∂

∂n
(g −B(0, u)) (V · n) in ∂Ω.

(A.4)

(the computations are quite standard; we refer again to Section 5.6 in [60]).
In next paragraph, we will apply these ideas to the derivation of the Robin
eigenvalues problem.

A.1.3 Necessary condition of optimality for a simple Robin

eigenvalue

Now, we are going to recall an application of the results in the previous para-
graph to the derivation of simple eigenvalues of the Laplacian operator with
Robin boundary conditions. For many details we refer to Section 5.7 in [60],
where the computation is made in the case of Dirichlet and Neumann eigen-
values (that can be easily transposed to the Robin case); we also refer to
some works where the computation is made (or recalled), e.g. [8], where other
references to the original computation can be found.

The reason why we deal with the case of simple eigenvalues is easily under-
standable looking at the following example in �nite dimension (see the example
at the beginning of Section 5.7 in [60]). Let At ∈ R2,2 be the square matrix
de�ned by

At :=

(
1− t 0

0 1 + t

)
.

If we order its two eigenvalues λ1(At), λ2(At) in non decreasing order, we have
that

λ1(At) = 1 + t, λ2(At) = 1− t, ∀t < 0,
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λ1(A0) = λ2(A0) = 1

and
λ1(At) = 1− t, λ2(At) = 1 + t, ∀t > 0.

In other words

λ1(At) = 1− |t|, λ2(At) = 1 + |t|, ∀t ∈ R,

then neither t 7→ λ1(At) nor t 7→ λ2(At) are di�erentiable in t = 0. The reason
is that, since the eigenvalue λ1 is multiple in t = 0, the two (analytic) curves

t 7→ 1− t, t 7→ 1 + t,

describing the roots of the characteristic polynomial, meet in 0, creating a
corner. Before the corner (t < 0) 1 + t < 1 − t, so λ1(At) = 1 + t and
λ2(At) = 1−t; after the corner (t>0), the two analytic functions exchange their
role, i.e. λ1(At) = 1− t < 1 + t = λ2(At). Then, we could not di�erentiate the
eigenvalues of the matrix A0, because the two functions are not di�erentiable
in t = 0.

If we let a domain Ω vary under a smooth vector �eld Φ(t) in the same
way as in (A.2), the same situation may occur: we could have that a Robin
eigenvalue of Ω = Ω0 is multiple and then the curves, given by t 7→ λh,β(Ωt),
intersect in t = 0. Such curves are not di�erentiable, in general (as in the
example above); then it is not possible to �nd a �rst order necessary condition
based on the derivative of t 7→ λk,β(Ωt), to say that λk,β(Ω) is a local optimum.
Whether the curves can be reordered across the intersection to have all analytic
curves, is in interesting question that we treat in the next section.

To overcome the problem, in this section we consider only the case of
simple eigenvalues: under this hypothesis, it is possible to work only on one
di�erentiable curve t 7→ λk(Ωt), then we are able to write a �rst order condition
based on the derivative λ′k,β(Ωt).

We denote by V0 the family of the smooth volume preserving vector �elds
and by Eλk,β(Ω) the eigenspace relative to the eigenvalue λk,β(Ω).

Proposition A.1.8 (derivation of a simple Robin eigenvalue and necessary
condition of optimality). Let Ω be a C3 domain and let V ∈ V0. If λβ,k(Ω) is
simple, then

λ′k,β(Ω) =

∫
∂Ω

[
|∇∂Ωu|2 − (λk,β(Ω) + β2 + βH)u2

]
V · n dHd−1

for some eigenfunction u ∈ Eλk,β(Ω). In particular, if Ω is (locally) optimal, it
holds ∫

∂Ω

[
|∇∂Ωu|2 − (λk,β(Ω) + β2 + βH)u2

]
V · n dHd−1 = 0
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for some eigenfunction u ∈ Eλk,β(Ω).

Sketch of the proof. We just sketch the proof as the result is already known in
literature and its proof follows the ideas in Theorems 5.7.1 and 5.7.2 of [60],
where there are the derivatives of the Dirichlet and Neumann eigenvalues,
respectively. We then consider the boundary value problem{

−∆ut = λk,β(Ωt)ut in Ωt,
∂ut
∂nt

+ βut = 0 in ∂Ωt,
(A.5)

with the condition of normalization∫
Ωt

u2
t dx = 1. (A.6)

Provided that the qualitative hypotheses of the previous section are satis�ed,
we derive in t = 0 the boundary value problem (A.5)as (A.3), with

A(t, ut) = −∇ut − λk,β(Ωt), B(t, ut) =
∂ut
∂nt

+ βut, f = g = 0;

in addition, we derive also the condition of normalization (A.6), obtaining∫
Ω
u u′ dx = 0. We obtain the correspondent of the boundary value problem

(A.4) (with our choice of A,B, f, g). Taking the �rst equation of this new
boundary value problem on Ω, the thesis is obtained multiplying such equa-
tion by u, integrating on Ω, applying the Robin boundary condition and the
condition

∫
Ω
u u′ dx = 0.

A.2 Remarks and perspectives

Let us observe that all the previous considerations about necessary conditions
of optimality hold considering both positive and negative boundary parameter
in the Robin problem, so the approach is the same for minimality conditions
when dealing with positive boundary parameter and maximality conditions
when dealing with negative boundary parameter.

A.2.1 Some remarks about derivation of multiple eigen-

values

To perform a derivation of multiple eigenvalues, we have to pay attention to
the matricial example at the beginning of the chapter. Under some suitable
hypotheses, it is possible to reorder the eigenvalues in such a way that every
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eigencurve t 7→ λk(t) turns out to be analytic. In such a way, we can imagine
that an optimality condition can be given in two di�erent ways: either t = 0

is a stationary point (of minimum or maximum) for the map t 7→ λk,β(Ωt) (in
the case of simple eigenvalues) or in t = 0 there exist right and left derivative
of t 7→ λk,β(Ωt) and have opposite sign (obtaining a minimum/maximum point
with a cusp, in case of multiple eigenvalues).

The key point in this framework is to understand if a map of the type
t 7→ Ωt (see (A.2)) perturb analytically the spectrum of a linear operator in
the sense of Kato (see [62]) or, in other words, if the map

t 7→ λk,β(Ωt)

is analytic near t = 0. An important result is the following.

Proposition A.2.1. The map t 7→ λk,β(Ωt) is analytic in a neighbourhood of
t = 0.

The proof of the previous proposition can be found combining Theorem
4.4, Chapter VII, Paragraph 6 in [62] (holding for Dirichlet eigenvalues) with
the remark at the bottom of page 425, where the author explain the technical
substitutions to be done to obtain the result for Neumann or Robin eigenvalues.

To our knowledge, even this analyticity is not enough to ensure the pos-
sibility to gain optimality conditions for multiple eigenvalues. Indeed, to
our purposes, we would need a result such as: �if λk,β(Ω) is an eigenvalue
for Ω with multiplicity m, then there exist m distinguished analytic maps
t 7→ λ

(1)
k,β(t) ∈ R, . . . , t 7→ λ

(m)
k,β (t) ∈ R and u1,t, . . . , um,t ∈ H1(Ωt) such that,

for every i = 1, . . . ,m and t su�ciently small,{
−∆ui,t = λ

(i)
k,β(t)ui,t in Ωt,

∂ui,t
∂n

+ βui,t = 0 in ∂Ωt

and λ(i)
k,β(0) = λβ,k(Ω)�. This request comes from some works about the same

problem on Dirichlet eigenvalues, were, also for the perturbed problem, the
boundary condition remains of the Dirichlet type. In our case, it is clear that
the perturbed problem is still a Robin problem, but is not clear whether the
boundary condition remains the same (i.e. if we have to replace β by some
β(t)).

It is worth to investigate how such multiple Robin eigenvalues can be
treated; as remarked above, some references about the Dirichlet problem sug-
gest a way to follow; we cite again the papers [10], [12] and [46] to get ac-
quainted on the problem.



Appendix B

Some properties and results about

non-local Robin-Laplacian and

fractional Sobolev Spaces

In this chapter we will present some transposition in the non-local setting
of the classical properties of the Robin Laplacian (selfadjointness, spectral
representation, etc...) and its eigenvalues.1 In Section 1, we recall (by [1], [43]
and [44]) the necessary tools to understand the following of the chapter and
we provide some results about the linear problem associated to the non-local
Robin Laplacian. In the Section 2, we prove that the operator satis�es the
hypotheses of Theorem 1.3.8 to have a min-max formula for the eigenvalues
and we prove some basic properties of the eigenvalues, highlighting analogies
and di�erences with the local case. In last section, as a byproduct of our
analysis, we prove a non-local version of Chenais' uniform extension theorem
1.4.27 (see [30] for the original reference), as we think it could be useful to
develop some techniques to approach non-local shape optimization problems
involving uniformly regular sets. This last section is inspired by Section 5
in [43], where an extension theorem for fractional Sobolev spaces on a �xed
Lipschitz domain is given.

1The results of the �rst two sections are obtained in a joint work with A. Carbotti,

Università del Salento.
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B.1 Some preliminary tools and the linear prob-

lem

The natural non-local counterpart of the classical Laplace operator is the frac-
tional Laplace operator (−∆)s. For the setting of the problem and for the
preliminary results we refer to [1], [43] and [44].

De�nition B.1.1 (fractional Laplace operator). Let s ∈ (0, 1). We de�ne the
fractional Laplacian operator (−∆)s setting, for every u in the Schwartz space
S(Rd),

(−∆)su(x) := cd,sP.V.

∫
Rd

u(x)− u(y)

|x− y|d+2s
dy,

where P.V. stands for �in the sense of the principal value� and cd,s is a dimen-
sional constant depending on d and s given by

cd,s :=

(∫
Rd

1− cos(ζ1)

|ζ|d+2s
dζ

)−1

.

The previous de�nition can be intended also in a weak sense, for functions
that are not smooth (see [1] for some references on the topic). To our purposes,
it is su�cient to consider functions in a suitable Hilbert space.

De�nition B.1.2. Let Ω ⊆ Rd be an open set. We de�ne the space Hs (Ω)

by

Hs (Ω) :=

{
u ∈ L2 (Ω) ;

u (x)− u (y)

|x− y|
d
2

+s
∈ L2 (Ω× Ω)

}
. (B.1)

These space Hs(Ω) is the non-local counterpart of the classical Sobolev
space Hk(Ω) = W k,2(Ω); it is very useful to extend the fractional Laplacian
to an Hilbert space of non-smooth functions, as we will see in the following.
Now, to give the non-local counterpart of the normal derivative, we de�ne the
operator below.

De�nition B.1.3 (non-local normal derivative). Let Ω ⊂ Rd be an open
Lipschitz set. For every u ∈ L2(Rd), we de�ne the non-local normal derivative
outside Ω by

Nsu (x) := cn,s

∫
Ω

u (x)− u (y)

|x− y|d+2s
dy for x ∈ Rd \ Ω (B.2)

where cd,s is the same normalization constant in the de�nition of fractional
Laplacian.
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Now, we introduce the linear Robin problem for the non-local Laplacian;
as in the local setting, we deal with solutions in a weak sense (in the sense of
Sobolev spaces). To this aim, we de�ne the following Hilbert space:

Hs
Ω,g :=

{
u : Rd → R measurable ; ‖u‖Hs

Ω,g
<∞

}
(B.3)

where

‖u‖2
Hs

Ω,g
: = ‖u‖2

L2(Ω) + β ‖u‖2
L2(Rd\Ω) +

∥∥∥|g|1/2 u∥∥∥2

L2(Rd\Ω)

+

∫
R2d\(Ωc)2

|u (x)− u (y)|2

|x− y|d+2s
dxdy

(B.4)

De�nition B.1.4 (non-local Robin linear problem). Let f ∈ L2 (Ω) and g ∈
L1
(
Rd \ Ω

)
. We say that u ∈ Hs

Ω,g is a solution of the Robin-Laplacian linear
problem on Ω with source f and boundary (or external) condition g if u solves{

(−∆)s u = f in Ω

Nsu+ βu = g in Rd \ Ω
(B.5)

in a weak sense, i.e. if u solves∫ ∫
R2d\(Ωc)2

(u (x)− u (y)) (v (x)− v (y))

|x− y|d+2s
dxdy + β

∫
Rd\Ω

uvdx

=

∫
Rd\Ω

gvdx+

∫
Ω

fvdx

(B.6)

for every v ∈ Hs
Ω,g.

To handle the weak formulation (B.6) above, it is very useful the following
non-local version of the integration by parts formulae, see Lemma 3.2 in [44].

Lemma B.1.5 (non-local divergence theorem and integration by parts for-
mula). Let u, v ∈ C2

b

(
Rd
)
. Then∫

Ω

(−∆)s udx = −
∫
Rd\Ω
Nsudx (B.7)

and∫
R2d\(Ωc)2

(u(x)− (u(y))(v(x)− (v(y))

|x− y|d+2s
dx dy =

∫
Ω

v (−∆)s udx

∫
Rd\Ω

vNsu dx.

(B.8)

Using the previous lemma we are able to prove the uniqueness for solutions
of (B.5) when the boundary parameter β is non-negative.



150 Some results in the non-local setting

Theorem B.1.6 (Uniqueness for solutions of (B.5)). If β ≥ 0, problem (B.5)
admits a unique solution.

Proof. Let u1, u2 be two solutions (B.5); then w = u1 − u2 solves{
(−∆)sw = 0 in Ω

βw +Nsw = 0 in Rd \ Ω.

in a weak sense, i.e.∫ ∫
R2d\(Ωc)2

|w (x)− w (y)|2

|x− y|d+2s
dxdy + β

∫
Rd\Ω

w2dx = 0

where we chose w ∈ Hs
Ω,0 itself as a test function. It follows that w vanishes

a.e. in Rd \ Ω and that W (x, y) := w(x) − w(y) is null a.e. R2d \ (Ωc)2. In
particular, W is null on the cylinder Ω×Rd, hence we deduce that w = 0 a.e.
in Rd, proving the unicity of the (weak) solution.

The following proposition characterizes the weak solutions as critical points2

of an associated energy functional.

Proposition B.1.7. Let f ∈ L2 (Ω) and g ∈ L1
(
Rd \ Ω

)
. Let I : Hs

Ω,g → R
be the functional de�ned as:

I [u] : =
cds
4

∫
R2d\(Ωc)2

|u (x)− u (y)|2

|x− y|d+2s
dxdy +

β

2

∫
Rd\Ω

u2dx

−
∫

Ω

fudx−
∫
Rd\Ω

gudx.

(B.9)

Then, u is a critical point of I if and only if u is a weak solution of (B.5).

Proof. Firstly we observe that the functional is well de�ned on Hs
Ω,g; indeed

we have, �xed u ∈ Hs
Ω,g∣∣∣∣∫

Ω

fudx

∣∣∣∣ ≤ ‖f‖L2(Ω) ‖u‖L2(Ω) ≤ C ‖u‖Hs
Ω,g

(B.10)

and ∣∣∣∣∫
Rd\Ω

gudx

∣∣∣∣ ≤ ‖g‖1/2

L1(Rd\Ω)

∥∥∥|g|1/2 u∥∥∥
L2(Rd\Ω)

≤ C ‖u‖Hs
Ω,g

(B.11)

Therefore, if u ∈ Hs
Ω,g we have that

|I [u]| ≤ C ‖u‖Hs
Ω,g

< +∞.

2In the sense of the Gâteau derivative; for more details see [70]
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Now we compute the �rst variation of I.
Fixed ε such that |ε| < 1 and v ∈ Hs

Ω,g, then u+ εv ∈ Hs
Ω,g, and so we have

I [u+ εv] =
cn,s
4

∫
R2d\(Ωc)2

|(u+ εv) (x)− (u+ εv) (y)|2

|x− y|d+2s
dxdy

+
β

2

∫
Rd\Ω

(u+ εv)2 dx−
∫

Ω

f (u+ εv) dx−
∫
Rd\Ω

g (u+ εv) dx

= I [u] + ε

(
cn,s
2

∫
R2d\(Ωc)2

(u (x)− u (y)) (v (x)− v (y))

|x− y|d+2s
dxdy

+ β

∫
Rd\Ω

uvdx−
∫

Ω

fvdx−
∫
Rd\Ω

gvdx

)

+ ε2

(
cn,s
4

∫
R2d\(Ωc)2

|u (x)− u (y)|2

|x− y|d+2s
dxdy +

β

2

∫
Rd\Ω

v2dx

)
.

Hence,

lim
ε→0

I [u+ εv]− I [u]

ε

=
cn,s
2

∫
R2d\(Ωc)2

(u (x)− u (y)) (v (x)− v (y))

|x− y|d+2s
dxdy + β

∫
Rd\Ω

uvdx

−
∫

Ω

fvdx−
∫
Rd\Ω

gvdx,

which means that

I ′ [u] (v) =
cn,s
2

∫
R2d\(Ωc)2

(u (x)− u (y)) (v (x)− v (y))

|x− y|d+2s
dxdy + β

∫
Rd\Ω

uvdx

−
∫

Ω

fvdx−
∫
Rd\Ω

gvdx.

Therefore, u is a critical point of I if and only if u is a weak solution of
(B.5).

B.2 The non-local Robin Laplacian operator and

its eigenvalues

In this section we focus on the non-Local Robin Laplacian eigenvalues problem,
i.e. on the problem {

(−∆)s u = λk,β(Ω) u in Ω

Nsu+ βu = 0 in Rd \ Ω
(B.12)
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or, in a weak form,∫ ∫
R2d\(Ωc)2

(u (x)− u (y)) (v (x)− v (y))

|x− y|d+2s
dxdy + β

∫
Rd\Ω

uvdx

= λk,β(Ω)

∫
Ω

uvdx

for every v ∈ Hs
Ω,0.

Before introducing the Robin-Laplacian operator, observe thst Hs
Ω,0 ⊂

L2(Rd) ∩Hs(Ω).

De�nition B.2.1. We de�ne the Robin Laplacian operator on L2(Ω) as the
linear extension of the operator (−∆)s to the space

D ((−∆)s) := {u ∈ L2(Rd) ∩Hs (Ω) ; (−∆)s u ∈ L2 (Ω) ,

βu+Nsu = 0 inRd \ Ω}.

A �rst important property, based on the integration by parts formula, is
the following.

Proposition B.2.2 (Selfadjointness of Robin fractional Laplacian). The Robin
fractional Laplacian ((−∆)s, D((−∆)s)) is selfadjoint in L2(Ω).

Proof. Let 〈·, ·〉 be the scalar product in L2(Ω) and u, v ∈ D ((−∆)s). then,
the integration by parts formula (B.8) allows us to write

〈(−∆)s u, v〉 =

∫
Ω

(−∆)s uvdx

=

∫
R2d\(Ωc)2

(u (x)− u (y)) (v (x)− v (y))

|x− y|d+2s
dxdy +

∫
Rd\Ω
Nsuvdx

=

∫
R2d\(Ωc)2

(u (x)− u (y)) (v (x)− v (y))

|x− y|d+2s
dxdy − β

∫
Rd\Ω

uvdx

=

∫
R2d\(Ωc)2

(u (x)− u (y)) (v (x)− v (y))

|x− y|d+2s
dxdy +

∫
Rd\Ω

uNsvdx

=

∫
Ω

u (−∆)s vdx = 〈u, (−∆)s v〉 ,

proving the selfadjointness of (−∆)s on its domain.

Now, we want to show that the eigenvalues of the Robin fractional Lapla-
cian admit a variational representation via the Courant-Fischer min-max and
max-min formulae (1.1) and (1.2). To do this, we use the spectral Theorem
1.3.8, once we prove that the associated quadratic form is semibounded from
below.
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Proposition B.2.3. Let us consider the quadratic form associated to the Robin
fractional Laplacian

Qβ(u) :=

∫∫
R2d\(Ωc)2

(u (x)− u (y))2

|x− y|d+2s
dxdy + β

∫
Rd\Ω

u2 dx.

Then, Qβ(u) is semibounded from below in Hs(Ω), i.e. there exists γ ∈ R such
that

Qβ(u) ≥ γ‖u‖2
Hs(Ω) (B.13)

Proof. To prove (B.13), we notice that if β ≤ 0, we have

β‖u‖2
Rd\Ω ≥ β‖u‖2

Rd

and then

Qβ(u) ≥ β‖u‖2
Hs(Rd) ≥ βCext‖u‖2

Hs(Ω),

where Cext > 0 is the norm of the extension operator of Hs(Ω) to the whole of
Rd.

On the other hand, if β > 0, we can choose γ = 0 to get trivially (B.13).
A more accurate analysis leads us to show that

Qβ(u) + β‖u‖2
L2(Ω) ≥ γ‖u‖2

Hs(Ω),

with γ = min{1, β}.

In view of the previous two propositions and of the compactness of the
embedding Hs(Ω) ↪→↪→ L2(Ω), we can apply Theorem 1.3.8 for semibounded
selfadjoint operators with compact resolvent. Then, the eigenvalues of the
fractional Robin Laplacian form an increasing and positive diverging sequence

λ1,β(Ω) ≤ λ2,β(Ω) ≤ . . .→ +∞.

Moreover, λk,β(Ω) can be represented by

λk,β(Ω) = min
S∈Sk

max
u∈S\{0}

Qβ(u)

‖u‖2
L2(Ω)

= min
S∈Sk

max
u∈S\{0}

∫∫
R2d\(Ωc)2

(u (x)− u (y))2

|x− y|d+2s
dx dy + β

∫
Rd\Ω

u2 dx∫
Ω

u2 dx

,

(B.14)
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or by

λk,β(Ω) = max
S⊥∈Sk−1

min
u∈S\{0}

Qβ(u)

‖u‖2
L2(Ω)

= max
S⊥∈Sk−1

min
u∈S\{0}

∫∫
R2d\(Ωc)2

(u (x)− u (y))2

|x− y|d+2s
dx dy + β

∫
Rd\Ω

u2 dx∫
Ω

u2 dx

,

(B.15)

where we denote by Sk (resp. Sk−1) the family of all k-dimensional (resp.
(k− 1)-dimensional) subspaces of L2(Rd)∩Hs(Ω). We recall that the equality

λk,β(Ω) =

∫∫
R2d\(Ωc)2

(u (x)− u (y))2

|x− y|d+2s
dx dy + β

∫
Rd\Ω

u2 dx∫
Ω

u2 dx

holds whenever u ∈ L2(Rd) ∩Hs(Ω) is an eigenfunction relative to the eigen-
value λk,β(Ω).

Some interesting properties are summarized in the following proposition.

Proposition B.2.4 (monotonicity w.r.t. the boundary parameter and under
dilations). For every bounded Lipschitz domain Ω and every k ∈ N, the map
β 7→ λk,β(Ω) is monotonically increasing in R. Moreover, the non-local Robin
eigenvalues are monotonically decreasing under dilation, i.e., for every open
bounded Lipschitz set Ω ⊂ Rd, β > 0, t ≥ 1 and k ∈ N, it holds

λk,β(tΩ) ≤ λk,β(Ω).

Proof. The �rst statement is straightforward to prove.
To show the monotonicity under dilations, let t ≥ 1 and let us observe

that there is a one-to-one correspondence (given by the homothety x ∈ Ω 7→
x′ := tx ∈ tΩ) between functions u ∈ L2(Rd) ∩ Hs(Ω) and functions v ∈
L2(Rd)∩Hs(tΩ) and between k-dimensional subspaces of L2(Rd)∩Hs(Ω) and k-
dimensional subspaces of L2(Rd)∩Hs(tΩ). Let us consider u ∈ L2(Rd)∩Hs(Ω)

and v ∈ L2(Rd) ∩Hs(tΩ) such that

v(tx) = u(x) a.e. x ∈ Rd.

We have ∫
tΩ

v2 dx′ = td
∫

Ω

u2 dx,
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∫
Rd\tΩ

v2 dx′ = tn
∫
Rd\Ω

u2 dx

and∫∫
R2d\(tΩc)2

(v (x′)− v (y′))2

|x′ − y′|d+2s
dx′ dy′ = td−2s

∫∫
R2d\(Ωc)2

(u (x)− u (y))2

|x− y|d+2s
dx dy.

Hence, computing the Rayleigh quotients we obtain

RtΩ
β (v) =

∫∫
R2d\(tΩc)2

(v (x′)− v (y′))2

|x′ − y′|d+2s
dx′ dy′ + β

∫
Rd\tΩ

v2 dx′∫
tΩ

v2 dx′

=

t−2s

∫∫
R2d\(Ωc)2

(u (x)− u (y))2

|x− y|d+2s
dx dy + β

∫
Rd\Ω

u2 dx∫
Ω

u2 dx

≤

∫∫
R2d\(Ωc)2

(u (x)− u (y))2

|x− y|d+2s
dx dy + β

∫
Rd\Ω

u2 dx∫
Ω

u2 dx

= RΩ
β (u).

Passing to the min-max formula we conclude the proof.

Remark B.2.5 (non-local scaling property). Let us observe that, as a byprod-
uct of the previous proposition, the Robin eigenvalues satisfy the following
scaling property

λk,β(tΩ) = t−2sλk,t2sβ(Ω)

for every t > 0. Notice that letting s→ 1−, we do not obtain the �local scaling
property� (2.6) λk,β(tΩ) = t−2λk,tβ(Ω). This probably depends on the di�erent
nature of the second addendum in the Rayleigh quotients: in the local case, it
is a surface integral, in the non-local case it is a volume integral.

B.3 Uniform extension Theorem for uniformly

regular open sets

As remarked in Chapter 1, Theorem 1.4.27, when dealing with a sequence (Ωn)n
of extension domains which are uniformly regular (i.e. satisfying the same ε-
cone property), it could be necessary to ensure that the extension operators
En : H1(Ωn) → Hs(Rd) are uniformly bounded. Throughout this section we
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will prove this result in a non-local setting, with a slightly di�erent statement
to Theorem 1.4.27. More precisely, we will prove that the extensions operators
En above are equibounded. This result, up to our knowledge, is not still present
in literature, even if it is natural to wonder whether the extension operators
En can be considered equibounded and even if the result we are inspired by
has been published some years ago in [43]. For many of the arguments of
our proofs we refer to [43], in which we can �nd the extension theorem for a
Lipschitz domain Ω ⊂ Rd.

We start with a lemma involving compactly supported functions. We prove
that, if un ∈ Hs(Ωn) is identically zero in a neighbourhood of ∂Ωn, then the
sequence (un)n can be extended uniformly to the whole of Rd. We base our
argument on an adaptation of the proof of Lemma 5.1 in [43] and on the
fact that, if Ωn H

c-converges to a non-empty open set Ω, then there exists a
non-empty compact set with positive measure contained in all the Ωn sets.

Lemma B.3.1. Let (Ωn)n be a sequence of uniformly regular bounded open
sets Hc-converging to Ω ⊂ Rd. Let K ⊂ Rd be compact such that K ⊂ Ωn for
every n ∈ N. For every un ∈ Hs(Ωn) such that un = 0 in Ωn \K, we set

ũn(x) :=

{
un(x) if x ∈ Ωn,

0 if x ∈ Rd \ Ωn.

Then, ũn ∈ Hs(Rd) and there exists a positive constant C = C(Ω) such that

‖ũn‖Hs(Rd) ≤ C‖un‖Hs(Ωn). (B.16)

Proof. Let us remark that, in view of the Hausdor� convergence of Ωn to Ω, we
have that K ⊂ Ω. Since ‖ũn‖L2(Rd) = ‖un‖L2(Ωn), to prove (B.16) it is su�cient
to show that the Gagliardo seminorm of ũn in Rd is bounded by ‖un‖Hs(Ωn).
It holds∫

Rd

∫
Rd

(ũn(x)− ũn(y))2

|x− y|d+2s
dx dy

=

∫
Ωn

∫
Ωn

(ũn(x)− ũn(y))2

|x− y|d+2s
dx dy + 2

∫
Ωn

∫
Rd\Ωn

u2
n(x)

|x− y|d+2s
dy dx.

(B.17)

Moreover, for a.e. y ∈ Rd \K and a.e x ∈ Ωn

u2
n(x)

|x− y|d+2s
≤ χK(x)u2

n(x) sup
x∈K

1

|x− y|d+2s
= χK(x)u2

n(x)
1

dist(y, ∂K)d+2s
.

(B.18)
Let D := dist(∂K, ∂Ω) > 0. Since Ωn H

c-converges to Ω, we have that the
uniform convergence holds for the boundaries; in particular,

∂Ω ⊂ ∂Ωn +BD/2 and ∂Ωn ⊂ ∂Ω +BD/2.
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We deduce that, for every y ∈ Rd \ Ωn, it holds

dist(y, ∂K) ≥ D

2
.

Then, by (B.18), we have∫
Ωn

∫
Rd\Ωn

u2
n(x)

|x− y|d+2s
dy dx ≤

∫
Ωn

∫
Rd\Ωn

χK(x)u2
n(x)

1

dist(y, ∂K)d+2s
dy dx

≤ C‖un‖2
L2(Ωn),

with C > 0 depending only on Ω. Combining with (B.17) we obtain estimate
(B.16).

Now, we state a result of extension by re�ection of a function de�ned on
the halfspace Rd

+. For a proof of this result, see Lemma 5.2 in [43].

Lemma B.3.2 (Re�ection lemma). Let Ω ⊂ Rd be open and symmetric with
respect to the plane x1 = . . . = xd−1 = 0 and consider the set

Ω+ := {x ∈ Ω : xd > 0} .

Let u ∈ Hs(Ω+); for every x ∈ Ω, we de�ne

ū(x) :=

{
u(x1, . . . , xd−1, xd) if xd > 0,

−u(x1, . . . , xd−1,−xd) if xd < 0.

Then, the function ū : Ω→ R belongs to Hs(Ω) and

‖ū‖Hs(Ω) ≤ 4‖u‖Hs(Ω+).

Now we analyse the behaviour of the functions un under truncations by cut-
o� functions ψn. If we require that the cut-o� functions are equilipchitz, then
also the truncation operators are uniformly bounded. The proof is based on
the same arguments as in Lemma 5.3 in [43], considering a uniform Lipschitz
constant for all the functions ψn of the sequence. We remark that in the
uniform extension Theorem B.3.4 we will use a less general case of Lemma
B.3.3.

Lemma B.3.3 (Truncation lemma). Let (Ωn)n be a sequence of uniformly
regular bounded open sets Hc-converging to Ω ⊂ Rd. For every n ∈ N, let
un ∈ Hs(Ωn) and let ψn ∈ Lip(Ωn) with (ψn)n equilipschitz and 0 ≤ ψn ≤ 1.
Then, ψnun ∈ Hs(Ωn) and there exists a positive constant C = C(Ω) > 0 such
that

‖ψnun‖Hs(Ωn) ≤ C‖un‖Hs(Ωn). (B.19)
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Proof. Since ‖ψnun‖L2(Ωn) ≤ ‖un‖L2(Ωn), to conclude the proof it is su�cient
to show that the Gagliardo seminorm of ψnun is bounded by ‖un‖Hs(Ωn). By
the de�nition of Gagliardo seminorm, summing and subtracting ψn(x)un(y)

we obtain ∫
Ωn

∫
Ωn

(ψn(x)un(x)− ψn(y)un(y))2

|x− y|d+2s
dx dy

≤ 2

(∫
Ωn

∫
Ωn

(un(x)− un(y))2

|x− y|d+2s
dx dy

+

∫
Ωn

∫
Ωn

u2
n(x) (ψn(x)− ψn(y))2

|x− y|d+2s
dy dx

)
.

(B.20)

Let us estimate the second addendum in the right hand side of (B.20). Denot-
ing by L the uniform Lipschitz constant for (ψn)n, it holds∫

Ωn

∫
Ωn

u2
n(x) (ψn(x)− ψn(y))2

|x− y|d+2s
dy dx

=

∫
Ωn

∫
Ωn∩|x−y|≤1

u2
n(x) (ψn(x)− ψn(y))2

|x− y|d+2s
dy dx

+

∫
Ωn

∫
Ωn∩|x−y|≥1

u2
n(x) (ψn(x)− ψn(y))2

|x− y|d+2s
dy dx

≤ L2

∫
Ωn

∫
Ωn∩|x−y|≤1

u2
n(x)

|x− y|d+2(s−1)
dy dx

+

∫
Ωn

∫
Ωn∩|x−y|≥1

u2
n(x)

|x− y|d+2s
dy dx

≤ L2

∫
Ωn

∫
|x−y|≤1

u2
n(x)

|x− y|d+2(s−1)
dy︸ ︷︷ ︸

C(d,s)

dx

+

∫
Ωn

∫
∩|x−y|≥1

u2
n(x)

|x− y|d+2s
dy︸ ︷︷ ︸

C(d,s)

dx

≤ C(d, s, L)‖un‖2
L2(Ωn).

(B.21)

Combining (B.21) with (B.20), we obtain (B.19).

Now we are ready to proof the main result of this section. We will follow
the same approach as in Theorem 5.4 in [43], applied to a sequence (Ωn)n and
an open set Ω as above, combining the fact that we can assume that a �nite
open covering of ∂Ω is also a �nite open covering of ∂Ωn (up to subsequences)
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and that the boundaries of all the sets are equilipschitz (i.e., the bi-Lipschitz
maps in De�nition 1.0.1 are equilipschitz for all the sets Ωn and Ω).

Theorem B.3.4 (non-local uniform extension). Let (Ωn)n be a sequence of
uniformly regular open bounded sets Hc-converging to an open set Ω and let
un ∈ Hs(Ωn). Then, there exists ũn ∈ Hs(Rd) such that ũn is an extension of
un to the whole of Rd and

‖un‖Hs(Rd) ≤ C‖un‖Hs(Ωn),

with C > 0 depending only on s, d and Ω.

Proof. Let us consider a �nite covering
⋃l
j=1Bj by balls of the compact set ∂Ω

and let δ := dist
(
∂
(⋃l

j=1Bj

)
, ∂Ω

)
> 0. In view of the equivalence between

Hausdor� convergence and uniform convergence of uniformly regular compact
sets, there exist a subsequence (a tail of the sequence), named again (Ωn)n,
such that ∂Ωn ⊂ ∂Ω +Bδ. Let us consider the covering of the whole space

Rd =

(
Rd \ (∂Ω +Bδ)

l⋃
j=1

Bj

)
.

There exists a partition of the unity related to this covering, namely l + 1

smooth functions ψ0, ψ1, . . . , ψl such that sptψ0 ⊂ Rd \ (∂Ω +Bδ), sptψj ⊂ Bj

for every j = 1, . . . , l, 0 ≤ ψj ≤ 1 for every j = 0, . . . , l and
∑l

j=0 ψj = 1. By
Lemma B.3.3, we have that ψ0un ∈ Hs(Ωn); moreover, we can extend ψ0un to
the whole of Rd, since ψ0un ≡ 0 in a neighbourhood of ∂Ωn. More precisely,
the extension ˜ψ0un ∈ Hs(Rd) is given by

˜ψ0un(x) :=

{
ψ0un(x) if x ∈ Ωn

0 if x ∈ Rd \ Ωn

and it holds

‖ ˜ψ0un‖Hs(Rd) ≤ C1‖ψ0un‖Hs(Ωn) ≤ C2‖un‖Hs(Ωn), (B.22)

where the �rst inequality follows by Lemma B.3.1, the second inequality follows
by Lemma B.3.3 and the constants C1, C2 > 0 depend only on Ω, s, d.

Now, for every n ∈ N (for every index of the relabelled subsequence) and
j = 1, . . . , l, it holds that Bj ∩ Ωn is a non-empty open set. Let us denote by
Q the cube centered at the origin with side equal to 2, by Q+ the half cube

Q+ := {x ∈ Q : xd > 0}
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and by Q0 the (d− 1)-dimensional cube

Q0 := {x ∈ Q : xd = 0}.

In view of the regularity assumptions satis�ed by the sets Ωn, for any n ∈ N
and j = 1, . . . , k, there exists a bi-Lipschitz isomorphism Tn,j : Q → Bj such
that

Tn,j(Q) = Bj, Tn,j(Q+) = Bj ∩ Ω, Tn,j(Q0) = Bj ∩ ∂Ω

and

C1 ≤ Lip(Tn,j) + Lip(T−1
n,j ) ≤ C2,

with C1, C2 > 0 independent on n and j, since all the Ωn sets satisfy the same
ε-cone property (see Remark 1.4.22).

For any x̂ ∈ Q+, let us de�ne

vn,j(x̂) := un(Tn,j(x̂)).

Let us show that the function vn,j belongs to Hs(Q+). Using the change of
variable x = Tn,j(x̂), we have

∫
Q+

∫
Q+

(vn,j(x̂)− vn,j(ŷ))2

|x̂− ŷ|d+2s
dx̂ dŷ

=

∫
Q+

∫
Q+

(un(Tn,j(x̂))− un(Tn,j(ŷ)))2

|x̂− ŷ|d+2s
dx̂ dŷ

=

∫
Ωn∩Bj

∫
Ωn∩Bj

(un(x)− un(y))2

|T−1
n,j (x)− T−1

n,j (y)|d+2s
det(DT−1

n,j ) dx dy

≤ C

∫
Ωn∩Bj

∫
Ωn∩Bj

(un(x)− un(y))2

|x− y|d+2s
dx dy,

(B.23)

with C > 0 independent on n and j. This proves that vn,j ∈ Hs(Q+).

By Lemma B.3.2, for each function vn,j there exist an extension to Q, say
v̄n,j, such that v̄n,j ∈ Hs(Q) and

‖v̄n,j‖Hs(Q) ≤ 4‖vn,j‖Hs(Q+).

For any x ∈ Bj, we de�ne

wn,j(x) := v̄n,j(T
−1
n,j (x)).
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The function wn,j belongs to Hs(Bj). Indeed, proceeding as in (B.23), we have∫
Bj

∫
Bj

(wn,j(x)− wn,j(y))2

|x− y|d+2s
dx dy

=

∫
Bj

∫
Bj

(
v̄n,j(T

−1
n,j (x))− v̄n,j(T−1

n,j (y))
)2

|x− y|d+2s
dx dy

=

∫
Q

∫
Q

(v̄n,j(x̂)− v̄n,j(ŷ))2

|Tn,j(x̂)− Tn,j(ŷ)|d+2s
det(DTn,j) dx̂ dŷ

≤ C

∫
Q

∫
Q

(v̄n,j(x̂)− v̄n,j(ŷ))2

|x̂− ŷ|d+2s
dx̂ dŷ,

(B.24)

with C > 0 independent on n and j.
Notice that, for every x ∈ Bj ∩ Ωn, it holds

wn,j(x) := v̄n,j(T
−1
n,j (x)) = vn,j(T

−1
n,j (x)) = un(x),

then ψjun = ψjwn,j on Bj ∩Ωn. Moreover, ψjwn,j has compact support in Bj,
then, by Lemma B.3.1, there exists an extension ˜ψjwn,j ∈ H

s(Rd) satisfying

‖ ˜ψjwn,j‖Hs(Rd) ≤ C‖ψjwn,j‖Hs(Bj)

for some C > 0 depending only on d, s,Ω. Using Lemma B.3.1, Lemma B.3.2,
Lemma B.3.3 and estimates (B.23) and (B.24), we have

‖ ˜ψjwn,j‖Hs(Rd) ≤ C‖ψjwn,j‖Hs(Bj) ≤ C‖wn,j‖Hs(Bj)

≤ C‖v̄n,j‖Hs(Q) ≤ C‖vn,j‖Hs(Q+) ≤ C‖un‖Hs(Ωn∩Bj)
(B.25)

(to simplify the notation, in the previous estimate we used the symbol C to
denote all the positive constants depending only on d, s,Ω, which are possibly
di�erent).

Now, let us de�ne

ũn := ˜ψ0un +
l∑

j=1

˜ψjwn,j.

The function ũn is de�ned on the whole of Rd and ũn|Ωn = un. Moreover, by
(B.22) and (B.25), we conclude that

‖un‖Hs(Rd) ≤ C‖un‖Hs(Ωn),

with C > 0 depending only on s, d and Ω, so ũn is the required extension of
un.

As already remarked at the beginning of the section, we did not �nd any
reference containing a similar result, even if it is reasonable that some authors
already studied the problem.
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