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Abstract. We prove Hölder regularity of any continuous solution u to a 1d scalar balance law,
when the source term is bounded and the flux is nonlinear of order ℓ ∈ N with ℓ ≥ 2. Moreover,
we prove that at almost every point (t, x) it holds u(t, x + h) − u(t, x) = o(|h|

1
ℓ ) as h → 0.

We apply the results to provide a new proof the Rademacher theorem for intrinsic Lipschitz
functions in the first Heisenber group.

1. Introduction

The effect of non-linearity in conservation laws is two-folds: on the one hand it prevents
the existence of smooth solutions due to shocks formation. On the other hand it has some
regularizing effects. The most striking example is the estimate by Oleinik [Ole], which proves
that L∞ initial data are immediately regularized to BVloc at positive times, for entropy solutions
of the classical Burgers’ equation

ut + [u2/2]x = 0.
Furthermore, [ADL] proved that BVloc regularity improves to SBVloc, then generalized to more
general 1d scalar balance laws in [Robyr] and to systems of conservation and balance laws in
[BC]. Similar results have been proven for Hamilton-Jacobi equations in several space dimen-
sions [BDLR].

A possible approach to prove the BVloc estimate in the scalar case relies on the existence
of a family non-crossing (backward) characteristics [Daf_book] along which the solution is
constant. The non-crossing condition is a geometric constraint which forces BVloc regularity.
This approach has been extended to the more general conservation law of the form:

ut + [f(u)]x = 0, (1.1)

see [BGJ; AGV] for the case of convex fluxes f and [Daf; Cheng; Mar], for the case of
general smooth fluxes. The final result is that a fractional regularity of entropy solutions can
be obtained quantifying the non-linearity of the flux f .

Motivated by some applications to the theory of rectifiable sets in the Heisenberg group in
the present paper we take into account the presence of the source g ∈ L∞ in (1.1), i.e.

ut + [f(u)]x = g, (1.2)

We prove a regularity result for the continuous solutions of (1.2) where f ∈ Cℓ(R) is nonlinear
of order ℓ ≥ 2 (see Definition A.1). More precisely, we first prove that every continuous solution
to (1.2) is indeed locally 1/ℓ−Hölder continuous and, even better,

u(t, x+ h) − u(t, x) = o

(
ℓ

√
|h|
)

as h → 0 (1.3)

at Lebesgue almost every point (t, x). It is known that, even with analytic fluxes f and con-
tinuous sources terms g, continuous solutions to (1.2) improve to Hölder continuous regularity
but it does not go beyond. Indeed, even with quadratic flux continuous solutions to (2.1) might
exhibit nasty fractal behaviour and in general they are neither Sobolev nor BV [KSC; ABC3].
Moreover, if the flux f is strictly convex but not analytic the result generally fails [ABC3],
which motivates the finite order nonlinearity Assumption A.1 on the flux. Similar results have
been obtained also for conservation laws in several space dimensions by means of the kinetic
formulation (see for example [LPT; GL]), nevertheless the conjectured optimal regularity has

1



2 L. CARAVENNA, E. MARCONI, AND A. PINAMONTI

not been proven yet. We mention that also in the case of Hamilton-Jacobi equations, optimal
Hölder regularity has been recently proved (see [CV] and references therein).

In order to describe the application of our result to the theory of rectifiable sets in the Heisen-
berg group we recall that the notion of Lipschitz submanifolds in sub-Riemannian geometry was
introduced, at least in the setting of Carnot groups, by B. Franchi, R. Serapioni and F. Serra
Cassano in a series of papers [FSSC; FSSC2; FS] through the theory of intrinsic Lipschitz
graphs (see also [CMPSC1; CMPSC2]). Roughly speaking, a subset S ⊂ G of a Carnot
group G is intrinsic Lipschitz if at each point P ∈ S there is an intrinsic cone with vertex P
and fixed opening, intersecting S only in P . Remarkably, this notion turned out to be the
right one in the setting of the intrinsic rectifiability in the simplest Carnot group, namely the
Heisenberg group Hn. Indeed, it was proved in [FS] that the notion of rectifiable set in terms of
an intrinsic regular hypersurfaces is equivalent to the one in terms of intrinsic Lipschitz graphs.
We also remark that intrinsic Lipschitz functions played a crucial role in the recent paper [NY],
where the longstanding question of determining the approximation ratio of the Goemans-Linial
algorithm for the Sparsest Cut Problem was settled, see also [NY2] for different applications.
We address the interested reader to [FSSC2; Vit] for a complete introduction to the theory of
intrinsic Lipschitz functions. One of the main open questions in this area of research is whether
a Rademacher type theorem holds. Namely, assume that a splitting G = WV of a Carnot group
G is fixed, is it true that every intrinsically Lipschitz function u : W → V is intrinsically dif-
ferentiable almost everywhere? In [FMS; FSSC2], it is proved that the answer is yes if G is
of step two or a group of type ⋆ and V = R. More recently, D. Vittone in [Vit] proved that
the answer is also yes in the case of the Heisenberg group without any a priori assumption on
the splitting. We also address the interested reader to [AM; AM2; LDM] for further partial
results. Remarkably, in [JNGV] the authors constructed intrinsic Lipschitz graphs of codimen-
sion 2 in Carnot groups which are not intrinsically differentiable almost everywhere. Insipired by
the results contained in [ASCV], in [BCSC], the first named author together with Bigolin and
Serra Cassano provided a characterization of intrinsic Lipschitz graphs in the Heisenberg group
in terms of a system of non linear first order PDEs. Moreover, they proved the equivalence of
different notions of continuous weak solutions to the equation

ut + [u2/2]x = g, (1.4)

where g is a bounded function. It turns out that the question whether an intrinsically Lipschitz
function u is intrinsically differentiable or is equivalent to (1.3). This observation allows us to
provide a completely PDEs based proof of the Rademacher theorem in H1. We point out that
the proof provided in [FSSC2] requires some deep and nontrivial results in geometric measure
theory, namely the fact that the subgraph of an intrinsic Lipschitz function u is a set with locally
finite H−perimeter and that at almost every point of the graph of u there is an approximate
tangent plane. Another interesting feature of our approach is its potential applicability to those
Carnot groups where the aforementioned geometric tools are not yet available e.g. the Engel
group.

Structure of the paper: In § 2 we revise an elementary estimate on continuous solutions
to balance laws when the flux is convex. When the source is bounded, such estimate is the
key to Hölder continuity and Lipschitz continuity along characteristics. We prove in § 3 Hölder
regularity of any continuous solution u to a 1d scalar balance law, when the source term is
bounded and the flux is nonlinear of order ℓ in the sense of § A. The Hölder regularity is then
refined in § 4, where we show that at Lebesgue almost every point (t, x) it holds u(t, x + h) −
u(t, x) = o(|h|

1
ℓ ) as h → 0. In § 5 we finally prove the Rademacher theorem for intrinsic Lipschitz

functions in H1.
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Figure 1. A region Sϱ of the Vitali covering (4.2) and S±(γ|[t1,t2], h) in Proposition 2.2.

2. Preliminary results

We recall the definition of characteristics of the equation
∂tu+ [f(u)]x = g , f ∈ Cℓ(R), ℓ ∈ N, g bounded. (2.1)

Definition 2.1. A characteristic associated to a continuous solution u to (2.1) is any function
γ ∈ C1(I), defined on a real interval I ⊂ R and satisfying the ordinary differential equation

γ̇(t) = f ′(u(s, γ(t))) for t ∈ I.

The following well-known result will be helpful later on (see [Daf2; ABC1]):

Proposition 2.2. Let g ∈ L1
loc(Ω), Ω ⊂ R2 be open and assume that u ∈ C0(Ω) is a distri-

butional solution of (2.1). Given a characteristic γ : [t1, t2] → R and h > 0, assume that the
following sets

S+(γ, h) .= {(t, x) ∈ [t1, t2] × R : x ∈ [γ(t), γ(t) + h]},
S−(γ, h) .= {(t, x) ∈ [t1, t2] × R : x ∈ [γ(t) − h, γ(t)]}

are contained in Ω. If f is convex on the interval u(S+(γ, h) ∪ S−(γ, h)), then∫ γ(t2)+h

γ(t2)
u(t2, x)dx−

∫ γ(t1)+h

γ(t1)
u(t1, x)dx ≤

∫
S+(γ,h)

g dxdt (2.2a)∫ γ(t2)

γ(t2)−h
u(t2, x)dx−

∫ γ(t1)

γ(t1)−h
u(t1, x)dx ≥

∫
S−(γ,h)

g dxdt. (2.2b)

The analogous statement holds for concave fluxes f reversing the inequalities (2.2a) and (2.2b).

Remark 2.3. Dividing estimates (2.2a) and (2.2b) by h and letting h → 0 we get that t 7→
u(t, γ(t)) is Lipschitz continuous with constant bounded by ∥g∥L∞ . The same result was proven
in [ABC1] under the assumption that L 1(Infl(f)) = 0, where Infl(f) denotes the set of inflec-
tions points of f .

3. Hölder regularity

The Hölder regularity of continuous solutions to (1.4) in [BSC; BCSC] has been generalized
in [Car] to the case of ℓ-nonlinear convex fluxes. We describe in § A what we mean by ℓ-
nonlinear function: here we only mention that, in particular, are ℓ-nonlinear the functions for
which at any point there is a derivative of order between 2 and ℓ which does not vanish. In
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this section we extend the local 1
ℓ -Hölder regularity of continuous solutions without convexity

hypothesis, so that it applies, for example, to f(u) = u3.

Proposition 3.1. Let f ∈ C2(R) be nonlinear of order ℓ according to Definition A.1. Consider
an open connected set Ω ⊂ R2 and let u ∈ C0(Ω) and g ∈ L∞(Ω) be such that

∂tu+ [f(u)]x = g in D′(Ω).

Then u ∈ C0,α
loc (Ω) with α = 1

ℓ .

We first prove the following claim.

Lemma 3.2. In the hypothesis of Proposition 3.1, consider (t, x1), (t, x2) ∈ Ω such that f ′′ does
not vanish in the closed interval I with endpoints u(t, x1) = u1 and u(t, x2) = u2: set

q = minI f
′′

maxJ f ′′ , G = ∥g∥L∞ , τ = q

2G |u2 − u1| , C = ∥f ′′∥L∞(BGτ (I)) , L = ∥f ′∥L∞(BGτ (I)) ,

given any J ⊃ B 1
2 |u2−u1|(I). If ∥g∥L∞ = 0 rather fix above any G > 0. Assume that

B|x1−x2|+Lτ+CGτ2(t, x1) ⊂ Ω . (3.1)

Then, denoting by cℓ the constant of nonlinearity in Definition A.1, we get

|u2 − u1| ≤ c|x2 − x1|
1
ℓ , with c = ℓ

√
4G
qcℓ

.

Proof of Lemma 3.2. We consider two characteristics γ1, γ2 passing through (t, x1), (t, x2). With-
out loss of generality we assume x1 < x2. We can also assume f ′(u1) > f ′(u2), the argument in
the opposite case is similar considering evolution in the past.

Since γ1 is a characteristic, then

γ1(t+ τ) = x1 +
∫ t+τ

t
f ′(u(s, γ1(s)))ds. (3.2)

By Remark 2.3 the Lipschitz function u(·, γ1(·)) restricted to [t, t+τ ] has image in [u1 −Gτ, u1 +
Gτ ]. By the chain rule on σ 7→ f ′(u(σ, γ1(σ))) we estimate∣∣f ′(u(s, γ1(s))) − f ′(u1)

∣∣ =
∣∣∣∣∫ s

t
∂σf

′(u(σ, γ1(σ)))dσ
∣∣∣∣ ≤ CG(s− t) ∀s ∈ [t, t+ τ ]. (3.3)

Estimating the integral in (3.2) by (3.3), and doing similarly with γ2, we see that

γ1(t+ τ) ≥ x1 + f ′(u1)τ − CG

2 τ2 . (3.4a)

γ2(t+ τ) ≤ x2 + f ′(u2)τ + CG

2 τ2. (3.4b)

Notice that by the choice of τ and (3.1) the set {(s, γ1(s)), (s, γ2(s)) : s ∈ [t, t+ τ ]} ⊂ Ω and
since 2Gτ ≤ |u2 − u1| we have

(u2 −Gτ, u2 +Gτ) ∩ (u1 −Gτ, u1 +Gτ) = ∅ .

In particular there is no s ∈ [t, t + τ) for which γ1(s) = γ2(s), and therefore γ1(s) < γ2(s) for
every s ∈ [t, t+ τ). Concatenating the previous inequalities (3.4), as γ1(τ) − γ2(τ) ≤ 0 we have

f ′(u1) − f ′(u2) ≤ x2 − x1
τ

+ CGτ.

Lemma A.5 allows to absorb CGτ = q
2∥f ′′∥L∞(BτG(I))|u2 − u1| in the l.h.s., so that(

f ′(u1) − f ′(u2)
)

|u1 − u2|q ≤ 4G(x2 − x1).

By Lemma A.4 we have f ′(u1) − f ′(u2) ≥ cℓ|u1 − u2|ℓ−1, thus we arrive to the claim

|u1 − u2| ≤
(4G
qcℓ

) 1
ℓ

ℓ
√
x2 − x1 . □
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Example 3.3. The solution u(t, x) = sign x ·
√

|x| to ∂tu + ∂xu
2 = sign x has Hölder constant

√
2 =

(
2∥g∥L∞

qcℓ

) 1
ℓ .

Proof of Proposition 3.1. Given any compact set K ⊂ Ω whose t-sections are intervals, set
J = u(K). By Proposition A.5 the set Z = {v ∈ J : f ′′(v) = 0} is finite: set

c = max{|w − v| : w, v ∈ J}
max{|w − v| : Bδ(Z) ∩ [v, w] = ∅ , w, v ∈ J}

δ = 1
3 min{|v − w| : v, w ∈ Z} .

Observe that for every x < y it is possible to find x1, x2 ∈ [x, y] such that |u(t, x) − u(t, y)| ≤
c̄|u(t, x1) − u(t, x2)| and Bδ(Z) ∩ [x1, x2] = ∅, so that for some c > 01 by Lemma 3.2 we have

|u(t, x) − u(t, y)| ≤ c|u(t, x1) − u(t, x2)| ≤ cc|x1 − x2|
1
ℓ ≤ cc|y − x|

1
ℓ .

We thus proved that u is 1
ℓ −Hölder in space on compact sets K whose t-sections are intervals.

In order to recover the regularity in time, recall that u is ∥g∥L∞−Lipschitz along characteristics
by Remark 2.3: as in at Step 2 in the proof of [Car] we get 1

ℓ −Hölder continuity on subsets of
Ω of the form {(t, x) ∈ [t1, t2] × R : γ1(t) ≤ x ≤ γ2(t)}, with γ1, γ2 characteristics. Since the
interior of such characteristic regions cover any compact subset of Ω we get the thesis. □

Remark 3.4. By looking at the proof of Proposition 3.1 we have that the ℓ-Hölder constant of u
on a rectangle K depends only on f restricted to u(K). More precisely it depends on cℓ and on
the minimum distance between zeros of f ′′.

4. Finer Hölder regularity

The main result of this section is the following:

Proposition 4.1. Let f ∈ C2 be nonlinear of order ℓ as in Definition A.1. Let Ω ⊂ R2 and
u ∈ C0(Ω), g ∈ L∞(Ω) be such that

∂tu+ [f(u)]x = g in D′(Ω).

Then for L 2−a.e. (t, x) ∈ Ω it holds

A(t, x) .= lim sup
y→x

|u(t, y) − u(t, x)|
ℓ
√

|y − x|
= 0. (4.1)

By Remark 3.4, the function A is locally essentially bounded.
We will prove (4.1) for points (t, x) which are Lebesgue points of g with respect to the

following suitable coverings of Ω. Such covering was first introduced in [Car] for proving that
for L 2−a.e. (t, x) the derivative of σ 7→ u(σ, γ(σ)) along any characteristic γ through (t, x) is
the Lebesgue value of g: for being self-contained, we prove this again in § 5 (Case 2) for the
quadratic flux; the same argument works for ℓ-nonlinear fluxes by the estimates in this section.

Given ϱ > 0, define regions translating a characteristic γ of h = ϱεℓ, between times σ ± ε:

Vϱ
.=
{
Sϱ(γ, ε, σ)

∣∣σ ∈ R, ε > 0, γ ∈ C1((σ − ε, σ + ε) : γ̇(t) = f ′(u(t, γ(t)))
}
,

Sϱ(γ, ε, σ) .=
{

(t, x) ∈ [σ − ε, σ + ε] × R : γ(t) − ϱεℓ ≤ x ≤ γ(t) + ϱεℓ
}
.

(4.2)

Proposition 4.2. Consider any sequence {ϱj}j∈N and Vϱj as in (4.2). For every q ∈ L∞(Ω)
a.e. (t, x) ∈ Ω is a Lebesgue point of q with respect to the covering Vϱj , namely there is O ⊂ Ω
with L 2(Ω \O) = 0 such that for every (t, x) ∈ O and every j ∈ N it holds

lim
(t,x)∈S∈Vϱj

diam(S)↓0

1
L 2(S)

∫
S

|q − q(t, x)|dxdt = 0.

1Doing a rough estimate, there is not point in looking for constants better than c = ℓ

√
minJ\Bδ(Z) |f ′′|

maxJ |f ′′|
4G
cℓ

.
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The proof of the above proposition can be found in [Car]: the key point is that one can
define through the sets Sϱ(γ, ε, σ) a quasi-distance for which the measure L 2 is doubling so that
Lebesgue differentiation theorem applies.

We are now in position to prove Proposition 4.1.

Proof of Proposition 4.1. Since u ∈ C0,α
loc (Ω) by Proposition 3.1, for any c ∈ R it holds A(t, x) = 0

at every (t, x) which is a point of density one of the set u−1({c}). Since Z = {v : f ′′(v) = 0}
is discrete by Lemma A.5, the statement thus holds for L 2-a.e. (t, x) ∈ u−1(Z).

We now prove the claim for L 2-a.e. (t, x) ∈ Ω \ u−1(Z), namely such that f ′′(u(t, x)) ̸= 0.
Given two sequences ϱj , δj ↓ 0, ϱj + δj < 1, we consider the coverings Vϱj in (4.2) and we set

rj =
ϱℓ

j

1 + δj
and denote ε = εj(h) =

ℓ

√
(1 + δj)h
ϱj

for h > 0 ,

so that rjε
ℓ = h and ϱjε

ℓ = ϱ
−(ℓ−1)
j (1 + δj)h. We prove that A(t, x) = 0 for every (t, x) ∈ Ω \

u−1(Z) which is a Lebesgue point of g with respect to each covering Vϱj for j ∈ N. Proposition 4.2
grants that such points have full Lebesgue measure in Ω \ u−1(Z).

Up to a translation we may assume that (t, x) = (0, 0): let xk → 0 be a sequence such that
A(0, 0) = limk→∞

|u(0,xk)−u(0,0)|
ℓ
√

|xk|
. Up to a symmetry with respect to the axis x = 0, and up to

repeating the following argument for negative times, is not restrictive to consider the case for
which xk ↓ 0, u(0, xk) < u(0, 0) and f ′′(u(0, 0)) > 0. Denote by γ0 and γk two characteristics
such that γ0(0) = 0 and γk(0) = xk. Set u0(t) = u(t, γ0(t)) and uk(t) = u(t, γk(t)). Let us fix
j ∈ N and denote by Sk the set Sϱj (γ0, εj(xk), 0). With the standard convention inf ∅ = +∞,
set

t∗k = εj(xk) ∧ inf {t > 0 : u0(t) ≤ uk(t)} .
Notice that t∗k > 0, being u continuous and uk(0) < u0(0). Since xk, t

∗
k → 0 as k → ∞ and u is

continuous, there is k̄ such that for every k > k̄ the function u restricted to Sk takes values in
u−1({f ′′ > 0}). We will assume k ≥ k̄ in the following of the proof: thus

γ̇0(t) = f ′(u0(t)) ≥ f ′(uk(t)) = γ̇k(t) in [0, t∗k]

and γk ≤ γ0 + xk by the initial condition, so that by the choice ϱjε
ℓ > (1 + δj)h we have

{(t, x) ∈ [0, t∗k] × R : γ0(t) − δjxk ≤ x ≤ γk(t) + δjxk} ⊂ Sk . (4.3)

If t ∈ [0, t∗k], Proposition 2.2 gives the one sided estimates∫ γk(t)+δjxk

γk(t)
u(t, x)dx−

∫ xk+δjxk

xk

u(0, x)dx ≤
∫ t

0

∫ γk(t)+δjxk

γk(t)
g(s, x)dxds , (4.4a)∫ γ0(t)

γ0(t)−δjxk

u(t, x)dx−
∫ 0

−δjxk

u(0, x)dx ≥
∫ t

0

∫ γ0(t)

γ0(t)−δjxk

g(s, x)dxds . (4.4b)

Denote by c the 1
ℓ -Hölder constant of u restricted to Sk̄. Then when {t} × [x− r, x+ r] ⊂ Sk∫ x+r

x
|u(t, q) − u(t, x)| dq ≤ cr

ℓ+1
ℓ ,

∫ x

x−r
|u(t, q) − u(t, x)| dq ≤ cr

ℓ+1
ℓ . (4.5)

By (4.3) and by Proposition 4.2 in particular for every t ∈ [0, t∗k] there is ηk ↓ 0 such that∣∣∣∣∣
∫ t

0

∫ γk(t)+δjxk

γk(t)
g(s, x)dxds− tδjxkg(0, 0)

∣∣∣∣∣ ≤ ηkL 2(Sk) . (4.6)

Subtracting equations (4.4) and dividing by δjxk, from (4.3), (4.5) and (4.6) we deduce that

u0(t) − uk(t) ≥ u0(0) − uk(0) − 2ηkL 2(Sk)
δjxk

− 2c ℓ

√
δjxk for every t ∈ [0, t∗k]. (4.7)
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Case 1: there is t ∈ [0, t∗k] such that u0(t) − uk(t) ≤ 1
2(u0(0) − uk(0)). From (4.7) it holds

u(0, 0) − u(0, xk)
ℓ
√
xk

≤ 4 L 2(Sk)
δjxk

ℓ
√
xk
ηk + 4c

ℓ
√
δjxk

ℓ
√
xk

= 16(1 + δj)
ℓ+1

ℓ

δjϱℓ
j

ηk + 4c ℓ

√
δj .

(4.8)

Case 2: for every t ∈ [0, t∗k] it holds u0(t) − uk(t) > 1
2(u0(0) − uk(0)). In particular we have

t∗k =
ℓ
√

(1+δj)xk

ϱj
and γk, γ0 do not intersect in [0, t∗k]. By Lemma A.4, for every t ∈ [0, t∗k] it holds

γ′
0(t) − γ′

k(t) = f ′(u0(t) − f ′(uk(t))

≥ 2cℓ (u0(t) − uk(t))ℓ−1 ≥ cℓ

2ℓ−2 (u0(0) − uk(0))ℓ−1

Integrating with respect to time in [0, t∗k] and imposing that γ0(t∗k) ≤ γk(t∗k) we obtain

0 ≥ γ0(t∗k) − γk(t∗k) ≥ γ0(0) − γk(0) + cℓ

2ℓ−1 (u0(0) − uk(0))ℓ−1t∗k.

Recalling that γ0(0) = 0 and γk(0) = xk this implies

u(0, 0) − u(0, xk)
ℓ
√
xk

≤ 2
(
xk

t∗kcℓ

) 1
ℓ−1 1

ℓ
√
xk

= 2
(

ϱj

cℓ
ℓ
√

1 + δj

) 1
ℓ−1

(4.9)

Taking first the limit as k → ∞, where ηk vanishes, (4.8) and (4.9) show that A(0, 0) = 0
because δj and ϱj can be taken arbitrarily small. □

5. A new proof of the Rademacher theorem for intrinsic Lipschitz functions

Aim of this section is to provide a new proof of the Rademacher theorem for intrinsic Lipschitz
functions in the first Heisenberg group H1. We start by recalling the main definitions, we refer
the interested reader to [SC] for a complete introduction to the subject.

We denote the points of H1 ≡ C × R ≡ R3 by
P = [z, t] = [x+ iy, t] = (x, y, t), z ∈ C, x, y ∈ R, t ∈ R.

If P = [z, t], Q = [z′, t′] ∈ H1 and r > 0, the group operation reads as

P ·Q :=
[
z + z′, t+ t′ − 1

2 Im(⟨z, z̄′⟩)
]
. (5.1)

The group identity is the origin 0 and one has [z, t]−1 = [−z,−t]. In H1 there is a natural one
parameter group of non isotropic dilations δr(P ) := [rz, r2t] , r > 0. The group H1 can be
endowed with the homogeneous norm

∥P∥∞ := max{|z|, |t|1/2}
and with the left-invariant and homogeneous distance

d∞(P,Q) := ∥P−1 ·Q∥∞.

The metric d∞ is equivalent to the standard Carnot-Carathéodory distance. It follows that the
Hausdorff dimension of (H1, d∞) is 4, whereas its topological dimension is clearly 3. The Lie
algebra h1 of left invariant vector fields is (linearly) generated by

X = ∂x − 1
2y∂t, Y = ∂y + 1

2x∂t, T = ∂t

and the only nonvanishing commutators are
[X,Y ] = T.

In the spirit of [ASCV] we set W := {(x, y, t) ∈ H1 : x = 0} ≡ R2. Therefore, if A ∈ W, we
write A = (y, t).

Following [ASCV] we define the graph quasidistance as:
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Definition 5.1. For A = (y, t), B = (y′, t′) ∈ ω we define

dφ(A,B) = |y − y′| +
∣∣∣∣t′ − t− 1

2(φ(A) + φ(B))(y′ − y)
∣∣∣∣1/2

.

An intrinsic differentiable structure can be induced on W by means of dφ, see [ASCV]. We
remind that a map L : W → R is W-linear if it is a group homeomorphism and L(ry, r2t) =
rL(y, t) for all r > 0 and (y, t) ∈ W. We recall then the notion of φ-differentiablility.

Definition 5.2. Let φ : ω ⊂ W → R be a fixed continuous function, and let A0 ∈ ω and
ψ : ω → R be given. We say that ψ is φ-differentiable at A0 if there is an W-linear functional
L : W → R such that

lim
A→A0

ψ(A) − ψ(A0) − L(A−1
0 ·A)

dφ(A0, A) = 0. (5.2)

It is well known [ASCV] that given a W-linear functional L : W → R there exists a unique
ŵ ∈ R such that L(A) = L((y, t)) = ŵy. Let us now introduce the concept of intrinsic Lipschitz
function.

Definition 5.3. Let φ : ω ⊂ W → R. We say that φ is an intrinsic Lipschitz continuous
function and we write φ ∈ LipW(ω) if there exists a constant L > 0 such that

|φ(A) − φ(B)| ≤ Ldφ(A,B) ∀A,B ∈ ω.

We say that φ is locally intrinsic Lipschitz and we write φ ∈ LipW,loc(ω) if φ ∈ LipW,loc(ω′) for
any ω′ ⋐ ω.

The following characterization is proved in [BCSC].

Theorem 5.4. Let ω ⊂ R2 be an open set and let φ : ω → R be a continuous. Then φ ∈
LipW,loc(ω) if and only if there exists g ∈ L∞(ω) such that

φy + [φ2/2]t = g in D′(ω).

Let us finally recall the following Rademacher type Theorem, proved in [FSSC2] (see also
[Vit]). As recalled in the Introduction the original proof requires deep results in geometric
measure theory, namely the fact that the subgraph of an intrinsic Lipschitz function φ is a set
with locally finite H-perimeter and that at almost every point of the graph of φ there is an
approximate. Here instead we propose a completely PDEs based proof which uses the results of
Section 4.

Theorem 5.5. If φ ∈ LipW(ω) then φ is φ-differentiable L2−a.e. in ω.

More precisely, we prove φ-differentiability at those points which are Lebesgue points of g for
all the coverings (4.2), for any fixed sequence ρi decreasing to 0.

Proof. Let A0 = (t, x) be a Lebesgue point of g with respect to the coverings Vϱj of Lemma 4.2
and for simplicity we assume A0 = (0, 0). We show that any sequence An = (tn, xn) → A0 has
a (not relabeled) subsequence for which

lim
n→∞

|φ(An) − φ(A0) − g(0, 0)tn|
dφ(An, A0) = 0.

We can assume tn, x′
n ∈ (0, 1

1+∥g∥L∞ ). We recall the explicit expression

dφ(An, A0) = |tn − t| +
∣∣∣∣xn − x− φ(An) + φ(A0)

2 · (tn − t)
∣∣∣∣1/2

.

Let γn ∈ C1([0, tn]) be a characteristic of φ through (tn, xn) and set A′
n = (0, γn(0)) = (0, x′

n):
by Remark (2.3)∣∣∣∣xn − φ(An) + φ(A0)

2 · tn − x′
n

∣∣∣∣ =
∣∣∣∣∫ tn

0
φ(s, γ(s)) ds− φ(An) + φ(A0)

2 · tn
∣∣∣∣ ≤ ∥g∥L∞

4 t2n . (5.3)

Up to a (not relabeled) subsequence one of the following two cases is satisfied.
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Case 1: it holds limn→∞
|tn|√
|x′

n|
= 0. In this case it follows from Proposition 4.1 and Remark 2.3

that:
|φ(An) − φ(A0) − g(0, 0)tn| ≤ ∥g∥L∞ |tn| + |φ(An) − φ(A′

n)| + |φ(A′
n) − φ(A0)|

≤ 2∥g∥L∞tn + o

(√
x′

n

)
= o

(√
x′

n

)
.

We conclude since (5.3) and tn = o(
√
x′

n) imply dφ(An, A0) =
√
x′

n · (1 + o(
√
x′

n)).
Case 2: there is δ ∈ (0, 1) such that |tn|√

|x′
n|

≥ δ > 0. Let ε ∈ (0, 1) and consider Sε
n = {(s, x) ∈

[0, tn] × R : γ(s) − εt2n ≤ x ≤ γ(s) − εt2n}. Denote by c the 1
2−Hölder constant of φ in a ball B

centered at A0. For n sufficiently large An, A
′
n ∈ B: by estimates like (4.4)-(4.5) we get

|φ(An) − φ(A0) − g(0, 0)tn| ≤ 4c
√
εtn + 1

2εt2n

∫
Sε

n

|g − g(0, 0)|. (5.4)

Just for notational convenience, suppose ϱ0 = 1. Since Sε
n ⊂ S1

(
γn, tn

√
1
δ2 + ε, 0

)
∈ V1 and

(0, 0) is a Lebesgue point of g with respect to the covering V1, then

ηn
.= 1

L 2
(
S1
(
γn, tn

√
1
δ2 + ε, 0

)) ∫
Sε

n

|g − g(0, 0)|

vanishes as n → ∞. The measure of the set is 4
(

1
δ2 + ε

) 3
2 t3n. It follows from (5.4) that

|φ(An) − φ(A0) − g(0, 0)tn|
tn

≤ 4c
√
ε+

L 2
(
S1
(
γn, tn

√
1
δ2 + ε, 0

))
2εt3n

ηn

= 4c
√
ε+

2
(

1
δ2 + ε

) 3
2

ε
ηn.

Recalling that |tn| ≤ dφ(An, A0), the claim follows by letting n → ∞ since ε is arbitrarily
small. □
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Appendix A. Nonlinear functions of a given order

We specify the assumption of finite order nonlinearity, for brevity also called ℓ-nonlinearity.

Definition A.1. Let I ⊂ R be an interval. A function f differentiable at v is “nonlinear of
order ℓ > 1 with constant c > 0 at v” if there exists δ > 0 such that for every v + h ∈ I ∩Bδ(v)
one has ∣∣f(v + h) − f(v) − f ′(v)h

∣∣ ≥ c |h|ℓ .
If the inequality holds for all v, v + h ∈ I we call f “nonlinear in I of order ℓ with constant c”.

Of course, if f is nonlinear of order ℓ > 1 with constant c > 0 at v then it is also nonlinear at v
of every order ℓ′ ≥ ℓ with any constant 0 < c′ ≤ c just because |h|ℓ′−ℓ ≤ 1 when 0 < |h| ≤ δ < 1.

Remark A.2. The best order of nonlinearity at a point v is the order ℓ of the first non-vanishing
derivative at the point, higher than the first. It can be proved just applying the definition of
differentiability ℓ-times recursively, and the constant is arbitrarily close to 1

ℓ! |f
(ℓ)(v)|.

Lemma A.3. Suppose f ∈ Cℓ(I). If
∑ℓ

k=2
1
k!

∣∣∣f (k)
∣∣∣ ≥ c in the interval I and I has length d

then f is nonlinear in I of order ℓ with constant c · min{d2−ℓ, 1}. Moreover, if k ∈ N is the
minimum exponent of nonlinearity of f at v with c0 the infimum of the relative constants, then
f (k)(v) = k!c0 and f (j)(v) = 0 for j = 2, . . . , k − 1.

Proof. Let v, v + h ∈ I. Just by Taylor’s expansion, if f (k)(v) = 0 for 2 ≤ k < j ≤ ℓ one has

∣∣f(v + h) − f(v) − f ′(v)h
∣∣ =

∣∣∣∣∣∣
j−1∑
k=2

1
k!f

(k)(v)hk + 1
j!f

(j)(ξ)hj

∣∣∣∣∣∣ ≥ c|h|j ≥ c

dℓ−j
|h|ℓ ,

thanks to the assumtion 1
j!

∣∣∣f (j)
∣∣∣ ≥ c and that K has diameter d, so that |h|ℓ−j ≤ dℓ−j .

Suppose now that k is the minimum exponent of nonlinearity of f at v: by the first part of
the statement in particular f (j)(v) = 0 for j = 2, . . . , k − 1 and that |f (k)(v)| ≤ c0k!. If∣∣f(v + h) − f(v) − f ′(v)h

∣∣ ≥ (c0 − ε)|h|ℓ ∀ε > 0 , |h| ≤ δ

then is ξ between v and v+h such that f(v+h)−f(v)−f ′(v)h = f (k)

k! (ξ), thus |f (k)(v)| ≥ c0k!. □

Nonlinearity provides a lower bound on the increments also of the first derivative of f :

Lemma A.4. Suppose f is nonlinear in an interval I of order ℓ with constant c. Then∣∣f ′(v) − f ′(w)
∣∣ ≥ 2c|v − w|ℓ−1 ∀v, w ∈ I . (A.1)

Proof. Just by Definition (A.1) of nonlinearity when h = w − v we have∣∣f ′(w)h− f ′(v)h
∣∣ =

∣∣f(v + h) − f(v) − f ′(v)h+ f(w − h) − f(w) + f ′(w)h
∣∣ ≥ 2c|h|ℓ . □

Lemma A.5. If f ∈ C2(J) is nonlinear of order ℓ and constant c in a compact interval J , then:
(1) When ℓ = 2 the second derivative of f has lower bound 2c in J and it holds

|f ′(v) − f ′(w)| ≥ qw,v · ∥f ′′∥L∞(J) · |v − w| , (A.2)

for all v, w ∈ J , with qw,v
.= 2c

∥f ′′∥L∞(J)
belonging in (0, 1] and independent on w, v.

(2) When ℓ > 2 the set Z = {v ∈ J : f ′′(v) = 0} is finite and inequality (A.2) holds whenever
[w, v] ∩ Z = ∅ with qw,v

.= min[w,v] |f ′′|
maxJ |f ′′| belonging in (0, 1].

Proof. (1) When ℓ = 2 the statement follows immediately by (A.1).
(2) At any accumulation point v of D necessarily f (j)(v̄) = 0 for every j ≥ 2, thus by Taylor’s

expansion we would have f(v+h)−f(v)−f ′(v)h = o(hℓ): this would contradict the finite
order of nonlinearity of f . In particular, also when ℓ > 2 the set D must be discrete.

If [u, v]∩K = ∅ then f is nonlinear of order 2 in [u, v] and |f ′(v) − f ′(w)| = |f ′′(ξ)||v−
w| with ξ ∈ (v, w). Writing |f ′′(ξ)| ≥ min[u,v] |f ′′| · maxJ |f ′′|

maxJ |f ′′| one has the claim. □
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