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Abstract. We show that the comparison principle holds for smooth sub/super-solutions of
a class of degenerated sub-elliptic equations that include the sub-elliptic ∞-Laplacian. The
equations are defined by a collection of vector fields satisfying Hörmander’s rank condition and
are left-invariant with respect to a Nilpotent Lie Group.

1. Introduction

Let Ω ⊂ Rn be an open, simply connected bounded domain and for some integer m ≤ n, let
{X1, . . . , Xm} be a collection of smooth linearly independent vector fields defined on Ω satisfying
Hörmander’s rank condition

(1.1) dim
(
Lie(X1, . . . , Xm)(x)

)
= n,

at every point x ∈ Ω and are left invariant with respect to a nilpotent Lie group G = (Rn, ∗) of
step r. In other words, if g1 = span{X1, . . . , Xm} then we have Lie(g1) = g where g is the Lie
algebra of G. The group G is called a Carnot group of step r. See Section 2 for more details.
The more relevant case occurs if m < n as for the case of m = n, we are in the Riemannian
setting. We consider the equation

(1.2) Lu := −Tr
(
a(Xu)XXu

)
= −

m∑
i,j=1

ai,j(Xu)XjXiu = 0 in Ω,

where Xu = (X1u, . . . ,Xmu) is the sub-elliptic gradient, XXu = (XjXiu)i,j is the sub-elliptic
second derivative matrix, and ai,j : Rm → R are C1 functions such that the (m × m) matrix
a(ξ) is symmetric and satisfies the ellipticity condition

(1.3) E(ξ) :=
〈
a(ξ) ξ, ξ

〉
> 0 ∀ ξ ∈ Rm \ {0}.

Furthermore, we assume that a is homogeneous; i.e. there exist a non-negative constant β ∈ R
such that for any t ∈ R, we have

(1.4) a(t ξ) = |t|βa(ξ), ∀ ξ ∈ Rm.

Note that since a is assumed to be symmetric, the equation (1.2) can also be written as

Lu = −Tr
(
a(Xu)XX⋆u

)
= 0,

where XX⋆u is the symmetrized sub-elliptic second derivative. More details are presented in
Section 2.

The equation (1.2) encompasses a large class of degenerated equations, some examples are
in order. The sub-Laplacian ∆Xu = −Tr(XXu) = 0 corresponds to (1.2) with a(ξ) ≡ Im and
β = 0, and the equation is linear. Among examples of non-linear equations, one of the most
important cases is the sub-elliptic ∞-Laplacian equation

(1.5) ∆X,∞u =
〈
XXuXu,Xu

〉
= 0,
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which corresponds to the equation (1.2) with a(ξ) = ξ ⊗ ξ, which satisfies (1.4) with β = 2.
We refer to [6, 5, 14] for proofs of a comparison principle in Carnot groups that implies the
uniqueness of viscosity solutions of the equation (1.5) with Dirichlet boundary conditions. A
generalization of the equation (1.5), given by

(1.6)
〈
XXu∇f(Xu),∇f(Xu)

〉
=

m∑
i,j=1

∂if(Xu)∂jf(Xu)XiXju = 0

corresponding to a(ξ) = ∇f(ξ) ⊗ ∇f(ξ), has been studied by C. Wang [14] in the context of
minimization of ∥f(Xu)∥L∞ for a function f ∈ C2(Rm) that is convex, homogeneous of a fixed
degree ≥ 1 and f(ξ) > 0 for ξ ̸= 0; the special case f(ξ) = |ξ|2 leads to the equation (1.5).
Other notable examples include the normalized sub-elliptic p-Laplacian equation

∆N
X,pu = ∆Xu + (p− 2)

∆X,∞u

|Xu|2
= 0,

corresponding to a(ξ) = Im + (p− 2)(ξ ⊗ ξ)/|ξ|2 for 1 < p < ∞.
In this paper, we prove the following comparison principle for smooth sub/super-solutions.

Theorem 1.1. Let L be as in (1.2) with a ∈ C1(Rm,Rm×m) satisfying (1.3) and (1.4). If there
exists u, v ∈ C2(Ω) such that Lu ≤ 0 ≤ Lv in Ω and u ≤ v in ∂Ω, then we have u ≤ v in Ω.

We remark that this comparison principle is non-trivial even in the Euclidean case since we
need to overcome the case where the gradient vanishes. We follow an argument of Barles and
Busca [5], based on the strong maximum principle for sub-solutions. In the case of arbitrary
Hörmander vector fields, this comparison principle for linear equations is due to Bony [8]. A
comparison principle for viscosity solutions of the equation (1.6) was proved by Wang [14].
Our conditions are more general and our proof does not rely on approximations by solutions
of p-Laplace equations. For quasilinear degenerate elliptic equations defined by Hörmander
vector fields, the strong maximum principle was proved by Capogna and Zhou [9] and for fully
nonlinear equations defined by Hörmander vector fields, the strong maximum principle has been
established by Bardi-Goffi [2], see Section 2. We also refer to [4] and [3],for similar results.

Our proof is limited to smooth sub/super solutions. In the Euclidean case and in the case
of Carnot groups, arbitrary viscosity sub-solutions and super-solutions can be approximated,
respectively, by semi-convex sub-solutions and semi-concave super-solutions (see [11, 1, 14, 6])
that suggests that our proof can potentially be extended to viscosity solutions. This extension
will be addressed in a forthcoming paper.

2. Notations and Preliminaries

For a function u : Ω → R, let us denote the sub-elliptic gradient and second derivative as

Xu = (X1u, . . . ,Xmu) and XXu = (XjXiu)i,j .

The second derivative matrix is not symmetric in general, hence we denote the symmetrized
second derivative as

XX⋆u =
1

2

(
XXu + (XXu)T

)
=

1

2

(
XiXju + XjXiu

)
i,j
,

the sub-elliptic divergence of F = (f1, . . . , fm) is defined by

divH (F ) =
m∑
j=1

X∗
j fj ,

where X∗
j are the adjoints with respect to L2(Ω). As Xj ’s are left-invariant, we can choose

coordinates so that X∗
j = −Xj , without loss of generality. The standard Euclidean dot product

on Rn is denoted by (·), the Euclidean vector fields are denoted as ∂xi and ∇u = (∂x1u, . . . , ∂xnu)
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is the Euclidean gradient, DF is the Jacobian matrix for a vector function F : Ω → Rn and
D2u = D(∇u) = (∂xi∂xju)i,j is the Euclidean Hessian.

For symmetric square matrices A,B ∈ Rk×k, we shall denote A ≤ B if
〈
Aξ, ξ

〉
≤

〈
Bξ, ξ

〉
for

every ξ ∈ Rk. From the ellipticity (1.3) and condition (1.4) together, we can conclude

(2.1) E(ξ) =
〈
a(ξ) ξ, ξ

〉
≥ a0|ξ|2+β ∀ ξ ∈ Rm, where, a0 := inf

ζ∈Sm−1

〈
a(ζ)ζ, ζ

〉
> 0.

We note that there exists the matrix σ : Ω → Rn×m written as

σ(x) = (σj
i (x))i,j = [σ1(x), . . . , σm(x)]

for σj : Ω → Rn, such that Xj = σj(x)∇. Hence, for any u : Ω → R, we have

(2.2) Xu = σ(x)T∇u and XXu = σ(x)TD2uσ(x) + {Dσ(x) ⊗ σ(x)} · ∇u

where Dσ(x) ⊗ σ(x) is a 3-tensor such that {Dσ(x) ⊗ σ(x)} · ∇u is a matrix with entries(
{Dσ(x) ⊗ σ(x)} · ∇u

)
i,j

= Dσj(x)σi(x) · ∇u =
∑
k,l

∂xl
σj
k(x)σi

l(x)∂xk
u.

Thus, the symmetrized second derivative can be expressed as

(2.3) XX⋆u = σ(x)TD2uσ(x) + g(x,∇u),

where g(x,∇u) ∈ Rm×m is a matrix with entries

g(x,∇u)i,j =
1

2

(
Dσj(x)σi(x) · ∇u + Dσi(x)σj(x) · ∇u

)
,

note that the map ξ 7→ g(x, ξ) is linear. Assuming that the vector fields are non-zero and
smooth, we have σ(x) ̸= 0 and x 7→ σ(x) is smooth for every x ∈ Ω.

For any function f : Ω → R, we shall denote the set of maximum points as

(2.4) argmaxΩ(f) =
{
x ∈ Ω : f(x) = maxΩ f

}
If the function does not have an interior local maxima in Ω, then argmaxΩ(f) is empty. Also, it
is clear that if Θ : Ω → Ω′ is invertable, x ∈ argmaxΩ(f) if and only if Θ(x) ∈ argmaxΩ′(f ◦Θ−1).
Furthermore, for continuous functions fn, f , if fn → f uniformly as n → ∞ and xn → x ∈ Ω for
xn ∈ argmaxΩ(fn), then x ∈ argmaxΩ(f). Also, argmaxΩ(f + c) = argmaxΩ(f) if c is constant.

Our starting point is the following theorem due to Bardi-Goffi [2], who establish the strong
maximum principle for viscosity solutions to fully non-linear sub-elliptic equations determined
by Hörmander vector fields.

Theorem 2.1 (Strong Maximum Principle). Given smooth vector fields X1, . . . , Xm satisfying
Hörmander’s condition (1.1), if a function G : Ω̄×R×Rm×Rm×m → R satisfies the following:

(1) G is lower semicontinuous and for all r ≤ s and symmetric matrices Y ≤ X,

G(x, r, ξ,X) ≤ G(x, s, ξ, Y );

(2) there exists ϕ : (0, 1] → (0,∞) such that for all λ ∈ (0, 1], x ∈ Ω, r ∈ [−1, 0], ξ ∈ Rm \ {0}
and symmetric X ∈ Rm×m, we have

G(x, λr, λξ, λX) ≥ ϕ(λ)G(x, r, ξ,X);

(3) for all x ∈ Ω, ξ ∈ Rm \ {0}, X ∈ Rm×m, the following ellipticity condition holds,

sup
γ>0

G
(
x, 0, ξ,X − γξ ⊗ ξ

)
> 0;

then, any viscosity sub-solution (resp. super-solution) of the equation G(x, u,Xu,XX⋆u) = 0
that attains a non-negative (resp. non-positive) maximum (resp. minimum) in Ω, is constant.

Using Theorem 2.1 to our special case leads to the following.
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Corollary 2.2. Given the equation (1.2) with a : Rm → Rm×m satisfying (1.3) and (1.4),
any viscosity sub-solution (resp. super-solution) that attains a non-negative (resp. non-positive)
maximum (resp. minimum) in Ω, is constant.

Proof. It is easy to see that G(x, r, ξ,X) = −Tr
(
a(ξ)X

)
satisfies the hypotheses of Theorem

2.1. Indeed, since a(ξ) is symmetric and positive definite, we have Tr
(
a(ξ)Z

)
≥ 0 for all Z ≥ 0

which implies (1). The homogeneity condition (1.4) leads to (2) and the ellipticity condition
(1.3) leads to (3) because we have that

G
(
x, 0, ξ,X − γξ ⊗ ξ

)
= γ

〈
a(ξ)ξ, ξ

〉
− Tr

(
a(ξ)X

)
> 0,

for any γ > Tr
(
a(ξ)X

)
/
〈
a(ξ)ξ, ξ

〉
. This completes the proof. □

Note that we use the result of Bardi-Goffi for smooth sub/super solutions, so we refer to their
article [2] for the definitions and properties of viscosity solutions in the sub-elliptic framework,
which we will not use in this manuscript.

Finally, we provide some preliminaries and necessary properties of Carnot Groups. The Lie
group G = (Rn, ∗) is connected and simply connected, with the Lie algebra of left-invariant
vector fields g = g1⊕ . . .⊕gr where g1 = span{X1, . . . , Xm} so that from (1.1), Lie(g1) = g and

(2.5) [ g1, gj ] = gj+1 ∀ j ∈ {1, . . . , r − 1}, and [ g1, gr ] = {0},
when G is nilpotent of step r. The group admits a family {δλ}λ>0 of automorphisms called
dilations that induce a homogeneous structure. The basis {Xi}’s of g1 can be extended to the
basis {Xi,j} of g and the exponential map exp : g → G being a global diffeomorphism, we have

the exponential coordinates x = exp
(∑r

j=1

∑mj

i=1 xi,jXi,j

)
where mj = dim(gj) and in these

coordinates, (x, y) 7→ x ∗ y is a polynomial. Thus, Xiu(x) = limt→0
1
t

(
u(x ∗ exp(tXi)) − u(x)

)
.

The homogeneous norm

(2.6) ∥x∥ =

( r∑
j=1

( mj∑
i=1

|xi,j |2
) r!

j

) 1
2r!

,

gives rise to left-invariant metric d(x, y) = ∥y−1 ∗ x∥ satisfying d(z ∗ x, z ∗ y) = d(x, y) and
d(δλx, δλy) = λd(x, y) for all x, y, z ∈ G. We shall denote the distance function dist as

dist(x,E) = inf{d(x, y) : y ∈ E}
for any x ∈ G and E ⊂ G. Note that, up to isomorphisms of such groups, we can regard that
in the exponential coordinates, x−1 = −x, see [7]. Furthermore, if ∥x∥, ∥y∥ < ν for some ν > 0,
there exists a constant c = c(G, ν) > 0 such that the pseudo-triangle inequality

(2.7) ∥x ∗ y∥ ≤ c (∥x∥ + ∥y∥)

and the inequality

(2.8) ∥x−1 ∗ y ∗ x∥ ≤ c ∥y∥
1
r ,

hold for all x, y ∈ G, see [7] and [12]. Let πj : Rn → Rmj be the projection corresponding
to g → gj and Xj = (X1,j , . . . , Xmj ,j) be the gradient of gj . We extend the notation of inner

product
〈
·, ·
〉

to that in any Rmj ’s. For any u ∈ C1(Ω), we have the following Taylor’s formula

(2.9) u(x) = u(x0) +
〈
Xu(x0), π1(x0

−1 ∗ x)
〉

+ o
(
∥x0−1 ∗ x∥

)
.

Note that setting h = x0
−1 ∗ x we have

(2.10) uh(x0) = u(x0 ∗ h) = u(x0) +
〈
Xu(x0), π1(h)

〉
+ o

(
∥h∥

)
.

Thus, the Taylor series with respect to left invariant vector fields give expansions for right
translations.
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The (bi-invariant) Haar measure of G is the Lebesgue measure of Rn, denoted by | · |, and for
any measurable E ⊆ Rn, we have |δλ(E)| = λQ|E| where Q =

∑r
j=1 jmj is the homogeneous

dimension of G, which is also the Hausdorff dimension with respect to the metrics d. We refer
to [7] for further details on the structure and properties of Carnot groups.

3. Comparison principle

In this section, we prove the weak comparison principle for smooth super and sub-solutions
of the equation, i.e. if Lu ≤ 0 ≤ Lv in Ω and u ≤ v in ∂Ω, then u ≤ v everywhere in Ω. We
extend the approach of Barles and Busca [5], who studied the Euclidean case. This is achieved at
increasing levels of generality which directs the method of proving the theorem and also reflects
upon the difficulties arising from the degeneracy of the equation (1.2).

We begin with the following preliminary lemma.

Lemma 3.1. If there exists u, v ∈ C2(Ω) such that Lu < 0 ≤ Lv (resp. Lu ≤ 0 < Lv) in Ω and
u ≤ v in ∂Ω, then we have u ≤ v in Ω.

Proof. We proceed by contradiction. Assume the contrary, i.e. there exists x ∈ Ω such that
u(x) > v(x). Hence, there exists at least one x0 ∈ Ω̄ such that

u(x0) − v(x0) = max
x∈Ω

{u(x) − v(x)} > 0.

Since u− v ≤ 0 on ∂Ω from assumption, hence x0 ∈ Ω and the interior maximality at x0 implies
∇u(x0) = ∇v(x0) and D2u(x0) ≤ D2v(x0). This, together with (2.2) and (2.3), yields

Xu(x0) = Xv(x0) =: ξ0 and XX⋆u(x0) ≤ XX⋆v(x0).

Using the above together with the equation, we have the following,

0 ≤ Tr
(
a(ξ0)(XX

⋆v(x0) − XX⋆u(x0)
)

= Tr
(
a(Xv(x0))XX

⋆v(x0)
)
− Tr

(
a(Xu(x0))XX

⋆u(x0)
)

= −Lv(x0) + Lu(x0) < 0.

The latter strict inequality of the above leads to a contradiction and the proof is complete. □

The next goal is to relax the assumption Lu < 0 ≤ Lv or Lu ≤ 0 < Lv of Lemma 3.1 to
Lu ≤ 0 ≤ Lv in Ω. This is difficult due to the degeneracy of the equation. Given a sub-solution
u, the strategy is to construct small perturbations uλ = hλ(u) for hλ ∈ C2(R) and λ > 0 small
enough, so that uλ are strict sub-solutions and satisfy the assumptions of Lemma 3.1.

The construction of such sub-solutions (resp. super-solutions) can be done using ellipticity
(1.3) and the homogeneity condition (1.4). We have the following technical lemma.

Lemma 3.2. Let β ∈ R be as in (1.4). Given any h ∈ C2(R) and w ∈ C2(Ω), we have

(3.1) L(h(w)) = −|h′(w)|β
[
h′′(w)E(Xw) − h′(w)Lw

]
.

Proof. For any h ∈ C2(R) and w ∈ C2(Ω), we note that X(h(w)) = h′(w)Xw and

XX(h(w)) = h′(w)XXw + h′′(w)Xw ⊗ Xw.

Hence, using the above together with (1.4), we have that

L(h(w)) = −Tr
(
a(X(h(w)))XX(h(w))

)
= −h′(w) Tr

(
a(h′(w)Xw)XXw)

)
− h′′(w)

〈
a(h′(w)Xw)Xw,Xw

〉
= −|h′(w)|β

[
h′′(w)

〈
a(Xw)Xw,Xw

〉
+ h′(w) Tr

(
a(Xw)XX⋆w)

)]
,

for β ∈ R as in (1.4). The proof is finished. □
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Using Lemma 3.2 together with the ellipticity (1.3), we show the following.

Lemma 3.3. If there exists u, v ∈ C2(Ω) such that Lu ≤ 0 ≤ Lv in Ω and u ≤ v in ∂Ω, and,
in addition, if Xu (resp. Xv) does not vanish at all maximal points of u− v, then u ≤ v in Ω.

Proof. As before, we shall assume the contrary and establish a contradiction. Without loss of
generality, we can regard u− v ≤ −τ < 0 in ∂Ω for any τ > 0 arbitrarily small. The arbitrarity
of τ would conclude the proof for every u ≤ v on ∂Ω.

The contrary hypothesis implies u(x) > v(x) for some x ∈ Ω and since u < v in ∂Ω, hence
maximal points of u − v are in the interior. Thus, argmaxΩ(u − v) ̸= ∅ and we have, for any
y ∈ argmaxΩ(u− v),

u(y) − v(y) = max
x∈Ω

{u(x) − v(x)} =: M0 > 0,

and we consider the given condition Xu(y) ̸= 0 for all y ∈ argmaxΩ(u − v). Now, let us take
uλ = hλ(u) for λ > 0, defined by

hλ(u) = u + λ(u− u0)
2 with u0 = inf

Ω
u,

(in fact, any hλ ∈ C2(R) with h′λ, h
′′
λ > 0 and hλ → id as λ → 0+ will do). Thus, we have

(3.2) ∥uλ − u∥L∞ ≤ 4λ∥u∥2L∞ ,

for any λ > 0. For a sequence xλ ∈ argmaxΩ(uλ − v) such that xλ → x0 up to possible sub-
sequence, as λ → 0+, we have x0 ∈ argmaxΩ(u − v). Since Xu(x0) ̸= 0, therefore |Xu(x0)| ≥ θ
for some θ > 0 which implies Xuλ(x0) = h′λ(u)Xu(x0) = (1 + 2λ(u − u0))Xu(x0) ̸= 0 with
|Xuλ(x0)| ≥ θ. Note that, using (3.2),

uλ(xλ) − v(xλ) = max
x∈Ω

{uλ(x) − v(x)} > 0,

whenever 0 < λ < M0/4∥u∥2L∞ . Furthermore, note that u− v ≤ −τ < 0 in ∂Ω along with (3.2)
implies uλ ≤ v in ∂Ω for any 0 < λ ≤ τ/4∥u∥2L∞ leading to xλ ∈ Ω. The interior maximality at
xλ implies ∇uλ(xλ) = ∇v(xλ) and D2uλ(xλ) ≤ D2v(xλ), which together with (2.2) and (2.3),
leads to

(3.3) Xuλ(xλ) = Xv(xλ) =: ξλ and XX⋆uλ(xλ) ≤ XX⋆v(xλ).

Since xλ → x0 as λ → 0+, there exists λ0 = λ0

(
n, θ, ∥u∥L∞ + ∥v∥L∞ ,diam(Ω)

)
> 0, such that

whenever 0 < λ < λ0 we have

d(xλ, x0) < min
{

dist(x0, ∂Ω), θ/2∥XXu∥L∞
}
,

hence Xu(xλ) ̸= 0 with |Xu(xλ)| ≥ θ/2. These conditions respectively imply that xλ ∈ Ω and
E(Xu(xλ)) > 0 from (1.3). Hence, if Lu ≤ 0 ≤ Lv holds in Ω as given, then using (3.1) we
obtain

(3.4) Luλ(xλ) = −|h′λ(u)|β
[
h′′λ(u)E(Xu(xλ)) − h′λ(u)Lu(xλ)

]
< 0;

therefore, using (3.3) and (3.4) together, we obtain

0 ≤ Tr
(
a(ξλ)(XX⋆v(xλ) − XX⋆uλ(xλ)

)
= Tr

(
a(Xv(xλ))XX⋆v(xλ)

)
− Tr

(
a(Xuλ(xλ))XX⋆uλ(xλ)

)
= −Lv(xλ) + Luλ(xλ) < 0,

which, as earlier, leads to a contradiction.
In the case of the given condition being non-vanishing of Xv, we can obtain a similar contra-

diction taking vλ = hλ(v) with hλ(v) = v−λ(v− v0)
2 with v0 = infΩ v (or any hλ ∈ C2(R) with

h′λ > 0 > h′′λ and hλ → id as λ → 0+) and using (3.1). The proof is finished. □
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To remove the additional assumption of the non-vanishing gradient at maximal points of
Lemma 3.3, we need to investigate how the maxima propagate under point-wise perturbation.

Proof of Theorem 1.1. As before, we shall assume the contrary i.e. maxΩ(u − v) > 0 and
since u ≤ v in ∂Ω, the maxima is attained in the interior. Thus, we have

u(x0) − v(x0) = max
x∈Ω

{u(x) − v(x)} = M0 > 0,

for an interior point x0 ∈ Ω. For any δ > 0, let Ωδ := {x ∈ Ω : dist(x, ∂Ω) > δ}. Recalling
the left-invariance of the metric, note that for any δ > 0 and h ∈ Rn with ∥h∥ < δ, we have
d(x∗h, x) = ∥h∥ < δ < dist(x, ∂Ω) for any x ∈ Ωδ. Hence, x∗h ∈ Ω for any x ∈ Ωδ and ∥h∥ < δ.
Therefore, for any δ > 0, let us denote Mδ : Bδ(0) → R as

(3.5) Mδ(h) = max
x∈Ωδ

{u(x ∗ h) − v(x)} and Aδ(h) = {x ∈ Ωδ : u(x ∗ h) − v(x) = Mδ(h)},

for any h ∈ Rn with ∥h∥ < δ. Thus, M0(0) = M0 and x0 ∈ A0(0) and moreover, for every
0 < δ < dist(x0, ∂Ω) we have Mδ(0) = M0 > 0 and Aδ(0) ̸= ∅. This further implies the maxima
is in the interior in Ωδ and therefore, for all 0 < δ′ < δ since Ωδ ⊂ Ωδ′ we have Mδ(0) = Mδ′(0).

In the following, we shall denote the right translations uh, vl : Ωδ → R by uh(x) := u(x ∗ h)
and vl(x) = v(x ∗ l) for h, l ∈ Rn with ∥h∥, ∥l∥ < δ; then, similarly as above, let us denote

(3.6) Mδ(h, l) = max
x∈Ωδ

{uh(x) − vl(x)} and Aδ(h, l) = {x ∈ Ωδ : uh(x) − vl(x) = Mδ(h, l)},

and note that (3.5) corresponds to l = 0. Also note that, if Aδ(0, l) ̸= ∅ then the maxima is in
the interior in Ωδ and therefore, Mδ(0, l) = Mδ′(0, l) for all 0 < δ′ < δ, similarly as above. Note
that h 7→ Mδ(h, l) is a Lipschitz function since for x ∈ Aδ(h, l) and x′ ∈ Aδ(h

′, l), we have

(3.7)

Mδ(h, l) −Mδ(h
′, l) = u(x ∗ h) − v(x ∗ l) − u(x′ ∗ h′) + v(x′ ∗ l)

≤ u(x ∗ h) − v(x ∗ l) − u(x ∗ h′) + v(x ∗ l)
= u(x ∗ h) − u(x ∗ h′) ≤ d(h, h′)∥Xu∥L∞ ,

where we have use the maximality at x′ in the second inequality. A symmetric inequality using
the maximality at x gives the bound

(3.8) |Mδ(h, l) −Mδ(h
′, l)| ≤ d(h, h′)∥Xu∥L∞ .

Similarly, l 7→ Mδ(h, l) is also a Lipschitz function and by arguing similarly as (3.7) above using
maximality in Aδ(h, l) and Aδ(h, l

′) we can obtain

(3.9) |Mδ(h, l) −Mδ(h, l
′)| ≤ d(l, l′))∥Xv∥L∞ .

It is noteworthy that in (3.5) and (3.6), Mδ may be subject to addition by constant, with
respect to possible relabelling u 7→ ũ = u + (const) and v 7→ ṽ = v + (const). Nevertheless, all
properties and arguments remain unchanged as long as ũ ≤ ṽ on ∂Ω holds, since the gradient and
maximal set are invariant of such relabeling, i.e. Xũ = Xu and argmax(ũh−ṽl) = argmax(uh−vl).

Now, we divide the rest of the proof into two alternative cases, based on the vanishing behav-
ior of the gradient. This is an adaptation of that of Barles-Busca [5], see also [1]. The goal is to
establish contradiction in both cases. We have chosen the right translation in (3.5) and (3.6) of
the above because that is what appears in the Taylor expansion of u in (2.10).

Case 1: There exists 0 < δ0 ≤ 1
4 min{dist(x0, ∂Ω),M0/∥Xv∥L∞} and l0 ∈ Rn, ∥l0∥ ≤ δ0,

such that for all h ∈ Rn with ∥h∥ < δ0, there exists points xh ∈ Aδ0(h, l0) such that we have
Xu(xh ∗ h) = 0.

Since δ0 < M0/2∥Xv∥L∞ , from (3.9) we have

(3.10) Mδ0(0, l0) ≥ M0 − ∥l0∥∥Xv∥L∞ ≥ M0/2 > 0.
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For Case 1, using maximality with xh ∈ Aδ0(h, l0), xh′ ∈ Aδ0(h′, l0), and (2.9), we note that

u(xh ∗ h) − v(xh ∗ l0) ≥ u(xh′ ∗ h) − v(xh′ ∗ l0)

= u(xh′ ∗ h′) − v(xh′ ∗ l0) +
〈
Xu(xh′ ∗ h′), π1(h′−1 ∗ h)

〉
+ o

(
∥h′−1 ∗ h∥

)
= u(xh′ ∗ h′) − v(xh′ ∗ l0) + o(d(h, h′)).

From (3.6) and the above, we have Mδ0(h, l0) ≥ Mδ0(h′, l0) + o(d(h, h′)). Since this inequality
is symmetric with respect to h and h′, we conclude that at points of differentiability of the
function h 7→ Mδ0(h, l0), we have XMδ0(h, l0) = 0. Recalling (3.8), since h 7→ Mδ0(h, l0) is
Lipschitz, by Rademacher’s theorem on Carnot groups [13], it is differentiable at a.e. ∥h∥ ≤ δ0.
Therefore, we have XMδ0(h, l0) = 0 for a.e. h ∈ Bδ(0). It follows then that the Lipschitz
constant of h 7→ Mδ0(h, l0) is zero, so that the function h 7→ Mδ0(h, l0) is constant in Bδ0(0) (see
Proposition 4.8 in [10]). Thus, for any ∥h∥ < δ0, we have

Mδ0(h, l0) = Mδ0(0, l0).

Hence, for any x̃0 ∈ Aδ(0, l0) and ∥h∥ < δ < δ0 < dist(x0, ∂Ω), using the above with (3.6) and
interior maximality at x̃0, we have

u(x̃0) − v(x̃0 ∗ l0) = Mδ(0, l0) = Mδ0(0, l0) = Mδ0(h, l0)

= u(xh ∗ h) − v(xh ∗ l0) ≥ u(x̃0 ∗ h) − v(x̃0 ∗ l0),

leading to u(x̃0) ≥ u(x̃0 ∗ h). Thus, we have a sub-solution u with a local maximum at x̃0 ∈ Ω,
which can be converted to a non-negative maximum by adding a large enough positive constant
to u. From Corollary 2.2, u(x) = u(x̃0) for all x ∈ Bδ(x̃0). Furthermore, for all ∥h′∥ < δ, the
maximality at x̃0 ∈ Aδ(0, l0) implies

u(x̃0) − v(x̃0 ∗ l0) ≥ u(x̃0 ∗ h′) − v(x̃0 ∗ h′ ∗ l0) = u(x̃0) − v(x̃0 ∗ h′ ∗ l0),

leading to v(x̃0 ∗ h′ ∗ l0) ≥ v(x̃0 ∗ l0), which also means that the super-solution v has a local
minimum at x̃0 ∗ l0. By adding a negative constant and converting the super-solution v to have a
non-positive minimum at x̃0∗ l0 ∈ Ω, we can use Corollary 2.2 again to conclude v(x) = v(x̃0∗ l0)
in a neighborhood of x̃0 ∗ l0 ∈ Ω. Hence, {x ∈ Ω : u(x) − v(x) = u(x̃0) − v(x̃0 ∗ l0)} being both
open and closed and Ω being connected, it is the whole of Ω. Thus, for every x ∈ Ω, we have
u(x) − v(x) = u(x̃0) − v(x̃0 ∗ l0) = Mδ0(0, l0) > 0 from (3.10), which contradicts u ≤ v in ∂Ω.

Case 2: For any 0 < δ < 1
4 min{dist(x0, ∂Ω),M0/∥Xv∥L∞} and any l ∈ Rn with ∥l∥ ≤ δ,

there exists hl ∈ Rn with ∥hl∥ < δ, such that for all x ∈ Aδ(hl, l) we have Xu(x ∗ hl) ̸= 0.

Here, for 0 < δ < 1
4 min{dist(x0, ∂Ω),M0/∥Xv∥L∞}, in the following arguments we shall en-

counter further several upper bounds of δ, all of which are to be considered respectively as the
proof proceeds. First, we show the following.

Claim: There exists h ∈ Rn with ∥h∥ < δ, such that for all x ∈ Aδ(h, h) we have Xu(x∗h) ̸= 0.

Notice that the set {x∗hl : x ∈ Aδ(hl, l)} is contained in a compact set Kδ ⊂ Ωδ/2 independent
of l. Therefore, from Case 2, we can regard that

(3.11) |Xu(x ∗ hl)| ≥ θδ > 0, ∀ x ∈ Aδ(hl, l).

Hence, let us take any l0 ∈ Bδ(0) and use the hypothesis of Case 2 repeatedly to define the
sequence lj+1 = hlj for every j ∈ N ∪ {0}. Since {lj} is bounded, up to a sub-sequence we have

lj → h for some h ∈ Bδ(0) and hence d(lj , h), d(lj+1, lj) → 0+ as j → ∞. We show that h
satisfies the claim. As ∥h∥ < δ, it is not hard to see that Mδ(h, h) > 0 from (3.8) and (3.9),
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when δ < M0/4∥Xu∥L∞ . Furthermore, as in the proof of Lemma 3.3, we can assume without
loss of generality, that

(3.12) u(z) − v(z) ≤ −τ < 0, ∀ z ∈ ∂Ω,

for any arbitrarily small τ > 0. Now, for all x ∈ ∂Ωδ, notice that

dist(x ∗ h, ∂Ω) ≤ dist(x, ∂Ω) + d(x ∗ h, x) = δ + ∥h∥ < 2δ

for ∥h∥ < δ which leads us to the following for all x ∈ ∂Ωδ,

u(x ∗ h) − v(x ∗ h) ≤ −τ + dist(x ∗ h, ∂Ω)
(
∥Xu∥L∞ + ∥Xv∥L∞

)
≤ −τ + 2δ

(
∥Xu∥L∞ + ∥Xv∥L∞

)
≤ 0,

if δ < τ/2(∥Xu∥L∞ + ∥Xv∥L∞). Thus, we have uh ≤ vh at ∂Ωδ, which implies the maxima at
Mδ(h, h) > 0 is attained in the interior and Aδ(h, h) ̸= ∅. Hence, for any x ∈ Aδ(h, h), we have
u(x ∗ h) − v(x ∗ h) = maxΩ′(uh − vh) for any Ω′ ⊂⊂ Ω with x ∈ Ω′. Since lj → h as j → ∞,
we can also similarly conclude that Aδ(lj , lj) ̸= ∅ and the maxima is interior for j ≥ j0 large
enough. Therefore, for any x ∈ Aδ(h, h) and a neighborhood B ⊂⊂ Ω with x ∈ B, let us denote
Bj := {y ∗ lj ∗ h−1 : y ∈ B}; then, note that for j ≥ j0 large enough, d(lj , h) < 1

2 dist(x, ∂B) so
that x ∈ Bj and hence we have

(3.13)

Mδ(lj , lj) = max
y∈B

{u(y ∗ lj) − v(y ∗ lj} = max
z∈Bj

{u(z ∗ h) − v(z ∗ h}

= max
Bj

(uh − vh) = u(x ∗ h) − v(x ∗ h)

= u(xj ∗ lj) − v(xj ∗ lj)

where xj := x ∗ h ∗ lj−1. Recalling (3.6), xj ∈ Aδ(lj , lj) and d(xj , x) = d(lj , h), also note that

x ∈ Bj and xj = x ∗h ∗ lj−1 ∈ B. Now we produce similarly a maximal point in Aδ(hlj , lj) close
to x in order to compare the gradients using (3.11) by suitably relabelling with

(3.14) ũ = u + c1,j , ṽ = v + c2,j ,

where c1,j = Mδ(lj+1, lj) −Mδ(lj+1, lj+1) and c2,j = v(x ∗ h) − v(x ∗ h ∗ lj+1
−1 ∗ lj). It is clear

from (3.9) and directly, that

|c1,j |, |c2,j | ≤ d(lj+1, lj)∥Xv∥L∞ ,

from which, together with (3.12), we can conclude similarly as above that for j ≥ j0 large
enough, ũ < ṽ on ∂Ω. Using (3.13) with xj+1 = x ∗h ∗ lj+1

−1 for j ≥ j0 large enough, we obtain

(3.15)

Mδ(lj+1, lj) = Mδ(lj+1, lj+1) + c1,j = u(xj+1 ∗ lj+1) − v(xj+1 ∗ lj+1) + c1,j

= u(xj+1 ∗ lj+1) − v(xj+1 ∗ lj) + c1,j − c2,j

= ũ(xj+1 ∗ lj+1) − ṽ(xj+1 ∗ lj).

Therefore, relabelling u 7→ ũ and v 7→ ṽ as in (3.14), we can conclude from (3.15) that

x′j := xj+1 = x ∗ h ∗ lj+1
−1 ∈ Aδ(lj+1, lj)

and d(x′j , x) = d(lj+1, h). Therefore, for any x ∈ Aδ(h, h) and j ≥ j0 large enough, we regard

d(lj+1, h), d(lj , h) ≤ Rr
δ where 0 < Rδ < δ can be chosen as small as needed; as we established

above, there exists x′j ∈ Aδ(hlj , lj) such that d(x′j , x) = d(lj+1, h) ≤ Rr
δ. Hence,

(3.16)
|Xu(x ∗ h) − Xu(x′j ∗ hlj )| ≤ ∥XXu∥L∞

[
d(x ∗ h, x ∗ hlj ) + d(x ∗ hlj , x

′
j ∗ hlj )

]
≤ c∥XXu∥L∞

[
d(h, hlj ) + d(x, x′j)

1/r
]
≤ 2c∥XXu∥L∞Rδ,
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for all j ≥ j0 large enough, where we used triangle inequality, (2.8) and Rr
δ ≤ Rδ for Rδ < 1.

Now, since x′j ∈ Aδ(hlj , lj), from (3.11), recall that

|Xu(x′j ∗ hlj )| ≥ θδ > 0.

Therefore, we choose Rδ < θδ/4c∥XXu∥L∞ so that using the the above together with (3.16), we
can conclude Xu(x ∗ h) ̸= 0 with |Xu(x ∗ h)| ≥ θδ/2 > 0 for any x ∈ Aδ(h, h). Thus, we have
proved the claim.

Note that the interior maximality of uh − vh at x ∈ Aδ(h, h) implies ∇uh(x) = ∇vh(x) and
D2uh(x) ≤ D2vh(x), which together with (2.2) and (2.3) yields

(3.17) Xuh(x) = Xvh(x) and XX⋆uh(x) ≤ XX⋆vh(x).

However, in order to make use of the left-invariance of the vector fields we need to establish a
relation similar to (3.17) but in terms of the left translation. To this end, let us denote

Ωδ := {x ∈ Ω : dist(x, ∂Ω) > cδ1/r}

where c = c(m,n, r,diam(Ω)) > 0 such that using (2.8) we have for ∥h∥ < δ the inequality

d(h ∗ x, x) = ∥x−1 ∗ h ∗ x∥ ≤ c∥h∥1/r < cδ1/r < dist(x, ∂Ω)

for any x ∈ Ωδ. Thus, for any x ∈ Ωδ and ∥h∥ < δ, we have h ∗ x ∈ Ω. Henceforth, let the
left-translation uh, vh : Ωδ → R be defined by uh(x) := u(h ∗ x), vh(x) := v(h ∗ x). Furthermore,
we denote

Ω(δ) :=
{
x ∈ Ω : dist(x, ∂Ω) > max{δ, cδ1/r}

}
= Ωδ ∩ Ωδ

so that the conjugation Ch : Ω(δ) → Ω(δ) defined by Ch(x) = h−1 ∗ x ∗ h, is well defined. Since

h−1 = −h, we have (Ch)−1 = Ch−1 . Note also that uh = uh ◦ Ch and vh = vh ◦ Ch.
For any x ∈ Aδ0(h, l) and for every

0 < δ < min{dist(x, ∂Ω), (dist(x, ∂Ω)/c)r, δ0},

we have x ∈ Ω(δ) and the maximum in (3.6) can be taken over Ω(δ); in other words for
∥h∥, ∥l∥ < δ we have Mδ(h, l) = maxΩ(δ)(uh − vl) = uh(x) − vl(x) for x ∈ Aδ(h, l). Hence, we
may write Aδ(h, l) = argmaxΩ(δ)(uh − vl) as denoted in (2.4). Therefore, x ∈ Aδ(h, h) if and

only if x̄ = Ch(x) ∈ argmaxΩ(δ)(uh ◦ Ch−1 − vh ◦ Ch−1) = argmaxΩ(δ)(u
h − vh). Henceforth, let

(3.18) Āδ(h, h) = {x ∈ Ω(δ) : uh(x) − vh(x) = max
Ω(δ)

(uh − vh)}

with ∥h∥ < δ as in the claim, so that x̄ ∈ Āδ(h, h) iff x = Ch−1(x̄) ∈ Aδ(h, h).
We use (3.12) similarly as above. Notice that for x ∈ ∂Ω(δ) and ∥h∥ < δ, we have

dist(x ∗ h, ∂Ω) ≤ dist(x, ∂Ω) + d(x ∗ h, x) < δ + max{δ, cδ1/r}.

Therefore, together with (3.12) we obtain for all x ∈ ∂Ω(δ),

u(x ∗ h) − v(x ∗ h) ≤ −τ + dist(x ∗ h, ∂Ω)
(
∥Xu∥L∞ + ∥Xv∥L∞

)
≤ −τ + (δ + max{δ, cδ1/r})

(
∥Xu∥L∞ + ∥Xv∥L∞

)
≤ 0,

when δ < min{τ/2(∥Xu∥L∞ + ∥Xv∥L∞), (τ/2c(∥Xu∥L∞ + ∥Xv∥L∞))r}, which further imply

(3.19) uh(x̄) = uh(Ch(x)) = u(x ∗ h) ≤ v(x ∗ h) = vh(x̄), for all x̄ ∈ ∂Ω(δ).

Hence, at any x̄ ∈ Āδ(h, h), the interior maximality of uh − vh implies ∇uh(x̄) = ∇vh(x̄) and
D2uh(x̄) ≤ D2vh(x̄) which together with (2.2) and (2.3) yields

(3.20) Xuh(x̄) = Xvh(x̄) and XX⋆uh(x̄) ≤ XX⋆vh(x̄).
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Now, on uh and vh, we can use left-invariance of the vector fields that imply Xju
h(y) = Xju(h∗y)

and Xjv
h(y) = Xjv(h ∗ y) for all y ∈ Ω(δ). Therefore, from the above claim, we have

(3.21) Xuh(x̄) = Xu(h ∗ x̄) = Xu(x ∗ h) ̸= 0, ∀ x̄ ∈ Āδ(h, h),

and for any ȳ ∈ Ω(δ), letting y = Ch−1(ȳ), the left-invariance implies

(3.22) Luh(ȳ) = Lu(h ∗ ȳ) = Lu(y ∗ h) ≤ 0 ≤ Lv(y ∗ h) = Lv(h ∗ ȳ) = Lvh(ȳ).

Thus, (3.22),(3.19) and (3.21) together satisfy the conditions of Lemma 3.3 in Ω(δ) for uh and
vh with ∥h∥ < δ as in the above claim for any δ > 0 small enough as shown above. Therefore,
we can invoke Lemma 3.3 to conclude uh ≤ vh everywhere in Ω(δ) with ∥h∥ < δ as in the claim
for any δ > 0 small enough. Since, uh → u, vh → v and the domain Ω(δ) → Ω as δ → 0+, this
contradicts the contrary hypothesis.

Combining both cases, the proof is complete. □
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