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Abstract. In this survey paper, I discuss some recent progress on the existence and regularity
of Brakke flows. These include: an “end-time version” of Brakke’s local regularity theorem,
which allows to extend the validity of the celebrated regularity theorem by White from limits
of smooth mean curvature flows to arbitrary Brakke flows; a global-in-time existence theorem
for multi-phase Brakke flows of grain boundaries satisfying suitable BV regularity in time,
in both the unconstrained and the fixed boundary settings, with applications to Plateau’s
problem for the latter; and the proof that branching singularities of minimal surfaces are
a trigger for dynamical instability, in the sense that they may be “perturbed away” by a
non-trivial canonical Brakke flow. This note is an extended version of a talk given by the
author at the MATRIX Research Institute on the occasion of the workshop entitled “Minimal
surfaces and geometric flows: interaction between the local and the nonlocal worlds”.

1. Introduction

Arising as the L2-gradient flow of the area functional, the Mean Curvature Flow (henceforth
often abbreviated MCF) is one of the most fundamental among the geometric flows involving
extrinsic curvatures. Classically, a MCF of dimension n ≥ 1 in a (smooth) Riemannian
manifold (N , h) of dimension n + k (k ≥ 1) is a family of smoothly immersed n-dimensional
submanifolds Mt, parametrized by time t ∈ I with I ⊂ R an interval, such that the velocity of
motion is equal to the mean curvature vector of the immersion at every point, for every time.
It is a classical fact that, if M0 is a smooth immersed submanifold of N then there exists a
unique smooth solution to MCF starting with M0 for short time. In fact, it is not difficult
to construct examples of initial data such that the corresponding smooth MCF develops
singularities in finite time, and before it becomes extinct: at such singular points, surfaces may
undergo topology changes, so that any description in terms of the classical PDE ceases to make
sense. The need to describe the motion by mean curvature of surfaces through singularities
and topology changes is the first motivation for studying weak solutions to MCF.

Figure 1. Grain boundaries in
a metal. By Edward Pleshakov
CC BY 3.0, Source Wikipedia.

Another motivation comes from the applica-
tions. The mean curvature flow has been stud-
ied for decades as a model for physical systems
or materials governed by energies dominated
by surface tension. Mullins may have been the
first to write the MCF equation in [Mul56],
when describing the motion of grain bound-
aries and coarsening phenomena in metals; see
Figure 1. In these examples, the geometric ob-
jects of interest are intrinsically non-smooth.
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Brakke proposed a definition of weak solutions to MCF in his Ph.D. thesis [Bra78], under
the scientific direction of Almgren. The definition is measure-theoretic in spirit: evolving
immersed submanifolds are replaced by integral varifolds, and in place of the PDE one finds a
variational inequality, which is in fact equivalent to the PDE if the varifolds are associated
with smooth submanifolds. Such weak solutions are typically referred to as Brakke flows.

This brief note is a review on some recent advances in the theory concerning existence and
regularity of Brakke flows.
Acknowledgements. I would like to thank the MATRIX Research Institute for hospitality
on the occasion of the workshop entitled “Minimal surfaces and geometric flows: interaction
between the local and the nonlocal worlds”. My participation was supported through a MATRIX-
Simons Travel Grant: I am thankful to the MATRIX Research Institute and the Simons
Foundation. My work is supported by the Gruppo Nazionale per l’Analisi Matematica, la
Probabilità e le loro Applicazioni of INdAM and by the project PRIN 2022PJ9EFL “Geometric
Measure Theory: Structure of Singular Measures, Regularity Theory and Applications in the
Calculus of Variations”.

2. Preliminaries and plan of the paper

Let us assume that {Mt}t∈[a,b) is a one-parameter family of smooth immersed submanifolds of
Euclidean space Rn+k. Set Mt = Ft(M), where M is a smooth n-dimensional manifold, suppose
that the immersion Ft is the slice, at time t ∈ [a, b), of a smooth map F : M × [a, b) → Rn+k,
and call v := ∂tF the velocity of the flow. Let U ⊂ Rn+k be an arbitrary open set. The idea
of Brakke is that the information that v is the velocity of the flow is encoded in the equation
which characterizes the rate of change of integrals of the formˆ

Mt

ϕ(x, t) dHn(x) ,

where Hn denotes n-dimensional Hausdorff measure, and ϕ ∈ C1(U × [a, b)) is such that
ϕ(·, t) ∈ C1

c (U). A calculation gives that
d

dt

ˆ
Mt

ϕ(x, t) dHn(x) =
ˆ

Mt

{
(∇ϕ(x, t) − ϕ(x, t) H(x, Mt)) · v(x, t) + ∂ϕ

∂t
(x, t)

}
dHn(x) ,

(2.1)
where H(x, Mt) is the mean curvature vector of Mt at x ∈ Mt. In particular, for every
a ≤ t1 < t2 < b it holdsˆ

Mt2

ϕ(x, t2) dHn −
ˆ

Mt1

ϕ(x, t1) dHn

=
ˆ t2

t1

ˆ
Mt

{
(∇ϕ − ϕ H(·, Mt)) · v + ∂ϕ

∂t

}
dHndt ,

(2.2)

and if Mt is a smooth MCF then (2.2) is satisfied for arbitrary U and ϕ as above with v
replaced by H(·, Mt) in the integral on the right-hand side.

Now, the interesting fact is that the identity in (2.2) can actually be translated so that it
makes sense in the class of n-dimensional integral varifolds with generalized mean curvature
vector H ∈ L2. Let us recall that a varifold of dimension n in an open set U ⊂ Rn+k is a
measure V on the Grassmannian bundle Gn(U) := U × G(n + k, n), where G(n + k, n) is
the Grassmannian of (unoriented) n-dimensional linear subspaces of Rn+k. The varifold V is
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integral if the following holds: there are a countably n-dimensional rectifiable set M ⊂ Rn+k

with locally finite Hn-measure in U and a multiplicity function θ ∈ L1
loc(Hn

M ) with values
in Z>0 such that

V (φ) =
ˆ

M
φ(x, Tan(M, x)) θ(x) dHn(x) for every φ ∈ Cc(Gn(U)) . (2.3)

In formula (2.3), Tan(M, x) denotes the approximate tangent plane to M at x, which exists
for Hn-a.e. x ∈ M due to the fact that M is rectifiable. We will write V = var(M, θ) if V is a
varifold as in (2.3). The first variation of V = var(M, θ) along a vector field X ∈ C1

c (U ;Rn+k)
is given by

δV (X) =
ˆ

divM X d∥V ∥ . (2.4)

In (2.4), ∥V ∥ is the mass measure ∥V ∥ = θ Hn
M and divM X is the tangential divergence of

X along M , defined for Hn-a.e. x ∈ M by
divM X(x) := trace(DXt ◦ Tan(M, x)) ,

where DX is the Jacobian matrix of X, DXt is its transpose, and Tan(M, x) denotes, by a
slight abuse of notation, the projection operator Rn+k → Tan(M, x).

When the first variation δV extends to a linear and continuous operator on Cc(U ;Rn+k),
one says that V has locally bounded first variation. By Riesz’s representation theorem, δV is
then a Rn+k-valued measure on U ; if δV is also absolutely continuous with respect to ∥V ∥,
then we define the generalized mean curvature vector of V to be the Radon-Nikodym derivative

H(·, V ) = −d(δV )
d∥V ∥

. (2.5)

We can now give the definition of Brakke flow.

Definition 2.1. Let I = [a, b) be an interval, and let U ⊂ Rn+k be an open set. An n-
dimensional integral Brakke flow in U is a one-parameter family of varifolds V = {Vt}t∈I in U
such that all of the following hold:

(a) For a.e. t ∈ I, Vt is integral, Vt = var(Mt, θt);
(b) For a.e. t ∈ I, δVt is locally bounded and absolutely continuous with respect to ∥Vt∥;
(c) The generalized mean curvature H(·, Vt) (which exists for a.e. t by (b)) satisfies

H(·, Vt) ∈ L2
loc(∥Vt∥ × dt;Rn+k), and for every compact set K ⊂ U and for every t < b

it holds sups∈[a,t] ∥Vs∥(K) < ∞;
(d) For all a ≤ t1 < t2 < b and ϕ ∈ C1

c (U × [a, b) ;R+), it holds
∥Vt2∥(ϕ(·, t2)) − ∥Vt1∥(ϕ(·, t1))

≤
ˆ t2

t1

ˆ
U

{
(∇ϕ(x, t) − ϕ(x, t) H(x, Vt)) · H(x, Vt) + ∂ϕ

∂t
(x, t)

}
d∥Vt∥(x) dt .

(2.6)

The most striking difference between (2.2) and (2.6) is that the latter is an inequality, rather
than an identity. In fact, it turns out that the inequality (2.6) is equivalent to the identity
(2.2), and thus to the classical PDE defining MCF, when Vt are the unit multiplicity varifolds
Vt = var(Mt, 1) associated with smoothly immersed n-dimensional submanifolds Mt. In the
non-smooth setting, working only with the inequality is desirable for two reasons. One is
purely technical: as the space-time integral of ϕ |H|2 (which appears with the minus sign
on the right-hand side of (2.2) and (2.6)) is only lower semicontinuous with respect to weak
convergence, weak limits of smooth MCF are expected to only satisfy the inequality. The
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other motivation is more “physical”, and it has to do with the fact that in a weak setting one
may conceive systems evolving by mean curvature which exhibit singular regions disappearing
at a much faster rate than the time-scale of the equation: at the level of the model, this
disappearance will be regarded as instantaneous.

On one hand, it is remarkable that the inequality (2.6) alone is sufficient to prove partial
regularity results for Brakke flows: a description of such results will be the content of Section
3. On the other hand, working only with the inequality has a fundamental drawback. Indeed,
(2.6) implies, among other things, that the difference in mass of Vt between two instants of
time t1 < t2 may be strictly less than the amount dissipated in terms of the squared L2-norm
of the mean curvature over the interval [t1, t2], and there is no control, a priori, on the extent
to which instantaneous reduction of mass can occur. In particular, if V = {Vt}t≥0 is an
integral Brakke flow then any flow Ṽ = {Ṽt}t≥0 defined by

Ṽt =
{

Vt for 0 ≤ t < τ

0 for t ≥ τ ,

where τ > 0 is arbitrary, is also an integral Brakke flow. In other words, Brakke’s inequality
alone permits sudden vanishing of the solution, and is, therefore, a trigger for redundant
non-uniqueness. Therefore, in practice it is desirable to work with classes of Brakke flows for
which some sort of regularity in time can be guaranteed in order to avoid the occurrence of
such phenomena. The approximation scheme proposed by Brakke in his general existence
theorem of solutions to the Cauchy problem in [Bra78] does not rule out the possibility that
the presence of singularities in the initial datum triggers the catastrophic outcome described
above at some point of the evolution. In selected geometric settings, particularly in the
codimension k = 1 case, some progress has been made by proposing either alternative notions
of weak solution or alternative approximation schemes. A notion of viscosity solution to
MCF was proposed independently in [ES91] and [CGG91]: the methods therein produce a
time-parametrized family of closed sets which are the level sets (corresponding to a given
level) of the unique viscosity solution of a parabolic PDE, which is defined also after the
occurrence of singularities. It is possible that the closed set may develop nontrivial interior
afterwards, a phenomenon called fattening, and it is not clear if the sets are a Brakke flow
after singularities appear in general. On the other hand, Evans and Spruck proved in [ES95]
that, given the viscosity solution, for almost all levels the corresponding level sets are a
unit multiplicity Brakke flow. On the side of devising alternative methods for constructing
Brakke flows, it is imperative to mention elliptic regularization [Ilm94], as well as phase field
approximations via the (parabolic) Allen–Cahn equation [Ilm93, Ton03]. While these methods
produce global-in-time existence results of Brakke flows, they all rely on the ansatz that the
MCF is represented as the boundary of a single time-parametrized set, and therefore they
do not allow the handle the framework of multi-phase flows, which, on the other hand, is of
fundamental importance for the applications, for instance in Materials Science, in the context
of describing the dynamics of grain boundaries as in Figure 1. Section 4 will discuss some
recent advances in the existence theory for multi-phase Brakke flows of grain boundaries,
initiated by the work of Kim and Tonegawa; see [KT17]. Finally, in Section 5 we will present
results concerning the global-in-time existence of n-dimensional integral Brakke flows in an
open and strictly convex domain U ⊂ Rn+1 under the additional constraint that the evolving
varifolds have fixed boundary (defined in a suitable topological sense) on ∂U . The asymptotic
analysis of the flow as t → ∞ gives rise to a novel approach to the existence of varifold solutions
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to Plateau’s problem for a large class of boundaries. This approach is purely dynamical, and
it does not rely on classical minimization or min-max procedures. Furthermore, it naturally
leads to introducing a notion of dynamical stability for minimal surfaces, which appears to be
powerful enough to prevent the formation of certain singularity types, and deserves further
investigation.

3. Partial regularity of unit multiplicity Brakke-like flows

A basic technique, common to a plethora of problems in Geometric Analysis, to investigate
whether a solution is locally regular (that is, “smooth” or “as smooth as classical solutions”)
at a given point is commonly referred to as blow-up: it consists in deducing information on
the solution from the analysis of possible limits of sequences of suitable rescalings of the
latter at the given point. In order to conclude the existence of blow-up limits, a suitable
monotonicity formula is typically needed: in the context of MCF, such monotonicity formula
was proved by Huisken in [Hui90] and later extended to Brakke flows by Ilmanen in [Ilm95].
For future reference, we record here its statement, working under the simplifying assumption
that the Brakke flow V = {Vt}t∈[a,b) in Rn+k satisfies the condition that, for all t ∈ [a, b),
spt∥Vt∥ is contained in some bounded domain of Rn+k, say BR for R > 0 sufficiently large.
For x, y ∈ Rn+k and t < s, we define the backwards n-dimensional heat kernel with pole (y, s)
by

ϱ(y,s)(x, t) := 1
(4π(s − t))n/2

exp
(

−|x − y|2

4(s − t)

)
. (3.1)

Theorem 3.1 (Huisken’s monotonicity formula). Let V = {Vt}t∈[a,b) be an n-dimensional
integral Brakke flow in Rn+k such that spt∥Vt∥ ⊂ BR for all t ∈ [a, b). Let y ∈ Rn+k and
s ∈ (a, b]. Then, for every a ≤ t1 < t2 < s it holdsˆ

ϱ(y,s)(x, t2) d∥Vt2∥(x) −
ˆ

ϱ(y,s)(x, t1) d∥Vt1∥(x)

≤ −
ˆ t2

t1

ˆ ∣∣∣H(x, Vt) + S⊥(x − y)
2(s − t)

∣∣∣2 ϱ(y,s)(x, t) dVt(x, S) dt .

(3.2)

In particular, the function t ∈ [a, s) 7→
´

ϱ(y,s)(x, t) d∥Vt∥(x) is non-increasing. The limit

Θ(V , (y, s)) := lim
t→s−

ˆ
ϱ(y,s)(x, t) d∥Vt∥(x) (3.3)

is called the Gaussian density of V at (y, s).

Suppose that (y, s) belongs to the support of the product measure ∥Vt∥ × dt in Rn+k × R,
assume without loss of generality that [a, b) = [−1, 1) and (y, s) = (0, 0), and consider, for
every λ > 0, the parabolic rescalings of V around (0, 0) with factor λ, that is the flows {V λ

τ }τ

defined by
V λ

τ := (ηλ)♯Vλ2τ for τ ∈ [−λ−2, λ−2) ,

where ηλ(x) := λ−1x and (ηλ)♯ denotes the push-forward map on varifolds corresponding to
ηλ, see [Sim83]. Thanks to Theorem 3.1, for every sequence λj → 0 the masses of V

λj
τ are

equi-bounded uniformly in τ ∈ [−L, 0) for every L > 0, and thus the compactness theorem of
Brakke flows (see e.g. [Ton19, Theorem 3.7]) guarantees that a (not relabeled) subsequence of
V λj = {V

λj
τ }τ converges, as j → ∞, to a limit Brakke flow V̂ = {V̂τ }τ defined and selfsimilar
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for τ ∈ (−∞, 0): V̂ is a tangent flow to V at (0, 0). Notice that, a priori, tangent flows may
be non-unique, namely they may depend on the particular sequence λj . By the dimension
reduction argument of White [Whi97], at most points (y, s) ∈ spt(∥Vt∥ × dt) the Brakke flow
V admits a tangent flow which is static and an integer multiple of a plane: that is, V̂τ is
defined for every τ ∈ R and is identically equal to var(π, Q), where Q ∈ Z>0 and π is an
n-dimensional linear subspace of Rn+k. The word “most” here can be intended in terms of
parabolic Hausdorff dimension, namely Hausdorff dimension in the metric space (Rn+k ×R, d),
where

d((x1, t1), (x2, t2)) := max{|x1 − x2|,
√

|t1 − t2|} . (3.4)

In fact, the set of points (y, s) ∈ spt(∥Vt∥ × dt) which do not admit static tangent planes
has parabolic Hausdorff dimension at most n + 1 (informally, the flow itself has parabolic
dimension n + 2, as time is 2-dimensional with respect to d). Let us call regular a point
(y, s) ∈ spt(∥Vt∥ × dt) which has a neighborhood in space-time where V is a smooth MCF
(or a constant integer multiple thereof). If (y, s) is a regular point, then necessarily V has,
at (y, s), a unique tangent flow which is a static plane, possibly with constant multiplicity.
It is then natural to ask if the converse is true: namely, if a point for which a blow-up is a
static plane is necessarily regular. It turns out that this implication holds true if, and only
if, the multiplicity of the blow-up is Q = 1. Tangent planes with multiplicity Q ≥ 2 may
arise at singular points even when the Brakke flow is time-independent, namely Vt ≡ V0 for a
stationary integral varifold V0. In codimension k = 2, classical examples of this phenomenon
(commonly referred to as branching) are given by (the unit multiplicity varifolds associated
with) holomorphic varieties such as M0 = {(z, w) ∈ C2 : w2 = z3}, which are even locally area
minimizing in the sense of integral currents (once equipped with a suitable orientation); in
codimension k = 1, branching cannot occur in the setting of area minimizing integral currents,
but there are examples in the context of currents minimizing the area in their Zp-homology
class when p is an even integer, which induce stable stationary varifolds; see, for instance,
[DHMS20, Example 1.6]. If the multiplicity of the tangent plane is Q = 1, regularity for
stationary varifolds is a corollary of the celebrated ε-regularity theorem by Allard [All72].
In the context of Brakke flows, there is an analogue of Allard’s theorem, known as Brakke’s
local regularity theorem, Theorem 3.2 below. The theorem holds, in fact, for a larger class of
“Brakke-like” flows, which solve a PDE of the form

velocity = mean curvature + forcing term .

More precisely, one can consider flows V = {Vt}t∈[a,b) as in Definition 2.1 with condition (d)
replaced by the following:

(d)’ For all a ≤ t1 < t2 < b and ϕ ∈ C1
c (U × [a, b);R+), it holds

∥Vt2∥(ϕ(·, t2)) − ∥Vt1∥(ϕ(·, t1))

≤
ˆ t2

t1

ˆ
U

{
(∇ϕ(x, t) − ϕ(x, t) H(x, Vt)) ·

(
H(x, Vt) + S⊥u(x, t)

)
+ ∂ϕ

∂t
(x, t)

}
dVt(x, S) dt ,

(3.5)

where u : U × [a, b) → Rn+k is a function in a Lebesgue class Lp,q
x,t , namely such that

∥u∥Lp,q :=
(ˆ b

a

(ˆ
U

|u(x, t)|p d∥Vt∥(x)
)q/p

dt

)1/q

< ∞
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for 2 ≤ p < ∞ and 2 < q < ∞ satisfying

ζ := 1 − n

p
− 2

q
> 0 , (3.6)

or with the analogous condition on the natural norm in case p or q are infinite.
The need to treat Brakke flows with forcing term arises naturally when one wants to

consider MCF and the corresponding notion of Brakke flow in a general (n + k)-dimensional
Riemannian manifold N . By Nash’s isometric embedding theorem, we may always consider
N to be a submanifold in a domain U ⊂ Rd for some sufficiently large d. A Brakke flow in
N can be then defined by asking spt∥Vt∥ ⊂ N for all t, and by requiring the validity of (3.5)
with u(x, t) = −

∑n
i=1 A(τi, τi), where {τ1, . . . , τn} is an orthonormal basis of Tan(Mt, x) and

A is the second fundamental form of the immersion N ↪→ Rd; see also [Ton14, Section 7].

Theorem 3.2 (Brakke’s local regularity theorem). For every ν ∈ (0, 1) there exists ε(n, k, p, q, ν) ∈
(0, 1) with the following property. Suppose V = {Vt}t∈[−1,0) is a flow as in Definition 2.1 with
I = [−1, 0), U = Bn

2 (0) × Rk ⊂ Rn × Rk ≃ Rn+k, and with (d) replaced by (d)′. Assume
also that V is unit multiplicity, namely that Vt = var(Mt, 1) for a.e. t ∈ I. Denoting
π0 := Rn × {0} and Cr(0, π0) the cylinder Bn

r (0) × Rk, suppose the following:
(H1) it holds

µ2 :=
ˆ 0

−1

ˆ
C2(0,π0)

dist2(x, π0) d∥Vt∥(x) dt < ε2 , ∥u∥Lp,q < ε ;

(H2) ∥V−4/5∥(C1(0, π0)) ≤ (2 − ν)ωn, where ωn = Ln(B1);
(H3) spt(∥Vt∥ × dt) ∩ (Cν(0, π0) × {0}) ̸= ∅.

Then, for all t ∈ [−1/4, 0), spt∥Vt∥ ∩ C1/2(0, π0) coincides with the graph of a C1,ζ function
f = f(z, t) defined on Bn

1/2(0) × [−1/4, 0) with ∥f∥C1,ζ ≲ µ.

Remark 3.3. If u belongs to some Hölder class Cℓ,α, then one obtains Cℓ+2,α estimates on f
assuming smallness of the norm ∥u∥Cℓ,α in (H1). If u ≡ 0 then f is smooth with all derivatives
bounded in terms of µ, and it solves MCF classically.

A statement of Theorem 3.2 is contained in Brakke’s work [Bra78] for the case u ≡ 0. Since
Huisken’s monotonicity formula was not available at the time, Brakke’s proof relies on a chain
of clever graphical approximations of the flow, and it may be hard to follow. A revisited proof
following the classical De Giorgi-type blow-up method also employed by Allard in [All72] in
the setting of stationary varifolds, and with a non-zero forcing u, was given by Kasai and
Tonegawa in [KT14]. Nonetheless, under the same assumptions of Theorem 3.2, Kasai and
Tonegawa obtained graphicality only in a smaller time interval, say for t ∈ [−1/4, −1/8], and
thus with some “waiting time” for regularity towards the end of the interval where the flow is
defined. The regularity up to the end-time was proved by Tonegawa and the author in [ST22].
An alternative proof up to C1,ζ regularity in the case of forcing term u ∈ L∞ was given by De
Philippis, Gasparetto, and Schulze in [DGS23], using the viscosity techniques introduced by
Savin in the context of elliptic PDE. Notice that the hypothesis (H3) is needed to guarantee
that the flow does not vanish up until the end-time.

The proof of the end-time regularity allowed Tonegawa and the author to prove, in [ST22],
the following theorem, which extends the celebrated local regularity theorem by White in
[Whi05] to arbitrary Brakke flows, and not only to those which arise as limits of smooth mean
curvature flows.
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Theorem 3.4 (White’s local regularity theorem). There exists ε = ε(n, k) > 0 with the
following property. If V = {Vt}t is a unit multiplicity integral Brakke flow of dimension n in
an open domain U of Euclidean space Rn+k or a Riemannian manifold of dimension (n + k),
if (y, s) ∈ spt(∥Vt∥ × dt), and if Θ(V , (y, s)) ≤ 1 + ε, then there exists r > 0 such that V is a
smooth mean curvatur flow in Br(y) × (s − r2, s).

The following partial regularity theorem of unit multiplicity Brakke flows is a consequence
of Brakke’s local regularity theorem; see [KT14].

Theorem 3.5 (Partial regularity). If V = {Vt}t∈I is an n-dimensional Brakke-like flow in
an open subset U ⊂ Rn+k with forcing u ∈ Lp,q

x,t (with p, q satisfying (3.6)) then for a.e. t ∈ I
there exists a (possibly empty) closed set Gt ⊂ spt∥Vt∥ with Hn(Gt) = 0 such the point (x, t)
is regular for V for every x ∈ spt∥Vt∥ \ Gt.

4. Existence of canonical multi-phase Brakke flows

In this section, we present some recent results on the global-in-time existence of multi-
phase flows of grain boundaries. Compared to the previous sections, we immediately set the
codimension to be k = 1. The initial data we can consider are essentially arbitrary n-rectifiable
sets in Rn+1. More precisely, we will work under the following assumption.

Assumption 4.1. We assume that:
(A1) M0 ⊂ Rn+1 is a relatively closed, countably n-rectifiable set, and Hn(M0 ∩ BR)

grows at most exponentially fast as R → ∞: more precisely, there exists a function
Ω ∈ C2(Rn+1) and a constant c ≥ 0 with

0 < Ω(x) ≤ 1 , |∇Ω(x)| ≤ c Ω(x) , ∥∇2Ω(x)∥ ≤ c Ω(x) for every x ∈ Rn+1

such that

Hn
Ω (M0) :=

ˆ
M0

Ω(x) dHn(x) < ∞ ;

(A2) Rn+1 \ M0 =
⋃N

i=1 Ei,0, where Ei,0 are non-empty, open and mutually disjoint subsets
of Rn+1, and N ≥ 2.

The following existence theorem is contained in the works of Kim and Tonegawa [KT17]
and Tonegawa and the author [ST23].

Theorem 4.2 (Existence of canonical multi-phase Brakke flows). Under Assumption 4.1, there
exist an n-dimensional integral Brakke flow V = {Vt}t≥0 in Rn+1 as well as flows {Ei(t)}t≥0
for i ∈ {1, . . . , N} of open sets with the following properties. Let σ denote the product measure
σ = ∥Vt∥ × dt in Rn+1 × R, and Mt := Rn+1 \

⋃N
i=1 Ei(t). Then:

(i) initial condition: V0 = var(M0, 1), and Ei(0) = Ei,0 for every i;
(ii) continuity of mass at the initial time: if Hn(

⋃
i(∂Ei,0 \ ∂∗Ei,0)) = 0, where ∂∗

denotes reduced boundary, then limt→0+ ∥Vt∥ = ∥V0∥ = Hn
M0;

(iii) mass and total mean curvature bounds: ∥Vt∥(Ω) ≤ Hn
Ω (M0) exp(c2t/2), and

ˆ t

0

ˆ
Rn+1

|H(x, Vs)|2 Ω(x) d∥Vs∥(x) ds < ∞ for every t > 0 ;
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(iv) dissipation inequality: if Hn(M0) < ∞, and thus the choice Ω ≡ 1 is possible in
Assumption 4.1, then

∥Vt∥(Rn+1) ≤ Hn(M0) −
ˆ t

0

ˆ
Rn+1

|H(x, Vs)|2 d∥Vs∥(x) ds for every t > 0 ;

(v) grain boundaries: for every t > 0, E1(t), . . . , EN (t) are pairwise disjoint; moreover,

Mt =
⋃
i

∂Ei(t) = {x ∈ Rn+1 : (x, t) ∈ spt(σ)} ;

(vi) support of the flow: for every t > 0, spt∥Vt∥ ⊂ Mt and Hn(Mt ∩ K) < ∞ for every
K ⊂ Rn+1 compact; moreover, for a.e. t > 0 spt∥Vt∥ is countably n-rectifiable and
Hn−1+δ(Mt \ spt∥Vt∥) = 0 for every δ > 0, so that
Vt = var(Mt, θt) with θt(x) = Θn(∥Vt∥, x) at ∥Vt∥-a.e. x for a.e. t > 0

where Θn(∥Vt∥, x) := limr→0+(ωnrn)−1 ∥Vt∥(Br(x)) is the n-dimenional density of the
measure ∥Vt∥ at x;

(vii) generalized BV-flow property: for every i ∈ {1, . . . , N}, for every 0 ≤ t1 < t2 < ∞,
and for every ϕ ∈ C1

c (Rn+1 × [0, ∞)) it holdsˆ
Ei(t2)

ϕ(x, t2) dx −
ˆ

Ei(t1)
ϕ(x, t1) dx

=
ˆ t2

t1

(ˆ
Ei(t)

∂ϕ

∂t
(x, t) dx +

ˆ
∂∗Ei(t)

ϕ(x, t) H(x, Vt) · νEi(t)(x) dHn(x)
)

dt ,

(4.1)

where νEi(t)(x) is the outer unit normal vector to ∂∗Ei(t) at x;
(viii) two-sidedness at unit density points: if N ≥ 3, then for a.e. t > 0 and Hn-a.e.

x ∈ Mt the condition θt(x) = 1 implies x ∈
⋃

i ∂∗Ei(t);
(ix) two-phase case: if N = 2, then for a.e. t > 0 and Hn-a.e. x ∈ Mt it holds

θt(x) =
{

odd integer for x ∈ ∂∗E1(t) (= ∂∗E2(t)),
even integer for x ∈ Mt \ ∂∗E1(t) .

We remark that the identity (4.1) implies, in particular, that for every ball B ⊂ Rn+1 and for
every i ∈ {1, . . . , N} the map t ∈ (0, ∞) 7→ Ln+1(Ei(t) ∩ B) is 1/2-Hölder continuous, so that
the Brakke flows of Theorem 4.2 cannot experience sudden vanishing of all the mass. Rather,
grains evolve continuously in time, and their reduced boundary is advected precisely by the
generalized mean curvature vector of the underlying varifolds. In fact, for every i the function
χi(x, t) = χEi(t)(x) (where χE denotes characteristic function of E) is BVloc(Rn+1 × [0, ∞)),
with space-time gradient

Dχi(x, t) = (−νEi(t)(x), H(x, Vt) · νEi(t)(x)) dHn
∂∗Ei(t) dt .

In the two-phase case (N = 2), existence of a generalized velocity v ∈ L2 moving the common
boundary was proved by Mugnai-Röger for Brakke flows arising as sharp interface limits
of minimizers of the Allen-Cahn action functional in [MR08]; more recently, Hensel-Laux
have shown that the BV property with velocity in L2 holds for limits of solutions to the
Allen-Cahn equation in [HL21]. In any case, even in the two-phase case, the characterization
∂tχi = (H · νEi)dHn

∂∗Ei
dt was not known in general.

The Brakke flow V = {Vt}t≥0 and the flow of grains {Ei(t)}t≥0 of Theorem 4.2 are obtained
by means of an algorithm, devised by Kim and Tonegawa in [KT17], which produces, starting
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with the initial datum (M0, {Ei,0}N
i=1), a sequence of approximate solutions to MCF. More

precisely, for each sufficiently large j (the index of the sequence), the algorithm produces
a flow {Ej(t)}t∈[0,j], where Ej(t) is an Ln+1-partition of Rn+1 in open sets, namely Ej(t) =
{Ej,1(t), . . . , Ej,N (t)}. Moreover, partitions are piecewise constant in time, namely Ej(t) =
Ek

j = {Ek
j,i}N

i=1 for t in intervals (epochs) ((k − 1) ∆tj , k ∆tj ] of length ∆tj → 0+. The idea is
then that if the partition Ek+1

j is constructed (inductively) from the partition Ek
j appropriately

then, along a suitable subsequence jℓ → ∞, the (varifolds associated to) the boundaries
∂Ejℓ

(t) converge to the desired Brakke flow Vt. The open partition Ek+1
j at a given epoch is

constructed from the open partition Ek
j at the previous epoch by applying two operations,

which we call steps. The first step is a small Lipschitz deformation of partitions with the effect
of regularizing singularities by locally minimizing the area of the boundary of partitions at
a suitably small scale; the second step consists of flowing the boundary of partitions by an
appropriately defined approximate mean curvature vector, obtained by smoothing the surfaces’
first variation via convolution with a localized heat kernel. The only difference between the
scheme used in [KT17] and the one adopted in [ST23] is in the class of admissible Lipschitz
deformations in the first step: while in [KT17] one only requires that the change of volumes of
the grains due to Lipschitz deformation is small (for a certain smallness scale), in [ST23] we
ask that the change of volume is small compared to the reduction in surface measure. This
is crucial in order to estimate that the contribution of the Lipschitz deformation step to the
variation of integrals of test functions on the bulk of each grain along the approximation
vanishes in the limit as jℓ → ∞ and prove (4.1).

We conclude this section by remarking that it is tempting to conjecture that the regulariza-
tion step by Lipschitz deformations embedded in the approximation scheme may have effects
on the regularity properties of the Brakke flows produced in [KT17] and [ST23]. A positive
result in this direction is the following theorem of Kim and Tonegawa [KT20], valid for flows
in dimension n = 1.

Theorem 4.3 (Improved regularity of network flows). Suppose n = 1, and let V = {Vt}t≥0
be the Brakke flow obtained in [KT17, ST23] as in Theorem 4.2. Then, for a.e. t > 0 the
varifold Vt has the following property. For every point x ∈ spt∥Vt∥, there is a neighborhood
Br(x) such that Vt Br(x) is the union of finitely many curves of class W 2,2 (and thus C1,1/2)
which meet at x forming angles of either 0, 60, or 120 degrees.

5. Brakke flows with fixed boundary, applications to Plateau’s problem, and
the notion of dynamical stability of minimal surfaces

A natural question stemming from the theory detailed in Section 4 is whether suitable
modifications of the scheme in [KT17, ST23] may be used to produce existence results of
Brakke-like flows under various types of constraints. In [ST21], Tonegawa and the author
showed that this is indeed possible in the context of mean curvature flow whose boundary is
kept fixed on the boundary of a strictly convex domain.

Theorem 5.1 (Existence of Brakke flows with fixed boundary). Let U ⊂ Rn+1 be a strictly
convex, bounded open set with boundary ∂U of class C2. Assume that:

(A1)’ M0 ⊂ U is a relatively closed, countably n-rectifiable set, and Hn(M0) < ∞;
(A2)’ U \ M0 =

⋃N
i=1 Ei,0, where Ei,0 are non-empty, open, and mutually disjoint subsets of

U , and N ≥ 2;
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Figure 2. Assumption (A3): an admissible initial configuration on the left,
and a not admissible one on the right.

(A3) ∂M0 := clos(M0)\U is not empty, and for each x ∈ ∂M0 there are at least two indexes
i1 ̸= i2 in {1, . . . , N} such that x ∈ clos

(
clos(Eij ,0) \ (U ∪ ∂M0)

)
for j = 1, 2; see

Figure 2.
Then, there are a Brakke flow V = {Vt}t≥0 in U as well as flows {Ei(t)}t≥0 for i ∈ {1, . . . , N}
such that all conclusions of Theorem 4.2 hold upon setting Ω(x) ≡ 1 and replacing Rn+1 with
U when needed, together with the additional condition that

clos(spt∥Vt∥) \ U = ∂M0 for every t ≥ 0 . (5.1)
Moreover, Mt ⊂ conv(M0 ∪ ∂M0) for every t ≥ 0, where conv denotes convex hull.

Theorem 5.1 can be used to produce varifold-type solutions to Plateau’s problem in U (with
respect to the topological spanning condition defined by (5.1)), in a novel, purely dynamical
approach, which does not rely on mass minimization nor on min-max methods.

Theorem 5.2 (Asymptotic limits of Brakke flows with fixed boundary). Let U , M0, and
V = {Vt}t≥0 be as in Theorem 5.1. There exists a sequence {tj}∞

j=1 with limj→∞ tj = ∞ such
that Vtj converge as varifolds to an n-dimensional integral varifold V in U such that V is
stationary in U and clos(spt∥V ∥) \ U = ∂M0. Furthermore, there are mutually disjoint open
subsets Ei ⊂ U such that U \

⋃N
i=1 Ei = spt∥V ∥, and 0 < Hn(U \

⋃
i Ei) ≤ ∥V ∥(U) ≤ Hn(M0).
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Figure 3. Asymptotic limits of Brakke flows with fixed boundary: an illustra-
tion.

It is not known under which conditions one may conclude that the varifold V of Theorem
5.2 is unit multiplicity. When that is the case, the flow may be potentially restarted having V
as an initial datum. If V is a smooth minimal surface, then the regularity theory of Brakke
flows together with the uniqueness theorem of smooth MCF would imply that the only flow
with initial datum V is the constant Vt ≡ V . This is not the case if V is singular. In fact, we
may give the following definition.

Definition 5.3 (Dynamically unstable minimal surfaces). Let V = var(M, 1) be a stationary
varifold in U with grain bounary structure, that is U \ spt∥V ∥ =

⋃N
i=1 Ei for mutually disjoint,

open subsets Ei ⊂ U . We say that V is dynamically unstable if there exists a non-trivial
canonical Brakke flow in U starting with V .
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Figure 4. The growth condition required in (H2): the shaded area is the region
{|xn+1| ≤ G(x′)} (α = 0.51) in the cylinder Cr0(0, π0) with r0 = 0.1.

The question immediately arises asking which singularity types of a minimal surface may
trigger such dynamical instability. In [ST20], Tonegawa and the author proved, roughly
speaking, that branching singularities always do that.

Theorem 5.4 (Dynamical instability of minimal surfaces at flat singular points). Let V =
var(M, 1) be a stationary varifold in U with grain boundary structure as in Definition 5.3,
and assume that there is a point x0 ∈ spt∥V ∥, wlog x0 = 0, such that the following holds:

(H1) one of the tangent cones to V at x0 = 0 is of the form var(π0, Q), for some n-
dimensional plane π0 ∈ G(n + 1, n), wlog π0 = Rn × {0}, and an integer Q ≥ 2;

(H2) there exists a radius r0 ∈ (0, 1) such that, writing x = (x′, xn+1) ∈ Rn+1 = π0 ⊕ π⊥
0 we

have
M ∩ Cr0(0, π0) ∩ {|xn+1| < r0} ⊂ {x = (x′, xn+1) ∈ Rn+1 : |xn+1| ≤ G(x′)} , (5.2)

where G is the positive, radial function G(x′) = g(|x′|) defined by

g(s) = s

logα (1/s) for s > 0, with α > 1
2 , (5.3)

see Figure 4.
Then, there is a canonical Brakke flow V = {Vt}t≥0 with limt→0+ ∥Vt∥ = ∥V0∥ = ∥V ∥ and
∥Vt∥(U) < ∥V ∥(U) for every t > 0. In particular, V is dynamically unstable.

We remark that condition (H2) implies that π0 is the unique tangent cone to V at x0 = 0; in
fact, together (H1) and (H2) ask that the blow-ups (ηr)♯V (again with ηr(x) := r−1 x) varifold-
converge to var(π0, Q), as r → 0+, with rate | log r|−α for α > 1/2. While we cannot prove
that this condition is satisfied at every point of a stationary varifold admitting a flat tangent
cone, there are no examples where it is violated. In fact, a faster rate of convergence of O(rα)
for α ∈ (0, 1) can be proved in a variety of situations, including the case of stationary varifolds
that are C1,α multiple valued minimal graphs (see [SW07]), those induced by mass minimizing
integral currents modulo an even integer p ≥ 4 (see [DHM+23]), and, more generally, those
stationary varifolds whose regular part is stable (in the sense of non-negativity of the spectrum
of the second variation operator) which satisfy (H1) at x0 = 0 but do not have any classical
singularities with density < Q in a neighborhood Br0(x0) (see [MW23]). In all these cases,
Theorem 5.4 concludes dynamical instability of the surface, and leads to speculate that those
stationary varifolds V for which the only canonical Brakke flow starting at V is the constant
flow may be free from flat singularities altogether.
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