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Abstract. In this paper we consider a dynamic model of fracture for viscoelastic materials, in which the

constitutive relation, involving the Cauchy stress and the strain tensors, is given in an implicit nonlinear

form. We prove the existence of a solution to the associated viscoelastic dynamic system on a prescribed time-
dependent cracked domain via a discretisation-in-time argument. Moreover, we show that such a solution

satisfies an energy-dissipation balance in which the energy used to increase the crack does not appear. As a
consequence, in analogy to the linear case this nonlinear model exhibits the so-called viscoelastic paradox.
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1. Introduction

In the derivation of a mathematical model for dynamic crack propagation, the two fundamental facts
that must be taken into account are the laws of elastodynamics and the (dynamic) Griffith criterion. The
first one states that the displacement of the deformation must solve the elastodynamics system away from
the crack, while the second one dictates how the crack grows in time. More precisely, the Griffith criterion
(see [16, 18]), originally formulated in the quasi-static setting, explains that there is a balance between
the mechanical energy dissipated during the evolution and the energy used to increase the crack, which is
supposed to be proportional to the area increment of the crack itself.

The first step to address the study of a model of dynamic fracture is to find the solution to the elasto-
dynamics system when the evolution of the crack is prescribed. From the mathematical point of view, this
leads to the study of the following system in a time-dependent domain:

ü(t)− div(σ(t)) = f(t) in Ω \ Γt, t ∈ [0, T ], (1.1)

with some prescribed boundary and initial conditions. In the above formulation Ω ⊂ Rd is an open bounded
set with Lipschitz boundary which represents the reference configuration of the material. The (d − 1)-
dimensional closed set Γt ⊂ Ω models the crack at time t, u(t) : Ω \ Γt → Rd is the displacement of the
deformation, σ(t) is the Cauchy stress tensor, and f(t) is a forcing term. Once we found the displacement
u which solves (1.1) with a prescribed crack evolution t 7→ Γt, we determine the pairs displacement-crack
which satisfy the Griffith energy-dissipation balance. Finally, we select the “right” crack evolution according
to some maximal dissipation principle.

In the easiest case of a pure elastic material, the system (1.1) is coupled with the following constitutive
law involving the Cauchy stress and the strain tensors:

σ(t) = Ceu(t) in Ω \ Γt, t ∈ [0, T ], (1.2)

where C is the elasticity tensor, which is fourth order positive definite on the space of symmetric matrices
Rd×d

sym , and eu = 1
2 (∇u+∇uT ) is the strain tensor. In this setting the Griffith criterion reads as

1

2
∥u̇(t)∥22 +

1

2
∥eu(t)∥22 +Hd−1(Γt \ Γ0) =

1

2
∥u̇(0)∥22 +

1

2
∥eu(0)∥22 +work of external forces (1.3)

for all t ∈ [0, T ]. We point out that the first two terms in the left-hand side of the above identity correspond
to the mechanical energy (the sum of kinetic and elastic energy), while the term Hd−1(Γt \ Γ0) models the
energy used to increase the crack from Γ0 to Γt.

In the literature, we can find several mathematical results for the model associated to (1.1) and (1.2). As
for the existence of a solution when the evolution t 7→ Γt is prescribed, we refer to [10, 13] for the antiplane
case, that is when u(t) : Ω \Γt → R is a scalar function and eu is replaced by ∇u, and [4, 26] for the general
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case. Regarding the determination of the crack evolution t 7→ Γt, we have only partial results. For example,
we cite [5], where the authors characterize in the antiplane case and for d = 2 the pairs displacement-crack
which satisfy the energy-dissipation balance, and [11, 12] in which for d = 2 the authors studied the coupled
problem under a suitable notion of maximal dissipation.

Viscoelastic materials, which exhibit both viscous and elastic behaviours when undergoing deformations,
are another class widely studied in the literature. One of the simplest mathematical model is the Kelvin-Voigt
one, where the constitutive law between the Cauchy stress and the strain tensors reads as

σ(t) = Ceu(t) + Beu̇(t) in Ω \ Γt, t ∈ [0, T ], (1.4)

where C and B are the elasticity and the viscosity tensors, respectively. For the Kelvin-Voigt model, the
Griffith criterion leads to the following energy-dissipation balance

1

2
∥u̇(t)∥22 +

1

2
∥eu(t)∥22 +Hd−1(Γt \ Γ0) +

∫ t

0

∥eu̇(s)∥22 ds

=
1

2
∥u̇(0)∥22 +

1

2
∥eu(0)∥22 +work of external forces

(1.5)

for all t ∈ [0, T ]. Notice that, with respect to formula (1.3), in (1.5) we need to take into account also the

energy dissipated by the viscous term, which is given by
∫ t

0
∥eu̇(s)∥22 ds.

In [10, 26] we can found existing results for the linear viscoelatic problem (1.1) and (1.4), when the
evolution of the crack is prescribed. Unfortunately, in those papers, it is also shown that the Griffith
energy-dissipation balance (1.5) holds without the term Hd−1(Γt \ Γ0). As a consequence, there is no pair
displacement-crack which satisfies (1.5), unless the crack does not grow in time, i.e., Γt = Γ0 for all t ∈ [0, T ].
This phenomenon, which says that in the linear Kelvin-Voigt model the crack can not propagate, is well-
known in mechanics as the viscoelastic paradox, see for instance [25, Chapter 7]. We point out that, if the
viscosity tensor B is allowed to degenerate in a neighborhood of the moving crack, the viscoelastic paradox
does not occur, as shown in [6]. For other versions of linear constitutive laws in the framework of viscoelatic
materials, we refer for example to [7, 8, 9, 23].

More recently, viscoelastic materials in which the constitutive relation is nonlinear and given in an implicit
form have been also considered. For example, in [3], the authors studied the following elastodynamic system
in a domain without cracks:

ü(t)− div(σ(t)) = f(t) in Ω, t ∈ [0, T ], (1.6)

with the implicit constitutive law

G(σ(t)) = eu(t) + eu̇(t) in Ω, t ∈ [0, T ], (1.7)

where G : Rd×d
sym → Rd×d

sym is a nonlinear monotone operator which satisfies suitable p-growth assumptions. In
particular, the prototypical models studied are

G1(ξ) := |ξ|p−2ξ for p > 1, G2(ξ) =
ξ

(1 + |ξ|a) 1
a

for p = 1, with a > 0. (1.8)

As explained by Buĺıček, Patel, Süli, and Şengül in their paper [3] (see also [21]), linear models may be
inaccurate to describe real phenomena, while implicit constitutive theories allow for a more general structure
in modelling than explicit ones. Moreover, as shown by Rajagopal in [22], the nonlinear relationship between
the stress and the strain can be obtained after linearising the strain, and so it make sense to consider implicit
constitutive relations in the contest of small deformations. Under suitable assumptions on the initial data
and on the nonlinear term G, Buĺıček, Patel, Süli, and Şengül in [3] proved existence and uniqueness of
solutions to the problem (1.6) and (1.7) via the Galerkin approximation.

The aim of our paper is to study the model of viscoelastic materials with implicit constitutive law of [3], in
the framework of dynamic crack propagation. More precisely, we consider the elastodynamics system (1.1)
with the constitutive relation

G(σ(t)) = eu(t) + eu̇(t) in Ω \ Γt, t ∈ [0, T ], (1.9)

where G : Rd×d
sym → Rd×d

sym is a nonlinear monotone operator which satisfies suitable p-growth assumptions
(more precisely (G1)–(G3) in Section 2). Since the linear growth p = 1 is hard to handle even in the case
with no cracks, we restrict ourselves to the range p ∈ (1, 2∗), where 2∗ := 2d

d−2 is the Sobolev critical exponent.

The condition p < 2∗, which also appears in [3], is needed to ensure that the displacement u(t) is an element
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of L2(Ω \Γt;Rd). Indeed, from (1.9), we easily deduce that u(t) lives in the Sobolev space W 1,p′
(Ω \Γt;Rd),

being p′ = p
p−1 the Hölder conjugate exponent of p, which is compactly embedded in L2(Ω\Γt;Rd) whenever

p < 2∗. This simplifies the mathematical formulation of the problem. An interesting question, which is out
of the scope of this paper, is whether this condition can be removed.

Our first result is Theorem 2.8, where we prove the existence of a solution to the problem (1.1) and (1.9)
when the crack evolution t 7→ Γt is prescribed, under suitable conditions on the data and on the nonlinear
term G. The proof of Theorem 2.8 follows the main ideas of [3], adapting them to our setting. First, since
the Galerkin approximation does not fit well with the framework of time-dependent domains, we use the
discretisation-in-time scheme exploited in [10]. Moreover, since we want to consider nonlinear operators
which are not strictly monotone, we regularise G in order to invert the relation (1.9). This allows us to
write the Cauchy tensor in terms of the displacement and to switch from the formulation (1.1) and (1.9)
to a simpler system. More precisely, we fix n ∈ N and we search a discrete-in-time approximate solution
to (1.1) and (1.9) with G replaced by its regularisation. Then, we perform a discrete energy estimate (see
Lemma 3.3), which allows us to pass to the limit as n → ∞ to obtain a pair (u, σ) which solves (1.1). We
prove that the displacement u is more regular in time, and by using a standard technique in the monotone
operator theory, we show that (u, σ) satisfies also the implicit constitutive relation (1.9). We conclude this
part of the paper with Theorem 3.10, where we prove that there is at most one pair (u, σ) with the same
regularity of the solution of Theorem 2.8 and that solves (1.1) and (1.9) for a prescribed crack evolution
t 7→ Γt.

In the second part of the paper, we aim to study the validity of the Griffith energy-dissipation balance for
the implicit nonlinear model (1.1) and (1.9). At first, in Theorem 4.1 we prove that the mechanical energy
of every regular solution to problem (1.1) and (1.9) (in particular, of the one found in Theorem 2.8) satisfies
the implicit energy balance (4.1). Then, we consider the strictly monotone operator G(ξ) = |ξ|p−2ξ, so that
our problem reduces to the nonlinear Kelvin-Voigt system

ü(t)− div(|eu(t) + eu̇(t)|p
′−2(eu(t) + eu̇(t))) = f(t) in Ω \ Γt, t ∈ [0, T ]. (1.10)

In this setting, the Griffith energy-dissipation balance takes the form

1

2
∥u̇(t)∥22 +

1

p′
∥eu(t)∥p

′

p′ +Hd−1(Γt \ Γ0)

+

∫ t

0

∫
Ω

Ä
|eu(s, x) + eu̇(s, x)|p

′−2(eu(s, x) + eu̇(s, x))− |eu(s, x)|p
′−2eu(s, x)

ä
· eu̇(s, x) dxds

=
1

2
∥u̇(0)∥22 +

1

p′
∥eu(0)∥p

′

p′ +work of external forces

(1.11)

for every t ∈ [0, T ]. In particular, the energy dissipated by the viscous term is given by∫ t

0

∫
Ω

Ä
|eu(s, x) + eu̇(s, x)|p

′−2(eu(s, x) + eu̇(s, x))− |eu(s, x)|p
′−2eu(s, x)

ä
· eu̇(s, x) dxds ≥ 0,

which reduces to the corresponding term in (1.5) for p = 2 (notice that this term is non negative due to

the monotonicity of G−1(η) := |η|p′−2η). For this particular choice of G, in Corollary 4.3 we derive that
the energy dissipation balance proved in Theorem 4.1 can be rewritten just in terms of the displacement u
as (4.7). Therefore, the pair displacement-crack given by Theorem 2.8 satisfies (1.11) if and only if Γt = Γ0 for
every t ∈ [0, T ], i.e., when the crack does not grow in time. This shows that also the nonlinear Kelvin-Voigt
model of dynamic fracture exhibits the viscoelastic paradox, as it happens in [10, 26] for the corresponding
linear model.

We conclude the introduction by observing that the corresponding phase-field model of dynamic crack
propagation has been analyzed by [20] (see also [21]). This is the one in which, roughly speaking, for a
fixed ϵ > 0 the crack set is replaced by a function vϵ which is 0 in a ϵ-neighborhood of the crack and 1
far from it. More precisely, in [20] the author proved that there exists a pair (uϵ, vϵ) which satisfies the
elastodynamics system with the implicit constitutive law and the Griffith energy-dissipation balance for
both the nonlinearities in (1.8). Therefore, it could be interesting to understand in a future paper if there
is a connection between these two models; in particular, if the viscoelastic paradox can also occur in the
phase-field setting.
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The rest of the paper goes as follows: in Section 2 we introduce the mathematical framework of our model
of dynamic fracture for viscoelastic material, and we fix the main assumptions on the reference set, the crack
evolution, and the nonlinearity G in the constitutive law. Moreover, in Definition 2.3 we give the notion of
(weak) solution to problem (1.1) and (1.9), and we state our main existence result, which is Theorem 2.8. In
Section 3 we prove Theorem 2.8 by performing a discretisation-in-time scheme together with a regularisation
of the nonlinearity G. At first, we find an approximate solution in each node of the discretisation of the
regularised model. Then, in Lemma 3.3 we prove a discrete energy estimate, which allows us to pass to the
limit when the parameter of the discretisation and regularisation goes to 0. Finally, we show that under
suitable regularity assumptions the solution is unique. We conclude the paper with Section 4, where we
prove that every regular solution to (1.1) and (1.9) satisfies the energy-dissipation identity of Theorem 4.1.
Afterwards, we consider the nonlinear Kelvin-Voigt system (1.10), and we use the energy-dissipation identity
to show that this model exhibits the viscoelastic paradox.

2. Notation and formulation of the model

2.1. Notation. The space ofm×dmatrices with real entries is denoted by Rm×d; in casem = d, the subspace
of symmetric matrices is denoted by Rd×d

sym. For any A,B ∈ Rd×d we denote with A ·B the Frobenius scalar

product, namely A · B := Tr(ATB). Given a function u : Rd → Rm, we denote its Jacobian matrix by ∇u,
whose components are (∇u)ij := ∂jui for i ∈ {1, . . . ,m} and j ∈ {1, . . . , d}; when u : Rd → Rd, we use eu to
denote the symmetric part of the gradient, namely eu := 1

2 (∇u+∇uT ). Given a tensor field A : Rd → Rm×d,

by divA we mean its divergence with respect to rows, namely (divA)i :=
∑d

j=1 ∂jAij for i ∈ {1, . . . ,m}.
We denote the d-dimensional Lebesgue measure by Ld and the (d− 1)-dimensional Hausdorff measure by

Hd−1; given a bounded open set Ω with Lipschitz boundary, by ν we mean the outer unit normal vector
to ∂Ω, which is defined Hd−1-a.e. on the boundary. The Lebesgue and Sobolev spaces on Ω are defined as
usual; the boundary values of a Sobolev function are always intended in the sense of traces.

The norm of a generic Banach space X is denoted by ∥ · ∥X ; when X is a Hilbert space, we use (·, ·)X
to denote its scalar product. We denote by X ′ the dual of X and by ⟨·, ·⟩X′ the duality product between
X ′ and X. Given two Banach spaces X1 and X2, the space of linear and continuous maps from X1 to X2

is denoted by L (X1;X2); given A ∈ L (X1;X2) and u ∈ X1, we write Au ∈ X2 to denote the image of u
under A.

Given an open interval (a, b) ⊂ R and q ∈ [1,∞], we denote by Lq(a, b;X) the space of Lq functions from
(a, b) to X; we use W k,q(a, b;X) to denote the Sobolev space of functions from (a, b) to X with derivatives
up to order k in Lq(a, b;X). Given u ∈W 1,q(a, b;X), we denote by u̇ ∈ Lq(a, b;X) its derivative in the sense
of distributions. When dealing with an element u ∈W 1,q(a, b;X) we always assume u to be the continuous
representative of its class, and therefore, the pointwise value u(t) of u is well defined for all t ∈ [a, b]. We
use C0

w([a, b];X) to denote the set of weakly continuous functions from [a, b] to X, namely, the collection of
maps u : [a, b] → X such that t 7→ ⟨x′, u(t)⟩X′ is continuous from [a, b] to R, for all x′ ∈ X ′.

2.2. Mathematical framework. Let T > 0 and d ∈ N with d ≥ 2. Let Ω ⊂ Rd be a bounded open set
(which represents the reference configuration of the body) with Lipschitz boundary. Let ∂DΩ be a Borel
subset of ∂Ω, on which we prescribe the Dirichlet condition, ∂NΩ its complement in ∂Ω, and Γ ⊂ Ω the
prescribed crack path. As in [6, 7], we assume the following hypotheses on the geometry of the crack and
the Dirichlet part of the boundary:

(E1) Γ is a closed set with Ld(Γ) = 0 and Hd−1(Γ ∩ ∂Ω) = 0;
(E2) Ω \ Γ is the union of two disjoint bounded open sets Ω1 and Ω2 with Lipschitz boundary;
(E3) ∂DΩ ∩ ∂Ωi contains the graph of a Lipschitz function θi over a non empty open subset of Rd−1 for

all i ∈ {1, 2};
(E4) {Γt}t∈[0,T ] is a family of closed subsets of Γ satisfying Γs ⊂ Γt for all 0 < s ≤ t ≤ T .

We recall that the set Γt represents the prescribed crack at time t ∈ [0, T ] inside Ω.
Thanks to (E1)–(E4) for all q ∈ [1,∞] the space Lq(Ω \ Γt;Rd) coincides with Lq(Ω;Rd) for all t ∈ [0, T ].

In particular, we can extend a function u ∈ Lq(Ω \ Γt;Rd) to a function in Lq(Ω;Rd) by setting u = 0 on
Γt. Moreover, for all q ∈ [1,∞) the trace of u ∈ W 1,q(Ω \ Γ;Rd) is well defined on ∂Ω and there exists a
constant Ctr > 0, depending on Ω, Γ, and q, such that

∥u∥Lq(∂Ω;Rd) ≤ Ctr∥u∥W 1,q(Ω\Γ;Rd) for all u ∈W 1,q(Ω \ Γ;Rd). (2.1)



THE VISCOELASTIC PARADOX IN A NONLINEAR KELVIN-VOIGT TYPE MODEL OF DYNAMIC FRACTURE 5

Hence, we can define the space

W 1,q
D (Ω \ Γ;Rd) := {u ∈W 1,q(Ω \ Γ;Rd) : u = 0 on ∂DΩ}.

Furthermore, by using the second Korn inequality in Ω1 and Ω2 (see, e.g., [19, Theorem 2.4]) and taking the
sum we can find a positive constant CK , depending on Ω, Γ, and q such that

∥∇u∥Lq(Ω;Rd×d) ≤ CK(∥u∥q
Lq(Ω;Rd)

+ ∥eu∥q
Lq(Ω;Rd×d

sym)
)

1
q for all u ∈W 1,q(Ω \ Γ;Rd). (2.2)

Similarly, thanks to the Korn-Poincaré inequality (see, e.g., [19, Theorem 2.7]) we obtain also the existence
of a constant CKP , depending on Ω, Γ, q, and ∂DΩ, such that

∥u∥W 1,q(Ω\Γ;Rd) ≤ CKP ∥eu∥Lq(Ω;Rd×d
sym) for all u ∈W 1,q

D (Ω \ Γ;Rd). (2.3)

Finally, for all q ∈ ( 2d
d+2 ,∞] the embedding W 1,q(Ω \ Γ;R2) ↪→ L2(Ω;R2) is continuous and compact.

We fix p ∈ (1, 2∗), where 2∗ is the Sobolev conjugate of 2, defined as

2∗ :=

®
∞ for d = 2,
2d
d−2 for d > 2.

Notice that p ∈ (1, 2∗) if and only if p′ ∈ ( 2d
d+2 ,∞), where p′ := p

p−1 is the Hölder conjugate exponent of p.

We set H := L2(Ω;Rd) and we define the following spaces

V :=W 1,p′
(Ω \ Γ;Rd) and Vt :=W 1,p′

(Ω \ Γt;Rd) for all t ∈ [0, T ].

We point out that in the definition of V and Vt, we are considering only the distributional gradient of u in
Ω \ Γ and in Ω \ Γt, respectively, and not the one in Ω. Taking into account (2.2), we shall use on the set Vt
(and also on the set V ) the equivalent norm

∥u∥Vt :=
Ä
∥u∥p

′

p′ + ∥eu∥p
′

p′

ä 1
p′

for all u ∈ Vt.

Furthermore, by (2.1), we can consider the sets

V D := {u ∈ V : u = 0 on ∂DΩ}, V D
t := {u ∈ Vt : u = 0 on ∂DΩ} for all t ∈ [0, T ],

which are closed subspaces of V and Vt, respectively.

Remark 2.1. Since p ∈ (1, 2∗), by exploiting (E1)–(E4) we derive that for all t ∈ [0, T ] the space V D
t is a

separable reflexive Banach space with embedding

V D
t ↪→ H continuous, compact, and dense.

In particular, the aforementioned condition on p is used to deduce the compactness of V D
t in H. Therefore,

the embedding H ↪→ (V D
t )′, which is defined by

⟨h, u⟩(V D
t )′ := (h, u)H for h ∈ H and u ∈ V D

t , (2.4)

is continuous, and the same holds true also for Vt, V , and V D.

Let us consider a nonlinear operator G : Rd×d
sym → Rd×d

sym satisfying the following assumptions:

(G1) there exists a convex function ϕ : Rd×d
sym → R of class C1 such that G(ξ) = ∇ϕ(ξ) for all ξ ∈ Rd×d

sym;

(G2) there exist constants b1 > 0 and b2 ≥ 0 such that G(ξ) · ξ ≥ b1|ξ|p − b2 for all ξ ∈ Rd×d
sym;

(G3) there exists a constant b3 > 0 such that |G(ξ)| ≤ b3(1 + |ξ|p−1) for all ξ ∈ Rd×d
sym.

Remark 2.2. The assumption (G1) implies that G is continuous and monotone, i.e.,

(G(ξ1)−G(ξ2)) · (ξ1 − ξ2) ≥ 0 for all ξ1, ξ2 ∈ Rd×d
sym. (2.5)

Moreover, up to add a constant, we always assume that ϕ(0) = 0.

Given

(D1) f ∈ L2(0, T ;H);

(D2) z ∈W 2,p′
(0, T ;V0);

(D3) u0, u1 ∈ V0 such that u0 − z(0) ∈ V D
0 and u1 − ż(0) ∈ V D

0 ;
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we study the following dynamic viscoelastic system with implicit nonlinear constitutive law:®
ü(t)− div(σ(t)) = f(t) in Ω \ Γt, t ∈ [0, T ],

G(σ(t)) = eu(t) + eu̇(t) in Ω \ Γt, t ∈ [0, T ],
(2.6)

equipped with the boundary conditions

u(t) = z(t) on ∂DΩ, t ∈ [0, T ], (2.7)

σ(t)ν = 0 on ∂NΩ ∪ Γt, t ∈ [0, T ], (2.8)

where ν denotes the outward unit normal to ∂Ω, and the initial conditions

u(0) = u0, u̇(0) = u1 in Ω \ Γ0. (2.9)

Notice that in (2.6)–(2.9) the explicit dependence on x is omitted to enlighten notation. As usual, the
Neumann boundary conditions are only formal, and their meaning will be explained in Remark 2.4.

From now on we always assume that p ∈ (1, 2∗) and that (E1)–(E4), (G1)–(G3), and (D1)–(D3) are
satisfied. Let us define the following functional spaces:

V := {φ ∈W 1,p′
(0, T ;V ) ∩W 1,∞(0, T ;H) : φ(t) ∈ Vt for all t ∈ [0, T ]},

D := {φ ∈ C1
c (0, T ;V ) : φ(t) ∈ V D

t for all t ∈ [0, T ]}.
Similarly to [14], we introduce the following notion of weak solution.

Definition 2.3 (Weak solution). A pair (u, σ) ∈ V×Lp(0, T ;Lp(Ω,Rd×d
sym)) is a weak solution to the nonlinear

viscoelastic system (2.6)–(2.8) if

(i) u(t)− z(t) ∈ V D
t for all t ∈ [0, T ];

(ii) the following identity holds

−
∫ T

0

(u̇(t), φ̇(t))H dt+

∫ T

0

(σ(t), eφ(t))p,p′ dt =

∫ T

0

(f(t), φ(t))H dt or all φ ∈ D, (2.10)

where (g, h)p,p′ :=
∫
Ω
g(x) · h(x) dx for all g ∈ Lp(Ω;Rd×d

sym) and h ∈ Lp′
(Ω;Rd×d

sym);
(iii) the constitutive law

G(σ(t)) = eu(t) + eu̇(t) in Ω \ Γt for a.e. t ∈ [0, T ] (2.11)

is satisfied.

Remark 2.4. The Neumann boundary conditions (2.8) are formally used to pass from the strong formu-
lation (2.6)–(2.8) to the weak formulation (2.10). Notice that, if u(t), σ(t), and Γt are sufficiently regular,
then (2.8) can be deduced from (2.10) by using integration by parts in space.

We want to give a meaning to the initial conditions (2.9) for a weak solution (u, σ) to (2.6)–(2.8). To this
aim, we first recall the following result (see, for instance [15, Chapitre XVIII, §5, Lemme 6]).

Lemma 2.5. Let X,Y be reflexive Banach spaces such that X ↪→ Y continuously. Then

L∞(0, T ;X) ∩ C0
w([0, T ];Y ) = C0

w([0, T ];X).

Moreover, we need the following regularity result for the weak solutions to (2.6)–(2.8).

Lemma 2.6. Let (u, σ) ∈ V × Lp(0, T ;Lp(Ω,Rd×d
sym)) be a weak solution to the nonlinear viscoelastic sys-

tem (2.6)–(2.8). Then u ∈ W 2,q(0, T ; (V D
0 )′), where q := min{2, p}. In particular u ∈ C0([0, T ];V ) and

u̇ ∈ C0
w([0, T ];H).

Proof. Let us set q := min{2, p}. We define Λ ∈ Lq(0, T ; (V D
0 )′) in the following way:

⟨Λ(t), v⟩(V D
0 )′ := −(σ(t), ev)p,p′ + (f(t), v)H for all v ∈ V D

0 and for a.e. t ∈ [0, T ].

Let us consider a test function ψ ∈ C1
c (0, T ), then for all v ∈ V D

0 the function φ(t) := ψ(t)v satisfies

φ ∈ C1
c (0, T ;V ), φ(t) ∈ V D

0 ⊂ V D
t for all t ∈ [0, T ]. (2.12)

Thanks to (2.10), since φ ∈ D from (2.12), we can write

−
∫ T

0

(u̇(t), v)H ψ̇(t) dt = −
∫ T

0

(σ(t), ev)p,p′ψ(t) dt+

∫ T

0

(f(t), v)Hψ(t) dt =

∫ T

0

⟨Λ(t), v⟩(V D
0 )′ψ(t) dt,
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which implies by (2.4)〈
−
∫ T

0

u̇(t)ψ̇(t) dt, v
〉
(V D

0 )′
=
〈∫ T

0

Λ(t)ψ(t) dt, v
〉
(V D

0 )′
for all v ∈ V D

0 .

Hence, we get

−
∫ T

0

u̇(t)ψ̇(t) dt =

∫ T

0

Λ(t)ψ(t) dt in (V D
0 )′ for all ψ ∈ C1

c (0, T ). (2.13)

Since u̇ ∈ L∞(0, T ;H) ↪→ L∞(0, T ; (V D
0 )′) then identity (2.13) implies

u ∈W 2,q(0, T ; (V D
0 )′).

Therefore u̇ ∈W 1,q(0, T ; (V D
0 )′) ↪→ C0([0, T ]; (V D

0 )′), and since u̇ ∈ L∞(0, T ;H) by Lemma 2.5 we deduce

that u̇ ∈ C0
w([0, T ];H). Finally, we have W 1,p′

(0, T ;V ) ↪→ C0([0, T ];V ) hence u ∈ C0([0, T ];V ). □

If (u, σ) ∈ V ×Lp(0, T ;Lp(Ω;Rd×d
sym)) is a weak solution to (2.6)–(2.8), then u(t) and u̇(t) are well defined

as functions of V and H, respectively, for all t ∈ [0, T ]. Hence, it makes sense to evaluate them at time t = 0
and we can introduce the following definition.

Definition 2.7 (Initial conditions). We say that a weak solution (u, σ) ∈ V × Lp(0, T ;Lp(Ω;Rd×d
sym)) to the

nonlinear viscoelastic system (2.6)–(2.8) satisfies the initial conditions (2.9) if

u(0) = u0 in V , u̇(t) = u1 in H

The main existence result of this paper is the following theorem.

Theorem 2.8. There exists a weak solution (u, σ) ∈ V ×Lp(0, T ;Lp(Ω;Rd×d
sym)) to the nonlinear viscoelastic

system (2.6)–(2.8) satisfying the initial conditions (2.9). Moreover, u ∈W 2,2(0, T ;H).

The proof of Theorem 2.8 is postponed to the next section. We point out that the displacement u of the
solution found in Theorem 2.8 is more regular in time, more precisely ü ∈ L2(0, T ;H). This regularity is
used at the end of Section 3 to prove a uniqueness result for the nonlinear viscoelastic system (2.6)–(2.9).
Moreover, we exploit such a regularity in Section 4 to show the energy-dissipation balance of Theorem 4.1.
This identity implies the viscoelastic paradox, which is discussed at the end of the paper.

3. Existence of solutions

This section is devoted to the proof of Theorem 2.8. As explained in the introduction, the main idea
is to combine the discretisation-in-time scheme of [10] with the regularisation of the nonlinear operator G
introduced in [3]. Therefore, we rephrase the system (2.6) in a simpler way, and we use Browder-Minty
Theorem to find a sequence of approximate solutions in each node of the discretisation scheme. Then in
Lemma 3.3 we prove a discrete energy estimate and we use a compactness argument to obtain a pair (u, σ)
which solves (2.10) (see Lemma 3.8). Finally, in Lemma 3.9, by performing a standard argument in the
theory of nonlinear monotone operators we show the validity of the constitutive law (2.11).

Let us fix n ∈ N and set

τn :=
T

n
, u0n := u0, V k

n := V D
kτn , zkn := z(kτn), for k ∈ {0, . . . , n},

δu0n := u1, δz0n := ż(0), fkn := −
∫ kτn

(k−1)τn

f(t)dt, for k ∈ {1, . . . , n}.

We define Gn : Rd×d
sym → Rd×d

sym as

Gn(ξ) := G(ξ) +
1

n
|ξ|p−2ξ for all ξ ∈ Rd×d

sym.

Notice that Gn still satisfies (G1)–(G3) with ϕ replaced by

ϕn(ξ) := ϕ(ξ) +
1

np
|ξ|p for all ξ ∈ Rd×d

sym,
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and with b3 replaced by b3+1. Since Gn is strictly monotone, by the standard theory of monotone operators
there exists the inverse operator G−1

n : Rd×d
sym → Rd×d

sym, which is still strictly monotone. Moreover, if we
introduce the Legendre transform ϕ∗n of ϕn, defined as

ϕ∗n(η) := sup
ξ∈Rd×d

sym

{η · ξ − ϕn(ξ)} for all η ∈ Rd×d
sym,

by (G1)–(G3) we have that ϕ∗n : Rd×d
sym → R is still a convex function of class C1 and G−1

n satisfies

G−1
n (η) = ∇ϕ∗n(η) for all η ∈ Rd×d

sym, (3.1)

G−1
n (η) · η ≥ c1|η|p

′
− c2 for all η ∈ Rd×d

sym, (3.2)

|G−1
n (η)| ≤ c3(1 + |η|p

′−1) for all η ∈ Rd×d
sym, (3.3)

for suitable constants c1, c3 > 0 and c2 ≥ 0 independent of n ∈ N. Furthermore, if we define η0 := G(0) =
Gn(0), by the assumption ϕ(0) = 0 (see Remark 2.2) we have

ϕ∗n(η0) = −ϕn(0) = 0.

Therefore, thanks to the convexity of ϕ∗n we derive

ϕ∗n(η) ≥ ϕ∗n(η0) +G−1
n (η0) · (η − η0) = 0 for all η ∈ Rd×d

sym, (3.4)

ϕ∗n(η) ≤ ϕ∗n(η0) +G−1
n (η) · (η − η0) ≤ c4(1 + |η|p

′
) for all η ∈ Rd×d

sym, (3.5)

for a suitable constant c4 > 0 independent of n ∈ N.
For all k ∈ {1, . . . , n} we search for a function ukn ∈ V with ukn − zkn ∈ V k

n satisfying the following identity

(δ2ukn, φ)H + (G−1
n (eukn + eδukn), eφ)p,p′ = (fkn , φ)H for all φ ∈ V k

n , (3.6)

where

δukn :=
ukn − uk−1

n

τn
, δ2ukn :=

δukn − δuk−1
n

τn
for k ∈ {1, . . . , n}. (3.7)

To this aim, we find a function vkn ∈ V k
n which solves

(δ2vkn + δ2zkn, φ)H + (G−1
n (evkn + eδvkn + ezkn + eδzkn), eφ)p,p′ = (fkn , φ)H for all φ ∈ V k

n , (3.8)

where δzkn and δ2zkn are defined similarly to (3.7) starting from zkn. Indeed, the function v
k
n ∈ V k

n solves (3.8)
if and only if ukn := vkn + zkn ∈ V satisfies ukn − zkn = vkn ∈ V k

n and (3.6).
To solve (3.8), we consider the family of nonlinear operators F k

n : V k
n → (V k

n )′ defined by

⟨F k
n (v), φ⟩(V k

n )′ :=
1
τ2
n
(v + vk−2

n − 2vk−1
n + τ2nδ

2zkn − τ2nf
k
n , φ)H

+ (G−1
n ((1 + 1

τn
)ev − 1

τn
vk−1
n + ezkn + eδzkn), eφ)p,p′

for v, φ ∈ V k
n . It is clear that vkn ∈ V k

n solves (3.8) if and only if

F k
n (v

k
n) = 0 in (V k

n )′. (3.9)

To find a solution to (3.9) we need the following result, whose proof can be found in [2, 17].

Theorem 3.1 (Browder-Minty). Let X be a reflexive Banach space and let F : X → X ′ be a monotone,
hemicontinuous, and coercive operator. Then F is surjective. Moreover, if F is strictly monotone, then F
is also injective.

Let us show that F k
n satisfies the hypotheses of Theorem 3.1.

Proposition 3.2. For every n ∈ N and k ∈ {1, . . . , n} the nonlinear operator F k
n : V k

n → (V k
n )′ is strictly

monotone, coercive, and hemicontinuous.

Proof. Let us fix n ∈ N and k ∈ {1, . . . , n}. We start by proving that F k
n is a strictly monotone operator,

i.e.,
⟨F k

n (v)− F k
n (w), v − w⟩(V k

n )′ > 0 for all v, w ∈ V k
n with v ̸= w.

By the definition of F k
n , for all v, w ∈ V k

n with v ̸= w we have

⟨F k
n (v)− F k

n (w), v − w⟩(V k
n )′ =

1

τ2n
∥v − w∥2H + (G−1

n (cnev + hkn)−G−1
n (cnew + hkn), ev − ew)p,p′ , (3.10)
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where

cn := 1 + 1
τn
> 0, hkn := − 1

τn
evk−1

n + ezkn + eδzkn ∈ V k
n .

By using in (3.10) the monotonicity of G−1
n with η1 = cnev + hkn and η2 = cnew + hkn, we can write

⟨F k
n (v)− F k

n (w), v − w⟩(V k
n )′ ≥

1

τ2n
∥v − w∥2H > 0,

which shows the strictly monotonicity of F k
n .

To prove the coerciveness of F k
n , we have to show that

⟨F k
n (v), v⟩(V k

n )′

∥v∥V k
n

→ ∞ as ∥v∥V k
n
→ ∞. (3.11)

Notice that

⟨F k
n (v), v⟩(V k

n )′ =dn∥v∥2H + dn(ℓ
k
n, v)H

+
1

cn
(G−1

n (cnev + hkn), cnev + hkn)p,p′ − 1

cn
(G−1

n (cnev + hkn), h
k
n)p,p′ ,

where

dn :=
1

τ2n
> 0, ℓkn := vk−2

n − 2vk−1
n + τ2nδ

2zkn + τ2nf
k
n ∈ H.

Thanks to (3.2), (3.3), and Young inequality, for all ε > 0 we have

1

cn
(G−1

n (cnev + hkn), cnev + hkn)p,p′ − 1

cn
(G−1

n (cnev + hkn), h
k
n)p,p′

≥ c1
cn

∥cnev + hkn∥
p′

p′ −
c2
cn

Ld(Ω)− 1

cn
∥G−1

n (cnev + hkn)∥p∥hkn∥p′

≥ c1
cn

∥cnev + hkn∥
p′

p′ −
c2
cn

Ld(Ω)− εp

pcn
∥G−1

n (cnev + hkn)∥pp −
1

p′cnεp
′ ∥hkn∥

p′

p′

≥ c1
cn

∥cnev + hkn∥
p′

p′ −
c2
cn

Ld(Ω)− 1

p′cnεp
′ ∥hkn∥

p′

p′ −
εp

pcn
(2p−1cp3∥cnev + hkn∥

p′

p′ + 2p−1cp3Ld(Ω))

=
1

cn

(
c1 −

2p−1cp3ε
p

p

)
∥cnev + hkn∥

p′

p′ −
1

p′cnεp
′ ∥hkn∥

p′

p′ −
1

cn

(
c2 +

2p−1cp3ε
p

p

)
Ld(Ω). (3.12)

In particular, the Korn-Poincaré inequality (2.3) yields

cp
′

n

Cp′

KP

∥v∥p
′

V k
n
≤ ∥cnev∥p

′

p′ ≤ 2p
′−1∥cnev + hkn∥

p′

p′ + 2p
′−1∥hkn∥

p′

p′ .

Hence, from (3.12) we deduce

1

cn
(G−1

n (cnev + hkn), cnev + hkn)p,p′ − 1

cn
(G−1

n (cnev + hkn), h
k
n)p,p′

≥ cp
′−1

n

2p′−1Cp′

KP

(
c1 −

2p−1cp3ε
p

p

)
∥v∥p

′

V k
n
− 1

cn

(
c1 −

2p−1cp3ε
p

p
+

1

p′εp′

)
∥hkn∥

p′

p′

− 1

cn

(
c2 +

2p−1cp3ε
p

p

)
Ld(Ω). (3.13)

By applying again Young inequality we can write

dn∥v∥2H + dn(ℓ
k
n, v)H ≥ dn

2
∥v∥2H − dn

2
∥ℓkn∥2H . (3.14)

If we choose

0 < ε <

Å
c1p

2p−1cp3

ã 1
p

,

thanks to (3.13) and (3.14) we obtain the existence a positive constant K1 such that

⟨F k
n (v), v⟩(V k

n )′ ≥ K1

Ä
∥v∥2H + ∥v∥p

′

V k
n
− ∥hkn∥

p′

p′ − ∥ℓkn∥2H − 1
ä
. (3.15)
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Clearly, we have

∥hkn∥
p′

p′ + ∥ℓkn∥2H + 1

∥v∥V k
n

→ 0 as ∥v∥V k
n
→ ∞. (3.16)

Moreover, we can write

∥v∥2H + ∥v∥p
′

V k
n

∥v∥V k
n

≥ ∥v∥p
′−1

V k
n

→ ∞ as ∥v∥V k
n
→ ∞. (3.17)

Thanks to (3.15)–(3.17) we get (3.11).
To prove the hemicontinuity of F k

n we need to show that for all u, v, w ∈ V k
n there exists t0 = t0(u, v, w)

such that the function [−t0, t0] ∋ t 7→ ⟨F k
n (v + tu), w⟩(V k

n )′ is continuous in t = 0. We fix u, v, w ∈ V k
n and

we notice that

⟨F k
n (v + tu), w⟩(V k

n )′ = dn(v + ℓkn, w)H + dnt(u,w)H + (G−1
n (cn(ev + teu) + hkn), ew)p,p′ .

Moreover, we can write

G−1
n (cn(ev + teu) + hkn) · ew

a.e.−−−→
t→0

G−1
n (cnev + hkn) · ew, (3.18)

and thanks to (3.3) we get

|(G−1
n (cn(ev + teu) + hkn), ew)p,p′ | ≤ 1

p
∥G−1

n (cn(ev + teu) + hkn)∥pp +
1

p′
∥ew∥p

′

p′

≤ 2p−1cp3
p

∥cn(ev + teu) + hkn∥
p′

p′ +
2p−1cp3
p

Ld(Ω) +
1

p′
∥ew∥p

′

p′

≤ K2(∥cnev + hkn∥
p′

p′ + ∥eu∥p
′

p′ + ∥ew∥p
′

p′ + 1), (3.19)

for a positive constant K2. By using (3.18), (3.19), and dominate convergence theorem we obtain

(G−1
n (cn(ev + teu) + hkn), ew)p,p′ −−−→

t→0
(G−1

n (cnev + hkn), ew)p,p′ . (3.20)

Since dnt(u,w)H → 0 as t→ 0, by (3.20) we have

⟨F k
n (v + tu), w⟩(V k

n )′ −−−→
t→0

dn(v + ℓkn, w)H + (G−1
n (cnev + hkn), ew)p,p′ = ⟨F k

n (v), w⟩(V k
n )′ ,

which concludes the proof. □

Thanks to Theorem 3.1 and Proposition 3.2 we obtain that for all n ∈ N and k ∈ {1, . . . , n} the nonlinear
operator F k

n : V k
n → (V k

n )′ is bijective, and hence there exists a unique vkn ∈ V k
n which solves (3.8). As a

consequence, the function ukn = vkn + zkn ∈ V is the unique solution to (3.6).
Let us define

σk
n := G−1

n (eukn + eδukn) for all k ∈ {1, . . . , n}. (3.21)

In the next lemma we show a uniform energy estimate with respect to n for the family {(ukn, σk
n)}nk=1, which

will be used to pass to the limit as n→ ∞ in the discrete equation (3.6).

Lemma 3.3. There exists a positive constant C1, independent of n ∈ N, such that

max
i∈{1,...,n}

∥uin∥V + max
i∈{1,...,n}

∥δuin∥H +

n∑
i=1

τn∥δuin∥
p′

V +

n∑
i=1

τn∥σi
n∥pp ≤ C1. (3.22)

Proof. We take φ = τn(u
k
n − zkn) ∈ V k

n as a test function in (3.6). Therefore, we obtain

τn(G
−1
n (eukn + eδukn), eu

k
n − ezkn)p,p′ = τn(f

k
n , u

k
n − zkn)H − τn(δ

2ukn, u
k
n − zkn)H . (3.23)

We fix i ∈ {1, . . . , n} and by summing in (3.23) for k ∈ {1, . . . , i} we obtain

i∑
k=1

τn(G
−1
n (eukn + eδukn), eu

k
n)p,p′

=

i∑
k=1

τn(G
−1
n (eukn + eδukn), ez

k
n)p,p′ +

i∑
k=1

τn(f
k
n , u

k
n − zkn)H −

i∑
k=1

τn(δ
2ukn, u

k
n − zkn)H . (3.24)
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Now we use φ = τn(δu
k
n − δzkn) ∈ V k

n as a test function in (3.6) and we get

∥δukn∥2H − (δuk−1
n , δukn)H + τn(G

−1
n (eukn + eδukn), eδu

k
n)p,p′

= τn(f
k
n , δu

k
n − δzkn)H + τn(G

−1
n (eukn + eδukn), eδz

k
n)p,p′ + τn(δ

2ukn, δz
k
n)H . (3.25)

By means of the following identity

∥δukn∥2H − (δuk−1
n , δukn)H =

1

2
∥δukn∥2H − 1

2
∥δuk−1

n ∥2H +
τ2n
2
∥δ2ukn∥2H ,

from (3.25) we infer

1

2
∥δukn∥2H − 1

2
∥δuk−1

n ∥2H +
τ2n
2
∥δ2ukn∥2H + τn(G

−1
n (eukn + eδukn), eδu

k
n)p,p′

= τn(f
k
n , δu

k
n − δzkn)H + τn(G

−1
n (eukn + eδukn), eδz

k
n)p,p′ + τn(δ

2ukn, δz
k
n)H ,

and, by summing again for k ∈ {1, . . . , i} we get

1

2
∥δuin∥2H − 1

2
∥u1∥2H +

i∑
k=1

τn(G
−1
n (eukn + eδukn), eδu

k
n)p,p′

≤
i∑

k=1

τn(f
k
n , δu

k
n − δzkn)H +

i∑
k=1

τn(G
−1
n (eukn + eδukn), eδz

k
n)p,p′ +

i∑
k=1

τn(δ
2ukn, δz

k
n)H . (3.26)

By considering together (3.24) and (3.26) we get

1

2
∥δuin∥2H +

i∑
k=1

τn(G
−1
n (eukn + eδukn), eu

k
n + eδukn)p,p′

≤ 1

2
∥u1∥2H +

i∑
k=1

τn(G
−1
n (eukn + eδukn), ez

k
n + eδzkn)p,p′

+

i∑
k=1

τn(f
k
n , u

k
n + δukn − zkn − δzkn)H +

i∑
k=1

τn(δ
2ukn, z

k
n + δzkn)H −

i∑
k=1

τn(δ
2ukn, u

k
n)H .

Thanks to (3.1)–(3.3) and the Korn-Poincaré inequality (2.3) we deduce from the previous estimate

1

2
∥δuin∥2H +

c1
CKPKp′

i∑
k=1

τn∥ukn + δukn∥
p′

V

≤ c2TLd(Ω) +
1

2
∥u1∥2H +

i∑
k=1

τn(G
−1
n (eukn + eδukn), ez

k
n + eδzkn)p,p′

+

i∑
k=1

τn(f
k
n , u

k
n + δukn − zkn − δzkn)H +

i∑
k=1

τn(δ
2ukn, z

k
n + δzkn)H −

i∑
k=1

τn(δ
2ukn, u

k
n)H . (3.27)

Let us now estimate the right-hand side of (3.27) from above. We can write∣∣∣∣∣
i∑

k=1

τn(f
k
n , u

k
n + δukn)H

∣∣∣∣∣ ≤ ∥f∥2L2(0,T ;H) +
1

2

i∑
k=1

τn∥ukn∥2H +
1

2

i∑
k=1

τn∥δukn∥2H , (3.28)∣∣∣∣∣
i∑

k=1

τn(f
k
n , z

k
n + δzkn)H

∣∣∣∣∣ ≤ ∥f∥2L2(0,T ;H) +
T

2
∥z∥2L∞(0,T ;H) +

1

2
∥ż∥2L2(0,T ;H). (3.29)

Moreover∣∣∣∣∣
i∑

k=1

τn(G
−1
n (eukn + eδukn), ez

k
n + eδzkn)p,p′

∣∣∣∣∣
≤ εp

p

i∑
k=1

τn∥G−1
n (eukn + eδukn)∥pp +

1

p′εp′

i∑
k=1

τn∥ezkn + eδzkn∥
p′

p′
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≤ 2p−1cp3ε
p

p

i∑
k=1

τn∥ukn + δukn∥
p′

V +
2p−1cp3Tε

p

p
Ld(Ω) +

2p
′−1T

p′εp′ ∥z∥p
′

L∞(0,T ;V ) +
2p

′−1

p′εp′ ∥ż∥p
′

Lp′ (0,T ;V )
. (3.30)

Notice that the following discrete integration by parts formulas hold

i∑
k=1

τn(δ
2ukn, z

k
n + δzkn)H = (δuin, z

i
n + δzin)H − (δu0n, z

0
n + δz0n)H −

i∑
k=1

τn(δu
k−1
n , δzkn + δ2zkn)H , (3.31)

i∑
k=1

τn(δ
2ukn, u

k
n)H = (δuin, u

i
n)H − (δu0n, u

0
n)H −

i∑
k=1

τn(δu
k−1
n , δukn)H . (3.32)

Since
i∑

k=1

τn∥δuk−1
n ∥2H =

i−1∑
k=0

τn∥δukn∥2H ≤ T∥u1∥2H +

i∑
k=1

τn∥δukn∥2H , (3.33)

thanks to (3.31) we can write for all ε > 0∣∣∣ i∑
k=1

τn(δ
2ukn, z

k
n + δzkn)H

∣∣∣
≤ ε

2
∥δuin∥2H +

1

2ε
∥zin + δzin∥2H + ∥u1∥H∥z(0) + ż(0)∥H +

1

2

i∑
k=1

τn∥δuk−1
n ∥2H +

1

2

i∑
k=1

τn∥δzkn + δ2zkn∥2H

≤ Kε
1 +

ε

2
∥δuin∥2H +

1

2

i∑
k=1

τn∥δukn∥2H , (3.34)

where Kε
1 is a positive constant depending on ε. Moreover, since uin =

∑i
k=1 τnδu

k
n+u

0 for all i ∈ {1, . . . , n},
the discrete Hölder inequality gives us

∥uin∥H ≤
i∑

k=1

τn∥δukn∥H + ∥u0∥H ≤ T
1
2

(
i∑

k=1

τn∥δukn∥2H

) 1
2

+ ∥u0∥H . (3.35)

Hence from (3.32), (3.33), and (3.35) we deduce∣∣∣∣∣
i∑

k=1

τn(δ
2ukn, u

k
n)H

∣∣∣∣∣ ≤ ε

2
∥δuin∥2H +

1

2ε
∥uin∥2H + ∥u1∥H∥u0∥H +

1

2

i∑
k=1

τn∥δuk−1
n ∥2H +

1

2

i∑
k=1

τn∥δukn∥2H

≤ Kε
2 +

ε

2
∥δuin∥2H +

Å
1 +

T

ε

ã i∑
k=1

τn∥δukn∥2H , (3.36)

where Kε
2 is a positive constant depending on ε. Furthermore

1

2

i∑
k=1

τn∥ukn∥2H ≤ T∥u0∥2H + T 2
i∑

k=1

τn∥δuin∥2H . (3.37)

If we consider together (3.27)–(3.37), we get(1
2
− ε
)
∥δuin∥2H +

Ç
c1

Cp′

KP

− 2p−1cp3ε
p

p

å i∑
k=1

τn∥ukn + δukn∥
p′

V ≤ Kε
3

(
1 +

i∑
k=1

τn∥δukn∥2H

)
,

where Kε
3 is a positive constant depending on ε. By choosing

0 < ε < min

®
1

2
,
( c1p

Cp′

KP 2
p−1cp3

) 1
p

´
we get the existence of a positive constant K4 independent of n and i such that

∥δuin∥2H +

i∑
k=1

τn∥ukn + δukn∥
p′

V ≤ K4

(
1 +

i∑
k=1

τn∥δukn∥2H

)
. (3.38)
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By defining ain := ∥δuin∥2H for all i ∈ {1, . . . , n}, from (3.38) we derive

ain ≤ K4

(
1 +

i∑
k=1

τna
k
n

)
for all i ∈ {1, . . . , n},

and taking into account a discrete version of Gronwall lemma (see, e.g., [1, Lemma 3.2.4]) we deduce that
the family {ain}ni=1 is bounded by a positive constant K5 independent of i and n, i.e.,

∥δuin∥2 ≤ K5 for all i ∈ {1, . . . , n} and n ∈ N. (3.39)

By using (3.38) and (3.39) we get the existence of a positive constant K6 independent of n such that

max
i∈{1,...,n}

∥δuin∥2H +

n∑
i=1

τn∥uin + δuin∥
p′

V ≤ K6. (3.40)

In particular, by (3.3) and (3.21) it holds

n∑
i=1

τn∥σi
n∥pp ≤ 2p−1cp3

n∑
i=1

τn∥euin + eδuin∥
p′

p′ + 2p−1cp3TLd(Ω) ≤ 2p−1cp3K6 + 2p−1cp3TLd(Ω). (3.41)

To get the last estimate in (3.22) we set bkn := (1 + τn)
k for k ∈ {0, . . . , n} and we notice that

bkn − bk−1
n

τn
= bk−1

n for all k ∈ {1, . . . , n}. (3.42)

From (3.42) we can write

bknu
k
n − b0u0 =

k∑
j=1

(bjnu
j
n − bj−1

n uj−1
n )

=

k∑
j=1

τn
bjn − bj−1

n

τn
ujn +

k∑
j=1

τnb
j−1
n

ujn − uj−1
n

τn
=

k∑
j=1

τnb
j−1
n (ujn + δujn). (3.43)

Since

1 ≤ (1 + τn)
k ≤ (1 + τn)

n =

ñÅ
1 +

T

n

ã n
T

ôT
≤ eT ,

from (3.43) we deduce the existence of a positive constant K7 such that

∥ukn∥
p′

V ≤ K7

Ñ
1 +

k∑
j=1

τn∥ujn + δujn∥
p′

V

é
≤ K7 (1 +K6) . (3.44)

As a consequence of this, we obtain

k∑
j=1

τn∥δujn∥
p′

V ≤ 2p
′−1

k∑
j=1

τn(∥ujn + δujn∥
p′

V + ∥ujn∥
p′

V ) ≤ 2p
′−1 (K6 + TK7 + TK7K6) . (3.45)

Hence by considering together (3.40), (3.41), (3.44), and (3.45) we get (3.22). □

As a consequence of (3.22) and of the particular form of equation (3.6), we derive also a uniform bound
on the discrete time second derivative of ukn in the space H. This allow us to find in the limit as n → ∞ a
weak solution to (2.6)–(2.8) with displacement u ∈W 2,2(0, T ;H).

Corollary 3.4. There exists a constant C2, independent of n ∈ N, such that

n∑
k=1

τn∥δ2ukn∥2H ≤ C2. (3.46)
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Proof. Let us define vkn := ukn + δukn ∈ V for all k ∈ {1, . . . , n} and n ∈ N. By equation (3.6) we deduce that
vkn solves the following equation

(δvkn, φ)H + (G−1
n (evkn), eφ)p,p′ = (fkn + δukn, φ)H for all φ ∈ V k

n .

We take φ := τn(δv
k
n − δzkn − δ2zkn) ∈ V k

n as a test function in (3.6). We fix i ∈ {1, . . . , n} and by summing
over k = 1, . . . i we get

i∑
k=1

τn∥δvkn∥2H +

i∑
k=1

(G−1
n (evkn), ev

k
n − evk−1

n )p,p′

=

i∑
k=1

τn(f
k
n + δukn, δv

k
n)H −

i∑
k=1

τn(f
k
n + δukn, δz

k
n + δ2zkn)H

+

i∑
k=1

τn(δv
k
n, δz

k
n + δ2zkn)H +

i∑
k=1

τn(G
−1
n (evkn), eδz

k
n + eδ2zkn)p,p′ . (3.47)

Let us now estimate the right-hand side of (3.47) from above. Thanks to (3.22) we can write∣∣∣∣∣
i∑

k=1

τn(f
k
n + δukn, δv

k
n)H

∣∣∣∣∣ ≤ 1

2ε
∥f∥2L2(0,T ;H) +

TC2
1

2ε
+ ε

i∑
k=1

τn∥δvkn∥2H , (3.48)∣∣∣∣∣
i∑

k=1

τn(f
k
n + δukn, δz

k
n + δ2zkn)H

∣∣∣∣∣ ≤ ∥f∥2L2(0,T ;H) + TC2
1 + ∥ż∥2W 1,2(0,T ;H), (3.49)∣∣∣∣∣

i∑
k=1

τn(δv
k
n, δz

k
n + δ2zkn)H

∣∣∣∣∣ ≤ ε

i∑
k=1

τn∥δvkn∥2H +
1

2ε
∥ż∥2W 1,2(0,T ;H). (3.50)

Moreover ∣∣∣∣∣
i∑

k=1

τn(G
−1
n (evkn), eδz

k
n + eδ2zkn)p,p′

∣∣∣∣∣
≤ 1

p

i∑
k=1

τn∥G−1
n (evkn)∥pp +

1

p′

i∑
k=1

τn∥eδzkn + eδ2zkn∥
p′

p′

≤ 2p−1cp3
p

i∑
k=1

τn∥ukn + δukn∥
p′

V +
2p−1cp3T

p
Ld(Ω) +

2p−1

p′
∥ż∥p

′

W 1,p′ (0;T ;V )

≤ 4p−1cp3
p

(TCp
1 + C1) +

2p−1cp3T

p
Ld(Ω) +

2p−1

p′
∥ż∥p

′

W 1,p′ (0;T ;V )
. (3.51)

Finally, by (3.1) and the convexity of ϕ∗n we have

i∑
k=1

(G−1
n (evkn), ev

k
n − evk−1

n )p,p′ ≥
i∑

k=1

Å∫
Ω

ϕ∗n(ev
k
n(x)) dx−

∫
Ω

ϕ∗n(ev
k−1
n (x)) dx

ã
=

∫
Ω

ϕ∗n(ev
i
n(x)) dx−

∫
Ω

ϕ∗n(ev
0
n(x)) dx. (3.52)

By combining (3.47)–(3.52) with the bound (3.5) for ϕ∗n, we deduce the existence of a positive constant Kε,
which depends on ε, but it is independent of n and i, such that

(1− 2ε)

i∑
k=1

τn∥δvkn∥2H +

∫
Ω

ϕ∗n(ev
i
n(x)) dx ≤ Kε for all i ∈ {1, . . . , n}. (3.53)

By choosing ε = 1
2 and using (3.4), from (3.22) and (3.53) we deduce (3.46). □
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We now want to pass to the limit as n → ∞ in the discrete equation (3.6) to obtain a weak solution
(u, σ) to the nonlinear viscoelastic system (2.6)–(2.8), according to Definition 2.3. We start by defining the
following interpolation sequences of {(ukn, σk

n)}nk=1:

un(t) := ukn + (t− kτn)δu
k
n, ũn(t) := δukn + (t− kτn)δ

2ukn, t ∈ [(k − 1)τn, kτn], k ∈ {1, . . . , n},

u+n (t) := ukn, ũ+n (t) := δukn, t ∈ ((k − 1)τn, kτn], k ∈ {1, . . . , n},
u+n (0) := u0n = u0, ũ+n (t) := δu0n = u1,

u−n (t) := uk−1
n , ũ−n (t) := δuk−1

n , t ∈ [(k − 1)τn, kτn), k ∈ {1, . . . , n},
u−n (T ) := unn, ũ−n (T ) := δunn,

σ+
n (t) := σk

n, t ∈ ((k − 1)τn, kτn], k ∈ {1, . . . , n}.

By means of this notation, we can state the following convergence lemma.

Lemma 3.5. There exists a pair (u, σ) ∈ (V ∩W 2,2(0, T ;H))×Lp(0, T ;Lp(Ω;Rd×d
sym)) such that, up to a not

relabeled subsequence

un
W 1,p′ (0,T ;V )−−−−−−−−−⇀

n→∞
u, un

W 1,∞(0,T ;H) ∗−−−−−−−−−⇀
n→∞

u, ũn
Lp′ (0,T ;V )−−−−−−−⇀

n→∞
u̇, ũn

W 1,2(0,T ;H)−−−−−−−−⇀
n→∞

u̇, (3.54)

u±n
L∞(0,T ;V ) ∗−−−−−−−⇀

n→∞
u, ũ±n

Lp′ (0,T ;V )−−−−−−−⇀
n→∞

u̇, ũ±n
L∞(0,T ;H) ∗−−−−−−−⇀

n→∞
u̇, σ+

n

Lp(0,T ;Lp(Ω;Rd×d
sym))

−−−−−−−−−−−−−⇀
n→∞

σ. (3.55)

Moreover

un(t)
V−−−−⇀

n→∞
u(t), ũn(t)

H−−−−⇀
n→∞

u̇(t) for all t ∈ [0, T ], (3.56)

u±n (t)
V−−−−⇀

n→∞
u(t), ũ±n (t)

H−−−−⇀
n→∞

u̇(t) for all t ∈ [0, T ]. (3.57)

Proof. Thanks to Lemma 3.3 and the estimate (3.46), the sequences

{un}n ⊂W 1,p′
(0, T ;V ) ∩W 1,∞(0, T ;H), {ũn}n ⊂ Lp′

(0, T ;V ) ∩W 1,2(0, T ;H),

{σ+
n }n ⊂ Lp(0, T ;Lp(Ω;Rd×d

sym)),

are uniformly bounded with respect to n ∈ N. Indeed, we have

∥un∥p
′

W 1,p′ (0,T ;V )
≤ T max

k∈{0,...,n}
∥ukn∥

p′

V +

n∑
k=1

τn∥δukn∥
p′

V ,

∥un∥W 1,∞(0,T ;H) ≤ max
k∈{0,...,n}

∥ukn∥H + max
k∈{1,...,n}

∥δukn∥H ,

∥ũn∥p
′

Lp′ (0,T ;V )
≤ 2

n∑
k=1

τn∥δukn∥
p′

V + ∥u1∥p
′

V ,

∥ũn∥2W 1,2(0,T ;H) ≤ T max
k∈{0,...,n}

∥δukn∥2H +

n∑
k=1

τn∥δ2ukn∥2H ,

∥σ+
n ∥

p

Lp(0,T ;Lp(Ω;Rd×d
sym))

=

n∑
k=1

τn∥σk
n∥pp.

By Banach-Alaoglu theorem and Lemma 2.5 there exist three functions u ∈W 1,p′
(0, T ;V )∩W 1,∞(0, T ;H),

v ∈ Lp′
(0, T ;V )∩W 1,2(0, T ;H), and σ ∈ Lp(0, T ;Lp(Ω;Rd×d

sym)) such that, up to a not relabeled subsequence

un
W 1,p′ (0,T ;V )−−−−−−−−−⇀

n→∞
u, un

W 1,∞(0,T ;H) ∗−−−−−−−−−⇀
n→∞

u, ũn
Lp′ (0,T ;V )−−−−−−−⇀

n→∞
v, ũn

W 1,2(0,T ;H)−−−−−−−−⇀
n→∞

v, (3.58)

and

σ+
n

Lp(0,T ;Lp(Ω;Rd×d
sym))

−−−−−−−−−−−−−⇀
n→∞

σ.
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Thanks to (3.46) we get

∥u̇n − ũn∥2L2(0,T ;H) ≤ τ2n

n∑
k=1

τn∥δ2ukn∥2H ≤ C2τ
2
n −−−−→

n→∞
0,

from which we deduce that v = u̇.
By (3.22) also the sequences

{u±n }n ⊂ L∞(0, T ;V ), {ũ±n }n ⊂ Lp′
(0, T ;V ) ∩ L∞(0, T ;H), (3.59)

are uniformly bounded. Moreover, by using again (3.22) and (3.46) we have

∥un − u+n ∥L∞(0,T ;H) ≤ τn max
k∈{1,...,n}

∥δukn∥H ≤ C1τn −−−−→
n→∞

0,

∥u+n − u−n ∥L∞(0,T ;H) ≤ τn max
k∈{1,...,n}

∥δukn∥H ≤ C1τn −−−−→
n→∞

0,

∥ũn − ũ+n ∥2L2(0,T ;H) ≤ τ2n

n∑
k=1

τn∥δ2ukn∥2H ≤ C2τ
2
n −−−−→

n→∞
0,

∥ũ+n − ũ−n ∥2L2(0,T ;H) ≤ τ2n

n∑
k=1

τn∥δ2ukn∥2H ≤ C2τ
2
n −−−−→

n→∞
0.

We combine (3.58) and (3.59) with the previous convergences to derive

u±n
L∞(0,T ;V ) ∗−−−−−−−⇀

n→∞
u, ũ±n

L∞(0,T ;H) ∗−−−−−−−⇀
n→∞

u̇, ũ±n
Lp′ (0,T ;V )−−−−−−−⇀

n→∞
u̇.

Finally, by (3.58) for all t ∈ [0, T ] we have

un(t)
V−−−−⇀

n→∞
u(t), ũn(t)

H−−−−⇀
n→∞

u̇(t).

Thanks to (3.22) and (3.46), for all t ∈ [0, T ] we get

∥u±n (t)∥V ≤ C1, ∥u+n (t)− un(t)∥H ≤ C1τn −−−−→
n→∞

0,

∥u+n (t)− u−n (t)∥H ≤ C1τn −−−−→
n→∞

0,

∥ũ±n (t)∥H ≤ C1, ∥ũ+n (t)− ũn(t)∥2H ≤ τn

n∑
k=1

τn∥δ2ukn∥2H ≤ C2τn −−−−→
n→∞

0,

∥ũ+n (t)− ũ−n (t)∥2H = τn

n∑
k=1

τn∥δ2ukn∥2H ≤ C2τn −−−−→
n→∞

0,

which imply (3.56) and (3.57). □

In view of the compactness of the embedding V ↪→ H (see Remark 2.1), we deduce also the following
strong convergences.

Corollary 3.6. Let (u, σ) ∈ (V ∩W 2,2(0, T ;H)) × Lp(0, T ;Lp(Ω;Rd×d
sym)) be the pair of function given by

Lemma 3.5. Then, we have

u+n
L2(0,T ;H)−−−−−−−→

n→∞
u, ũ+n

L2(0,T ;H)−−−−−−−→
n→∞

u̇. (3.60)

Proof. By Lemma 3.5 we know that the following sequences

{un}n ⊂W 1,p′
(0, T ;V ) ∩W 1,∞(0, T ;H), {ũn}n ⊂ Lp′

(0, T ;V ) ∩W 1,2(0, T ;H),

are uniformly bounded with respect to n. Since the embedding V ↪→ H is compact, by Aubin-Lions lemma
(see for example [24, Theorem 3]), we derive

un
L2(0,T ;H)−−−−−−−→

n→∞
u, ũn

L2(0,T ;H)−−−−−−−→
n→∞

u̇.
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Moreover, we have

∥un − u+n ∥2L2(0,T ;H) ≤ τ2n

n∑
k=1

τn∥δukn∥2H ≤ TC1τ
2
n −−−−→

n→∞
0,

∥ũn − ũ+n ∥2L2(0,T ;H) ≤ τ2n

n∑
k=1

τn∥δ2ukn∥2H ≤ C2τ
2
n −−−−→

n→∞
0,

which imply (3.60). □

We want to prove that the pair (u, σ) ∈ (V ∩W 2,2(0, T ;H)) × Lp(0, T ;Lp(Ω;Rd×d
sym)) of Lemma 3.5 is a

weak solution to the nonlinear viscoelastic system (2.6)–(2.8) with initial conditions (2.9). To this aim, we
need to check (i)–(iii) of Definition 2.3 and that u(0) = u0 in V and u̇(0) = u1 in H. We start by showing
that the function u ∈ V ∩W 2,2(0, T ;H) satisfies the Dirichlet boundary conditions and the initial conditions.

Lemma 3.7. The function u ∈ V ∩W 2,2(0, T ;H) of Lemma 3.5 satisfies (i) of Definition 2.3 and the initial
conditions u(0) = u0 in V and u̇(0) = u1 in H.

Proof. By (3.56) we have

u0 = un(0)
V−−−−⇀

n→∞
u(0), u1 = ũn(0)

H−−−−⇀
n→∞

u̇(0).

Hence, u(0) = u0 in V and u̇(0) = u1 in H. Moreover, since z ∈ C0([0, T ];V0) and thanks to (3.57), we have
for all t ∈ [0, T ]

u−n (t)− z−n (t) ∈ V D
t , u−n (t)− z−n (t)

V−−−−⇀
n→∞

u(t)− z(t).

Thus, u(t)− z(t) ∈ V D
t for all t ∈ [0, T ], being V D

t a closed subspace of V . □

With the next lemma we show that the pair (u, σ) solves the weak formulation (2.10) of the elastodynamics
system.

Lemma 3.8. The pair (u, σ) ∈ (V ∩W 2,2(0, T ;H)) × Lp(0, T ;Lp(Ω;Rd×d
sym)) of Lemma 3.5 satisfies (ii) of

Definition 2.3.

Proof. We fix n ∈ N and a function φ ∈ D. We consider the following functions

φk
n := φ(kτn) for k ∈ {0, . . . , n}, δφk

n:=
φk
n − φk−1

n

τn
for k ∈ {1, . . . , n},

and the piecewise-constant approximating sequences

φ+
n (t) := φk

n, φ̃+
n (t) := δφk

n, f+n (t) := fkn , for t ∈ ((k − 1)τn, kτn], k ∈ {1, . . . , n}.

If we use τnφ
k
n ∈ V k

n as a test function in (3.6), after summing over k ∈ {1, . . . , n}, we get
n∑

k=1

τn(δ
2ukn, φ

k
n)H +

n∑
k=1

τn(σ
k
n, eφ

k
n)p,p′ =

n∑
k=1

τn(f
k
n , φ

k
n)H . (3.61)

Since φ0
n = φn

n = 0 we obtain

n∑
k=1

τn(δ
2ukn, φ

k
n)H =

n∑
k=1

(δukn, φ
k
n)H −

n∑
k=1

(δuk−1
n , φk

n)H =

n−1∑
k=0

(δukn, φ
k
n)H −

n−1∑
k=0

(δukn, φ
k+1
n )H

= −
n−1∑
k=0

τn(δu
k
n, δφ

k+1
n )H = −

n∑
k=1

τn(δu
k−1
n , δφk

n)H = −
∫ T

0

(ũ−n (t), φ̃
+
n (t))H dt,

and from (3.61) we deduce

−
∫ T

0

(ũ−n (t), φ̃
+
n (t))H dt+

∫ T

0

(σ+
n (t), eφ

+
n (t))p,p′ dt =

∫ T

0

(f+n (t), φ+
n (t))H dt. (3.62)

Thanks to (3.55) and the convergences

φ+
n

Lp′ (0,T ;V )−−−−−−−→
n→∞

φ, φ+
n

L2(0,T ;H)−−−−−−−→
n→∞

φ, φ̃+
n

L2(0,T ;H)−−−−−−−→
n→∞

φ̇, f+n
L2(0,T ;H)−−−−−−−→

n→∞
f
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we can pass to the limit in (3.62), and we get that the pair (u, σ) ∈ V × Lp(0, T ;Lp(Ω;Rd×d
sym)) satisfies (ii)

of Definition 2.3. □

Finally, we have that the pair (u, σ) satisfies the constitutive law (2.11).

Lemma 3.9. The pair (u, σ) ∈ (V ∩W 2,2(0, T ;H))× Lp(0, T ;Lp(Ω;Rd×d
sym)) of Lemma 3.5 satisfies (iii) of

Definition 2.3.

Proof. In order to verify the constitutive law, we use a modification of Minty method, as done in [3, 20].
Since u̇ ∈W 1,2(0, T ;H), by integrating by parts in (2.10) we deduce that (u, σ) solve∫ T

0

(ü(t), φ(t))H dt+

∫ T

0

(σ(t), eφ(t))p,p′ dt =

∫ T

0

(f(t), φ(t))H dt for all φ ∈ D. (3.63)

Let us now consider a function φ ∈ Lp′
(0, T ;V ) ∩ L2(0, T ;H) with φ(t) ∈ V D

t for a.e. t ∈ [0, T ]. Then
there exists a sequence of functions {φn}n ⊂ D such that

φn
Lp′ (0,T ;V )−−−−−−−→

n→∞
φ, φn

L2(0,T ;H)−−−−−−−→
n→∞

φ.

This can be done, for example, by considering a sequence {ωn}n ⊂ C1
c ((

2
n , T − 2

n )) with 0 ≤ ωn ≤ 1 in [0, T ]

for all n ∈ N and such that ωn(t) → 1 as n → ∞ for all t ∈ (0, T ), and a sequence {ρn}n ⊂ C1
c ((0,

1
n )) with

ρn ≥ 0 and
∫
R ρn dt = 1 for all n ∈ N, and defining

φn := ρn ∗ (ωnφ) for all n ∈ N

(see also [14, Lemma 2.8]). By testing (3.63) with φn and passing to the limit as n → ∞ can deduce that
the pair (u, σ) satisfies∫ T

0

(ü(t), φ(t))H dt+

∫ T

0

(σ(t), eφ(t))p,p′ dt =

∫ T

0

(f(t), φ(t))H dt (3.64)

for all φ ∈ Lp′
(0, T ;V ) ∩ L2(0, T ;H) with φ(t) ∈ V D

t for a.e. t ∈ [0, T ]. Notice that

u̇− ż ∈ Lp′
(0, T ;V ) ∩ L2(0, T ;H), φ(t) ∈ V D

t for a.e. t ∈ [0, T ],

since u(t)−u(t−h)
h − z(t)−z(t−h)

h ∈ V D
t for all t ∈ (0, T ] and h ∈ (0, t), and

u(t)− u(t− h)

h
− z(t)− z(t− h)

h
→ u̇(t)− ż(t) for a.e. t ∈ [0, T ] as h→ 0.

Hence, by using φ := u+ u̇− z − ż in (3.64) we get∫ T

0

(σ(t), eu(t) + eu̇(t))p,p′ dt =

∫ T

0

(f(t), u(t) + u̇(t))H dt−
∫ T

0

(ü(t), u(t) + u̇(t))H dt

−
∫ T

0

(f(t), z(t) + ż(t))H dt+

∫ T

0

(ü(t), z(t) + ż(t))H dt

+

∫ T

0

(σ(t), ez(t) + eż(t))p,p′ dt. (3.65)

We now consider equation (3.6) and we use φ = τn(u
k
n + δukn − zkn − δzkn) as test function. By summing over

k ∈ {1, . . . , n} we get

n∑
k=1

τn(G
−1
n (eukn + eδukn), eu

k
n + eδukn)p,p′ =

n∑
k=1

τn(f
k
n , u

k
n + δukn)H −

n∑
k=1

τn(δ
2ukn, u

k
n + δukn)H

−
n∑

k=1

τn(f
k
n , z

k
n + δzkn)H +

n∑
k=1

τn(δ
2ukn, z

k
n + δzkn)H

+

n∑
k=1

τn(G
−1
n (eukn + eδukn), ez

k
n + eδzkn)p,p′ .
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By using the notations introduced before, we can rewrite the previous identity as∫ T

0

(σ+
n (t), Gn(σ

+
n (t)))p,p′ dt =

∫ T

0

(G−1
n (eu+n (t) + eũ+n (t)), eu

+
n (t) + eũ+n (t))p,p′ dt

=

∫ T

0

(f+n (t), u+n (t) + ũ+n (t))H dt−
∫ T

0

( ˙̃un(t), u
+
n (t) + ũ+n (t))H dt

−
∫ T

0

(f+n (t), z+n (t) + z̃+n (t))H dt+

∫ T

0

( ˙̃un(t), z
+
n (t) + z̃+n (t))H dt

+

∫ T

0

(σ+
n (t), ez

+
n (t) + ez̃+n (t))p,p′ dt. (3.66)

Now we pass to the limit in (3.66) as n→ ∞. Thanks to the strong convergences

f+n
L2(0,T ;H)−−−−−−−→

n→∞
f, z+n

Lp′ (0,T ;V )−−−−−−−→
n→∞

z, z+n
L2(0,T ;H)−−−−−−−→

n→∞
z, z̃+n

Lp′ (0,T ;V )−−−−−−−→
n→∞

ż, z̃+n
L2(0,T ;H)−−−−−−−→

n→∞
ż

and the convergences in (3.54), (3.55), and (3.60) we deduce that there exists

lim
n→∞

∫ T

0

(σ+
n (t), Gn(σ

+
n (t)))p,p′ dt

=

∫ T

0

(f(t), u(t) + u̇(t))H dt−
∫ T

0

(ü(t), u(t) + u̇(t))H dt

−
∫ T

0

(f(t), z(t) + ż(t))H dt+

∫ T

0

(ü(t), z(t) + ż(t))H dt+

∫ T

0

(σ(t), ez(t) + eż(t))p,p′ dt

=

∫ T

0

(σ(t), eu(t) + eu̇(t))p,p′ dt,

in view of (3.65). Notice that by (3.22)

∥G(σ+
n )− eu+n − eũ+n ∥

p′

Lp′ (0,T ;Lp′ (Ω;Rd×d
sym))

= ∥G(σ+
n )−Gn(σ

+
n )∥

p′

Lp′ (0,T ;Lp′ (Ω;Rd×d
sym))

=
1

np′ ∥σ+
n ∥

p−1

Lp(0,T ;Lp(Ω;Rd×d
sym))

≤ Cp′

1

np′ −−−−→
n→∞

0, (3.67)

which gives

lim
n→∞

∫ T

0

(σ+
n (t), G(σ

+
n (t)))p,p′dt = lim

n→∞

∫ T

0

(σ+
n (t), Gn(σ

+
n (t)))p,p′ dt =

∫ T

0

(σ(t), eu(t) + eu̇(t))p,p′ dt.

Moreover, thanks to (G3) and (3.22) the sequence {G(σ+
n )}n ⊂ Lp′

(0, T ;Lp′
(Ω;Rd×d

sym)) is uniformly bounded.
Hence, by (3.54) and (3.67) we derive

G(σ+
n )

Lp′ (0,T ;Lp′ (Ω;Rd×d
sym))

−−−−−−−−−−−−−−⇀
n→∞

eu+ eu̇,

We combine these two facts and we obtain that for all w ∈ Lp(0, T ;Lp(Ω;Rd×d
sym))

0 ≤ lim
n→∞

∫ T

0

(σ+
n (t)− w(t), G(σ+

n (t))−G(w(t)))p,p′ dt =

∫ T

0

(σ(t)− w(t), eu(t) + eu̇(t)−G(w(t)))p,p′ dt.

In particular, we take w := σ − kb with b ∈ Lp(0, T ;Lp(Ω;Rd×d
sym)) and k > 0, and by dividing by k we get

0 ≤
∫ T

0

(b(t), eu(t) + eu̇(t)−G(σ(t)− kb(t)))p,p′ dt.

Since G is continuous, by sending k → 0+ we deduce

0 ≤
∫ T

0

(b(t), eu(t) + eu̇(t)−G(σ(t)))p,p′ dt

for all b ∈ Lp(0, T ;Lp(Ω;Rd×d
sym)). This implies the constitutive law (2.11). □

We can finally prove our main existence result Theorem 2.8.
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Proof of Theorem 2.8. It is enough to combine Lemma 3.5 with Lemmas 3.7–3.9. □

We conclude this section with a uniqueness result in the space (V ∩W 2,2(0, T ;H))×Lp(0, T ;Lp(Ω;Rd×d
sym))

for the weak solutions (u, σ) to the system (2.6)–(2.8) which satisfy the initial conditions (2.9).

Theorem 3.10. Let (u, σ) ∈ (V ∩W 2,2(0, T ;H)) × Lp(0, T ;Lp(Ω;Rd×d
sym)) be a weak solution to the non-

linear viscoelastic system (2.6)–(2.8) satisfying the initial conditions (2.9). Then, the function u is unique.
Moreover, if G is strictly monotone, also σ is unique.

Proof. Let (u1, σ1), (u2, σ2) ∈ (V ∩ W 2,2(0, T ;H)) × Lp(0, T ;Lp(Ω;Rd×d
sym)) be two weak solutions to the

nonlinear viscoelastic system (2.6)–(2.8) satisfying the initial conditions (2.9).
We fix s ∈ (0, T ]. If we set u := u1 − u2 ∈ V ∩W 2,2(0, T ;H), by arguing as in (3.64), we derive that u

satisfies the following identity∫ s

0

(ü(t), φ(t))H dt+

∫ s

0

(σ1(t)− σ2(t), eφ(t))p,p′ dt = 0 (3.68)

for all φ ∈ Lp′
(0, s;V ) ∩ L2(0, s;H) with φ(t) ∈ V D

t for a.e. t ∈ [0, s]. Moreover, we have

u(0) = u̇(0) = 0, u(t) + u̇(t) ∈ V D
t for a.e. t ∈ [0, T ]. (3.69)

Thanks to (3.69) we can use u+ u̇ as test function in (3.68), and we get∫ s

0

(ü(t), u(t) + u̇(t))H dt = −
∫ s

0

(σ1(t)− σ2(t), eu(t) + eu̇(t))p,p′ dt. (3.70)

By taking into account (2.5) and (2.11), by (3.69) we have∫ s

0

(σ1(t)− σ2(t), eu(t) + eu̇(t))p,p′ dt =

∫ s

0

(σ1(t)− σ2(t), G(σ1(t))−G(σ2(t)))p,p′ dt ≥ 0. (3.71)

Moroever, since u ∈W 2,2(0, T ;H), we derive∫ s

0

(ü(t), u(t) + u̇(t))H dt =
1

2
∥u̇(s)∥2H + (u̇(s), u(s))H −

∫ s

0

∥u̇(t)∥2H dt, (3.72)

and by Young inequality

|(u̇(s), u(s))H | ≤ 1

4
∥u̇(s)∥2H + ∥u(s)∥2H ≤ 1

4
∥u̇(s)∥2H + T

∫ s

0

∥u̇(t)∥2H dt. (3.73)

Hence, by (3.70)–(3.73), for every s ∈ (0, T ] we obtain

1

4
∥u̇(s)∥2H − (T + 1)

∫ s

0

∥u̇(t)∥2H dt ≤ 1

2
∥u̇(s)∥2H + (u̇(s), u(s))H −

∫ s

0

∥u̇(t)∥2H dt ≤ 0. (3.74)

In particular, since

d

ds

Å
e−4(T+1)s

∫ s

0

∥u̇(t)∥2H dt

ã
= e−4(T+1)s

Å
∥u̇(s)∥2H − 4(T + 1)

∫ s

0

∥u̇(t)∥2H dt

ã
for a.e. s ∈ [0, T ],

thanks to (3.74) we have that the function s 7→ e−4(T+1)s
∫ s

0
∥u̇(t)∥2H dt is decreasing on [0, T ], from which

we deduce ∫ s

0

∥u̇(t)∥2H dt = 0 for all s ∈ [0, T ].

Therefore u̇ ≡ 0 on [0, T ], which implies u ≡ c for some constant c ∈ H. By (3.69) we have 0 = u(0) = c,
that is u1 = u2.

Finally, if G is strictly monotone, by G(σ1)−G(σ2) = eu+ eu̇ = 0, we conclude that σ1 = σ2. □
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4. Energy-dissipation balance and the viscoelastic paradox

In Theorem 2.8 we proved the existence of a solution (u, σ) to the nonlinear viscoelatic system (2.6)–(2.8).
As observed in Lemma 3.9, the displacement u obtained via the discretisation-in-time scheme is more regular
in time, more precisely u ∈W 2,2(0, T ;H). This regularity allows us to prove the following energy-dissipation
balance.

Theorem 4.1. Every weak solution (u, σ) ∈ (V ∩W 2,2(0, T ;H)) × Lp(0, T ;Lp(Ω;Rd×d
sym)) to the nonlinear

viscoelastic system (2.6)–(2.8) satisfies the energy-dissipation balance

1

2
∥u̇(s)∥2H +

∫ s

0

(σ(t), eu̇(t))p,p′ dt =
1

2
∥u̇(0)∥22 +W(0, s;u, σ) for all s ∈ [0, T ], (4.1)

where W(0, s;u, σ) is the total work of (u, σ) on the time interval [0, s] ⊆ [0, T ], defined as

W(0, s;u, σ) :=

∫ s

0

(f(t), u̇(t)− ż(t))H dt+

∫ s

0

(ü(t), ż(t))H dt+

∫ s

0

(σ(t), eż(t))p,p′ dt for all s ∈ [0, T ].

Proof. We fix s ∈ (0, T ]. By arguing as in (3.64), we derive that the pair (u, σ) ∈ (V ∩W 2,2(0, T ;H)) ×
Lp(0, T ;Lp(Ω;Rd×d

sym)) satisfies∫ s

0

(ü(t), φ(t))H dt+

∫ s

0

(σ(t), eφ(t))p,p′ dt =

∫ s

0

(f(t), φ(t))H dt

for all φ ∈ Lp′
(0, s;V ) ∩ L2(0, s;H) with φ(t) ∈ V D

t for a.e. t ∈ [0, s]. Hence, if we use φ := u̇− ż we obtain∫ s

0

(ü(t), u̇(t))H dt+

∫ s

0

(σ(t), eu̇(t))p,p′ dt = W(0, s;u, σ) for all s ∈ [0, T ].

Finally, since u ∈W 2,2(0, T ;H), we can use the identity∫ s

0

(ü(t), u̇(t))H dt =
1

2
∥u̇(s)∥2H − 1

2
∥u̇(0)∥22 for all s ∈ [0, T ]

to derive (4.1). □

We conclude the paper by showing that in the nonlinear Kelvin-Voigt model, which is the one associated
to the monotone operator

G(ξ) := |ξ|p−2ξ for ξ ∈ Rd×d
sym, (4.2)

the solution to the system (2.6)–(2.8) found in Theorem 2.8 satisfies another energy-dissipation balance,
which is (4.7). This implies that the crack can not propagate in time, i.e., also the nonlinear Kelvin-Voigt
model of dynamic fracture exhibits the viscoelatic paradox, as discussed in the introduction.

We assume that G is defined by (4.2). Therefore, G satisfies the assumptions (G1)–(G3) and in addition
it is strictly monotone. In particular, G is invertible and its inverse is given by

G−1(η) = |η|p
′−2η for η ∈ Rd×d

sym.

In this case, the system (2.6) reduces to

ü(t)− div(|eu(t) + eu̇(t)|p
′−2(eu(t) + eu̇(t))) = f(t) in Ω \ Γt, t ∈ [0, T ], (4.3)

with boundary conditions

u(t) = z(t) on ∂DΩ, t ∈ [0, T ], (4.4)

|eu(t) + eu̇(t)|p
′−2(eu(t) + eu̇(t))ν = 0 on ∂NΩ ∪ Γt, t ∈ [0, T ], (4.5)

and initial conditions

u(0) = u0, u̇(0) = u1 in Ω \ Γ0. (4.6)

According to Definition 2.3, we say that u ∈ V is a weak solution to the nonlinear Kelvin-Voigt system (4.3)–
(4.5) if u(t)− z(t) ∈ V D

t for all t ∈ [0, T ] and the following identity holds:

−
∫ T

0

(u̇(t), φ̇(t))H dt+

∫ T

0

(|eu(t) + eu̇(t)|p
′−2(eu(t) + eu̇(t)), eφ(t))p,p′ dt =

∫ T

0

(f(t), φ(t))H dt
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for all φ ∈ D. By Theorems 2.8 and 3.10 we know that there exists a unique weak solution u ∈ V ∩
W 2,2(0, T ;H) to (4.3)–(4.5) which satisfies the initial conditions (4.6). Moreover, by Theorem 4.1 the
function u satisfies the .

We want to show that the energy-dissipation balance (4.1) can be rephrased just in terms of u. Given
u ∈ V ∩W 2,2(0, T ;H), we define the mechanical energy E at time s ∈ [0, T ] as

E (s;u) :=
1

2
∥u̇(s)∥2H +

1

p′
∥eu(s)∥p

′

p′ ,

the energy dissipated by the viscous term V on the time interval [0, s] ⊆ [0, T ] as

V (0, s;u) :=

∫ s

0

(|eu(t) + eu̇(t)|p
′−2(eu(t) + eu̇(t))− |eu(t)|p

′−2eu(t), eu̇(t))p,p′ dt,

and the total work W on the time interval [0, s] ⊆ [0, T ] as

W (0, s;u) :=

∫ s

0

(f(t), u̇(t)− ż(t))H dt+

∫ s

0

(ü(t), ż(t))H dt

+

∫ s

0

(|eu(t) + eu̇(t)|p
′−2(eu(t) + eu̇(t)), eż(t))p,p′ dt.

Remark 4.2. For p = 2 we have

V (0, s;u) =

∫ s

0

∥eu̇(t)∥2H dt,

which corresponds to the viscous dissipation term in the linear Kelvin-Voigt model. Moreover, since G−1

satisfies (G1), we deduce that

(G−1(η1)−G−1(η2)) · (η1 − η2) ≥ 0 for all η1, η2 ∈ Rd×d
sym,

and by choosing η1 = eu(t) + eu̇(t) and η2 = eu(t) we derive

V (0, s;u) ≥ 0 for every s ∈ [0, T ].

Therefore V can be seen as the analogous of the viscous dissipation term in the nonlinear setting.

Thanks to Theorem 4.1 and (4.2), we derive the following result.

Corollary 4.3. Every weak solution u ∈ V ∩W 2,2(0, T ;H) to the nonlinear Kelvin-Voigt system (4.3)–(4.5)
satisfies the energy-dissipation balance

E (s;u) + V (0, s;u) = E (0;u) + W (0, s;u) for all s ∈ [0, T ]. (4.7)

Proof. By Theorem 4.1 we know that u satisfies the energy dissipation balance (4.1). Moreover, for the
nonlinear operator G given by (4.2) we observe that∫ s

0

(σ(t), eu̇(t))p,p′ dt

=

∫ s

0

(|eu(t) + eu̇(t)|p
′−2(eu(t) + eu̇(t)), eu̇(t))p,p′ dt

=

∫ s

0

(|eu(t) + eu̇(t)|p
′−2(eu(t) + eu̇(t))− |eu(t)|p

′−2eu(t), eu̇(t))p,p′ dt

+

∫ s

0

(|eu(t)|p
′−2eu(t), eu̇(t))p,p′ dt

=

∫ s

0

(|eu(t) + eu̇(t)|p
′−2(eu(t) + eu̇(t))− |eu(t)|p

′−2eu(t), eu̇(t))p,p′ dt+
1

p′
∥eu(s)∥p

′

p′ −
1

p′
∥eu(0)∥p

′

p′ .

Indeed, u ∈W 1,p′
(0, T ;V ), which implies that the map t 7→ ∥eu(t)∥p

′

p′ is absolutely continuous on [0, T ] with

d

dt
∥eu(t)∥p

′

p′ = p′(|eu(t)|p
′−2eu(t), eu̇(t))p,p′ for a.e. t ∈ [0, T ].

By combining the previous identity with (4.1) we derive (4.7). □
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As a consequence of Corollary 4.3 we deduce that for every weak solution u ∈ V ∩ W 2,2(0, T ;V ) to
the nonlinear Kelvin-Voigt system (4.3)–(4.5) the crack can not grow in time. Indeed, as explained in the
introduction, according to the Griffith criterion there is a balance between the mechanical energy dissipated
and the energy used to increase the crack. In the nonlinear Kelvin-Voigt model (4.3)–(4.5), this reads as

E (s;u) +Hd−1(Γt \ Γ0) + V (0, s;u) = E (0;u) + W (0, s;u) for all s ∈ [0, T ].

Since the energy dissipated by the crack growth, which is Hd−1(Γt \ Γ0), does not appear in (4.7), we
derive that for the weak solution u ∈ V ∩W 2,2(0, T ;H) to (4.3)–(4.5) given by Theorem 2.8 we must have
Hd−1(Γt \ Γ0) = 0 for every t ∈ [0, T ]. Hence, the crack associated to u does not increase in time. We
point out that this phenomenon, called viscoelastic paradox, is the same which arises in linear Kelvin-Voigt
models, as shown in [10, 26].
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