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ABSTRACT. In this paper we classify positive solutions to the critical semilinear elliptic
equation in H". We prove that they are the Jerison-Lee’s bubbles, provided n = 1
or n > 2 and a suitable control at infinity holds. The proofs are based on a classical
Jerison-Lee’s differential identity and on pointwise/integral estimates recently obtained
for critical semilinear and quasilinear elliptic equations in R™. In particular, the result
in H' can be seen as the analogue of the celebrated Caffarelli-Gidas-Spruck classification
theorem.
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1. INTRODUCTION

In this paper, we consider solutions to the following critical semilinear elliptic equation
— Agnu = 2n%u?  in H" (1.1)

where H" is the Heisenberg group, u is a smooth, real and positive function defined in H",
Apgnu is the Heisenberg Laplacian (or sub-Lapacian) of u (see the definition in Section 2)

and
P Qt2
=02
with ) = 2n + 2 the homogeneous dimension of H".

Equation (1.1) has been deeply studied since it is connected with the CR Yamabe
problem in H" and with the CR Sobolev inequality. The CR Yamabe problem on H" is
the following: given (H",©) the sub-Riemannian manifold with standard contact form
O, consider the conformal contact form © = u»© on H", then the pseudo-Hermitian
scalar curvature associated to © is a positive constant, R = dn(n + 1), if and only if u
solves equation (1.1). The CR Yamabe problem has been studied in [22, 23, 24] and has
been partially solved in [16, 17, 39]; we also refer to the recent papers [12, 13] for further
developments. Moreover, the number

) 2Q)
is the critical exponent for the CR Sobolev embedding (or Folland-Stein inequality [15]).
Thanks to the work [23] we know that there are (nontrivial) positive solutions of (1.1)
given by
C

U 1) = : ) 1.2
e T P EEs Y (12)
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for some A € C, u € C" such that Im(\) > % and for some explicit C' = C(n,\) > 0.
The functions in (1.2) are the only extremals of the Folland-Stein inequality in H" and
are usually called Jerison-Lee’s bubbles. Moreover, in [23] the authors obtained that
(1.2) are the unique positive solutions of (1.1), satisfying the finite energy assumption

u € L%(H”). We also refer to [18] where the authors obtained a uniqueness result
under the assumption of cylindrical symmetry on groups of Heisenberg type.

Since it is well known that all nonnegative solutions of (1.1) are either strictly positive
or identically zero, as the sub-Laplacian on the Heisenberg group satisfies the strong
maximum principle (see e.g. [6]), we will only focus on positive solutions. We also recall
that there exist infinitely many nonradial sign-changing solutions with finite energy to

—Apnu = 202|u|” My in HT,

as proved in [29)].

In the subcritical case, i.e.
—Agru = 2n%u?  in H"

where 1 < ¢ < ¢* it is known that the only nonnegative solution is the trivial one (see
28], and [4, 5, 40] for previous partial results).

The analogue of (1.1) in the Euclidean space is the so-called critical Laplace equation
—Au=v*"" inR", (1.3)

where 2* = % is the critical Sobolev exponent. Equation (1.3) is related to the Yamabe
problem in Riemannian geometry (see the survey [26]) and to the extremals in the Sobolev
inequality (see the survey [33]). From [32], [1] and [36] we know that the following class

of functions
M/nm—2)\ >
V/\,zo(x) = (L> , A > O, Xo € Rn, (14)

A2 + ’$ — 56'0’2

solve (1.3). Moreover, from the seminal paper [7] (see also [19, 30] for previous important
results) we know that (1.4) are the only positive solutions to (1.3) (see also [11] and
[27]). The proof of the classification result is based on the technique of moving planes and
on the Kelvin transform. An alternative proof, based on integral estimates that can be
applied also in the Riemannian setting when the Ricci curvature is non-negative, has been
recently obtained in [8] when the dimension is n = 3, and was extended to dimensions
n =4,5in [31, 38] respectively.
In the subcritical case, i.e.

—Au=u? inR" (1.5)

with 1 < ¢ < 2* — 1, it is well-known that the only nonnegative solution is the trivial one
(see [20]). Recently, also the critical p—Laplace equation has been considered, we refer
the interested reader to [9, 14, 31, 34, 35, 37, 38|.

Our main results are a classification of all positive solutions to (1.1) in H' (see Theo-
rem 1.1), and a classification of positive solutions to (1.1) in H™ when n > 2 that satisfy
a suitable decay condition at infinity, which is weaker than finite energy assumption (see
Theorem 1.2). Indeed we have
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Theorem 1.1. Let u be a positive solution to (1.1) in H'. Then
u = u/\#
2
for some X\ € C, p € C" such that Im(\) > %.

Theorem 1.2. Let u be a positive solution to (1.1) in H", n > 2 such that
C n
ul§) L ———55 VEeH",
1+ (¢l

for some C' > 0. Then
u = u/\#

for some A € C, p € C" such that Im(\) > %.

The proof of our results rely on a remarkable differential identity proved in [23],
which involves a vector field depending on the solution w and its derivatives, that has
nonnegative divergence whose vanishing implies that u is actually one of the Jerison-Lee
bubbles (1.2). Inspired by [8, 9], through a test function argument we are able to obtain
integral estimates which, under the conditions stated in the theorems, imply that such
divergence must vanish identically, thus giving the desired classification result. In order
to obtain Theorem 1.1 we need to suitably adapt the technique used in [31, 38] to our
setting; this allows us to obtain the full classification result without any extra assumption
when n = 1. In the proof of Theorem 1.2, when n > 2, we also need an assumption
on the behavior of the solution at infinity, which implies the validity of a useful gradient
estimate on the solution wu, that gives us the desired decay in the integral estimates.

We expect that the analogues of Theorems 1.1 and 1.2 should hold and yield a classifi-
cation result for positive solutions of the critical sub-Laplace equation also in the Sasakian
setting and in the context of Carnot groups, under appropriate geometric conditions (such
as nonnegative pseudo-Hermitian Ricci curvature).

Organization of the paper. In Section 2 we collect some preliminaries and notations,
in Section 3 and 4 we prove Theorem 1.1 and Theorem 1.2, respectively. In Appendix A
we prove a gradient estimate which is a key ingredient in the proof of Theorem 1.2.

2. PRELIMINARIES AND NOTATIONS

We first give a brief introduction to the Heisenberg group H" with some notations
(for further details we refer to [2, 22, 23, 25]). We consider

H*:.=C" xR
with coordinates £ = (z,t) = (21, ..., 2n,t) € H" and with the group law o: given & = (z,t)
and ¢ = (w, s)
(z,t) o (w,s) = (z +w,t+ s+ 2Im(z*w?)) ,
where here and in the sequel we use the Einstein notation sum for the Greek indices
1 <a,B,7y <n. We define, for £ = (2,t) € H", the norm

€] = (21" + )" |
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with the associated distance function

d(&,¢) =1 og| for & (e H",
where (7! denotes the inverse of ¢ with respect to o, i.e. (7! = —(.
We use the notation Bg(§) for the metric ball centred at £ € H" with radius R > 0,
ie.
Br(§) ={C e H" : d(§,¢) < R}.
If £ =0, we will write Bg := Bg(0). It is well-known and it is important to recall that
the volume of a metric ball is given by

|B.(6)| = Cr¥, (2.1)

where C' > 0 is a positive constant, ) = 2n + 2 and | - | denotes the Lebesgue measure.
The (even) integer @ is called the homogeneous dimension of H".
We define the following left-invariant (with respect to o) vector fields in H™

0 0 0
_ Y = — 7 —_— = 1 Ce .
Ze 550 +iz, T and Zj 550 124 BT for a R 1}
For a smooth function f : H" — C we denote its derivatives by
of of
fa=2uaf, fa=2%Zaf, fozay fog =25 (Zof) fOQ:Z&(E)’

and so on. There hold (see [23] and [28]) the following commutation rules
faﬁ_fﬁazoa faB_fBQIQidan()v an_fa0:O7

fopo = faop =0, fapy = fasp = 2005 fao -
Moreover, we define

017 = fafa = fafs and Auif = (foa + faa) = foa + faa-

We recall that the Heisenberg group is a strictly pseudoconvex CR manifold, where the
CR structure is given by the bundle H spanned by the vector fields Z,, fora =1,...,n,
and where the standard contact form on H" is given by

O =dt+ Zizadza —izvde.
a=1

We also recall that the Heisenberg group is a Carnot group, which can be viewed as a
flat model in Sub-Riemannian geometry similar to the Euclidean space R™ in Riemannian
geometry, where the family of vector fields T = %, X, =2ReZ,, Y, = 2ilm Z,, for
a=1,...,n, form a base of the Lie algebra of vector fields on H"™ which are left invariant
with respect to the group action o.

Given u > 0 a solution of (1.1) we consider the auxiliary function f defined as follows
el =un, (2.2)

then f solves
— Agn f = 2n|0f|* + 2ne*’  in H". (2.3)
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We also introduce the function g : H* — C such that

g=0f1>+e —ifo, (2.4)
then the equation (2.3) can be rewritten as
foa = —ng in H". (2.5)
As done in [23] and in [28] we define the following tensors
Dag = fap — 2fafs Do = Dap [
Eop = fap = 5J23%5 Eo = Eosf5 (2.6)

Ga = Z.fOOz - Z.f0foz + e2ffoz + |af|2fa .

The above tensors will be important in our argument and we refer to [23] for the reason
to introduce them. Moreover (see also [28]) we observe that

EaB:faB+g6aB Eq _fﬁfﬂ+gfa
Da:faﬁf3_2|8f|2fa G _Zf0a+gfa (2 7)
0f|2 = Ds + Ea + §fa — 2fae* ’
gd:D&+E&+Gd ga:Da+Ea+Ga~

We are now in a position to recall the following differential identity obtained in [23,
Formula (4.2)] and [28, Proposition 2.1] (with p = 0) which will be fundamental in our
arguments.

Proposition 2.1. With the notations above, we have
M = ReZ, {e n—1)f (g—i—3zf0)E + (9 —ifo) Do —3if0Ga]} ,

where

M = (|E5° + \Da,@P)
+ 2V (|Gol? + |Ga + Daol® + |Ga — Eol* + |Dagfs + Ear f5]?) -

From this proposition we obtain the next two lemmas: the first one in the case n =1
and the second one for n > 2.

Lemma 2.2. With the notations above, if n = 1, then for every (real) non-negative cut-off
function n with compact support and for every s > 2 and [ > 0 small enough we have

1/2 1/2
sty <o ([ awe) ([ e a)
H! supp|On| supp|On|

for some C' > 0, where
Wimggel = g e
In particular
[ vty <c [ v tlonty
Proof. We define
7, = MUPn®,

Hl
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From Proposition 2.1 we obtain
MU Pps :/ ReZs [(g + 3ifo) Ea + (9 — ifo) Do — 3ifoGga] ¥Pn°
H! H!
=5 | Re{llg +3if0) Eu+ (9.~ if0) Da = 3i£iGul U ¥y
H

-5 /Hl Re{[(g + 3ifo) Ea + (g — ifo) Do — 3ifoGal na} ¥ P01 (2.8)

where we integrate by parts. We now observe that, on the one hand, from the definition
of g (2.4) we have

(94 3ifo) Eo+ (g —ifo) Do — 3ifoGa = (Do + Go) (9 —ifo) + (Ea — Go) (g + 3ifo) + i foGa
= (Do + Go) (|0f? + € = 2ifp)
+ (BEo — Go) (|0f? + € +2ifo) +ifoGa,

and so, from Cauchy-Schwarz inequality

| (.g +31f0) Ea + (g - ZfO) Da - SifOGa| S |Doc + Ga| \/|af|4 + etf + 2|af|2€2f +4fg

| Ba — Gal \/IOFI + et + 2002627 + 4f2

+ [ fol|Gal
<2|9| (| Da + Gal + |Ea — Gal| + 1Gal)
<2|g|vV M
where we used the fact that
9] = \J10F1t + 47 + 200 2e27 + f3. (2.9)

Summing up, we have obtained the following

‘ (g + BZfo) Ea + (g — Zf()) Da — 3’if0Ga| < 2|g‘ \% M. (210)
On the other hand, from (2.7) we have

Vs =1[(99) e ], = e (39a + 95a) — 2 (99) fac™>
=e 2 [g(Da+ Ea+ Ga) + 9 (Da+ Ea — Ga +24fa)] — 2(97) fae™ >
= [Dalg+7)+Ex(g+9)+Ga(d—9)
=¢ ¥ [(Ds+Gs) (9+9) + (Ba — Ga) (9 + 9) + Ga (5 — )]
=2¢"% [(Da + Ga) (10f7 + ) + (Ex — Ga) (|10f* + €¥) +iGafo] .

where we used the fact that

Ja = Da+ Es — Ga + 2§ fa - (2.11)
Indeed by (2.7) we have

Ga = —ifoa +§fd,
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hence
_ 2 2 .
ga = (10f1? + € +ifo)

=D+ Ea+ gfa+ ifoa
:Da + E@ — Ga + ngd .

Moreover, from Cauchy-Schwarz inequality

Wal <2672 ||Dy + Gal /IO + ¥ + 20 ] Pe

+ | Bs — Gal V/IOTTF + €37 + 200267 + |Gallfol|
<2e ! |g|[|Da + Ga| + | Es — Ga| + |Gal]
<2 |glv M,
i.e.
Wal < 2¢|g]VM. (2.12)

Hence, by substituting (2.10) and (2.12) in (2.8) we get, after a Cauchy-Schwarz inequality,

I, =

MU ~Pp?
H1

346/ MI9|26‘2f‘11_5‘1775+2s/ ||V MU oy
H! H!

Hl

<48 | MU 28/ v M|gle=F|only
H1
Choosing > 0 small enough we find
T < C/ VM|gle=C|anln>t.
H?!

We now use Holder’s inequality and we have

! !
,<C (/ MU~ 773) (/ |9|2‘1"5|0nl2775‘2) :
supp]|9n| supp)| 0|
for some C' > 0. Now the conclusion easily follows. U

Lemma 2.3. With the notations above, for every (real) non-negative cut-off function n
with compact support and for every s > 2 we have

1/2 1/2
Mnp* < C ( / va) ( / G |g|2|8n|2n5‘2) :
H» supp|On| supp|On|

In particular we also have

[ M <c [ jgpenianty .
n HTL
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Proof. From Proposition 2.1, integrating by parts, using Cauchy-Schwarz and Young in-
equalities we obtain

| M= | ReZs {2V (g + 3ifo) Ea + (9 = ifo) Da = 3i foGal} 0°
= —s /n Re {*™ V [(g+ 3ify) Ea + (9 — ifo) Do — 3i foGalma } 0!
= _3/ Re {2V [(|10f? + €% + 2ifo) Eo + (|0 + € —2ify) Do — 3ifoGa) ma} n° ™
<s / VI (0f17 + € + 2/ fol) | Eal + (107 + €7 42| fol) [Dal + 3| fol|Gal] |0n]n* ™
<C (/ DI By + | Dol + |Gal?] 775>é

supp|9n|

( [ et gt et 4] |377|2?78‘2)
supp|dn|
1

<C (/ VI (|G, — Eaf? + |Ga + Dal? + |Gal?] "5)
supp|9n|

1
2
(/ 62("_1”!9!2\077I2778‘2)
supp|dn|
: :
<C (/ Mns) (/ 62(”‘”f|9|2|3?7|2775‘2)
supp|9n| supp|9on|

which immediately yields the conclusion.

N[

O

We conclude this section by recalling the following lower bound for positive superha-
monic functions in H" (see [3]).

Proposition 2.4. Let u be a positive superharmonic function in H", i.e u € C?(H") and
Agru <0 in H".
Then, there exists a constant C' > 0 such that

C
£1972
for any & € H™ with || > 1, where Q = 2n + 2.

u(§) >

3. PROOF OF THEOREM 1.1

In this section n = 1 and given R > 0, we choose a real cut-off function 7 such that
n=1in Brj, n =0in B and |0n| < § in Br\ Bgjs. Let s > 6 and 8 > 0 small enough.
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From Lemma 2.2 we have
1= [ M < [ g
HL H!
C
<

< g Uy
Rr? Br\Br/2

C
< — §—Fps=2
< BR(gg)

where we used (2.5). By integrating by parts and using (2.11) we get
L=~ [ Re(fung)¥ "y
Br
~ [ Retug)u =5 [ Re(fawagu
Br

Br

+(s=2) | Re(fagina)¥ " n*?

Br
= Re(fa (Da + Es — Ga +2gfa))¥ P Re(faVag)¥ A lye2
Br Br
+(s—2) [ Re(fagna)¥ Pn*?
Br
- Re(fy (Da+ Es — Ga)) ¥ P2 + 2 Re(g)|0f|?VFns—2
Bgr Br
6 [ Re(fulag)¥ 2 4 C / 07 |1g]1on| T ~n>=.
Br
Since
|Ds + Es — Ga| = [(Da + Ga) + (Es — Ga) — Gs| < VM

for every 6 > 0, using (2.12), we obtain

1
zo<o [ mu g [ prractyen [ (ot gy oy
Br

Br

+28 | |af|¢_\11582 g/ OfPU Py~ + €T,

1
<(0+ CﬁRQ) i MU Py 4+ C (0 + ot %) / |0 f POyt

1
4/ Of|* TPy 4 —/ MUPp =2 4 T,
Br 2 Bgr



10 GIOVANNI CATINO, YANYAN LI, DARIO D. MONTICELLI, ALBERTO RONCORONI

i.e., by choosing ¢ small enough,

1
I, <C (0 + BR?) | MU~ ﬁns+0(9+ﬁ+%)/ 02U Pps—t
Br

2
+C \8f|4\115n82+—/ P2
3 JBx

Br

Since

12:/ (Jof|* + eV +2e|0f > + f3) O P2,
Br

we obtain

-1
7, <Cle+ R [ mwpyp . CE_ D) / Of 20 Py 1 C / O F| Py
Br

Br R?
Cle™' +p)
R?

Br

=:C(e + B)R’T, + T + C1y,

where we chose § = s R?.
Now, since

U0 = g2 < T (Jof|* + e4f)*ﬁ < 204

where we used (2.9), then using once again (2.5) and integration by parts
L= [ lorpuy
Br
e
Br
< [ Re(g)e iyt

Br

= — | Re(faa)e ™

Br
= =28 [ (0Pt + (s —4) [ Re(fama)e ™"
Br Br
< —28T4 + €T + Ce —28f
>~ - 3 R2 (&

(3.4)

(3.5)

(3.6)

(3.7)

for every ¢’ > 0 and for some C., > 0, where we used the following Young inequality

Re(fana)e >~ < |of||onle P =5 < |of|Pe >~ + Cu|one .

Now, we observe that from (2.2) and from Proposition 2.4 we obtain
=20 — 2 < ORI,
for R large enough. Hence, by choosing & = 2 in (3.7) we find
T3 < T, < CR*™
where we used (3.8), (3.6) and (2.1).

(3.8)

(3.9)
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We argue in the same way in order to estimate Z,; from (3.5), (2.4), (2.5) and inte-
gration by parts we get

7= [ loriw
Br

/ Of eIy = T (3.10)
Br

IN

/ 0f[PRe(g)e2 2

Br

- / Of 2R fus )2 =
Br

= | Re(fal0fl3)e = =28 [ [off'e 2

Br Br

L(s—2) / Re(funa)|0f]2e 2
Br
— / Re(fu(Da + Ea))e 22 + / OfPRe(g)e > — 2 / O f 220D =
Bgr Bgr Bgr
=28 [ jorite Iy (5= 2) [ Relfuna)lof e
Bgr Br

where we used (2.7). Summing up

T < / Re(fo(Da + Ea))e ™" + / O]ty — / 0220 =2
Br Br Bgr
_26 |af|4e—2ﬂfns—2+(8_2)/ Re(foﬂ? >|af|2 2,8f s—3
Br Br
:/ Re(fo(Da + Es))e 2= + I —/ |0f |22 =P =2
Br B
2T+ (5= 2) [ Relfum)loffe
Br
ie.
251/4 S/ Re(fa<Da+E@))€72Bfn572 _/ |af’2 2(1 fns 2
+ (s - 2)/ Re(fara)0f e =2 (3.11)
Br

Now, we tackle the first integral on the right-hand side of the (3.11)

/ Re(fo(Da + Eq))e 22 < \/_|8f\e’25f 5-2

VM|Of|g* e Phu iy =2

Br
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where we used (3.3). By using Young inequality,

RQ

for every £ > 0 and for some C' > 0. From (3.8) we obtaln

C - S—
/ Re(fa(Da + Ea))e I <RI + — ‘af|2|9|4ﬁe 801 g =By —4
Br

R? R?

where we used the following Young inequality

c_ c )
/ Re(fo(Da + Ea))e 0" <eR’L + 51> + / 0|2 1238 By imas
Br

4-48

_8Bf s— . 2 _ 85
0f*|g| e =t < 2B|g*n* 2 + (1 — 2B)|0f| T2 e 128" 125

Hence,

c._ c o
/ Re(fa(D@ + E@)) 2Bf778 2 < €R2:Z:1 =+ EIQ + — R2 / ’af‘ 1—22ﬁe 18_B2fﬁ A n 411_32
Br

C C C C 6-8p
2 5_1_
SeRL + 5T+ 5T + g + E/B =1
R
where we used the following Young inequality
2 88f 4-48 1
8 =T —172[3\11—,8 51225 < a 4 —lﬁﬂf\Ij—Qﬁ s—2

together with (3.5) and (3.8). From (2.1) we obtain

C C C
—2Bf, . s—2 2
/BR Re(fa(D@ + E@))e n S eR Il EIQ + RQIS R2 363

1—48
243

6-88
n5_174@

——T,+CR*, (3.12)

By using (3.12) in (3.11) we get

C C C.
26Ts eI+ 5 (B + L) + g T+ OF + Ty + 5T
C.
<eRM) + ——— =57 (o + T4 + I}) + €7 + ﬁz’ +CR?, (3.13)

where we used (3.6), (3.10) and the following Young inequality
Re(fana)|0f P~ < |ofl|om|0f e =2 < elof|'e™* T2 CLlof [P o~
Hence, by choosing /3, ¢ small enough and R large enough in (3.13) from (3.10) we have

Ty < T, < 2eR’T, + L +1}) + CR*. (3.14)

C
}22 366 (
Coming back to (3.4) we obtain, by using (3.14),

c( i A

<CeR’T + %I’ +2:R*T; + Rgcgﬁﬁ

C
W (IQ +I§) + CRQ,

i.e. for R large enough and ( small enough,

T, <C(e + B)R’T, +
(L, +T;) + CR?

<CeR*T, +

C

2
IQ S CeR Il R2 363

———T,+ CR?. (3.15)
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By using (3.9) in (3.15) we get
T, < CeR*T, + CR™ 4+ CR* < eR*T, + OR?. (3.16)
Finally, from (3.2) and (3.16) we obtain
I, <Ce + C,
i.e. for ¢ small enough

Il = M\If_ﬂns S C,

Br

and, from (3.16),
T, = / 9> U2 < CR2.
Br

Then
MU <.

Hl

In particular, from Lemma 2.2, it follows that

C 1/2 , , 1/2
MO < (/ MU~ 775) (/ |g[P U P~ )
H! supp|dn| supp|on|

1/2
<C ( qu—ﬁ) —0
AR

as R — o0, i.e.
M=0.

The conclusion follows arguing as in [23, Section 3].

4. PROOF OF THEOREM 1.2

In this section n > 2 and given R > 1, we choose, as in the previous section, a real
cut-off function 1 such that 7 = 1in Bgj,, n = 0in By and |0n| < & in Ag := Bgr\ Bgy2,
and s > 4.

From Lemma 2.3 we have

/775/\/1 SC/ 20119 P2 g|?
H! H!

¢ n— s—2 —
< [ exnvrp-2gg (4.1)
R? J,,
C

—— g | Re (fong)
AR
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where we used (2.5). Integrating by parts we get

c C 2(n—1)f s—2pr =
_ﬁ ﬁ/ARe ( Re (77 focgo‘c)

i C(S - 2) / e2(n—1)fRe (ns—?)fan&g)
R? Ap

120 P Re(g)

I Re (faag) =

+ N
R2 Ag
= ﬁ (N +To+ Ts) .
In particular, we have
/ 2 g)? < C(Gh + T + T). (4.2)
AR

From (2.11), using Young and Cauchy-Schwartz inequalities, we obtain

B [ et

AR

I
—

2 (n— 1fRe s— QfQ(D&—i-E@—G@)) +2/ 62(n71)fRe (nsz‘ang)
AR

R

< 1/ 2(n 1 f s’D —|—E G ’2 / eQ(nfl)fnsf4|af’2
2 AR 2 AR

+

2 [ U (10f1F + e of1?) n

AR

1 1 1V s
5/ 2(n 1)f s |D + Gy ‘—l-‘E — G, |—|—|G |) 2/ 62(" l)f77 4|8f12
AH AR

1 (n s— n— s—
5/ +1) f,n 2_'_4/ 2( 1)f’af‘4 2
AR

3 1
< 5/ nsM +§/ 62(7171 fnsf4‘af|2
Ap Ap
1
+_/ 62(n+1)f7]52_'_4/ 2(n 1)f’af|4 5—2
2 Ap Ar

where we also used the definitions of ¢ in (2.4) and of M in Proposition 2.1.
Now, we prove that

/ 2 =Dips=419f12 < CR?, (4.3)
AR

indeed, by Proposition A.1, we have

C
sup|<9f|2 <

Moreover, by assumption, in Az we have

an-1)f _ 20 2e=n o C
e U U < mor
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Therefore, using the volume estimate (2.1),

/ 62(n71)f,'7574’af’2 <
Ag B
and (4.3) follows. Then from (4.3) we have

n— s— C n— S—
/ DI of| < / 2D 2jg ] < C (4.4)
ARr AR

C_ |Br| < CR?,

Thus, from the previous computation, (4.3) and (4.4), we obtain

5= [ e <c |
Ag A

On the other hand

1 1
To= [ Re (funag) <5 [ 0Dy og g [ g o
Agr AR Ar

1
nSM+CR2+§/ 62(n+1)f775—2+0‘

R AR

2
C
SCRQ“'ﬁ : eQ(n—l)fns—2|g|2
R

and, for every ¢ > 0 small enough,

1
j3 :/ 62("_1)f775_2|8f|2Re(§) S_/ 62(n—1)f,,,]s—2|af|4+5/ 62(71—1)]”773—2|g|2
An 40 Ja,

AR
C
§_+5/ 62(’rz—1)f,r]5—2|g|2
) Ap

Thus, from (4.2) and (4.3), we obtain

C 1 C
/ 62(n_1)f778_2|g|2 <C nsM + _R2 + _/ e2(n+1)fns—2 + <_ + 5) / eQ(n—l)fns—2|g|2 )
Ap 6 AR AR

. 2 R?

For ¢ small enough and R large enough, we get
2
/ eQ(nfl)fn372|g|2 <C USM + CRQ + g/ e2(n+1)fn372 )
AR AR AR

Recalling (2.9), we have

1
/ A= 1f s =2 (\8f|4 + 2|0f)%e¥ + ge4f + f§> < C/ M + CR?
AR A

R

and therefore

/ 2Dl =21 912 < C/ M+ CR?. (4.5)
ARr AR
Going back to (4.1), for R large enough, we obtain
C
My < o [ e <c, (46)
H» R AR

Hence,

M<(C and / 62("_1)’0775_2|g|2 < CR?.
AR

H™
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In particular, from Lemma 2.3, it follows that

C 1/2 1/2
My < - (/ Mns) (/ 62(”_l)flgl277s_2)
H» supp|9on| supp|on|
1/2
<C ( / M) —0
AR

M=0.

The conclusion follows arguing as in [23, Section 3.

as R — oo, i.e.

APPENDIX A. GRADIENT ESTIMATES

In this section we will prove some gradient estimates on positive solutions of equation
(1.1), that we need in the proof of Theorem 1.2.

Proposition A.1. Let n € N and let u be a positive solution of (1.1). If

C
uw) £ —— 55 VEeH, (A1)
L+ g%
then there exists C' > 0 such that for every large enough R > 0
o C (A.2)
Byr\Br U R

Remark A.2. We explicitly note that, by Proposition A.1, if u is a positive solution of
(1.1) satisfying (A.1) and if f = %logu then

C
sup |0f]* < =
Bar\Br | | R?
for some C' > 0 and every large enough R > 0.

Proof of Proposition A.1. The proof follows arguments similar in spirit to [21], where the
authors consider harmonic functions for the sub-Laplacian. Let f = %logu and let

Vf = dea + faZ&-
Then we have, see also (2.3),
IVfI? = 2fafa = 21017,
Agn f = —n|Vf|? — 2ne*/,
VAunf = —nVApn f — dne* V f.
Now if 7 is any nonnegative smooth cutoff function on H" we define for every ¢ € (0, 1]
F=t(Vf" +tnfq),
where v > 0 is to be chosen later. Then we have

Agn F = tAun |V f1? + y°nDpn 3 + 298>V, V 3) + 712 f3 Agnny. (A.3)
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We recall the following Bochner Formula for the sub-Laplacian on the Heisenberg group
(see [10] and also [21, Lemma 2.3]): for every function v : H" — (0, 400) we have

Do [ VI 2 H (Do) + 03 + 2V Vg f) VI~V (A

1) we have

Moreover for every ¢ € (0, ;

2
(B f? = (=2F = (n = )|V = 2ne¥ + eyt f3)
g2 €
> S+ 2-(n—e) PV =221 /5 F, (A.5)
and

Age f§ = =8ne* f§ — 20V [, V f) + 2|V fo|? (A.6)
By (A.3)-(A.6) we obtain

2
Agn F > —F2 +2e(1 - )F|Vf] - ﬁt&?’mng + nt f3

2t
— 8nt62f]Vf\2 — 2nt(V|Vf|2,Vf> - 7|Vf]2 — 21/t\Vf0|2

+ Py (=8ne*! f§ = 2n(V £, V f3) + 2|V fo|*)
+ 4%y fo(Vn, V fo) + 12 f5 A,
Since
(VIVIP, V)= (GVE —tmV s —tyf5Vn, V)

then we have
NP = S P4 2e(1 = RIS = 24t f3F i
— 8nte¥ |V f|? — 20(VE, V) + 20>y f2(Vn, V) — %|Vf]2 — 2ut|V fo?
+ Pyn(=8ne? f3 + 2V fol?) + 4827 fo(Vn, V fo) + 27 3 Asny.
For every £ such that n(§) # 0 there holds

146%y fo(V0, V fo) | < |V fol* + 4t27| fo,

then
2
AP > S F 4221~ SFIVFE - 2t fiF 4+t
2t
— Snte! [V |2 — 20(VF, V) + 20t f2(V, V) — —|Vf!2 — 20t[V o2

+ t27n(—8ne2ff§ + 2|V fo?) — 2|V fo|* — 4ty | fo +¢2 f0 A1),
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For every ¢ such that 7(¢) # 0 we choose v = 22, then
2
Agn B > —F2—|—25( YRV - tsgvnng%—ntfg
4
~ Snte [V f? ~ 20(VE, Vf) + 2087 f5(V0. V) = |V

|V ?
— 8nt*yne?! f§ — 4t277f02 + 1[5 Apn).

Now note that for every & such that n(§) # 0

v
20825 f2(Vn, V f)| < >ntyn f2F + = = 3‘ :l :

hence

Agn F > —F2+25( SYFIV? = (n+2) tazfynng—i—ntfg
ntzv |V77|2

— 8nte* |V > — 2n(VF, Vf) —

Vn
7‘T|f§ + t27f02AH"77'

\Vfl2

— 8nt2'y7762ffg — 442

Let H = nF, then H > 0 and for every & such that H(&) # 0

AgnH > FAgnn +2(Vn,VF) + n[ F?4+2¢(1 = £)FIVf]? = (n+ 2) t*mfiF

7 IVM2

+ntf2 —8nte* |V f|? — 2n(VF,Vf) —

V 2
%fg + t27f3AH"77:| :

IVfI2

— 8nt?yne?! f& — 4t*y

Let n = n(|¢]) be a radial, nonnegative, smooth cutoff function such that n = 0 in
B% UBS,, n=1o0n Ar = Bag \ Bp and satisfying
2

C C
|V77| < }—%\/ﬁ; Agnn > _ﬁ

on H", for some C' > 0. Since u satisfies (A.1) we have

2f _ 2 <
e u§R2
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in Bsp \ Bgr. Since t € (0,1) and 0 < 5 < 1, at any & such that H({) > 0, which in
particular must satisfy & € BgR \ B%) we thus obtain

Ct 2
s H > = H +2t(Vn, VH) = 2tF|Vnf* + < B
n

4
+ |V f|? (25(1 — £)H — 8ne* — —)

~
Cy
2. 22 2\ .2 2f
+tn° £ (n— (n+ 2)e*yH — 8nye™ — 52R2)
—2ntn(VH,Vf) +2nt(Vn,Vf)H
2
et o, C
> EH - ﬁH—k%(VH, Vn—nnVf)
snC 4
2
+tn|V f| (25(1 —<)H - SR ;)

8nyC' Cvy
+ 2 f2 (n —(n+ %)5271-] — RZ 2R2> + 2nt(Vn, VfYH

Now we note that

C’ Vnl|? C
12nt(Vn, V f)H| < etH|V f|*n + t] 77”' H < etH|V f*n + L
Therefore we have
g2 C
tnAgn H — 2t(VH,Vn —nnV f) > H2 D
snC' 4
2 5
+tn|V f] (6(1 - 27)H ~ ;)

snyC Cry
+ 0’3 (n —(n+ ) H — —5 = 5sz> -

Choosing v = €2 R* we obtain

eR?

g Co
t 2(-H -
A (2 EgR2>

+ t*n? f2 (n —(n+ %)5%R2H — 005%) ,

for some Cy > 0. H achieves its positive maximum on B% R\ B% at some point p €
Bsp \ Br. If H, = H(p) and 7. = n(p) then

Co \ H. Cy
> (e2H, — =% 2 (g
0_(6 Rg) L mivs ( R)

02 f3 (n — (n+ 2)eiR?H, — cog%>

tnApn H — 20(VH,Vn —nnV f) > ( 2py _ 0 ) =
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We claim that there exist C' > 0, Ry > 0 such that at t =1
2C
R

for every R > Ry. If not, by contradiction, for every C' > 0, Ry > 0 there exists R; > Ry
such that at t =1

H, <

2C
H, > R
Now note that H (and thus also H,) are continuous functions in ¢ € [0, 1], satisfying
H.,=0fort =0 and H, > ?%—CQ for t = 1. Then for every C' > 0, Ry > 0 there exist
Ry > Ry, t1 € (0,1) such that a11: t=1t;

C
H, ik

We choose C' = 6%, Ry =1, then at t = t;, R = Ry we have from (A.7)

1 CO H 1 C(] 1
0> (5 —— | —+tn|VSP — t“2(— 2+ C z>>0
- (52Rf &tR%) n +1 V] (253]%% 53}3%) +t'n fo (n—(n+ 5+ Co)e
if we choose € > 0 small enough, thus reaching a contradiction. We conclude that there
exist C, Ry > 0 such that at t =1
C

H,= max H < —
* Bgp\Bg R?

for every R > Ry, which in turn implies that

sup |[Vf*< max H < %
Bar\Br SpR\PR R
for every R > Ry. Recalling the definition of f, we conclude that (A.2) holds. O

We conclude the section with a second gradient estimate, that may have some inde-
pendent interest. Since we do not need this estimate in the proof of our other results, and
since its proof follows using similar arguments as those employed in Proposition A.1, we
state the result without proof.

Proposition A.3. Let n € N and let u be a positive solution of (1.1). If u is bounded
on H"™, then @ 18 also bounded on H™.
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