
NEW WEIGHTED INEQUALITIES ON TWO–MANIFOLDS

ARIA HALAVATI

Abstract. We establish a new class of L2-weighted elliptic estimates

on smooth two-manifolds for a family of weights satisfying an equation

with explicit constants. This family includes weights that are compara-

ble to the product of positive powers of the geodesic distance to a given

collection of points. Our primary motivation is to derive estimates re-

lated to a weighted Hodge decomposition for one-forms.

1. Introduction

1.1. Motivation. This article is primarily motivated by the weighted Hodge

decomposition of one-forms on a Riemannian two-manifold M2 (Lemma 1.1)

with boundary. Some weights under consideration take the following form:

ω(x) ∼ ΠN
k=1dM (x, xk)

αk .

Here {xk}Nk=1 ⊂ M2 is a collection of points, and dM (x, y) is the geodesic

distance on M2 with αk > 0.

This article, along with [5, 4], forms the first part of a trilogy and es-

tablishes the main analytical tools and estimates used in the proof of quan-

titative stability for Yang–Mills–Higgs instantons in [5]. We present these

results in a more general setting, as we believe they may be useful in other

contexts.

To motivate our approach, we first extend the classical Hodge decom-

position to the weighted setting. The standard Hodge decomposition of a

one-form A seeks the nearest closed (or co-closed) form to A in a variational

sense. In the weighted case, consider the toy model with weight |x|2 and the

following variational problem:

inf
ϕ∈C∞

c (M2)

ˆ
B2

1

|x|2|A− ⋆dϕ|2 ,(1.1)

A natural function space for this problem is:

X = {ϕ ∈ C∞
c (B2

1) :

ˆ
B2

1

|x|2|dϕ|2 < ∞} ,

1
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equipped with a weighted inner product:

⟨ϕ1, ϕ2⟩X :=

ˆ
B2

1

|x|2⟨dϕ1, dϕ2⟩ .

Taking the completion X under the induced norm gives a natural framework

for solving (1.1) via the direct method in the calculus of variations.

A key result, following from a special case of the Caffarelli-Kohn-Nirenberg

(CKN) interpolation inequalities [2], states that:

∀f ∈ C∞
c (R2) :

ˆ
R2

|f |2 ≤
ˆ
R2

|x|2|df |2 ,

As shown in [3], these inequalities admit a geometric interpretation under

the log-polar transformation

B2
1 ∋ x⇝ (− log(|x|), θ) ∈ [0,∞)× S1.

with u = |x|f which transforms the weighted term into a Sobolev norm on

the infinite cylinder:ˆ
R2

|x|2|df |2 =
ˆ
S1×[0,∞)

|u|2 + |du|2 dvolS1×[0,∞) .

Using weak lower semicontinuity in Sobolev spaces—either on the cylinder

or directly via CKN inequalities—we obtain a minimizer ϕ of (1.1). The

associated Euler–Lagrange equation is

d(|x|2(A− ⋆dϕ)) = 0 ,

implying that A− ⋆dϕ is closed. Since it has zero trace, it follows that:

|x|A = |x| ⋆ dϕ+ |x|−1dξ .

for some compactly supported function ξ. This is the weighted Hodge de-

composition, which satisfies the following orthogonality relation:ˆ
B2

1

|x|2|A|2 =
ˆ
B2

1

|x|2|dϕ|2 + |x|−2|dξ|2 .

Comparing the standard Hodge decomposition A = ⋆dp + dq with the

weighted one, we obtain the key estimate (among other results):ˆ
B2

1

|x|2+2ε|d(ϕ− p)|2 ≤ Cε−2

ˆ
B2

1

|x|−2|dξ|2 .

In fact we show that the co-closed part of the weighted and the standard

decomposition are L2-close.
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1.2. General formulation and examples of weights. In this article, we

extend this heuristic to all weights satisfying a weak formulation (Defini-

tion 2.1) of the differential equation

(1.2) ω2∆g log(ω) = −κ(x)ω2 ,

where ω is a positive weight in W 1,2(M2), and ∆g is the Laplace–Beltrami

operator on a smoothm, connected Riemannian two–manifold (M2, g) (with

boundary).

This formulation allows us to handle weights that vanish at multiple

points, with the advantage that the proofs rely on careful but elementary

integration by parts, yielding uniform constants.

We mention a few examples:

• For any bounded open subset Ω ⊂ R2 and a weight ω as follows:

ω(x) = ΠN
i=1|x− xi|αi for x1, . . . , xN ∈ Ω ⊂ R2 and α1, . . . , αN > 0 .(1.3)

• For any bounded open domain Ω ⊂ M2 of a smooth two manifold, let Gp

be the green’s function for Ω centered on p and ω as follows:

ω(x) = ΠN
i=1e

−αiGpi (x) for p1, . . . , pN ∈ Ω ⊂ M2 and α1, . . . , αN > 0 .

(1.4)

Note that the weights of (1.4) are comparable:

C−1PiNi=1dM (x, xi)
pi ≤ ω(x) ≤ CPiNi=1dM (x, xi)

pi ,

where dM (x, y) is the geodesic distance on M between x, y.

Our results improve upon Caffarelli-Kohn-Nirenberg inequalities [2] in

two dimensions by proving estimates for a broader class of weights, including

those vanishing at multiple points. Notably, these weights do not belong to

any Muckenhoupt class but instead resemble Carleman-type estimates in a

different regime [1]. A similar strategy has been explored in the radial case

in [6].

1.3. Main results. Let Ω ⊂ M2 be a smooth open connected domain and

let λ1 be the first Dirichlet eigenvalue of the Laplace-Beltrami operator on

Ω.

The central result is the following estimate regarding the weighted Hodge

decomposition:

Lemma 1.1. Let (M2, g) be a Riemannian two–manifold and let Ω ∈ M2

be a smooth open domain and ω is a weight as in Definition 2.1 with κ = 0.
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Any smooth one-form A ∈ C∞
c (

∧1Ω) has a Hodge decomposition and a

weighted Hodge decomposition as follows:

A = ⋆dξ1 + dξ2 and ωA = ⋆ωdϕ1 + ω−1dϕ2 ,

for 4 compactly supported functions ξ1, ξ2, ϕ1, ϕ2. Moreover for any 0 ≤ ε ≤
C we have the estimates:

∥ω1+εd(ξ1 − ϕ1)∥2L2(Ω) ≤ C
(supΩ ω)2ε

ε2
∥ω−1dϕ2∥2L2(Ω) .

This estimates is a corollary of the following inequalities:

First we provide a generalization of Caffarelli-Kohn-Nirenberg interpola-

tion inequalities in two dimensions:

Theorem 1.2. Let (M2, g) be a smooth two–manifold and a weight ω as in

Definition 2.1 and Ω ⊂ M2 a smooth open domain. Then for any function

f ∈ C∞
c (Ω) we have that:

(1.5)

ˆ
Ω
|∇ω|2|f |2dvolg ≤

ˆ
Ω
ω2|∇f |2dvolg ,

provided that κ ≤ λ1.

In the next theorem we provide a homogeneous elliptic estimate:

Theorem 1.3. Let (M2, g) be a smooth two–manifold and a weight ω as in

Definition 2.1 and Ω ⊂ M2 a smooth open domain. Then for any function

f ∈ C∞
c (Ω) we have that:

(1.6)

ˆ
Ω
ω2|∇f |2dvolg ≤ τ−1

ˆ
Ω
2

ω4

|∇ω|2
|∆gf |2 + 5|∇ω|2|f |2dvolg ,

provided that −λ1
8 (2− τ) ≤ κ ≤ λ1 for some 0 ≤ τ ≤ 2.

Theorem 1.4 is the main ingredient used in the proof of the Lemma 1.1 on

the weighted Hodge decomposition. We break the homogeneity to remove

the term |∇ω|f from the right hand side, thereby introducing a constant on

the right hand side as follows:

Theorem 1.4. Let (M2, g) be a smooth two–manifold and a weight ω in

Definition 2.1 with κ = 0 and ε ≥ 0 and Ω ⊂ M2 a smooth open domain.

Then for any function f ∈ C∞
c (Ω) we have that:

(1.7)

ˆ
Ω
ω2+2ε|∇f |2dvolg ≤ C

(supΩ ω)2ε

ε2

ˆ
Ω

ω4

|∇ω|2
|∆gf |2dvolg ,

with the bound C ≤ 8ε2+5(1+ε)4

8(1+ε)2
which is comparable to 5

8 as ε → 0.
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Note that the Laplace-Beltrami operator ∆g on functions u ∈ W 1,2(M, g)

is defined by the duality relation below:ˆ
Ω
−∆guv dvolg =

ˆ
Ω
⟨∇u,∇v⟩ dvolg , for all v ∈ W 1,2

0 (Ω).

In a special case, Theorem 1.2 and 1.4 provide weighted elliptic estimates

for the weight ω = |x|α:ˆ
R2

|x|2(α−1)|f |2 ≤ α−2

ˆ
R2

|x|2α|∇f |2 ,

ˆ
R2

|x|2α|∇f |2 ≤ α−2

ˆ
R2

|x|2(α+2)|∆f |2 + α2

ˆ
R2

5

2
|x|2(α−1)|f |2 ,

ˆ
B1

|x|2(α+ε)|∇f |2 ≤ C(εα)−2

ˆ
B1

|x|2(α+1)|∆f |2 ,

provided that α > 0.

The methods throughout the paper are inspired by [2] and [3] and are

quiet elementary and only use Stokes theorem. A crucial part of our proof,

equation (2.5), uses Lemma 2.2 which is an identity about symmetric ma-

trices in two dimensions which does not hold in other dimensions.

Remark. In the case of unbounded domains (e.g. M2 = R2) we set λ1 = 0

in Theorem 1.2 and 1.3.

Remark. Theorem 1.2 and 1.3 also work for the case of closed two–manifolds

Ω = M2 with the assumption that
´
Ω ωf dvolg = 0. However Theorem 1.4

is a trivial statement for closed manifolds since κ = 0, meaning:

∆gω
2 = 4|dω|2 ≥ 0 ,

which are just constants on close manifolds.

2. The Proof

Definition 2.1. The weak formulation of (1.2) for a weight ω ∈ W 1,2(M2)

is as follows: For any smooth test function ϕ ∈ C∞
c (M2) we have that:ˆ

Ω
(4|∇ω|2 − 2κω2)ϕ− ω2∆gϕ dvolg = 0 .

To prove Theorem 1.2 to 1.4 we use Stokes theorem to relate the integral

of a carefully chosen positive term, to the difference of the right and the left

hand side of (1.5) to (1.7).
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Proof of Theorem 1.2. We begin with the identity below:

0 ≤
ˆ
Ω
|∇(ωf)|2 dvolg =

ˆ
Ω
|ω∇f +∇ωf |2 dvolg

=

ˆ
Ω
ω2|∇f |2 + |∇ω|2|f |2 + 2⟨ω∇ω,∇ff⟩ dvolg .

After completing the derivative for the cross term and using Definition 2.1

we see that:ˆ
Ω
2⟨ω∇ω,∇ff⟩ dvolg =

ˆ
Ω
−ω2

2
∆g(f

2) dvolg =

ˆ
Ω
(κω2−2|∇ω|2)|f |2 dvolg .

Then we use κ ≤ λ1 to estimate:ˆ
Ω
κω2|f |2 dvolg ≤

ˆ
Ω
|∇(ωf)|2 dvolg .

Finally we conclude that:

0 ≤
ˆ
Ω
ω2|∇f |2 − |∇ω|2|f |2 dvolg .

□

Proof of Theorem 1.3. Similarly we begin by integrating a positive term:

0 ≤
ˆ
Ω

∣∣ ω2

|∇ω|
∆gf+|∇ω|f

∣∣2 dvolg =

ˆ
Ω

ω4

|∇ω|2
|∆gf |2+2ω2f∆gf+|∇ω|2|f |2 dvolg .

By Stokes theorem for the cross term and Definition 2.1 we get that:ˆ
Ω
2ω2f∆gf dvolg =

ˆ
Ω
−2ω2|∇f |2 + (4|∇ω|2 − 2κω2)|f |2 dvolg .

Since the assumption for an unbounded domain is κ = 0 the proof follows

immediately. Otherwise by the assumption −κ ≤ λ1(
1
4 − τ

8 ) we see that:ˆ
Ω
−2κ|ωf |2 dvolg ≤ λ1(

1

2
− τ

4
)

ˆ
Ω
|ωf |2 dvolg .

By the characterization of the first eigenvalue of the Laplace-Beltrami op-

erator ∆g we see that:

λ1(
1

2
− τ

4
)

ˆ
Ω
ω2|f |2 dvolg ≤ (

1

2
− τ

4
)

ˆ
Ω
|∇(ωf)|2 dvolg .

Since κ ≤ λ1 , Theorem 1.2 applies and we get that:

(
1

2
− τ

4
)

ˆ
Ω
|∇(ωf)|2 dvolg ≤ (2− τ)

ˆ
Ω
ω2|∇f |2 dvolg .

Finally putting the estimates together, we conclude that:

0 ≤
ˆ
Ω
2

ω4

|∇ω|2
|∆gf |2 + 5|∇ω|2|f |2 − τω2|∇f |2dvolg .
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□

In the proof of Theorem 1.4 we deal with the weighted hessian matrix

ω2∇2 log(ω) and by the condition (1.2) we know that it is a two dimensional

symmetric trace-free matrix. The following lemma uses this structure and it

is essential in the proof of Theorem 1.4:

Lemma 2.2. Let A ∈ R2×2 be a symmetric matrix, namely AT = A. Then

we have that for any two real vectors b, c ∈ R2:

(2.1) 2⟨A : b⊗ c⟩⟨b, c⟩ − ⟨A : b⊗ b⟩|c|2 − (A : c⊗ c)|b|2 = trace(A)⟨b, c⊥⟩2 ,

where ⟨:⟩ is the matrix element-wise inner product and c⊥ is the perpendic-

ular vector to c.

Proof. We first calculate the expression above in dimension n. Since A is

symmetric, it has n distinct perpendicular eigen-vectors ei with real eigen-

values µi. Then setting bi = ⟨b, ei⟩ and ci = ⟨c, ei⟩ we compute:

2⟨A : b⊗ c⟩⟨b, c⟩ − ⟨A : b⊗ b⟩|c|2 − (A : c⊗ c)|b|2

=
∑

1≤i,j≤n

µi(aicj − ciaj)
2 .

In the case n = 2:

2⟨A : b⊗ c⟩⟨b, c⟩ − ⟨A : b⊗ b⟩|c|2 − (A : c⊗ c)|b|2 = trace(A)(b1c2 − c1b2)
2 .

□

Proof of Theorem 1.4. First we integrate a carefully chosen positive term of

the form below:

0 ≤
ˆ
Ω

∣∣ ω2

|∇ω|
∆gf + 2ω⟨ ∇ω

|∇ω|
,∇f⟩+ 2|∇ω|f

∣∣2 dvolg
=

ˆ
Ω

ω4

|∇ω|2
|∆gf |2 + 4ω2⟨ dω

|∇ω|
,∇f⟩2 + 4|∇ω|2|f |2(2.2)

+ 4
ω3

|∇ω|2
⟨∇ω,∇f⟩∆gf + 4ω2∆gff + 8⟨ω∇ω, f∇f⟩ dvolg .(2.3)

Then for the first cross term in (2.3) we calculate by Stokes theorem and

(1.2) (with the weak formulation in Definition 2.1) and the assumption κ ≥ 0
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that: ˆ
Ω
4

ω3

|∇ω|2
⟨∇ω,∇f⟩∆gf dvolg

=

ˆ
Ω
2divg(

ω3

|∇ω|2
dω)|∇f |2 − 4∇(

ω3

|∇ω|2
∇ω) : ∇f ⊗∇f dvolg

=

ˆ
Ω
(4ω2 − 4

ω4

|∇ω|4
∇2(log(ω)) : ∇ω ⊗∇ω)|∇f |2(2.4)

− 4⟨∇(
ω3

|∇ω|2
∇ω) : ∇f ⊗∇f⟩ dvolg .

The last line follows from:

2divg(
ω3

|∇ω|2
dω) = 2

ω3

|∇ω|2
∆ω + 6ω2 − 4

ω3

|∇ω|4
∇2ω : ∇ω ⊗∇ω

= 4ω2 + 2
ω4

|∇ω|2
∆(log(ω))− 4

ω4

|∇ω|4
⟨∇2 log(ω) : ∇ω ⊗∇ω⟩

= 4ω2 − 4
ω4

|∇ω|4
⟨∇2 log(ω) : ∇ω ⊗∇ω⟩ .

Here we used the following identity:

ω∇2ω = ω2∇2 log(ω) +∇ω ⊗∇ω ,

for the second and third term in (2.4). We get that:

− 4⟨∇(
ω3

|∇ω|2
∇ω) : ∇f ⊗∇f⟩ − 4

ω4

|∇ω|4
⟨∇2 log(ω) : ∇ω ⊗∇ω⟩|∇f |2

=− 8ω2⟨∇f,
∇ω

|∇ω|
⟩2 + 4

ω4

|∇ω|4
[
2⟨∇2 log(ω) : ∇ω ⊗∇f⟩⟨∇ω,∇f⟩

−⟨∇2 log(ω) : ∇f ⊗∇f⟩|∇ω|2 − ⟨∇2 log(ω) : ∇ω ⊗∇ω⟩|∇f |2
]
.

(2.5)

We apply Lemma 2.2 with:

A = ω2∇2 log(ω) , b =
∇ω

|∇ω|
and c = ∇f ,

and trace(A) = ω2∆g log(ω) = 0 to see that:

−4⟨∇(
ω3

|∇ω|2
∇ω) : ∇f ⊗∇f⟩ − 4

ω4

|∇ω|4
⟨∇2(log(ω)) : ∇ω ⊗∇ω⟩|∇f |2

= −8ω2⟨∇f,
∇ω

|∇ω|
⟩2 .

For the second and third cross term in (2.3) we see that:ˆ
Ω
4ω2∆gff + 8⟨ω∇ω, f∇f⟩ dvolg =

ˆ
Ω
−4ω2|∇f |2 dvolg .
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Then putting the estimates together we see that:

(2.6) 4

ˆ
Ω
ω2⟨∇f,

∇ω

|∇ω|
⟩2 − |∇ω|2|f |2 dvolg ≤

ˆ
Ω

ω4

|∇ω|2
|∆gf |2 dvolg .

Using (1.2) with κ = 0 we get that for (2.6):

ˆ
Ω
ω2⟨∇f,

∇ω

|∇ω|
⟩2 − |∇ω|2|f |2 dvolg

=

ˆ
Ω
|ω⟨∇f,

∇ω

|∇ω|
⟩+ |∇ω|f |2 dvolg

≥(sup
Ω

ω)−2ε

ˆ
Ω
ω2ε|ω⟨∇f,

∇ω

|∇ω|
⟩+ |∇ω|f |2 dvolg .(2.7)

Notice that ω1+ε also satisfies (1.2) weakly in the case of κ = 0, so we

compute (2.7) as follows:

ˆ
Ω
ω2ε|ω⟨∇f,

∇ω

|∇ω|
⟩+ |∇ω|f |2 dvolg

=

ˆ
Ω
ω2+2ε⟨∇f,

∇ω

|∇ω|
⟩2 + ω2ε|∇ω|2|f |2 + 2ω1+2ε⟨∇ω,∇f⟩f dvolg

=

ˆ
Ω
ω2+2ε⟨∇f,

∇ω

|∇ω|
⟩2 + ω2ε|∇ω|2|f |2 −∆g(

ω2+2ε

2 + 2ε
)|f |2 dvolg

=

ˆ
Ω
⟨∇f,

∇ω

|∇ω|
⟩2 − (1 + 2ε)ω2ε|∇ω|2|f |2 dvolg .(2.8)

Notice that for ω1+ε we have:

0 ≤
ˆ
Ω
ω2ε|ω⟨∇f,

∇ω

|∇ω|
⟩+ (1 + ε)|∇ω|f |2 dvolg

=

ˆ
Ω
ω2+2ε⟨∇f,

∇ω

|∇ω|
⟩+ (1 + ε)2ω2ε|∇ω|2|f |2

+ 2(1 + ε)ω1+2ε⟨∇ω,∇f⟩f dvolg

=

ˆ
Ω
ω2+2ε⟨∇f,

∇ω

|∇ω|
⟩ − (1 + ε)2ω2ε|∇ω|2|f |2 dvolg .

We expand the square (1 + ε)2 to get a lower bound for (2.8):

ˆ
Ω
⟨∇f,

∇ω

|∇ω|
⟩2 − (1 + 2ε)ω2ε|∇ω|2|f |2 dvolg ≥ ε2

ˆ
Ω
ω2ε|∇ω|2|f |2 dvolg .

and we get a preliminary inequality as follows:

(2.9)

ˆ
Ω
ω2ε|∇ω|2|f |2 dvolg ≤ (supΩ ω)2ε

4ε2

ˆ
Ω

|ω|4

|∇ω|2
|∆gf |2 dvolg .
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Then we use Theorem 1.3 for ω1+ε and κ = 0 and τ = 2 to see that:ˆ
Ω
2ω2+2ε|∇f |2 dvolg

≤
ˆ
Ω
2

ω4+2ε

(1 + ε)2|∇ω|2
|∆gf |2 + 5(1 + ε)2ω2ε|∇ω|2|f |2 dvolg .

Finally we use (2.9) to conclude that:ˆ
Ω
ω2+2ε|∇f |2 dvolg ≤ (

8ε2 + 5(1 + ε)4

8(1 + ε)2
)
(supΩ ω)2ε

ε2

ˆ
Ω

ω4

|∇ω|2
|∆gf |2 dvolg .

□

Remark 2.3. In the case of M2 = B2
1(0) ⊂ R2 and ω = |x| after the log-

polar transformation B2
1 → R+ × S1 = C by the map t = − log(|x|) and

θ = arctan( yx) or equivalently a conformal change of metric with the factor
1

|x|2 and defining f = |x|−1u for f ∈ C∞
1 (B2

1(0)) we can see that:
ˆ
B2

1(0)
|∇ω|2|f |2 =

ˆ
C
|u|2dvolC ,(2.10)

ˆ
B2

1(0)
ω2|∇f |2 =

ˆ
C
|∇u|2 + |u|2dvolC ,

ˆ
B2

1(0)

ω4

|∇ω|2
|∇f |2 =

ˆ
C
|∆u+ 2∂tu+ u|2dvolC .(2.11)

After squaring and integrating by parts we see that (2.11) becomes:ˆ
B2

1(0)

ω4

|∇ω|2
|∇f |2 =

ˆ
C
|∂ttu|2 + |∂tθu|2 + 2|∂tu|2 + |∂θθu+ u|2 .

We can see that if u(t, θ) = sin(θ) then (2.11) vanishes however (2.10) does

not vanish so the term |∇ω|f on the right hand side of (1.6) is necessary.

However the extra ε in the powerˆ
B2

1(0)
ω2+2ε|∇f |2 =

ˆ
C
(|∇u|2 + |u|2)e−2εtdvolC ,

compactifies the domain R+×S1 with a total measure of ε−2. This provides

some insight on Theorem 1.4 and the constants in (1.7).

We conclude the paper with the proof of the weighted Hodge decomposi-

tion estimates:

Proof of Lemma 1.1. We consider the two variational problems below:

inf
ξ∈C∞

c (Ω)

ˆ
Ω
|A− ⋆dξ|2 dvolg and inf

ϕ∈C∞
c (Ω)

ˆ
Ω
ω2|A− ⋆dϕ|2 dvolg .(2.12)
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Let W 1,2
0 (ω2,Ω) be the completion of C∞

c (Ω) under the ω2-weighted norm

∥u∥
W 1,2

0 (ω2,Ω)
=

ˆ
Ω
ω2(|u|2 + |du|2) .

By Theorem 1.2 we see that

C−1∥u∥W 1,2(ω2,Ω) ≤ ∥ωu∥W 1,2(Ω) ≤ C∥u∥W 1,2(ω2,Ω) ,

and by the equivalence of the norms, the family of functions {u : ωu ∈
W 1,2

0 (Ω)} is equivalent to W 1,2
0 (ω2,Ω) the existence of minimizers of (2.12)

follows from convexity and the direct method in the calculus of variations.

The Euler Lagrange equations for minimizers tell us that

⋆d(A− ⋆dξ1) = 0 ⇒ there exists ξ2 such that A− ⋆dξ1 = dξ2 and

⋆d(ω2(A− ⋆dϕ1)) = 0 ⇒ there exists ϕ2 such that ω2(A− ⋆dϕ1) = dϕ2 .

in the sense of distributions. Then with a direct application of Theorem 1.4

∥ω1+εd(ξ1 − ϕ1)∥2L2(M2) ≤ C
(supM2 ω)2ε

ε2
∥ ω2

|dω|
∆g(ξ1 − ϕ1)∥2L2(M2)

and

∥ ω2

|dω|
∆g(ξ1−ϕ1)∥2L2(M2) = ∥ ω2

|dω|
d(ω−2dϕ2−dξ1)∥2L2(M2) = 4∥ω−1dϕ2∥2L2(M2) .

we conclude the proof. □
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