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Abstract

We consider a curve with boundary points free to move on a line in R2, which evolves
by the L2-gradient flow of the elastic energy, that is, a linear combination of the Will-
more and the length functional. For this planar evolution problem, we study the short
and long-time existence. Once we establish under which boundary conditions the PDE’s
system is well-posed (in our case the Navier boundary conditions), employing the Solon-
nikov theory for linear parabolic systems in Hölder space, we show that there exists a
unique flow in a maximal time interval [0, T ). Then, using energy methods we prove
that the maximal time is T = +∞.
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tence.

Mathematics Subject Classification (2020): Primary 53E40; 35G31, 35A01.

Contents

1 Introduction 2

2 The elastic flow 4
2.1 Preliminary definitions and notation . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Formal derivation of the flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Definition of the geometric problem . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Energy monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Short-time existence 9
3.1 Definition of the analytic problem . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Short-time existence of the analytic problem . . . . . . . . . . . . . . . . . . . . 13
3.4 Geometric existence and uniqueness . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Curvature bounds 18
4.1 Bound on ∥∂2sk∥L2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Bound on ∥∂6sk∥L2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Long-time existence 33

*Scuola Superiore Meridionale, Largo San Marcellino 10, 80138, Naples, Italy

1



6 Appendix 35

1 Introduction

In this paper, we consider the geometric evolution of a curve with a partially free boundary.
To be more precise, we consider the gradient flow of the elastic energy under the constraint
that the boundary points of the curve have to remain attached to the x-axis.

This paper fits within the broad range of topics on the geometric evolution of curves
and surfaces, where the evolution law is dictated by functions of curvature. These topics
have recently gained increasing attention from the mathematical community due to their
applications to various physical problems and the fascinating challenges they present in
analysis and geometry.

The elastic energy of a curve is a linear combination of the L2-norm of its curvature κ
(also known as one-dimensional Willmore functional) and its weighted length, namely

E(γ) =
∫
γ
|κ|2 + µds

where µ > 0.
Before passing to the evolutionary problem, we say a few words about the critical points

of the energy E , known as elasticae or elastic curves. As explained in [49], elasticae have been
studied since the time of Bernoulli and Euler, who used elastic energy as a model for the
bending energy of elastic rods. Still later, Born, in his Thesis of 1906, plotted the first figures
of elasticae, using numerical schemes. However, in the last decades, many authors con-
tribute to their classification, for instance, we refer to Langer and Singer [26, 27], Linnér [30],
Djondjorov et al. [18] and Langer and Singer [28], Bevilacqua, Lussardi and Marzocchi [9],
the same authors with Ballarin [8], for the case of a functional which depends both on the
curvature and the torsion of the curve. More recently, Miura and Yoshizawa in a series of
papers [37, 36, 38], give a complete classification of both clamped and pinned p-elasticae.

In this paper, we aim to study the L2-gradient flow of E . To the best of our knowledge,
the problem was introduced by Polden in his PhD Thesis [43], where it is shown that given
as initial datum a smooth immersion of the circle in the plane, then there exists a smooth so-
lution to the gradient flow problem for all positive times which sub-converges to an elastica.
Then, Dziuk, Kuwert and Schätzle generalized the global existence and sub-convergence
result to Rn and derived an algorithm to treat the flow and compute several numerical ex-
amples. Later, the evolution of elastic curves has been extended and studied in detail both
for closed curves (see for instance [19, 33, 43, 44]) as well as for open curves with Navier
boundary conditions in [39, 40] and clamped boundary conditions in [16, 40, 29, 48]. We
also recall that a slightly different problem was tackled, among others, by Wen in [50] and
by Rupp and Spener in [45], where the authors analyzed the elastic flow of curves with
a nonzero rotation index and clamped boundary conditions respectively, which are in both
cases subject to fix length and in [25, 41, 42] where a variety of constraints are considered. For
the sake of completeness, we also mention that the L2-gradient flow of

∫
γ |κ|

2 ds for curve
subjected to fix length is studied in [12, 13, 19], indeed other fourth (or higher) order flows
are analyzed, for instance, in [15, 51, 1, 2, 35, 34, 52]. Finally, we mention the survey [32] for
a complete review of the literature and we recommend all the references therein.
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As already said, in this paper, we let evolve a curve supposing that it remains attached to
the x-axis. To derive the flow, we start by writing the associated Euler-Lagrange equations
and in particular we find suitable “natural” boundary conditions for this problem (these
boundary conditions are known in the literature as Navier conditions). We thus get that the
evolution can be described by solutions of a system of quasilinear fourth order with bound-
ary conditions in (2.7), namely the attachment condition, second and third order conditions.
We then introduce a class of admissible initial curves of class C4+α with α ∈ (0, 1) which
needs to be non-degenerate, in the sense that the y-component of the unit tangent vector
must be positive at boundary points, and satisfy (in addition to the conditions mentioned
above) an extra fourth order condition (see Definition 2.2).

Then, we establish well-posedness of the flow. More precisely, starting with a (geomet-
rically) admissible initial curve we prove in Theorem 3.14 that there exists a unique (up to
reparametrization) solution to the flow in a small time interval [0, T ] with T > 0, that can be
described by a parametrization of class C

4+α
4
,4([0, T ]× [0, 1]).

To do so, we choose a specific tangential velocity turning the system (2.9) into a non-
degenerate parabolic boundary value problem without changing the geometric nature of
the evolution (namely the analytic problem (3.2)). Then, we solve the analytic problem using
a linearization procedure and a fixed point argument. The main difficulty is actually to
solve the associated linear system (3.5), coupled with extra compatibility conditions (see Def-
inition 3.4), employing the Solonnikov theory for linear parabolic systems in Hölder space
introduced in [47], as it is shown in Theorem 3.5.

Once we have a solution for the analytic problem, the key point is to ensure that solv-
ing (3.2) is enough to obtain a unique solution to the original geometric problem. This is shown
in Theorem 3.14, following the approach presented in [20] and later in [21].

The second natural step is trying to understand the long-time behavior of the evolving
curves. This leads to our main result.

Theorem 1.1. Let γ0 be a geometrically admissible initial curve and γt be a solution to the elastic
flow with initial datum γ0 in the maximal time interval [0, T ) with T ∈ (0,∞) ∪ {∞}. Then, up to
reparametrization and translation of γt, it follows

T = ∞

or at least one of the following holds

• the inferior limit of the length of γt is zero as t→ T ;

• the inferior limit of the y-component of the unit tangent vector at the boundary is zero as t→ T .

Even though the structure of the proof of this result is based on a contradiction argument
already present in the literature (see for instance [43, 19, 32, 14, 22]) this is the most technical
part of the paper and it contains relevant novelties.
We find energy type inequalities, more precisely bounds on the L2-norm of the second and
sixth derivative of the curvature, which leads to contradicting the finiteness of T . Those
estimates, which involved the smallest number of derivatives, can be derived under the as-
sumption that during the evolution the length is uniformly bounded away from zero and
that the curve remains non-degenerate in a uniform sense (see Definition 4.4).
Moreover, we underline that only estimates for geometric quantities, namely the curvature,
are needed. In particular, the proof itself is independent of the choice of tangential velocity
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which corresponds to the very definition of the flow, where only the normal velocity is pre-
scribed. For this reason, following [14], we reparametrize the flow in such a way that the
tangential velocity linearly interpolates its values at boundary points (see condition (4.13))
and such that suitable estimates both inside and at boundary points hold. With this choice
and the uniform bounds for the curvature, we can extend the flow smoothly up to the time
T given by the short-time existence result and then restart the flow, contradicting the maxi-
mality of T .
In short, our approach combines the one presented in [14] and the other in [22], in the sense
that we choose a tangential velocity as explained above and we use the minimum number of
derivatives (and hence of estimates) which are needed to conclude the proof of Theorem 1.1.

This work is organized as follows: in the next section we formulate the geometric evo-
lution problem for elastic curves and we show that those curves decrease the energy E . In
Section 3 we show short-time existence of a unique smooth solution using the Solonnikov
theory and a contraction argument. We also show geometric uniqueness. In the final Sec-
tion 5, we prove the long-time existence result using the curvature bounds provided in Sec-
tion 4.

2 The elastic flow

2.1 Preliminary definitions and notation

A regular curve is a continuous map γ : [a, b] → R2 which is differentiable on (a, b) and
such that |∂xγ| never vanishes on (a, b). Without loss of generality, from now on we consider
[a, b] = [0, 1].

We denote by s the arclength parameter, then ∂s := 1
|∂xγ|∂x and ds := |∂xγ|dx are the

derivative and the measure with respect to the arclength parameter of the curve γ, respec-
tively.

From now on, we will pass to the arclength parametrization of the curves without further comments.

If we assume that γ is a regular planar curve of class at least C1, we can define the unit tan-
gent vector τ = |∂xγ|−1∂xγ and the unit normal vector ν as the anticlockwise rotation by π/2
of the unit tangent vector.

We introduce the operator ∂⊥s that acts on vector fields φ defined as the normal component
of ∂sφ along the curve γ, that is ∂⊥s φ = ∂sφ − ⟨∂sφ, ∂sγ⟩ ∂sγ. Moreover, for any vector
ψ(·) ∈ R2, we use the notation (ψ(·)1,ψ(·)2) to denote the projection on the x-axis and y-axis,
respectively.

Let µ > 0. Assuming that γ is of class H2, we denote by κ = ∂sτ the curvature vector and
we define the elastic energy with a length penalization

E(γ) =
∫
γ
|κ|2 + µds .

Denoting by k the oriented curvature, by means of relation κ = kν which holds in R2, the
energy functional can be equivalently written as

E(γ) =
∫
γ
k2 + µds . (2.1)
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2.2 Formal derivation of the flow

Let γ : [0, 1] → R2 be a regular curve of class H2. We consider a variation γε = γ + εψ with
ε ∈ R and ψ : [0, 1] → R2 of class H2, which is regular whenever |ε| is small enough. By
direct computations (see [33], for instance) we get the first variation of E , that is

d

dε
E(γε)

∣∣∣
ε=0

=

∫
γ
2⟨κ, ∂2sψ⟩ds+

∫
γ
(−3|κ|2 + µ) ⟨τ, ∂sψ⟩ ds . (2.2)

We say that a regular curve γ of class H2 is a critical point of E if for any ψ its first variation
vanishes.

Lemma 2.1 (Euler-Lagrange equations). Let γ : [0, 1] → R2 be a critical point of E parametrized
proportional to arclength. Then, γ is smooth and satisfies

2(∂⊥s )
2κ+ |κ|2κ− µκ = 0

in (0, 1). Moreover, if the endpoints are constrained to the x-axis, the following Navier boundary
conditions are fulfilled{

k(y) = 0 curvature or second order conditions
(−2∂sk(y)ν(y) + µτ(y))1 = 0 third order conditions

for y ∈ {0, 1}.

Proof. By a standard bootstrap argument, one can show that critical points of E are actually
smooth (for the reader’s convenience a proof of this fact is given in Proposition 6.2 in the
appendix). Hence, integrating by parts the expression (2.2), we have

d

dε
E(γε)

∣∣∣
ε=0

=

∫
γ

〈
2(∂⊥s )

2κ+ |κ|2κ− µκ, ψ
〉
ds

+2 ⟨κ, ∂sψ⟩|10 + ⟨−2∂⊥s κ− |κ|2τ + µτ, ψ⟩
∣∣∣1
0
. (2.3)

Since γ is critical, from formula (2.3) we immediately get

2(∂⊥s )
2κ+ |κ|2κ− µκ = 0

and
2 ⟨κ, ∂sψ⟩|10 + ⟨−2∂⊥s κ− |κ|2τ + µτ, ψ⟩

∣∣∣1
0
= 0 . (2.4)

We now recall that
∂⊥s κ = ∂sκ+ |κ|2τ .

Hence, from κ = kν and the Serret-Frenet equation in the plane, that is

∂sν = −kτ , (2.5)

the boundary terms in (2.4) reduce to

2 ⟨kν, ∂sψ⟩|10 +
〈
−2∂skν − k2τ + µτ, ψ⟩

∣∣1
0
.

5



The fact that the endpoints must remain attached to the x-axis affects the class of test func-
tions: we can only consider variations γε = γ + εψ with

ψ(0)2 = ψ(1)2 = 0 .

Now, letting first ψ(0)1 = ψ(1)1 = 0, it remains the boundary term

2 ⟨kν, ∂sψ⟩|10 = 0 ,

where the test functions ψ appear differentiated. So, we can choose a test function ψ such
that

∂sψ(0) = ν(0) and ∂sψ(1) = 0

and we get k(0) = 0. Then, interchanging the role of ∂sψ(0) and ∂sψ(1), we have k(1) = 0.
It remains to consider the last term〈

−2∂skν − k2τ + µτ, ψ⟩
∣∣1
0
= 0 .

Taking into account the condition k(0) = k(1) = 0, by arbitrariness of ψ the term is zero if

(−2∂sk(y)ν(y) + µτ(y))1 = 0

for y ∈ {0, 1}.

The previous lemma allows us to formally define the elastic flow of a curve with end-
points constrained to the x-axis coupling the motion equation

∂tγ = −2(∂⊥s )
2κ− |κ|2κ+ µκ , (2.6)

with the following Navier boundary conditions
γ(y)2 = 0 attachment conditions
k(y) = 0 curvature or second order conditions
(−2∂sk(y)ν(y) + µτ(y))1 = 0 third order conditions

(2.7)

for y ∈ {0, 1}.

2.3 Definition of the geometric problem

In this section, we briefly introduce the parabolic Hölder spaces (see [47] for more details).
Given a function u : [0, T ]× [0, 1] → R, for ρ ∈ (0, 1) we define the semi-norms

[u]ρ,0 := sup
(t,x),(τ,x)

|u(t, x)− u(τ, x)|
|t− τ |ρ

,

and

[u]0,ρ := sup
(t,x),(t,y)

|u(t, x)− u(t, y)|
|x− y|ρ

.

Then, for l ∈ {0, 1, 2, 3, 4} and α ∈ (0, 1), the parabolic Hölder space

C
l+α
4
,l+α([0, T ]× [0, 1])
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is the space of all functions u : [0, T ] × [0, 1] → R that have continuous derivatives ∂it∂
j
xu

where i, j ∈ N are such that 4i+ j ≤ l for which the norm

∥u∥ l+α
4
,l+α :=

l∑
4i+j=0

∥∥∂it∂jxu∥∥∞ +
∑

4i+j=l

[
∂it∂

j
xu
]
0,α

+
∑

0<l+α−4i−j<4

[
∂it∂

j
xu
]
l+α−4i−j

4
,0

is finite. Moreover, the space C
α
4
,α ([0, T ]× [0, 1]) coincides with the space

C
α
4
(
[0, T ];C0([0, 1])

)
∩ C0 ([0, T ];Cα([0, 1])) ,

with equivalent norms.

Definition 2.2 (Admissible initial curve). A regular curve γ0 : [0, 1] → R2 is an admissible
initial curve for the elastic flow if

1. it admits a parametrization which belongs to C4+α([0, 1],R2) for some α ∈ (0, 1);

2. it satisfies the Navier boundary conditions in (2.7): attachment, curvature and third
order conditions;

3. it satisfies the non-degeneracy condition, that is, there exists ρ > 0 such that

(τ0(y))2 ≥ ρ for y ∈ {0, 1} . (2.8)

4. it satisfies the following fourth order condition

((−2∂2sk0(y)− k30(y) + k0(y))ν0(y))2 = 0 for y ∈ {0, 1} .

Definition 2.3 (Solution of the geometric problem). Let γ0 be an admissible initial curve as
in Definition 2.2 and T > 0. A time-dependent family of curves γt for t ∈ [0, T ] is a solution
to the elastic flow with initial datum γ0 in the maximal time interval [0, T ], if there exists a
parametrization

γ(t, x) ∈ C
4+α
4
,4+α

(
[0, T ]× [0, 1],R2

)
,

with γ regular and such that for every t ∈ [0, T ], x ∈ [0, 1] the system{
(∂tγ)

⊥ =
(
−2∂2sk − k3 + µk

)
ν

γ(0, x) = γ0(x) ,
(2.9)

coupled with boundary conditions (2.7), is satisfied.

Remark 2.4. The motion equation in (2.9) follows from (2.6), using Serret-Frenet equation (2.5)
and recalling that

(∂⊥s )
2κ = ∂2sκ+ 3 ⟨∂sκ,κ⟩ τ + |κ|2κ .

Remark 2.5. Observe that the formulation of the problem given so far involves purely geo-
metric quantities and hence it is invariant under reparametrizations. Thus, given a solution
γ of (2.9), any reparametrization of γ still satisfies system (2.9).
Remark 2.6. As the authors pointed out in [32], in system (2.9) only the normal component of
the velocity is prescribed. This does not mean that the tangential velocity is necessarily zero.
Indeed, we can equivalently write the motion equations as

∂tγ = V ν + Λτ , (2.10)

where V = −2∂2sk − k3 + µk and Λ is some at least continuous function.
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2.4 Energy monotonicity

In Proposition 2.8 we show that the energy of an evolving curve decreases in time, adapting
the proof of [32, Proposition 2.20].

Lemma 2.7. If γ satisfies (2.10), the commutation rule

∂t∂s = ∂s∂t + (kV − ∂sΛ) ∂s

holds and the measure ds evolves as

∂t( ds) = (∂sΛ− kV ) ds . (2.11)

Moreover the unit tangent vector, unit normal vector, and the j-th derivatives of scalar curvature of
γ satisfy

∂tτ = (∂sV + Λk) ν ,

∂tν = − (∂sV + Λk) τ , (2.12)

∂tk = ⟨∂tκ, ν⟩ = ∂2sV + Λ∂sk + k2V

= −2∂4sk − 5k2∂2sk − 6k (∂sk)
2 + Λ∂sk − k5 + µ

(
∂2sk + k3

)
, (2.13)

Proof. The proof of the lemma is obtained by direct computations, we refer for instance
to [32, Lemma 2.19].

Proposition 2.8. Let γt be a solution to the elastic flow in the sense of Definition 2.3. Then

∂tE(γt) = −
∫
γ
V 2 ds .

Proof. Using the evolution laws collected in Lemma 2.7, we get

∂t

∫
γ
k2 + µds =

∫
γ
2k∂tk +

(
k2 + µ

)
(∂sΛ− kV ) ds

=

∫
γ
2k
(
∂2sV + ∂skΛ + k2V

)
+
(
k2 + µ

)
(∂sΛ− kV ) ds

=

∫
γ
2k∂2sV + k3V − µkV + ∂s

(
Λ
(
k2 + µ

))
ds .

Integrating twice by parts the term
∫
γ 2k∂

2
sV ds we obtain

∂t

∫
γ
k2 + µds = −

∫
γ
V 2 ds+

(
2k∂sV − 2∂skV + Λ(k2 + µ)

) ∣∣∣1
0
. (2.14)

It remains to show that the contribution of the boundary term in (2.14) is zero, once we
assume that Navier boundary conditions hold.

Since k(y) = 0 for y ∈ {0, 1}, we only need to show that

−2∂skV + µΛ
∣∣∣1
0
= 0 .

From γ(y) = (γ1(y), 0), using relation (2.7) we obtain

0 =⟨∂tγ(y),−2∂sk(y)ν(y) + µτ(y)⟩
=⟨V (y)ν(y) + Λ(y)τ(y),−2∂sk(y)ν(y) + µτ(y)⟩
=− 2∂sk(y)V (y) + µΛ(y) ,

where y ∈ {0, 1}.
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3 Short-time existence

In this section we show that, fixed an admissible initial curve, there exists a maximal exis-
tence time T . To do so, we find a unique solution to the associated analytic problem defined
in (3.2) using a standard linearization procedure. More precisely, we use Solonnikov theory
(see [47]) to prove the well-posedness of the linearized system and then we conclude with
a fixed point argument. Then, a key point is to ensure that solving the analytic problem is
enough to obtain a solution to the geometric problem (2.9) and that the solution of (2.9) is
unique up to reparametrization.

3.1 Definition of the analytic problem

Let T > 0 and α ∈ (0, 1). Let us consider a time-dependent family of curves parametrized
by a map γ ∈ C

4+α
4
,4+α([0, T ]× [0, 1]).

We compute the normal velocity of such moving curves in terms of the parametrization
(see [21] for more details), that is

(∂tγ)
⊥ =− 2

∂4xγ

|∂xγ|4
+ 12

∂3xγ
〈
∂2xγ, ∂xγ

〉
|∂xγ|6

+ 5
∂2xγ

∣∣∂2xγ∣∣2
|∂xγ|6

+ 8
∂2xγ

〈
∂3xγ, ∂xγ

〉
|∂xγ|6

− 35
∂2xγ

〈
∂2xγ, ∂xγ

〉2
|∂xγ|8

+

〈
2
∂4xγ

|∂xγ|4
− 12

∂3xγ
〈
∂2xγ, ∂xγ

〉
|∂xγ|6

− 5
∂2xγ

∣∣∂2xγ∣∣2
|∂xγ|6

− 8
∂2xγ

〈
∂3xγ, ∂xγ

〉
|∂xγ|6

+ 35
∂2xγ

〈
∂2xγ, ∂xγ

〉2
|∂xγ|8

, τ

〉
τ

+ µ
∂2xγ

|∂xγ|2
−
〈
µ
∂2xγ

|∂xγ|2
, τ

〉
τ .

We now aim to use a well-known technique, which was introduced for the first time by
DeTurck in [17] for the Ricci flow and then has been employed in a large variety of situations
(see for instance [14, 22, 32]).

More precisely, we choose as tangential velocity the function

Λ̃ := ⟨ −2
∂4xγ

|∂xγ|4
+ 12

∂3xγ
〈
∂2xγ, ∂xγ

〉
|∂xγ|6

+ 5
∂2xγ

∣∣∂2xγ∣∣2
|∂xγ|6

+ 8
∂2xγ

〈
∂3xγ, ∂xγ

〉
|∂xγ|6

−35
∂2xγ

〈
∂2xγ, ∂xγ

〉2
|∂xγ|8

+ µ
∂2xγ

|∂xγ|2
, τ

〉
,

turning (2.10) into a non–degenerate equation

∂tγ =V ν + Λ̃τ

=− 2
∂4xγ

|∂xγ|4
+ 12

∂3xγ
〈
∂2xγ, ∂xγ

〉
|∂xγ|6

+ 5
∂2xγ

∣∣∂2xγ∣∣2
|∂xγ|6

+ 8
∂2xγ

〈
∂3xγ, ∂xγ

〉
|∂xγ|6

− 35
∂2xγ

〈
∂2xγ, ∂xγ

〉2
|∂xγ|8

+ µ
∂2xγ

|∂xγ|2
. (3.1)

Moreover, we specify another tangential condition

⟨∂2xγ(y), τ(y)⟩ = 0 for y ∈ {0, 1}

9



and we notice that this together with the curvature condition, is equivalent to the second order
condition

∂2xγ(y) = 0 for y ∈ {0, 1}.

From now on, we identify the curve with its parametrization without further comments.

Definition 3.1 (Admissible initial parametrization). A map γ0 : [0, 1] → R2 is an admissible
initial parametrization if

1. it belongs to C4+α([0, 1],R2) for some α ∈ (0, 1);

2. it satisfies the Navier boundary conditions in (2.7): attachment, curvature and third
order conditions;

3. it satisfies the non-degeneracy condition (2.8);

4. it satisfies the following fourth order condition(
V (0, y)ν0(y) + Λ̃(0, y)τ0(y)

)
2
= 0 for y ∈ {0, 1},

where ν0, τ0 are the normal and tangent unit vectors to γ0.

In the following, we refer to conditions (2)−(4) in Definition 3.1 as compatibility conditions.

Definition 3.2 (Solution of the analytic problem). Let γ0 be an admissible initial parametriza-
tion as in Definition 3.1. A time-dependent parametrization γt for t ∈ [0, T ] is a solution to
the analytic elastic flow with initial datum γ0 in the time interval [0, T ] with T > 0, if

γ(t, x) ∈ C
4+α
4
,4+α

(
[0, T ]× [0, 1],R2

)
,

with γ regular and such that for every t ∈ [0, T ], x ∈ [0, 1] and y ∈ {0, 1}, satisfies the system

∂tγ = V ν + Λ̃τ = −2 ∂4xγ

|∂xγ|4
+ l.o.t.

γ(y)2 = 0 attachment conditions,
∂2xγ(y) = 0 second order conditions,
(−2∂sk(y)ν(y) + µτ(y))1 = 0 third order conditions,
γ(0, ·) = γ0(·) initial condition.

(3.2)

3.2 Linearization

This section is devoted to proving the existence and uniqueness of solutions to the linearized
system associated to (3.2). To do so, we show that the linearized system can be solved using
the general theory introduced by Solonnikov in [47].

We highlight that in this section we follow closely [21]. More precisely, we adapt the
arguments developed for networks in [21, Section 3.3.2 and Section 3.3.3], to the case of one
curve with endpoints constrained to the x-axis.
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We linearize the highest order terms of the motion equation (3.1) around the initial parametriza-
tion γ0 and we obtain

∂tγ +
2

|∂xγ0|4
∂4xγ =

(
2

|∂xγ0|4
− 2

|∂xγ|4

)
∂4xγ + f̃(∂3xγ, ∂

2
xγ, ∂xγ)

=: f(∂4xγ, ∂
3
xγ, ∂

2
xγ, ∂xγ) . (3.3)

Then, after noticing that the attachment condition and the second order condition are already
linear, we linearize the highest order terms of the third order condition, that is(

− 1

|∂xγ0|3
⟨∂3xγ, ν0⟩ν0

)
1

=

(
− 1

|∂xγ0|3
⟨∂3xγ, ν0⟩ν0 +

1

|∂xγ|3
⟨∂3xγ, ν⟩ν + h(∂xγ)

)
1

=: b(∂3xγ, ∂xγ) . (3.4)

Thus, the linearized system associated to (3.2) is given by

∂tγ + 2
|∂xγ0|4∂

4
xγ = f

γ2 = 0 attachment conditions,
∂2xγ = 0 second order conditions,(
− 1

|∂xγ0|3
〈
∂3xγ, ν0

〉
ν0

)
1
= b third order conditions,

γ(0) = γ0 initial condition

(3.5)

where f, b are defined in (3.3), (3.4) and we have omitted the dependence on (t, x) ∈ [0, T ]×
[0, 1] in the motion equation, on (t, y) ∈ [0, T ] × {0, 1} in the boundary conditions and on
x ∈ [0, 1] in the initial condition.

Remark 3.3. Replacing the right-hand side of system (3.5) with (f, b, ψ), we get the general
system 

∂tγ + 2
|∂xγ0|4∂

4
xγ = f

γ2 = 0 attachment conditions,
∂2xγ = 0 second order conditions,(
− 1

|∂xγ0|3
〈
∂3xγ, ν0

〉
ν0

)
1
= b third order conditions,

γ(0) = ψ initial condition

(3.6)

where f ∈ C
α
4
,α([0, T ]×[0, 1],R2), (b(·, 0), b(·, 1)) ∈ C

1+α
4 ([0, T ],R2) and ψ ∈ C4+α

(
[0, 1],R2

)
.

Definition 3.4. [Linear compatibility conditions] Let (f, b) be a given right-hand side to the
linear system (3.6). A function ψ ∈ C4+α

(
[0, 1],R2

)
satisfies the linear compatibility conditions

with respect to (f, b) if for y ∈ {0, 1} there hold

ψ(y)2 = 0 ,

∂2xψ(y) = 0 ,(
− 1

|∂xγ0|3
〈
∂3xψ(y), ν0(y)

〉
ν0(y)

)
1

= b(0, y),(
2

|∂xγ0|4
∂4xψ(y)− f(0, y)

)
2

= 0 .
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Theorem 3.5. Let α ∈ (0, 1) and let T > 0. Suppose that

• f ∈ C
α
4
,α([0, T ]× [0, 1],R2);

• (b(·, 0), b(·, 1)) ∈ C
1+α
4 ([0, T ],R2) ;

• ψ ∈ C4+α
(
[0, 1],R2

)
;

• ψ satisfies the linear compatibility conditions in Definition 3.4 with respect to (f, b).

Then, the linearized problem (3.6) has a unique solution γ ∈ C
4+α
4
,4+α

([0, T ]× [0, 1],R2).
Moreover, for all T > 0 there exists a C(T ) > 0 such that the solution satisfies

∥γ∥ 4+α
4
,4+α ≤ C(T )

(
∥f∥α

4
,α + ∥b∥ 1+α

4
+ ∥ψ∥4+α

)
.

Proof. To show the result we have to prove that system (3.6) satisfies all the hypothesis of the
general [47, Theorem 4.9].

Using the notation of [47], we write γ = (u, v) and we denote by b, r, respectively, the
number of boundary and initial conditions which in our case are b = 2, r = 2.
Moreover, we write the motion equation in the form

Lγ = f (3.7)

where the 2× 2 matrix L is given by

L(x, t, ∂x, ∂t) =

[
∂t +

2
|∂xγ0|4∂

4
x 0

0 ∂t +
2

|∂xγ0|4∂
4
x

]

and the vector f = (f1, f2) is the right-hand side of motion equation in system (3.6).

• We firstly show that system (3.7) satisfies the parabolicity condition [47, page 8]. As
in [47], we call L0 the principal part of the matrix L and we choose the integers sk, tj
in [47, page 8] as follows: sk = 4 for k ∈ {1, 2} and tj = 0 for j ∈ {1, 2}. Hence, we
have L0 = L and its determinant

detL0(x, t, iξ, p) =

(
2

|∂xγ0|
ξ4 + p

)2

is a polynomial of degree two in p with one root

p = − 2

|∂xγ0|4
ξ4

of multiplicity two.
Then, choosing δ ≤ 2

|∂xγ0|4 , the conditions of [47, page 8] are satisfied and the system is
parabolic in the sense of Solonnikov.

• As it is shown in [46, pages 11-15], the compatibility condition at boundary points
stated in [47, page 11] is equivalent to the following Lopatinskii-Shapiro condition,
which we check only for y = 0 (the case y = 1 can be treated analogously).
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Let λ ∈ C with ℜ(λ) > 0 be arbitrary. The Lopatinskii-Shapiro condition at y is satisfied
if every solution γ ∈ C4([0,∞),C2) to the system of ODEs

λγ(x) + 1
|∂xγ0|4∂

4
xγ(x) = 0

γ(y)2 = 0

∂2xγ(y) = 0(
1

|∂xγ0|3
〈
∂3xγ(y), ν0(y)

〉
ν0(y)

)
1
= 0

(3.8)

where x ∈ [0,∞), which satisfies limx→∞|γ(x)| = 0, is the trivial solution.

To do so, we consider a solution γ to (3.8) such that limx→∞|γ(x)| = 0. We test the
motion equation by |∂xγ0| ⟨γ(x), ν0⟩ ν0 and we integrate twice by part to get

0 = λ|∂xγ0|
∫ ∞

0
| ⟨γ(x), ν0⟩ |2 dx+

1

|∂xγ0|3

∫ ∞

0
|
〈
∂2xγ(x), ν0

〉
|2 dx

+
1

|∂xγ0|3
⟨γ(0), ν0⟩

〈
∂3xγ(0), ν0

〉
− 1

|∂xγ0|3
〈
∂xγ(0), ν0

〉 〈
∂2xγ(0), ν0

〉
, (3.9)

where we have already used the fact that all derivatives decay to zero for x tending
to infinity, due to the specific exponential form of the solutions to (3.8). We now ob-
serve that, since γ0 is an admissible initial parametrization, the first component of ν0 is
bounded from below. That is, from the third order condition in system (3.8) it follows
that

〈
∂3xγ(0), ν0

〉
= 0. Thus, this condition together with the second order condition

implies that the boundary terms in (3.9) vanish. Then, taking the real part of (3.9) and
recalling that ℜ(λ) > 0, we have ⟨γ(x), ν0⟩ = 0 for all x ∈ [0,∞). In particular, from the
attachment condition in (3.8), it follows that γ(0) = 0.
As before, testing the motion equation by |∂xγ0| ⟨γ(x), τ0⟩ τ0 and integrating by part,
we get

0 = λ|∂xγ0|
∫ ∞

0
| ⟨γ(x), τ0⟩ |2 dx+

1

|∂xγ0|3

∫ ∞

0
|
〈
∂2xγ(x), τ0

〉
|2 dx

+
1

|∂xγ0|3
⟨γ(0), τ0⟩

〈
∂3xγ(0), τ0

〉
− 1

|∂xγ0|3
〈
∂xγ(0), τ0

〉 〈
∂2xγ(0), τ0

〉
. (3.10)

The boundary term in (3.10) vanishes since γ(0) = 0 and the second order condition
holds. Hence, considering again the real part of (3.10) we have that ⟨γ(x), τ0⟩ = 0 for
all x ∈ [0,∞). So, we conclude that γ(x) = 0 for all x ∈ [0,∞).

• Finally, to check the complementary condition for the initial datum stated in [47, page
12], we observe that the 2×2 matrix [Cαj ] is the identity matrix. Then, choosing γαj = 0
for α ∈ {1, 2} and j ∈ {1, 2}, we obtain ρα = 0 and C0 = Id.
Moreover, the rows of the matrix D(x, p) = L̂0(x, 0, 0, p) = pId are linearly indepen-
dent modulo the polynomial p2.

3.3 Short-time existence of the analytic problem

From now on, we fix α ∈ (0, 1) and we consider an admissible initial parametrization γ0 as
in Definition 3.1, with ∥γ0∥4+α = R. Moreover, with a slight abuse of notation, we denote by
b(·) the vector (b(·, 0), b(·, 1)) in the statement of Theorem (3.5).
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Definition 3.6. For T > 0 we define the linear spaces

ET := {γ ∈ C
4+α
4
,4+α

([0, T ]× [0, 1],R2) such that for t ∈ [0, T ] ,

attachment and second order conditions hold} ,

FT := {(f, b, ψ) ∈ C
α
4
,α([0, T ]× [0, 1],R2)× C

1+α
4 ([0, T ],R2)× C4+α

(
[0, 1],R2

)
such that the linear compatibility conditions hold} ,

endowed with the norms

∥γ∥ET
= ∥γ∥ 4+α

4
,4+α ,

∥(f, b, ψ)∥FT
= ∥f∥α

4
,α + ∥b∥ 1+α

4
+ ∥ψ∥4+α.

Moreover, we consider the affine spaces

E0
T := {γ ∈ ET such that γ|t=0 = γ0} ,

F0
T := {(f, b) such that (f, b, γ0) ∈ FT } × {γ0} .

We remark that Lemma 3.7 and Lemma 3.8 below are respectively [21, Lemma 3.17] and
[21, Lemma 3.23].

Lemma 3.7. For T > 0, the map LT : ET → FT defined by

LT (γ) :=

 ∂tγ + 2
|∂xγ0|4∂

4
xγ(

− 1
|∂xγ0|3

〈
∂3xγ, ν0

〉
ν0

)
1

γ0

 ,

is a continuous isomorphism.

In the following we denote by L−1
T the inverse of LT , by BM the open ball of radius M > 0

and center 0 in ET and by BM its closure.
Before proceeding we notice that, since the admissible initial parametrization γ0 : [0, 1] →

R2 is a regular curve, there exists a constant C > 0 such that

inf
x∈[0,1]

|∂xγ0| ≥ C , (3.11)

which obviously implies that

sup
x∈[0,1]

1

|∂xγ0|
≤ 1

C
.

Then, as it is shown in [21], there exists a constant C̃ depending on R and C, such that for
every j ∈ N it holds∥∥∥∥ 1

|∂xγ0|j

∥∥∥∥
α

≤
(
∥∂xγ0∥α
C2

)j
≤
(
R

C2

)j
and

∥∥∥∥ 1

|∂xγ0|j

∥∥∥∥
1+α

≤ C̃(R,C) .

We also notice that these estimates are preserved during the flow. More precisely, fol-
lowing the proof in [21], one can show that there exists T̃ (M,C) ∈ (0, 1] such that for
T ∈ [0, T̃ (M,C)] every curve γ ∈ E0

T ∩BM is regular and for all t ∈ [0, T̃ (M,C)] it holds

sup
x∈[0,1]

1

|∂xγ(t, x)|
≤ 2

C
.
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Furthermore, for every j ∈ N and y ∈ {0, 1}, we have∥∥∥∥ 1

|∂xγ|j

∥∥∥∥
α
4
,α

≤
(
4M

C2

)j
and

∥∥∥∥ 1

|∂xγ(y)|j

∥∥∥∥
1+α
4

≤ C̃(R,C) .

Lemma 3.8. For T ∈ (0, T̃ (M,C)], the map NT (γ) := (NT,1, NT,2, γ0) given by

NT,1 :

{
E0
T → C

α
4
,α([0, T ]× [0, 1],R2),

γ 7→ f(γ) := f(∂4xγ, ∂
3
xγ, ∂

2
xγ, ∂xγ),

NT,2 :

{
E0
T → C

1+α
4 ([0, T ],R2),

γ 7→ b(γ) := b(∂3xγ, ∂xγ)

where f, b are defined in (3.3), (3.4) respectively, is a well defined mapping from E0
T to F0

T .

Proof. We have that γ(t, ·) is a regular curve thanks to the discussion above, hence NT is
well defined. In order to show that NT (γ) ∈ F0

T , we have to prove that γ0 satisfies the
linear compatibility conditions with respect to (NT,1, NT,2). This easily follows from the
definition of NT,1, NT,2 and the fact that γ0 is an admissible initial parametrization as in
Definition 3.1.

Definition 3.9. Let γ0 be an admissible initial parametrization and let C > 0 the constant
given by (3.11). For M > 0 and T ∈ (0, T̃ (M,C) we define the mapping KT : E0

T → E0
T as

KT := L−1
T NT .

With a proof similar to [21, Proposition 3.28 and Proposition 3.29] one can prove the
following result.

Proposition 3.10. There exists a positive radius M = M(R,C) and a positive time T̂ (M) ∈
(0, T̃ (M,C)) such that for all T ∈ (0, T̂ (M)] the map KT : E0

T ∩ BM → E0
T ∩ BM is well-defined

and it is a contraction.

Theorem 3.11. Let γ0 be an admissible initial parametrization as in Definition 3.1. There ex-
ists a positive radius M and a positive time T such that the system (3.2) has a unique solution in
C

4+α
4
,4+α ([0, T ]× [0, 1]) ∩BM .

Proof. Let M and T̂ (M) be the radius and time as in Proposition 3.10 and let T ∈ (0, T̂ (M)].
The solutions of (3.2) in C

4+α
4
,4+α ([0, T ]× [0, 1])∩BM are the fixed points of KT in E0

T ∩BM .
Moreover, it is unique by the Banach-Caccioppoli contraction theorem asKT is a contraction
of the complete metric space E0

T ∩BM .

3.4 Geometric existence and uniqueness

In Theorem 3.11 we show that there exists a unique solution to the analytic problem (3.2)
provided that the initial curve is admissible. In this section, we first establish a relation be-
tween geometrically admissible initial curves and admissible initial parametrizations, then
we show the geometric uniqueness of the flow, in the sense that up to reparametrization the
geometric problem (2.9) has a unique solution.

We remark that the following technique was introduced by Garcke and Novick-Cohen
in [23], and then it has been employed, for instance, by Garke, Pluda at al. in [24, 21, 22] for
the case of shortening and elastic flows of networks.
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Lemma 3.12. Suppose that γ0 is a geometrically admissible initial curve as in Definition 2.2. Then,
there exists a smooth function ψ0 : [0, 1] → [0, 1] such that the reparametrization γ̃0 = γ0 ◦ ψ0 of γ0
is an admissible initial parametrization for the analytic problem (3.2).

Proof. We look for a smooth map ψ0 : [0, 1] → [0, 1] with ∂xψ0(x) ̸= 0 for every x ∈ [0, 1],
such that γ̃0 = γ0 ◦ ψ0 : [0, 1] → R2 is regular and of class C4+α([0, 1]). If ψ0(y) = y for
y ∈ {0, 1}, then γ̃0 clearly satisfies the attachment condition. Moreover, since the geometric
quantities are invariant under reparametrization, also the non-degeneracy condition and the
third-order condition are still satisfied. In order to fulfil the second order condition ∂2xγ̃0(y) =
0, we consider a map ψ0 such that

∂xψ0(y) = 1 and ∂2xψ0(y) = −∂
2
xγ0(y)

∂xγ0(y)

for y ∈ {0, 1}. Thus, it remains to show that(
Ṽ0ν̃0 + T̃0τ̃0

)
2
= 0 .

As we notice above, this is equivalent to(
V0ν0 + T̃0τ0

)
2
= 0 ,

however, since γ0 is a geometrically admissible initial curve, it is enough to prove that

T̃0 − T0 = 0 . (3.12)

Thus, asking that ∂3xψ0(y) = 1, we rewrite relation (3.12) as

g1(∂xγ)(y)∂
4
xψ0(y) + g2(∂xγ, ∂

2γ, ∂3xγ)(y) = 0

where g1, g2 are non-linear functions. Hence, ∂4xψ0(y) are uniquely determined for y ∈ {0, 1}.
In the end, we may choose ψ0 to be the fourth Taylor polynomial near each boundary point,
join these values up inside the interval (0, 1) and then make it smooth.

Definition 3.13. Let γ0 be a geometrically admissible initial curve as in Definition 2.2 and
T > 0. A time-dependent family of curves γt for t ∈ [0, T ) is a maximal solution to the elastic
flow with initial datum γ0, if it is a solution in the sense of Definition 2.3 in [0, T̂ ] for some
T̂ < T and if there does not exist a solution γ̃t in [0, T̃ ] with T̃ > T and such that γ = γ̃ in
(0, T ).

Following the arguments in [22, Lemma 5.8 and Lemma 5.9], one can show that a maxi-
mal solution to the elastic flow always exists and it is unique up to reparametrization. Hence,
from now on we only consider the time T in Definition 3.13, which we call maximal time of
existence and we denote by Tmax.

We notice that the following theorem is slightly different to the corresponding one in [22],
where the authors firstly prove the geometric uniqueness in a “generic” time interval [0, T ]
and then they show the existence of Tmax using the fact that the solution is unique in a geo-
metric sense. However, with an intermediate step, the result can be stated as follows.
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Theorem 3.14. [Geometric existence and uniqueness] Let γ0 be a geometrically admissible initial
curve as in Definition 2.2. Then, there exists a positive time Tmax such that within the time interval
[0, Tmax) there is a unique elastic flow γt in the sense of Definition 2.3.

Proof. By Lemma 3.12 there exists a reparametrization γ̃0 of γ0 which is an admissible initial
parametrization in the sense of Definition 3.1. Then, by Theorem 3.11 there exists a solution
γ̃t of system (3.2) in some maximal time interval [0, T̃max]. In particular, γ̃t is a solution to
system (2.9).
Let us suppose that γt is another solution to the elastic flow in sense of Definition 2.3 in a
time interval [0, T ′], with the same geometrically admissible initial curve. We aim to show
that there exists a time Tmax ∈ (0,max{T̃max, T

′}) such that γ̃t = γt (as curves) for every
t ∈ [0, Tmax].
To be precise, we need to construct a regular reparametrization ψ(t, x) : [0, Tmax] × [0, 1] →
[0, 1], such that the reparametrized curve σ(t, x) = γ(t, ψ(t, x)) is a solution to the analytic
problem (3.2) and coincides with γ̃t in a possibly small but positive time interval. Hence,
computing the space and time derivatives of σ(t, x) as a composed function and replacing in
the evolution equation

∂tσ(t, x) =
∂4xσ

|∂xσ|4
+ l.o.t.

we get the following evolution equation for ψ

∂tψ(t, x) =− ⟨∂tγ(t, ψ(t, x)), ∂xγ(t, ψ(t, x))⟩
|∂xγ(t, ψ(t, x))|2

+
⟨∂4xγ(t, ψ(t, x)), ∂xγ(t, ψ(t, x))⟩

|∂xγ(t, ψ(t, x)|6

+
6⟨∂3xγ(t, ψ(t, x)), ∂xγ(t, ψ(t, x))⟩∂2xψ(t, x)

|∂xγ(t, ψ(t, x)|6(∂xψ(t, x))2
+

3⟨∂2xγ(t, ψ(t, x)), ∂xγ(t, ψ(t, x))⟩(∂2xψ(t, x))2

|∂xγ(t, ψ(t, x)|6(∂xψ(t, x))4

+
4⟨∂2xγ(t, ψ(t, x)), ∂xγ(t, ψ(t, x))⟩∂3xψ(t, x)

|∂xγ(t, ψ(t, x)|6(∂xψ(t, x))3
+

∂4xψ(t, x)

|∂xγ(t, ψ(t, x)|2(∂xψ(t, x))4
+ l.o.t. .

Taking into account the boundary conditions, we have that such parametrization has to sat-
isfy the following boundary value problem

∂tψ(t, x) =
∂4xψ(t,x)

|∂xγ(t,ψ(t,x)|2(∂xψ(t,x))4 + g

ψ(t, y) = y

∂2xψ(t, y) = − ⟨∂2xγ(t,ψ(t,x)),∂xγ(t,ψ(t,x))⟩(∂xψ)2
|∂xγ(t,ψ(t,x))|2

ψ(0, x) = ψ0(x)

(3.13)

for y ∈ {0, 1} and t ∈ [0, Tmax], where the function ψ0 is given by Lemma 3.12 and the terms
in g depend on the solution ψ, ∂jxψ for j ∈ {1, 2, 3} and ∂tγ, ∂jxγ for j ∈ {1, 2, 3, 4}. From the
computation above, it follows that the function γ and its time-space derivatives depend also
on ψ. To remove this dependence, we consider the associated problem for the inverse of ψ,
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that is ξ(t, ·) = ψ−1(t, ·). So, the differentiation rules

∂zξ(t, z) =∂xψ(t, ξ(t, z))
−1

∂2zξ(t, z) =− (∂zξ(t, z))
3∂2xψ(t, ξ(t, z))

∂3zξ(t, z) =3
(∂2zξ(t, z))

2

∂zξ(t, z)
− (∂zξ(t, z))

4∂3xψ(t, ξ(t, z))

∂4zξ(t, z) =− 15
(∂2zξ(t, x))

3

(∂zξ(t, x))2
+ 10

∂2zξ(t, z)∂
3
zξ(t, z)

∂zξ(t, z)
− (∂zξ(t, z))

5∂4xψ(t, ξ(t, z))

yield the evolution equation

∂tξ(t, z) =− ⟨∂tσ(t, z), ∂zσ(t, z)⟩
|∂zσ(t, z)|2

∂zξ(t, z) +
⟨∂4zσ(t, z), ∂zσ(t, z)⟩

|∂zσ(t, z)|6
∂zξ(t, z)

−6⟨∂3zσ(t, z), ∂zσ(t, z)⟩
|∂zσ(t, z)|6

∂2zξ(t, z) +
3⟨∂2zσ(t, z), ∂zσ(t, z)⟩

|∂zσ(t, z)|6
(∂2zξ(t, z))

2

∂zξ(t, z)

+
⟨∂2zσ(t, z), ∂zσ(t, z)⟩

|∂zσ(t, z)|6

(
−4∂3zξ(t, z) +

12(∂2zξ(t, z))
2

∂zξ(t, z)

)
+

1

|∂zσ(t, z)|2

(
−∂4zξ(t, z) +

10∂2zξ(t, z)∂
3
zξ(t, z)

∂zξ(t, z)
− 15(∂2zξ(t, z))

3

(∂zξ(t, z))2

)
+ l.o.t. .

Hence, we obtain the following system for ξ
∂tξ(t, z) = − ∂4zξ(t,z)

|∂zσ(t,z)|2 + g

ξ(t, y) = y

∂2zξ(t, y) =
⟨∂2zσ(t,y),∂zσ(t,y)⟩∂zξ(t,y)

|∂zσ(t,y)|2

ξ(0, z) = ψ−1
0 (z)

(3.14)

where g is a non-linear smooth function which depends on ∂jxξ for j ∈ {1, 2, 3}, ∂σz for
j ∈ {1, 2, 3, 4}, ∂tσ. We now observe that the system (3.14) has a very similar structure
as (3.6), hence, after linearize, we apply the linear theory developed by Solonnikov in [47]
and we get well–posedness. Contraction estimates allow us to conclude the existence and
uniqueness of solution with a fixed-point argument. Reversing the above argumentation,
we obtain that the function ψ solves system (3.13).
Then, σt is a solution to system (3.2). Indeed, the motion equation follows from (3.13) and the
geometric evolution of γt in normal direction. The geometric boundary conditions, namely
attachment, curvature, and third-order conditions, are satisfied as γt is a solution to the geo-
metric problem. Moreover, the boundary conditions in system (3.13) ensure that σt satisfies
the second order condition.
Thus, by uniqueness of the analytic problem proved in Theorem 3.11, σt (that is γt up to
reparametrization) and γ̃t need to coincide on a possibly small time interval.

4 Curvature bounds

To simplify the notation, we introduce the following polynomials.
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Definition 4.1. For h ∈ N, we denote by phσ(k) a polynomial in k, . . . , ∂hs k with constant
coefficients in R such that every monomial it contains is of the form

C
h∏
l=0

(∂lsk)
αl with

h∑
l=0

(l + 1)αl = σ ,

where αl ∈ N for l ∈ {0, . . . , h} and αl0 ≥ 1 for at least one index l0.

Remark 4.2. One can easily prove that

∂s

(
phσ(k)

)
= ph+1

σ+1(k) ,

ph1σ1(k)p
h2
σ2(k) = p

max{h1,h2}
σ1+σ2 (k) ,

ph1σ (k) + ph2σ (k) = pmax{h1,h2}
σ (k).

Moreover, following the arguments in [32], it holds

∂t

(
phσ(k)

)
= ph+4

σ+4(k) + Λph+1
σ+1(k) + µph+2

σ+2(k) . (4.1)

Lemma 4.3. If γ satisfies (2.10), then for any j ∈ N the j-th derivative of scalar curvature of γ
satisfies

∂t∂
j
sk = −2∂j+4

s k − 5k2∂j+2
s k + µ∂j+2

s k + Λ∂j+1
s k + pj+1

j+5 (k) + µ pjj+3(k) . (4.2)

Proof. For j = 0 we have

∂tk = −2∂4sk − 5k2∂2sk − 6k (∂sk)
2 + Λ∂sk − k5 + µ

(
∂2sk + k3

)
= −2∂4sk − 5k2∂2sk + µ∂2sk + Λ∂sk + p15(k) + µp04(k) .

Then, assuming that relation (4.2) is true for j, we show that

∂t∂
j+1
s k =∂t∂s∂

j
sk = ∂s∂t∂

j
sk + (kV − ∂sΛ)∂

j+1
s k

=− 2∂j+5
s k − 10k∂sk∂

j+2
s k − 5k2∂j+3

s k + µ∂j+3
s k + ∂sΛ∂

j+1
s k + Λ∂j+2

s k

+ pj+2
j+6 + µpj+1

j+4 − 2k∂2sk∂
j+1
s k − k4∂j+1

s k + µk2∂j+1
s k − ∂sΛ∂

j+1
s k

=− 2∂j+5
s k − 5k2∂j+3

s k + µ∂j+3
s k + Λ∂j+2

s k + pj+2
j+6 (k) + µ pj+1

j+4(k) .

By induction, formula (4.2) holds for any j ∈ N.

4.1 Bound on ∥∂2
sk∥L2

We aim to show that, once the following condition is satisfied, the tangential velocity be-
haves as the normal velocity at boundary points.

Definition 4.4. Let γt be a maximal solution to the elastic flow in [0, Tmax). We say that γt
satisfies the uniform non-degeneracy condition if there exists ρ > 0 such that

τ2(y) ≥ ρ (4.3)

for every t ∈ [0, Tmax) and y ∈ {0, 1}.
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Lemma 4.5. Let γt be a maximal solution to the elastic flow of curves subjected to boundary condi-
tions (2.7), such that the uniform non-degeneracy condition (4.3) holds in [0, Tmax). Then, for every
t ∈ [0, Tmax) and y ∈ {0, 1}, the tangential velocity is proportional to the normal velocity, that is

Λ(y) ≈ ∂2sk(y) .

Proof. Since the boundary points are constrained to the x-axis, we have that

(∂tγt)2(y) = −2∂2sk(y)ν2(y) + Λ(y)τ2(y) = 0

for y ∈ {0, 1} and t ∈ [0, Tmax). By the fact that τ2 (hence, ν2) are bounded from below at
boundary points, it follows

Λ(y) = 2∂2sk(y)
ν2(y)

τ2(y)
≈ ∂2sk(y)

for t ∈ [0, Tmax) and y ∈ {0, 1}.

Proposition 4.6. Let γt be a maximal solution to the elastic flow of curves subjected to boundary
conditions (2.7) with initial datum γ0, which satisfies the uniform non-degeneracy condition (4.4)
in the maximal time interval [0, Tmax). Then, for all t ∈ [0, Tmax), it holds

d

dt

∫
γ
|∂2sk|2 ds ≤ C(E(γ0)) .

Proof. From formula (4.2) we have

d

dt

∫
γ
|∂2sk|2 ds =

∫
γ
2∂2sk∂t∂

2
sk + (∂2sk)

2(∂sΛ− kV ) ds

=

∫
γ
−4∂2sk∂

6
sk − 10k2∂2sk∂

4
sk + 2µ∂2sk∂

4
sk + 2Λ∂3sk∂

2
sk

+ p310(k) + µp28(k) + (∂2sk)
2(∂sΛ− kV ) ds

=

∫
γ
−4∂2sk∂

6
sk − 10k2∂2sk∂

4
sk + 2µ∂2sk∂

4
sk

+ 2Λ∂3sk∂
2
sk + 2∂sΛ(∂

2
sk)

2 + p310(k) + µp28(k) ds .

Thus, the terms involving the tangential velocity can be written as∫
γ
∂sΛ(∂

2
sk)

2 + 2Λ∂2sk∂
3
sk ds =

∫
γ
∂s(Λ(∂

2
sk)

2) ds = Λ(∂2sk)
2
∣∣∣1
0
.

Moreover, integrating by parts the other terms, we get

d

dt

∫
γ
|∂2sk|2 ds =

∫
γ
−4(∂4sk)

2 − 2µ(∂3sk)
2 + p310(k) + µp28(k) ds

+ Λ(∂2sk)
2
∣∣∣1
0
+ 4(∂3sk∂

4
sk − ∂2sk∂

5
sk)
∣∣∣1
0
− 10k2∂2sk∂

3
sk
∣∣∣1
0

− 12(∂sk)
3∂2sk

∣∣∣1
0
+ 2µ∂2sk∂

3
sk
∣∣∣1
0
. (4.4)
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Using Navier boundary conditions, the boundary terms in equation (4.4) reduce to

Λ(∂2sk)
2
∣∣∣1
0
+ 4(∂3sk∂

4
sk − ∂2sk∂

5
sk)
∣∣∣1
0
− 12(∂sk)

3∂2sk
∣∣∣1
0
+ 2µ∂2sk∂

3
sk
∣∣∣1
0
. (4.5)

We aim to lower the order of the second and third terms in (4.5). In particular, differentiating
in time the condition k(y) = 0 using relation (2.13), we have

4∂3sk∂
4
sk = 2Λ∂sk∂

3
sk + 2µ∂2sk∂

3
sk . (4.6)

From conditions in (2.7), it follows

∂t⟨γ, 2∂skν − µτ⟩ = ⟨V ν + Λτ, ∂t(2∂skν − µτ)⟩ = 0 ,

then, computing the scalar production using (4.2), we obtain

0 =− 2∂t∂skV + 2Λ∂sk∂sV + µV ∂sV

=4∂t∂sk∂
2
sk + 2Λ∂sk(−2∂3sk + µ∂sk)− 2µ∂2sk(−2∂3sk + µ∂sk)

=4∂s∂tk∂
2
sk − 4∂sΛ∂sk∂

2
sk + 2Λ∂sk(−2∂3sk + µ∂sk)

− 2µ∂2sk(−2∂3sk + µ∂sk)

=− 8∂2sk∂
5
sk − 24(∂sk)

3∂2sk + 4∂sΛ∂sk∂
2
sk + 4Λ(∂2sk)

2

+ 4µ∂2sk∂
3
sk − 4∂sΛ∂sk∂

2
sk

+ 2Λ∂sk(−2∂3sk + µ∂sk)− 2µ∂2sk(−2∂3sk + µ∂sk)

=− 8∂2sk∂
5
sk − 24(∂sk)

3∂2sk + 4Λ(∂2sk)
2 − 4Λ∂sk∂

3
sk

+ 8µ∂2sk∂
3
sk + 2µΛ(∂sk)

2 − 2µ2∂sk∂
2
sk ,

that is,

−4∂2sk∂
5
sk = 12(∂sk)

3∂2sk− 2Λ(∂2sk)
2+2Λ∂sk∂

3
sk− 4µ∂2sk∂

3
sk−µΛ(∂sk)2+µ2∂sk∂2sk . (4.7)

Hence, replacing the terms (4.6) and (4.7) in (4.5), we obtain

d

dt

∫
γ
|∂2sk|2 ds =

∫
γ
−4(∂4sk)

2 − 2µ(∂3sk)
2 + p310(k) + µp28(k) ds

− Λ(∂2sk)
2
∣∣∣1
0
+ 4Λ∂sk∂

3
sk
∣∣∣1
0
− µΛ(∂sk)

2
∣∣∣1
0
+ µ2∂sk∂

2
sk
∣∣∣1
0
.

We now recall that Λ is proportional to ∂2sk at boundary points (see Lemma 4.5), hence it
follows that Λphσ(k) = p

max{2,h}
σ+3 (k). Thus, we have

d

dt

∫
γ
|∂2sk|2 ds =− 4∥∂4sk∥2L2(γ) − 2µ∥∂3sk∥2L2(γ) +

∫
γ
p310(k) + µp28(k) ds

+ p39(k)
∣∣∣1
0
+ µp37(k)

∣∣∣1
0
+ µ2p25(k)

∣∣∣1
0
.
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By means of Lemma 4.6 and Lemma 4.7 in [32], for any ε > 0 we have∫
γ
|p310 (k) |ds ≤ε∥∂4sk∥2L2 + C(ε, ℓ(γ))

(
∥k∥2L2 + ∥k∥Θ1

L2

)
,∫

γ
|p28 (k) |ds ≤ε∥∂3sk∥2L2 + C(ε, ℓ(γ))

(
∥k∥2L2 + C∥k∥Θ2

L2

)
,

p39(k)(y)| ≤ε∥∂4sk∥2L2 + C(ε, ℓ(γ))
(
∥k∥2L2 + ∥k∥Θ3

L2

)
,

p37(k)(y) ≤ε∥∂4sk∥2L2 + C(ε, ℓ(γ))
(
∥k∥2L2 + C∥k∥Θ4

L2

)
,

p25(k)(y) ≤ε∥∂3sk∥2L2 + C(ε, ℓ(γ))
(
∥k∥2L2 + C∥k∥Θ5

L2

)
,

for some exponents Θi > 2 with i = 1, . . . , 5.
Hence, we get

d

dt

∫
γ
|∂2sk|2 ds ≤ −C

(
∥∂4sk∥2L2(γ) + µ∥∂3sk∥2L2(γ)

)
+ C

(
∥k2∥2L2(γ) + ∥k2∥ΘL2(γ)

)
for some exponent Θ > 2 and constant C which depend on ℓ(γ). Using the energy mono-
tonicity proved in Proposition 2.8, we conclude that

d

dt

∫
γ
|∂2sk|2 ds ≤ C(E(γ0)) .

4.2 Bound on ∥∂6
sk∥L2

We observe that since (2.10) is a parabolic fourth-order equation, after having controlled
the second-order derivative of the curvature, it is natural to control the sixth-order deriva-
tive of the curvature. Then, using interpolation inequalities, we get estimates for all the
intermediate orders. Before doing that, we notice that the elastic flow of curves becomes
instantaneously smooth. More precisely, following the proof presented in [32] in the case of
closed curves (both using the so-called Angenent’s parameter trick [6, 5, 11] and the classical
theory of linear parabolic equations [47]), one can show that given a solution to the elastic
flow in a time interval [0, T ], then it is smooth for positive times, in the sense that it admits a
C∞-parametrization in the interval [ε, T ] for every ε ∈ (0, T ).

From now on, we denote by

v := ∂tγ = V ν + Λτ (4.8)

the velocity of γ. Hence, by means of integration by parts and the commutation rule in
Lemma 2.7, we get the following identity

d

dt

1

2

∫
γ
|∂⊥t v|2 ds =− 2

∫
γ
|(∂⊥s )2(∂⊥t v)|2 ds

1

2

∫
γ
|∂⊥t v|2(∂sΛ− kV ) ds+

∫
γ
⟨Y, ∂⊥t v⟩ ds

− 2⟨∂⊥t v, (∂⊥s )3(∂⊥t v)⟩
∣∣∣1
0
+ 2⟨∂⊥s (∂⊥t v), (∂⊥s )2(∂⊥t v)⟩

∣∣∣1
0
, (4.9)
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where we denoted by
Y := ∂⊥t (∂

⊥
t v) + 2(∂⊥s )

4(∂⊥t v) .

Before proceeding, we prove the following lemma, which gives estimates for some special
family of polynomials.

Lemma 4.7. Let γ : [0, 1] → R2 be a smooth regular curve. For all j ≤ 7, if the polynomial pjσ(j)(k)
defined as in Definition 4.1 satisfies one of the following conditions:

(i) σ(j) ≥ 2(l + 1) for all l ≤ j,

(ii) σ(j) ≥ 2(l + 1) for all l ≤ j − 1 and (j + 1) ≤ σ(j) < 2(j + 1),

and

σ(j)−
j∑
l=0

αl < 15 , (4.10)

then, there exists a constant C and an exponent Θ > 2 such that∫
γ
|pjσ(j) (k) |ds ≤ ε∥∂8sk∥2L2 + C(j, ε, ℓ(γ))

(
∥k∥2L2 + ∥k∥ΘL2

)
.

Similarly, for all j ≤ 7 and

σ′(j)−
j∑
l=0

αl < 16 ,

there exists a constant C and an exponent Θ′ > 2 such that for y ∈ {0, 1} it holds

|pjσ′(j)(k)(y)| ≤ ε∥∂8sk∥2L2 + C(j, ε, ℓ(γ))
(
∥k∥2L2 + ∥k∥Θ′

L2

)
.

Proof. By definition, every monomial of pjσ(j)(k) is of the form C
∏j
l=0(∂

l
sk)

αl with

αl ∈ N and
j∑
l=0

αl(l + 1) = σ(j) .

We set

βl :=
σ(j)

(l + 1)αl

for every l ≤ j and we take βl = 0 if αl = 0. We observe that
∑

l∈J
1
βl

= 1, hence by Hölder
inequality, we get

C

∫
γ

j∏
l=0

|∂lsk|αl ds ≤ C

j∏
l=0

(∫
γ
|∂lsk|αlβl ds

) 1
βl

= C

j∏
l=0

∥∂lsk∥
αl

Lαlβl
.

If condition (i) holds, then αlβl ≥ 2 for every l ∈ J . Applying the Gagliardo-Nirenberg
inequality (see [3] or [7], for instance) for every l ≤ j yields

∥∂lsk∥Lαlβl ≤ C(l, j, αl, βl, ℓ(γ))∥∂8sk∥
ηl
L2∥k∥1−ηlL2 + ∥k∥L2
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where the coefficient ηl is given by

ηl =
l + 1/2− 1/(αlβl)

8
∈
[
l

8
, 1

)
. (4.11)

Then, we have

C

∫
γ

j∏
l=0

|∂lsk|αl ds ≤ C

j∏
l=0

∥∂lsk∥
αl

Lαlβl

≤ C

j∏
l=0

∥k∥(1−ηl)αl

L2

(
∥∂8sk∥L2 + ∥k∥L2

)ηlαl

L2

= C∥k∥
∑j

l=0(1−ηl)αl

L2

(
∥∂8sk∥L2 + ∥k∥L2

)∑j
l=0 ηlαl

L2 .

Moreover, from condition (4.10), we have

j∑
l=0

ηlαl ≤
σ(j)− 1−

∑j
l=0 αl

8
< 2 ,

that is, by means of Young’s inequality with p = 2∑j
l=0 ηlαl

and q = 2

2−
∑j

l=0 ηlαl
we obtain

C

∫
γ

j∏
l=0

|∂lsk|αl ds ≤ εC
(
∥∂8sk∥L2 + ∥k∥L2

)2
L2 +

C

ε
∥k∥ΘL2 (4.12)

where constant C depends on j, ε, ℓ(γ) and Θ > 2.
Otherwise, if condition (ii) holds, we have 1 ≤ αjβj < 2, that is

∥∂jsk∥
αj

Lαjβj
≤ ∥∂jsk∥

αj

L2 ≤ ∥∂8sk∥
ηjαj

L2 ∥k∥(1−ηj)αj

L2 + ∥k∥αj

L2

where ηj = j
8 and we used the boundedness of ℓ(γ).

Hence, as in the previous case, we have

C

∫
γ

j∏
l=0

|∂lsk|αl ds ≤C
j−1∏
l=0

∥∂lsk∥
αl

Lαlβl
∥∂jsk∥

αj

Lαjβj

≤C
(
∥∂8sk∥

∑j−1
l=0 ηlαl

L2 ∥k∥
∑j−1

l=0 (1−ηl)αl

L2 + ∥k∥
∑j−1

l=0 αl

L2

)
(
∥∂8sk∥

ηjαj

L2 ∥k∥(1−ηj)αj

L2 + ∥k∥αj

L2

)
≤C∥k∥

∑j
l=0(1−ηl)αl

L2

(
∥∂8sk∥

∑j
l=0 ηlαl

L2 + ∥∂8sk∥
∑j−1

l=0 ηlαl

L2 ∥k∥ηjαj

L2

+ ∥∂8sk∥
ηjαj

L2 ∥k∥
∑j−1

l=0 ηlαl

L2 + ∥k∥
∑j

l=0 ηlαl

L2

)
where for all l ≤ j − 1 the coefficient ηl is given by expression (4.11) and ηj =

j
8 . Applying

again Young’s inequality, since
∑j

l=0 ηlαl < 2 still holds, we obtain estimate (4.12).
The second part of the lemma comes using the same arguments.
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Lemma 4.8. Let γt be a maximal solution to the elastic flow of curves subjected to Navier boundary
conditions (2.7), such that the uniform non-degeneracy condition (4.4) holds in the maximal time
interval [0, Tmax). Then, for every j ∈ N, it holds

∂jsΛ(y)p
h
σ(k)(y) = p

max{h,j+2}
σ+j+3 (k)(y)

and
∂tΛ(y)p

h
σ(k)(y) = p

max{h,6}
σ+7 (k)(y) + µp

max{h,4}
σ+5 (k)(y)

for every t ∈ [0, Tmax) and y ∈ {0, 1}.

Proof. By means of Lemma 4.5 and by the fact that τ2 is bounded from below, we have

Λ(y) = ∂2sk(y)
ν2(y)

τ2(y)
= p23(k)(y)

for y ∈ {0, 1}. Hence, by Remark 4.2, it follows

∂jsΛ(y) = pj+2
j+3(k)(y) ,

and thus,
∂jsΛ(y)p

h
σ(k)(y) = pj+2

j+3(k)(y)p
h
σ(k)(y) = p

max{h,j+2}
σ+j+3 (k)(y) .

Similarly, by formula (4.1), we have

∂tΛ(y) = ∂t

(
p23(k)(y)

)
= p67(k)(y) + µp45(k)(y)

then,
∂tΛ(y)p

h
σ(k)(y) = p

max{h,6}
σ+7 (k)(y) + µp

max{h,4}
σ+5 (k)(y) .

From now on, for any t ∈ [0, Tmax), we choose the tangential velocity Λ(t, x) with x ∈
(0, 1) as the linear interpolation between the value at the boundary points, that is

Λ(t, x) = Λ(t, 0)
(
1 +

Λ(t, 1)− Λ(t, 0)

Λ(t, 0)

1

ℓ(γ)

∫ x

0
|∂xγ| dx

)
. (4.13)

Lemma 4.9. Let Λ be the tangential velocity defined in (4.13), there exist two constants C1 =
C1(ℓ(γ)) and C2 = C2(E(γ0), ℓ(γ)) such that

|∂sΛ(t, x)| ≤ C1(|Λ(t, 1)|+ |Λ(t, 0)|) ,

|∂tΛ(t, x)| ≤ C2

[
|∂tΛ(t, 0)|+ |∂tΛ(t, 1)|+ |∂tΛ(t, 0)|

|Λ(t, 1)|
|Λ(t, 0)|

+ |Λ(t, 1)− Λ(t, 0)|2 + |Λ(t, 1)− Λ(t, 0)|
]

for t ∈ [0, Tmax) and x ∈ [0, 1].
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Proof. From (4.13) it easily follows that

∂sΛ(t, x) =
Λ(t, 1)− Λ(t, 0)

ℓ(γ)
and ∂jsΛ(t, x) = 0 for j ≥ 2.

Moreover, taking the time derivative, we get

∂tΛ(t, x) =∂tΛ(t, 0)
(
1 +

Λ(t, 1)− Λ(t, 0)

Λ(t, 0)

1

ℓ(γ)

∫ x

0
|∂xγ| dx

)
+

(∂tΛ(t, 1)− ∂tΛ(t, 0))Λ(t, 0)− (Λ(t, 1)− Λ(t, 0))∂tΛ(t, 0)

Λ(t, 0)

1

ℓ(γ)

∫ x

0
|∂xγ| dx

−
(
Λ(t, 1)− Λ(t, 0)

) 1

ℓ2(γ)

d(ℓ(γ))

dt

∫ x

0
|∂xγ| dx

+
(
Λ(t, 1)− Λ(t, 0)

) 1

ℓ(γ)

d

dt

∫ x

0
|∂xγ| dx

=∂tΛ(t, 0)
(
1 +

Λ(t, 1)− Λ(t, 0)

Λ(t, 0)

1

ℓ(γ)

∫ x

0
|∂xγ| dx

)
+

(∂tΛ(t, 1)− ∂tΛ(t, 0))Λ(t, 0)− (Λ(t, 1)− Λ(t, 0))∂tΛ(t, 0)

Λ(t, 0)

1

ℓ(γ)

∫ x

0
|∂xγ| dx

−
(
Λ(t, 1)− Λ(t, 0)

)2
ℓ2(γ)

∫ x

0
|∂xγ| dx+

Λ(t, 1)− Λ(t, 0)

ℓ2(γ)

∫
γ
kV ds

∫ x

0
|∂xγ| dx

+
(
Λ(t, 1)− Λ(t, 0)

) 1

ℓ(γ)

d

dt

∫ x

0
|∂xγ| dx .

where we used relations (2.11). Hence, noticing that from interpolation and Proposition 4.6
it follows ∫

γ
kV ≤ C(E(γ0)) ,

we obtain the last estimate in the statement.

Lemma 4.10. If γ satisfies (2.10), then

∂2t γ =
(
4∂6sk + 10k2∂4sk + p37(k)− 4Λ∂3sk − 6Λk2∂sk + Λ2k

− 4µ∂4sk + µp25(k) + 2µΛ∂sk + µ2∂2sk + µ2p03(k)
)
ν

+
(
∂tΛ + p37(k)− 2Λk∂3sk − 3Λk3∂sk + µp35(k) + µΛk∂sk + µ2p13(k)

)
τ . (4.14)

Proof. We firstly compute

∂tV = 4∂6sk + p37(k)− 2Λ∂3sk + Λp14(k)− 4µ∂4sk + µp25(k) + µΛ∂sk + µ2∂2sk + µ2p03(k)

and

∂t∂sV =4∂7sk + p48(k)− 2Λ∂4sk + Λp25(k) + ∂sΛp
1
4(k)− 4µ∂5sk + µp36(k)

+ µΛ∂2sk + 3µ∂sΛ∂sk + µ2∂3sk + µ2p14(k) .
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Then, by means of Lemma 2.7, we have

∂2t τ =(∂t∂sV + ∂tΛk + Λ∂tk)ν − (∂sV + Λk)2τ

=
(
4∂7sk + p48(k)− 4Λ∂4sk + Λp25(k) + ∂sΛp

1
4(k) + Λ2∂sk + ∂tΛk − 4µ∂5sk + µp36(k)

+ µΛp23(k) + 3µ∂sΛ∂sk + µ2∂3sk + µ2p14(k)
)
ν

+
(
p38(k) + Λp35(k) + Λ2k2 + µp36(k) + µΛp23(k) + µ2p14(k)

)
τ . (4.15)

Similarly, differentiating in time the relation (2.12) we get

∂2t ν = −(∂sV + Λk)2ν − (∂t∂sV + ∂tΛk + Λ∂tk)τ ,

that is

∂2t ν =
(
p38(k) + Λp35(k) + Λ2k2 + µp36(k) + µΛp23(k) + µ2p14(k)

)
ν

−
(
4∂7sk + p48(k)− 4Λ∂4sk + Λp25(k) + ∂sΛp

1
4(k) + Λ2∂sk + ∂tΛk − 4µ∂5sk + µp36(k)

+ µΛp23(k) + 3µ∂sΛ∂sk + µ2∂3sk + µ2p14(k)
)
τ . (4.16)

Using computations (4.15) and (4.16), we obtain

∂2t γ =(∂tV + Λ(∂sV + Λk))ν + (∂tΛ− V (∂sV − Λk))τ

=
(
∂tV + Λ(−2∂3sk − 3k2∂sk + µ∂sk) + Λ2k

)
ν

+
(
∂tΛ− (−2∂2sk − k3 − µk)(−2∂3sk − 3k3∂sk − µ∂sk − Λk)

)
τ

=
(
4∂6sk + 10k2∂4sk + p37(k)− 4Λ∂3sk − 6Λk2∂sk + Λ2k

− 4µ∂4sk + µp25(k) + 2µΛ∂sk + µ2∂2sk + µ2p03(k)
)
ν

+
(
∂tΛ + p37(k)− 2Λk∂3sk − 3Λk3∂sk + µp35(k) + µΛk∂sk + µ2p13(k)

)
τ .

In the following, we show that to estimate the L2-norm of ∂6sk it is enough to control the
L2-norm of ∂⊥t v. Hence, we start writing the boundary terms in (4.9) using the curvature
and its derivatives, lowering the order by means of the boundary condition.

Lemma 4.11. Let γt be a family of curves moving with velocity v defined in (4.8). Then,

⟨∂⊥s (∂⊥t v), (∂⊥s )2(∂⊥t v)⟩ = p717(k) + p715(k) + p713(k) + p511(k) + µ4p49(k) .

Proof. By straightforward computations, we have that

∂⊥s (∂
⊥
t v) = ∂s(∂tv

⊥)ν , (∂⊥s )
2(∂⊥t v) = ∂2s (∂tv

⊥)ν

where ∂tv⊥ is the normal component of ∂2t γ, which is computed in (4.14). Hence, we com-
pute

∂s(∂tv
⊥) =4∂7sk + p48(k)− 4Λ∂4sk − 4∂sΛ∂

3
sk + Λ2∂sk − 4µ∂5sk + µp47(k)

+ 2µΛ∂2sk + 2µ∂sΛ∂sk + µ2∂3sk + µ2p14(k) (4.17)
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and

∂2s (∂
⊥
t v) =p59(k) + 4Λ∂sΛ∂sk + Λp26(k)− 4∂2sΛ∂

3
sk − 8∂sΛ∂

4
sk − ∂tΛ∂sk

+ µp47(k) + µΛp14(k) + 2µ∂2sΛ∂sk + 4µ∂sΛ∂
2
sk + µ2p25(k) , (4.18)

where in relation (4.18) we used

4∂8sk =p59(k) + 4Λ∂5sk + Λp26(k)− Λ2∂2sk − ∂tΛ∂sk

+ 4µ∂6sk + µp47(k)− 2µΛ∂3sk + µΛp14(k)− µ2∂4sk + µ2p25(k)

since Navier boundary conditions hold. So, using expressions (4.17) and (4.18), replacing Λ
and its derivatives by means of Lemma 4.8 and recalling that µ > 0 is constant, we get

⟨∂⊥s (∂⊥t v), (∂⊥s )2(∂⊥t v)⟩ = p717(k) + p715(k) + p713(k) + p511(k) + µ4p49(k) .

Lemma 4.12. Let γt be a family of curves moving with velocity v defined in (4.8). Then,

⟨∂⊥t v, (∂⊥s )3(∂⊥t v)⟩ =⟨∂⊥t v, 4∂9skν⟩+ ⟨∂⊥t v, (∂⊥s )3(∂⊥t v)− 4∂9skν ⟩
=p617(k) + p715(k) + p713(k) + p711(k) + p59(k) + p27(k) .

Proof. Let us analogously handle the other boundary term in (4.9). By standard computa-
tions, we have that

(∂3s )
⊥(∂⊥t v) = ∂3s (∂tv

⊥)ν

where

∂3s (∂tv
⊥) =4∂9sk + p610(k)− 4Λ∂6sk + ∂sΛp

5
6(k)− 12∂2sΛ∂

4
sk − 4∂3sΛ∂

3
sk

+ Λ2∂3sk + 6Λ∂sΛ∂
2
sk + 6Λ∂2sΛ∂sk − 4µ∂7sk + µp58(k)

+ µ2Λ∂4sk + 6µ∂sΛ∂
3
sk + 6µ∂2sΛ∂

2
sk + 2µ∂3sΛ∂sk + µ2∂5sk + µ2p36(k) .

As above, we aim to write the ninth-order derivative as the sum of lower-order derivatives.
Hence, from condition (2.7), at boundary points it holds

⟨∂tv, ∂2t (−2∂skν + µτ)⟩ = 0 , (4.19)

where

∂tv =∂tV ν + V ∂tν + ∂tΛτ + Λ∂tτ (4.20)

=
(
∂tV + Λ∂sV

)
ν + (∂tΛ− V ∂sV )τ

=
(
4∂6sk + p37(k)− 4Λ∂3sk + Λp14(k)− 4µ∂4sk + µp25(k) + 2µΛ∂sk + µ2∂2sk + µ2p03(k)

)
ν

+
(
∂tΛ− 4∂2sk∂

3
sk
)
τ

and

∂2t (−2∂skν + µτ) =− 2∂2t ∂skν − 4∂t∂sk∂tν − 2∂sk∂
2
t ν + µ∂2t τ

=
(
− 2∂2t ∂sk − 2∂sk(∂

2
t ν)

⊥ + µ(∂2t τ)
⊥
)
ν

+
(
4∂sV ∂t∂sk − 2∂sk(∂

2
t ν)

⊤ + µ(∂2t τ)
⊤
)
τ .
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Then, after computing ∂2t ∂sk, we have

∂2t (−2∂skν + µτ) =
(
− 8∂9sk + p610(k) + Λp67(k) + ∂sΛp

2
6(k) + Λ2p34(k) + (∂sΛ)

2p12(k)

+ ∂tΛp
2
3(k) + µp78(k) + µΛp45(k) + µ∂sΛp

1
4(k) + µΛ2p12(k)

+ µ∂tΛp
0
1(k) + µ2p56(k) + µ2Λp23(k) + µ2∂sΛp

1
2(k) + µ3p34(k)

)
ν

+
(
p710(k) + Λp47(k) + ∂sΛp

1
6(k) + Λ2p14(k) + ∂tΛp

1
3(k)

+ µp38(k) + µΛp35(k) + µ∂sΛp
1
4(k) + µΛ2p02(k)

+ µ2p36(k) + µ2Λp23(k) + µ3p14(k)
)
τ . (4.21)

Replacing equations (4.20) and (4.21) in the scalar product (4.19) and recalling that at bound-
ary points Λ and its derivatives can be approximated by suitable polynomials (as it is shown
in Lemma 4.8), we get

⟨∂tv, 8∂9skν⟩ = p617(k) + p715(k) + p713(k) + p711(k) + p59(k) + p27(k) .

We now notice that

⟨∂tv, ∂9skν⟩ = ⟨∂tv⊥ν + ∂tv
⊤τ, ∂9skν⟩ = ⟨∂⊥t v, ∂9skν⟩ ,

hence, we have

⟨∂⊥t v, (∂⊥s )3(∂⊥t v)⟩ =⟨∂⊥t v, 4∂9skν⟩+ ⟨∂⊥t v, (∂⊥s )3(∂⊥t v)− 4∂9skν ⟩
=p617(k) + p715(k) + p713(k) + p711(k) + p59(k) + p27(k) .

Proposition 4.13. Let γt be a maximal solution to the elastic flow of curves subjected to boundary
conditions (2.7), with initial datum γ0 in the maximal time interval [0, Tmax). Then for all t ∈
(0, Tmax) it holds ∫

γ
|∂⊥t v|2 ds ≤ C(E(γ0)) .

Proof. The thesis follows once we estimate the quantities in (4.9). From equation (4.18), we
have

−2

∫
γ
|(∂⊥s )2(∂⊥t v)|2 ds = −2

∫
γ
|4∂8sk + p59(k) + Λp56(k) + ∂sΛp

4
5(k)

+ ∂2sΛp
3
4(k) + Λ2p23(k) + Λ∂sΛp

1
2(k)

+ µp67(k) + µΛp34(k) + µ∂sΛp
2
3(k) + µ2p45(k)|2 ds .

Hence, using the simple inequalities

|a+ b|2 ≤ C
(
|a|2 + |b|2

)
,

|a+ b|2 ≥ (1− ε)|a|2 − C(ε)|b|2
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with ε =
1

2
, we get

−2

∫
γ
|(∂⊥s )2(∂⊥t v)|2 ds ≤−

∫
γ
|4∂8sk|2 + C

∫
γ
|p518(k) + Λ2p512(k) + (∂sΛ)

2p410(k)

+ (∂2sΛ)
2p38(k) + Λ4p26(k) + µ2p614(k)

+ µ2Λ2p38(k) + µ2(∂sΛ)
2p26(k) + µ4p410(k) ds

≤− 16

∫
γ
|∂8sk|2 +

∫
γ
|p518(k) + p416(k) + p614(k) + p212(k) + p410(k)| ds ,

(4.22)

where we used the very expression of Λ in (4.13) and the estimates in Lemma 4.9.
Moreover, with same arguments, from equation (4.20) we get

1

2

∫
γ
|∂⊥t v|2(∂sΛ− kV ) ds =

1

2

∫
γ
|∂⊥t v|2(∂sΛ + 2k∂2sk + k4 − µk2) ds

=

∫
γ
|p618(k) + p617(k) + p616(k) + p615(k) + p614(k) + p613(k)

+ p612(k) + p212(k) + p410(k) + p29(k) + p28(k)|ds . (4.23)

We only need to compute the integral in (4.9) involving Y . By straightforward computation,
we have

∂t(∂tv)
⊥ =− 8∂10s k − 20k2∂8sk + p711(k) + Λp78(k) + Λ2p45(k) + ∂tΛp

3
4(k)

+ 12µ∂8sk + µp69(k) + µΛp56(k) + µΛ2p23(k) + µ∂tΛp
1
2(k) + µ2p67(k)

+ µ2Λp34(k) + µ3p45(k) ,

and

∂4s (∂tv)
⊥ =4∂10s k + p711(k) + Λp78(k) + ∂sΛp

6
7(k) + ∂2sΛp

5
6(k) + ∂3sΛp

4
5(k) + ∂4sΛp

3
4(k)

− 4µ∂8sk + µp69(k) + µΛp56(k) + µ∂sΛp
4
5(k) + µ∂2sΛp

3
4(k)

+ µ∂3sΛp
2
3(k) + µ∂4sΛp

1
2(k) + µ2(p67(k) .

Then, we get

Y =∂⊥t (∂
⊥
t v) + 2(∂⊥s )

4(∂⊥t v)

=
(
− 20k2∂8sk + p711(k) + Λp78(k) + ∂sΛp

6
7(k) + Λ2p45(k) + ∂tΛp

3
4(k)

+ 4µ∂8sk + µp69(k) + µΛp56(k) + µ∂sΛp
4
5(k) + µΛ2p23(k) + µ∂tΛp

1
2(k)

+ µ2p67(k) + µ2Λp34(k) + µ3p45(k)
)
ν .
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Hence, computing the scalar product ⟨Y, ∂⊥t v⟩, using the well-known Peter-Paul inequal-
ity and integrating by parts the integral

∫
γ ∂

6
sk∂

8
sk ds, we have∫

γ
⟨Y, ∂⊥t v⟩ds ≤

1

2

∫
γ
|∂8sk|2 ds− 4µ

∫
γ
|∂7sk|2 ds+ p715(k)

∣∣∣1
0

+

∫
γ
|p718(k) + p617(k) + p718(k)p

7
16(k) + p615(k) + p714(k)

+ p613(k) + p612(k) + p411(k) + p410(k) + p48(k) + p26(k)|ds . (4.24)

where, as above, we estimated Λ and its derivatives by means of Lemma 4.9.
Moreover, using identities in Lemma 4.11 and Lemma 4.12, we end up with the following

inequality

−2⟨∂⊥t v, (∂⊥s )3(∂⊥t v)⟩
∣∣∣1
0
+ 2⟨∂⊥s (∂⊥t v), (∂⊥s )2(∂⊥t v)⟩

∣∣∣1
0
≤|p717(k)|+ |p715(k)|+ |p713(k)|

+ |p711(k)|+ |p59(k)|+ |p27(k)| .(4.25)

Then, putting together inequalities (4.22), (4.23), (4.24) and (4.25), we get

d

dt

1

2

∫
γ
|∂⊥t v|2 ds ≤

∫
γ
|p718(k) + p717(k) + p716(k) + p714(k) + p615(k) + p613(k) + p612(k)

+ p411(k) + p410(k) + p48(k) + p29(k) + p26(k)|ds

+ |p717(k)|+ µ|p715(k)|+ µ2|p713(k)|+ µ3|p711(k)|+ µ4|p59(k)|+ µ5|p27(k)|
∣∣∣1
0
.

By means of Lemma 4.7, we have

d

dt

1

2

∫
γ
|∂⊥t v|2 ds ≤− C

(
∥∂8sk∥2L2(γ) + µ∥∂7sk∥2L2(γ)

)
+ C

(
∥k∥2L2(γ) + ∥k∥ΘL2(γ)

)
≤C(E(γ0))

for some exponent Θ > 2 and constant C which depends on ℓ(γ).
Hence, by integrating, it follows∫

γ
|∂⊥t v|2 ds ≤ C(E(γ0)) .

Proposition 4.14. Let γt be a maximal solution to the elastic flow of curves subjected to Navier
boundary conditions with initial datum γ0, which satisfies the uniform non-degeneracy condi-
tion (4.4) in the maximal time interval [0, Tmax). Then, for all t ∈ (0, Tmax) it holds∫

γ
|∂6sk|2 ds ≤ C(E(γ0)) .
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Proof. From formula (4.14) and Lemma 4.8, it follows

∂⊥t v = ∂tv
⊥ν =

(
∂6sk + p47(k) + µp45(k) + µ2p23(k)

)
ν .

However, since we are assuming that µ is constant, we simply have

∂6sk = ∂tv
⊥ + p47(k) + p45(k) + p23(k)

and by means of Peter-Paul inequality, we get∫
γ
|∂6sk|2 ds ≤

∫
γ
|∂tv⊥|2 ds+ C

(∫
γ
|p47(k)|2 ds+

∫
γ
|p45(k)|2 ds+

∫
γ
|p23(k)|2 ds

)
. (4.26)

We now estimate separately the integrals involving the polynomials.
We start considering ∫

γ
|p47(k)|2 ds =

∫
γ

∣∣∣ 4∏
l=0

(∂lsk)
αl

∣∣∣2 ds
where αl ∈ N and

∑4
l=0(l + 1)αl = 7. So, by Hölder inequality, we get

∫
γ
|p47(k)|2 ds =

∫
γ

∣∣∣ 4∏
l=0

(∂lsk)
αl

∣∣∣2 ds ≤ 4∏
l=0

(∫
γ
|∂lsk|2αlβl ds

) 1
βl

=
4∏
l=0

∥∂lsk∥
2αl

L2αlβl (γ)

where βl := 7
(l+1)αl

> 1 if αl ̸= 0 (if αl = 0 we simply have the integral of a unitary function),
which clearly satisfies

4∑
l=0

1

βl
= 1 .

Then, we estimate any of such products by the well-known interpolation inequalities (see [31],
for instance),

∥∂lsk∥L2αlβl (γ) ≤ C∥∂6sk∥
σl
L2(γ)

∥k∥1−σl
L2(γ)

+ ∥k∥L2(γ) (4.27)

for some constant C depending on αl, βl and coefficient σl given by

σl =
1

6

(
l − 1

2αlβl
+

1

2

)
∈
[ l
6
, 1
)
.

Moreover, we notice that

4∑
l=0

2αlσl =
4∑
l=0

1

3

(
αl(l + 1)− 1

2βl
− αl

2

)
=

7

3
− 1

6
−
∑4

l=0 αl
6

< 2 ,

where in the last inequality we use the fact that, since l, αl are respectively the order of
derivations and the exponents of the derivative in p47(k), it follows

1 <
4∑
l=0

αl ≤ 7 .
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Then, multiplying together inequalities (4.27) and applying the Young inequality, we have∫
γ
|p47(k)|2 ds ≤

(
∥∂6sk∥L2γ) + ∥k∥L2(γ)

)∑4
l=0 2αlσl ∥k∥

∑4
l=0 2αl(1−σl)

L2(γ)

≤ε
(
∥∂6sk∥L2(γ) + ∥k∥L2(γ)

)2
+ C(ε)∥k∥Θ1

L2(γ)
(4.28)

for some exponent Θ1 > 2.
Arguing in the same way, one can check that∫

γ
|p45(k)|2 ds ≤ ε

(
∥∂6sk∥L2(γ) + ∥k∥L2(γ)

)2
+ C(ε)∥k∥Θ2

L2(γ)
(4.29)

and ∫
γ
|p23(k)|2 ds ≤ ε

(
∥∂6sk∥L2(γ) + ∥k∥L2(γ)

)2
+ C(ε)∥k∥Θ3

L2(γ)
(4.30)

for some exponents Θ2,Θ3 > 2.
Replacing the estimates (4.28), (4.29) and (4.30) in (4.26) and moving the small part of ∥∂6sk∥2L2(γ)

on the right-hand side, we have∫
γ
|∂6sk|2 ds ≤

∫
γ
|∂tv⊥|2 ds+ C(∥k∥2L2(γ) + ∥k∥ΘL2(γ)) ,

where, as above, θ > 2. Then, we conclude using Proposition 4.13 and the energy mono-
tonicity in Proposition 2.8.

5 Long-time existence

In the following, we adapt the proof of [32, Theorem 4.15] to our situation.

Theorem 5.1. Let γ0 be a geometrically admissible initial curve. Suppose that γt is a maximal
solution to the elastic flow with initial datum γ0 in the maximal time interval [0, Tmax) with Tmax ∈
(0,∞) ∪ {∞}. Then, up to reparametrization and translation of γt, it follows

Tmax = ∞

or at least one of the following holds

• lim inf ℓ(γt) → 0 as t→ Tmax;

• lim inf τ2 → 0 as t→ Tmax at boundary points.

Proof. Suppose by contradiction that the two assertions in the statement are not fulfilled
and that Tmax is finite. So, in the whole time interval [0, Tmax) the length of the curves γt
is uniformly bounded from below away from zero and the uniform condition (4.3) is satis-
fied. Moreover, since the energy (2.1) decreases in time, both the L2-norm of the curvature
and the length of γ are uniformly bounded from above. Let ε > 0 be fixed, by means of
Proposition 4.6 and Proposition 4.13 we have that

∂2sk ∈ L∞([0, Tmax);L
2) and ∂6sk ∈ L∞((ε, Tmax);L

2) .
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Hence, using Gagliardo-Nirenberg inequality for all t ∈ [0, Tmax) we get

∥∂jsk∥L2(γ) ≤ C1∥∂6sk∥σL2(γ)∥k∥
1−σ
L2(γ)

+ C2∥k∥L2(γ) ≤ C(E(γ0)) ,

for every integer j ≤ 6, with constants independent on t and for suitable exponent σ. Actu-
ally, by interpolation, we have

∂jsk ∈ L∞((ε, Tmax);L
∞)

for every integer j ≤ 5. Reparametrizing the curve γt into γ̃t with the property |∂xγ̃(x)| =
ℓ(γ̃) for every x ∈ [0, 1] and for all t ∈ [0, Tmax) and translating so that it remains in a ball
BR(0) for every time (since its length is uniformly bounded from above), we get

• 0 < c ≤ supt∈[0,Tmax),x∈[0,1] |∂xγ̃(t, x)| ≤ C <∞,

• 0 < c ≤ supt∈[0,Tmax),x∈[0,1] |γ̃(t, x)| ≤ C <∞ .

Hence, τ ∈ L∞([0, Tmax);L
∞) and ∂jxγ̃ ∈ L∞((ε, Tmax);L

∞) for every integer j ≤ 7. Then,
from the observation above and the fact that κ = kν, we get ∂jsκ ∈ L∞((ε, Tmax);L

∞)
for every integer j ≤ 5 and ∂6sκ ∈ L∞((ε, Tmax);L

2). Moreover, thanks to our choice of
parametrization, we have

κ(x) =
∂2xγ̃(x)

ℓ(γ̃)2
and ∂jsκ(x) =

∂j+2
x γ̃(x)

ℓ(γ̃)j+2
.

So, it follows that ∂jxγ̃ ∈ L∞((ε, Tmax);L
∞) for every integer 1 ≤ j ≤ 7 and ∂8xγ̃ ∈ L∞((ε, Tmax);L

2).
Then, by Ascoli-Arzelà Theorem, there exists a curve γmax such that

lim
t↗Tmax

∂jxγ̃(x) = ∂jxγmax(x)

for every integer j ≤ 6. The curve γmax is an admissible initial curve, since by continuity of
k and ∂2sk it fulfills the system (2.7) and uniform condition (4.3) at boundary points. Then,
there exists an elastic flow γt ∈ C

4+α
4
,4+α

(
[Tmax, Tmax + δ)× [0, 1];R2

)
with δ > 0. We again

reparametrize γt in γ̂t with constant speed equal to length and we have

lim
t↘Tmax

∂jxγ̂(x) = ∂jxγmax(x)

for every integer j ≤ 6.
Then,

lim
t↗Tmax

∂tγ̃(t, x) = lim
t↘Tmax

∂tγ̂(t, x) .

Thus, we found a solution to the elastic flow in C
4+α
4
,4+α

(
[0, Tmax + δ)× [0, 1];R2

)
. This

obviously contradicts the maximality of Tmax.

We conclude by emphasizing that, even if those arguments and techniques have been
already used in literature, all the previous works deal with closed curves (see for instance [19,
33, 44]) or open curves with fixed boundary points (see for instance [39, 40, 16, 29, 48]). So, all
the complications that appear in this paper are due to the fact that we have partial conditions
on the boundary points.
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6 Appendix

For the sake of completeness, we show the smoothness of critical points of functional E .

Lemma 6.1 ([4, Corollary 6.13, Exercise 6.7]). Suppose that Ω ⊂ Rn is open, f ∈ L1
loc(Ω),

p ∈ (1,∞], 1/p + 1/p′ = 1, m ∈ N0, and that there exists a constant C0 such that for all k ∈ N0

with k ≤ m and all ζ ∈ C∞
c (Ω) ∣∣∣∣∫

Ω
f∂kζ dx

∣∣∣∣ ≤ C0∥ζ∥Lp′ (Ω) .

Thenf ∈Wm,p(Ω) and there exists a constant C = C(m,C0) with ∥f∥Wm,p ≤ C.

Proposition 6.2 (Regularity for critical point of E). Suppose that γ is a critical point of E , then γ
is of class C∞. Moreover, for all l ∈ N there exists a constant Cl = Cl(∥γ∥H2) such that

∥γ∥W l+2,∞ ≤ Cl(∥γ∥H2) . (6.1)

Proof. In order to show the regularity of a critical point of the elastic energy, we follow a
bootstrap argument based on Lemma 6.1 (see [10] for a similar proof).

Indeed, we prove that for any m ∈ N0, η : [0, 1] → R of class C∞ and l ∈ N0, l ≤ m, we
have ∫

γ
k∂lsη ds ≤ C(∥γ∥H2)∥η∥L1 . (6.2)

Then, by Lemma 6.1 we conclude that κ ∈Wm,∞ and γ ∈Wm+2,∞, where κ = kν.
We start showing the assertion for m = 1. We recall that, since γ is a critical point of E , it

holds ∫
γ
2⟨κ, ∂2sψ⟩ ds+

∫
γ
(−3|κ|2 + µ) ⟨τ, ∂sψ⟩ ds = 0 (6.3)

for all ψ : [0, 1] → R2 of class H2 such that

ψ(0)2 = 0 and ψ(1)2 = 0 .

Moreover, the fact that γ ∈ H2 ensures that the L2-norm of the curvature is bounded, that is

∥κ∥L1 ≤ C∥κ∥L2 ≤ C(∥γ∥H2) .

We now denote by F (γ, ψ) the second integral in (6.3), so we have

|F (γ, ψ)| ≤ C(∥κ∥2L2 + µℓ(γ))∥∂sψ∥L∞ ≤ C(∥γ∥H2)∥ψ∥W 2,1 . (6.4)

In order to show the L∞-regularity of κ, we consider η ∈ C∞ and we use

ψ(x) = ℓ(γ)2
∫ x

0

∫ y

0
η(t)ν(t) dt dy + ℓ(γ)2x

∫ 1

0

∫ y

0
η(t)ν(t) dtdy

as test function in (6.3). It clearly follows that ψ ∈ H2 and ∂2sψ = ην (using the relation
|γ′(x)| = ℓ(γ) for all x ∈ [0, 1]). Then, if we replace ψ in (6.3) we have∫

γ
2⟨κ, ην⟩ ds = −F (γ, ψ)
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for all η ∈ C∞. Hence, using the estimate (6.4), we obtain∫
γ
2⟨κ, ην⟩ ds =

∫
γ
2kη ds ≤ C(∥γ∥H2)∥ψ∥W 2,1 ≤ C(∥γ∥H2)∥η∥L1 ,

and by Lemma 6.1, we conclude that κ ∈ L∞ (that is γ ∈ W 2,∞) and there exists a constant
C0 = C0(∥γ∥H2) such that

∥κ∥L∞ ≤ C0(∥γ∥H2) . (6.5)

Arguing in the same way, we want to show that k ∈W 1,∞. For η ∈ C∞, we use

ψ(x) = ℓ(γ)

∫ x

0
η(t)ν(t) dt+ ℓ(γ)x

∫ 1

0
η(t)ν(t) dt

as test function in (6.3). So we have ψ ∈ H2, ∂sψ = ην and

⟨∂2sψ, ν⟩ = ⟨∂sην, ν⟩ = ∂sη .

Then, relation (6.3) can be written as∫
γ
k∂sη ds =

∫
γ
(3|κ|2 − µ)⟨τ, ∂sψ⟩ ds ≤ C(∥γ∥H2)∥∂sψ∥L1 ≤ C(∥γ∥H2)∥η∥L1

where we used the L∞-bound in (6.5). Then, by Lemma 6.1 it follows that κ ∈W 1,∞ (that is
γ ∈W 3,∞) and there exists a constant C1 = C1(∥γ∥H2) such that

∥κ∥W 1,∞ ≤ C1(∥γ∥H2) .

Once we show the assertion for m = 1, we can suppose that m ≥ 2 and that it holds for
m− 1. So, we only need to prove the estimate (6.2) for l = m.

For η ∈ C∞, we use ψ = ∂l−2
s ην as a test function in (6.3). Hence, we have

⟨∂2sφ, ν⟩ = ⟨∂s(∂l−1
s ην + ∂l−2

s η∂sν), ν⟩ = ∂lsη + 2⟨∂l−1
s η∂sν, ν⟩+ ⟨∂l−2

s η∂2sν, ν⟩
= ∂lsη − ⟨∂l−2

s η∂s(kτ), ν⟩ = ∂lsη − k2∂l−2
s η .

and
⟨∂sψ, τ⟩ = ⟨∂l−1

s ην + ∂l−2
s η∂sν, τ⟩ = −k∂l−2

s η .

Replacing this relations in (6.3), we obtain∫
γ
k∂lsη ds =

∫
γ
k3∂l−2

s η −
∫
γ
k(3k2 − µ)∂l−2

s η ds .

In view of the regularity already established, we may integrate by parts the terms involving
derivatives of η on the right-hand side and we obtain∫

γ
k∂lsη ds ≤ C(∥γ∥H2) .

Since this estimate holds for all l ≤ m, by Lemma 6.1 we conclude that κ ∈Wm,∞ and there
exists a constant Cl = Cl(∥γ∥H2) such that estimate (6.1) holds.
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[24] M. Gösswein, J. Menzel, and A. Pluda. Existence and uniqueness of the motion by
curvature of regular networks. Interfaces Free Bound, 25:109–154, 2023.

[25] N. Koiso. On the motion of a curve towards elastica. In Actes de la Table Ronde de
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Advances and Applications. Birkhäuser Basel, 2012. Translated from the Russian origi-
nal by Gennady Pasechnik and Andrei Iacob.

[47] V. A. Solonnikov. Boundary value problems of mathematical physics. III. Amer. Math. Soc.,
Providence, R.I., 1967.

39



[48] A. Spener. Short time existence for the elastic flow of clamped curves. Math. Nachr.,
290(13):2052–2077, 2017.

[49] C. Truesdell. The influence of elasticity on analysis: the classic heritage. Bull. Am. Math.
Soc., 9:293–310, 1983.

[50] Y. Wen. Curve straightening flow deforms closed plane curves with nonzero rotation
number to circles. J. Diff. Eqs., 120:89–107, 1995.

[51] G. Wheeler. Global analysis of the generalised Helfrich flow of closed curves immersed
in Rn. Trans. Amer. Math. Soc., 367(4):2263–2300, 2015.

[52] G. Wheeler and V.-M. Wheeler. Curve diffusion and straightening flows on parallel
lines. Preprint: arXiv:1703.10711, 2017.

40

https://arxiv.org/abs/1703.10711

	Introduction
	The elastic flow
	Preliminary definitions and notation
	Formal derivation of the flow
	Definition of the geometric problem
	Energy monotonicity

	Short-time existence
	Definition of the analytic problem
	Linearization
	Short-time existence of the analytic problem
	Geometric existence and uniqueness

	Curvature bounds
	Bound on s2 k L2
	Bound on s6 kL2

	Long-time existence
	Appendix

