
TOPOLOGICAL SINGULARITIES ARISING FROM
FRACTIONAL-GRADIENT ENERGIES

ROBERTO ALICANDRO, ANDREA BRAIDES, MARGHERITA SOLCI, AND GIORGIO STEFANI

Abstract. We prove that, on a planar regular domain, suitably scaled functionals of
Ginzburg–Landau type, given by the sum of quadratic fractional Sobolev seminorms and
a penalization term vanishing on the unitary sphere, Γ-converge to vortex-type energies
with respect to the flat convergence of Jacobians. The compactness and the Γ-lim inf
follow by comparison with standard Ginzburg–Landau functionals depending on Riesz
potentials. The Γ-lim sup, instead, is achieved via a direct argument by joining a finite
number of vortex-like functions suitably truncated around the singularity.

1. Introduction

1.1. Classical framework. Let Ω ⊂ R2 be a non-empty, connected, simply connected,
bounded open set with Lipschitz boundary. Given a scale parameter ε > 0 and an
additional parameter λ > 0, the Ginzburg–Landau functionals

GLε,λ( · ; Ω) : H1(Ω;R2) → [0, ∞]
are defined as

GLε,λ(v; Ω) = 1
| log ε|

∫
Ω

|Dv|2 dx + λ

ε2| log ε|

∫
Ω

(
|v|2 − 1

)2
dx (1.1)

for v ∈ H1(Ω;R2). One may prescribe a trace constraint at the boundary by imposing
that v|∂Ω = g for some fixed boundary datum g : ∂Ω → S1 with (topological) degree
d = deg(g, ∂Ω) ∈ Z, in which case the functionals in (1.1) are restricted to the subspace

H1
g (Ω;R2) =

{
v ∈ H1(Ω;R2) : v|∂Ω = g

}
.

Much effort has been devoted to understanding the asymptotic behavior of the minimiz-
ers vε of the functionals in (1.1) as the scale parameter vanishes. In the limit as ε → 0+,
the minimizers vε of the functionals in (1.1) develop vortex-like singularities of the form
x−xi

|x−xi| (possibly, up to a fixed rotation) for |d| points xi’s in Ω.
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After the works [18, 19, 23, 24] (we also refer to the monograph [8] and to [2] for a more
detailed presentation of the problem, and to [1] for the higher-dimensional setting), the
picture is nowadays well understood. The Γ-convergence of the functionals in (1.1) as
ε → 0+ is related to the flat (or 1-Wasserstein) convergence of the Jacobians Jac(vε) =
det(Dvε) of their minimizers vε to an atomic measure µ ∈ X (Ω), where

X (Ω) =
{

N∑
i=1

diδxi
: di ∈ Z and xi ∈ Ω for i = 1, . . . , N, with N ∈ N

}
. (1.2)

In more precise terms, we can state the following result. For a detailed presentation of
the notion of Γ-convergence, we refer to the monographs [5, 15]. For the definition of flat
convergence; i.e., in the dual norm with respect to Lipschitz functions, see Section 2.2.

Theorem 1.1 (Compactness and Γ-convergence of Ginzburg–Landau energies). Let
Ω ⊂ R2 be a non-empty, connected, simply connected, bounded open set with Lipschitz
boundary, g ∈ H

1
2 (∂Ω;S1) with d = deg(g|∂Ω, ∂Ω) ∈ Z and λ > 0.

(i) (Compactness) If (vεk
)k∈N ⊂ H1

g (Ω;R2), with εk → 0+ as k → ∞, is such that

sup
k∈N

GLεk,λ(vεk
; Ω) < ∞,

then there exists a subsequence (vεkj
)j∈N and µ ∈ X (Ω) such that µ(Ω) = d and

Jac(vεkj
) L 2 flat(Ω)−−−→ µ as j → ∞.

(ii) (Γ-lim inf inequality) If (vεk
)k∈N ⊂ H1

g (Ω;R2), with εk → 0+ as k → ∞, is such that

Jac(vεk
) L 2 flat(Ω)−−−→ µ as k → ∞ (1.3)

for some µ ∈ X (Ω), then µ(Ω) = d and

lim inf
k→∞

GLεk,λ(vεk
; Ω) ≥ 2π|µ|(Ω).

(iii) (Γ-lim sup inequality) If µ ∈ X (Ω) is such that µ(Ω) = d, then there exists a sequence
(vεk

)k∈N ⊂ H1
g (Ω;R2), with εk → 0+ as k → ∞, such that (1.3) holds and

lim sup
k→∞

GLεk,λ(vεk
; Ω) ≤ 2π|µ|(Ω).

1.2. Fractional framework. In the present work, we investigate the validity of a fractional
analog of Theorem 1.1, in which the differential operator in the L2 energy in (1.1) is
replaced by the fractional (Riesz) s-gradient

Dsu(x) = (1 − s) 2s−1

π

Γ( 3+s
2 )

Γ( 3−s
2 )

∫
R2

(u(y) − u(x)) ⊗ (y − x)
|y − x|3+s

dy, x ∈ R2, (1.4)

for s ∈ (0, 1), where Γ stands for Euler’s Gamma function. The integro-differential operator
in (1.4) has gained considerable interest in recent years, leading to a rapidly growing
number of works concerning the development of a fractional analog of classical calculus
and of its applications. For a non-comprehensive account on the existing literature, we
refer to [3, 4, 7, 12–14,20,26–29] and the references therein.
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Our main aim is to replace (1.1) with functionals of the form

GLεs,λ(u; Ω) = 1
| log εs|

∫
Ω

|Dsu|2 dx + λ

ε2
s| log εs|

∫
Ω
(|u|2 − 1)2 dx (1.5)

for some scale parameter εs > 0, depending on s, such that εs → 0+ as s → 1−, in such a
way that the analog of Theorem 1.1 holds.

In order to determine εs, we observe that the s-gradient in (1.4) can be equivalently
presented as the gradient of the Riesz potential of order 1 − s; that is, Dsu = Dv, where

v(x) = I1−su(x) = 1 − s

1 + s

2s−1

π

Γ( 3+s
2 )

Γ( 3−s
2 )

∫
R2

u(y)
|y − x|1+s

dy, x ∈ R2. (1.6)

Therefore, since I1−su tends to u as s → 1−, we expect that, along a family of minimizers
us, the functionals in (1.5) can be reasonably approximated as

GLεs,λ(us; Ω) ∼ 1
| log εs|

∫
Ω

|Dvs|2 dx + λ

ε2
s| log εs|

∫
Ω
(|vs|2 − 1)2 dx ∼ GLεs,λ(vs; Ω) (1.7)

with vs = I1−sus a family of ‘almost minimizers’ of the functionals in (1.1). Assuming
that us and vs are uniformly bounded and supported in a bounded neighborhood of Ω, we
expect that the size of the error in the approximation (1.7) should be not larger than

1
ε2

s| log εs|

∫
Ω

∣∣∣(|vs|2 − 1)2 − (|us|2 − 1)2
∣∣∣ dx ≲

(1 − s)2

ε2
s| log εs|

[us]2Hs (1.8)

(we refer to Lemma 3.2 in Section 3.1 below for the precise computations), where

[u]2Hs =
∫
R2

∫
R2

|u(y) − u(x)|2
|y − x|2+2s

dx dy (1.9)

is the Sobolev–Slobodeckij Hs-energy of u. Since the L2 norm of the s-gradient in (1.4) is
proportional to the energy in (1.9),∫

R2
|Dsu|2 dx = 4s

2π

s Γ(1 + s)
Γ(2 − s) (1 − s) [u]2Hs (1.10)

(e.g., see [27, Rem. 2.3], as well as Proposition 2.8 below), we get that the size of the error
in the approximation (1.7) should be at most

(1 − s)
ε2

s| log εs|

∫
R2

|Dsus|2 dx ∼ (1 − s)
ε2

s| log εs|

∫
R2

|Dvs|2 dx.

Therefore, in order to re-absorb such an error, we have to require that its size is comparable
to the one of the other term in GLεs,λ(vs); that is,

(1 − s)
ε2

s| log εs|

∫
R2

|Dvs|2 dx ∼ 1
| log εs|

∫
R2

|Dvs|2 dx,

from which we get that εs ∼
√

1 − s.
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1.3. Statement of the main result. Although rather naive, the approximation in (1.7)
leads to the correct fractional analog of (1.1). In view of (1.9) and of the identification
in (1.10), as customary we set

Hs(R2;R2) =
{
u ∈ L2(R2;R2) : [u]2Hs < ∞

}
for s ∈ (0, 1). Therefore, given λ > 0, we define the Ginzburg–Landau fractional s-energies

GLs
λ( · ; Ω) : Hs(R2;R2) → [0, ∞)

by letting

GLs
λ(u; Ω) = 1

| log(1 − s)|

∫
R2

|Dsu|2 dx + λ

(1 − s)| log(1 − s)|

∫
Ω
(|u|2 − 1)2 dx (1.11)

for u ∈ Hs(R2;R2). By (1.10), we can equivalently write

GLs
λ(u; Ω) = 1 − s

| log(1 − s)|
2
π

[u]2Hs + λ

(1 − s)| log(1 − s)|

∫
Ω
(|u|2 − 1)2 dx

for u ∈ Hs(R2;R2). We note that analogous scalar energies (but with different scaling
regimes) are related to a non-local approach to phase-transition problems, see [16,17,25].

In order to state the fractional analog of Theorem 1.1, we need to introduce a suitable
boundary condition, which—due to the non-locality of (1.4)—has to be prescribed on R2\Ω
instead of just on ∂Ω. In addition, in view of the underlying approximation argument
in (1.7), we require that the boundary datum is bounded and supported in a bounded
neighborhood of Ω. Hence, the set of boundary data we consider is defined as

BΩ =
{

g ∈ H1(R2;R2) ∩ L∞(R2;R2) : g has compact support and
|g| = 1 in an open neighborhood of ∂Ω

}
. (1.12)

Thus, given g ∈ BΩ and L ∈ [∥g∥L∞(R2), ∞), for s ∈ (0, 1) we define the spaces

Hs
g(Ω; BL) =

{
u ∈ Hs(R2;R2) : u = g on R2 \ Ω and ∥u∥L∞ ≤ L

}
. (1.13)

In view of the representation of the s-gradient in (1.4) via the Riesz potential in (1.6),
the approximation in (1.7), and the analogy with Theorem 1.1, we are naturally led to
define the fractional Jacobian of a function u ∈ Hs(R2;R2) as the usual Jacobian of the
function v = I1−su for all s ∈ (0, 1), letting

Jacs(u) = det(Dsu) = det(Dv) = Jac(v). (1.14)
The convergence of Jacs(u) as s → 1− is then defined according to the customary definition
of flat convergence.

With the above notation in force, our main result states as follows.

Theorem 1.2 (Compactness and Γ-convergence of fractional Ginzburg–Landau energies).
Let Ω ⊂ R2 be a non-empty, connected, simply connected, bounded open set with Lipschitz
boundary, g ∈ BΩ with d = deg(g|∂Ω, ∂Ω) ∈ Z, L ∈ [∥g∥L∞ , ∞) and λ > 0.
(i) (Compactness) If usk

∈ Hsk
g (Ω; BL), with sk → 1− as k → ∞, is such that

GLsk
λ (usk

; Ω) < ∞,

then there exists a subsequence (uskj
)j∈N and µ ∈ X (Ω) such that µ(Ω) = d and

Jacskj (uskj
) flat(Ω)−−−→ πµ as j → ∞.
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(ii) (Γ-lim inf inequality) If usk
∈ Hsk

g (Ω; BL), with sk → 1− as k → ∞, is such that

Jacsk(usk
) flat(Ω)−−−→ πµ as k → ∞ (1.15)

for some µ ∈ X (Ω), then µ(Ω) = d and

lim inf
k→∞

GLsk
λ (usk

; Ω) ≥ π|µ|(Ω).

(iii) (Γ-lim sup inequality) If µ ∈ X (Ω) is such that µ(Ω) = d, then there exists a sequence
usk

∈ Hsk
g (Ω; BL), with sk → 1− as k → ∞, such that (1.15) holds and

lim sup
k→∞

GLsk
λ (usk

; Ω) ≤ π|µ|(Ω).

1.4. Strategy of proof. The proof of Theorem 1.2 is split in two parts.
On the one side, claims (i) and (ii) of Theorem 1.2 follow by comparison with the local

setting (recall Theorem 1.1) via a rigorous formulation of the approximation argument
sketched in (1.7). The overall idea is to show that, if the fractional Ginzburg–Landau
sk-energy of usk

is uniformly bounded, then the integer εk-Ginzburg–Landau energy of
vεk

= I1−sk
usk

, with εk =
√

1 − sk, is also uniformly bounded and, actually, we have that

GLsk
λ (usk

; Ω) ≥ ck GLεk,Λ(vεk
; Ω)

for some ck > 0 such that ck → 1
2 as k → ∞ and Λ > 0 which does not depend on k. From

Theorem 1.1 we hence infer compactness and the Γ-lim inf inequality for GLsk
λ (usk

; Ω)
thanks to the fact that, due to the definition in (1.14) and (1.6), we have

Jacsk(usk
) = c′

k Jac(vεk
) (1.16)

for some c′
k > 0 such that c′

k → 1 as k → ∞. The fact that µ(Ω) = d follows from an
integration-by-parts argument, roughly exploiting the fact that, recalling (1.16),

Jacsk(usk
) = c′

k Jac(vsk
) = c′

k curl j(vsk
) ∼ curl j(g) = Jac(vsk

)

in a neighborhood U of ∂Ω, where j(vsk
) = vsk

× Dvsk
, since

∥Dskusk
∥L2(R2) ∥vsk

− g∥L2(U\Ω) ≲ GLsk
λ (usk

; Ω)
√

1 − sk| log(1 − sk)| → 0+, as k → ∞,

in view of the definition in (1.11) and of the approximation in (1.7) and (1.8).
On the other side, concerning claim (iii) in Theorem 1.2, the recovery sequence (usk

)k∈N
is built according to the classical cut-off approach around a vortex singularity. Precisely,
we first consider the case in which µ is given by

µ =
N∑

i=1
diδxi

, (1.17)

with N ∈ N, xi ∈ Ω and di ∈ {−1, 1} such that
N∑

i=1
di = deg(g|∂Ω, ∂Ω), (1.18)
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and construct a recovery sequence of the form

usk
=


ηk( · − xi)

( · − xi)di

| · −xi|
around xi, for each i = 1, . . . , N,

g outside Ω,

û everywhere else,

(1.19)

where ηk is a suitable cut-off near the origin depending on sk, xd =
( x1

(−1)dx2

)
for x ∈ R2

and d ∈ {−1, 1}, and û is an H1 function with values in S1 which does not depend on sk,
but only on the position of the xi’s in Ω, interpolating the vortices ( · −xi)di

| · −xi| , i = 1, . . . , N ,
and the datum g (the existence of such a function û is guaranteed by the condition (1.18)).
Once the special case (1.17) is achieved, the general situation can be then established via
a routine diagonal approximation argument.

1.5. Comments. We conclude this introduction with some comments on our main result.
An important difference between Theorem 1.1 and Theorem 1.2 appears in the domains

of definition of the corresponding energies. In our Theorem 1.2, we only consider Hs

functions attaining the datum g ∈ BΩ outside Ω which are bounded by some constant
L ≥ ∥g∥L∞ . We do not know if this additional constraint—which we need in the error
estimate in (1.8)—is merely technical and can be removed. We nevertheless notice that
such constraint does not seem to be essential in our approach. Indeed, the fractional
energies in (1.11) are decreased by truncation (see Corollary 2.9 below) and the L∞ norm
of the recovery sequence constructed in point (iii) of Theorem 1.2 is bounded by ∥g∥L∞ .

Another relevant point concerning the definition in (1.13) is whether Theorem 1.2 may
be achieved with respect to the smaller space

Hs
g(Ω;S1) =

{
u ∈ Hs(R2;R2) : u = g on R2 \ Ω and |u| = 1 on Ω

}
(1.20)

for s ∈ (0, 1), simplifying the non-local energies in (1.11) to

GLs(u; Ω) = 1
| log(1 − s)|

∫
R2

|Dsu| dx. (1.21)

While the compactness and the Γ-lim inf follow as in the proof of Theorem 1.2 up to
minor changes, the Γ-lim sup remains unclear. As done in [30], one may directly take xd

|x| ,
with x ̸= 0 and d ∈ {1, −1}, as a building block for the recovery sequence; that is, like
in (1.19), but avoiding the truncation near the singularity. However, the recovery sequence
ũs ∈ H1

g (Ω;S1) constructed in this way satisfies

GLs(ũs; Ω) ≲ 1
(1 − s)| log(1 − s)| for s ∈ (0, 1). (1.22)

We do not know if the bound in (1.22) is optimal but, at least, it seems to agree with
the one given by [30, Th. 2.6] when (formally) rephrased to our setting. Indeed, given a
kernel ρ ≥ 0, the energy considered in [30] is defined as

Fε(u) = 1
ε4| log ε|

∫
Ω

∫
Ω

ρ
( |x − y|

ε

)
|u(x) − u(y)|2 dx dy. (1.23)
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Choosing ρ(r) = r−2−2s for r > 0 (note that this kernel is not admissible for [30, Th. 2.6])
and ε =

√
1 − s, the functional in (1.23) becomes asymptotically equivalent as s → 1− to

u 7→ 1
| log(1 − s)|

∫
Ω

∫
Ω

|u(x) − u(y)|2
|x − y|2+2s

dx dy. (1.24)

In virtue of (1.9) and (1.10), and ignoring the reminder terms coming from the interactions
between Ω and R2 \ Ω, the energy in (1.24) differs from the one in (1.21) exactly by a
factor (1 − s), which is precisely the additional factor appearing in the bound (1.22).

The above considerations suggest that a more refined analysis of the energy (1.22) in
the space in (1.20) is required in order to properly understand the Γ-limit as s → 1−, and
in particular whether vortex singularities are ruled out for our functionals with the strict
constraint |u| = 1.

We finally note that functionals in (1.11) can be equivalently defined for Ω ⊂ Rn with
n ≥ 2. In this case, Theorem 1.2 must be stated in terms of (n − 2)-dimensional integral
currents. We do not address the details here, but we refer to [1] for proper statements and
for the extension of the construction of recovery sequences for arbitrary n ≥ 2.

1.6. Organization of the paper. The main notation and definitions, plus some basic
results concerning the Jacobian, the degree, the fractional gradient and the Riesz potential,
are given in Section 2. The proof of Theorem 1.2 is then detailed across Section 3.

2. Preliminaries

In this section, we recall the main notation and collect some preliminary results.

2.1. General notation. Throughout the paper, the ambient space is R2. The norm
of a point x =

(
x1
x2

)
∈ R2 is given by |x|2 = x2

1 + x2
2, while the norm of a matrix A =(

A11 A12
A21 A22

)
∈ R2×2 is given by |A|2 = A2

11 + A2
12 + A2

21 + A2
22. We let S1 = {x ∈ R2 : |x| = 1}

be the standard unitary circle and we let Ω ⊂ R2 denote an open set, possibly satisfying
further topological and/or regularity assumptions.

2.2. Lipschitz functions, measures and flat norm. We let Lip(Ω) be the space of
real-valued Lipschitz functions on Ω, endowed with the norm

∥φ∥Lip = ∥φ∥L∞(Ω) + ∥∇φ∥L∞(Ω), for φ ∈ Lip(Ω),

where ∇φ =
(

∂x1 φ

∂x2 φ

)
as customary, and we let Lipc(Ω) be its subspace of functions with

compact support in Ω.
We let Mb(Ω) be the space of Radon measures on Ω with finite total variation. We let

∥µ∥flat(Ω) = sup
{∫

Ω
φ dµ : φ ∈ Lipc(Ω), ∥φ∥Lip ≤ 1

}
,

and, analogously,

∥µ∥flat(Ω) = sup
{∫

Ω
φ dµ : φ ∈ Lip(Ω), ∥φ∥Lip ≤ 1

}
,

be the flat norm of µ ∈ Mb(Ω) on Ω and Ω, respectively. Consequently, given µk, µ ∈
Mb(Ω), k ∈ N, we write µk

flat(Ω)−−−→ µ (respectively, µk
flat(Ω)−−−→ µ) if ∥µn − µ∥flat(Ω) → 0

(respectively, ∥µk − µ∥flat(Ω) → 0) as k → ∞.
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2.3. Sobolev functions, Jacobian and degree. We let

H1(Ω;R2) =
{
v ∈ L2(Ω;R2) : Dv ∈ L2(Ω;R2×2)

}
be the standard Sobolev space on Ω, endowed with the norm

∥v∥H1 = ∥v∥L2(Ω) + ∥Dv∥L2(Ω), for v ∈ H1(Ω;R2),
see [21, Ch. 11] for a detailed introduction. Here we note that

Dv =
(

∂x1v1 ∂x2v1

∂x1v2 ∂x2v2

)
and that ∥Dv∥2

L2(Ω) = ∥|Dv|∥2
L2(Ω), where |Dv| is defined as in Section 2.1.

The Jacobian of v ∈ H1(Ω;R2) is defined as
Jac(v) = det(Dv) = ∂x1v1∂x2v2 − ∂x2v1∂x1v2 ∈ L1(Ω). (2.1)

In particular, we tacitly identify Jac(v) with the Radon measure Jac(v)L 2 ∈ Mb(Ω). For
a (historical) presentation of the Jacobian of Sobolev functions, we refer to the survey [11].

We now recall some elementary properties of the Jacobian that will be useful in the
sequel. The first one concerns H1 functions with values in S1 (e.g., see [11, Sec. 3]).

Lemma 2.1. If v ∈ H1(Ω;R2) is such that |v| = 1 on Ω, then Jac(v) = 0 on Ω.

Proof. Differentiating |v|2 = 1, we get that v ∈ ker(Du), proving that det(Dv) = 0. □

In order to state the second result on the Jacobian, we need the following notation.

Definition 2.2. Given v, w ∈ H1(Ω;R2), we define the current
j(v, w) = v × Dw = v1Dw2 − v2Dw1 ∈ L1(Ω;R2).

In particular, we let j(v) = j(v, v) ∈ L1(Ω;R2).

The next result relates the Jacobian of H1 functions to the current j in Definition 2.2
and also shows that the curl of j is zero.

Lemma 2.3. If v, w ∈ H1(Ω;R2), then∫
Ω

Jac(v) φ dx = 1
2

∫
Ω

j(v) × ∇φ dx (2.2)

and ∫
Ω
(j(v, w) − j(w, v)) × ∇φ dx = 0 (2.3)

whenever φ ∈ Lipc(Ω).

Proof. If v, w ∈ C2(Ω;R2), then we can write

Jac(v) = 1
2 curl j(v) and j(v, w) − j(w, v) = ∇(v × w),

from which we get (2.2) and (2.3). In the general case, the validity of (2.2) and (2.3)
follows by approximating v, w ∈ H1(Ω;R2) with smooth functions. □

Lemma 2.3 can be exploited to estimate the flat distance between the Jacobians of two
H1 functions, as follows (note that this is a particular instance of [10, Th. 1(i)]).
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Proposition 2.4. If v, w ∈ H1(Ω;R2), then

∥ Jac(v) − Jac(w)∥flat(Ω) ≤ 2 ∥v − w∥L2(Ω) (∥Dv∥L2(Ω) + ∥Dw∥L2(Ω)).

Proof. Given v, w ∈ H1(Ω;R2), by Definition 2.2 we can estimate

|j(v) − j(w)| ≤ |j(v, v − w)| + |j(w, v − w)| ≤ 4 |v − w| (|Dv| + |Dw|).

From (2.2), by Hölder’s inequality we hence get that∣∣∣∣∫
Ω
(Jac(v) − Jac(w)) φ dx

∣∣∣∣ ≤ 2 ∥v − w∥L2(Ω) (∥Dv∥L2(Ω) + ∥Dw∥L2(Ω))∥∇φ∥L∞(Ω)

whenever φ ∈ Lipc(Ω), yielding the conclusion. □

Last, but not least, we recall the following result linking the Jacobian of Sobolev functions
to their (topological) degree. For a more detailed account, we refer to the survey [9].

Lemma 2.5. Let Ω ⊂ R2 be a non-empty, connected, simply connected, bounded open set
with Lipschitz boundary. If u ∈ H1(Ω;R2) is such that |u| = 1 on ∂Ω, then the (topological)
degree deg(u|∂Ω, ∂Ω) ∈ Z of the trace u|∂Ω of u on ∂Ω satisfies

deg(u|∂Ω, ∂Ω) = 1
π

∫
Ω

Jac(u) dx. (2.4)

2.4. Ginzburg–Landau energies. As briefly recalled in Section 1.1, given ε, λ > 0, the
Ginzburg–Landau functionals on a non-empty open set Ω,

GLε,λ( · ; Ω) : H1(Ω;R2) → R,

are defined as

GLε,λ(u; Ω) = 1
| log ε|

∫
Ω

|Du|2 dx + λ

ε2| log ε|

∫
Ω
(|u|2 − 1)2 dx (2.5)

for u ∈ H1(Ω;R2). The following result rephrases Theorem 1.1 in the case no boundary
condition is imposed on ∂Ω (again, refer to [2, 8, 18, 19, 23, 24] for the proof, and see [1] for
the higher-dimensional setting). Here and in below, as in (1.2), we let

X (A) =
{

µ =
N∑

i=1
di δxi

: di ∈ Z and xi ∈ A for i = 1, . . . , N, with N ∈ N
}

be the collections of atomic measures on a non-empty set A ⊂ R2.

Theorem 2.6. Let Ω ⊂ R2 be a non-empty, connected, simply connected, bounded open
set with Lipschitz boundary and λ > 0.
(i) (Compactness) If (vεk

)k∈N ⊂ H1(Ω;R2), with εk → 0+ as k → ∞, is such that

sup
k∈N

GLεk,λ(vεk
; Ω) < ∞,

then there exists a subsequence (vεkj
)j∈N and µ ∈ X (Ω) such that

Jac(vεkj
) flat(Ω)−−−→ µ as j → ∞.
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(ii) (Γ-lim inf inequality) If (vεk
)k∈N ⊂ H1

g (Ω;R2), with εk → 0+ as k → ∞, is such that

Jac(vεk
) flat(Ω)−−−→ µ as k → ∞ (2.6)

for some µ ∈ X (Ω), then
lim inf

k→∞
GLεk,λ(vεk

; Ω) ≥ 2π|µ|(Ω).

(iii) (Γ-lim sup inequality) If µ ∈ X (Ω), then there exists a sequence (vεk
)k∈N ⊂ H1

g (Ω;R2),
with εk → 0+ as k → ∞, such that (2.6) holds and

lim sup
k→∞

GLεk,λ(vεk
; Ω) ≤ 2π|µ|(Ω).

2.5. Fractional Sobolev functions. We let
Hs(R2;R2) =

{
u ∈ L2(Ω;R2) : [u]s,Ω < ∞

}
be the fractional Sobolev space of order s ∈ (0, 1), endowed with the norm

∥u∥Hs = ∥u∥L2 + [u]s,Ω, for u ∈ Hs(Ω;R2),
where

[u]2s,Ω =
∫

Ω

∫
Ω

|u(y) − u(x)|2
|y − x|2+2s

dx dy, (2.7)

see [22, Ch. 6] for a detailed introduction. If Ω = R2, then we simply write [u]s = [u]s,R2 .
For future convenience, we recall the following result, which corresponds to [6, Lem. 3].

Here and below, for τ > 0, we let
△τ =

{
(x, y) ∈ R2 : |x − y| ≤ τ

}
⊂ R2. (2.8)

Lemma 2.7. Let Ω ⊂ R2 be a measurable set. If u ∈ L2(Ω), then∫∫
(Ω×Ω)\△τ

|u(x) − u(y)|2
|x − y|2+2s

dx dy ≤
4π∥u∥2

L2(Ω)

sτ 2s

for τ > 0 and s ∈ (0, 1).

Proof. By the definition in (2.8), we can estimate∫∫
(Ω×Ω)\△τ

|u(x) − u(y)|2
|x − y|2+2s

dx dy ≤ 4
∫

Ω
|u(x)|2

∫
R2\Bτ

dh

|h|2+2s
dx dy =

4π∥u∥2
L2(Ω)

sτ 2s

whenever τ > 0 and s ∈ (0, 1). □

2.6. Fractional gradient. By combining [27, Rem. 2.3] with [7, Cor. 1] (also see the
discussion in [13, Sec. 3.9]), we can equivalently define

Hs(R2;R2) =
{
u ∈ L2(R2;R2) : Dsu ∈ L2(R2;R2×2)

}
for s ∈ (0, 1), where, as briefly recalled in (1.4),

Dsu(x) = (1 − s) 2s−1

π

Γ( 3+s
2 )

Γ( 3−s
2 )

∫
R2

(u(y) − u(x)) ⊗ (y − x)
|y − x|3+s

dy, x ∈ R2, (2.9)

is the fractional (Riesz) s-gradient of u. Note that the s-gradient in (2.9) is well
defined for sufficiently regular functions (u ∈ Lipc(R2;R2) would suffice, see the discussion
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in [13, Sec. 2.2] for instance), while, for u ∈ Hs(R2;R2), the operator in (2.9) is defined in
the distributional sense via (fractional) integration-by-parts, see [13, Def. 3.19].

Here we just recall the following result, which relates the L2 norm of the s-gradient
in (2.9) with the fractional seminorm in (2.7). Here and below, as in Section 2.3, we set
∥|Dsu∥2

L2 = ∥|Dsu|∥2
L2 , where |Dsu| is as defined in Section 2.1.

Proposition 2.8. If u ∈ Hs(R2;R2), then
∥Dsu∥2

L2 = (1 − s) cs [u]2s, (2.10)

where cs = 4s

2π

s Γ(1 + s)
Γ(2 − s) > 0 satisfies lim

s→1−
cs = 2

π
.

Proof. By density, we may assume that u ∈ C∞
c (R2;R2) without loss of generality. In this

case, formula (2.10) follows either by applying Fourier’s transform, or by observing that

(1 − s) cs [u]2s =
∫
R2

u (−∆)su dx = −
∫
R2

u divs(Dsu) dx =
∫
R2

|Dsu|2 dx,

where (−∆)s is the fractional Laplacian of order s and divs is the fractional divergence of
order s (the dual operator of (2.9)), see [13, Lem. 2.5 and Sec. 3.10]. □

From Proposition 2.8, we deduce that the fractional Ginzburg–Landau energies in (1.11)
are decreased by truncation. In order to precisely state this result, we need to introduce
some notation. Given L > 0, we let

TL(t) = max{−L, min{t, L}}, for t ∈ R,

and we set
TL(x) =

(
TL(x1)
TL(x2)

)
, for x =

(
x1

x2

)
∈ R2.

Note that |TL(x)| ≤ |x| for all x ∈ R2 by definition.

Corollary 2.9. If u ∈ Hs(R2;R2), then TL(u) ∈ Hs(R2;R2) and
GLs

λ(TL(u)) ≤ GLs
λ(u) (2.11)

for all s ∈ (0, 1) and L ≥ 1.

Proof. Since TL : R → R is 1-Lipschitz, from Proposition 2.8 we get that
∥Ds(TL(u))∥2

L2 = (1 − s) cs [TL(u)]2s ≤ (1 − s) cs [u]2s = ∥Dsu∥2
L2

whenever L > 0. Moreover, for L ≥ 1, we also have that (|TL(u)|2 − 1)2 ≤ (|u|2 − 1)2, from
which the inequality in (2.11) follows. □

2.7. Riesz potential. As observed in [27, Th. 1.2] (also see [13, Sec. 2.3]), the s-gradient
in (2.9) can be rewritten as Ds = DI1−s, where

I1−su(x) = 1
γs

∫
R2

u(y)
|y − x|1+s

dy, x ∈ R2, (2.12)

is the Riesz potential of order 1 − s in R2, with

γs = 21−sπ
1 + s

1 − s

Γ( 3−s
2 )

Γ( 3+s
2 ) . (2.13)
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Precisely, considering the differential operators in the distributional sense, we have that
Dsu = DI1−su in L2(R2;R2×2) (2.14)

for u ∈ Hs(R2;R2). Therefore, if u ∈ Hs(R2;R2), then
v = I1−su ∈ H1(R2;R2) (2.15)

and so, recalling (2.1), we may generalize the notion of Jacobian to fractional Sobolev
functions as follows.

Definition 2.10 (Fractional Jacobian). Given s ∈ (0, 1), the fractional (Riesz) s-Jacobian
of u ∈ Hs(R2;R2) is defined as

Jacs(u) = Jac(I1−su) ∈ L1(R2).

In particular, we tacitly identify Jacs(u) with the Radon measure Jacs(u)L 2 ∈ Mb(R2)
whenever s ∈ (0, 1) and u ∈ Hs(R2;R2).

Remark 2.11. Although not needed in the present work, Definition 2.2, Lemma 2.3,
and Proposition 2.4 can be naturally analogously reformulated in the fractional setting.

3. Proof of Theorem 1.2

The rest of the paper is dedicated to the proof of Theorem 1.2, which is split across
Sections 3.2, 3.3 and 3.5. From now on, with the notation introduced in (1.12), we fix
a boundary datum g ∈ BΩ and a bounded open neighborhood U ⊂ R2 of ∂Ω such that
|g| = 1 on U . We hence let L ∈ [∥g∥L∞(R2), ∞), we let A = U ∪ Ω and R > 0 be such that
supp ū ⊂ AR, where

AR =
⋃

x∈A

BR(x),

and we work in the fractional Sobolev space Hs
g(Ω; BL) defined in (1.13).

3.1. A truncated Riesz potential. We begin with the following definition, which
provides a truncated version of the Riesz potential defined in (2.12).

Definition 3.1 (Truncated Riesz potential). For s ∈ (0, 1), the truncated Riesz potential
IR

1−su : R2 → R2 of u ∈ Hs
g(Ω; BL) is defined as

IR
1−su(x) = 1 − s

2πR1−s

∫
BR(x)

u(y)
|x − y|1+s

dy, for x ∈ R2. (3.1)

Let u ∈ Hs
g(Ω; BL) be fixed, and set v = IR

1−su as in Definition 3.1 above for brevity.
Recalling (2.12), and owing to the fact that supp g ⊂ A, we can write

v(x) = (1 − s)γs

2πR1−s
I1−su(x), for x ∈ A, (3.2)

with γs > 0 as in (2.13) such that

lim
s→1−

(1 − s)γs

2πR1−s
= 1. (3.3)

Moreover, by combining (2.14) and (2.15) with (3.2), we get that v ∈ H1(A; BM), with

Dv = (1 − s)γs

2πR1−s
Dsu in L2(A;R2×2) (3.4)
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and

Jacs(u) =
(

2πR1−s

(1 − s)γs

)2

Jac(v) on A. (3.5)

We now exploit Definition 3.1 in two ways. We first provide a quantitative formulation
of the error in the approximation argument carried in (1.7) and (1.8).
Lemma 3.2 (L2 comparison). If u ∈ Hs

ū(Ω; BL) then v = IR
1−su as in Definition 3.1

satisfies ∫
A

(
|v|2 − |u|2

)2
dx ≤ 4L2

∫
A

|u − v|2 dx ≤ (1 − s)2L2

πR1−2s
[u]2s (3.6)

for any s ∈ (0, 1).
Proof. Since

u(x) = 1 − s

2πR1−s

∫
BR(x)

u(x)
|x − y|1+s

dy, for x ∈ R2,

we can estimate

|u + v|2 =
∣∣∣∣∣ 1 − s

2πR1−s

∫
BR(x)

u(x) + u(y)
|x − y|1+s

dy

∣∣∣∣∣
2

≤ 4∥u∥2
L∞(AR) ≤ 4L2

for any x ∈ A, so that(
|v(x)|2 − |u(x)|2

)2
≤ |v(x) + u(x)|2 |v(x) − u(x)|2 ≤ 4L2 |v(x) − u(x)|2

for any x ∈ A, giving the first inequality in (3.6) by integrating on A. For the second
inequality in (3.6), we just need to observe that, by Jensen’s inequality,

|v(x) − u(x)|2 =
∣∣∣∣∣ 1 − s

2πR1−s

∫
BR(x)

u(x) − u(y)
|x − y|1+s

dy

∣∣∣∣∣
2

≤ (1 − s)2

πR1−2s

∫
BR(x)

|u(x) − u(y)|2
|x − y|2+2s

dy

for any x ∈ A, and the conclusion follows by integrating on A again. □

Additionally, we compare the Ginzburg–Landau energies in (2.5) with their fractional
counterparts in (1.11). As mentioned in Section 1.4, Lemma 3.3 below will play a crucial
role in the proof of claims (i) and (ii) of Theorem 1.2.
Lemma 3.3 (Energy comparison). If u ∈ Hs

ū(Ω; BL), then v = IR
1−su as in Definition 3.1

satisfies

GLs
λ(u; Ω) ≥ 4πR1−2scs

(1 − s)| log(1 − s)|

∫
A

|u − v|2 dx, (3.7)

GLs
λ(u; Ω) ≥

√
4πR1−2scs√

1 − s | log(1 − s)|
∥Dsu∥L2(R2) ∥v − u∥L2(A), (3.8)

GLs
λ(u; Ω) ≥ η

2

(
2πR1−s

(1 − s)γs

)2

GL√
1−s, Λs,λ,η

(v; A), (3.9)

for s ∈ (0, 1), λ > 0 and η ∈ (0, 1), where

Λs,λ,η = 1 − η

2η

(
(1 − s)γs

2πR1−s

)2

ms,λ, ms,λ = min
{

csπR1−2s

L2 , λ

}
, (3.10)

and cs, γs > 0 are as in (2.10) and (2.13), respectively.
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Proof. By Proposition 2.8 and the first inequality in (3.6) in Lemma 3.2, we get that

GLs
λ(u; Ω) ≥ (1 − s) cs

| log(1 − s)| [u]2s ≥ 4πR1−2scs

(1 − s)| log(1 − s)|

∫
A

|u − v|2 dx,

proving (3.7). Combining (3.7) with the inequality

GLs
λ(u; Ω) ≥ 1

| log(1 − s)|

∫
R2

|Dsu|2 dx,

we get (3.8). Owing to the fact that u = g and |g| = 1 on A \ Ω, Proposition 2.8 and the
second inequality in (3.6) in Lemma 3.2, we can estimate

GLs
λ(u; Ω) = (1 − s) cs

| log(1 − s)| [u]2s + λ

(1 − s)| log(1 − s)|

∫
A

(
|u|2 − 1

)2
dx

≥ (1 − s) cs

| log(1 − s)|
πR1−2s

(1 − s)2L2

∫
A

(
|v|2 − |u|2

)2
dx

+ λ

(1 − s)| log(1 − s)|

∫
A

(
|u|2 − 1

)2
dx

≥ ms,λ

2 (1 − s)| log(1 − s)|

∫
A

(
|v|2 − 1

)2
dx.

(3.11)

Therefore, by (3.11) and (3.4), we get that
GLs

λ(u) = η GLs
λ(u) + (1 − η) GLs

λ(u)

≥ η

| log(1 − s)|

∫
A

|Dsu|2 dx + (1 − η) ms,λ

2 (1 − s)| log(1 − s)|

∫
A

(
|v|2 − 1

)2
dx

≥ η

2

(
2πR1−s

(1 − s)γs

)2 1
| log

√
1 − s|

∫
A

|Dv|2 dx + (1 − η) ms,λ

4 (1 − s)| log
√

1 − s|

∫
A

(
|v|2 − 1

)2
dx,

for any η ∈ (0, 1), from which (3.9) follows due to the definition in (2.5). □

For future convenience, completing the definitions in (3.10) in Lemma 3.3, we set

Λ1,λ,η = lim
s→1−

Λs,λ,η = 1 − η

2η
m1,λ, (3.12)

for any λ > 0 and η ∈ (0, 1), where

m1,λ = lim
s→1−

ms,λ = min
{ 1

RL2 , λ
}

. (3.13)

3.2. Proof of claim (i) of Theorem 1.2. Let usk
∈ Hsk

g (Ω; BL), with sk → 1− as
k → ∞, be such that

sup
k∈N

GLsk
λ (usk

; Ω) < ∞. (3.14)

Following Definition 3.1, we define vsk
= IR

1−sk
usk

for k ∈ N. By combining (3.3) and (3.13)
with (3.9) in Lemma 3.3, from (3.14) we infer that

sup
k∈N

GL√
1−sk, C(vsk

; A) < ∞
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for some C > 0 which does not depend on k. Thus, by Theorem 2.6(i), we find µ ∈ X (A)
such that, up to passing to a subsequence (which we do not relabel),

Jac(vsk
) flat(A)−−−→ πµ as k → ∞. (3.15)

Thanks to (3.5), we can estimate

∥ Jacsk(usk
) − πµ∥flat(A) ≤

∣∣∣∣∣∣1 −
(

2πR1−sk

(1 − sk)γsk

)2
∣∣∣∣∣∣ ∥ Jac(vsk

)∥flat(A) + ∥ Jac(vsk
) − πµ∥flat(A),

so that, by (3.3) and (3.15), we deduce that

Jacsk(usk
) flat(A)−−−→ πµ as k → ∞. (3.16)

Since Ω ⋐ A by construction, from (3.16) in particular we get that

Jacsk(usk
) flat(Ω)−−−→ πµ as k → ∞.

We now prove that ∥µ∥flat(A\Ω) = 0, so that supp µ ⊂ Ω. To this aim, we observe that
π∥µ∥flat(A\Ω) ≤ ∥ Jacsk(usk

) − πµ∥flat(A) + ∥ Jacsk(usk
)∥flat(A\Ω). (3.17)

In view of (3.16), we just need to deal with the second term in the right-hand side. Owing
to (3.5), Lemma 2.1 (since |g| = 1 on A \ Ω), Proposition 2.4 and (3.4), we have that

∥ Jacsk(usk
)∥flat(A\Ω) =

(
2πR1−sk

(1−sk)γs

)2
∥ Jac(vs)∥flat(A\Ω)

=
(

2πR1−sk

(1−sk)γsk

)2
∥ Jac(vsk

) − Jac(g)∥flat(A\Ω)

≤ C
(

2πR1−sk

(1−sk)γsk

)2
∥vsk

− g∥L2(A\Ω)
(
∥Dvsk

∥L2(A\Ω) + ∥Dg∥L2(A\Ω)
)

≤ C
(

2πR1−sk

(1−sk)γsk

)2
∥vsk

− g∥L2(A\Ω)
(

(1−sk)γs

2πR1−s ∥Dskusk
∥L2(R2) + ∥Dg∥L2(R2)

)
.

(3.18)

By combining (3.8) in Lemma 3.3 with the fact that usk
= g on A \ Ω, we find that

vsk
→ g in L2(A \ Ω) as k → ∞. (3.19)

Therefore, by exploiting (3.19) in combination with (3.14) and (3.8), we get that
lim

k→∞
∥Dskusk

∥L2(R2) ∥vsk
− g∥L2(A\Ω) = 0, (3.20)

which, together with (3.17) and (3.18), yields that ∥µ∥flat(A\Ω) = 0 and thus supp µ ⊂ Ω.
Finally, we show that

µ(Ω) = deg(g|∂Ω, ∂Ω). (3.21)
To this end, let φ ∈ Lipc(A) be such that φ = 1 on Ω. According to Definition 2.2, we can
decompose

j(vsk
) = j(vsk

, vsk
) = j(vsk

− g, vsk
) + j(g, vsk

)
for k ∈ N. Since ∇φ = 0 on Ω by definition, from (3.20) we deduce that

lim sup
k→∞

∣∣∣∣∫
A

j(vsk
− g, vsk

) × ∇φ dx

∣∣∣∣ ≤ Lip(φ) lim
k→∞

∥vsk
− g∥L2(A\Ω) ∥Dvsk

∥L2(A) = 0.
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Thus, by combining this with (3.15), (2.2) and (2.3) in Lemma 2.3, and (3.19), we get

π
∫

A
φ dµ = lim

k→∞

∫
A

Jac(vsk
) φ dx = lim

k→∞

∫
A

j(vsk
) × ∇φ dx = lim

k→∞

∫
A

j(g, vsk
) × ∇φ dx

= lim
k→∞

∫
A

j(vsk
, g) × ∇φ dx =

∫
A

j(g) × ∇φ dx = π
∫

A
Jac(g) φ dx.

Since φ = 1 on Ω, supp µ ⊂ Ω and |g| = 1 on A \ Ω, by Lemmas 2.1 and 2.5 we hence get

µ(Ω) = 1
π

∫
A

φ dµ = 1
π

∫
A

Jac(g) φ dx = 1
π

∫
Ω

Jac(g) dx = deg(g|∂Ω, ∂Ω),

proving (3.21) and thus yielding the conclusion. □

3.3. Proof of claim (ii) of Theorem 1.2. Let usk
∈ Hsk

g (Ω; BL), with sk → 1− as

k → ∞, be such that Jacsk(usk
) flat(Ω)−−−→ πµ as s → 1− for some µ ∈ X (Ω). Letting vsk

=
IR

1−sk
usk

as in Definition 3.1, and repeating the argument of the proof of Theorem 1.2(i),
we get

µ(Ω) = deg(ū|∂Ω, ∂Ω)
and

Jacsk(vsk
) flat(A)−−−→ πν as k → ∞,

for some ν ∈ X (A) such that supp ν ⊂ Ω and ν|Ω = µ. Therefore, owing to (3.9) in
Lemma 3.3, (3.3), (3.12) and Theorem 2.6(ii), we can estimate

lim inf
k→∞

GLsk
λ (usk

; Ω) ≥ lim inf
k→∞

η

2

(
2πR1−sk

(1 − sk)γsk

)2

GL√
1−sk,Λsk,λ,η

(vsk
; A)

= η

2 lim inf
k→∞

GL√
1−sk,Λsk,η,λ

(vsk
; A)

≥ η

2 lim inf
k→∞

GL√
1−sk,

Λ1,λ,η
2

(vsk
; A)

≥ η π|ν|(A) = η π|µ|(Ω),

for any η ∈ (0, 1), yielding the conclusion. □

3.4. Truncated vortex. The proof of point (iii) of Theorem 1.2 requires some prelimi-
naries. We begin by introducing the following definition.

Definition 3.4 (Cut-off function). Given 0 ≤ r < R < ∞, we define the cut-off function
ηr,R : R2 → [0, 1] by letting

ηr,R(t) =



0 if |x| ∈ [0, r],

|x| − r

R − r
if |x| ∈ [r, R],

1 if |x| ≥ R.

(3.22)

In the following result, we collect some properties of the cut-off function ηr,R given in
Definition 3.4 that will be useful below.
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Lemma 3.5. Given 0 < r < R < ∞, the function ηr,R in Definition 3.4 satisfies

|ηr,R| ≤ 1, Lip(ηr,R) = 1
R − r

, (3.23)∫∫
(BR×BR)∩△τ

|ηr,R(x) − ηr,R(y)|2
|x − y|2+2s

dx dy ≤ π2R2

(R − r)2
τ 2−2s

1 − s
, (3.24)∫∫

(Bρ\Br)×(Bρ\Br)∩△τ

|ηr,R(x) − ηr,R(y)|2
|x − y|2+2s

dx dy ≤ π2((R + τ)2 − r2)
(R − r)2

τ 2−2s

1 − s
(3.25)

and ∫
Bϱ

(
η2

r,R − 1
)2

dx ≤ πR2 (3.26)

for s ∈ (0, 1), τ ∈ (0, r) and ρ > R + τ .
In the proof of Lemma 3.5, we will need the following elementary estimates.

Lemma 3.6. Let n ∈ N. If x, y ∈ Rn \ {0}, then∣∣∣∣∣ x

|x|
− y

|y|

∣∣∣∣∣ ≤ 2
|x|

|x − y| (3.27)

and ∣∣∣∣∣ x

|x|
− y

|y|

∣∣∣∣∣
2

≤ |x|
|y|

(
|y − x|2

|x|2
− |x · (y − x)|2

|x|4
+ |y − x|3

|x|3

)
. (3.28)

Proof. By the triangular inequality, we can estimate∣∣∣∣∣ x

|x|
− y

|y|

∣∣∣∣∣ ≤
∣∣∣∣∣ x

|x|
− y

|x|

∣∣∣∣∣+
∣∣∣∣∣ y

|x|
− y

|y|

∣∣∣∣∣ ≤ 2
|x|

|x − y|,

proving (3.27). To prove (3.28), instead, we observe that∣∣∣∣∣ x

|x|
− y

|y|

∣∣∣∣∣
2

= 2
(

1 − x · y

|x| |y|

)
= 2

(
1 − x · (y − x)

|x| |y|
− |x|

|y|

)
= 2 |x|

|y|

(
|y|
|x|

− x · (y − x)
|x|2

− 1
)

= 2 |x|
|y|

(√√√√∣∣∣∣∣ x

|x|
+ y − x

|x|

∣∣∣∣∣
2

− 1 − x · (y − x)
|x|2

)

= 2 |x|
|y|

(√√√√1 + 2 x · (y − x)
|x|2

+ |y − x|2
|x|2

− 1 − x · (y − x)
|x|2

)
.

Thanks to the elementary inequality
√

1 + t ≤ 1 + 1
2 t − 1

8 t2 for t ≥ 0,

we thus get that∣∣∣∣∣ x

|x|
− y

|y|

∣∣∣∣∣
2

≤ 2 |x|
|y|

(
1
2

|y − x|2

|x|2
− 1

8

(
2 x · (y − x)

|x|2
+ |y − x|2

|x|2

)2 )

≤ 2 |x|
|y|

(
1
2

|y − x|2

|x|2
− 1

2
|x · (y − x)|2

|x|2
− 1

2
(x · (y − x)) |y − x|2

|x|4

)

≤ |x|
|y|

(
|y − x|2

|x|2
− |x · (y − x)|2

|x|2
+ |y − x|3

|x|3

)
,
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yielding (3.28) and concluding the proof. □

Proof of Lemma 3.5. From the definition in (3.22), we get (3.23) and thus∫
Bϱ

(
η2

r,R − 1
)2

dx =
∫

BR

(
η2

r,R − 1
)2

dx ≤ |BR|,

giving (3.26). To prove (3.24), we observe that∫
(BR×BR)∩△τ

|ηr,R(|x|) − ηr,R(|y|)|2
|x − y|2+2s

dx dy ≤
∫

BR

∫
Bτ

|ηr,R(|x|) − ηr,R(|x + h|)|2
|h|2+2s

dh dx

≤ Lip(ηr,R)2
∫

BR

∫
Bτ

|h|2

|h|2+2s
dh dx = π2R2

(R − r)2
τ 2−2s

1 − s
,

while, to prove (3.25), we note that
x ∈ Bϱ \ BR+τ =⇒ |x + h| > R for h ∈ Bτ ,

and thus we can estimate∫∫
(Bρ\Br)×(Bρ\Br)∩△τ

|ηr,R(x) − ηr,R(y)|2
|x − y|2+2s

dx dy

≤
∫

Bτ

1
|h|2+2s

∫
Bϱ\Br

|ηr,R(x) − ηr,R(x + h)|2 dx dh

=
∫

Bτ

1
|h|2+2s

∫
BR+τ \Br

|ηr,R(|x|) − ηr,R(|x + h|)|2 dx dh ≤ π2((R + τ)2 − r2)
(R − r)2

τ 2−2s

1 − s
,

and the proof is complete. □

We can introduce the notion of truncated vortex by exploiting the cut-off function ηr,R

given in Definition 3.4.
Definition 3.7 (Truncated vortex). Given 0 ≤ r < R < ∞ and d ∈ {−1, 1}, we let
υd,r,R : R2 → R2 be the truncated vortex defined as

υd,r,R(x) = ηr,R(|x|) xd

|x|
, for x ∈ R2, (3.29)

where ηr,R is as in Definition 3.4 and xd =
( x1

(−1)dx2

)
for all x ∈ R2.

We now collect several properties of the truncated vortex introduced in Definition 3.7.
On the one hand, we have the following result.
Lemma 3.8. Given 0 ≤ r < R < ∞ and d ∈ {−1, 1}, the truncated vortex υd,r,R in
Definition 3.7 satisfies

υd,r,R ∈ H1
loc(R2;R2) ∩ L∞(R2;R2), (3.30)

with
|Dυd,r,R(x)| ≤ C

|x|
ηr,R(|x|), x ∈ R2, (3.31)

where C > 0 is a numerical constant. In addition, it holds that∫
R2

|υd,r,R − υd,0,R|2 dx ≤ 4πR2, (3.32)

Jac(υd,0,R) = πd
χBR

|BR|
(3.33)
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and ∫
Bϱ

|Dυd,0,R|2 dx ≤ C log
(

ϱ

R

)
(3.34)

for ϱ > R, where C > 0 is a numerical constant.

Proof. From (3.29) in Definition 3.7, we get that ∥υd,r,R∥L∞ ≤ 1 and a direct computation
yields (3.31), from which we get (3.30). The validity of (3.32) is a consequence of (3.22)
in Definition 3.4. Finally, from the fact that

Dυd,0,R(x) = χBR

R
Jd +

χBc
R

|x|

(
Jd − x ⊗ xd

|x|2
)

, x ∈ R2 \ {0},

where we have set
Jd =

(
1 0
0 (−1)d

)
, d ∈ {1, −1},

we infer (3.33) and (3.34), concluding the proof. □

On the other hand, similarly to Lemma 3.5, we have the following result.

Lemma 3.9. Given 0 < r < R < ∞ and d ∈ {−1, 1}, the truncated vortex υd,r,R in
Definition 3.7 satisfies∫∫

(BR×BR)∩△τ

|υd,r,R(x) − υd,r,R(y)|2
|x − y|2+2s

dx dy ≤
(8π2(R2 − r2)

r2 + 2π2R2

(R − r)2

)
τ 2−2s

1 − s
, (3.35)

∫∫
((Bϱ\Br)×(Bϱ\Br))∩△τ

|υd,r,R(x) − υd,r,R(y)|2
|x − y|2+2s

dx dy

≤ (1 + ε)
(

π2 r

r − τ
log

(
ϱ

r

)
τ 2−2s

1 − s
+ 4π2(ϱ − r)

ϱ (r − τ)
τ 3−2s

3 − 2s

)

+
(

1 + 1
ε

)
π2((R + τ)2 − r2)

(R − r)2
τ 2−2s

1 − s

(3.36)

and ∫
Bϱ

(
|υd,r,R|2 − 1

)2
dx ≤ πR2 (3.37)

for s ∈ (0, 1), τ ∈ (0, r), ϱ > R + τ and ε > 0.

Proof. We have that

|υd,r,R(x) − υd,r,R(y)| ≤ ηr,R(|x|)
∣∣∣∣∣ x

|x|
− y

|y|

∣∣∣∣∣+ |ηr,R(|x|) − ηr,R(|y|)|. (3.38)

Thanks to (3.27) in Lemma 3.6, we can estimate
∫∫

(BR×BR)∩△τ

η2
r,R(|x|)

∣∣∣ x
|x| − y

|y|

∣∣∣2
|x − y|2+2s

dx dy ≤
∫

((BR\Br)×BR)∩△τ

4
|x|2

|x − y|2

|x − y|2+2s
dx dy

≤ 4
r2

∫
BR\Br

∫
Bτ

|h|2

|h|2+2s
dh dx = 4π2(R2 − r2)

r2
τ 2−2s

1 − s
.

(3.39)

Therefore, by combining (3.38) and (3.39) with (3.24) in Lemma 3.5, we get that∫∫
(BR×BR)∩△τ

|υd,r,R(x) − υd,r,R(y)|2
|x − y|2+2s

dx dy ≤
(

8π2(R2 − r2)
r2 + 2π2R2

(R − r)2

)
τ 2−2s

1 − s
,
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proving (3.35). We now deal with (3.36). In view of the elementary inequality

(a + b)2 ≤ (1 + ε) a2 +
(

1 + 1
ε

)
b2 for a, b ≥ 0, ε > 0,

we can revisit (3.38) as

|υd,r,R(x) − υd,r,R(y)|2 ≤ (1 + ε) ηr,R(|x|)2
∣∣∣∣∣ x

|x|
− y

|y|

∣∣∣∣∣
2

+
(

1 + 1
ε

)
|ηr,R(|x|) − ηr,R(|y|)|2

(3.40)

whenever ε > 0. We now observe that
∫∫

((Bϱ\Br)×(Bϱ\Br))∩△τ

η2
r,R(|x|)

∣∣∣ x
|x| − y

|y|

∣∣∣2
|x − y|2+2s

dx dy

≤
∫

Bτ

1
|h|2+2s

∫
Bϱ\Br

∣∣∣∣∣ x

|x|
− x + h

|x + h|

∣∣∣∣∣
2

dx dh.

(3.41)

Since τ < r, we have that

|x + h| ≥ |x| − |h| ≥ r − τ > 0 for x ∈ Bϱ \ Br, h ∈ Bτ

and therefore we can estimate
|x|

|x + h|
= 1∣∣∣ x

|x| + h
|x|

∣∣∣ ≤ 1
1 − |h|

|x|

≤ 1
1 − τ

r

= r

r − τ
for x ∈ Bϱ \ Br, h ∈ Bτ .

Thus, thanks to (3.28) in Lemma 3.6, we get that∫
Bτ

1
|h|2+2s

∫
Bϱ\Br

∣∣∣∣∣ x

|x|
− x + h

|x + h|

∣∣∣∣∣
2

dx dh

≤
∫

Bτ

1
|h|2+2s

∫
Bϱ\Br

|x|
|x + h|

(
|h|2

|x|2
− |x · h|2

|x|4
+ |h|3

|x|3

)
dx dh

≤ r

r − τ

∫
Bτ

1
|h|2+2s

∫
Bϱ\Br

|h|2

|x|2
− |x · h|2

|x|4
+ |h|3

|x|3
dx dh.

At this point, we make the following observation. Given h ∈ Bτ , we can find a rotation
matrix R ∈ SO(2) such that h = Re1. Therefore, we can compute∫

Bϱ\Br

|x · h|2

|x|4
dx =

∫
Bϱ\Br

|x · e1|2

|x|4
dx =

∫
Bϱ\Br

x2
1

|x|4
dx

and thus, by replacing e1 with e2, we get that∫
Bϱ\Br

|x · h|2

|x|4
dx = 1

2

∫
Bϱ\Br

x2
1

|x|4
dx + 1

2

∫
Bϱ\Br

x2
2

|x|4
dx = 1

2

∫
Bϱ\Br

|x|2

|x|4
dx = π log

(
ϱ

r

)
.

As a consequence, we have that∫
Bτ

1
|h|2+2s

∫
Bϱ\Br

|h|2

|x|2
− |x · h|2

|x|4
+ |h|3

|x|3
dx dh = π2 log

(
ϱ

r

)
τ 2−2s

1 − s
+ 4π2

(
1
r

− 1
ϱ

)
τ 3−2s

3 − 2s
,
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from which we deduce that∫
Bτ

1
|h|2+2s

∫
Bϱ\Br

∣∣∣∣∣ x

|x|
− x + h

|x + h|

∣∣∣∣∣
2

dx dh ≤ π2 r

r − τ
log

(
ϱ

r

)
τ 2−2s

1 − s
+ 4π2(ϱ − r)

ϱ (r − τ)
τ 3−2s

3 − 2s
.

(3.42)
Thus, by combining (3.40), (3.41) and (3.42) with (3.25) in Lemma 3.9, we get that∫∫

((Bϱ\Br)×(Bϱ\Br))∩△τ

|υd,r,R(x) − υd,r,R(y)|2
|x − y|2+2s

dx dy

≤ (1 + ε)
(

π2 r

r − τ
log

(
ϱ

r

)
τ 2−2s

1 − s
+ 4π2(ϱ − r)

ϱ (r − τ)
τ 3−2s

3 − 2s

)

+
(

1 + 1
ε

)
π2((R + τ)2 − r2)

(R − r)2
τ 2−2s

1 − s

whenever ε > 0, yielding (3.36). The validity of (3.37) follows by combining the definition
in (3.29) with (3.26). The proof is complete. □

3.5. Proof of claim (iii) of Theorem 1.2. Below, in order to avoid heavy notation,
we will frequently adopt the following shorthand. Given x1, . . . , xN ∈ R2 for some N ∈ N,
any ℓ > 0 and any non-empty open set V ⊂ R2, we let

V̂ℓ = V \
( N⋃

i=1
Bℓ(xi)

)
. (3.43)

Proof of claim (iii) of Theorem 1.2. We divide the proof in three steps.
Step 1. Let µ ∈ X (Ω) be given by

µ =
N∑

i=1
di δxi

(3.44)

for some N ∈ N, xi ∈ Ω and di ∈ {−1, 1}, for each i ∈ {1, . . . , N}, such that

µ(Ω) = µ(Ω) =
N∑

i=1
di = deg(g|∂Ω, ∂Ω). (3.45)

In this step, we construct us ∈ Hs
g(Ω; BL) for s ∈ (0, 1) such that

lim sup
s→1−

GLs
λ(us) ≤ π|µ|(Ω) = πN (3.46)

whenever λ ∈ (0, ∞).
To define us, we need to introduce some parameters. We let

τs =
√

1 − s and Ms = 4
√

| log(1 − s)| for s ∈ (0, 1). (3.47)

In view of the assumption made in (3.44), we define

r = min
{

dist(xi,R2 \ Ω), 1
2 |xi − xj| : i, j ∈ {1, . . . , N}, i ̸= j

}
∈ (0, ∞) (3.48)

and we fix
r <

r

2 . (3.49)
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Without loss of generality, we tacitly work with s ∈ (0, 1) sufficiently close to 1 so that

(Ms + 2) τs <
r

2 , (3.50)

which is always possibile in virtue of the definitions in (3.47).
We can now define us. With the notation of Definition 3.7, we define

us,i = υdi,Msτs,(Ms+1)τs( · − xi) for each i ∈ {1, . . . , N}. (3.51)

By well-known results (e.g., see [8, Th. I.4]), due to (3.45), we can find û ∈ H1(Ω̂r; S1)
(where Ω̂r is defined using the shorthand (3.43) with points x1, . . . , xN given by (3.44) and
ℓ = r as fixed in (3.49)) such that

û =

us,i on ∂Br(xi), for each i ∈ {1, . . . , N},

g on ∂Ω.
(3.52)

Since, by (3.51) and by Definition 3.1, for each i ∈ {1, . . . , N}, we have

us,i = ( · − xi)di

| · −xi|
in an open neighborhood of ∂Br(xi),

the function û does not depend on s. We thus define us : R2 → R2 by letting

us =


us,i in Br(xi), for each i ∈ {1, . . . , N},

û in Ω̂r,

g in R2 \ Ω.

(3.53)

We observe that us ∈ Hs
g(Ω; BL), since, by (3.51) and by (3.30) in Lemma 3.8, and

by (3.52), we have that us ∈ H1(R2;R2) with ∥us∥L∞ ≤ ∥g∥L∞ .
We now detail the proof of (3.46). We begin by observing that, owing to (3.53), the

fact that |us| = |û| = 1 on Ω̂r and |us| = |us,i| = 1 on Br(xi) \ B(Ms+1)τs(xi) for each
i ∈ {1, . . . , N}, and to (3.37) in Lemma 3.9, we can estimate

∫
Ω

(
|us|2 − 1

)2
dx =

∫
Ω̂r

(
|û|2 − 1

)2
dx +

N∑
i=1

∫
Br(xi)

(
|us,i|2 − 1

)2
dx

= N
∫

B(Ms+1)τs

(
|υdi,Msτs,(Ms+1)τs |2 − 1

)2
dx ≤ Nπ (Ms + 1)2 τ 2

s ,

from which, in virtue of the definitions in (3.47), we get that

lim sup
s→1−

∫
Ω
(|us|2 − 1)2 dx = 0.

Hence, to show (3.46), by (2.10) in Proposition 2.8, we just need to prove that

lim sup
s→1−

(1 − s)
| log(1 − s)| [us]2s ≤ π2N

2 . (3.54)
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Recalling the notation introduced in (2.8), by Lemma 2.7 and (3.53), we can estimate∫∫
(R2×R2)\△τs

|us(x) − us(y)|2
|x − y|2+2s

dx dy ≤ 4π∥us∥2
L2

s (1 − s)s

≤ 4π

s (1 − s)s

(
∥g∥2

L2 + ∥û∥2
L2(Ω̂r) + Nπr2

)
,

from which we deduce that

lim
s→1−

(1 − s)
| log(1 − s)|

∫∫
(R2×R2)\△τs

|us(x) − us(y)|2
|x − y|2+2s

dx dy = 0. (3.55)

Hence, by combining (3.54) with (3.55), the validity of (3.46) reduces to

lim sup
s→1−

(1 − s)
| log(1 − s)|

∫∫
(R2×R2)∩△τs

|us(x) − us(y)|2
|x − y|2+2s

dx dy ≤ π2N

2 . (3.56)

Our aim is now to estimate the integral∫∫
△τs

|us(x) − us(y)|2
|x − y|2+2s

dx dy.

To do so, we let

Qs(V, W ) =
∫∫

(V ×W )∩△τs

|us(x) − us(y)|2
|x − y|2+2s

dx dy

for any two measurable sets V, W ⊂ R2. Since we can write R2 = Vs,1 ∪ Vs,2 ∪ Vs,3, with
pairwise disjoint union, where

Vs,1 =
N⋃

i=1
B(Ms+1)τs(xi), Vs,2 =

N⋃
i=1

Br(xi) \ B(Ms+1)τs(xi) and Vs,3 = ̂(R2)r,

and ̂(R2)r is as in (3.43) (with V = R2 and ℓ = r), we can decompose∫∫
△τs

|us(x) − us(y)|2
|x − y|2+2s

dx dy =
3∑

j,k=1
Qs(Vs,j, Vs,k).

We now deal with each possible pair. We begin by observing that, if x ∈ B(Ms+1)τs(xi) and
y ∈ B(Ms+1)τs(xh) for some i, h ∈ {1, . . . , N} with i ̸= h, then

|x − y| > |xi − xh| − 2(Ms + 1)τs ≥ 2r̄ − 2(Ms + 1)τs > 2r − 2(Ms + 1)τs > τs,

because of (3.48), (3.49) and (3.50), so that

Qs(Vs,1, Vs,1) =
N∑

i=1
Qs

(
B(Ms+1)τs(xi), B(Ms+1)τs(xi)

)
.

Next, we notice that
Qs(Vs,1, Vs,2) = Qs(Ṽs,1, Vs,2) and Qs(Vs,2, Vs,1) = Qs(Vs,2, Ṽs,1),

where we set
Ṽs,1 =

N⋃
i=1

B(Ms+1)τs(xi) \ BMsτs(xi).

Moreover, if x ∈ Br(xi) and y ∈ B(Ms+1)τs(xh) for some i, h ∈ {1, . . . , N} with i ̸= h, then
|x − y| > |xi − xh| − r − (Ms + 1)τs ≥ 2r̄ − r − (Ms + 1)τs > r − (Ms + 1)τs > τs,
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again because of (3.48), (3.49) and (3.50), so that

Qs(Vs,1, Vs,2) =
N∑

i=1
Qs

(
B(Ms+1)τs(xi) \ BMsτs(xi), Br(xi) \ B(Ms+1)τs(xi)

)
and, similarly,

Qs(Vs,2, Vs,1) =
N∑

i=1
Qs

(
Br(xi) \ B(Ms+1)τs(xi), B(Ms+1)τs(xi) \ BMsτs(xi)

)
.

As above, if x ∈ Br(xi) and y ∈ Br(xh) for some i, h ∈ {1, . . . , N} with i ̸= h, then

|x − y| > |xi − xh| − 2r ≥ 2r̄ − 2r > 4r − 2r > τs,

again because of (3.48), (3.49) and (3.50), so that

Qs(Vs,2, Vs,2) =
N∑

i=1
Qs

(
Br(xi) \ B(Ms+1)τs(xi), Br(xi) \ B(Ms+1)τs(xi)

)
.

We hence infer that
Qs(Vs,1, Vs,2) + Qs(Vs,2, Vs,1) + Qs(Vs,2, Vs,2)

=
N∑

i=1
Qs

(
B(Ms+1)τs(xi) \ BMsτs(xi), Br(xi) \ B(Ms+1)τs(xi)

)

+
N∑

i=1
Qs

(
Br(xi) \ B(Ms+1)τs(xi), B(Ms+1)τs(xi) \ BMsτs(xi)

)

+
N∑

i=1
Qs

(
Br(xi) \ B(Ms+1)τs(xi), Br(xi) \ B(Ms+1)τs(xi)

)

=
N∑

i=1
Qs

(
B(Ms+1)τs(xi) \ BMsτs(xi), Br(xi) \ B(Ms+1)τs(xi)

)

+
N∑

i=1
Qs

(
Br(xi) \ B(Ms+1)τs(xi), Br(xi) \ BMsτs(xi)

)

≤
N∑

i=1
Qs (Br(xi) \ BMsτs(xi), Br(xi) \ BMsτs(xi)) .

Finally, if x ∈ B(Ms+1)τs(xi) and y ∈ R2 \ Br(xh) for some i, h ∈ {1, . . . , N}, then

|x − y| ≥ r − (Ms + 1)τs > τs

by (3.50), so that
Qs(Vs,1, Vs,3) = Qs(Vs,3, Vs,1) = 0.

Moreover, if x ∈ V2,s and y ∈ V3,s, then (x, y) ∈ △τs only in the case in which

x ∈ Br(xi) \ Br−τs(xi) and y ∈ R2 \ Br(xi)
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for some i ∈ {1, . . . , N}. We therefore get that

Qs(V2,s, V3,s) + Qs(V3,s, V2,s) + Qs(V3,s, V3,s) = Qs

(
N⋃

i=1
Br(xi) \ Br−τs(xi), ̂(R2)r

)

+ Qs

( ̂(R2)r,
N⋃

i=1
Br(xi) \ Br−τs(xi)

)
+ Qs

( ̂(R2)r,
̂(R2)r

)

= Qs

(
N⋃

i=1
Br(xi) \ Br−τs(xi), ̂(R2)r

)
+ Qs

( ̂(R2)r,
̂(R2)r−τs

)
≤ Qs

( ̂(R2)r−τs
, ̂(R2)r−τs

)
.

By combining all the above estimates, we thus conclude that∫∫
△τs

|us(x) − us(y)|2
|x − y|2+2s

dx dy ≤
N∑

i=1
Qs

(
B(Ms+1)τs(xi), B(Ms+1)τs(xi)

)

+
N∑

i=1
Qs (Br(xi) \ BMsτs(xi), Br(xi) \ BMsτs(xi))

+ Qs

( ̂(R2)r−τs
, ̂(R2)r−τs

)
.

(3.57)

We estimate each term in the right-hand side of (3.57) separately. Recalling (3.51),
by (3.35) in Lemma 3.9 we have that

Qs

(
B(Ms+1)τs(xi), B(Ms+1)τs(xi)

)
≤ CM2

s

1 − s
(3.58)

for each i ∈ {1, . . . , N}, where C > 0 is a numerical constant. Moreover, by (3.36) in
Lemma 3.9, we similarly get that

Qs (Br(xi) \ BMsτs(xi), Br(xi) \ BMsτs(xi))

≤ (1 + ε) π2 Ms (1 − s)1−s

Ms − 1
log r − log Ms + 1

2 | log(1 − s)|
1 − s

+ CMs

ε (1 − s)
(3.59)

for each i ∈ {1, . . . , N} and any ε > 0, where C > 0 is a numerical constant. Finally, by
the Fundamental Theorem of Calculus, Jensen’s inequality and (3.50), we have that

Qs

( ̂(R2)r−τs
, ̂(R2)r−τs

)
≤
∫

Bτs

1
|h|2+2s

∫
(̂R2)r−τs

|us(x + h) − us(x)|2 dx dh

≤
∫

Bτs

|h|2

|h|2+2s

∫
(̂R2)r−τs

(∫ 1

0
|Dus(x + th)| dt

)2
dx dh

≤
∫

Bτs

1
|h|2s

∫
(̂R2)r−τs

∫ 1

0
|Dus(x + th)|2 dt dx dh

≤
∫

Bτs

1
|h|2s

∫
(̂R2)r−2τs

|Dus(z)|2 dz dh

≤ C

1 − s

∫
(̂R2)r/2

|Dus(z)|2 dz,
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where C > 0 is a numerical constant. We also observe that, by (3.53), we can write∫
(̂R2)r/2

|Dus(z)|2 dz =
∫
R2\Ω

|Dū(z)|2 dz +
∫

Ω̂r

|Dû(z)|2 dz +
N∑

i=1

∫
Br(xi)\Br/2(xi)

|Dus,i|2 dx,

with, thanks to (3.31) and again (3.50),∫
Br(xi)\Br/2(xi)

|Dus,i|2 dx ≤ C
∫

Br\Br/2

1
|x|2

dx ≤ 4Cπ,

where C > 0 is a numerical constant. Therefore, we have that

Qs

( ̂(R2)r−τs
, ̂(R2)r−τs

)
≤ C

1 − s
, (3.60)

where C > 0 does not depend on s. Hence, by combining (3.57), (3.58), (3.59) and (3.60),
and by recalling (3.47), we infer that

lim sup
s→1−

(1 − s)
| log(1 − s)|

∫∫
△τs

|us(x) − us(y)|2
|x − y|2+2s

dx dy ≤ (1 + ε) π2N

2
whenever ε > 0, proving (3.56) and thus (3.46).

Step 2. Let µ be as in (3.44) and let us be as in (3.53). In this step, we prove that

Jacs(us)
flat(Ω)−−−→ πµ as s → 1−. (3.61)

Thanks to (3.3) and (3.5), to show (3.61) we just need to prove that

Jac(vs)
flat(Ω)−−−→ πµ as s → 1−, (3.62)

where, following Definition 3.1, vs = IR
1−sus for s ∈ (0, 1). To prove (3.62), in turn, we

need to introduce the auxiliary function ũs : R2 → R2 defined as

ũs =


υdi,0,(Ms+1)τs( · − xi) in Br(xi), for each i ∈ {1, . . . , N},

û in Ω̂r,

g in R2 \ Ω.

(3.63)

As for us, we have that ũs ∈ H1(R2;R2) and ∥ũs∥L∞ ≤ ∥g∥L∞ . In addition, by Lemma 2.1
(since |ũs| = 1 on ̂(R2)r) and by (3.33) in Lemma 3.8, we have

Jac(ũs) =
N∑

i=1
Jac(υdi,0,(Ms+1)τs( · − xi)) χB(Ms+1)τs (xi) = π

N∑
i=1

di

χB(Ms+1)τs (xi)

|B(Ms+1)τs(xi)|
,

from which, recalling (3.44), we deduce that

Jac(ũs)
flat(A)−−−→ πµ as s → 1−.

We can hence achieve (3.62) by proving that
lim

s→1−
∥ Jac(vs) − Jac(ũs)∥flat(A) = 0. (3.64)

To this end, we exploit Proposition 2.4. On the one hand, by (3.7) in Lemma 3.3 and (3.46),
and by (3.63), (3.32) in Lemma 3.8, and (3.47), we can estimate

∥vs − ũs∥L2(A) ≤ ∥vs − us∥L2(A) + ∥us − ũs∥L2(A) ≤ C
√

(1 − s) | log(1 − s)|, (3.65)
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where C > 0 is a constant which does not depend on s. On the other hand, by (3.3), (3.4)
and (3.46), and by (3.63) and (3.34), we also have that

∥Dvs∥L2(A) + ∥Dũs∥L2(A) ≤ C
√

| log(1 − s)|, (3.66)
where C > 0 is a constant which does not depend on s. Hence, by Proposition 2.4, the
validity of (3.64) follows by combining (3.65) and (3.66).

At this point, thanks to Steps 1 and 2 above, we proved (iii) in Theorem 1.2 for any
µ ∈ X (Ω) as in (3.44) such that µ(Ω) = deg(g|∂Ω, ∂Ω).

Step 3. We now prove (iii) in Theorem 1.2 in full generality. Let µ ∈ X (Ω) be such that
µ(Ω) = deg(g|∂Ω, ∂Ω). We can find a sequence (µk)k∈N ⊂ X (Ω) as in (3.44), that is,

µk(Ω) = deg(g|∂Ω, ∂Ω) and µk =
Nk∑
i=1

di,k δxi,k
for each k ∈ N,

with Nk ∈ N, xi,k ∈ Ω and di,k ∈ {−1, 1} for each i ∈ {1, . . . , Nk}, such that

µk
flat(Ω)−−−→ µ as k → ∞.

In particular, we have that |µk|(Ω) → |µ|(Ω) as k → ∞. By Step 1, for each k ∈ N we can
find us,k ∈ Hs

g(Ω; BL) such that
lim sup

s→1−
GLs

λ(us,k) ≤ π|µk|(Ω)

whenever λ > 0. Thus, given any sequence (sj)j∈N ⊂ (0, 1) such that sj → 1− as j → ∞,
by a diagonal argument we can extract a subsequence (sjk

)k∈N such that

lim
k→∞

GLsjk
λ (usjk

,k) ≤ lim
k→∞

π|µk|(Ω) = π|µ|(Ω),

concluding the proof. □
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