ON THE MONOTONICITY OF NON-LOCAL PERIMETER
OF CONVEX BODIES

FLAVIA GIANNETTI AND GIORGIO STEFANI

ABSTRACT. Under mild assumptions on the kernel K > 0, the non-local K-perimeter
Py satisfies the monotonicity property on nested convex bodies, i.e., if A C B C R"”
are two convex bodies, then Pk (A) < Pk (B). In this note, we prove quantitative lower
bounds on the difference of the K-perimeters of A and B in terms of their Hausdorff
distance, provided that K satisfies suitable symmetry properties.

1. INTRODUCTION

1.1. Monotonicity property. Let n > 2. If A C B C R" are two nested convex bodies,
that is, compact convex sets with non-empty interior, then

P(A) < P(B). (1.1)

Here P(E) = 2" 1(OF) is the Euclidean perimeter of the convex body F C R" and ¢
is the d-dimensional Hausdorff measure, d € [0, n].

The monotonicity property (1.1) is well known and dates back to the ancient Greeks
(Archimedes took it as a postulate in his work on the sphere and the cylinder [1, p. 36]).
Inequality (1.1) follows from the Cauchy formula for the area surface of convex bodies [6,
§7], the monotonicity property of mized volumes [6, §8], the Lipschitz property of the
projection on a convex closed set [8, Lem. 2.4] and, finally, from the fact that the perimeter
is decreased by intersection with half-spaces [30, Ex. 15.13].

The monotonicity property (1.1) also holds for the anisotropic (Wulff) perimeter

Po(E) = /8 _B(vp(a)) A" ) (1.2)
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of a convex body E C R", where vg: OE — S"1 §S" ! = {z € R" : |z| = 1}, is the inner
unitary normal of E (defined for 7#" !-a.e. z € OF) and ®: R™ — [0, +00] is positively 1-
homogeneous and convex (see [30, Ch. 20]). Similarly to (1.1), the monotonicity property
of (1.2) is a consequence of the anisotropic Cauchy formula, of the monotonicity property
of mized volumes [6, §7,§8], and of the fact that (1.2) is decreased by intersection with
half-spaces [30, Rem. 20.3].

The monotonicity property of perimeters has gained increasing attention in recent years,
see [5,18,20,25,31,33] for some applications and related results. A current active line of
research concerns quantitative formulations of the monotonicity property. Lower bounds
on the deficit §(B,A) = P(B) — P(A) in terms of the Hausdorff distance h(A, B) be-
tween A and B (see [34, Sec. 1.8] for the definition) have been obtained for n = 2,3
n [10,11,27] (also see the survey [23]) and for any n > 2 in [35]. Actually, the main re-
sult of [35] establishes a quantitative lower bound also for (1.2), provided that ® possess
suitable symmetry properties. We stress that the inequalities proved in [10,11,27,35] are
sharp, in the sense that they are equalities at least in one non-trivial case. Quantitative
monotonicity inequalities for the perimeter can be applied to achieve lower bounds on the
minimal number of convex components of a non-convex set [12,24,27].

1.2. Main results. The aim of the present note is to study the monotonicity property
of non-local perimeter functionals, also in its quantitative form.

Given a non-negative measurable kernel K: R"™ — [0, 4+o0], the associated non-local
K -perimeter of a measurable set £ C R" is defined as

By =5 [ [ el xe@)] K - y)dedy. (13)

A prominent example of such non-local functional is the s-fractional perimeter, s € (0, 1),

dxd
/ fo ey (1)

induced by the fractional kernel K, - |7"7% see [19]. The K-perimeter (1.3) has
attracted considerable attention in recent years, see [3,4,9,13-17,22,26,29,32].
Due to the definition in (1.3), it is not restrictive to assume that

K(—x) = K(z) fora.e zeR" (1.5)

Moreover, since we need the K-perimeter to be finite on convex bodies, we assume that
/ min{1, 2]} K (z) dz < +oo. (1.6)
R?’L

Actually, condition (1.6) yields that Px(E) < +o0o whenever P(E) < +oo and |E| < +00,
see Lemma 2.6 below (where |E| = 5" (F) denotes the Lebesgue measure of £ C R").
We tacitly assume (1.5) and (1.6) throughout the paper.

The monotonicity property of non-local perimeters was first proved for (1.4) in [21,
Lem. B.1] and then for (1.3) in [4, Cor. 2.40] (we also refer to [14, Rem. 2.4] for the
monotonicity of the localized functional Pk(-; Bg) for R > 0, see (2.1) below for the
precise definition). Actually, the monotonicity results proved in [4,14,21] require further
assumptions on K in addition to (1.5) and (1.6). This is due to the fact that [4, 14, 21]
employ the monotonicity property of Pk for convex sets which may be unbounded.
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Our first main result is the following theorem, showing that assumptions (1.5) and (1.6)
guarantee the monotonicity property of Px on nested convex bodies.

Theorem 1.1 (K-monotonicity). Let n > 2. If A C B C R" are two convex bodies, then
Py (A) < Px(B). (1.7)

The proof of Theorem 1.1 follows the same strategy of the corresponding results in [4,14,
21], but with some simplifications due to the boundedness on the involved sets. Although
the proof of (1.7) may be known to experts, we briefly outline it below to keep the present
note as self-contained as possible.

Our second main aim is to provide a quantitative version of Theorem 1.1 by proving a
lower bound on the non-local deficit 05 (B, A) = Pk (B)— Pk (A) in terms of the Hausdorff
distance h(A, B) between A and B. Our strategy is modeled on the approach adopted
in [35] for dealing with (1.2) and, essentially, requires that the kernel K possess suitable
symmetry properties. Precisely, we assume that = — K (z) is symmetric-decreasing with
respect to the component of x € R™ which is orthogonal to some fixed direction v € S*~1.

Definition 1.2 (v*-symmetric decreasing kernel). Let n > 2. We say that the ker-
nel K is v-symmetric decreasing for some v € S*~! if there exists a measurable function
k,: [0,4+00)? — [0, +oc] such that r — k,(r,t) is decreasing for all ¢ > 0 and

K(z)=k,(|z — (z-v)v|,|z-v|) forxzeR™

If K is vt-symmetric decreasing for some v € S"~1, then it also satisfies (1.5) and,
moreover, it is also (—v)t-symmetric decreasing with k_, = k,. In particular, Defini-
tion 1.2 applies to radially-symmetric decreasing kernels, i.e., K(z) = ¢(|z|), x € R", for
some decreasing ¢: [0, +00] — [0, 400]. Indeed, in this case, one chooses

k,(r,t) = ¢ (\/7“2 + t2) for r,t > 0,

for any v € S"~!. Note that this holds for P, in (1.4), with ¢(r) = r—""% for r > 0.
With this notation at disposal, our second main result reads as follows. Here and in
the rest of the paper, we let (v) = {tv :t € R} C R™.

Theorem 1.3 (Quantitative K-monotonicity). Let n > 2 and let K be v*-symmetric de-
creasing for some v € S as in Definition 1.2. There exists a function fx, ,: [0,+00)® —
[0, +00) with the following property. If A C B C R™ are two convex bodies with Hausdorff
distance h(A, B) = |a — b| achieved for some a € A and b € B such that a —b € (v), then

Pi(A) + fro (h(A, B), " {(BNOH),|BN H|) < Px(B), (1.8)
where H={x € R": (b—a) - (x —a) <0}.

The function fx, in Theorem 1.3 is implicit, due to the fact that, contrary to the local
case [35], the non-locality of the functional (1.3) prevents us to compute the lower bound
on the K-perimeter deficit explicitly. Nonetheless, the proof of Theorem 1.3 yields a
partial characterization of optimal configurations. In particular, inequality (1.8) is sharp,
in the sense that it is an equality at least in one non-trivial case.

The strategy of the proof of Theorem 1.3 is inspired by [26,35]. We first reduce the
given convex bodies to more symmetric ones by performing a Schwartz symmetrization
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(done orthogonally to the given v € S"1), thanks to the symmetry of K ensured by
Definition 1.2, and then we exploit a compactness argument.

As a consequence of Theorem 1.3, in the radially-symmetric decreasing case, we get
Corollary 1.4 below. Here and in the following, we let P, = P for any decreasing
function ¢: [0, +00] — [0, +00], we let ¢+ = max{t,0} be the positive part of ¢ € R and,
given h,r > 0, we let

Cl= |J {(Q—t)he, +tx:te[0,1]}
z€D,
be the (closed) right circular cone with base D, = {x € R" : |z| < r, x,, = 0} and height h
in the direction e, = (0,...,0,1) € S*~!. Finally, we let h = h(A, B) denote the Hausdorff
distance between A and B and, as usual, w,_; = #"1(S"71) .

Corollary 1.4 (Quantitative ¢-monotonicity). Letn > 2. If A C B C R™ are two convex
bodies, then

Py(A) + (Po(C) — oymax{LP(BN H),|BN H|})" < Py(B) (1.9)
where 05 = [pn min{1, |z|} ¢(|z]) dz,

. H={reR":(b—a)- (t—a) <0},

r =

J =B NOH)

Wn—1
and a € A and b € B such that |a — b| = h(A, B).

Inequality (1.9) is apparently worse than (1.8). However, the lower bound given by (1.9)
is more explicit than the one given by (1.8). In fact, one is only left to estimate Py(CP),
which may be explicitly done for a specific choice of ¢.

A special instance of Corollary 1.4 is the fractional case. In fact, exploiting the fractional
isoperimetric inequality (see [21] and the references therein)

) ) P.(B
PAE) > o B, o = U

n,s n—s

|By|

valid for any measurable £ C R", we get the following result.

(1.10)

Corollary 1.5 (Quantitative s-monotonicity). Let n > 2. If A C B C R™ are two convex
bodies, then

R _s s +
P,(A) + (c (22 hpnt)' 7 Zmes p(B A H)Y BN H|1“”> <P(B) (L11)

n,8 s(1—s)
where h,r >0, a € A, be B and H C R"™ are as in Corollary 1.J.

Inequality (1.11) is worse than (1.9), since we used (1.10) to estimate the term P,(C?)
from below in terms of |C”| which, in turn, can be explicitly computed from h,r. Anyway,
the lower bound we get is more explicit than the one given by (1.9).

1.3. The 1D case. In closing, let us comment on the special case n = 1.
The monotonicity property (1.1) becomes trivial for n = 1, since P(A) = P(B) = 2 for
any two (not necessarily nested) segments A, B C R. Instead, the case n = 1 becomes
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non-trivial in the non-local setting. For example, in the fractional case, due to the scaling
and translation invariance of (1.4), we have

P,(B) = P(A) = ¢, (|B]'"™* — |A]'™) (1.12)

for any two (not necessarily nested) segments A, B C R, where ¢, = P5((0,1)).
With (1.12) in mind, we have the following result, which is inspired by [4, Lem. 2.31].

Proposition 1.6 (Case n = 1). Assume that ¢: [0, +00) — (0, +00) satisfies

2 2
inf R*¢(Rt) — r*¢(rt)
T

for some increasing function ¢ : [0, +00) — [0,+00). If A, B C R are two segments with

|A| < |Bj, then, setting c, = Ps((0,1)),

Py(A) + co(v(|B]) = ¥(|A])) < Py(B). (1.14)

> (R) —(r) forallR>r >0, (1.13)

Note that the assumption in (1.13) implies that ¢ is decreasing. In the fractional case,
o(r) =r=17% for r > 0, so ¥(r) = r'=* for r > 0, and we recover (1.12).

2. PROOFS OF THE STATEMENTS
2.1. Proof of Theorem 1.1. Theorem 1.1 is a consequence of the following result.

Proposition 2.1 (Intersection with convex sets). If E C R™ is a convex body, then
Pr(ENC) < Pg(FE) for any convez set C' C R™.

The proof of Proposition 2.1 exploits the local minimality of half-spaces, see Lemma 2.2
below. This latter result was proved first for (1.4) in [2, Prop. 17] and then for (1.3)
in [32, Th. 1] (also see [9, Cor. 2.5] and [4, Lem. 2.31]). Here and below, for measurable
sets £, A C R", we let

- </EmA /ECmA * /EmA /EcmAc * /EQAC /ECQA> K(z —y)dedy (2.1)

be the K -perimeter of E relative to A.

Lemma 2.2 (Local minimality of half-spaces). Let R > 0. If H C R™ is a half-space,
then P (H; Br) < Px(E; Bg) for any E C RY such that E\ Br = H \ Bg.

Proof of Proposition 2.1. Our strategy is a simplification of the one used for the proof
of [4, Th. 2.29] (see also [21, Lem. B.1] and [14, Rem. 2.4]). Since C' C R" is convex, we
can find a sequence of half-spaces (Hj)ren such that the sets

N
Cy = ﬂ H, Ne¢g¢ N,
k=1

satisfy |Cy A C| — 07 as N — +o00o. Therefore, thanks to the lower semicontinuity
property of Pk (see [4, Lem. 2.10] for instance), we can assume that C' = H is a half-
space. We can hence write

Pi(E) = Pie(EO H) = (// /EQH/EOH ) v—y)dedy
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= (/IEHH-{-/jE\H)/CK(x—y)dxdy—(/EC—I— E\H>/EmH K(z —y)dxdy
(L~ o) o e

Now let R > 0 be such that ' C Bg. Defining F' = EU H, one easily checks that £ C F,
E\H=F\H,FNH=H and F\ Bg = H\ Bg. A plain computation then yields

(/C—/EHH>/E\HK(x—y)dxdy2 (/C—/FmH>/F\H K(z —y) dzdy.

We now observe that the right-hand side of the above inequality can be rewritten as
Py (F; Br)— Pk (H; Br) exploiting the definition in (2.1). Therefore, thanks to Lemma 2.2,
we get that

PK(E)—PK(EQH)ZPK(F,BR)—PK(H,BR)ZO,

yielding the conclusion. 0

2.2. Proof of Theorem 1.3. We begin by adapting [30, Sec. 19.2] (which corresponds
to the choice v = e; in what follows) to our setting.
Let v € S* ! be fixed. For any € R", we set

,=x—(x-v)v and z,=(x V)

We naturally identify z, € (v) and 2/, € (v)*, where (v)* is the linear space orthogonal
to (v), with points in R and R"™!, respectively. In particular, with a slight abuse of
notation, we write x = ), + z, = (2/,,x,) for any x € R™.

Definition 2.3 (Schwartz v-symmetrization). Given E C R™ with |E| < 400, we let
Ef:{y€<1/>L:y+tu€E}, teR, (2.2)
be the slice of E orthogonal to v € S*~1. We hence let
E# = {z € R" :w, |2, |" ' <" (EL)} (2.3)
be the Schwartz v-symmetrization of E.
The set E#¥ is measurable, with slice (E#”)? equal to an open ball such that
(BN = A (E)

for each t € R. Hence |E#”| = |E| by Fubini-Tonelli’s Theorem.

The following result is a non-local analog of the Schwartz inequality P(E) > P(E#") for
the Eulidean perimeter (see [30, Th. 19.11]). Actually, inequality (2.4) below is a special
case of [7, Lem. 3.2], but we give a direct and simpler proof of it via the well-known Riesz
rearrangement inequality (see [28, Ch. 3] for a detailed presentation). Here and in the
rest of the paper, we let

LK(E,F):/;/FK(I—y)dxdy

be the K -interaction functional between the two measurable sets E, F' C R™.
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Lemma 2.4 (Non-local Schwartz v-inequality). Let n > 2 and let K be v*-symmetric
decreasing kernel for some v € S™ ' as in Definition 1.2. If E,F C R"™ are such that
|E|,|F| < 400, then

Li(E,F) < Lg(E# F#), (2.4)
Moreover, if Px(E) < 400, then also Px(E#") < +oo with
Px(E) > Px(E*). (2.5)

Proof. Let k, be the function given by Definition 1.2. By Tonelli’s Theorem, and recalling
the definition of slice in (2.2), we can write

Li(E.F) :/R/RL;%O_LW,%D(E;’V,Fy”y)dxy dy,. (2.6)
where
Ly, (1 a—vo)) (E7, » Fy,) gy () xry, (v,) Ko (|2, — 9ol |20 — wo|) d, dy,,.
Rn— 1 Rn— 1 (2 7)

Since |E|, |F| < 400, we also have 7" (EY ), 2" ' (F} ) < +oo for a.e. z,,y, € (v).
Since the function z — k,(|z|, |z, —y.|) is radially-symmetric decreasing by Definition 1.2,
by Riesz rearrangement inequality [28, Th. 3.4] we infer that

Lku(\ . |,\xu*yu\)(Egua Fyyy) < Lkl,(\ . |7‘xy,yy‘)(D[Emyy], D[Fyyy]) for a.e. Ty, Yy € <V> (28)
Here D[EY ] and D[F} ] are the closed (n — 1)-dimensional discs in (v)* centered at the
origin with (n — 1)-dimensional volume equal to 7"~ (EY ) and 2" *(F} ), respectively.

Integrating (2.8), and again using Tonelli’s Theorem and (2.3) and (2.6), we get (2.4).
Similarly, choosing F' = E in (2.6), we can write

Pie(B) = [ [ Lo (B, (B),,) do, . 29)
Since Pk (F) < +00, we must have
Lku(|‘|7|xu_yul)(E;y’ (EC)ZU) < 4+oo fora.e. x,,y, € <V> (2.10)

Now, for any fixed z,,y, € (), we can write

“+00
ku (‘Z|7 ’xu - yl/|) = /0 X{ku("|,|$u7yu|)>t}(z) dt, for z € <V>J_-

Therefore, for a.e. x,,y, € (V), we can decompose
+oo

Ly (-1l (B, s (E€)y,) = L

; (Ey,, (E°)y,)dt, (2.11)

X{ko (| fow =y ) >t}
where, as in (2.7), we have
Lttt (Bas (E9)y,)

= /Rn 1/Rn Xey, () Xy, W) Xtk (o -y >0 (23, — yy) da, .

We now observe that, for a.e. x,,y, € (v) and for any ¢ > 0, the set

{ze " k2l |z, —wl) >t}
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is an (n — 1)-dimensional disc (possibly empty or the entire subspace (v)*), with
A" ({2 € W) k(2] o — wl) > t}) < +o0 (2.12)
for a.e. t > 0. Indeed, if this is not the case, then, for some S C R with s#*(S) > 0,

Lt 1o - yy|>>t}( (E)y,) = /Rn 1/Rn IXE;V (@) X (&) t (yl’,) dz;, dy,
%nlEy)%n 1(( ) ) +00

for all ¢ € S, which, together with (2.11), contradicts (2.10). Now, for any ¢ > 0 yield-
ing (2.12), we have Xk, (1|jzv—y >t} € L' ({)*, "), Hence, we can decompose

Lt ton—snsn By (B)0) = Dy o —ysey (B (¥ ) - Lcthnr oy (Bays B,
= "N E,) A" (k] - | low = wl) > 1)) =
Since " 1(EY ) = 2" Y(D[EY ]) by (2.3) and
Lvtision—mnsn B B) < Dy g0 —yon (PLE, | DIE])
by (2.8) (applied with E' = F'), again recalling (2.3) we readily get that
L (B2, (B3) 2 Dty (EFL, (BF));)-
Integrating back in ¢ > 0 and recalling (2.11), we get
L E; (EC)ZU) > L

v v
X{ku(l'ly\ru*yulbt} (Ewrﬂ yu)'

X{ky (|| |mp —yp ) >t}

ERY (BR) )
Finally, integrating back in z,,y, € (v) and recalling (2.9), we get (2.5). O

X{kv (|5 |lzv = yul)>t}( X{ky (|];|lzv —yv|) >t} ((

In the proof of Theorem 1.3, we will use the following notation. Given p € R™ and a
(non-empty) set S C R", we define the cones with vertex p and base S

= U{p+tls—p):t€(0,1]}, Culp,S) = U{p+t(s—p):t>0}.
seS SES

Note that, if S is convex, then also C(p,S) and Cy(p,S) are convex. Moreover, if S is
bounded, then also C(p, S) is bounded. Finally, given p € R*, r > 0 and v € S" !, we let

DY(p) =p+Dy0), DY0)={zeR":ze )" |z|<r},
be the closed (n — 1)-dimensional disc centered at p, with radius r, and orthogonal to v.

Proof of Theorem 1.5. Let v € S* ' a€ A;b€ B, h=h(A,B) =|a—b| and H C R" be
as in the statement. Since A C B are compact convex sets, we have that
h(A,B) =la—b| = max min |z —y|.
yeEB z€

Consequently, a is the orthogonal projection of b on A. By definition of H and by mini-
mality of the projection, the closed hyperplane OH is a supporting one for A in a. As a
consequence, we must have that A C BN H.

Step 1: reduction to symmetric sets. Let E = BN H and C = C(b, BN 0H) be the
(bounded and closed) cone with vertex b and base B N 9H. Note that £, C' and EUC
are convex bodies. Since A C E and F U C C B, we have

5K(B>A) Z 5K(B>E) > 5K(EU07E)>
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E=BnH 9H

Figure 1. Reduction to symmetric sets in the proof of Theorem 1.3: an initial
configuration (left) and its symmetrization (right).

with equality if A = F and B = EUC. Since [ENC| =0and £ =CU (E°\C) =
C'U (E°NC*), we can write

Pyx(EUC) — Pg(E)=Lg(EUC,E°NC°) — Lig(E, E°)
=Lg(E,E°NC) 4 Lg(C,E°NC°) — Lg(E,C) — Lg(E, E°NC°)
=Lg(C,E°NC°) — Lg(E,C)
= Lg(C,C°\ E) — Lk(E,C)
=Lg(C,C°) — Lg(C,E) — Lg(F,C)
= P(C) —2Lk(E,C).
We now apply Lemma 2.4 to the convex bodies £ and C, so that
Li(E,C) < Lg(E* C*) and Pg(C) > Pg(C*).
As a consequence, reading the chain of equalities in (2.13) backwards, we get that
6k (B,A) > 0x(EUC, E) > 0 (E* UCH E#) = Py (C*") — 2L (E*,C*). (2.14)
In particular, setting A* = E#* and B* = E#¥ U C#¥, we proved that
0x(B,A) > 0x(B*, AY),

with equality obviously if A = A* and B = B*, reducing the proof of Theorem 1.3 to the
case of the symmetric convex bodies A*, B*.

(2.13)

Step 2: description of C#”. We now note that C#" is uniquely determined by a — b
and "1 (BNJH). Indeed, since by definition

(x—a)-v=0 forallx € dH,

the half-space H is preserved under Schwartz v-symmetrization, H#¥ = H. In particular,
we recognize that E#" = B#” N H and hence C#* = C(b, E#** N 0H) = C(b, B¥* N OH).
Moreover, since a € E# is still the orthogonal projection of b € C#* on E#", 0H is a
supporting hyperplane for E#” in a and thus, since E#* C H, we conclude that

h=h(A,B) = h(E,EUC) = h(E*  E*" U C*).
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Finally, by definition of Schwartz symmetrization in (2.3), we have
A" BNOH) =" (B*" NoH) = #" ' (E* NoH).
In conclusion, we get that C#* = C(b, D¥(a)), where
. J A\ (BN oH)

Wnp—1

, (2.15)

see Figure 1. Arguing similarly, also the (unbounded and closed) cone C#" = C, (b, B#*N
OH) is uniquely determined as C%" = C..(b, D%(a)).

Step 3: description of E#¥. By definition, each slice (E#*)Y with ¢t € R is a (possi-
bly empty) bounded and closed (n — 1)-dimensional disc. More precisely, from now on
assuming (b — a) - v > 0 without loss of generality, we have that

E#V = U D%E#u(t) (CL — tV)
tG[O,dE]

for some dg € [0,400) and some concave function Rp#.: [0,dg] — [0, +00) such that
Rp#.(0) = r as in (2.15). Moreover, recalling the definition in (2.3),

|E*| = |E| = |BN H.
Finally, by construction, E#" ¢ C%” \ C#v which equivalently rewrites as

Step 4: construction of a family of symmetric sets. We now set w = |E| for brevity.
We let F be the family of convex bodies F' C R™ such that |F| = w and

F= |J Di.pla—tv) (2.16)
te[O,dF]

for some dp € [0, +00) and some concave function Rp: [0,dr| — [0, +00) with Rp(0) =r
as in (2.15) and

Rr(t) < %H r fort €0, dp). (2.17)
Note that F#” = F and F' C CZL”\ C#¥ for any F' € F. We now claim that
1-n
sup dp < T (2.18)
FeF Wn—1

Indeed, given any F' € F, we have qp = a — dpv € F by (2.16). Consequently, since
F € F is a convex body, the (bounded and closed) convex cone C(qr, D¥(a)) is contained
in F, so that |C(qr, DY(a))| < |F|, which means that

% "ty < w, (2.19)

proving the claimed (2.18). Combining (2.16), (2.17) and (2.18), we get that
F cC(b, D%, (qw)) \ C#” (2.20)
where d,, = %, qu = a — dyv and R, = 5 d, + 1, see Figure 2. We conclude by

claiming that the family F, endowed with the Hausdorff distance h(-,-), is a compact
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C(b, D, (qw)) C(b, D, (qw))

Figure 2. An element of the family F constructed in the proof of Theorem 1.3:
its main lengths (left) and its circular sections orthogonal to v € S*~1 (right).

metric space. Indeed, if (F})jeny C F is such that h(F;, F) — 0% as j — +oo for some
F C R, then F is a convex body by Blaschke’s Selection Theorem (see [34, Th. 1.8.7]
for instance). Since sup;cy P(F}) < +00 by (2.20), up to a subsequence, we also get that
Xr, = Xp in L'(R") and a.e. in R™ as j — +oo (see [30, Th. 12.26] for example). As a
consequence, the limit convex body F still satisfies (2.20) and |F| = w. Moreover, thanks
to (2.19), up to a subsequence, we may assume that dp, — d monotonically as j — o0,

for some d € [0,d,,]. Therefore, recalling (2.2) and since
B AR = [ 7 (5o F))dt = [ 7 ((F); A F)) di

for all j € N, again up to a subsequence, we get that ”H"‘l((Fj)’t’ A (F)t”) — 07 as
j — +oo for a.e. t € R, proving that F satisfies (2.16) for dp = d and a convex function
Rp:[0,dp] — [0,+00) as in (2.17). We hence get that F' € F, yielding the claim.

Step 5: definition of fx,. By (2.14) and since E#” € F by Step 3, we get that

Sk (B, A) > P (C*) — 2Lk (E# C#") > P (C#") — 2 sup Lg(F,C*"). (2.21)
FeF

Now consider the maximization problem

m = sup Lg(F,C*"). (2.22)
FeF

Since F' C (C#¥)¢ for any F € F by Step 4, we can trivially estimate
m < Lg((C#7)°,C*) = Px(C*) < +oo0.

Hence let (Fj)jen C F be any sequence such that Ly (F;, C#) — m as j — +oo. By
the compactness of the metric space (F,h) proved in Step 4, up to a subsequence, we
find some M € F such that h(Fj;, M) — 0% as j — +o0. Since also sup,cy P(F}) < +00
by (2.20), up to a subsequence, we also get that xp — xa in L'(R") and a.e. in R" as
j — +o00. By Fatou’s Lemma, we hence infer that

m < Lg(M,C*) < lim inf L (£, C*) = m, (2.23)
J—+00
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yielding that M € F is a maximizer of (2.22). Now we observe that
Py (C*) — 2L (M, C*) > 0.
Indeed, arguing exactly as in (2.13), we check that
Py (C*") — 2L (M, C*") = Pre(M U C#) — P(M), (2.24)

which is non-negative by Theorem 1.1, since M U C#" is a convex body by construction
of the family F. Now, again by the definition of F in Step 4, the value m = m(h,r, w)
of the maximization problem (2.22) is uniquely determined in terms of h, r and w. In
addition, thanks to Step 3, Px(C#") is uniquely determined by h and r. We hence define

frw(hywp ™ w) = P (C*) — 2m(h,r,w) = P (C*) — 2L (M,C#"),  (2.25)

yielding (1.8) thanks to (2.21), (2.22) and (2.23). Finally, in virtue of the above construc-
tion and of (2.24) and (2.25), the equality in (1.8) is attained by the sets A = M and
B =M UC#” where M is any solution of the maximization problem (2.22). U

Remark 2.5 (On the maximization problem (2.22)). With the same notation of the proof
of Theorem 1.3, we can rewrite

Li(F,C#) = / 05 (x)de, FeF, (2.26)
F
where g5, : R" — [0, +00] is given by

9w () = (K % xow ) (x) = /Rn K(z —y) xcw (y)dy  for z € R™

Hence problem (2.22) can be equivalently interpreted as the maximization of the g5, -
potential energy (2.26) among convex bodies F' € M.

2.3. Proof of Corollaries 1.4 and 1.5. The following result is a simple interpolation
estimate: the first part of the statement follows from [3, Prop. 2.2], while the second part
is an easy refinement. We leave the plain details to the reader.

Lemma 2.6 (Interpolation). If E C R" is a convex body, then

Py (E) < max{L P(E), | B} / min{1, 2|} K (z) dz. (2.27)
]Rn
In particular, in the fractional case s € (0,1),
21 nw
P(E) < =——P(E)*|E|'. 2.28
(B) < s BB (228)

Proof of Corollary 1./. Since Py is invariant by rotations, we can apply Theorem 1.3 for
v = e,, so that C#¢» = C" by Step 2 of the proof of Theorem 1.3. By Steps 1 and 3 of
the proof of Theorem 1.3, and thanks to (2.27) in Lemma 2.6, we can estimate

Lic(E#*,C) < Lig(E#r, (E#*)°) = Py(E#*)
< max{} P(E#), | B4} [ min{1,]a]} 6(la]) d.
R’ﬂ

2

The conclusion thus follows by observing that |[E#°»| = |[B N H| thanks to the definition
in (2.3) and also that P(E#°) < P(BN H) by the Schwartz inequality for the Euclidean
perimeter (see [30, Th. 19.11]). O
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Proof of Corollary 1.5. We argue as in the proof of Corollary 1.4. We just notice that

S
n—s 1-=

Py(C*er) = Py(Ch) 2 €3 [ = e (S5 b t)
thanks to (1.10) and that

217 nw 217 nw
Ls E#en Ch < Ps E#e” < n P E#en s E#en 1-s < n P(E)* Elfs
(B#.Cl) < Pi(E#) < 2 p(ptey Rt < 2 peye|
by (2.28) in Lemma 2.6, readily yielding the conclusion. O

2.4. Proof of Proposition 1.6. We conclude by dealing with the case n = 1.

Proof of Proposition 1.0. Since P, is invariant by translation, we can assume that A =
(0,]A]) and B = (0,|B]) in R. We now observe that, by a simple change of variables,

_ _ — 2 —
PoA)= [ [ ol —udrdy=1ap [ ] o14]le —l)dedn

Therefore, by (1.13), we can estimate
Fy(B) = Py(A) = /(071) /(071)6 (IBIP¢(IBl 1€ = nl) — |APS(|Al 1€ = 1)) d&dn
= /(0,1) /(071)c <¢(’B\) - w(‘AD)¢(‘§ —n|)d¢dn
= (v(IB]) = ¥(|A]) Ps((0, 1)),

yielding the conclusion. 0
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