INTRINSIC REGULAR SUBMANIFOLDS
IN HEISENBERG GROUPS
ARE DIFFERENTIABLE GRAPHS

GABRIELLA ARENA AND RAUL SERAPIONI

ABSTRACT. We characterize intrinsic regular submanifolds in the Heisen-
berg group as intrinsic differentiable graphs.
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1. INTRODUCTION

The notion of rectifiable set is a key one in calculus of variations and in
geometric measure theory. To develop a satisfactory theory of rectifiable
sets inside Carnot groups has been the object of much research in the last
ten years (see e.g. [2], 3], [8], [, [14], [16], [17], [26], [27], [28], [33)).

Rectifiable sets, in Euclidean spaces, are natural generalizations of C'!
submanifolds; moreover they are often defined, (but for a negligeable set),
as a countable union of compact subsets contained in C'' submanifolds.

Hence, understanding the objects that, inside Carnot groups, naturally
take the role of C'' submanifolds is a preliminary task in developing a satis-
factory theory of rectifiable sets inside Carnot groups.

In this paper we consider functions acting between complementary sub-
groups of a given Carnot group G and, for them, we introduce the notions
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of intrinsic Lipschitz continuity and intrinsic differentiability. After we use
these notions to characterize, inside Heisenberg groups H", intrinsic C*
submanifolds as, locally, intrinsic differentiable graphs.

Intrinsic graphs came out naturally in [14], (see also [8]), while studying
level sets of Pansu differentiable functions from H" to R. They gave the
possibility of proving an implicit function theorem for these level sets, that
indeed are, locally, intrinsic graphs, (see Theorem and also [17], [19],
[20]). The simple idea of intrinsic graph is the following one: let G; and
Go be complementary subgroups of a Carnot group G, that is homogeneous
subgroups, such that G1 NGy = e and G = G1 -Gy (here - indicates the group
operation in G and e = (0, ..., 0) is the unit element), then the intrinsic (left)
graph of f: G; — Gy is the set

graph (f) ={g- f(9) : g € G1}.

In this case we say that graph (f) is a graph over G; in direction Go. More
generally, we say (Definition that a subset S of a Carnot group G,
is a (left) intrinsic graph, in direction of a homogeneous subgroup H, if S
intersects each left coset of H in at most a single point.

The notions of intrinsic Lipschitz continuity and of intrinsic differentia-
bility - for functions acting between complementary subgroups of a Carnot
group G - are given, as follows, trying to respect the geometric structure of
the ambient space G.

A function f : G; — Go is said to be intrinsic Lipschitz (Deﬁnition if
it is possible to put, at each point p € graph (f), an intrinsic cone (Definition
[3.10)), with vertex p, axis G and fixed opening, intersecting graph (f) only
at p.

A function f : G; — Gg is intrinsic differentiable at g € Gy if there is a ho-
mogeneous subgroup H of G such that, in the point p = g- f(g) € graph (f),
the left coset p - H is the limit of group dilations of graph (f) centered in
p, or, in other words, if p - H is the tangent plane to graph (f) in p (Defi-
nition . A uniform version of intrinsic differentiability is introduced in
Definition [3.201

Let us come now to intrinsic C! surfaces. In H", or sometimes in more
general Carnot groups, a class of surfaces that proved themselves to be a
good generalization, to the group setting, of C'' submanifolds are the so
called H-regular submanifolds, (see Definition and the references [17],
2], 8], [27], [33] and [37]).

In H", H-regular submanifolds are defined in different ways according
to their topological dimension k. Precisely, if & < n, a k-dimensional or
low dimensional H-regular submanifold is, locally, the image in H"™ of an
open set of R¥, through an injective, Pansu differentiable function; while
a k-codimensional, or low codimensional, H-regular submanifold is, locally,
the non critical level set of a Pansu differentiable function H" — R*.

The surfaces contained in these two classes are very different from each
other; indeed low dimensional H-regular surfaces are Legendrian, euclidean
C' submanifolds, (see [I7], Theorem 3.5), while the low codimensional ones
can be very irregular, even fractals, from an euclidean point of view (see
[I7] and [23]). Nevertheless H-regular submanifolds can, very reasonably,
be considered as C'' submanifolds because (i) they have a tangent plane at
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each point, the tangent plane being the coset of a homogeneous subgroup
of the ambient space H", (ii) the tangent planes depend continuously on
the point, (iii) they have locally finite Hausdorff measures, that can also be
obtained by integration with appropriate area type formulas (see [17]).

In this paper we show, in our main result (see Theorem , a common
characterization of H-regular surfaces, both low dimensional and low codi-
mensional, proving that they are uniformly, intrinsic differentiable graphs
of functions acting between complementary homogeneous subgroups of H™.

Our proof of equivalence of uniformly intrinsic differentiable graphs and
of intrinsic C' submanifolds in H", suggests also that wuniformly intrinsic
differentiable functions, acting between complementary subgroups G and
G, are, inside G, the group version of euclidean C'!' functions from R* to
R % inside R™.

Finally, it seems to us that describing regular submanifolds as (intrinsic
differentiable) graphs is more general and flexible than using parametrizations
or level sets. Indeed, differently from R™ - where d-dimensional C'' embed-
ded submanifolds are equivalently defined as non-critical level sets of differ-
entiable functions R® — R"~% or as images of injective differentiable maps
R — R™ (or as graphs of C' functions R¢ — R"~%) - in H", low dimen-
sional H-regular surfaces cannot be seen as non critical level sets and low
codimensional ones cannot be seen as (bilipschitz) images of open sets. The
reasons for this are rooted in the algebraic structure of H”; indeed, low di-
mensional horizontal subgroups of H"” are not normal subgroups, hence they
cannot appear as kernels of homogeneous homomorphisms H* — R"~%; on
the other side, injective homogeneous homomorphism R? — H" do not exist,
if d>n+1 (see [2] and [26]).

We recall that the class of uniformly differentiable functions has been
studied, with different names and approaches, for 1-codimensional graphs,
in [I], [8] and in [37]. In one section of this paper we tried to explain some
of the connections between the two classes of functions.

We hope that the here taken approach to the study of H-regular sub-
manifolds in H", might prove itself to be useful also for defining intrinsic
C'! submanifolds in more general Carnot groups. With this aim, we made
the effort of writing all statements and proofs in a coordinate free fashion.
We hope that this will show, more clearly, how some of the concepts here
discussed can find their natural setting in Carnot groups more general than
Heisenberg groups.

Finally we would like to thank Francesco Serra Cassano and Davide Vit-
tone for their interest and many useful talks.

2. NOTATIONS AND PRELIMINARIES

For a general review on Carnot and Heisenberg groups see [4], [12], [13],
[21], [22], [32], [34], [35], [36] and the recent ones [6] and [7]. Here we limit
ourselves to fix some notations.

2.0.1. Carnot groups. A graded group of step k (see [21] or [32]) is a con-

nected, simply connected Lie group G whose Lie algebra g, of dimension n,

is the direct sum of k subspaces g;, of dimension m;, g = g1 ® - - - D gi, such
3



that

for 1 <4,j <kandg; =0 fori> k.
A Carnot group G of step k is a graded group of step k, whose Lie algebra
satisfies also

(2) (91, 08i] = i1

fori=1,...,k. That is, g1 generates all the algebra.

The exponential map is a one to one diffeomorphism from g to G. Let
Xi,...,X, be a basis for g such that Xi,...,X,,, is a basis for g; and,
for 1 <j <k, Xon; y+1,...,Xmm; is a basis for g;. Then any p € G can
be written, in a unique way, as p = exp(p1X1 + -+ + ppX,,) and we can
identify p with the n-tuple (p1,...,p,) € R™ and G with (R",-). The explicit
expression of the group operation -, determined by the Campbell-Hausdorff
formula (see [6] or [12]), has the form

3) voy=z+y+Qwy), VryeR”

where Q(z,y) = (Qi1(x,y),..., On(z,y)) : R x R" — R". Here, Q;(z,y) =
0, for each i = mg,...,m; (mg = 1) and, for each 1 < j < k and
mj—1 +1 < i < mj, we have, Qi(z,y) = Qi(:clj..., T 1> Yly- - s ymjil).

Moreover, each O; is a homogeneous polynomial of degree «; with respect
to the intrinsic dilations of G.
IfpeG,p = (-p1,...,—pn) is the inverse of p and e = (0,...,0) is the
identity of G.

If G is a graded group, for any A > 0, the dilation 6, : G — G is an
automorphism of G defined as

(4) A1y oy ) = (A2, X229, .y A2y,

where the homogeneity of ; is o; € N and o = j if mj_1 < i < my (see [13]
Chapter 1).

We shall use the following homogeneous norm and distance on G
(5) d(z,y) =dly™" - z,0) = [jy" -z
where, if p= (p1,...,pr) E R™ x -+ x R"™ =R" = G, then

)

oy .
(6) Ipll = masc{e; psligne 5 =1, k}.
Here 1 = 1, and €9, ...¢;, € (0, 1] are suitable positive constants depending
on G (see Theorem 5.1 of [16]).

The distance d is comparable with the Carnot Caratheodory distance of
G and is well behaved with respect to left translations and dilations, that is

(7) d(z-2,z-y) =d(x,y) , dOr(2),0\(y)) = Ad(z,y)

for z,y,z € G and A > 0. For r > 0 and p € G, we denote by B(p,r) the
open ball associated with d.

A homogeneous subgroup of a Carnot group G (see [34] 5.2.4) is a subgroup
H such that, for all g € Hand A > 0

0rg € H.
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The (linear) dimension of a (sub)group is the dimension of its Lie algebra.
The metric dimension of a subgroup, or of a subset, of G is the Hausdorff
dimension, where the Hausdorff measures are constructed from the distance
given in .

Any homogeneous subgroup of a Carnot group G of step k is, necessarily,
a graded group, of step at most k, but in general it is not a Carnot group.

We will consider each homogeneous subgroup H of a group G as a metric
space by restricting to H the distance defined in G.

2.0.2. Heisenberg groups. The n-dimensional Heisenberg group H" is identi-
fied with R?"*! through exponential coordinates. A point p € H" is denoted

as p = (P1,---,P2ns P2n+1) € R2n+1
For p,q € H", the group operation is defined as

1 n
p-q= (pl +q1, .-, D2n + G2n; P2n+1 + G2n41 + B Z (pigi—‘rn - pi—i—nQi) )
i=1
For A > 0, non isotropic dilations dy : H® — H" are the automorphisms
of the group defined as

5xp = (Ap1, -+ s AD2ny A2p2an1)-

The Lie algebra h of H" is spanned by the left invariant vector fields
X17 e :XmYb T >YmT7 where

1 1
Xi(p) == 0i — 5p¢+n32n+1, Yi(p) = Oign + §pi32n+1, T(p) == O2nt1,
for i = 1,...,n. The horizontal subspace b is the subspace of h spanned

by Xi,...,Xn,Y1,...,Y,. Denoting by ho the linear span of T, the 2-step
stratification of b is expressed by

(8) h="h1Dhe
and we have
9) [h1,b1] = ba.

The Lie algebra b is also endowed with a scalar product (-,-) making the
vector fields X1,...,X,,,Y1,...,Y,, T orthonormal.

The centre of H" is the subgroup T := exp(h2) = {(0,...,0,p2n+1)}

The horizontal bundle HH™ is the subbundle of the tangent bundle TH"
whose fibers HH} are spanned by the horizontal vectors Xi(p),---,Yn(p).
The scalar product (-, -) induces naturally on each fiber HH a scalar prod-
uct here denoted as (-, -),,.

If p € H", the homogeneous norm in @ becomes

Ipll = max{[|(p1, -~ p2n)llgen , [P2ns1] 2}

while the distance d is defined as in .
R

We define also the map 7 : H® — R*" as

m(p) = m(p1, -+ s Pans P2nt1) = (1, s Pan)-
Notice that any p € H" can be uniquely written as
p = (7(p),p2nt1) = (7(p),0) - pr

where pr = (0,- -+ ,0,pani1) € T and (m(p),0) € HHL.
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Proposition 2.1. All homogeneous subgroups of H™ are either horizontal,
that is contained in the horizontal fiber HH, or vertical, that is containing
the subgroup T. A horizontal subgroup V has linear dimension and metric
dimension k, with 1 < k < n; moreover V is algebraically isomorphic and
isometric to R¥. A wertical subgroup W can have any dimension d, with
1<d<2n+1, and its metric dimension is d + 1.

Proof. Observe that, V C H" is a homogeneous subgroup of H", if and
only if, V = exp v, where v is a homogeneous subalgebra of . Then, there
exist linearly independent vy,...,vx € b, with 1 < k < 2n 4 1, such that

v := span (vy,...,v;) and it must be [v;,v;] € v, for each 7,5 =1,..., k. It
follows that, if V is horizontal, that is, if v; € b1, for each i = 1,...,k, then
necessarily we have [v;, v;] = 0 for each i, j =1,...,k and it must be k < n.

Otherwise, suppose there exists v € by, such that v + T € v. Then both
M+ AT € v and \v + \°T € v, yielding that T' € v. Finally, observe that,
if V is a horizontal subgroup with dimv = k, then it is isomorphic and also
isometric to R¥, for, in this case, if 2,y € V, the points z - dy(z™' - y) € V
for each 0 < A < 1, form an horizontal segment connecting them. On the
contrary, if W is a vertical subgroup with dimtw = k, then, in general, W is
not isomorphic to R¥ and is never isometric to R¥, having metric dimension
equal to k + 1 (see [29], Theorem 2). O

2.0.3. Calculus. The following notion of differentiability, for functions acting
between graded groups, was introduced by Pansu in [32].

Definition 2.2. Let G; and G be graded groups endowed with homoge-
neous norms ||-||; and ||-||,. A function L : Gy — Gy is said to be H-linear or
horizontal linear (the name was introduced in [26]), if L is a homogeneous
homomorphism, that is if L is a group homomorphism and if, for all g € G4
and for all A > 0,

L(639) = 63L(9).

Here 53 is the group dilation in G;. The set of all H-linear function between
G1 and Gs can be endowed with the norm

1] = sup{[[L(g)ll2 - llgllx < 1}.

Definition 2.3. Let Gy and Gs be graded groups endowed with homo-
geneous norms ||-||; and ||-||,. Then f : A C Gi — Gy is said to be P-
differentiable or Pansu differentiable in gy € A if there is a H-linear function
dfg, : G1 — Gg such that

o M (Woo(05™-9) ™" F90) ™ F(9)]l2

9—90 lgo " - gllx

The H-linear function dfg, is called the P-differential of f. Analogously,
f: A — Gs is said to be continuosly P-differentiable in A and we write

f € Cll'{ (Aa GQ)

if it is P-differentiable in every g € A and if the P-differential df, depends
continuously on z.

=0.
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We have a characterization of real valued, P-differentiable functions due
to Pansu (see [32]) and an explicit representation of P-differentials in terms
of horizontal derivatives.

Proposition 2.4. Let U be open in H" and f : U — R be continuous. Then
I €CpU) =CyU.R)
if and only if, for i = 1,...,n, the distributional derivatives X;f, Y;f are
continuous 1 U. Moreover
g = (gla"' agk) € C}I(LLRIC)

if and only if ¢/ € CHU), for j=1,-- k.

Remember that C*(U) C C}(U) and that the inclusion is strict (see [14],
Remark 5.9).

Proposition 2.5. Let U be open in H" and f € CL(U). We define the
horizontal gradient Vg f : U — R?™ as the continuous function
Vuf = Xuf, -, Yuf)

or, equivalently, as the continuous function Vygf : U — HH"

n

Vuf =Y (Xif)Xi+ (Yif)Vi.
i=1
Then for all p,pg € U C H",
F(p) = f(po) + (Y f(po), m(py ™" - )z + o(d(p, po))
= f(po) + dfyo(py" - p) + 0(d(p, po)), as d(p,po) — 0.
Proposition 2.6. If f € CL(U,R¥), then f is P-differentiable in U and

dfpo (P) = (Ju f)po (7(P)),

where Jir f is the horizontal Jacobian of f. That is Ji f is the k X 2n matriz
valued function whose rows are the horizontal gradients of the components

frof f.
The following characterizations of H-linear functions are proved in [26]
(see also [17] and [14]).

(10)

0 I

Proposition 2.7. Let 1 < k < n, and let J = [—I 0

] be the 2n x 2n

symplectic matrix. Then
(i) L : RF — H" is H-linear if and only if there is a 2n x k matriz A
with ATJA =0 such that, for all x € RF,
L(z) = (Az,0).
(ii) L :H" — R is H-linear, if and only if there is a k x 2n matriz A,
such that for all p € H"
L(p) = An(p)".

The following theorems, a Taylor’s inequality, an implicit function theo-
rem and a Whitney’s extension theorem, are proved respectively in [13], in
[17] and in [14] (see also [19]).
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Theorem 2.8. Let U be open in H"™. Then there are ¢ = ¢(H") > 1 and
C = C(H", k) > 0 such that, if B(po,cr) CU,

1f(@) = () —dfy(p" - @)||ge <C sup |ldf — dfyl - d(p, q),
z€B(po,cr)

for f € C’}I(U,Rk) and for all p, g € B(po,T).

Theorem 2.9. (Implicit function Theorem) Let 1 < k < n and S be a k-
codimensional H-reqular surface. That is we assume that, for each pyg € S,
there is an open neighborhood U of py and f : U — RF with continuous and
surjiective Pansu differential df : H* — R* such that

S={peld cH": f(p)=0}.

Then, possibly choosing a smaller U 3 pg, there are homogeneous subgroups
W and V of H", with V k-dimensional, horizontal and W normal, such that

WnNnV={e}
b =Dpw - pv,

(11)

for all p € H"™, with pwy € W and py € V, there is
(12) (dfp)v : V — R* one to one for all p € U;

moreover, there are a relative open set A C W and a continuous ¢ : A —V
such that

SNU={w-p(w), w e A}.
Finally, there is a constant L > 0 such that for all w,w € A we have
(13) (@)t - p(w)|| < L[e(@)™" - (@ - w) - (@)

Theorem 2.10. Let F C H" be closed. Given f : F — R* continuous and
Q : F — RE2 continuous and matriz valued, we define

flq) = f(p) = Qpr(p~' - q)
d(p,q) ’

for allp,q € F. Given K C F, compact and § > 0, we define

R(p,q) =

pic(6) :=sup{||R(p, ¢)|Igr : ,q € K,0 < d(p,q) < 6}
Then, if for all compact K C F,
pic(6) — 0 as § — 0,

there exists a function f € Q}I(H",Rk) such that, denoted by Jy f the hori-
zontal Jacobian matriz of f,

fo)=1fw®),  Juflp)=Qp
forallp e F.



3. INTRINSIC GRAPHS
3.1. Complementary subgroups and graphs.

Definition 3.1. We say that two homogeneous subgroups G; and Gy of a
Carnot group G are complementary subgroups in G, and we write

G:Gl'(GQ?

if G1 NGy = {e} and if, for all g € G, there are gg, € G1 and gg, € G2 such

that g = gg, - 9G,-
If Gy, Go are complementary subgroups in G and one of them is a normal
subgroup we say that G is a semidirect product of G; and Gs.

Example 3.2. Let G = H" and

V:{(p1707"'70))}7 W:{(Oap27"'7p2n+l)}-
Then H” = W - V and the product is semidirect.

Example 3.3. E = (R*,.) with the group law defined as

r1+ U
i; z; T2 + Y2
(14) N o x3 + y3 + (v1y2 + T2Y1)/2
s ” x4+ ya + [(z1y3 — 2301) + (22y3 — 23Y2)]/2

+(x1 —y1 + x2 — y2)(T1Yy2 — 22y1) /12
and the family of dilation

(15) x(p1, D2, P3, pa) = (AD1, A2, A’p3, APpy).
The subgroups

G1 ={(21,0,0,0) : z1 € R}
(16) Go = {(0, 29, x3,24) : T2, 3, T4 € R},

are complementary subgroups in E, GG is a normal subgroup, hence E is the
semidirect product of G; and Gs.
Another couple of complementary subgroups is given by

El = {(1‘1,—1‘1,1‘3,0) 1 T1,T3 € R}
Ey = {(1‘1,0,0,%4) 1 T1,%4 € R}

Neither of them is a normal subgroup, indeed a direct computation shows

ptap= (21, -1, 23 + 21(p1 + p2), —(p1 + p2) (223 + 21(p1 + p2)/2))

1

(17)

for x € E; and p € E; hence p~* - x - p ¢ E;; analogously

p 'z p=(21,0,21p2, 24 — T1(p1p2 + D3 — 2p3)/2))

for # € Ep and p € E; hence p~' -2 - p ¢ Eo. Hence E = Eq - Eg, but the
product is not semidirect.

Proposition 3.4. If G = Gy - Gy as in Definition each g € G has
unique components gg, € Gi1, gg, € Ga, such that

9 = 9Gy " 9G,-
The maps

g9 — 9, and g — gg,
9



are continuous and there is a constant ¢ = ¢(G1,Gz) > 0 such that

(18) ¢ gl + llge. ) < llgll < llge: Il + llge. |l -

Proof. Assume there are gg,, g5, > 96, 9, Such that g = gg, 96, = 95, 95,
Then (g95,)"" - 96, = g, - (92)7' = e. Hence gi, = gg, and gg, = g,

The continuity of the maps ¢ — g, and g — gg, follows by a direct
consideration of the form of the product in G (see (3)). Indeed, the m; com-
ponents in the first layer of gg, and gg, are the components of the euclidean
projections of the first m; components of g, hence depend continuosly on g.
This given, the values of the polynomials Q. +1(9G,,9G,), -+ s @ms (9G4 9G,)
are determined and are continuosly dependent on g. Now, the components of
the second layer are given by the projections of (¢, +1—Qm1+1(9G159Gs )y * s Gma—
Qm2 (gGl ) gGQ))7 and so on.

By homogeneity, it is enough to prove the left hand side of when
llg|l = 1, hence it follows by a compactness argument. The right hand side
of is just triangular inequality. O

Remark 3.5. Notice that if G; and G2 are complementary subgroups in G,
we can write equivalently G = G1 - G2 or G = G2 - G;. But the components
gc, and gg,, of a given element g, depend on the order in which we are
considering the two subgroups G; and Go.

Definition 3.6. If G; and G4 are complementary subgroups of G we denote
€ - Ga, & € Gy, a left coset of Ga. We say that S C G is a (left) graph over
G1 along Go (or from Gy to Go) if

SN (£-Gg) contains at most one point,
for all £ € Gy. Equivalently, S is a graph if there is a function
©: £ C Gl — GQ

such that
S={¢- () : £}
and we say that S is the graph of ¢, S = graph(yp).

A strong motivation supporting this definition of intrinsic graphs was
provided by the implicit function Theorem [2.9] Indeed, in that theorem, it
was proved that k-codimensional non critical level sets of C}I functions are,
locally, intrinsic graphs.

Notice that, from Proposition [3.4] given the complementary subgroups
G1 and Gg, if S is a graph from G; to Gg, then the function ¢ : Gy — Go
is uniquely determined.

Remark 3.7. A more general definition of graph inside G can be considered.
Assume that H is a homogeneous subgroup of G. Even if there exist no
complementary subgroup of H in G, we can say that a set S C G is a graph
along H if S intersect each coset of H in at most one point. Such a notion has
been used many times in the literature, particularly inside H". Many authors
indeed considered sets as S = {(z1, "+ ,Yn, @(x1, - ,yn))} C H", with ¢
real valued, that are graphs along T. We recall that T has no complementary

subgroup in H" (see Proposition [3.21)).
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A trivial but key feature of (left) graphs is their keeping being graphs
after dilations and (left) translations. Precisely, if S = graph (¢) with ¢ :
G1 — Go then both 0,5 and ¢ - S are graphs from G to Go; if G is also the
semidirect product of G; and Go then the algebraic form of the translated
function can be explicitly given (see also [27]).

Proposition 3.8. Let Gy and Go be complementary subgroups in G, ¢ :
ECGI - Goand S ={& (&) : € €&} =graph(p). Then, for all X > 0,
the dilated set 6,5 is a graph, precisely

IS = graph(ey),
with oy :=0dx0@ody/y:0AE C Gy — Ga.
Proof. Just observe that 5,5 = dx(£ - p(£)) = 0x& - Ia(p(§)). O

Proposition 3.9. Let Gy and Go be complementary subgroups in G, ¢ :
€ C Gy — Gy and S = graph (y), then, for any q € G, there is pq : €, C
G1 — Go, such that

graph (pg) :=q- S ={n-@q(n) : n €&}
where @4 1s as in . The statement can be made more explicit if we
assume that G is the semidirect product of G1 and Go. In this case we have,

(i):  If Gy is normal in G then
E=q & (q5,) ' CGy,
and, fory € &,
0q(y) = qc, - 0ag, - G, * U 4es)-
(ii):  If Go is normal in G then
Eq = qG, £ C Gy
and, fory € &g,
o) =y " qe, - qc, g, Y- elag) - y)-

Proof. Observe that the map 7, : G; — Gy defined as 74(z) = (¢ - )¢, is
injective. Indeed, from

Q'$:(Q'$)G1'(Q'$)G2, Q'l'/:(Q'l',)Gl'(Q'x/)GQ, (Q'.T)(G,l :(Q'LU/)(Gl
we get q-x~(q-aj)(§21 = q-x’-(q'az’)é;. Hence m(qx)é; = m’-(q-x’)é; and
finally = 2’ because of the uniqueness of the components (see Proposition

. Hence,
q¢-S={q-z-p): z€&}
={(¢-2)6, (¢ )g, - p(2) : v €E}
={y-vq(y) s ye &},
where, & = {(q-z)g, : € £} and
(19) 0q(y) = (¢-7(y) Ve, - plra(y) ™)
for y = (¢ - z)g, € &. This concludes the proof of the first part.

Case (i): Assume G; is a normal subgroup. Because

-1
4T =4gG, " 4Gy " ¥ = 4G, " 4Gy " T * qg, " 4G
11



then (¢-z)g, = ¢ - qG It follows that
Eq:{q-x-qé; cx € &Y,
and that 7,(y) ™' = ¢!y qg, for y € &, Hence

q) = (g6, ¢ Y- 06,)es (@Y gc,)
= (45, Y- 46,)e, - 9(q4 ' Y- 4c,)
=g, (@ Y- g6,),

for y € &,.
Case (ii): Assume G2 is a normal subgroup.

Then (¢-z)g, = (¢6, - -7 ' - qg, - *)g, = qG, - . It follows that

E={ew, x: r€€t=qg, - €
and that 7,(y) 1 = qél -y for y € &. Hence, for y € &,

eq(y) = (q- qu Y)c, - vlag, - v)
-1 -1
=Yy -4qe 46 4G, Y Pdg, " V)
=y 1-q “qe, - g5, -y - elag) - y)-
O

3.2. Intrinsic Lipschitz graphs. The notion of intrinsic Lipschitz conti-
nuity, for function acting between complementary subgroups G; and Gg of
G, was originally suggested by (see the definitions given in [I9] and in
[20]). We propose here an equivalent, more geometric, definition. We say
that f : G; — G, is intrinsic Lipschitz continuous if, at each p € graph (f),
there is an (intrinsic) closed cone with vertex p, axis Gy and fixed opening,
intersecting graph (f) only in p. The equivalence of this definition and other
ones, more algebraic, is the content of Propositions [3.14] and [3.23]

Notice also that G1 and G are metric spaces, being subsets of G, hence it
makes sense to speak also of metric Lipschitz continuous functions (Gq — Gao.
As usual, we say that f : G; — Gg is metric Lipschitz if there is a constant
L > 0 such that

(20) 1£(@) " ()| = d(f(9). f(d) < Ld(g,¢') =L|lg™" - ¢|,

for all g, g’ € G1. The notions of intrinsic Lipschitz continuity and of metric
Lipschitz continuity are different ones (see Example and we stress here,
and will try to convince the reader, that intrinsic Lipschitz continuity seems
a more useful notion in the context of functions acting between subgroups
of a given Carnot group.

Let us come to the basic definitions. By intrinsic (closed) cone we mean

Definition 3.10. Let G = Gy - Ga. The closed cone Cg, g, (¢, &) with base
G1, azis Ga, vertex q € G, opening o > 0 is

(6,62 (¢,a) ==gq- Ofc e (e, )
where

C61.,6:(¢,0) == {p € G : [pe, || < allpe, |} -
12



Clearly,
CG,,6:(€,0) = Go,
C61,6,(¢: @) C Cg,y,6,(q,8), f 0 <a<p.
Moreover Uy>0Cg, G, (6, @) = (G \ G1) U {e}
Intrinsic cones are invariant under group dilations. Indeed,
Proposition 3.11. For all a,t > 0,
6:(Ca, e, (e, @) = Cg, g, (e, @)
Proof. By the uniqueness of the components pg, and pg, of p € G, we have

(0:p)g, = 0t(pe,) and (0:p)g, = dt(pg,). Then the assertion follows since
16:(pe2) |l = tllpe. |l and [|6:(pe, )|l = tllpe, |- 0
Definition 3.12. Let G; and G2 be complementary subgroups in G. We
say that f: A C Gy — Go is intrinsic Lipschitz continuous in A, if there is
M > 0 such that

(21) Ct,.6.(q, 1/M) N graph (f) = {q},

for all ¢ € graph (f). If f is intrinsic Lipschitz continuous in A, the Lips-
chitz constant of f in A is the infimum of the numbers M such that
holds. An intrinsic Lipschitz continuous function, with Lipschitz constant
not exceeding L > 0, will be called L Lipschitz function.

Remark 3.13. Notice that being intrinsic L Lipschitz is invariant under left
translations of the graph. That is

f :G1 — Gg is L Lipschitz, if and only if f, : G — G2 is L Lipschitz,
for all q € G.

We give now algebraic characterizations of intrinsic Lipschitz continuous
functions.

Proposition 3.14. Let Gy and Go be complementary subgroups in G. Then
f:E C Gy — Gy is intrinsic Lipschitz continuous in &, if and only if there
is L > 0 such that,
(22) [ f2(@)|| < Ll
for all q € graph (f) and for all x € Ay -1.
Proof. The equivalence of and follows from Definition and
from (ii) of Proposition observing that, if ¢ € graph (f), then

CG1,G2 (Qa 1/L) N graph (f) = {q}

is equivalent with

Cg,,G,(e,1/L) Ngraph (f,-1) = {e}.
O

Remark 3.15. If f: £ : G; — Gy is intrinsic Lipschitz continuous, then it is
continuous. Indeed, if f(e) = e then, by , f is continuous in e. To prove
the continuity in a generic z € £, simply observe that f,-1 is continuous in
e, where ¢ = z - f(x).

13



3.3. Intrinsic differentiable graphs. We come now to the definition of
differentiability - intrinsic differentiability - for functions acting between
complementary subgroups of G. As usual differentiability amounts to the
existence of approximating linear functions. Hence we begin defining intrin-
sic linear functions - acting between complementary subgroups - as func-
tions whose graphs are homogeneous subgroups. After we will give simple
algebraic characterizations of this notion.

Definition 3.16. Let G; and G2 be complementary subgroups in G. We
say that L : G; — Gy is an intrinsic linear function if graph (L) := {g-L(g) :
g € G1} is an homogeneous subgroup of G.

Notice that graph (L) is a closed set and that intrinsic linear functions
are continuous functions from Gy to Gs.

Given the notion of intrinsic linear function, we say - as usual - that a
function f : G1 — Gaq, such that f(e) = e, is intrinsic differentiable in e if
there is an intrinsic linear map L : G; — Go such that

(23) IL(9)™" - F(9)]| = olllgl));

for g € Gy, as ||g]| — 0, where, with a standard notation, o(t)/t — 0 as
t—0t.

Up to this point the definition of intrinsic differentiability is the same as
the definition of P-differentiability. The differences appear (see Definition
, when we extend the previous notion to any point g of Gy using in
a translation invariant way. That is, given g € G; we consider p = g - f(g)
and the translated function f;-1 that, by definition, satisfies fz-1(e) = e.
Now we say that f is intrinsic differentiable in g if and only if f;-1 satisfies
(23) (see Definition . We give also a uniform version of Definition
in Definition [3.20] and algebraic characterizations of both, when G = H", in

Propositions and

Definition 3.17. Let G; and Go be complementary subgroups in G and
f:+AC Gy — Go with A relatively open in G;. For p:= g- f(g) € graph (f)
we consider the translated function f;-1 defined in the neighborhood Az
of e in Gy, (see Proposition . We say that f is intrinsic differentiable
in g € A if there is an intrinsic linear map df; : G; — G2 such that

(24) [dfg(9)~" - fo-1(9)]| = o(llglD),
for g € Az-1 and [|g|| — 0. The map dfj is called the intrinsic differential
of f.
Remark 3.18. It is natural to ask about the relations between the notions
of P-differentiability and of intrinsic differentiability.

The two notions in general are different. Indeed, if we assume, with
the notations of Example that G; = W and Gy, = V = R, then the

characterization of intrinsic differentiability in H" given in (ii) of Proposition
[3:28 states that f: W — V is intrinsic differentiable in w € W if

dfus (w™ - w)™E fw) - f)]| = o[ f(w) ™ w™ - w - fw)]]),
for all w’ € W; while f is P-differentiable in w € W if it satisfies the different
equation

[ dfu(w™" w7t f(w) ™t f(w)]] = o [Jw™ - w]]),

14



for all w’ € W.
We notice that if G := Gy x Go, it is easy to convince oneself that

f: Gy — Go is P-differentiable

if and only if

f: Gy — Gy is intrinsic differentiable.
This way intrinsic differentiability can be seen as a generalization of the
notion of P-differentiability.

Remark 3.19. Notice that the notion of intrinsic differentiability, as the
one of intrinsic Lipschitz continuity, are - as they should be - invariant by
translations. Indeed, let g1 = g1 - f(g1) and ¢2 = g2 - f(g2) € graph (f);
then f is intrinsic differentiable in g1 € Gy if and only if fq71 is intrinsic
differentiable in e. Consequently, f is intrinsic differentiable in g; if and
only if g = ( fql_1)q2 is intrinsic differentiable in go.

Finally we give the following notion of uniform intrinsic differentiability.

Definition 3.20. Let G; and G2 be complementary subgroups in G and
f: AC Gy — Gg. We say that f is uniformly intrinsic differentiable in A
if
(i):  f is intrinsic differentiable at each g € A;
(ii):  dfy : Gi — G2 depends continuously on g, that is, for each compact
K C A, there is n = i : RT — R, with n(t) — 0 as ¢t | 0 such that

(25) sup |dfa(9)™" - dfgu (D] < n([lor" - 92| )3

(iii):  for each compact K C A, thereise =4 : RT — R, withe(t) — 0
as t | 0, and such that

(26) [dfg(9)~" - fr-1(9)]| < eCllglD gl
for all g € Kz-1 and for all g € K.

3.4. Graphs in Heisenberg groups. When the Carnot group G is one of
the Heisenberg groups H", all the notions of the preceding sections can be
made more explicit. One of the key points is that if H* = Gy - G2 then the
product is semidirect. More precisely, one of the two complementary sub-
groups is a normal subgroup, containing the centre T of H", while the other
one is a commutative subgroup contained in HH7?. This is the content of
the following Proposition, that is an immediate consequence of Proposition

21

Proposition 3.21. In all the possible couples of complementary subgroups
of H™ there are

(i) a horizontal subgroup, from now on called V, of dimension k < n,
isomorphic and isometric to R¥,

(ii) a normal subgroup, from now on called W, of dimension 2n+1—k,
containing the subgroup T.

Proof. Tt follows readily from Proposition[2.1] Indeed if H" = Gq-Ga, clearly
G1, G2 cannot be both vertical subgroups or horizontal subgroups.
O
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Remark 3.22. Keeping the same notations of the previous Proposition, no-
tice that, if f : V — W then the intrinsic graph of f is also an Euclidean
graph over V identified with a k-dimensional vector subspace of R?**1. On
the contrary, if f : W — V| then in general graph (f) is not an Euclidean
graph. See Example 3.8 in ([17]).

The characterization of intrinsic Lipschitz continuous functions, when
given in H", can be made more explicit using the characterizations of trans-
lated functions given in Proposition [3.91 The result is different depending
if f is defined on a horizontal subgroup V or on a vertical normal subgroup
W.

Proposition 3.23. Assume H" =W -V as in Proposition|3.21. Then
(i) f:ACV —W is intrinsic Lipschitz continuous, if and only if the
parametrization map @y : A — H", defined as ®¢(v) :=v - f(v), is
metric Lipschitz continuous in A, that is if and only if there is L > 0
such that

(27) 127" @s@)] < Lo~ v,

for allv,v € A.
(i) f:ACW — V is intrinsic Lipschitz continuous in A, if and only
if there is L > 0 such that

(28) [f(w)~" - f@)]| <L) f(w)™ - w™ -’ fw)],
for all w,w' € A.

Proof. To prove (i) recall (ii) of Proposition If g==- f(z) € graph (f)
then, for all n € A -1,

frm)y=n""fl@)" n- fl@on).

Hence, from (27)), setting n = 1

£l = [lo™" 2 f2)™ 2™t v fo)|
< Hv_l :BH + Hf(a:)_1 b f(v)H
= [lo™" -zl + [|@5(2) 7" @p(v)]| < (1 + L) |ln]l.
On the other side,
Or(0)” - @p(0) = fl0) 70Tt B - f(D)
=f)y o tzov flxov)
—z-z - f0) - fz-v),

where z = v~! - 9. Now from we get .
To prove (ii) observe that, from and (i) of Proposition for any
7 € A, and for any y in the domain of f -1,

[ @ = f@ - f (@ f@) -y f@)] <Lyl
Changing variables, setting z = z- f(z)-y- f(z)7!, thatisy = f(z)~!- 271
x - f(Z), it follows that, Vz, T € A,

[f@~ f@)| <Ll f@~ - @ a) - f(@)]-

This completes the proof of (ii). O
16

- v, we have



The following examples show both that condition (20)) is not invariant
under left translation of the graph and that neither intrinsic Lipschitz con-
tinuity implies metric Lipschitz continuity nor the opposite.

Example 3.24. Let H' = W - V where
V={v=(v1,0,0)}, W= {w=(0,we,ws)}.
Then,
lw]| = max{|wa], [ws[?}, [Jv]| = [val,
forall we Wand v € V.
(1) Let ¢ : W — V, defined as

o(w) := (1 + \w3|1/2,070) .

It is easy to check that ¢ satisfies with L = 1, hence ¢ is metric
Lipschitz. On the contrary ¢ is not intrinsic Lipschitz. Indeed, let
p := (1,0,0) € graph(yp), from Proposition we have ¢,-1(w) =
(\wz + w3|1/2,0,0). For ¢,,-1, does not hold. This shows also
that condition is not invariant under graph translations.

(2) Let ¢ : W — V defined as

W(w) = (1 + |ws — w2|1/2,0,0> :

¢ is intrinsic Lipschitz, indeed, with p = (1,0,0) and ¢(w) :=

(Jws]*/2,0,0) we have 1(w) = ¢, (w), so that ¢ is intrinsic Lipschitz

because ¢ is intrinsic Lipschitz. On the contrary ¢ is not metric

Lipschitz, in the sense of , as can be easily observed.
Analogously, it can be checked that

(1) the constant function ¢ : V— W defined as
p(v) = (0,1,0),

for all v € V, is metric Lipschitz continuous, but it is not intrinsic
Lipschitz;
(2) ¥ :V— W defined as

Y(v) :==(0,1,—v1)

for all v € V, is intrinsic Lipschitz continuous but it is not metric
Lipschitz continuous.

The following technical result is related with Proposition 3.1 of [I]. It
states that, for each single intrinsic Lipschitz function f : W — V, it is
possible to define a distance dy on the domain W - the d; distance of two
points of W being the distance in H" of the corresponding points on graph ( f)
- such that f is metric Lipschitz from (W, d;) — V.

Proposition 3.25. Let H" = W -V as in Proposition|3.21. Let f : W — V,
Op: W — H" defined as ®¢(w) :=w- f(w). Define,
7w, w') = || f(w) ™ w W fw)])

or allw,w’ € W.
[
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If f is intrinsic L Lipschitz continuous, then
(29)  erplww) < [@p(w) - 0p(w)] < (1+ Lyrpww),
where ¢ = ¢(W, V) € (0,1) is the constant in (18). Finally, defining
or(w,w') = (1w, w’) + 74(w', w)) /2,
for all w,w’ € W, o is a quasi metric in W.
Proof. From (ii) of Proposition it follows
[ @5(w) - @y w') | = Hf w ! f(w) - flw) - f)]

< 7p(w,w’) + || f(w) H (14 L)7s(w,w).

Moreover, notice that
)™ w ! f(w) = (@) )y,

Hence, by ,

erp(w,u’) = e [[(@p(w) ™ s (w))g[| < || @5 (w) ™" @]
0

The following Proposition gives Heisenberg characterizations of intrinsic
linear functions. Once more, the characterizations are different depending if
the intrinsic linear map L is defined on a horizontal k-dimensional subgroup
V (1 <k <n)oronanormal (2n+ 1 — k)-dimensional subgroup W.

Proposition 3.26. Let H® =W -V as in Proposition |3.21. Then

(i) L : V — W is intrinsic linear if and only if the parametric map
&V — H", defined as @1 (v) := v - L(v), is H-linear.
(ii) L : W — V is intrinsic linear if and only if it is H-linear.
Proof. Part (i): Assume that ®, is H-linear, then,
v- L) v L) =®L(v) - &) =®p(v-v)=v-0v" - L(v-v),
and
ox(v- L(v)) = 0A(PL(9)) = PL(rg) = drg - L(drg),
for all v,v" € V and A € R. These two together, imply that graph (L) is a
homogeneous subgroup.
Inversely, if graph (L) is a homogeneous subgroup, by homogeneity, for each

v € Vand A > 0 there is v € V such that (v - L(v)) = v - L(v). Hence
drv - 0x(L(v)) = v - L(v). By uniqueness of the components on V and W

(Proposition it follows
0 v = v, so that L(d0\v) = L(v) = 0x(L(v)),
this proves, in particular, that L is homogeneous and also that
(I)L((s)\’l)) = (5)\’[) : L(é,\v) = 5)\11 . 5)\(L(U)) = (5)\((1)L(’U)),
that is @7, is homogeneous.
Moreover, for v,v" € V there is v € V such that
v-L(v)-v - L") =7v-L(v)
hence
v-v -0V L) v - L(v') = - L(v).
18



Use once more the uniqueness of the components and the assumption that
W is a normal subgroup to get v - v’ = v and, consequently,

(30) vt L(v) v - L(v') = L(%) = L(v - v");
From the additivity of @, follows, indeed
Or(v-v)=v-v - Lv-v)
=v-v L L(v) W L) = ®p(v) - ®L(V),

for all v,v' € V.

Part (ii): Assume that L : W — V is H-linear. Then, as before, for all
w € W and A > 0, we have 0)(w - L(w)) = d\w - 0x(L(w)) = dyw - L(Shw),
showing that graph (L) is homogeneous.

Now observe that, because L is H-linear, W is normal and V = R* is
commutative, we have
(31) L(g™" - w-g) = L(w),

for all g € H" and w € W. Indeed, as proved in [26], in our assumptions
L(w) does not depend on the (2n+ 1) component of w. On the other side,
the first 2n components of g~! - w - ¢ and of w coincide.

From , for all w,w’ € W we have

w- L(w)-w - L(w') =w- L(w)-w - (L(w))™" - L(w) - L(w')
=weW ev

w - L(w) - L(L(w) - w' - L(w)_l)

w - L(w).

This proves that graph (L) is a homogeneous group.

Conversely, assume that graph (L) is a homogeneous group.
Working as above, we have dy(w - L(w)) = dyw - 0x(L(w)) = w - L(w) and
by the uniqueness of the components we get that w = dy\w and 0, (L(w)
L(5yw) showing that L is homogeneous.

Then, because graph (L) is a group, for all w,w’ € W, there is w € W
such that w - L(w) - w’ - L(w") = @ - L(w). As before, this implies that

w=w-L(w)-w - Lw)™" and L(w) = L(w) - L(w'),
1

now letting w := L(w) - w’ - L(w)™ we get that,
(32) L(w-w) = L(w) - L(L(w) ™" - @ - L(w)),
for all w,w € W.
Now observe that for all wr € WNT we have wr - wp = § ﬁ(wT). Moreover,
because wr is in the centre of H”, gives that L(wr-wt) = L(wr) - L(wr)
and, in turn L(wr) - L(wr) = 02(L(wr)) because L(wr) belongs to the
horizontal subgroup V. Hence, by the homogeneity of L we get that

6 5(L(wr)) = L(wr - wr) = L(wr) - L(wr) = d2(L(wr))

that eventually gives

(33) L(wr) = e.
19



Recall that any w € W can be written in a unique way as w = 7(g) - wr,
with wr € T and m(w) € WN HH?. Hence, from and (33),
(34) L(w) = L(w(w) - wr) = L(w(w)) - L(wr) = L(m(w))
for all w € W. So that, because 7(¢g~! - w - g) = m(w), for all w € W and
g € H"”, from and (34)), we get
L(w - w) = L(w) - L(7((L(w) ™" - @ - L(w)))
= L(w) - L(n(w)) = L(w) - L(w),

for all w,w € W. This proves the additivity of L and concludes the Propo-
sition. O

The following examples show that each different characterization, given in
Proposition [3.26] cannot be extended to be a characterization of all intrinsic
linear functions.

Example 3.27. Let H' = W -V, with V= {v = (v1,0,0)} and W = {w =
(0, w2, w3)}.
(1) For any fixed a € R, the function L : V — W defined as

L(v) = (0, avy, —av?/2)

is intrinsic linear because graph (L) = {(t,at,0) : t € R} is a hori-
zontal 1-dimensional subgroup of H!. But L is not a group homo-
morphism from V to W.

(2) For any fixed a € R, the function L : W — V defined as

L(w) = (aws,0,0)

is intrinsic linear because graph (L) = {(at,t,s) : t,s € R} is a
vertical 2-dimensional subgroup of H'. The parametric function &, :
W — H! acts as @1 (w) = (awsa, w2, w3 — aw3/2) and, consequently,
®; is not a group homomorphism from V to H".

The following Propositions give algebraic characterizations of intrinsic
differentiable functions. Notice that, once more, the characterizations are
different if the subgroup, where f is defined, is a horizontal k-dimensional
subgroup V (1 < k <n) or a normal (2n + 1 — k)-dimensional subgroup W.
Proposition 3.28. Let H" =W -V as in Proposition |3.21. Then,

(i) f: ACV — W is intrinsic differentiable in g € A if and only
if the parameterization map ®y : A — H", ®¢(g) := g - f(g), is
P-differentiable in g and, for all g €V,

(35) d®y4(9) = g - dfg(g).

(ii)) f: A C W — V is intrinsic differentiable in g € A if and only if
there is an intrinsic linear map dfz : W — V, such that

ldfs(g™" -9~ - F@ ™ Fll=o(lf@" a7 g F@])

forg€ Aand |f(g)~ g7 g f(9)] — 0.
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Proof. Case (i): If f is intrinsic differentiable in g with intrinsic differential
dfg, by Proposition the map g — ¢-dfg(g) is a homogeneous homomor-
phism V — H". We define

d®sg:V —H" as d®s4(g) := g - df3(g)-
Observe that, from Proposition if p=g- f(g) then
dfg(m) ™" fymr(n) = dfg(m) ™" -0~ f(@ 7 - fg o)
and, defining g := g - 7,
dfg(g™" - 9)™" fpa (g™ - 9)

(36) =dfy(g -9 (G 9T @ g g fl9)
=dPrg(g~" - 9)7 - @p(g) 7 s(9)-

Hence yields

(37) [d®g(g~" - 9) " - p(g) - p(9)]| =0 (g - 9l)

as Hg*l gH — 0, that is ®; is P-differentiable in g.

Conversely, if @ is P-differentiable in g then, by definition, its P-differential
d® ;5 is a homogeneous homomorphism V — H". We prove that

(38) d®sg(9) =9 Lyg(9),
with Lyg:V — W.

Indeed, by definition of P-differentiability and from we have that
both the W component and the V component of the left hand side of
have to be o (Hg*l . gH) Looking at the V component we get

(39) 1@®s3(a~" - 9))5" 57" gl = o(llg™" - 9.
Notice that, by (i) of Proposmon (d®5)v is a linear map from V = R¥
to itself. Hence from we get that

(d(I)f@)V = Iv.

This proves .

From and from Proposition we have that Ly g is an intrinsic
linear map V — W.

We define Ly ; as the intrinsic differential of f at g, that is

Now, and (| . yield the intrinsic differentiability of f in g.
Case (ii): from (i) of Proposition n 3.9, for all n € W, we have

dfg(m)™" - frr(n) =dfg(m)™" - f(@) - (g (@) -n-fg™")
and defining g such that n = f(g)~'-g7 ' -g- f(9)

—dfy; (f@ g g 1@) " - f@7" flg)
—df; (g -9) " f@) - f(9)

where in the last equality we have used that dfj is an homogeneous homo-

morphism and that V is commutative. Now the equivalence of Definition

and (2) of this Proposition is clear. O
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An analogous characterization holds for uniformly intrinsic differentiabil-
ity.
Proposition 3.29. Let H* =W -V, as in Proposition|3.21. Then

(i) f: A CV — W is uniformly intrinsic differentiable in A if and
only if the parameterization map ®; : A — H", is continuosly P-
differentiable in A.

(ii)) f : A C W — V is uniformly intrinsic differentiable in A if and
only if it is intrinsic differentiable at each g € A with differential df,
continuously dependent on g and if for each compact IC C A,

~ 1
sup deg )" 18 H —0asd — 0.

(40) g.9€K If@~"-g7" g f( )H

o<lg~ "]} <o

Proof. Case (i): the equivalence between uniformly intrinsic differentiability
of f and continuous P-differentiability of ®; follows immediately from
and applying Theorem 4.6 in [27].

Case (ii): because f is continuous in A, then f is bounded in each compact
K C A; hence, Hf(g)—l g t-g- f(g)H is comparable with Hg—l gH in K.
Now the equivalence between and the two conditions (ii) and (iii) of
Definition follows from the same steps used in the proof of Case (ii) of

Proposition [3.28] O

The following Proposition states precisely a natural relation between in-
trinsic differentiability and intrinsic Lipschitz continuity.

Proposition 3.30. Let H" = W -V as in Proposition [3.21, If f : A C
W — V is uniformly intrinsic differentiable in A, then it is locally intrinsic
Lipschitz continuos in A.

Proof. First we observe that an intrinsic linear function L : W — V is
intrinsic Lipschitz continuous. Indeed for all w € W and for all t > 0

IL(w) [l = 10:L(61 pw) || = tl| L8y jew) s
choosing t = |lw|| and defining k = supj¢ =y [[L(§)| it follows [|L(w)| <

k||w|, for all w € W. Finally, for each p = £ - L(§) € graph (L), from
Proposition we see that L,-1 coincides with L, hence

(41) [Lp-1 (W)l = [ L(w)[| < Kllwll,  vVweW,

showing that L is intrinsic Lipschitz continuous.
For a fixed wy € A, let 7 > 0 be such that for all w,n € Wn B(wo, )

ldfuw(w )" - fw) " - F()]
o o W@ T w g f@)

and

sup  ||dfy| = K < +o0.
w€ B(wo,7)

Then, for all w,n € W N B(wy, 7), recalling also ,
[fw)™t - f )] < ||dfu(w™ - m)|| +||dfw(w™ - 0)~" - flw)™" - f(n)

< (K +1)[|f(w) ™ w™n- fw)]|.

from which the thesis. O
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4. H-REGULAR SUBMANIFOLDS ARE INTRINSIC DIFFERENTIABLE GRAPHS

This section contains our main theorem. We prove that S C H" is a
H-regular submanifold, as given in Definition [4.1] if and only if S is, locally,
a uniformly intrinsic differentiable graph.

We begin recalling the definitions of H-regular submanifolds, of dimension
k or of codimension k (see [I7] and also [I4] or [37]).

Definition 4.1. Let k be an integer, 1 < k < n.

(i) A subset S C H" is a k-dimensional H-regular submanifold if for
each p € S there are an open U C H" with p € U, an open A C R¥
and an injective, continuosly Pansu differentiable f : A — U, with
injective Pansu differential, such that

SNU = f(A).

(ii) A subset S C H" is a k-codimensional H-regular submanifold if for
each p € S there are an open Y C H", with p € U, and f : U — RF,
f € CL(U;R¥) with surjective Pansu differential, such that

SNU={zelU: f(x) =0}

Remark 4.2. These notions of H-regular submanifolds are different from the
corresponding Euclidean ones and are also very different from each other.
Indeed k-dimensional H-regular submanifolds of H" are a subclass of k-
dimensional Euclidean C! submanifolds of R?"*! (see [I7] and Theorem
. On the contrary, k-codimensional H-regular submanifolds can be very
irregular objects from an Euclidean point of view. A striking example of
a l-codimensional H-regular surface in H' = R3, with fractional Euclidean
dimension equal to 2.5, is provided in [23]. An easier example is the surface

S={(z.y.1):x=at+yt + 2} CH.

S is a H-regular hypersurface (i.e. 1-codimensional H-regular) but S is
not euclidean regular at the origin. On the other side, the horizontal plane
{t = 0} is Euclidean regular but not intrinsic regular at the origin.

Theorem 4.3. The following statements are equivalent

(1) S C H" is a H-regular submanifold.

(2) Vp € S there is an open U > p such that S NU is the graph of a
uniformly intrinsic differentiable function ¢ acting between comple-
mentary homogeneous subgroups of H™.

More precisely, with 1 < k < n, if S is k-dimensional H-regular then ¢ is
defined on a k-dimensional horizontal subgroup and if S is k-codimensional
H -regular then ¢ is defined on a (2n+ 1 — k)-dimensional normal subgroup.

Proof. We divide the proof in two parts; in the first part we deal with the
case of a k-dimensional S and in the second part S is a k-codimensional
submanifold.

First part:

(1) = (2). By Definition if S is a k dimensional H-regular sub-
manifold then for each p € S there are an open neighborhood U of p and
an open A C R¥ such that SNU = f(A) with f injective and uniformly
P-differentiable in A.
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In Theorem 3.5 of [I7] it is proved that any k-dimensional H-regularS is
also an Euclidean C! k-dimensional submanifold of H” = R***! and that,
at each p € S, there is a k-dimensional horizontal subgroup V such that its
coset p -V is equal to the Euclidean tangent k-plane 7,,S. (Notice that T},S
is also the limit of the Heisenberg dilations of S centered in p).

Let us fix p € S and let V:=p~!-T,5 and W := V+. The orthogonality
is meant here with respect to the scalar product (-,-). that is the same as
the Euclidean scalar product.

Choosing a small enough open neighborhood of the origin V, we have that
(p~1-S)NV is an Euclidean C! graph over the subgroup (or k-dimensional
vector subspace of R?"*1) V in direction of W. Precisely, there are an open
O C V and a function ¢ : O — W, continuously differentiable in O, such
that

(pt- 9NV ={v+¢) :veO}
The map ¢ : O — H" defined as

O (v) :=v+ p(v)

is Euclidean C'; once more by Theorem 3.5 of [I7], the image of the Eu-
clidean differential de,.®, is an horizontal k-dimensional subgroup of H", for
all v € O, hence, by Theorem 1.1 of [27], ® is continuously P-differentiable
in O.

Finally,

(p_l'S)ﬁV:{’U—f-(p(v)ZUEO}Z{U-¢(’U)ZU€O}
where ¥ : O — W is given by

1 n
Y(v) = (sm (), p2n(v), p2nt1(v) = 5 > (vipnyi(v) — UnJriS@i(U))) :
i=1
By Proposition [3.29] the function ¢ is uniformly intrinsic differentiable in O
because, being ®, = ®, the associated parametric map ®, is continuously
P-differentiable.
So that we have proved that (p~!-S) NV = graph (v)). Hence SN (p-V)

is the graph of the uniformly intrinsic differentiable translated function .

(2) = (1). Let H* = W-V, as in Definition[3.1} and let f : ACV — W
be uniformly intrinsic differentiable in A.

By Proposition Ps: A — H" is uniformly P-differentiable in A.

Hence, graph (f) = ®f(A) is a k-dimensional H-regular submanifold.
Second part:
(1) = (2). Let S ¢ H" be a H-regular surface of codimension k. Then,
(see Theorem , for each p € S there are an open neighborhood U of p
and a function f € Ck(U,RF) such that

(42) SNU={zel: f(z)=0}

Moreover there are homogeneous subgroups V and W, such that H" = W .V
as in Definition and, for all z € U,

(43) dfzy 2 V — R¥ is one to one.
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Here df, : H* — R¥ is the P-differential of f in x € U. Finally, there are a
relatively open A C W, with pw € A and a continuos function ¢ : A — V
such that

(44) SNU = graph (p) = {w - p(w) : w € A}.

We have to prove that ¢ is uniformly intrinsic differentiable in .A.
For each w € A, let x = w - ¢(w). Define the H-linear function dy,, :
W — V as

(45) dpw = (dey) o dfapm

By (ii) of Proposition dpy : W — V is an intrinsic linear function. We
prove now that, for any compact K C A,

-1 1

(16) qp  Mdew@ - n) 7 pw) ol

wnek [o(w)=t-w=t-n-p(w)]|
O<Hw*1nH<5

as 6 — 0. This will complete the proof, because, by the characterization
of uniform intrinsic differentiability given in Proposition [3.29 and observing
that dp,, depends continuosly on w, shows both that dy,, is the intrinsic
differential of ¢ at w and that ¢ is uniformly intrinsic differentiable in A.
Notice that, for all n € W and v € V,

((dfxw)_l 0 dfx> (n-v) = (dfzw)_l (@fop(n) - dfugy ()

_ <<dfmw>_l o dfa:W) (n) v

By (47), recalling that L(w - v) = L(v - w) for any H-linear function L with
values in a commutative subgroup of H", we have

[(dpw(w™ 1))~ (w) ™" - @(n)]

_ ((dfw)_l o dfx|w> (™) - p(w) ™ - w(n)H

(47)

_ ((dfw)l o dfx> (w™ - p(w) " sﬂ(n))H

= (1) @0 2

where ®,(w) := w - p(w); then, by Taylor’s inequality, (see Theorem [2.8)),
there exists 0 > 0 such that

-1
< () " o) = 0w - o0 @)
-1
<sup () € s i~ il Bop )

[|w="n[|<s

Now observe that, the function ¢ is intrinsic Lipschitz continuous in the
compact set I, then, by , we have

1@ (w) ™ @ ()] < (14 L)7p(w,n) = (1 + L)|lp(w) ™ w™ 5 p(w)]
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where L is the Lipschitz constant of . So that, the required equation
follows, because the function df is uniformly continuous in the compact set
K = {w' - ¢(w') : w' € K} and observing that, if ||w~"! - 5| < 4, it is also
[ @y (w) - @u(n)|| < e(K,6), where ¢(K,8) — 0T as § — 0.

(2) = (1). Let H" = W -V as in Proposition [3.21]and A be open in W.
We have to prove that if ¢ : 4 — V is uniformly intrinsic differentiable in A,
then S = {w - p(w), w € A} is a k-codimensional H-regular submanifold.
That is, we have to prove that, given p = w - p(w) € S, there are an open
neighborhood U of p and a function f € Cy (U, R*), such that

(48) SnU={zelU: f(x) =0}
and

(49) df : H" — R¥ is surjective
for all z € U.

Let 7 € A, be an open in W neighborhood of @, then
Fi={w-p(w): wel}

is a compact set in H". We want to determine the desired function f by
appropriately extending, using Whitney’s extension theorem (see Theorem
, the function identically zero on F.

Let us verify the assumptions of Whitney’s theorem.

For every x = w - o(w) € F, let h, : H" — RF be the H-linear map

(50) he(p) := (dpw(pw)) ™" - pv,

for all p = pw - py € H".
Notice that for each x = w - p(w) € F, hy is a H-linear function. The
homogeneity of h, is obvious. Moreover, observing that (p - q)v = pv - qv

and (p- q)w = pw - pv - qw -p@l, we have

ha(p - q) = (dewl(p-@)w)) ™ - (- Qv

_ 1
= (dew(pw -pv-aw - py'))  "pv-av

= (dow(pw)) " - (dow(aw)) ™ - pv - qv
= ha(p) - ha(q),

for all p,q € H”. This completes the proof of the H-linearity of h,.

The map, from F to the set of H-linear functions from H" to R¥, defined
as x — h, is continuous. This fact follows from and from the continuity
of dyy,, as a map from A to the set of H-linear functions from W to V; this,
in turn, is contained in the assumption of intrinsic uniform differentiability
of p in A.

Hence, if we associate, as in Proposition [2.7] to each H-linear function hy
a matrix Q, € R®?" then the map Q : F — R"2" sending = € F to Q, is
continuous.

Now define



for x,y € F, x # y. If K is a compact subset of F, then
(51) sup {||R(z,y)|| : z,y € K, 0 < d(z,y) <6} — 0asd — 0.
Indeed, from ([29)), there exists ¢ = ¢(W, V) > 0 such that, for all z = w-p(w)

and y =1 - (n) in K, we have:

-1

clle)™ - w™tn-p(w)|| = erp(w, n) < d(z,y).

Hence,
z L.
(el = 17—
1 [(dpw(w™ -m) " - p(w) - oMl
Se e w )

Now, follows from the assumption of uniform intrinsic differentiability
of ¢ and from .

We can now apply Whitney’s theorem to the couple of functions
g: F =R, Q:F — Rk

where g(z) = 0 for all x € F, to get a function f € C}I(H”,Rk), vanishing
on F and with a surjective differential at all points of F.

To check this last point, observe that, from definition , for all z € F,
hypw 1V — R* is one to one.

To conclude our proof we have to provide an open neighborhood U of p
satisfying and (49).

Fix r > 0 and define U/ as

(52) U={w-veH": weIl, CW,veVnB(e(w),r)}

where Z, C 7 is a neighborhood of w, Z, is open in W and such that,
¢(Zy) VN B(p(w),r).

By definition p € U and, if we choose r small enough, by continuity of df
on H", df, is surjective for all x € U, hence holds.

Moreover, by continuity, for r small, df, : V — R¥ is one to one, for all
x € U. Hence, for each w € Z,., the map

v f(w-v)

is one to one in VN B(p(w),r). It follows that, if z = w-v € U is such that
f(z) =0, then z = w - p(w) € F.
So also holds and the proof is completed. O

5. DIRECTIONAL DERIVATIVES

We give here a few hints about relations among the notions introduced
here and the ones in [1], [37] and [8]. We begin defining directional deriva-
tives of a function f : W — V and we show that, using this notion, it is
possible to get an explicit representation of the intrinsic differential df.
Definition 5.1. Let H® = W -V as in Proposition and f: W — V.

(i) The difference quotient of f, in w along Y € tv, is
Ry f(w;t) =01y (f(w)™" - flw- f(w) - exptY - f(w)™h),
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for allw € W and t € R. We use here the convention §yp = ((5p\|p) _1,
if A <0.

(ii) The intrinsic directional derivative Dy f(w) is
Dy f(w) := lim Ry f (w3 1)
provided that the limit exists finite.

Notice that, if f(w) = e, then difference quotients and derivatives in w
have the following, more familiar, aspect

Ry f(w;t) = 6y f(w - exptY),
and
Dy f(w) =Y f(w).
Intrinsic difference quotients and intrinsic directional derivatives are trans-
lation invariant. That is, if p = w - f(w), then

Ry f(w;t) = Ry fp-1(e;t) = 814 (fp-1(exptY)) .
and
(53) Dy f(w) = Dy f,1(e) = Y f,1(e).

Remark 5.2. Tt is not difficult to prove (see [18]) that f : W — V is intrinsic
Lipschitz continuous with Lipschitz constant L if and only if

[Rv f(w;t)|| < L,
for all V € w, with ||V|| <1 and for all t > 0, w € W.
Indeed, the following stronger result holds, (see [I§]),

Proposition 5.3. Assume that Vq,--- ,Vo,_r is an orthonormal basis of
wNh. If f: W —V is such that

Ry, f(w;t) < L
fori=1,--- 2n—k andt > 0 then f is locally intrinsic Lipschitz continuous
in W.

Uniformly intrinsic differentiable functions f : W — V have continuous
directional derivatives.

Proposition 5.4. Let H* = W -V as in Proposition[3.21. If O is open in
W and f: O — V is intrinsic differentiable in w € O, then its directional
derivatives exist in w and

Dy f(w) = dfu(expY).
Proof. By definition of intrinsic differentiability, if w € O and p = w - f(w),
[ dfu(exptY) ™" - fi (exptY)|| = of||exptY|)) = o(t)
as t — 0. Hence, for ¢ > 0,
fp-1(exptY) = df,(exptY’) - £(2),
where |le(t)]| /t — 0 as t — 0. Since,
Ry f(w;t) = 61/1fp-1(exptY) = 61y (dfuw(exptY’) - (1))

= dfu(expY’) - 61 4(t)
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we get,
|dfu(expY) ™" Ry f(w;t)|| = lle(t)] /t
and the thesis follows. O
We compute explicitly directional derivatives for 1-codimensional and 2-

codimensional graphs. We particularly want to show that directional deriva-
tives can be, in some cases, first order non linear differential operators

Example 5.5. (Codimension 1 graphs in H") Let H" = W - V, with
W ={(0,22, -+, w2p41)} and V = {(21,0,--- ,0)}
and f = (¢,0,---,0) : W — V. Then gives,
Dx; f(x) = (Xj0(2),0,---,0), Dy, f(x) = (Y;(2),0,---,0),
for 2 < j <mn, and
Dy, f(x)

1
= (1 7 (600 i 6+ i+ le)t) — 5(0)) 0re.,0)

= Onr1p(2) + () 02n116(2), 0., 0) .

Setting Dy, ¢ = Ont19¢ + @Oan+1¢ and using the notation introduced in
[1], we have

W¢p = (ngo, ooy Xnp, Dy, @, Yop, . .. ,Yngo).

We recall that the non linear operator W%y has been used in [I] and [5] -
and with a different but equivalent notation in [§] - to give the first charac-
terization of the class of functions ¢ : W — V, (when V is 1-dimensional),
that we call here uniformly intrinsic differentiable. Precisely, they prove that
1-codimensional H-regular surfaces in H" are intrinsic graphs of functions
p: W — V =R such that W%y - appropriately interpreted - is continuous.
We have also to mention that in [§] the authors work in the more general
setting of sub-riemannian manifolds.

This final example, simply indicates how it looks the non linear sys-
tem, analogous to the W¥¢ operator, that we get when we deal with 2-
codimensional surfaces.

Example 5.6. (Codimension 2 submanifolds in H?) Let H? = W - V, with
W = {(0,0, w3, ws,ws)}, V={(v1,v2,0,0,0)}.
Let f: W — V be a sufficiently regular function defined as
f(w) = (fi(w), f2(w),0,0,0).
If f(e) = e, then
Dy, f(e) = (33f1|6,33f2\6,0,--~,0)

Dy, f(e) = <84f1|e,84f2‘e,0,...,0>.
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For the general case, let p = w - f(w) then, from Proposition for all
T = (07073337*7:47375) S W7

fp1(z)

= flw) - f(w- flw) -z flw)™")

= (f1(0,0, w3 + 23, wa + 24, w5 + T5 + f1(w)zs + fo(w)zs) — fi(w),
f2(0,0, w3 + x3,etc.) — fa(w),0,... ,O).

Choosing x = exptY; or x = exptYs and recalling , we get

Dy, f(w) = Dy, f-1(e) = ((0sf1 + f105f1),,,+ (3.fo + f105f2),,,+ 0, .., 0)
Dy, f(w) = Dy, f,-1(e) = ((8af1 + f20511)),, (Oaf2 + f205f2),,,0,. .. ,0).

Setting Dy, fi(w) := 05 fi(w)+ fj(w)0s fi(w), for i, j = 1,2 then, from Propo-
sition we get the following representation of df,,

dfw(:L') = (373Dy1 f1 (w) + :L’4Dy2f1 (w), .TgDyl fg(w) + $4Dy2f2(w), 0,... ,0).

6. EUCLIDEAN AND H-REGULAR SUBMANIFOLDS

We gather here a couple of results showing a few relations between eu-
clidean C' submanifolds and H-regular submanifolds.

Theorem deals with low dimensional H-regular surfaces and we show
that they coincide with the subset of euclidean C' submanifolds of R?"+!
whose (euclidean) tangent planes are cosets of horizontal subgroups of H".
For a general approach to this topic see [38] and [27].

Theorem [6.2) deals with low codimensional H-regular submanifolds. We
show that intrinsic graphs of euclidean C' functions, defined over a vertical
k-codimensional subgroup, are H-regular submanifolds. Hence, by Theorem
these euclidean C! functions are uniformly intrinsic differentiable. This
result should be compared with Theorem 3.8 of [I], although the proof given
here follows a different procedure.

Theorem 6.1. Let 1 < k <n. The following statements are equivalent

(1) S C H" is a H-reqular submanifold of dimension k.

(2) S is a k-dimensional euclidean C* submanifold of H"* = R*"*! and
the euclidean tangent k-planes to S are cosets of k-dimensional hor-
izontal subgroups of H".

Proof. (1) = (2) is proved in Theorem 3.5 of [17].

(2) = (1) Fixed a point p € S, let & C H" and A C R” be respectively
an open neighborhood of p and an open set in R* and let f : A — U be
an injective function, f € C'(A;H") with injective euclidean differential,
such that S NU = f(A). By assumption, fixed 19 € A, for each k—tuple
n=(n1,...,m) € R¥ the euclidean differential of f in 7y can be expressed
as

(def)no(n) = (V f1(m0), mX1(f(x0)) + -+ (V fan(n0): m) Xon(f(n0));
30



thus, recalling that, for i = 1,...,n,

Xi(F0)) = (0,01, 0, —%fnﬂ(no)), (1 at place 7)

1 .
Xn-‘rl(f(nO)) = (07 """ 717"'707§fi(7]0))7 (1 a’tplacen—’_l)v
it takes the form

(def)no (77) :(<Vf1(770), 7]>v R <vf2n(770)’ 77>7
- %(Z Jari(mo)(V fi(m0),m) = fi(n0)(V fryi(w0),m)))
=1

—((V F1(10)s s -+ fan(0) 7))-

To obtain the H-regularity of S, it suffices to prove that the homogeneous
homomorphism defined as

(dHf)no(n) = (<Vf1(’l70),’l7>, SE) <vf2n(770)77]>7 0)7

for all n € R*, is the Pansu differential of f in 7.

Indeed, supposing, without loss of generality, o = 0 and f(n9) = 0
because, otherwise, it suffices to apply the following result to the translated
surface 7,,-15 passing through the origin, we have to prove that

(54) 1(=(Vf1(0),m), -, =(V f2n(0), 1), 0) - fF(n)]| = o(l|nllpx)

that is, for our assumption,

(55) Lonsa )+ S0 (F i), 1)~ s (T £:0), )] = o).
i=1

Indeed, there exists § = () € R¥, 6 in the line segment joining 0 and 7,
such that the left side of becomes

‘_, an 0NV fi(0),m) — fi(ONV fnsi(0),m))
%Z NV frti(0),m) = frti(m)(V fi(0),m))

rmz (12 +i(O)V £i(0) = Fi(0)9 Fusi (6)—

l\DM—l

— iV Fnsi(0) = fari(m)VFHO)) = olllnlEe).
where the last equality follows from the continuity of Vf in A. O

Theorem 6.2. Let H® = W -V as in Proposition [3.21, If p: A C W =
R2+1—k .V = RF is an Euclidean C' function, then graph (¢) is a H-
reqular submanifold of codimension k and o is uniformly intrinsic differen-

tiable in A.

Proof. Choosing exponential coordinate in H" related to W and V, we can
identify V with R* and W with R2"+1=F Let B = {p € H" : pw € A}. Then
B is open because A is relatively open in W.
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Define f: B C H* — V = R* as

fo) = olpw)™" - pv.

Notice that f is Euclidean C' hence it is also in C%(B,R¥). Moreover
dfy : V-V = R* is the identity.

Hence, by Theorem [2.9) graph(¢) = {p : f(p) = 0} is a k-codimen-
sional H-regular submanifold and by Theorem  is uniformly intrinsic
differentiable in A.
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