
INTRINSIC REGULAR SUBMANIFOLDS
IN HEISENBERG GROUPS

ARE DIFFERENTIABLE GRAPHS

GABRIELLA ARENA AND RAUL SERAPIONI

Abstract. We characterize intrinsic regular submanifolds in the Heisen-
berg group as intrinsic differentiable graphs.
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1. Introduction

The notion of rectifiable set is a key one in calculus of variations and in
geometric measure theory. To develop a satisfactory theory of rectifiable
sets inside Carnot groups has been the object of much research in the last
ten years (see e.g. [2], [3], [8], [9], [14], [16], [17], [26], [27], [28], [33]).

Rectifiable sets, in Euclidean spaces, are natural generalizations of C1

submanifolds; moreover they are often defined, (but for a negligeable set),
as a countable union of compact subsets contained in C1 submanifolds.

Hence, understanding the objects that, inside Carnot groups, naturally
take the role of C1 submanifolds is a preliminary task in developing a satis-
factory theory of rectifiable sets inside Carnot groups.
In this paper we consider functions acting between complementary sub-
groups of a given Carnot group G and, for them, we introduce the notions
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of intrinsic Lipschitz continuity and intrinsic differentiability. After we use
these notions to characterize, inside Heisenberg groups Hn, intrinsic C1

submanifolds as, locally, intrinsic differentiable graphs.
Intrinsic graphs came out naturally in [14], (see also [8]), while studying

level sets of Pansu differentiable functions from Hn to R. They gave the
possibility of proving an implicit function theorem for these level sets, that
indeed are, locally, intrinsic graphs, (see Theorem 2.9 and also [17], [19],
[20]). The simple idea of intrinsic graph is the following one: let G1 and
G2 be complementary subgroups of a Carnot group G, that is homogeneous
subgroups, such that G1∩G2 = e and G = G1 ·G2 (here · indicates the group
operation in G and e = (0, . . . , 0) is the unit element), then the intrinsic (left)
graph of f : G1 → G2 is the set

graph (f) = {g · f(g) : g ∈ G1}.
In this case we say that graph (f) is a graph over G1 in direction G2. More
generally, we say (Definition 3.6) that a subset S of a Carnot group G,
is a (left) intrinsic graph, in direction of a homogeneous subgroup H, if S
intersects each left coset of H in at most a single point.

The notions of intrinsic Lipschitz continuity and of intrinsic differentia-
bility - for functions acting between complementary subgroups of a Carnot
group G - are given, as follows, trying to respect the geometric structure of
the ambient space G.

A function f : G1 → G2 is said to be intrinsic Lipschitz (Definition 3.12) if
it is possible to put, at each point p ∈ graph (f), an intrinsic cone (Definition
3.10), with vertex p, axis G2 and fixed opening, intersecting graph (f) only
at p.

A function f : G1 → G2 is intrinsic differentiable at g ∈ G1 if there is a ho-
mogeneous subgroup H of G such that, in the point p = g ·f(g) ∈ graph (f),
the left coset p · H is the limit of group dilations of graph (f) centered in
p, or, in other words, if p · H is the tangent plane to graph (f) in p (Defi-
nition 3.17). A uniform version of intrinsic differentiability is introduced in
Definition 3.20.

Let us come now to intrinsic C1 surfaces. In Hn, or sometimes in more
general Carnot groups, a class of surfaces that proved themselves to be a
good generalization, to the group setting, of C1 submanifolds are the so
called H-regular submanifolds, (see Definition 4.1 and the references [17],
[2], [8], [27], [33] and [37]).

In Hn, H-regular submanifolds are defined in different ways according
to their topological dimension k. Precisely, if k ≤ n, a k-dimensional or
low dimensional H-regular submanifold is, locally, the image in Hn of an
open set of Rk, through an injective, Pansu differentiable function; while
a k-codimensional, or low codimensional, H-regular submanifold is, locally,
the non critical level set of a Pansu differentiable function Hn → Rk.

The surfaces contained in these two classes are very different from each
other; indeed low dimensional H-regular surfaces are Legendrian, euclidean
C1 submanifolds, (see [17], Theorem 3.5), while the low codimensional ones
can be very irregular, even fractals, from an euclidean point of view (see
[17] and [23]). Nevertheless H-regular submanifolds can, very reasonably,
be considered as C1 submanifolds because (i) they have a tangent plane at
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each point, the tangent plane being the coset of a homogeneous subgroup
of the ambient space Hn, (ii) the tangent planes depend continuously on
the point, (iii) they have locally finite Hausdorff measures, that can also be
obtained by integration with appropriate area type formulas (see [17]).

In this paper we show, in our main result (see Theorem 4.3), a common
characterization of H-regular surfaces, both low dimensional and low codi-
mensional, proving that they are uniformly, intrinsic differentiable graphs
of functions acting between complementary homogeneous subgroups of Hn.

Our proof of equivalence of uniformly intrinsic differentiable graphs and
of intrinsic C1 submanifolds in Hn, suggests also that uniformly intrinsic
differentiable functions, acting between complementary subgroups G1 and
G2, are, inside G, the group version of euclidean C1 functions from Rk to
Rn−k inside Rn.

Finally, it seems to us that describing regular submanifolds as (intrinsic
differentiable) graphs is more general and flexible than using parametrizations
or level sets. Indeed, differently from Rn - where d-dimensional C1 embed-
ded submanifolds are equivalently defined as non-critical level sets of differ-
entiable functions Rn → Rn−d or as images of injective differentiable maps
Rd → Rn (or as graphs of C1 functions Rd → Rn−d) - in Hn, low dimen-
sional H-regular surfaces cannot be seen as non critical level sets and low
codimensional ones cannot be seen as (bilipschitz) images of open sets. The
reasons for this are rooted in the algebraic structure of Hn; indeed, low di-
mensional horizontal subgroups of Hn are not normal subgroups, hence they
cannot appear as kernels of homogeneous homomorphisms Hn → Rn−d; on
the other side, injective homogeneous homomorphism Rd → Hn do not exist,
if d ≥ n+ 1 (see [2] and [26]).

We recall that the class of uniformly differentiable functions has been
studied, with different names and approaches, for 1-codimensional graphs,
in [1], [8] and in [37]. In one section of this paper we tried to explain some
of the connections between the two classes of functions.

We hope that the here taken approach to the study of H-regular sub-
manifolds in Hn, might prove itself to be useful also for defining intrinsic
C1 submanifolds in more general Carnot groups. With this aim, we made
the effort of writing all statements and proofs in a coordinate free fashion.
We hope that this will show, more clearly, how some of the concepts here
discussed can find their natural setting in Carnot groups more general than
Heisenberg groups.

Finally we would like to thank Francesco Serra Cassano and Davide Vit-
tone for their interest and many useful talks.

2. Notations and Preliminaries

For a general review on Carnot and Heisenberg groups see [4], [12], [13],
[21], [22], [32], [34], [35], [36] and the recent ones [6] and [7]. Here we limit
ourselves to fix some notations.

2.0.1. Carnot groups. A graded group of step k (see [21] or [32]) is a con-
nected, simply connected Lie group G whose Lie algebra g, of dimension n,
is the direct sum of k subspaces gi, of dimension mi, g = g1⊕ · · · ⊕ gk, such
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that

(1) [gi, gj ] ⊂ gi+j ,

for 1 ≤ i, j ≤ k and gi = 0 for i > k.
A Carnot group G of step k is a graded group of step k, whose Lie algebra

satisfies also

(2) [g1, gi] = gi+1.

for i = 1, . . . , k. That is, g1 generates all the algebra.
The exponential map is a one to one diffeomorphism from g to G. Let

X1, . . . , Xn be a basis for g such that X1, . . . , Xm1 is a basis for g1 and,
for 1 < j ≤ k, Xmj−1+1, . . . , Xmj is a basis for gj . Then any p ∈ G can
be written, in a unique way, as p = exp(p1X1 + · · · + pnXn) and we can
identify p with the n-tuple (p1, . . . , pn) ∈ Rn and G with (Rn, ·). The explicit
expression of the group operation ·, determined by the Campbell-Hausdorff
formula (see [6] or [12]), has the form

(3) x · y = x+ y +Q(x, y), ∀x, y ∈ Rn

where Q(x, y) = (Q1(x, y), . . . ,Qn(x, y)) : Rn × Rn → Rn. Here, Qi(x, y) =
0, for each i = m0, . . . ,m1 (m0 = 1) and, for each 1 < j ≤ k and
mj−1 + 1 ≤ i ≤ mj , we have, Qi(x, y) = Qi

(
x1, . . . , xmj−1 , y1, . . . , ymj−1

)
.

Moreover, each Qi is a homogeneous polynomial of degree αi with respect
to the intrinsic dilations of G.
If p ∈ G, p−1 = (−p1, . . . ,−pn) is the inverse of p and e = (0, . . . , 0) is the
identity of G.

If G is a graded group, for any λ > 0, the dilation δλ : G → G is an
automorphism of G defined as

(4) δλ(x1, ..., xn) = (λα1x1, λ
α2x2, ..., λ

αnxn),

where the homogeneity of xi is αi ∈ N and αi = j if mj−1 < i ≤ mj (see [13]
Chapter 1).

We shall use the following homogeneous norm and distance on G

(5) d(x, y) = d(y−1 · x, 0) =
∥∥y−1 · x

∥∥ ,
where, if p = (p1, . . . , pk) ∈ Rm1 × · · · × Rmk = Rn = G, then

(6) ‖p‖ = max{εj ||pj ||
1/αj

Rmj , j = 1, . . . , k}.

Here ε1 = 1, and ε2, . . . εk ∈ (0, 1] are suitable positive constants depending
on G (see Theorem 5.1 of [16]).

The distance d is comparable with the Carnot Carathèodory distance of
G and is well behaved with respect to left translations and dilations, that is

(7) d(z · x, z · y) = d(x, y) , d(δλ(x), δλ(y)) = λd(x, y)

for x, y, z ∈ G and λ > 0. For r > 0 and p ∈ G, we denote by B(p, r) the
open ball associated with d.

A homogeneous subgroup of a Carnot group G (see [34] 5.2.4) is a subgroup
H such that, for all g ∈ H and λ > 0

δλg ∈ H.
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The (linear) dimension of a (sub)group is the dimension of its Lie algebra.
The metric dimension of a subgroup, or of a subset, of G is the Hausdorff
dimension, where the Hausdorff measures are constructed from the distance
given in (5).

Any homogeneous subgroup of a Carnot group G of step k is, necessarily,
a graded group, of step at most k, but in general it is not a Carnot group.

We will consider each homogeneous subgroup H of a group G as a metric
space by restricting to H the distance defined in G.

2.0.2. Heisenberg groups. The n-dimensional Heisenberg group Hn is identi-
fied with R2n+1 through exponential coordinates. A point p ∈ Hn is denoted
as p = (p1, . . . , p2n, p2n+1) ∈ R2n+1.
For p, q ∈ Hn, the group operation is defined as

p · q =
(
p1 + q1, . . . , p2n + q2n, p2n+1 + q2n+1 +

1
2

n∑
i=1

(piqi+n − pi+nqi)
)
.

For λ > 0, non isotropic dilations δλ : Hn → Hn are the automorphisms
of the group defined as

δλp := (λp1, . . . , λp2n, λ
2p2n+1).

The Lie algebra h of Hn is spanned by the left invariant vector fields
X1, · · · , Xn, Y1, · · · , Yn, T , where

Xi(p) := ∂i −
1
2
pi+n∂2n+1, Yi(p) := ∂i+n +

1
2
pi∂2n+1, T (p) := ∂2n+1,

for i = 1, . . . , n. The horizontal subspace h1 is the subspace of h spanned
by X1, . . . , Xn, Y1, . . . , Yn. Denoting by h2 the linear span of T , the 2-step
stratification of h is expressed by

(8) h = h1 ⊕ h2

and we have

(9) [h1, h1] = h2.

The Lie algebra h is also endowed with a scalar product 〈·, ·〉 making the
vector fields X1, . . . , Xn,Y1, . . . , Yn, T orthonormal.

The centre of Hn is the subgroup T := exp(h2) = {(0, . . . , 0, p2n+1)}.
The horizontal bundle HHn is the subbundle of the tangent bundle THn

whose fibers HHn
p are spanned by the horizontal vectors X1(p), · · · , Yn(p).

The scalar product 〈·, ·〉 induces naturally on each fiber HHn
p a scalar prod-

uct here denoted as 〈·, ·〉p.
If p ∈ Hn, the homogeneous norm in (6) becomes

‖p‖ := max{‖(p1, · · · , p2n)‖R2n , |p2n+1|1/2}
while the distance d is defined as in (5).

We define also the map π : Hn → R2n as

π(p) = π(p1, · · · , p2n, p2n+1) := (p1, · · · , p2n).

Notice that any p ∈ Hn can be uniquely written as

p = (π(p), p2n+1) = (π(p), 0) · pT

where pT = (0, · · · , 0, p2n+1) ∈ T and (π(p), 0) ∈ HHn
e .
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Proposition 2.1. All homogeneous subgroups of Hn are either horizontal,
that is contained in the horizontal fiber HHn

e , or vertical, that is containing
the subgroup T. A horizontal subgroup V has linear dimension and metric
dimension k, with 1 ≤ k ≤ n; moreover V is algebraically isomorphic and
isometric to Rk. A vertical subgroup W can have any dimension d, with
1 ≤ d ≤ 2n+ 1, and its metric dimension is d+ 1.

Proof. Observe that, V ⊂ Hn is a homogeneous subgroup of Hn, if and
only if, V = exp v, where v is a homogeneous subalgebra of h. Then, there
exist linearly independent v1, . . . , vk ∈ h, with 1 ≤ k ≤ 2n + 1, such that
v := span (v1, . . . , vk) and it must be [vi, vj ] ∈ v, for each i, j = 1, . . . , k. It
follows that, if V is horizontal, that is, if vi ∈ h1, for each i = 1, . . . , k, then
necessarily we have [vi, vj ] = 0 for each i, j = 1, . . . , k and it must be k ≤ n.
Otherwise, suppose there exists v ∈ h1, such that v + T ∈ v. Then both
λv + λT ∈ v and λv + λ2T ∈ v, yielding that T ∈ v. Finally, observe that,
if V is a horizontal subgroup with dim v = k, then it is isomorphic and also
isometric to Rk, for, in this case, if x, y ∈ V, the points x · δλ(x−1 · y) ∈ V
for each 0 ≤ λ ≤ 1, form an horizontal segment connecting them. On the
contrary, if W is a vertical subgroup with dim w = k, then, in general, W is
not isomorphic to Rk and is never isometric to Rk, having metric dimension
equal to k + 1 (see [29], Theorem 2). �

2.0.3. Calculus. The following notion of differentiability, for functions acting
between graded groups, was introduced by Pansu in [32].

Definition 2.2. Let G1 and G2 be graded groups endowed with homoge-
neous norms ‖·‖1 and ‖·‖2. A function L : G1 → G2 is said to be H-linear or
horizontal linear (the name was introduced in [26]), if L is a homogeneous
homomorphism, that is if L is a group homomorphism and if, for all g ∈ G1

and for all λ > 0,
L(δ1

λg) = δ2
λL(g).

Here δiλ is the group dilation in Gi. The set of all H-linear function between
G1 and G2 can be endowed with the norm

‖L‖ = sup{‖L(g)‖2 : ‖g‖1 ≤ 1}.

Definition 2.3. Let G1 and G2 be graded groups endowed with homo-
geneous norms ‖·‖1 and ‖·‖2. Then f : A ⊂ G1 → G2 is said to be P-
differentiable or Pansu differentiable in g0 ∈ A if there is a H-linear function
dfg0 : G1 → G2 such that

lim
g→g0

‖
(
dfg0(g−1

0 · g)
)−1 · f(g0)−1 · f(g)‖2
‖g−1

0 · g‖1
= 0.

The H-linear function dfg0 is called the P-differential of f . Analogously,
f : A → G2 is said to be continuosly P-differentiable in A and we write

f ∈ C1
H(A,G2)

if it is P-differentiable in every g ∈ A and if the P-differential dfg depends
continuously on x.
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We have a characterization of real valued, P-differentiable functions due
to Pansu (see [32]) and an explicit representation of P-differentials in terms
of horizontal derivatives.

Proposition 2.4. Let U be open in Hn and f : U → R be continuous. Then

f ∈ C1
H(U) := C1

H(U ,R)

if and only if, for i = 1, . . . , n, the distributional derivatives Xif , Yif are
continuous in U . Moreover

g =
(
g1, · · · , gk

)
∈ C1

H(U ,Rk)

if and only if gj ∈ C1
H(U), for j = 1, · · · , k.

Remember that C1(U) ⊂ C1
H(U) and that the inclusion is strict (see [14],

Remark 5.9).

Proposition 2.5. Let U be open in Hn and f ∈ C1
H(U). We define the

horizontal gradient ∇Hf : U → R2n as the continuous function

∇Hf := (X1f, · · · , Ynf)

or, equivalently, as the continuous function ∇Hf : U → HHn

∇Hf :=
n∑
i=1

(Xif)Xi + (Yif)Yi.

Then for all p, p0 ∈ U ⊂ Hn,

f(p) = f(p0) + 〈∇Hf(p0), π(p−1
0 · p)〉R2n + o(d(p, p0))

= f(p0) + dfp0(p−1
0 · p) + o(d(p, p0)), as d(p, p0)→ 0.

(10)

Proposition 2.6. If f ∈ C1
H(U ,Rk), then f is P-differentiable in U and

dfp0(p) = (JHf)p0(π(p)),

where JHf is the horizontal Jacobian of f . That is JHf is the k×2n matrix
valued function whose rows are the horizontal gradients of the components
f i of f .

The following characterizations of H-linear functions are proved in [26]
(see also [17] and [14]).

Proposition 2.7. Let 1 ≤ k ≤ n, and let J =
[

0 I
−I 0

]
be the 2n × 2n

symplectic matrix. Then
(i) L : Rk → Hn is H-linear if and only if there is a 2n × k matrix A

with ATJA = 0 such that, for all x ∈ Rk,

L(x) = (Ax, 0).

(ii) L : Hn → Rk is H-linear, if and only if there is a k × 2n matrix A,
such that for all p ∈ Hn

L(p) = Aπ(p)t.

The following theorems, a Taylor’s inequality, an implicit function theo-
rem and a Whitney’s extension theorem, are proved respectively in [13], in
[17] and in [14] (see also [15]).
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Theorem 2.8. Let U be open in Hn. Then there are c = c(Hn) > 1 and
C = C(Hn, k) > 0 such that, if B(p0, cr) ⊂ U ,∥∥f(q)− f(p)− dfp(p−1 · q)

∥∥
Rk ≤ C sup

x∈B(p0,cr)
‖dfx − dfp‖ · d(p, q),

for f ∈ C1
H(U ,Rk) and for all p, q ∈ B(p0, r).

Theorem 2.9. (Implicit function Theorem) Let 1 ≤ k ≤ n and S be a k-
codimensional H-regular surface. That is we assume that, for each p0 ∈ S,
there is an open neighborhood U of p0 and f : U → Rk with continuous and
surjiective Pansu differential df : Hn → Rk such that

S = {p ∈ U ⊂ Hn : f(p) = 0}.

Then, possibly choosing a smaller U 3 p0, there are homogeneous subgroups
W and V of Hn, with V k-dimensional, horizontal and W normal, such that

W ∩ V = {e}
p = pW · pV,

(11)

for all p ∈ Hn, with pW ∈W and pV ∈ V, there is

(12) (dfp)|V : V→ Rk one to one for all p ∈ U ;

moreover, there are a relative open set A ⊂W and a continuous ϕ : A → V
such that

S ∩ U = {w · ϕ(w), w ∈ A}.

Finally, there is a constant L > 0 such that for all w̄, w ∈ A we have

(13)
∥∥ϕ(w̄)−1 · ϕ(w)

∥∥ ≤ L∥∥ϕ(w̄)−1 · (w̄−1 · w) · ϕ(w̄)
∥∥ .

Theorem 2.10. Let F ⊂ Hn be closed. Given f : F → Rk continuous and
Q : F → Rk,2n continuous and matrix valued, we define

R(p, q) :=
f(q)− f(p)−Qpπ(p−1 · q)t

d(p, q)
,

for all p, q ∈ F . Given K ⊂ F , compact and δ > 0, we define

ρK(δ) := sup{‖R(p, q)‖Rk : p, q ∈ K, 0 < d(p, q) < δ}.

Then, if for all compact K ⊂ F ,

ρK(δ)→ 0 as δ → 0,

there exists a function f̄ ∈ C1
H(Hn,Rk) such that, denoted by JH f̄ the hori-

zontal Jacobian matrix of f̄ ,

f̄(p) = f(p) , JH f̄(p) = Qp,

for all p ∈ F .
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3. Intrinsic graphs

3.1. Complementary subgroups and graphs.

Definition 3.1. We say that two homogeneous subgroups G1 and G2 of a
Carnot group G are complementary subgroups in G, and we write

G = G1 ·G2,

if G1 ∩G2 = {e} and if, for all g ∈ G, there are gG1 ∈ G1 and gG2 ∈ G2 such
that g = gG1 · gG2 .

If G1, G2 are complementary subgroups in G and one of them is a normal
subgroup we say that G is a semidirect product of G1 and G2.

Example 3.2. Let G = Hn and

V = {(p1, 0, . . . , 0))}, W = {(0, p2, . . . , p2n+1)}.
Then Hn = W · V and the product is semidirect.

Example 3.3. E = (R4, ·) with the group law defined as

(14)


x1

x2

x3

x4

 ·

y1

y2

y3

y4

 =


x1 + y1

x2 + y2

x3 + y3 + (x1y2 + x2y1)/2
x4 + y4 + [(x1y3 − x3y1) + (x2y3 − x3y2)]/2

+(x1 − y1 + x2 − y2)(x1y2 − x2y1)/12


and the family of dilation

(15) δλ(p1, p2, p3, p4) = (λp1, λp2, λ
2p3, λ

3p4).

The subgroups
G1 = {(x1, 0, 0, 0) : x1 ∈ R}
G2 = {(0, x2, x3, x4) : x2, x3, x4 ∈ R},

(16)

are complementary subgroups in E, G2 is a normal subgroup, hence E is the
semidirect product of G1 and G2.

Another couple of complementary subgroups is given by
E1 = {(x1,−x1, x3, 0) : x1, x3 ∈ R}
E2 = {(x1, 0, 0, x4) : x1, x4 ∈ R}.

(17)

Neither of them is a normal subgroup, indeed a direct computation shows

p−1 · x · p =
(
x1,−x1, x3 + x1(p1 + p2),−(p1 + p2)(2x3 + x1(p1 + p2)/2)

)
for x ∈ E1 and p ∈ E; hence p−1 · x · p /∈ E1; analogously

p−1 · x · p =
(
x1, 0, x1p2, x4 − x1(p1p2 + p2

2 − 2p3)/2)
)

for x ∈ E2 and p ∈ E; hence p−1 · x · p /∈ E2. Hence E = E1 · E2, but the
product is not semidirect.

Proposition 3.4. If G = G1 · G2 as in Definition 3.1, each g ∈ G has
unique components gG1 ∈ G1, gG2 ∈ G2, such that

g = gG1 · gG2 .

The maps
g → gG1 and g → gG2

9



are continuous and there is a constant c = c(G1,G2) > 0 such that

(18) c (‖gG1‖+ ‖gG2‖) ≤ ‖g‖ ≤ ‖gG1‖+ ‖gG2‖ .

Proof. Assume there are gG1 , g′G1
, gG2 , g′G2

, such that g = gG1 ·gG2 = g′G1
·g′G2

.
Then (g′G1

)−1 · gG1 = g′G2
· (g2)−1 = e. Hence g′G1

= gG1 and g′G2
= gG2 .

The continuity of the maps g → gG1 and g → gG2 follows by a direct
consideration of the form of the product in G (see (3)). Indeed, the m1 com-
ponents in the first layer of gG1 and gG2 are the components of the euclidean
projections of the first m1 components of g, hence depend continuosly on g.
This given, the values of the polynomialsQm1+1(gG1 , gG2), · · · , Qm2(gG1 , gG2)
are determined and are continuosly dependent on g. Now, the components of
the second layer are given by the projections of (gm1+1−Qm1+1(gG1 , gG2), · · · , gm2−
Qm2(gG1 , gG2)), and so on.

By homogeneity, it is enough to prove the left hand side of (18) when
‖g‖ = 1, hence it follows by a compactness argument. The right hand side
of (18) is just triangular inequality. �

Remark 3.5. Notice that if G1 and G2 are complementary subgroups in G,
we can write equivalently G = G1 ·G2 or G = G2 ·G1. But the components
gG1 and gG2 , of a given element g, depend on the order in which we are
considering the two subgroups G1 and G2.

Definition 3.6. If G1 and G2 are complementary subgroups of G we denote
ξ · G2, ξ ∈ G1, a left coset of G2. We say that S ⊂ G is a (left) graph over
G1 along G2 (or from G1 to G2) if

S ∩ (ξ ·G2) contains at most one point,

for all ξ ∈ G1. Equivalently, S is a graph if there is a function

ϕ : E ⊂ G1 → G2

such that
S = {ξ · ϕ(ξ) : ξ ∈ E}

and we say that S is the graph of ϕ, S = graph(ϕ).

A strong motivation supporting this definition of intrinsic graphs was
provided by the implicit function Theorem 2.9. Indeed, in that theorem, it
was proved that k-codimensional non critical level sets of C1

H functions are,
locally, intrinsic graphs.

Notice that, from Proposition 3.4, given the complementary subgroups
G1 and G2, if S is a graph from G1 to G2, then the function ϕ : G1 → G2

is uniquely determined.

Remark 3.7. A more general definition of graph inside G can be considered.
Assume that H is a homogeneous subgroup of G. Even if there exist no
complementary subgroup of H in G, we can say that a set S ⊂ G is a graph
along H if S intersect each coset of H in at most one point. Such a notion has
been used many times in the literature, particularly inside Hn. Many authors
indeed considered sets as S = {(x1, · · · , yn, ϕ(x1, · · · , yn))} ⊂ Hn, with ϕ
real valued, that are graphs along T. We recall that T has no complementary
subgroup in Hn (see Proposition 3.21).
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A trivial but key feature of (left) graphs is their keeping being graphs
after dilations and (left) translations. Precisely, if S = graph (ϕ) with ϕ :
G1 → G2 then both δλS and q ·S are graphs from G1 to G2; if G is also the
semidirect product of G1 and G2 then the algebraic form of the translated
function can be explicitly given (see also [27]).

Proposition 3.8. Let G1 and G2 be complementary subgroups in G, ϕ :
E ⊂ G1 → G2 and S = {ξ · ϕ(ξ) : ξ ∈ E} = graph (ϕ). Then, for all λ > 0,
the dilated set δλS is a graph, precisely

δλS = graph(ϕλ),

with ϕλ := δλ ◦ ϕ ◦ δ1/λ : δλE ⊂ G1 → G2.

Proof. Just observe that δλS = δλ(ξ · ϕ(ξ)) = δλξ · δλ(ϕ(ξ)). �

Proposition 3.9. Let G1 and G2 be complementary subgroups in G, ϕ :
E ⊂ G1 → G2 and S = graph (ϕ), then, for any q ∈ G, there is ϕq : Eq ⊂
G1 → G2, such that

graph (ϕq) := q · S = {η · ϕq(η) : η ∈ Eq}.
where ϕq is as in (19). The statement can be made more explicit if we
assume that G is the semidirect product of G1 and G2. In this case we have,
(i): If G1 is normal in G then

Eq := q · E · (qG2)−1 ⊂ G1,

and, for y ∈ Eq,
ϕq(y) = qG2 · ϕ(q−1

G2
· q−1

G1
· y · qG2).

(ii): If G2 is normal in G then

Eq := qG1 · E ⊂ G1

and, for y ∈ Eq,
ϕq(y) = y−1 · qG1 · qG2 · q−1

G1
· y · ϕ(q−1

G1
· y).

Proof. Observe that the map τq : G1 → G1 defined as τq(x) := (q · x)G1 is
injective. Indeed, from

q ·x = (q ·x)G1 · (q ·x)G2 , q ·x′ = (q ·x′)G1 · (q ·x′)G2 , (q ·x)G1 = (q ·x′)G1

we get q ·x · (q ·x)−1
G2

= q ·x′ · (q ·x′)−1
G2

. Hence x · (q ·x)−1
G2

= x′ · (q ·x′)−1
G2

and
finally x = x′ because of the uniqueness of the components (see Proposition
3.4). Hence,

q · S = {q · x · ϕ(x) : x ∈ E}
= {(q · x)G1 · (q · x)G2 · ϕ(x) : x ∈ E}
= {y · ϕq(y) : y ∈ Eq},

where, Eq = {(q · x)G1 : x ∈ E} and

(19) ϕq(y) = (q · τq(y)−1)G2 · ϕ(τq(y)−1)

for y = (q · x)G1 ∈ Eq. This concludes the proof of the first part.
Case (i): Assume G1 is a normal subgroup. Because

q · x = qG1 · qG2 · x = qG1 · qG2 · x · q−1
G2
· qG2

11



then (q · x)G1 = q · x · q−1
G2

. It follows that

Eq = {q · x · q−1
G2

: x ∈ E},

and that τq(y)−1 = q−1 · y · qG2 for y ∈ Eq. Hence

ϕq(y) = (qG2 · q−1 · y · qG2)G2 · ϕ(q−1 · y · qG2)

= (q−1
G1
· y · qG2)G2 · ϕ(q−1 · y · qG2)

= qG2 · ϕ(q−1 · y · qG2),

for y ∈ Eq.
Case (ii): Assume G2 is a normal subgroup.

Then (q · x)G1 = (qG1 · x · x−1 · qG2 · x)G1 = qG1 · x. It follows that

Eq = {qG1 · x : x ∈ E} = qG1 · E

and that τq(y)−1 = q−1
G1
· y for y ∈ Eq. Hence, for y ∈ Eq,

ϕq(y) = (q · q−1
G1
· y)G2 · ϕ(q−1

G1
· y)

= (y · y−1 · qG1 · qG2 · q−1
G1
· y)G2 · ϕ(q−1

G1
· y)

= y−1 · qG1 · qG2 · q−1
G1
· y · ϕ(q−1

G1
· y).

�

3.2. Intrinsic Lipschitz graphs. The notion of intrinsic Lipschitz conti-
nuity, for function acting between complementary subgroups G1 and G2 of
G, was originally suggested by (13) (see the definitions given in [19] and in
[20]). We propose here an equivalent, more geometric, definition. We say
that f : G1 → G2, is intrinsic Lipschitz continuous if, at each p ∈ graph (f),
there is an (intrinsic) closed cone with vertex p, axis G2 and fixed opening,
intersecting graph (f) only in p. The equivalence of this definition and other
ones, more algebraic, is the content of Propositions 3.14 and 3.23.

Notice also that G1 and G2 are metric spaces, being subsets of G, hence it
makes sense to speak also of metric Lipschitz continuous functions G1 → G2.
As usual, we say that f : G1 → G2 is metric Lipschitz if there is a constant
L > 0 such that

(20)
∥∥f(g)−1 · f(g′)

∥∥ = d
(
f(g), f(g′)

)
≤ Ld(g, g′) = L

∥∥g−1 · g′
∥∥ ,

for all g, g′ ∈ G1. The notions of intrinsic Lipschitz continuity and of metric
Lipschitz continuity are different ones (see Example 3.24) and we stress here,
and will try to convince the reader, that intrinsic Lipschitz continuity seems
a more useful notion in the context of functions acting between subgroups
of a given Carnot group.

Let us come to the basic definitions. By intrinsic (closed) cone we mean

Definition 3.10. Let G = G1 ·G2. The closed cone CG1,G2(q, α) with base
G1, axis G2, vertex q ∈ G, opening α > 0 is

CG1,G2(q, α) := q · CG1,G2(e, α)

where
CG1,G2(e, α) := {p ∈ G : ‖pG1‖ ≤ α ‖pG2‖} .

12



Clearly,
CG1,G2(e, 0) = G2,

CG1,G2(q, α) ⊂ CG1,G2(q, β), if 0 < α < β.

Moreover ∪α>0CG1,G2(e, α) = (G \G1) ∪ {e}
Intrinsic cones are invariant under group dilations. Indeed,

Proposition 3.11. For all α, t > 0,

δt
(
CG1,G2(e, α)

)
= CG1,G2(e, α)

Proof. By the uniqueness of the components pG1 and pG2 of p ∈ G, we have
(δtp)G2 = δt(pG2) and (δtp)G1 = δt(pG1). Then the assertion follows since
‖δt(pG2)‖ = t‖pG2‖ and ‖δt(pG1)‖ = t‖pG1‖. �

Definition 3.12. Let G1 and G2 be complementary subgroups in G. We
say that f : A ⊂ G1 → G2 is intrinsic Lipschitz continuous in A, if there is
M > 0 such that

(21) CG1,G2(q, 1/M) ∩ graph (f) = {q},
for all q ∈ graph (f). If f is intrinsic Lipschitz continuous in A, the Lips-
chitz constant of f in A is the infimum of the numbers M such that (21)
holds. An intrinsic Lipschitz continuous function, with Lipschitz constant
not exceeding L > 0, will be called L Lipschitz function.

Remark 3.13. Notice that being intrinsic L Lipschitz is invariant under left
translations of the graph. That is

f : G1 → G2 is L Lipschitz, if and only if fq : G1 → G2 is L Lipschitz,

for all q ∈ G.

We give now algebraic characterizations of intrinsic Lipschitz continuous
functions.

Proposition 3.14. Let G1 and G2 be complementary subgroups in G. Then
f : E ⊂ G1 → G2 is intrinsic Lipschitz continuous in E, if and only if there
is L > 0 such that,

(22)
∥∥fq−1(x)

∥∥ ≤ L ‖x‖ ,
for all q ∈ graph (f) and for all x ∈ Aq−1.

Proof. The equivalence of (22) and (21) follows from Definition 3.10 and
from (ii) of Proposition 3.9 observing that, if q ∈ graph (f), then

CG1,G2(q, 1/L) ∩ graph (f) = {q}
is equivalent with

CG1,G2(e, 1/L) ∩ graph (fq−1) = {e}.
�

Remark 3.15. If f : E : G1 → G2 is intrinsic Lipschitz continuous, then it is
continuous. Indeed, if f(e) = e then, by (22), f is continuous in e. To prove
the continuity in a generic x ∈ E , simply observe that fq−1 is continuous in
e, where q = x · f(x).
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3.3. Intrinsic differentiable graphs. We come now to the definition of
differentiability - intrinsic differentiability - for functions acting between
complementary subgroups of G. As usual differentiability amounts to the
existence of approximating linear functions. Hence we begin defining intrin-
sic linear functions - acting between complementary subgroups - as func-
tions whose graphs are homogeneous subgroups. After we will give simple
algebraic characterizations of this notion.

Definition 3.16. Let G1 and G2 be complementary subgroups in G. We
say that L : G1 → G2 is an intrinsic linear function if graph (L) := {g ·L(g) :
g ∈ G1} is an homogeneous subgroup of G.

Notice that graph (L) is a closed set and that intrinsic linear functions
are continuous functions from G1 to G2.

Given the notion of intrinsic linear function, we say - as usual - that a
function f : G1 → G2, such that f(e) = e, is intrinsic differentiable in e if
there is an intrinsic linear map L : G1 → G2 such that

(23)
∥∥L(g)−1 · f(g)

∥∥ = o(‖g‖),
for g ∈ G1, as ‖g‖ → 0, where, with a standard notation, o(t)/t → 0 as
t→ 0+.

Up to this point the definition of intrinsic differentiability is the same as
the definition of P-differentiability. The differences appear (see Definition
2.3), when we extend the previous notion to any point ḡ of G1 using (23) in
a translation invariant way. That is, given ḡ ∈ G1 we consider p̄ = ḡ · f(ḡ)
and the translated function fp̄−1 that, by definition, satisfies fp̄−1(e) = e.
Now we say that f is intrinsic differentiable in ḡ if and only if fp̄−1 satisfies
(23) (see Definition 3.17). We give also a uniform version of Definition 3.17
in Definition 3.20 and algebraic characterizations of both, when G = Hn, in
Propositions 3.28 and 3.29.

Definition 3.17. Let G1 and G2 be complementary subgroups in G and
f : A ⊂ G1 → G2 with A relatively open in G1. For p̄ := ḡ ·f(ḡ) ∈ graph (f)
we consider the translated function fp̄−1 defined in the neighborhood Ap̄−1

of e in G1, (see Proposition 3.8). We say that f is intrinsic differentiable
in ḡ ∈ A if there is an intrinsic linear map dfḡ : G1 → G2 such that

(24)
∥∥dfḡ(g)−1 · fp̄−1(g)

∥∥ = o(‖g‖),
for g ∈ Ap̄−1 and ‖g‖ → 0. The map dfḡ is called the intrinsic differential
of f .

Remark 3.18. It is natural to ask about the relations between the notions
of P-differentiability and of intrinsic differentiability.

The two notions in general are different. Indeed, if we assume, with
the notations of Example 3.2, that G1 = W and G2 = V ≡ R, then the
characterization of intrinsic differentiability in Hn given in (ii) of Proposition
3.28 states that f : W→ V is intrinsic differentiable in w ∈W if∥∥dfw(w−1 · w′)−1 · f(w)−1 · f(w′)

∥∥ = o
( ∥∥f(w)−1 · w−1 · w′ · f(w)

∥∥ ),
for all w′ ∈W; while f is P-differentiable in w ∈W if it satisfies the different
equation ∥∥dfw(w−1 · w′)−1 · f(w)−1 · f(w′)

∥∥ = o
( ∥∥w−1 · w′

∥∥ ),
14



for all w′ ∈W.
We notice that if G := G1 ×G2, it is easy to convince oneself that

f : G1 → G2 is P-differentiable

if and only if
f : G1 → G2 is intrinsic differentiable.

This way intrinsic differentiability can be seen as a generalization of the
notion of P-differentiability.

Remark 3.19. Notice that the notion of intrinsic differentiability, as the
one of intrinsic Lipschitz continuity, are - as they should be - invariant by
translations. Indeed, let q1 = g1 · f(g1) and q2 = g2 · f(g2) ∈ graph (f);
then f is intrinsic differentiable in g1 ∈ G1 if and only if fq−1

1
is intrinsic

differentiable in e. Consequently, f is intrinsic differentiable in g1 if and
only if fq2·q−1

1
≡ (fq−1

1
)q2 is intrinsic differentiable in g2.

Finally we give the following notion of uniform intrinsic differentiability.

Definition 3.20. Let G1 and G2 be complementary subgroups in G and
f : A ⊂ G1 → G2. We say that f is uniformly intrinsic differentiable in A
if
(i): f is intrinsic differentiable at each ḡ ∈ A;
(ii): dfḡ : G1 → G2 depends continuously on ḡ, that is, for each compact

K ⊂ A, there is η = ηK : R+ → R+, with η(t)→ 0 as t ↓ 0 such that

(25) sup
g∈K

∥∥dfḡ1(g)−1 · dfḡ2(g)
∥∥ ≤ η( ∥∥g−1

1 · g2

∥∥ );
(iii): for each compact K ⊂ A, there is ε = εA,K : R+ → R+, with ε(t)→ 0

as t ↓ 0, and such that

(26)
∥∥dfḡ(g)−1 · fp̄−1(g)

∥∥ ≤ ε(‖g‖) ‖g‖ ,
for all g ∈ Kp̄−1 and for all ḡ ∈ K.

3.4. Graphs in Heisenberg groups. When the Carnot group G is one of
the Heisenberg groups Hn, all the notions of the preceding sections can be
made more explicit. One of the key points is that if Hn = G1 ·G2 then the
product is semidirect. More precisely, one of the two complementary sub-
groups is a normal subgroup, containing the centre T of Hn, while the other
one is a commutative subgroup contained in HHn

e . This is the content of
the following Proposition, that is an immediate consequence of Proposition
2.1.

Proposition 3.21. In all the possible couples of complementary subgroups
of Hn there are

(i) a horizontal subgroup, from now on called V, of dimension k ≤ n,
isomorphic and isometric to Rk,

(ii) a normal subgroup, from now on called W, of dimension 2n+ 1− k,
containing the subgroup T.

Proof. It follows readily from Proposition 2.1. Indeed if Hn = G1 ·G2, clearly
G1, G2 cannot be both vertical subgroups or horizontal subgroups.

�
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Remark 3.22. Keeping the same notations of the previous Proposition, no-
tice that, if f : V → W then the intrinsic graph of f is also an Euclidean
graph over V identified with a k-dimensional vector subspace of R2n+1. On
the contrary, if f : W → V, then in general graph (f) is not an Euclidean
graph. See Example 3.8 in ([17]).

The characterization (22) of intrinsic Lipschitz continuous functions, when
given in Hn, can be made more explicit using the characterizations of trans-
lated functions given in Proposition 3.9. The result is different depending
if f is defined on a horizontal subgroup V or on a vertical normal subgroup
W.

Proposition 3.23. Assume Hn = W · V as in Proposition 3.21. Then
(i) f : A ⊂ V → W is intrinsic Lipschitz continuous, if and only if the

parametrization map Φf : A → Hn, defined as Φf (v) := v · f(v), is
metric Lipschitz continuous in A, that is if and only if there is L̃ > 0
such that

(27)
∥∥Φf (v̄)−1 · Φf (v)

∥∥ ≤ L̃∥∥v̄−1 · v
∥∥ ,

for all v, v̄ ∈ A.
(ii) f : A ⊂ W → V is intrinsic Lipschitz continuous in A, if and only

if there is L > 0 such that

(28)
∥∥f(w)−1 · f(w′)

∥∥ ≤ L∥∥f(w)−1 · w−1 · w′ · f(w)
∥∥ ,

for all w,w′ ∈ A.

Proof. To prove (i) recall (ii) of Proposition 3.9. If q = x · f(x) ∈ graph (f)
then, for all η ∈ Aq−1 ,

fq−1(η) = η−1 · f(x)−1 · η · f(x · η).

Hence, from (27), setting η = x−1 · v, we have∥∥fq−1(η)
∥∥ =

∥∥v−1 · x · f(x)−1 · x−1 · v · f(v)
∥∥

≤
∥∥v−1 · x

∥∥+
∥∥f(x)−1 · x−1 · v · f(v)

∥∥
=
∥∥v−1 · x

∥∥+
∥∥Φf (x)−1 · Φf (v)

∥∥ ≤ (1 + L̃) ‖η‖ .
On the other side,

Φf (v)−1 · Φf (v̄) = f(v)−1 · v−1 · v̄ · f(v̄)

= f(v)−1 · v−1 · x · v · f(x · v)

= x · x−1 · f(v)−1 · x · f(x · v),

where x = v−1 · v̄. Now from (22) we get (27).
To prove (ii) observe that, from (22) and (i) of Proposition 3.9, for any

x̄ ∈ A, and for any y in the domain of fq−1 ,∥∥fq−1(y)
∥∥ ≡ ∥∥f(x̄)−1 · f

(
x̄ · f(x̄) · y · f(x̄)−1

)∥∥ ≤ L ‖y‖ .
Changing variables, setting x = x̄ ·f(x̄) ·y ·f(x̄)−1, that is y = f(x̄)−1 · x̄−1 ·
x · f(x̄), it follows that, ∀x, x̄ ∈ A,∥∥f(x̄)−1 · f(x)

∥∥ ≤ L∥∥f(x̄)−1 · (x̄−1 · x) · f(x̄)
∥∥ .

This completes the proof of (ii). �
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The following examples show both that condition (20) is not invariant
under left translation of the graph and that neither intrinsic Lipschitz con-
tinuity implies metric Lipschitz continuity nor the opposite.

Example 3.24. Let H1 = W · V where

V = {v = (v1, 0, 0)}, W = {w = (0, w2, w3)}.

Then,
‖w‖ = max{|w2|, |w3|1/2}, ‖v‖ = |v1|,

for all w ∈W and v ∈ V.
(1) Let ϕ : W→ V, defined as

ϕ(w) :=
(

1 + |w3|1/2, 0, 0
)
.

It is easy to check that ϕ satisfies (20) with L = 1, hence ϕ is metric
Lipschitz. On the contrary ϕ is not intrinsic Lipschitz. Indeed, let
p := (1, 0, 0) ∈ graph(ϕ), from Proposition 3.9 we have ϕp−1(w) =(
|w2 + w3|1/2, 0, 0

)
. For ϕp−1 , (22) does not hold. This shows also

that condition (20) is not invariant under graph translations.
(2) Let ψ : W→ V defined as

ψ(w) :=
(

1 + |w3 − w2|1/2, 0, 0
)
.

ψ is intrinsic Lipschitz, indeed, with p = (1, 0, 0) and ϕ(w) :=(
|w3|1/2, 0, 0

)
we have ψ(w) = ϕp(w), so that ψ is intrinsic Lipschitz

because ϕ is intrinsic Lipschitz. On the contrary ψ is not metric
Lipschitz, in the sense of (20), as can be easily observed.

Analogously, it can be checked that
(1) the constant function ϕ : V→W defined as

ϕ(v) := (0, 1, 0),

for all v ∈ V, is metric Lipschitz continuous, but it is not intrinsic
Lipschitz;

(2) ψ : V→W defined as

ψ(v) := (0, 1,−v1)

for all v ∈ V, is intrinsic Lipschitz continuous but it is not metric
Lipschitz continuous.

The following technical result is related with Proposition 3.1 of [1]. It
states that, for each single intrinsic Lipschitz function f : W → V, it is
possible to define a distance df on the domain W - the df distance of two
points of W being the distance in Hn of the corresponding points on graph (f)
- such that f is metric Lipschitz from (W, df )→ V.

Proposition 3.25. Let Hn = W ·V as in Proposition 3.21. Let f : W→ V,
Φf : W→ Hn defined as Φf (w) := w · f(w). Define,

τf (w,w′) := ‖f(w)−1 · w−1 · w′ · f(w)‖,

for all w,w′ ∈W.
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If f is intrinsic L Lipschitz continuous, then

(29) c τf (w,w′) ≤ ‖Φf (w)−1 · Φf (w′)‖ ≤ (1 + L)τf (w,w′),

where c = c(W,V) ∈ (0, 1) is the constant in (18). Finally, defining

σf (w,w′) :=
(
τf (w,w′) + τf (w′, w)

)
/2,

for all w,w′ ∈W, σf is a quasi metric in W.

Proof. From (ii) of Proposition 3.14, it follows∥∥Φf (w)−1 · Φf (w′)
∥∥ =

∥∥f(w)−1 · w−1 · w′ · f(w) · f(w)−1 · f(w′)
∥∥

≤ τf (w,w′) +
∥∥f(w)−1 · f(w′)

∥∥ ≤ (1 + L)τf (w,w′).

Moreover, notice that

f(w)−1 · w−1 · w′ · f(w) =
(
Φf (w)−1 · Φf (w′)

)
W .

Hence, by (18),

c τf (w,w′) = c
∥∥(Φf (w)−1 · Φf (w′)

)
W
∥∥ ≤ ∥∥Φf (w)−1 · Φf (w′)

∥∥ .
�

The following Proposition gives Heisenberg characterizations of intrinsic
linear functions. Once more, the characterizations are different depending if
the intrinsic linear map L is defined on a horizontal k-dimensional subgroup
V (1 ≤ k ≤ n) or on a normal (2n+ 1− k)-dimensional subgroup W.

Proposition 3.26. Let Hn = W · V as in Proposition 3.21. Then
(i) L : V → W is intrinsic linear if and only if the parametric map

ΦL : V→ Hn, defined as ΦL(v) := v · L(v), is H-linear.
(ii) L : W→ V is intrinsic linear if and only if it is H-linear.

Proof. Part (i): Assume that ΦL is H-linear, then,

v · L(v) · v′ · L(v′) = ΦL(v) · ΦL(v′) = ΦL(v · v′) = v · v′ · L(v · v′),
and

δλ(v · L(v)) = δλ(ΦL(g)) = ΦL(δλg) = δλg · L(δλg),
for all v, v′ ∈ V and λ ∈ R. These two together, imply that graph (L) is a
homogeneous subgroup.
Inversely, if graph (L) is a homogeneous subgroup, by homogeneity, for each
v ∈ V and λ > 0 there is v̄ ∈ V such that δλ(v · L(v)) = v̄ · L(v̄). Hence
δλv · δλ(L(v)) = v̄ · L(v̄). By uniqueness of the components on V and W
(Proposition 3.4) it follows

δλv = v̄, so that L(δλv) = L(v̄) = δλ(L(v)),

this proves, in particular, that L is homogeneous and also that

ΦL(δλv) = δλv · L(δλv) = δλv · δλ(L(v)) = δλ(ΦL(v)),

that is ΦL is homogeneous.
Moreover, for v, v′ ∈ V there is v̄ ∈ V such that

v · L(v) · v′ · L(v′) = v̄ · L(v̄)

hence
v · v′ · v′−1 · L(v) · v′ · L(v′) = v̄ · L(v̄).

18



Use once more the uniqueness of the components and the assumption that
W is a normal subgroup to get v · v′ = v̄ and, consequently,

(30) v′−1 · L(v) · v′ · L(v′) = L(v̄) = L(v · v′);

From (30) the additivity of ΦL follows, indeed

ΦL(v · v′) = v · v′ · L(v · v′)
= v · v′ · v′−1 · L(v) · v′ · L(v′) = ΦL(v) · ΦL(v′),

for all v, v′ ∈ V.
Part (ii): Assume that L : W → V is H-linear. Then, as before, for all

w ∈ W and λ > 0, we have δλ(w · L(w)) = δλw · δλ(L(w)) = δλw · L(δλw),
showing that graph (L) is homogeneous.
Now observe that, because L is H-linear, W is normal and V ≡ Rk is
commutative, we have

(31) L(g−1 · w · g) = L(w),

for all g ∈ Hn and w ∈ W. Indeed, as proved in [26], in our assumptions
L(w) does not depend on the (2n+ 1)th component of w. On the other side,
the first 2n components of g−1 · w · g and of w coincide.
From (31), for all w,w′ ∈W we have

w · L(w) · w′ · L(w′) = w · L(w) · w′ · (L(w))−1︸ ︷︷ ︸
=w̄∈W

· L(w) · L(w′)︸ ︷︷ ︸
∈V

= w̄ · L(w) · L
(
L(w) · w′ · L(w)−1

)
= w̄ · L(w̄).

This proves that graph (L) is a homogeneous group.
Conversely, assume that graph (L) is a homogeneous group.

Working as above, we have δλ(w · L(w)) = δλw · δλ(L(w)) = w̄ · L(w̄) and
by the uniqueness of the components we get that w̄ = δλw and δλ(L(w)) =
L(δλw) showing that L is homogeneous.

Then, because graph (L) is a group, for all w,w′ ∈ W, there is w̄ ∈ W
such that w · L(w) · w′ · L(w′) = w̄ · L(w̄). As before, this implies that

w̄ = w · L(w) · w′ · L(w)−1 and L(w̄) = L(w) · L(w′),

now letting w̃ := L(w) · w′ · L(w)−1 we get that,

(32) L(w · w̃) = L(w) · L
(
L(w)−1 · w̃ · L(w)

)
,

for all w, w̃ ∈W.
Now observe that for all wT ∈W∩T we have wT ·wT = δ√2(wT). Moreover,
because wT is in the centre of Hn, (32) gives that L(wT ·wT) = L(wT) ·L(wT)
and, in turn L(wT) · L(wT) = δ2(L(wT)) because L(wT) belongs to the
horizontal subgroup V. Hence, by the homogeneity of L we get that

δ√2(L(wT)) = L(wT · wT) = L(wT) · L(wT) = δ2(L(wT))

that eventually gives

(33) L(wT) = e.
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Recall that any w ∈ W can be written in a unique way as w = π(g) · wT,
with wT ∈ T and π(w) ∈W ∩HHn

e . Hence, from (32) and (33),

(34) L(w) = L(π(w) · wT) = L(π(w)) · L(wT) = L(π(w))

for all w ∈ W. So that, because π(g−1 · w · g) = π(w), for all w ∈ W and
g ∈ Hn, from (32) and (34), we get

L(w · w̃) = L(w) · L
(
π((L(w)−1 · w̃ · L(w))

)
= L(w) · L(π(w̃)) = L(w) · L(w̃),

for all w, w̃ ∈W. This proves the additivity of L and concludes the Propo-
sition. �

The following examples show that each different characterization, given in
Proposition 3.26, cannot be extended to be a characterization of all intrinsic
linear functions.

Example 3.27. Let H1 = W · V, with V = {v = (v1, 0, 0)} and W = {w =
(0, w2, w3)}.

(1) For any fixed a ∈ R, the function L : V→W defined as

L(v) = (0, av1,−av2
1/2)

is intrinsic linear because graph (L) = {(t, at, 0) : t ∈ R} is a hori-
zontal 1-dimensional subgroup of H1. But L is not a group homo-
morphism from V to W.

(2) For any fixed a ∈ R, the function L : W→ V defined as

L(w) = (aw2, 0, 0)

is intrinsic linear because graph (L) = {(at, t, s) : t, s ∈ R} is a
vertical 2-dimensional subgroup of H1. The parametric function ΦL :
W→ H1 acts as ΦL(w) = (aw2, w2, w3 − aw2

2/2) and, consequently,
ΦL is not a group homomorphism from V to Hn.

The following Propositions give algebraic characterizations of intrinsic
differentiable functions. Notice that, once more, the characterizations are
different if the subgroup, where f is defined, is a horizontal k-dimensional
subgroup V (1 ≤ k ≤ n) or a normal (2n+ 1− k)-dimensional subgroup W.

Proposition 3.28. Let Hn = W · V as in Proposition 3.21. Then,
(i) f : A ⊂ V → W is intrinsic differentiable in ḡ ∈ A if and only

if the parameterization map Φf : A → Hn, Φf (g) := g · f(g), is
P-differentiable in ḡ and, for all g ∈ V,

(35) dΦf,ḡ(g) = g · dfḡ(g).

(ii) f : A ⊂ W → V is intrinsic differentiable in ḡ ∈ A if and only if
there is an intrinsic linear map dfḡ : W→ V, such that∥∥dfḡ(ḡ−1 · g)−1 · f(ḡ)−1 · f(g)

∥∥ = o
(∥∥f(ḡ)−1 · ḡ−1 · g · f(ḡ)

∥∥)
for g ∈ A and

∥∥f(ḡ)−1 · ḡ−1 · g · f(ḡ)
∥∥→ 0.
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Proof. Case (i): If f is intrinsic differentiable in ḡ with intrinsic differential
dfḡ, by Proposition 3.26 the map g 7→ g ·dfḡ(g) is a homogeneous homomor-
phism V→ Hn. We define

dΦf,ḡ : V→ Hn as dΦf,ḡ(g) := g · dfḡ(g).

Observe that, from Proposition 3.9, if p̄ = ḡ · f(ḡ) then

dfḡ(η)−1 · fp̄−1(η) = dfḡ(η)−1 · η−1 · f(ḡ)−1 · η · f(ḡ · η)

and, defining g := ḡ · η,

dfḡ(ḡ−1 · g)−1 · fp̄−1(ḡ−1 · g)

= dfḡ(ḡ−1 · g)−1 · (ḡ−1 · g)−1 · f(ḡ)−1 · ḡ−1 · g · f(g)

= dΦf,ḡ(ḡ−1 · g)−1 · Φf (ḡ)−1 · Φf (g).

(36)

Hence (24) yields

(37)
∥∥dΦf,ḡ(ḡ−1 · g)−1 · Φf (ḡ)−1 · Φf (g)

∥∥ = o
(∥∥ḡ−1 · g

∥∥)
as
∥∥ḡ−1 · g

∥∥→ 0, that is Φf is P-differentiable in ḡ.
Conversely, if Φf is P-differentiable in ḡ then, by definition, its P-differential

dΦf,ḡ is a homogeneous homomorphism V→ Hn. We prove that

(38) dΦf,ḡ(g) = g · Lf,ḡ(g),

with Lf,ḡ : V→W.
Indeed, by definition of P-differentiability and from (18) we have that

both the W component and the V component of the left hand side of (37)
have to be o

(∥∥ḡ−1 · g
∥∥). Looking at the V component we get

(39)
∥∥(dΦf,ḡ(ḡ−1 · g))−1

V · ḡ
−1 · g

∥∥ = o
( ∥∥ḡ−1 · g

∥∥ ).
Notice that, by (i) of Proposition 2.7, (dΦf,ḡ)V is a linear map from V ≡ Rk

to itself. Hence from (39) we get that

(dΦf,ḡ)V = IV.

This proves (38).
From (38) and from Proposition 3.26 we have that Lf,ḡ is an intrinsic

linear map V→W.
We define Lf,ḡ as the intrinsic differential of f at ḡ, that is

Lf,ḡ := dfḡ.

Now, (37) and (36) yield the intrinsic differentiability of f in ḡ.
Case (ii): from (i) of Proposition 3.9, for all η ∈W, we have

dfḡ(η)−1 · fp̄−1(η) = dfḡ(η)−1 · f(ḡ)−1 · f
(
ḡ · f(ḡ) · η · f(ḡ)−1

)
and defining g such that η = f(ḡ)−1 · ḡ−1 · g · f(ḡ)

= dfḡ
(
f(ḡ)−1 · ḡ−1 · g · f(ḡ)

)−1 · f(ḡ)−1 · f(g)

= dfḡ
(
ḡ−1 · g

)−1 · f(ḡ)−1 · f(g),

where in the last equality we have used that dfḡ is an homogeneous homo-
morphism and that V is commutative. Now the equivalence of Definition
3.17 and (2) of this Proposition is clear. �
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An analogous characterization holds for uniformly intrinsic differentiabil-
ity.

Proposition 3.29. Let Hn = W · V, as in Proposition 3.21. Then
(i) f : A ⊂ V → W is uniformly intrinsic differentiable in A if and

only if the parameterization map Φf : A → Hn, is continuosly P-
differentiable in A.

(ii) f : A ⊂ W → V is uniformly intrinsic differentiable in A if and
only if it is intrinsic differentiable at each g ∈ A with differential dfg
continuously dependent on g and if, for each compact K ⊂ A,

sup
ḡ,g∈K

0<‖ḡ−1·g‖<δ

∥∥dfḡ(ḡ−1 · g)−1 · f(ḡ)−1 · f(g)
∥∥

‖f(ḡ)−1 · ḡ−1 · g · f(ḡ)‖
→ 0 as δ → 0.(40)

Proof. Case (i): the equivalence between uniformly intrinsic differentiability
of f and continuous P-differentiability of Φf follows immediately from (35)
and applying Theorem 4.6 in [27].

Case (ii): because f is continuous inA, then f is bounded in each compact
K ⊂ A; hence,

∥∥f(ḡ)−1 · ḡ−1 · g · f(ḡ)
∥∥ is comparable with

∥∥ḡ−1 · g
∥∥ in K.

Now the equivalence between (40) and the two conditions (ii) and (iii) of
Definition 3.20, follows from the same steps used in the proof of Case (ii) of
Proposition 3.28. �

The following Proposition states precisely a natural relation between in-
trinsic differentiability and intrinsic Lipschitz continuity.

Proposition 3.30. Let Hn = W · V as in Proposition 3.21. If f : A ⊂
W→ V is uniformly intrinsic differentiable in A, then it is locally intrinsic
Lipschitz continuos in A.

Proof. First we observe that an intrinsic linear function L : W → V is
intrinsic Lipschitz continuous. Indeed for all w ∈W and for all t ≥ 0

‖L(w)‖ = ‖δtL(δ1/tw)‖ = t‖L(δ1/tw)‖;
choosing t = ‖w‖ and defining k := sup‖ξ‖=1 ‖L(ξ)‖ it follows ‖L(w)‖ ≤
k ‖w‖, for all w ∈ W. Finally, for each p = ξ · L(ξ) ∈ graph (L), from
Proposition 3.9 we see that Lp−1 coincides with L, hence

(41) ‖Lp−1(w)‖ = ‖L(w)‖ ≤ k‖w‖, ∀w ∈W,

showing that L is intrinsic Lipschitz continuous.
For a fixed w0 ∈ A, let r̄ > 0 be such that for all w, η ∈W ∩B(w0, r̄)

sup
w,η∈B(w0,r̄)

‖dfw(w−1 · η)−1 · f(w)−1 · f(η)‖
‖f(w)−1 · w−1 · η · f(w)‖

≤ 1

and
sup

w∈B(w0,r̄)
‖dfw‖ = K < +∞.

Then, for all w, η ∈W ∩B(w0, r̄), recalling also (31),∥∥f(w)−1 · f(η)
∥∥ ≤ ∥∥dfw(w−1 · η)

∥∥+
∥∥dfw(w−1 · η)−1 · f(w)−1 · f(η)

∥∥
≤ (K + 1)

∥∥f(w)−1 · w−1 · η · f(w)
∥∥ .

from which the thesis. �
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4. H-regular submanifolds are intrinsic differentiable graphs

This section contains our main theorem. We prove that S ⊂ Hn is a
H-regular submanifold, as given in Definition 4.1, if and only if S is, locally,
a uniformly intrinsic differentiable graph.

We begin recalling the definitions of H-regular submanifolds, of dimension
k or of codimension k (see [17] and also [14] or [37]).

Definition 4.1. Let k be an integer, 1 ≤ k ≤ n.
(i) A subset S ⊂ Hn is a k-dimensional H-regular submanifold if for

each p ∈ S there are an open U ⊂ Hn with p ∈ U , an open A ⊂ Rk

and an injective, continuosly Pansu differentiable f : A → U , with
injective Pansu differential, such that

S ∩ U = f(A).

(ii) A subset S ⊂ Hn is a k-codimensional H-regular submanifold if for
each p ∈ S there are an open U ⊂ Hn, with p ∈ U , and f : U → Rk,
f ∈ C1

H(U ; Rk) with surjective Pansu differential, such that

S ∩ U = {x ∈ U : f(x) = 0}.

Remark 4.2. These notions of H-regular submanifolds are different from the
corresponding Euclidean ones and are also very different from each other.
Indeed k-dimensional H-regular submanifolds of Hn are a subclass of k-
dimensional Euclidean C1 submanifolds of R2n+1 (see [17] and Theorem
6.1). On the contrary, k-codimensional H-regular submanifolds can be very
irregular objects from an Euclidean point of view. A striking example of
a 1-codimensional H-regular surface in H1 ≡ R3, with fractional Euclidean
dimension equal to 2.5, is provided in [23]. An easier example is the surface

S = {(x, y, t) : x =
√
x4 + y4 + t2} ⊂ H1.

S is a H-regular hypersurface (i.e. 1-codimensional H-regular) but S is
not euclidean regular at the origin. On the other side, the horizontal plane
{t = 0} is Euclidean regular but not intrinsic regular at the origin.

Theorem 4.3. The following statements are equivalent
(1) S ⊂ Hn is a H-regular submanifold.
(2) ∀p ∈ S there is an open U 3 p such that S ∩ U is the graph of a

uniformly intrinsic differentiable function ϕ acting between comple-
mentary homogeneous subgroups of Hn.

More precisely, with 1 ≤ k ≤ n, if S is k-dimensional H-regular then ϕ is
defined on a k-dimensional horizontal subgroup and if S is k-codimensional
H-regular then ϕ is defined on a (2n+ 1− k)-dimensional normal subgroup.

Proof. We divide the proof in two parts; in the first part we deal with the
case of a k-dimensional S and in the second part S is a k-codimensional
submanifold.
First part:
(1) =⇒ (2). By Definition 4.1, if S is a k dimensional H-regular sub-
manifold then for each p ∈ S there are an open neighborhood U of p and
an open A ⊂ Rk such that S ∩ U = f(A) with f injective and uniformly
P-differentiable in A.
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In Theorem 3.5 of [17] it is proved that any k-dimensional H-regularS is
also an Euclidean C1 k-dimensional submanifold of Hn ≡ R2n+1 and that,
at each p ∈ S, there is a k-dimensional horizontal subgroup V such that its
coset p ·V is equal to the Euclidean tangent k-plane TpS. (Notice that TpS
is also the limit of the Heisenberg dilations of S centered in p).

Let us fix p ∈ S and let V := p−1 · TpS and W := V⊥. The orthogonality
is meant here with respect to the scalar product 〈·, ·〉e that is the same as
the Euclidean scalar product.

Choosing a small enough open neighborhood of the origin V, we have that
(p−1 · S)∩ V is an Euclidean C1 graph over the subgroup (or k-dimensional
vector subspace of R2n+1) V in direction of W. Precisely, there are an open
O ⊂ V and a function ϕ : O → W, continuously differentiable in O, such
that

(p−1 · S) ∩ V = {v + ϕ(v) : v ∈ O}
The map Φ : O → Hn defined as

Φ(v) := v + ϕ(v)

is Euclidean C1; once more by Theorem 3.5 of [17], the image of the Eu-
clidean differential deucΦv is an horizontal k-dimensional subgroup of Hn, for
all v ∈ O, hence, by Theorem 1.1 of [27], Φ is continuously P-differentiable
in O.

Finally,

(p−1 · S) ∩ V = {v + ϕ(v) : v ∈ O} = {v · ψ(v) : v ∈ O}

where ψ : O →W is given by

ψ(v) =

(
ϕ1(v), · · · , ϕ2n(v), ϕ2n+1(v)− 1

2

n∑
i=1

(viϕn+i(v)− vn+iϕi(v))

)
.

By Proposition 3.29, the function ψ is uniformly intrinsic differentiable in O
because, being Φψ ≡ Φ, the associated parametric map Φψ is continuously
P-differentiable.

So that we have proved that (p−1 · S) ∩ V = graph (ψ). Hence S ∩ (p · V)
is the graph of the uniformly intrinsic differentiable translated function ψp.

(2) =⇒ (1). Let Hn = W ·V, as in Definition 3.1, and let f : A ⊂ V→W
be uniformly intrinsic differentiable in A.

By Proposition 3.29, Φf : A → Hn is uniformly P-differentiable in A.
Hence, graph (f) = Φf (A) is a k-dimensional H-regular submanifold.

Second part:
(1) =⇒ (2). Let S ⊂ Hn be a H-regular surface of codimension k. Then,
(see Theorem 2.9), for each p ∈ S there are an open neighborhood U of p
and a function f ∈ C1

H(U ,Rk) such that

(42) S ∩ U = {x ∈ U : f(x) = 0}.

Moreover there are homogeneous subgroups V and W, such that Hn = W ·V
as in Definition 3.1, and, for all x ∈ U ,

(43) dfx|V : V→ Rk is one to one.
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Here dfx : Hn → Rk is the P-differential of f in x ∈ U . Finally, there are a
relatively open A ⊂ W, with pW ∈ A and a continuos function ϕ : A → V
such that

(44) S ∩ U = graph (ϕ) = {w · ϕ(w) : w ∈ A}.
We have to prove that ϕ is uniformly intrinsic differentiable in A.

For each w ∈ A, let x = w · ϕ(w). Define the H-linear function dϕw :
W→ V as

(45) dϕw := −
(
dfx|V

)−1
◦ dfx|W

By (ii) of Proposition 3.26, dϕw : W→ V is an intrinsic linear function. We
prove now that, for any compact K ⊂ A,

(46) sup
w,η∈K

0<‖w−1·η‖<δ

‖dϕw(w−1 · η)−1 · ϕ(w)−1 · ϕ(η)‖
‖ϕ(w)−1 · w−1 · η · ϕ(w)‖

→ 0

as δ → 0. This will complete the proof, because, by the characterization
of uniform intrinsic differentiability given in Proposition 3.29 and observing
that dϕw depends continuosly on w, (46) shows both that dϕw is the intrinsic
differential of ϕ at w and that ϕ is uniformly intrinsic differentiable in A.
Notice that, for all η ∈W and v ∈ V,((

dfx|V

)−1
◦ dfx

)
(η · v) =

(
dfx|V

)−1 (
dfx|W(η) · dfx|V(v)

)
=
((

dfx|V

)−1
◦ dfx|W

)
(η) · v

(47)

By (47), recalling that L(w · v) = L(v ·w) for any H-linear function L with
values in a commutative subgroup of Hn, we have∥∥(dϕw(w−1 · η))−1 · ϕ(w)−1 · ϕ(η)

∥∥
=
∥∥∥∥((dfx|V)−1

◦ dfx|W
)

(w−1 · η) · ϕ(w)−1 · ϕ(η)
∥∥∥∥

=
∥∥∥∥((dfx|V)−1

◦ dfx
)

(w−1 · η · ϕ(w)−1 · ϕ(η))
∥∥∥∥

=
∥∥∥∥(dfx|V)−1 (

dfx(Φϕ(w)−1 · Φϕ(η))
)∥∥∥∥

where Φϕ(w) := w · ϕ(w); then, by Taylor’s inequality, (see Theorem 2.8),
there exists δ > 0 such that

≤
∥∥∥∥(dfx|V)−1

∥∥∥∥∥∥f(Φϕ(η))− f(Φϕ(w))− dfx(Φϕ(w)−1 · Φϕ(η))
∥∥

Rk

≤ sup
w∈K

∥∥∥∥(dfx|V)−1
∥∥∥∥C sup

w,η∈K
‖w−1·η‖<δ

∥∥dfw·ϕ(w) − dfη·ϕ(η)

∥∥ ‖Φϕ(w)−1 · Φϕ(η)‖.

Now observe that, the function ϕ is intrinsic Lipschitz continuous in the
compact set K, then, by (29), we have

‖Φϕ(w)−1 · Φϕ(η)‖ ≤ (1 + L)τϕ(w, η) = (1 + L)‖ϕ(w)−1 · w−1 · η · ϕ(w)‖
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where L is the Lipschitz constant of ϕ. So that, the required equation (46)
follows, because the function df is uniformly continuous in the compact set
K̃ := {w′ · ϕ(w′) : w′ ∈ K} and observing that, if ‖w−1 · η‖ < δ, it is also
‖Φϕ(w)−1 · Φϕ(η)‖ < c(K, δ), where c(K, δ)→ 0+ as δ → 0.

(2) =⇒ (1). Let Hn = W ·V as in Proposition 3.21 and A be open in W.
We have to prove that if ϕ : A → V is uniformly intrinsic differentiable in A,
then S = {w · ϕ(w), w ∈ A} is a k-codimensional H-regular submanifold.
That is, we have to prove that, given p̄ = w̄ · ϕ(w̄) ∈ S, there are an open
neighborhood U of p̄ and a function f ∈ C1

H(U ,Rk), such that

(48) S ∩ U = {x ∈ U : f(x) = 0}

and

(49) dfx : Hn → Rk is surjective

for all x ∈ U .
Let I b A, be an open in W neighborhood of w̄, then

F := {w · ϕ(w) : w ∈ I}

is a compact set in Hn. We want to determine the desired function f by
appropriately extending, using Whitney’s extension theorem (see Theorem
2.10), the function identically zero on F .

Let us verify the assumptions of Whitney’s theorem.
For every x = w · ϕ(w) ∈ F , let hx : Hn → Rk be the H-linear map

(50) hx(p) := (dϕw(pW))−1 · pV,

for all p = pW · pV ∈ Hn.
Notice that for each x = w · ϕ(w) ∈ F , hx is a H-linear function. The

homogeneity of hx is obvious. Moreover, observing that (p · q)V = pV · qV
and (p · q)W = pW · pV · qW · p−1

V , we have

hx(p · q) = (dϕw[(p · q)W])−1 · (p · q)V

=
(
dϕw(pW · pV · qW · p−1

V )
)−1 · pV · qV

= (dϕw(pW))−1 · (dϕw(qW))−1 · pV · qV

= hx(p) · hx(q),

for all p, q ∈ Hn. This completes the proof of the H-linearity of hx.
The map, from F to the set of H-linear functions from Hn to Rk, defined

as x 7→ hx is continuous. This fact follows from (50) and from the continuity
of dϕw, as a map from A to the set of H-linear functions from W to V; this,
in turn, is contained in the assumption of intrinsic uniform differentiability
of ϕ in A.

Hence, if we associate, as in Proposition 2.7, to each H-linear function hx
a matrix Qx ∈ Rk,2n, then the map Q : F → Rk,2n, sending x ∈ F to Qx, is
continuous.

Now define

R(x, y) := −hx(x−1 · y)
d(x, y)
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for x, y ∈ F , x 6= y. If K is a compact subset of F , then

(51) sup {‖R(x, y)‖ : x, y ∈ K, 0 < d(x, y) < δ} → 0 as δ → 0.

Indeed, from (29), there exists c = c(W,V) > 0 such that, for all x = w·ϕ(w)
and y = η · ϕ(η) in K, we have:

c
∥∥ϕ(w)−1 · w−1 · η · ϕ(w)

∥∥ ≡ cτϕ(w, η) ≤ d(x, y).

Hence,

‖R(x, y)‖ =
‖hx(x−1 · y)‖

d(x, y)

≤ 1
c

‖(dϕw(w−1 · η))−1 · ϕ(w)−1 · ϕ(η)‖
‖ϕ(w)−1 · w−1 · η · ϕ(w)‖

→ 0

Now, (51) follows from the assumption of uniform intrinsic differentiability
of ϕ and from (40).

We can now apply Whitney’s theorem to the couple of functions

g : F → R, Q : F → Rk,2n,

where g(x) = 0 for all x ∈ F , to get a function f ∈ C1
H(Hn,Rk), vanishing

on F and with a surjective differential at all points of F .
To check this last point, observe that, from definition (50), for all x ∈ F ,

hx|V : V→ Rk is one to one.
To conclude our proof we have to provide an open neighborhood U of p̄

satisfying (48) and (49).
Fix r > 0 and define U as

(52) U = {w · v ∈ Hn : w ∈ Ir ⊂W, v ∈ V ∩B(ϕ(w̄), r)}

where Ir ⊂ I is a neighborhood of w̄, Ir is open in W and such that,
ϕ(Ir) ⊂ V ∩B(ϕ(w̄), r).

By definition p̄ ∈ U and, if we choose r small enough, by continuity of df
on Hn, dfx is surjective for all x ∈ U , hence (49) holds.

Moreover, by continuity, for r small, dfx : V → Rk is one to one, for all
x ∈ U . Hence, for each w̃ ∈ Ir, the map

v 7→ f(w̃ · v)

is one to one in V∩B(ϕ(w̄), r). It follows that, if x = w · v ∈ U is such that
f(x) = 0, then x = w · ϕ(w) ∈ F .

So also (48) holds and the proof is completed. �

5. Directional derivatives

We give here a few hints about relations among the notions introduced
here and the ones in [1], [37] and [8]. We begin defining directional deriva-
tives of a function f : W → V and we show that, using this notion, it is
possible to get an explicit representation of the intrinsic differential df .

Definition 5.1. Let Hn = W · V as in Proposition 3.21 and f : W→ V.
(i) The difference quotient of f , in w along Y ∈ w, is

RY f(w; t) := δ1/t

(
f(w)−1 · f(w · f(w) · exp tY · f(w)−1)

)
,
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for all w ∈W and t ∈ R. We use here the convention δλp =
(
δ|λ|p

)−1,
if λ < 0.

(ii) The intrinsic directional derivative DY f(w) is

DY f(w) := lim
t→0

RY f(w; t)

provided that the limit exists finite.

Notice that, if f(w̄) = e, then difference quotients and derivatives in w̄
have the following, more familiar, aspect

RY f(w̄; t) = δ1/tf(w̄ · exp tY ),

and
DY f(w̄) = Y f(w̄).

Intrinsic difference quotients and intrinsic directional derivatives are trans-
lation invariant. That is, if p = w · f(w), then

RY f(w; t) = RY fp−1(e; t) = δ1/t

(
fp−1(exp tY )

)
.

and

(53) DY f(w) = DY fp−1(e) = Y fp−1(e).

Remark 5.2. It is not difficult to prove (see [18]) that f : W→ V is intrinsic
Lipschitz continuous with Lipschitz constant L if and only if

‖RV f(w; t)‖ ≤ L,
for all V ∈ w, with ‖V ‖ ≤ 1 and for all t > 0, w ∈W.

Indeed, the following stronger result holds, (see [18]),

Proposition 5.3. Assume that V1, · · · , V2n−k is an orthonormal basis of
w ∩ h1. If f : W→ V is such that

RVif(w; t) ≤ L
for i = 1, · · · , 2n−k and t > 0 then f is locally intrinsic Lipschitz continuous
in W.

Uniformly intrinsic differentiable functions f : W → V have continuous
directional derivatives.

Proposition 5.4. Let Hn = W · V as in Proposition 3.21. If O is open in
W and f : O → V is intrinsic differentiable in w ∈ O, then its directional
derivatives exist in w and

DY f(w) = dfw(expY ).

Proof. By definition of intrinsic differentiability, if w ∈ O and p = w · f(w),

‖dfw(exp tY )−1 · fp−1(exp tY )‖ = o(‖ exp tY ‖) = o(t)

as t→ 0. Hence, for t > 0,

fp−1(exp tY ) = dfw(exp tY ) · ε(t),
where ‖ε(t)‖ /t→ 0 as t→ 0. Since,

RY f(w; t) = δ1/tfp−1(exp tY ) = δ1/t (dfw(exp tY ) · ε(t))
= dfw(expY ) · δ1/tε(t)
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we get, ∥∥dfw(expY )−1 ·RY f(w; t)
∥∥ = ‖ε(t)‖ /t

and the thesis follows. �

We compute explicitly directional derivatives for 1-codimensional and 2-
codimensional graphs. We particularly want to show that directional deriva-
tives can be, in some cases, first order non linear differential operators

Example 5.5. (Codimension 1 graphs in Hn) Let Hn = W · V, with

W = {(0, x2, · · · , x2n+1)} and V = {(x1, 0, · · · , 0)}

and f = (ϕ, 0, · · · , 0) : W→ V. Then (53) gives,

DXjf(x) = (Xjϕ(x), 0, · · · , 0), DYjf(x) = (Yjϕ(x), 0, · · · , 0),

for 2 ≤ j ≤ n, and

DY1f(x)

=
(

lim
t→0

1
t

(ϕ(0, · · · , xn+1 + t, · · · , x2n+1 + ϕ(x)t)− ϕ(x)) , 0, . . . , 0
)

= (∂n+1ϕ(x) + ϕ(x)∂2n+1ϕ(x), 0, . . . , 0) .

Setting DY1ϕ = ∂n+1ϕ + ϕ∂2n+1ϕ and using the notation introduced in
[1], we have

Wϕϕ =
(
X2ϕ, . . . ,Xnϕ,DY1ϕ, Y2ϕ, . . . , Ynϕ

)
.

We recall that the non linear operator Wϕϕ has been used in [1] and [5] -
and with a different but equivalent notation in [8] - to give the first charac-
terization of the class of functions ϕ : W → V, (when V is 1-dimensional),
that we call here uniformly intrinsic differentiable. Precisely, they prove that
1-codimensional H-regular surfaces in Hn are intrinsic graphs of functions
ϕ : W→ V ≡ R such that Wϕϕ - appropriately interpreted - is continuous.
We have also to mention that in [8] the authors work in the more general
setting of sub-riemannian manifolds.

This final example, simply indicates how it looks the non linear sys-
tem, analogous to the Wϕϕ operator, that we get when we deal with 2-
codimensional surfaces.

Example 5.6. (Codimension 2 submanifolds in H2) Let H2 = W · V, with

W = {(0, 0, w3, w4, w5)}, V = {(v1, v2, 0, 0, 0)}.

Let f : W→ V be a sufficiently regular function defined as

f(w) = (f1(w), f2(w), 0, 0, 0).

If f(e) = e, then

DY1f(e) =
(
∂3f1|e , ∂3f2|e , 0, . . . , 0

)
DY2f(e) =

(
∂4f1|e , ∂4f2|e , 0, . . . , 0

)
.
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For the general case, let p = w · f(w) then, from Proposition 3.9, for all
x = (0, 0, x3, x4, x5) ∈W,

fp−1(x)

= f(w)−1 · f
(
w · f(w) · x · f(w)−1

)
=
(
f1(0, 0, w3 + x3, w4 + x4, w5 + x5 + f1(w)x3 + f2(w)x4)− f1(w),

f2(0, 0, w3 + x3, etc.)− f2(w), 0, . . . , 0
)
.

Choosing x = exp tY1 or x = exp tY2 and recalling (53), we get

DY1f(w) = DY1fp−1(e) =
(
(∂3f1 + f1∂5f1)|w , (∂3f2 + f1∂5f2)|w , 0, . . . , 0

)
DY2f(w) = DY2fp−1(e) =

(
(∂4f1 + f2∂5f1)|w , (∂4f2 + f2∂5f2)|w , 0, . . . , 0

)
.

Setting DYjfi(w) := ∂3fi(w)+fj(w)∂5fi(w), for i, j = 1, 2 then, from Propo-
sition 5.4, we get the following representation of dfw

dfw(x) =
(
x3DY1f1(w) + x4DY2f1(w), x3DY1f2(w) + x4DY2f2(w), 0, . . . , 0

)
.

6. Euclidean and H-regular submanifolds

We gather here a couple of results showing a few relations between eu-
clidean C1 submanifolds and H-regular submanifolds.

Theorem 6.1 deals with low dimensional H-regular surfaces and we show
that they coincide with the subset of euclidean C1 submanifolds of R2n+1

whose (euclidean) tangent planes are cosets of horizontal subgroups of Hn.
For a general approach to this topic see [38] and [27].

Theorem 6.2 deals with low codimensional H-regular submanifolds. We
show that intrinsic graphs of euclidean C1 functions, defined over a vertical
k-codimensional subgroup, are H-regular submanifolds. Hence, by Theorem
4.3, these euclidean C1 functions are uniformly intrinsic differentiable. This
result should be compared with Theorem 3.8 of [1], although the proof given
here follows a different procedure.

Theorem 6.1. Let 1 ≤ k ≤ n. The following statements are equivalent

(1) S ⊂ Hn is a H-regular submanifold of dimension k.
(2) S is a k-dimensional euclidean C1 submanifold of Hn ≡ R2n+1 and

the euclidean tangent k-planes to S are cosets of k-dimensional hor-
izontal subgroups of Hn.

Proof. (1) =⇒ (2) is proved in Theorem 3.5 of [17].
(2) =⇒ (1) Fixed a point p ∈ S, let U ⊂ Hn and A ⊂ Rk be respectively

an open neighborhood of p and an open set in Rk and let f : A → U be
an injective function, f ∈ C1(A; Hn) with injective euclidean differential,
such that S ∩ U = f(A). By assumption, fixed η0 ∈ A, for each k−tuple
η = (η1, . . . , ηk) ∈ Rk, the euclidean differential of f in η0 can be expressed
as

(def)η0(η) = 〈∇f1(η0), η〉X1(f(x0)) + · · ·+ 〈∇f2n(η0), η〉X2n(f(η0));
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thus, recalling that, for i = 1, . . . , n,

Xi(f(η0)) = (0, . . . , 1, . . . . . . , 0,−1
2
fn+i(η0)), (1 at place i)

Xn+i(f(η0)) = (0, . . . . . . , 1, . . . , 0,
1
2
fi(η0)), (1 at place n+ i),

it takes the form
(def)η0(η) =

(
〈∇f1(η0), η〉, . . . , 〈∇f2n(η0), η〉,

− 1
2

(
n∑
i=1

fn+i(η0)〈∇fi(η0), η〉 − fi(η0)〈∇fn+i(x0), η〉)
)

=(〈∇f1(η0), η〉, . . . , 〈∇f2n(η0), η〉).

To obtain the H-regularity of S, it suffices to prove that the homogeneous
homomorphism defined as

(dHf)η0(η) := (〈∇f1(η0), η〉, . . . , 〈∇f2n(η0), η〉, 0),

for all η ∈ Rk, is the Pansu differential of f in η0.
Indeed, supposing, without loss of generality, η0 = 0 and f(η0) = 0

because, otherwise, it suffices to apply the following result to the translated
surface τp−1S passing through the origin, we have to prove that

(54) ‖(−〈∇f1(0), η〉, . . . ,−〈∇f2n(0), η〉, 0) · f(η)‖ = o(‖η‖Rk)

that is, for our assumption,

(55) |f2n+1(η)+
1
2

n∑
i=1

(fi(η)〈∇fn+i(0), η〉−fn+i(η)〈∇fi(0), η〉)| = o(‖η‖2Rk).

Indeed, there exists θ = θ(η) ∈ Rk, θ in the line segment joining 0 and η,
such that the left side of (55) becomes∣∣∣− 1

2

n∑
i=1

(fn+i(θ)〈∇fi(θ), η〉 − fi(θ)〈∇fn+i(θ), η〉)

+
1
2

n∑
i=1

(fi(η)〈∇fn+i(0), η〉 − fn+i(η)〈∇fi(0), η〉)
∣∣∣

≤ 1
2
|η|

n∑
i=1

(
|fn+i(θ)∇fi(θ)− fi(θ)∇fn+i(θ)|−

− |fi(η)∇fn+i(0)− fn+i(η)∇fi(0)|
)

= o(‖η‖2Rk),

where the last equality follows from the continuity of ∇f in A. �

Theorem 6.2. Let Hn = W · V as in Proposition 3.21. If ϕ : A ⊂ W ≡
R2n+1−k → V ≡ Rk is an Euclidean C1 function, then graph (ϕ) is a H-
regular submanifold of codimension k and ϕ is uniformly intrinsic differen-
tiable in A.

Proof. Choosing exponential coordinate in Hn related to W and V, we can
identify V with Rk and W with R2n+1−k. Let B = {p ∈ Hn : pW ∈ A}. Then
B is open because A is relatively open in W.
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Define f : B ⊂ Hn → V ≡ Rk as

f(p) := ϕ(pW)−1 · pV.

Notice that f is Euclidean C1 hence it is also in C1
H(B,Rk). Moreover

df|V : V→ V ≡ Rk is the identity.
Hence, by Theorem 2.9, graph (ϕ) = {p : f(p) = 0} is a k-codimen-

sional H-regular submanifold and by Theorem 4.3 ϕ is uniformly intrinsic
differentiable in A.

�
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Sommarive 14, 38050, Povo (Trento), Italy

E-mail address: garena@science.unitn.it

Raul Serapioni: Dipartimento di Matematica, Università di Trento, Via
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