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Abstract. Biological membranes are thin structures that are composed of various components.
The different components often form microdomains, called lipid rafts, that are arranged in com-
plex patterns. To explain this pattern formation, variational models based on Cahn-Hilliard type
energies have been introduced that couple the local composition of the membrane to its local
curvature, which renders the resulting functionals nonlocal. In this note we review and extend
recent qualitative results on related variational models. This includes a technique to deal with
Neumann-boundary conditions in the construction of a recovery sequence.
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1. Introduction
1.1. Motivation: formation of lipid rafts

Biological membranes are in essence lipid bi-layers surrounding the interior cells. In most eukary-
otic organisms they consist of two types of lipids (saturated and unsaturated), various proteins, and
cholesterol. These are hypothesized to form nanoscale microdomains within the membrane, commonly
referred to as lipid rafts. The latter are believed to be responsible for many essential cellular processes,
e.g. intracellular signaling, membrane trafficking and assembly of specialized structures [27]. Other
biological processes that are suspected to be linked to membrane rafts are e.g. virus budding, endocy-
tosis, and immune responses, [29, 25]. However, a nanoscale visualization of lipid rafts in unperturbed
living cells is still incomplete, leading to increased skepticism about their existence, [22, 14]. The
mechanisms behind their formation and (in)stability have been an active topic of research. Various
types of lipid patterning have been observed in artificial membranes (see Figure 1 and [30]). In [19]
it was suggested that morphological transitions on the membrane (i.e. formation of the rafts) can
be related to the increase in surface tension. A nonlocal energy functional that includes the bending
energy of the membrane and couples it to the local composition of the membrane has been proposed
in [19].
Recent advances in the analysis of related variational problems are the main topic of this note. For a
detailed discussion of the model see Section 2.

1.2. Membrane models: an overview
Here, we present a brief overview over the mathematical literature on related variational problems.

We start with the classical Modica–Mortola functional that arises in the van der Waals–Cahn–Hilliard
theory of phase transitions, i.e.

F0
ε [u] :=

∫
Ω

1

ε
W (u) + ε|∇u|2dx.
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(a) Hand-drawn picture of the patterns
observed in model membranes, [30]

(b) Sketch of the relation between chemical com-
position and curvature, as suggested in [19]

Here, W : R → [0,∞) is a continuous double-well potential. It has been proven by Modica and
Mortola [20, 21] and Sternberg [28] (as well as Carr, Gurtin, and Slemrod in the one-dimensional case
[6]) that this sequence of functionals Γ-converges to a perimeter functional, as ε → 0. In particular, the
limiting functional is given by the length of the jumpset scaled by the factor

∫ √
W (s)ds (see, e.g. [1]).

This is the energy of the so-called optimal profile, which approximates the optimal transition between
the potential wells. In other words, such an energy tends to minimize the area of the interfaces. A
similar result has been shown by Fonseca and Mantegazza in [12], where instead of the first, one
considers a second-order singular perturbation, i.e. the functional

F1
ε [u] :=

∫
Ω

1

ε
W (u) + ε3|∇2u|2dx.

In the proof of the Γ−convergence of such a family towards a perimeter functional, they use a slicing
argument in order to show the lim inf-inequality and a one-dimensional optimal profile for the con-
struction of the recovery sequence. Note that in this case, as pointed out in [12], the compactness
would follow the same way as for the Modica-Mortola functional, if one could estimate ε∥∇u∥2L2 in
terms of F1

ε . In the author’s Master’s thesis [24] an energy functional involving the bending energy of
the membrane, instead of the surface tension has been analyzed, namely

F2
ε [u] :=

∫
Ω

1

ε
W (u) + ε3|∆u|2dx.

Similarly to before, a perimeter functional appears in the Γ−limit. However, in this case, the slicing
argument for the proof of the lower bound fails. One thus needs to use the ’blow-up’ argument of
Fonseca and Müller [13] instead. This can be done following [18, 4]. Despite this, we show that
the optimal profile is still one-dimensional. Additionally, we show in [15] that both the Γ−limit, as
well as the corresponding compactness result, hold in the strong L2(Ω)-topology. In order to show
compactness, we use an interior estimate for the Laplace operator and Vitali’s convergence theorem.
Hilhorst, Peletier and Schätzle [18] considered a family with an additional surface energy term, that
is

F3
ε [u] :=

∫
Ω

1

ε
W (u) + εk|∇u|2 + ε3|∆u|2dx.

A similar limiting functional appears as the Γ−limit of such a family. Additionally, we note that one
may use the same argument as in [15] to show the corresponding compactness statement for this
functional. A more significant change occurs when one assumes that the surface energy term comes
with a negative coefficient i.e., for q > 0

F4
ε [u] :=

∫
Ω

1

ε
W (u)− εq|∇u|2 + ε3|∇2u|2dx.

It was shown independently in [7, 8] that the Γ−limit can be computed for small parameter q < q∗,
where q∗ > 0 represents a critical value. Furthermore, in the case Ω ⊆ Rd a d−dimensional optimal
profile is used. It is not clear whether the optimal profile is actually one-dimensional.
Returning to modelling biological membranes, it was shown in [11] that the mentioned model for the
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energy of a biomembrane that couples the local composition to the local curvature can be rewritten
in the form

F5
ε [v] :=

∫
Ω

1

ε
W (−ε2∆v + v)− εq|∇v|2 + (1− 2q)ε3(∆v)2 + (1− q)ε5|∇∆v|2dx (1.1)

with an additional assumption that v satisfies Neumann boundary conditions. In [11], it was shown
that the Γ−limit of such a family in the case 0 ≤ q < q∗ is again of perimeter type. Once again,
a d−dimensional optimal profile is used. Here and in [15] we consider the case q < 0 and show the
convergence towards a perimeter functional. The main novelty in [15] is the inclusion of Neumann
boundary conditions in the construction of the recovery sequence. In what follows we explain the
model in detail (Section 2), state the main result, and sketch the proof (Section 2). Detailed proofs
can be found in [15].

2. Model and the main result
We start with the model of the energy of a membrane with two components proposed in [19] that
couples the chemical composition of the membrane to the local curvature. The underlying intuition is
that the geometry of the lipids determines their preferred place in the membrane, but also that the
geometry of the membrane changes depending on the local composition of the molecules constituting
that part of the membrane. More precisely, we consider the following energy functional

E [ϕ, h] =
∫
Ω

(
f(ϕ) +

1

2
b|∇ϕ|2 + 1

2
σ|∇h|2 + 1

2
κ|∆h|2 + Λϕ∆h

)
dx,

where Ω ⊆ Rd is a flat reference domain, ϕ ∈ W 1,2(Ω) is an order parameter related to the chemical
composition of the membrane and h ∈ W 2,2(Ω) describes the height profile of the membrane. Moreover,
f : R 7→ [0,∞) is a continuous double-well potential whose two potential wells correspond to pure
chemical states. The parameters b, κ, and σ are non-negative and represent, respectively, line tension
between regions with different components, surface tension, and bending rigidity of the membrane.
These first four terms are relatively standard and appear frequently in the continuous mechanical
theory of membranes. In particular, consider the Canham-Helfrich free energy, [5, 17], defined as

E(Γ) :=
∫
Γ

1

2
κH2 + σ + κGKdΓ, (2.1)

where Γ is a surface in R3 representing the membrane, H and K are the mean and Gaussian curvature.
As before, the parameters σ > 0 and κ, κG > 0 represent the surface tension and bending rigidity,
respectively. If there is a parameterization of Γ over a flat reference domain Ω ⊆ R2 i.e., if there exists
a function h : Ω 7→ R such that

Γ = {(x, h(x)) : x ∈ Ω}
then the two curvatures may be rewritten as

H = −∇ · ∇h

(1 + |∇h|2)1/2
K =

det(∇2h)

(1 + |∇h|2)1/2
.

We assume that |∇h| ≪ 1 and that the Gaussian curvature term in the energy is constant. Then the
functional, up to a constant, takes the following form

E(h) =
∫
Ω

1

2
κ(∆h)2 +

1

2
σ|∇h|2dx.

For a more detailed discussion see [9, Section 3.1]. The term involving Λ > 0, on the other hand,
introduces the coupling between the local chemical composition of the membrane and the approx-
imated local curvature (here we assume that the membrane is almost flat and thus ∆h is a good
approximation of the curvature). Our general goal is to analyze the minimizers of such an energy
functional in various parameter regimes. Note that, since the coupling term in the energy can take
negative values, the energy itself is possibly non-positive. Thus, in order to minimize the functional,
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one would aim to have the last term with a negative sign and large in terms of the absolute value. As
a starting point, we consider the case Ω ⊆ R. One possibility is to consider a height profile hn with n
oscillations and order parameter un that transitions frequently between +1 and −1 in a way that the
sign of un is related to the sign of ∆hn, resulting in a negative coupling term (see also the discussion
in the introduction of [11]). Then the energy roughly scales as

E(un, hn) ∼ δ + b
n2

δ
+ σn2 + κn4 − Λn2

where n is the number of oscillations and δ is the total length of the transition regions of un. The
minimal energy thus depends greatly on the values of the problem parameters. In particular, one can
optimize in n which leads to

n2 ∼ max

{
1,

Λ− σ − b/δ

2κ

}
.

Note that for different parameter regimes the optimal value of n changes. This shows that there are
parameter regimes in which uniform structures are not optimal, and pattern formation is expected. In
particular, if Λ ≫ σ, κ, b, then one would expect the optimal n to be large, i.e. formation of patterns
would be energetically favourable. On the other hand, if Λ ≪ σ or Λ ≪ b or κ is large, one obtains
n = 1 as the optimal number of transitions. We will below explain rigorous results from [11, 15] that
show that there are parameter regimes in which uniform structures are preferred. A more detailed
analysis of the minimal energy depending on the parameters is currently in preparation (see [16]).
In this paper, we wish to focus on the case of a large surface tension or a small coupling constant.
Following the steps of [11, Appendix] we may optimize in h and set

ε :=

√
κ

σ
q := 1− bσ

Λ2
W (u) :=

2κ

Λ2
f(u) Fε :=

1

ε

2κ

Λ2
E .

This yields a family of functionals Fε : L
2(Ω) → R ∪ {+∞}, given by

Fε[u] :=

{
1
ε

∫
Ω

(
W (u)− u2 + (1− q)ε2|∇u|2 + u

(
1− ε2∆

)−1
u
)
dx, if u ∈ W 1,2(Ω);

+∞, if u ∈ L2(Ω) \W 1,2(Ω),

(2.2)
where

(
1− ε2∆

)−1 is a solution operator subject to Neumann-boundary conditions which appears as
a consequence of solving the Euler-Lagrange equation for h.
Physically relevant values for b, σ, κ and Λ have been presented in [19]. Using those values, we can
conclude that the relevant regime for new the parameters is ε > 0 close to 0 and q ∈ (−1.1, 1). We
are interested in analyzing the minimizers of the previously derived functionals as ε → 0, but focus
on the case q < 0. The following theorem is a slight generalization of [15, Theorem 1.3].

Theorem 2.1. Let Ω ⊆ Rd be an open, bounded domain with a C4−boundary. Suppose that W ∈
C(R; [0,∞)) satisfies W (s) = 0 if and only if s ∈ {±1}, and the growth condition

c1 min
{
(s− 1)2, (s+ 1)2

}
≤ W (s) ≤ c2s

2 for all s ∈ R. (2.3)

Consider the family {Fε}ε>0 defined in (2.2). Then it holds for the Γ-limit with respect to strong
L2-convergence

Γ− lim
ε→0

Fε[u] =

{
mdPerΩ({u = −1}), if u ∈ BV (Ω; {±1})
+∞, if u ∈ L2(Ω) \BV (Ω; {±1}).

(2.4)

The constant md is defined via the optimal profile problem

md := inf

{∫
Qν

(
1

ε
W (u)− εq|∇u|2 + ε3(∆v)2 + ε5|∇∆v|2

)
dx : 0 < ε ≤ 1,−ε2∆v + v = u, v ∈ Aν

}
(2.5)
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where (ν1, . . . , νd−1, ν) is an orthonormal basis of Rd,

Qν := Qν(0, 1) := {x ∈ Rd : |x · ν| < 1/2, |x · νi| < 1/2, i = 1, . . . , d− 1} (2.6)

represents the unit cube in direction ν ∈ Sd−1 and the set of admissible functions is given by

Aν =
{
v ∈ W 2,2

loc (R
d) : v = −1 in a neighborhood of x · ν = −1/2, v = 1 in a neighborhood of x · ν = 1/2,

v(x) = v(x+ νi) for all x ∈ Rd, i = 1, . . . , d− 1
}
.

(2.7)

Furthermore, the sequence {Fε}ε>0 is strongly equicoercive in L2(Ω).

Remark 2.2. A major difficulty arises from the non-local term. To overcome this (especially for the
construction in the proof of the lim sup-inequality), it turned out be convenient to rewrite the functional
Fε in a different way (see [11, 15]). We would like to simplify Fε by getting rid of the solution operator.
Therefore, given u ∈ W 1,2(Ω), we define v ∈ W 2,2(Ω) as the weak solution to

− ε2∆v + v = u , in Ω,

∂v

∂n̂
= 0 , on ∂Ω,

(2.8)

where n̂ denotes the unit normal to ∂Ω. Then one can check that we can equivalently work with a
functional defined on W 2,2(Ω) functions with Neumann boundary conditions (c.f. (1.1), for details
see [11, 15]). As a consequence of this approach, one needs to include boundary conditions in the
construction of the recovery sequence. This is described in Step 1 of the proof below.

Remark 2.3. The requirement that Ω is a C4-domain arises from the specific construction of the
recovery sequence. Notice that from the definition of the functional (c.f. in particular (1.1)), it is
convenient for the recovery sequence to be of C3-regularity. Close to the boundary we construct the
sequence by extending mollified trace values constantly in the normal direction into the domain [15,
Proof of Theorem 1.3 part 2, Step 1]. As the normal to a Ck-domain can only be guaranteed to
be of class Ck−1, in order to end up with a C3 function, a boundary of regularity C3+1 is needed.
However, this assumption is only needed in the proof of the limsup-inequality. For compactness and
the liminf-inequality, a piecewise C2-boundary is sufficient.

Proof. Here we only point to the main ideas of the proof. Details are presented in [15].
1. Compactness

In [15], the double-well potential W is assumed to be twice continuously differentiable and to
satisfy {W = 0} = {±1} as well as the growth condition

λ1s
2 ≤ W (s) ≤ λ2s

2 for all s ≥ R. (2.9)

Clearly (2.3) implies (2.9) for appropriately chosen λ1, λ2, R > 0. On the other hand, as outlined
in [15], the conditions assumed there imply (2.3) by Taylor’s theorem.
Carefully checking the proof, we find that the higher regularity of W is only used in the proof
of compactness [15, Section 3.1]. Here, one introduces a potential W̃ ∈ C2(R; [0,∞)) satisfying
(2.3) and W̃ ≤ CW for a constant C such that additionally W̃ has a uniformly bounded second
derivative. Hence, if one replaces the construction given there by a function of the form

W̃ (x) :=


p1(x) if 0 ≤ |x| ≤ 1/2,

c1 min
{
(s− 1)2, (s+ 1)2

}
if 1/2 ≤ |x| ≤ R,

p2(x), if R ≤ |x| ≤ R+ 1,

λ1x
2, if |x| ≥ R+ 1,

with appropriately chosen polynomials p1, p2 such that additionally W̃ ∈ C2(R; [0,∞)), the
argument can be carried over to our setting.
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Figure 2. Sketch of the construction of the recovery sequence for flat and polygonal
jumpsets, respectively.

2. lim inf-inequality
The proof of this part closely follows the lines of [18, 4]. The main idea is the use of the ’blow-up’
technique introduced in [13]. For the full proof we refer to [15].

3. lim sup-inequality
The proof follows the steps of [15], which in turn is based on [11, Section 6], the main difference
being in the first step of the construction. As explained in Remark 2.2, it will be beneficial
here to consider the modified functional defined on functions v ∈ W 2,2(Ω) satisfying Neumann
boundary conditions. Hence, for the proof of the lim sup-inequality, a recovery sequence satisfying
Neumann boundary conditions is necessary. We first assume that v ∈ BV (Ω; {±1}) has a flat
jumpset. The sequence is then constructed separately in different areas of the domain. We first
mollify the trace of the function v locally on the boundary. In a neighborhood of the boundary of
the domain (Figure 3, blue region), the regularized boundary values are extended constantly in
the normal direction into the domain. In this way, Neumann boundary conditions are achieved.
However, we would still like to have the almost optimal energy of this sequence. Thus, inside the
domain, away from the boundary we cover the jump set by cubes (red squares in Figure 3) in
which the (almost) optimal profile is used (as defined in (2.5)). In the remaining grey region, we
interpolate between the two constructions. Finally, we can use a diagonal argument to decrease
the thickness of the two tubular neighborhoods and obtain a recovery sequence. The rest follows
by standard approximation arguments (see [15, 11, 2]).

□

Note here that the construction of the recovery sequence does not depend on the fact that q < 0.
In particular, one may use the same construction in the setting of the proof of the lim sup-inequality
from [11]. Let us briefly comment on the specific choice of construction in [11]. There, the constructed
recovery sequence equals 0 in a small neighborhood of the boundary of the domain. However, in this
case, the energy is larger than optimal, having an additional term of order Per(Ω). One also has to be
careful at which point to interpolate. As an example, if the trace of the BV -function is extended into
the neighborhood first and then mollified, the Neumann boundary conditions are lost, independent of
the size of the region. Another possibility for the construction could be to extend the values from the
domain outwards, i.e., in the opposite direction compared to our construction. In particular, consider
a tubular neighborhood of the boundary of the domain. Next, construct an almost optimal sequence
in the interior of the domain, and identify the trace of this sequence on the boundary of the tubular
neighborhood. Finally, inside the neighborhood, trace values are extended constantly outward in the
normal direction. However, one would have to be careful about how to fit the regularity of the functions
with the regularity of the boundary.
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3. Conclusion and outline for future
We believe that the construction introduced in [15] can be used for other problems that require

the construction of recovery sequences that satisfy Neumann boundary conditions.
In terms of biomembranes, since the Γ−convergence and compactness results from Theorem 2.1 hold
in the same space, we may conclude convergence of almost minimizers. This in particular means that
the formation of patterns is not expected in the regime −∞ < q < q∗. We currently build on the
heuristics presented in Section 2 and precisely identify the regimes in which the raft formation is
expected in order to analyze the properties of minimizers in those cases (see [16]).
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