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Abstract. We consider codimension 1 area-minimizing m-dimensional currents T mod
an even integer p = 2Q in a C2 Riemannian submanifold Σ of Euclidean space. We
prove a suitable excess-decay estimate towards the unique tangent cone at every point
q ∈ spt(T ) \ sptp(∂T ) where at least one such tangent cone is Q copies of a single plane.
While an analogous decay statement was proved in [12] as a corollary of a more general
theory for stable varifolds, in our statement we strive for the optimal dependence of the
estimates upon the second fundamental form of Σ. This improvement is in fact crucial in
[5] to prove that the singular set of T can be decomposed into a C1,α (m−1)-dimensional
submanifold and an additional closed remaining set of Hausdorff dimension at most m−2.
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1. Introduction

In this paper we consider area minimizing currents mod an integer p ≥ 2 which have
codimension 1 in a given smooth Riemannian ambient manifold.

Definition 1.1. Let p ≥ 2, Ω ⊂ Rm+n be open, and let Σ ⊂ Rm+n be a complete
submanifold without boundary of dimension m + n̄ and class C2. We say that an m-
dimensional integer rectifiable current T ∈ Rm(Σ) is area minimizing mod(p) in Σ ∩ Ω
if

M(T ) ≤ M(T +W ) for any W ∈ Rm(Ω ∩ Σ) which is a boundary mod(p) . (1.1)

In [12] the authors leverage the regularity theory of [18] for stable integral varifolds
in codimension n̄ = 1 and use an observation in [4] to prove, among other things, the
uniqueness of tangent cones at every interior point q where at least one tangent cone is flat,
namely contained in an m-dimensional plane. Recall that at any such q the density ΘT (q)
is necessarily an integer no larger than p

2
. Moreover, if 1 ≤ ΘT (q) ≤ ⌊p−1

2
⌋, the regularity

results of Allard [1] and White [17] apply: in this case T is a regular submanifold in a
neighborhood of q, counted with multiplicity ΘT (q). The case of interest here is therefore
that of even moduli p = 2Q and interior points q with at least one flat tangent cone and
density Q = p

2
. Under the latter assumption, in fact, q can be a singular point (cf. [16]

and [6, Example 1.6]). The result of [12] on which we focus here can therefore be stated
as follows.

Theorem 1.2. Let p = 2Q be even, Σ, T , and Ω be as in Definition 1.1 with dim(Σ) =
dim(T ) + 1 = m + 1. If at q ∈ spt(T ) \ sptp(∂T ) one tangent cone to T is of the form
C = Q JπK for some m-dimensional plane π, then C is the unique tangent cone to T at q.

In [5] the above theorem was one of the starting points to complete the study of the
fine structure of the singular set of area-minimizing hypercurrents mod p in the case when
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p is even. More precisely, we prove there that, outside an exceptional closed subset of
(Hausdorff) dimension at most m− 2, the rest of the interior singular set of T is, locally,
an (m − 1)-dimensional submanifold of class C1,α. This generalizes the classical theorem
in [16] to the case of even p = 2Q > 4 (the case p = 2 is special, because locally area-
minimizing hypercurrents mod 2 are area-minimizing integral currents, see the discussion
in the introduction to [6]; note also that [5] needs a slightly stronger regularity for the
ambient manifold Σ than the one stated in Definition 1.1, and more precisely Σ is assumed
to be of class C3,α for some α > 0). The main theorem in [5] complements the analogous
theorem for odd moduli, first shown by Taylor in [15] for p = 3 and m = 2, and extended
recently to any odd p and arbitrary m in [4]. As was later pointed out in [12], the one
proposition in [4] which is used in combination with [18] to yield Theorem 1.2 above can
in fact be also used to derive the same regularity results of [4] via the theory of stable
varifolds of [18].

While uniqueness of flat tangent cones is the starting point of the analysis we carried
out in [5], in fact we do need there an important refinement of Theorem 1.2. In order to
give the precise statement, we introduce the L2 excess of T from an m-dimensional plane
π̄ in a ball Br(q), namely

E(T, π̄, q, r) :=
1

rm+2

ˆ
Br(q)

dist2(q′ − q, π̄) d∥T∥(q′) , (1.2)

the minimal planar L2 excess

Ē(T, q, r) := min
π̄⊂TqΣ

E(T, π̄, q, r) , (1.3)

and the notation A for the supremum norm of the second fundamental form of Σ, i.e.
A = ∥AΣ∥∞. The precise decay statement which is needed in [5] is then the following.

Theorem 1.3. There are positive constants ε, α, and C with the following properties. Let
p = 2Q be even and Σ, T , Ω, q, and π be as in Theorem 1.2. Assume in addition that T is
a representative mod(p), that Br(q) ⊂ Ω \ sptp(∂T ), ∥T∥(Br(q)) < (Q+ 1

2
)ωmr

m and that

Ē(T, q, r) + r2A2 ≤ ε . (1.4)

Then, for every ρ < r
2
we have

E(T, π, q, ρ) ≤ C
(ρ
r

)α
(Ē(T, q, r) + r2A2) . (1.5)

Note that the quadratic dependence on A in the right-hand side is essential for the
arguments in [5]: the power 2 in A and a subtle analysis of the anisotropic rescalings of
T around q allow us to improve α in (1.5) to any exponent strictly smaller than 2; this
almost quadratic decay is then a crucial ingredient in the rest of the work.

Estimate (1.5) is certainly an outcome of [12] when Σ is flat, i.e. if A = 0. On the other
hand, the “obvious” modification of the arguments in [12] seem to yield an A-dependence
of the right-hand side of (1.5) which is linear, rather than quadratic, since A bounds the

L∞ norm of the generalized mean curvature H⃗T of the varifold induced by T . The aim of
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this work is to show that the improvement from A to A2 is however possible, and hence
the regularity theory of [5] holds in the full generality claimed there.

Roughly speaking, we need to control error terms in inequalities and identities derived
through first variations along some test vector fields X. All the vector fields X relevant to
the proof of Theorem 1.3 are almost tangential to the ambient manifold Σ and the deviation
from tangentiality can be controlled withA. Since the mean curvature vector H⃗T is directed
normally to Σ, the L∞ norm of the scalar product H⃗T ·X can then be estimated by A2.
This idea is used already in [10, Appendix A] to improve the A-dependence in the classical
monotonicity formula. Incidentally, this quadratic improvement plays also a pivotal role
in the work [8].

While the underlying idea towards the improvement is simple, the proof of the excess
decay theorem is highly involved at the technical level: for that reason, we hope with this
note to provide a self-contained reference of the strategy, which keeps full track of the
ambient curvature contributions in the estimates.
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tion through the grant FRG-1854147. J.H. was partially supported by the German Science
Foundation DFG in context of the Priority Program SPP 2026 “Geometry at Infinity”.
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Italian Ministry of University and Research, and by the Gruppo Nazionale per l’Analisi
Matematica, la Probabilità e le loro Applicazioni of INdAM. L.S. acknowledges the support
of the NSF Career Grant DMS-2044954.

2. Notation and preliminaries

In this section we collect the main notation in use in the paper as well as one important
estimate that will be used multiple times in the sequel.

2.1. Notation. The symbol p will be typically used for orthogonal projections: in partic-
ular, given a linear subspace π ⊂ Rm+n, pπ is the orthogonal projection onto π, while p⊥

π

is the orthogonal projection on the orthogonal complement. The symbol Tq,r will denote
the recentered and rescaled current, with base point q and scale r: more precisely, if λq,r is
the map q′ 7→ λq,r(q

′) := r−1(q′ − q), then Tq,r := (λq,r)♯T . We next introduce two families
of sets which are central to the rest of our work.

Definition 2.1. Let T , Σ, p = 2Q and Ω be as in Definition 1.1. We let:

(a) P(q,Σ) be the set of m-dimensional planes π ⊂ TqΣ, where m = dim(T );
(b) B(q,Σ) be all the sets of the form

S =
N⋃
i=1

Hi ,

where 2 ≤ N ≤ 2Q and the Hi are pairwise distinct m-dimensional half-planes of
TqΣ joining at a common (m − 1)-dimensional linear subspace V = V (S) ⊂ TqΣ.
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Any such S will be called an open book, V (S) will be called the spine 1 of S, and
Hi will be called the pages of S.

We will simply write P(q) and B(q) when Σ is clear from the context.

Remark 2.2. Observe that, if:

(i) S ∈ B(q),
(ii) we orient the halfplanes Hi so that ∂ JHiK = JV K,
(iii) and we choose multiplicities κi ∈ [1, Q] ∩ N so that

∑
i κi = 2Q,

then C :=
∑

i κi JHiK is a cycle mod(p). There is of course only a finite number of possible
choices for the weights, and the choice is unique if and only if N = 2Q.

Next we introduce various notions of excess that will be used throughout the paper.

Definition 2.3. Let T ∈ Rm(Σ), let q ∈ Rm+n and let Br(q) ⊂ Rm+n be an open ball.

(a) The one-sided L2 excess of T from S ∈ B(q) in Br(q) ⊂ Rm+n is

E(T,S, q, r) := r−(m+2)

ˆ
Br(q)

dist2(q′ − q,S) d∥T∥(q′) .

(b) The one-sided L2 excess of S ∈ B(q) from T in Br(q) is defined by

E(S, T, q, r) := r−(m+2)

ˆ
S∩(Br\Br/8(V (S)))

dist2(q + q′, spt(T )) dHm(q′) ,

where Bs(V ) denotes the tubular neighborhood of V in Rm+n of radius s.
(c) The double-sided L2 excess between T and S ∈ B(q) in Br(q) is

E(T,S, q, r) := E(T,S, q, r) + E(S, T, q, r) .

Furthermore we shall write:

(d) E(T, q, r) and E(T, q, r) for, respectively, the minima ofE(T,S, q, r) and E(T,S, q, r)
over all open books S ∈ B(q);

(e) E(T, π, q, r) with π ∈ P(q) and Ē(T, q, r) as in (1.2) and (1.3), respectively.

We will often denote with πq,r an optimizing plane in the ball Br(q), i.e. such that

E(T, πq,r, q, r) = min
π∈P(q)

E(T, π, q, r) = Ē(T, q, r) .

1Note that, according to our definition, an m-dimensional plane π ⊂ TqΣ is an open book, and however
in the latter case the spine V is not uniquely defined and can be taken to be an arbitrary (m − 1)-
dimensional linear subspace of π. When we regard π as an open book, we assume that a choice of V has
been specified, too.
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2.2. Allard’s height bound. We end up this section recalling a useful L∞−L2 estimate
due to Allard that will be used in several places later on in the paper.

Lemma 2.4 (L∞-L2 estimates). There exists a geometric constant C > 0 such that, if
T,Σ are as in Definition 1.1, 0 ∈ Σ, B1 ∩ sptp(∂T ) = ∅, and ∥T∥(B1) < (Q+ 1

2
)ωm, then

sup
q∈sptp(T )∩B15/16

|p⊥
π0
(q)|2 ≤ C (E(T, π0, 0, 1) +A2) for every π0 ∈ P(0) . (2.1)

A proof can be found for instance in [14, Lemma 1.7], and is based on an argument of
Allard (see [1, Theorem (6)]). Note that the argument in [14, Lemma 1.7] just uses the
fact that T induces a varifold in Rm+n with generalized mean curvature bounded by A.

3. Excess decay in the two regimes and the proof of Theorem 1.3

For the rest of the paper we will mostly work under the following assumption:

Assumption 3.1. We let T , Σ be as in Definition 1.1 with Ω = B1(0), n̄ = 1, and p = 2Q,
and let T be a representative mod(p). Moreover we assume A ≤ 1,

ΘT (0) ≥ Q , B1(0) ∩ sptp(∂T ) = ∅ , and ∥T∥(B1(0)) ≤
(
Q+ 3

4

)
ωm . (3.1)

Our main Theorem 1.3 will then be proved by showing two suitable decay propositions
in two different regimes based on the value of the ratio Ē−1E.

Proposition 3.2. For every p = 2Q, m, n, and any fixed δ1 > 0 there are 1
2
≥ r1 =

r1(δ1, p,m, n) > 0 and ε1 = ε1(δ1, p,m, n) > 0 with the following property. Assume that
Assumption 3.1 holds and that in addition

A2 ≤ ε1Ē(T, 0, 1) ≤ ε21 , (3.2)

then
E(T, 0, r1) ≤ δ1Ē(T, 0, 1) . (3.3)

Proposition 3.3. For every p = 2Q, m, n, there are 0 < r2 ≤ 1
2
, ε2 > 0, and 0 < η2 ≤ 1

with the following property. Assume that Assumption 3.1 holds and that in addition

E(T, 0, 1) ≤ η2Ē(T, 0, 1) and A2 ≤ ε2E(T, 0, 1) ≤ ε2Ē(T, 0, 1) ≤ ε22 . (3.4)

Then

E(T, 0, r2) ≤
1

2
E(T, 0, 1) . (3.5)

Proposition 3.2 will be proved in Section 5, whereas Sections 6 to 13 will be devoted
to the proof of Proposition 3.3. The key step towards the proof of Proposition 3.2 is to
establish that an analogous decay result holds true for the solutions to a suitable linearized
problem: these are the Dir-minimizing special multi-valued functions first introduced in [7]
and further studied in [5] in the codimension one case. The scheme of the proof of Propo-
sition 3.3 follows instead the blueprint of [4, Theorem 4.5], but the additional difficulty
here is that, when p = 2Q is even, the open books optimizing E may be arbitrarily close
to being flat. The same issue arises when working in the framework of the classes of stable
varifolds studied by Wickramasekera in [18] and Minter-Wickramasekera in [12], and in
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fact Proposition 3.3 has a counterpart in [18, Lemma 13.3] and [12, Theorem 3.1]. The
approach followed in the present paper is robust, and, a few months after a preprint version
appeared online, some of the arguments and calculations here presented were successfully
exported to the higher codimension setting in [9].

As anticipated in the Introduction, while presenting self-contained proofs of Propositions
3.2 and 3.3, we will have care of keeping track of the contribution of the curvature of the
ambient manifold Σ in the estimates: the fact that the decay propositions hold true under
the smallness assumptions (3.2) and (3.4) on ratios Ē−1A2 and E−1A2 rather than Ē−1A
and E−1A will ultimately lead to the quadratic dependence on A in the right-hand side of
(1.5).

Next, in the rest of this section, we will show precisely how Theorem 1.3 follows from
the two decay propositions. First, we show the validity of a slightly modified version of
Proposition 3.2.

Corollary 3.4. For every p = 2Q, m, n, and δ1 > 0 there are 1
2
≥ r1 = r1(δ1, p,m, n) > 0

and ε3 = ε3(δ1, p,m, n) > 0 with the following property. If Assumption 3.1 holds, and if
furthermore

A2 ≤ ε3E(T, 0, 1/2) and Ē(T, 0, 1) ≤ ε3 , (3.6)

then (3.3) holds true.

Proof. We show that (3.6) implies (3.2) when ε3 is chosen sufficiently small. To this aim,
it is sufficient to show that there exists a geometric constant C > 0 such that

E(T, 0, 1/2) ≤ C
(
Ē(T, 0, 1) +A2

)
. (3.7)

To prove (3.7), we let π0 ∈ P(0) ⊂ B(0) be a plane realizing Ē(T, 0, 1), so that

E(T, 0, 1/2) ≤ E(T, π0, 0, 1/2) , (3.8)

where in the calculation of E(T, π0, 0, 1/2) the subspace V (π0) can be chosen arbitrarily.
Next, if ε3 is chosen sufficiently small then

((pπ0)♯(T B1)) B3/4 = Q
q
π0 ∩B3/4

y
mod(p) .

In particular, by Lemma 2.4 we easily see that for every z ∈ π0 ∩ B3/4 there is a point
q ∈ spt(T ) such that pπ0(q) = z and |q− z|2 ≤ C(Ē(T, 0, 1)+A2). This implies easily that

E(π0, T, 0, 1/2) ≤ C(Ē(T, 0, 1) +A2) . (3.9)

Since

E(T, π0, 0, 1/2) ≤ 2m+2E(T, π0, 0, 1) ,

(3.7) follows immediately from (3.8) and (3.9). □

Finally, before coming to the proof of Theorem 1.3 we come to another important ingre-
dient, which is in fact an outcome of the analysis leading to Propositions 3.2 and 3.3.
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Lemma 3.5. For every p = 2Q,m, n, and γ > 0 there is C(p,m, n, γ) > 0 with the
following property. If Assumption 3.1 holds, if S and S′ are open books in B(0) realizing
E(T, 0, 1) and E(T, 0, r) respectively, and r ≥ γ, then

dH(S ∩B1,S
′ ∩B1)

2 ≤ C
(
A2 + E(T,S, 0, 1) + E(T,S′, 0, r)

)
, (3.10)

where dH denotes Hausdorff distance. Moreover, there is a constant C(p,m, n) such that

E(T,S, 0, 1
2
) ≤ C (E(T,S, 0, 1) +A2) . (3.11)

Lemma 3.5 will be proved in Section 8.

3.1. Proof of Theorem 1.3. Without loss of generality, using the scaling and translation
invariance of the problem we assume that r = 1 and q = 0. We fix therefore Σ, T,Ω = B1,
and assume that sptp(∂T ) ∩B1 = ∅, ∥T∥(B1) < (Q+ 1

2
)ωm and fix a plane π0 such that

Ē(T, 0, 1) +A2 = E(T, π0, 0, 1) +A2 ≤ ε . (3.12)

The choice of ε will be subject to various smallness specifications along the argument.
In fact we first notice that, by the classical monotonicity formula, if it is smaller than
some geometric constant then ∥T∥(Br) ≤ (Q + 3

4
)ωmr

m for every r ≤ 1. In particular,
Assumption 3.1 holds for T0,r and Σ0,r in place of T and Σ, whenever r ≤ 1.
Next, we fix ε2, η2, and r2 as in Proposition 3.3. We then specify δ1 = η2

2
, and fix

correspondingly r1 and ε3 as in Corollary 3.4. For convenience we define ε̄ := min{ε2, ε3, 1}
and we next proceed to define inductively a family of radii tk indexed by a set K which is
either the set of natural numbers or the subset of all natural numbers up to a maximum
kmax. The procedure will also give a suitable estimate for E(T, 0, tk).
First of all we set t0 :=

1
2
, and notice that

E(T, 0, 1
2
) ≤ E(T, π0, 0, 12) ≤ C(Ē(T, 0, 1) +A2) , (3.13)

as in the proof of Corollary 3.4. Assume next that tk has been chosen and consider the
current T0,tk , the manifold Σ0,tk and A2

k := ∥AΣ0,tk
∥2∞ = t2kA

2 ≤ εt2k. We then examine the
following three conditions:

Ē(T0,tk , 0, 1) ≤ ε̄ (3.14)

A2
k ≤ ε̄min{E(T0,tk , 0, 1),E(T0,tk , 0, 12)} (3.15)

E(T0,tk , 0, 1) ≤ η2Ē(T0,tk , 0, 1) . (3.16)

(a) If (3.14) fails we set kmax = k.
(b) If (3.14) holds but (3.15) fails we set tk+1 =

tk
2
and we invoke (3.11) to conclude

E(T, 0, tk+1) ≤
C

ε̄
A2
k =≤ Cbt

2
k+1A

2 (3.17)

for a constant Cb depending only on p,m, n, and ε̄.
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(c) If (3.14) and (3.15) hold, but (3.16) fails we apply Corollary 3.4, set tk+1 = r1tk
and estimate

E(T, 0, tk+1) = E(T0,tk , 0, r1) ≤ δ1Ē(T0,tk , 0, 1) = δ1Ē(T, 0, tk)

≤ δ1
η2
E(T, 0, tk) =

1

2
E(T, 0, tk) . (3.18)

(d) If (3.14), (3.15), and (3.16) hold we apply Proposition 3.3, set tk+1 = r2tk and
conclude

E(T, 0, tk+1) = E(T0,tk , 0, r2) ≤
1

2
E(T0,tk , 0, 1) =

1

2
E(T, 0, tk) . (3.19)

Next observe that the following inequality holds for k = 0 and for those k for which (k−1)
falls under alternative (b), because t2k ≤ tk ≤ 2−k:

E(T, 0, tk) ≤ Cb(A
2 + Ē(T, 0, 1))2−k . (3.20)

For any other k ∈ K we let k′ be the largest integer smaller than k for which k′ − 1 falls
in alternative (b), if it exists, or set k′ = 0. We now can use (3.18) and (3.19) and the
validity of (3.20) for k′ to conclude

E(T, 0, tk) ≤ 2−(k−k′)E(T, 0, tk′) ≤ 2−(k−k′)Cb(A
2 + Ē(T, 0, 1))2−k

′
,

and hence the validity of (3.20) for every k ∈ K. Next set γ := min{r1, r2} and observe
that γ ≤ tk+1

tk
≤ 1

2
. For each k let Sk be an open book such that E(T, 0, tk) = E(T,Sk, 0, tk).

By Lemma 3.5 we have

dH(Sk ∩B1,Sk−1 ∩B1)
2 ≤ C(A2 + Ē(T, 0, 1))2−k ∀k ∈ K \ {0} (3.21)

dH(π0 ∩B1,S0 ∩B1)
2 ≤ C(A2 + Ē(T, 0, 1)) , (3.22)

where in (3.22) we have applied (3.10) to the current T0,t0 = T0, 1
2
together with (3.13). In

particular we conclude that dH(π0 ∩ B1,Sk ∩ B1)
2 ≤ C(A2 + Ē(T, 0, 1)) ≤ Cε, which in

turn, together with (3.20) implies E(T, π0, 0, tk) ≤ Cε. Since the constant C is independent
of ε, upon choosing ε sufficiently small, we conclude

E(T, π0, 0, tk) ≤ ε̄ ∀k ∈ K . (3.23)

On the other hand the latter estimate implies that alternative (a) never applies and the
inductive procedure never stops, namely K = N.
Observe next that (3.21) implies that Sk ∩ B1 is a Cauchy sequence of compact sets

in the Hausdorff distance. It thus converges to S ∩ B1 for some unique open book S.
Consider next a sequence rj ↓ 0 with the property that T0,rj converges to Q JπK for some

plane π. We can find a sequence k(j) so that tk(j)+1 ≤ rj ≤ tk(j). Given that
tk(j)+1

tk(j)
≥ γ,

we immediately conclude that T0,tk(j) converges to Q JπK. On the other hand this implies

that E(Q JπK ,S, 0, 1) = 0, which in turn forces the equality S = π.
Next, summing the appropriate tail of the series (3.21) we immediately see that

dH(Sk ∩B1, π ∩B1)
2 ≤ C(A2 + Ē(T, 0, 1))2−k .
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Combined with (3.20) we conclude

E(T, π, 0, tk) ≤ C(A2 + Ē(T, 0, 1))2−k .

Finally, for any r ≤ 1
2
we choose k so that tk+1 ≤ r ≤ tk and we immediately conclude

E(T, π, 0, r) ≤ Cγ−m−2E(T, π0, 0, tk) ≤ C(A2 + Ē(T, 0, 1))2−k .

Since r ≥ tk+1 ≥ γk+1, the latter implies the desired estimate (1.5) for α = − logγ 2. □

4. Graphical parametrizations over planes

Next we introduce the graphical parametrization that will play in this paper the same
role that Allard’s and White’s regularity results play in [13] and [4], respectively. The
first proposition follows essentially from [6, Theorem 16.1] once we can show that the tilt-
excess is controlled by the L2 planar excess (an estimate which can be reduced to Allard’s
classical work). We follow the notation of [4], and for planes π ⊂ TqΣ we denote by π⊥

their orthogonal complement in Rm+n and by π⊥q their orthogonal complement in TqΣ.
Moreover, we set, for an open set Ω ⊂ Rm+n,

h(T,Ω, π) := sup{|pπ⊥(x− y)| : x, y ∈ spt(T ) ∩ Ω} ,

and we introduce two further notions of excess, which are “W 1,2-based” rather than L2-
based.

Definition 4.1. Let T be a representative mod p.

(a) Eo is the oriented 2 tilt excess of T with respect to a plane. More precisely, let
π ∈ P(q) be oriented by the unit m-vector π⃗, and set Cr(q, π) := Br(q, π) × π⊥,
where Br(q, π) := Br(q) ∩ (q + π). Then, we set, for Ω = Br(q) or Ω = Cr(q, π):

Eo(T, π,Ω) :=
1

2ωmrm

ˆ
Ω

|T⃗ (q′)− π⃗|2 d∥T∥(q′) ;

(b) Eno for the unoriented tilt excesses of T with respect to a plane π ∈ P(q), namely

Eno(T, π,Ω) :=
1

2ωmrm

ˆ
Ω

|T⃗ (q′)− π|2no d∥T∥(q′) ,

where

|π1 − π2|no := min{|π⃗1 − π⃗2|, |π⃗1 + π⃗2|} .

Note moreover that in place of |π1 − π2|no we could use the integrand |pπ1 −pπ2|, as the
two integrands are equivalent up to a multiplicative constant.

Remark 4.2. While we will use the notation and terminology of [7] for “special” Q-valued
functions, since we are in a codimension one context and we will always deal with Lipschitz
multifunctions, in our case they reduce to the specification of the following classical maps:

2The other notions of excess have the property that they only depend on the mod(p) class [T ] of T , as
long as T is a representative mod p. This is however not the case for the oriented tilt excess.
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• Q Lipschitz maps v1, . . . , vQ defined on some domain Ω of an orientedm-dimensional
plane πq ⊂ TqΣ with values into its orthogonal complement π⊥

q , taking values in Σ.
This means that the maps will take the special form vi(z) = ui(z) + Ψ(z + ui(z)),
where Ψ : TqΣ 7→ TqΣ

⊥ parametrizes Σ as a graph over TqΣ and ui takes values on

the real line π
⊥q
q .

• Amap εv : Ω → {−1, 1}. This map specifies whether we should consider the tangent
planes to the graphs of each vi at (z, vi(z)) as positively oriented (i.e. having the
same orientation as the pushforward of πq), or negatively oriented. Note that, by
definition of special Q-valued functions, at any given point z either all such planes
are positively oriented, or they are all negatively oriented.

Following [7] such an object will be denoted by (
∑

i JviK , εv) and Gv will denote the integer
rectifiable current associated to it (the “graph” of v), which happens to be a representative
mod 2Q, with no boundary (mod 2Q) in the cylinder Ω × π⊥

q . If not otherwise specified,
the functions will be ordered so that u1 ≤ u2 ≤ . . . ≤ uQ, for some ordering of the real

line π
⊥q
q (a canonical choice of ordering of π

⊥q
q is the one which is compatible with the

orientations of TqΣ and πq).

The main results of this section are Propositions 4.3, 4.4, and 4.5 below.

Proposition 4.3 (Multivalued approximation). For every p = 2Q, m, and n there exist
constants εG, γ, C > 0 depending on (Q,m, n), with the following property. Assume that

(a) T , Σ, and Ω = B1 are as in Definition 1.1 with n̄ = 1 and p = 2Q, and T is a
representative mod(p);

(b) Ē+A2 := Ē(T, 0, 1) +A2 ≤ ε2G, and Ē(T, 0, 1) = E(T, π0, 0, 1);
(c) B1 ∩ sptp(∂T ) = ∅;

(d1) either there exists ξ ∈ B1/16 such that ΘT (ξ) ≥ Q
(d2) or

(pπ0)♯(T C7/8(π0) ∩B1) = Q
q
π0 ∩B7/8

y
. (4.1)

Then, there exist a function u : B3/4 := B3/4(0, π0) → AQ(π
⊥0
0 ), and a closed set K ⊂ B3/4

such that, if we set

v(z) :=

(
Q∑
i=1

Jvi(z)K , εu(z)

)
, vi(z) := ui(z) + Ψ(z + ui(z)) , (4.2)

then the following holds:

spt(Gv) ⊂ Σ , (4.3)

Lip(v) ≤ C(Ē+A2)γ and osc(v) ≤ C(Ē+A2)
1/2 + h(T,B15/16, π0), (4.4)

Gv (K × π⊥
0 ) = T (K × π⊥

0 ) ∩B15/16 mod(p) , (4.5)

|B3/4 \K| ≤ ∥T∥(((B3/4 \K)× π⊥
0 ) ∩B15/16) ≤ C(Ē+A2)1+γ , (4.6)



12 C. DE LELLIS, J. HIRSCH, A. MARCHESE, L. SPOLAOR, AND S. STUVARD∣∣∣∣∣∥T∥(C3/4 ∩B15/16)−Q|B3/4| −
1

2

ˆ
B3/4

|Dv|2
∣∣∣∣∣ ≤ C (Ē+A2)1+γ , (4.7)

∥v∥2L∞ +

ˆ
B3/4

|Dv|2 ≤ C (Ē+A2) . (4.8)

The next proposition adds two conclusions which are useful in our situation and which
follow from a careful combination of the estimates in Proposition 4.3 with the classical
monotonicity formula.

Proposition 4.4. Let T , Σ, u, and v be as in Proposition 4.3. Then:

(i) If q0 = (z0, w0) ∈ B1/4 ×B1/4 ⊂ π0 × π⊥
0 and ΘT (q0) ≥ Q, then

ˆ
Br0 (z0,π0)∩K

1

|z − z0|m−2

Q∑
i=1

∣∣∣∣∂r (vi(z)− w0)

|z − z0|

∣∣∣∣2 dz ≤ Cr−m0

(
Ē+A2

)
∀r0 <

1

4
. (4.9)

(ii) If S ∈ B(0) has spine V = V (S) and (ω−1
m E(S, T, 0, 1))

1
m+2 ≤ 1

8
then for any

ρ0 ∈
[
(ω−1

m E(S, T, 0, 1))
1

m+2 , 1
8

]
, upon setting

S(ρ) := S ∩B7/8 ∩C 1
2
\B 1

8
+ρ(V ) ,

we have thatˆ
S(ρ0)

dist2(q, spt(Gv)) dHm ≤ C

ˆ
S(ρ0)

dist2(q, spt(T )) dHm + C
(
Ē+A2

)1+β
, (4.10)

for some positive geometric constant β = β(m,Q).

In the final proposition we take advantage of the regularity theory for area-minimizing
currents in codimension 1. Before coming to the statement we introduce a suitable cylin-
drical version of the L2 excess which is given by

E(T, π0,Cr(z, π0)) :=
1

rm+2

ˆ
Cr(z,π0)

dist(q − z, π0)
2 d∥T∥(q) . (4.11)

Proposition 4.5. Let T and Σ be as in Proposition 4.3. The approximating map v and
the set K can be required to satisfy the following additional property. Assume that for
some q = (z, w) ∈ spt(T ) ∩ B7/8 ∩ C1/2 ⊂ π0 × π⊥

0 and some cylinder C2r(z, π0) ⊂ C1/2

the following holds:

ΘT (q
′) < Q ∀q′ ∈ C2r(z, π0) ∩B7/8, (4.12)

rm ≥ (Ē+A2)1−γ . (4.13)

Then Br(z) ⊂ K and there is a C1,1/2 selection for u|Br(z). More precisely:

(i) εu is constant on Br(z);
(ii) there are C1,1/2 functions u1 ≤ . . . ≤ uQ : Br(z) → π⊥0

0 = R such that u =
(
∑

i JuiK , εu),
(iii) for all i < j, either ui(ζ) < uj(ζ) ∀ζ ∈ Br(z) or ui(ζ) = uj(ζ) ∀ζ ∈ Br(z);
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(iv) The following estimate holds for every i ∈ {1, . . . , Q}

∥Dui∥C0(Br(z)) + r−
1/2[Dui]1/2,Br(z) ≤ C (E(T B7/8, π0,C2r(z, π0)) +A2)

1/2 . (4.14)

Proof of Proposition 4.3. Having fixed the plane π0, we will writeE
no(T,Ω) = Eno(T, π0,Ω)

to simplify the notation. First, observe that the unoriented excess Eno(T,B1) introduced in
Definition 4.1 is in fact equivalent, up to multiplicative constants, to the classical varifold
excess (see [1]) of the varifold v(T ) associated to T . Invoking [6, Lemma 5.1], we have that

δv(T )[X] = −
ˆ
X · H⃗T (x) d∥T∥(x) for all X ∈ C1

c (B1;Rm+n) ,

where H⃗T is a Borel function satisfying ∥H⃗T∥∞ ≤ CA. Hence, we can use the classical tilt
excess inequality, cf. [3, Proposition 4.1], to achieve, for every z0 ∈ B3/4 = B3/4(0, π0) and
for any r0 with 9r0 < 1/8,

Eno(T,B9r0(z0)) ≤ C(Ē+A2) . (4.15)

By Lemma 2.4,

sup
{
|p⊥
π0
(x)| : x ∈ spt(T ) ∩B15/16

}
≤C(Ē+A2)

1/2 ,

so that, if we set T ′ := T B15/16 and C7/8 := C7/8(0, π0), we then conclude that

∂T ′ C7/8 = 0 mod(p)

and that

h(T ′,C7/8, π0) ≤ h(T,B15/16, π0) < C(Ē+A2)
1/2 , (4.16)

and thus

Eno(T ′,C8r0(z0)) ≤ Eno(T,B9r0(z0)) ≤ C(Ē+A2) .

Observe next that, by the constancy lemma mod(p)(see [6, Lemma 7.4]), there exist (up
to a change of orientation of π0) an integer 1 ≤ k ≤ Q such that

(pπ0)♯T
′ C7/8 = k

q
π0 ∩B7/8

y
mod(p) .

We claim that it is necessarily k = Q. Indeed, if k < Q, assuming εG sufficiently small we
can appeal to White’s regularity theorem [17, Theorem 4.5], and conclude that T ′ C7/64

is (the current associated to) a regular submanifold of Σ, which, in particular, would be
free of points q with ΘT (q) ≥ Q: thus, having k < Q would contradict both (d2) and (d1).
We can now appeal to [6, Theorem 16.1] and (4.15) to conclude that

Eo(T ′,C4r0(z0)) ≤ C(Ē+A2) .

We can thus apply [6, Theorem 15.1] to find a map uz0 : Br0(z0, π0) → AQ(π
⊥0
0 ) and a

closed set Kz0 ⊂ Br0(z0, π0) so that the associated map vz0 as in (4.2) satisfies (4.3) to
(4.7) on the cylinder Cr0(z0, π0), where γ > 0 is a geometric constant. Using the same
arguments as in [11, Section 6.2] to patch the maps uz0 together when z0 ∈ B3/4 varies, we

conclude the existence of a unique map u : B3/4 ⊂ π0 → AQ(π
⊥0
0 ) and a closed setK ⊂ B3/4
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so that the associated map v satisfies (4.3) to (4.7). Moreover, using [6, Theorem 16.1], a
standard covering argument, and the tilt excess inequality as in (4.15), it holds

∥T ′∥(C3/4)−Q|B3/4| ≤ C(Eno(T ′,C7/8) +A2) ≤ C(Ē+A2) ,

we can use (4.7) to infer ˆ
B3/4

|Dv|2 ≤ C(Ē+A2) . (4.17)

Now, the second estimate in (4.4) and (4.16) give immediately

osc (v) ≤ C(Ē+A2)
1/2 .

However observe also that

sup{|pπ⊥
0
(q)| : q ∈ spt(T ) ∩B15/16 ∩C3/4} ≤ C(Ē+A2)

1/2 ,

while spt(T )∩spt(Gv)∩B15/16∩C3/4 is certainly nonempty. We thus conclude the estimate
∥v∥2L∞ ≤ C(Ē+A2). □

Proof of Proposition 4.4. In order to prove (4.9), let q0 = (z0, w0) be as in the statement of
the proposition and let r0 <

1
4
. Observe first that, since Br0(q0) ⊂ B15/16 ∩C3/4, it follows

rather easily from Proposition 4.3 that

∥T∥ (Br0(q0))

ωmrm0
−ΘT (q0) ≤

∥Gv∥ (Br0(q0))

ωmrm0
−Q+

∥T −Gv∥ (Br0(q0))

ωmrm0

≤ C

(
1

rm0

ˆ
B3/4

|Dv|2 + 1

rm0
(Ē+A2)

)
(4.7)

≤ C

rm0
(Ē+A2) .

We then use the monotonicity formula and the fact that ΘT (q0) = Q to infer thatˆ
Br0 (q0)

|(q − q0)
⊥|2

|q − q0|m+2
d ∥T∥ ≤ ∥T∥(Br0(q0))

ωmrm0
−ΘT (q0) + CA2r20

≤ Cr−m0 (Ē+A2) .

Note that the usual monotonicity formula for varifolds with bounded mean curvature (as
in [1]) would give an error term of type CA in the first line. In order to get a quadratic
error it suffices to invoke the argument in [10, Appendix A], which uses the stronger fact
that ∥T∥ is a stationary varifold in the Riemannian manifold Σ, cf. also [10, Remark A.2].

Using the Lipschitz continuity of v, the same argument as in the proof of [4, Proposition
8.3] shows that

ˆ
Br0 (z0)∩K

1

|z − z0|m−2

Q∑
i=1

∣∣∣∣∂r (vi(z)− w0)

|z − z0|

∣∣∣∣2 ≤ C

ˆ
Br0 (q0)

|(q − q0)
⊥|2

|q − q0|m+2
d ∥T∥

≤ Cr−m0 (Ē+A2) ,

thus proving (4.9).
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We now come to (4.10). Recall that S(ρ) := S∩B7/8∩(C 1
2
\B 1

8
+ρ(V )). Upon introducing

the set CK := K × π⊥
0 , we note that it is enough to showˆ

S(ρ0)

dist2(q, spt(T CK)∩B15/16) dHm ≤ C

ˆ
S(ρ0)

dist2(q, spt(T )) dHm+C
(
Ē+A2

)1+β
,

(4.18)
since then (4.10) follows fromˆ

S(ρ0)

dist2(q, spt(Gv)) dHm ≤
ˆ
S(ρ0)

dist2(q, spt(Gv CK) ∩B15/16) dHm

=

ˆ
S(ρ0)

dist2(q, spt(T CK) ∩B15/16) dHm .

Towards the proof of (4.18), define the set

U :=

{
q ∈ S(ρ0) : dist(q, spt(T )) <

1

2
dist(q, spt(T CK) ∩B15/16)

}
.

It is clear that (4.18) holds true provided we can show that, for a suitable choice of ρ0,

Hm(U) ≤ C(Ē+A2)1+β . (4.19)

To this aim, first observe that if we set

δq :=
1

2
min

{
dist(q, spt(T )), ρ0,

1

8

}
for q ∈ S(ρ0) ,

then one has

E(S, T, 0, 1) ≥
ˆ
Bδq (q)∩S

dist2(x, spt(T )) dHm(x) ≥ ωm δ
m+2
q , (4.20)

where in the second inequality we have used that dist(x, spt(T )) ≥ δq for all x ∈ Bδq(q)

due to the definition of δq. It follows that if 1/8 ≥ ρ0 ≥ 10 (ω−1
m E(S, T, 0, 1))

1
m+2 , then

dist(q, spt(T )) = 2δq ≤ 2 (ω−1
m E(S, T, 0, 1))

1
m+2 ≤ 1

40
∀q ∈ S(ρ0) . (4.21)

In particular,

dist(q, spt(T )) = dist(q, spt(T ) ∩C5/8 ∩B29/32) for all q ∈ S(ρ0) . (4.22)

We will estimate the measure of U by a Vitali covering argument. We apply Vitali’s
covering theorem to the family of balls {B2r(q)(q) : q ∈ U} with r(q) := dist(q, spt(T )) to
find a disjoint subfamily {B2r(qi)(qi)} such that

U ⊂
⋃
i

B10r(qi)(qi) .

For each i, fix pi ∈ spt(T ) such that |qi − pi| = dist(qi, spt(T )) = r(qi). Notice that
pi ∈ spt(T ) ∩C5/8 ∩B29/32 as a consequence of (4.22). Hence

Br(qi)(pi) ∩ spt(T CK) = Br(qi)(pi) ∩ spt(T CK) ∩B15/16 = ∅ , (4.23)
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for otherwise, given the definition of r(qi), one would contradict the fact that qi ∈ U . Notice
that, since for every i we have Br(qi)(pi) ⊂ B2r(qi)(qi), then also {Br(qi)(pi)}i is a disjoint
family. We recall next the density lower bound for area minimizing currents mod(p), that
is ωmr

m ≤ 2 ∥T∥ (Br(q̃)) for all q̃ ∈ spt(T ), which holds provided A is smaller than a
geometric constant. We then have

Hm(U) ≤ p
∑
i

10mωmr(qi)
m ≤ 2p · 10m

∑
i

∥T∥
(
Br(qi)(pi)

)
= 2p · 10m ∥T∥

(⋃
i

Br(qi)(pi)

)
≤ 2p · 10m ∥T∥

(
B15/16 ∩ (B 3

4
\K)× π⊥

0

)
≤ C(Ē+A2)1+γ ,

where in the last inequality we have used (4.6) and the second last inequality is a conse-
quence of (4.21), (4.22), and (4.23). We have thus proved that (4.19) holds with β = γ,
and the proof of (4.10) is complete. □

Proof of Proposition 4.5. In order to simplify our notation, we set T ′ := T B7/8. Note
first that under the additional assumption (4.12) we can apply [4, Lemma 9.5] to deduce
that T ′ is a classical area minimizing current in B2r(q), and thus, thanks to Lemma 2.4 and
(4.13), in C7r/4(z, π0). We can then apply the standard decomposition of codimension 1
area minimizing currents in sum of area minimizing boundaries with constant multiplicities,
and De Giorgi’s ε-regularity theorem with L2-excess (see for instance [2, Theorem 4.5]), so
to conclude that inC3r/2(z, π0) the support spt(T

′) coincides with the union of the graphs of

finitely many C1,1/2 functions ṽ1, . . . , ṽN with the property that ṽi(ζ) = ũi(ζ)+Ψ(ζ+ ũi(ζ))
and ũ1 ≤ ũ2 ≤ . . . ≤ ũN . Observe that, because of the assumption (4.13) and the
estimate (4.6), K ∩ Br(z) can be assumed to have positive measure, provided ε is chosen
sufficiently small. In particular we conclude that N = Q and that the multifunctions∑

i JṽiK and
∑

i JviK coincide on a set of positive measure. Because of the constancy lemma
we immediately conclude the existence of a constant ε̃ ∈ {−1, 1} such that

T ′ C3r/2(z, π0) = Gṽ

for the special multivalued function

ṽ = (
∑
i

JṽiK , ε̃) .

We remark in passing that the estimate

∥Dũi∥C0(B5r/4(z)) + r−
1/2[Dũi]1/2,B5r/4(z) ≤ C (E(T B7/8, π0,C2r(z, π0)) +A2)

1/2 (4.24)

follows from classical elliptic regularity, the reader can for instance see the argument in the
proof of [4, Theorem 6.3].

If we could show that v and ṽ coincide on the domain of definition of ṽ, we would be
finished. In the remaining argument we will show that we can in fact modify v suitably so
to coincide with the map ṽ for all choices of z and r, while retaining all the estimates that
v satisfies (of course with some larger geometric constants).
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Define the set P of pairs (q, r) satisfying the assumption of the Proposition, and denote
by ũq,r and ṽq,r = ũq,r +Ψ(·+ ũq,r) the corresponding maps which we just found. We wish
to redefine the map v of Proposition 4.3 with the following algorithm:

(1) First of all we restrict u to K;
(2) We then enlarge K by adding B9r/8(z) for every pair (q, r) ∈ P (where q = (z, w))

and denote by K♯ the corresponding set;
(3) Furthermore we extend u to each such B9r/8(z) by setting it equal to ũq,r;
(4) We make a final Lipschitz extension to the whole ball B1/2, and then we lift such

extension to Σ using Ψ.

We denote by u♯ the map defined through the steps (1), (2), and (3), and we set v♯(ζ) =
u♯(ζ) + Ψ(ζ + u♯(ζ)). Note that the extension in (3) is well defined because necessarily
ṽq,r = ṽq

′,r′ on B9r/8(z)∩B9r′/8(z
′) whenever the latter is nonempty. This crucial property

follows from the fact that over both balls the graphs of the corresponding maps coincide
with the restrictions of T ′ on the corresponding cylinders.

We next claim that

Lip (v♯) ≤ C(Ē+A2)γ . (4.25)

Given that ∥v♯∥L∞ ≤ C(Ē +A2)1/2 just because of Lemma 2.4, we can use the extension
theorem [7, Corollary 5.3] to extend u♯ to B1/2 by enlarging the Lipschitz constant and the
L∞ bound by a constant geometric factor and then lift such extension to Σ using Ψ. All
the remaining conclusions of Proposition 4.3 will then follow, except for the fact that K♯

is not closed. To overcome this issue, we replace K♯ with the closed set

K⋆ := K ∪
⋃

(q,r)∈P

Br(z) .

We observe that all the conclusions of Proposition 4.3 still hold, since K ⊂ K⋆ ⊂ K♯. The
first inclusion is obvious; the second follows from (4.13), which in particular implies that⋃

(q,r)∈P Br(z) ⊂
⋃

(q,r)∈P B9r/8(z).

We are left with the proof of (4.25): we fix ξ, ζ ∈ K♯ and distinguish several cases.

Case (a) ξ, ζ ∈ K. Then

Gs(v♯(ξ), v♯(ζ)) = Gs(v(ξ), v(ζ)) ≤ Lip(v)|ξ − ζ| ≤ C(Ē+A2)γ|ξ − ζ| . (4.26)

Case (b) ξ ∈ K, ζ ∈ K♯ \ K. Consider then (q, r) ∈ P such that ζ ∈ B9r/8(z). We
distinguish further two situations:

(b1) ξ ∈ B5r/4(z). Then we obviously have

Gs(v♯(ξ), v♯(ζ)) = Gs(ṽq,r(ξ), ṽq,r(ζ)) ≤ Lip(ṽq,r)|ξ − ζ|
≤ C(E(T ′, π0,C2r(z, π0)) +A2)1/2|ξ − ζ| . (4.27)

Note however that, by (4.13)

E(T ′, π0,C2r(z, π0)) ≤
1

rm+2
Ē ≤ Ē2γ .
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Therefore we again conclude

Gs(v♯(ξ), v♯(ζ)) ≤ C(Ē+A2)γ|ξ − ζ| . (4.28)

(b2) ξ ̸∈ B5r/4(z). We then select ξ′ ∈ K ∩B9r/8(z). Since |ξ − ζ| > r
8
we certainly have

|ξ′ − ζ| ≤ 4r ≤ 32|ξ − ζ| , (4.29)

|ξ − ξ′| ≤ |ξ − ζ|+ |ξ′ − ζ| ≤ 33|ξ − ζ| . (4.30)

We can then use the estimates in cases (a) and (b1) to conclude

Gs(v♯(ξ), v♯(ζ)) ≤ Gs(v♯(ξ), v♯(ξ′)) + Gs(v♯(ζ), v♯(ξ′)) ≤ C(Ē+A2)γ|ξ − ζ| . (4.31)

Case (c) ξ, ζ ∈ K♯ \K. As above we choose a pair (q, r) ∈ P such that ζ ∈ B9r/8(z).
As in case (b) we distinguish two corresponding cases, which we call (c1) and (c2). In
case (c1), namely if ξ ∈ B5r/4(z), we argue as in case (b1) to conclude (4.28). If instead
ξ ̸∈ B5r/4(z) we then choose ξ′ ∈ K ∩ B9r/8(z). The two inequalities (4.29) and (4.30) are
still valid. We can now proceed as in the proof of (4.31), using, this time, case (b) and
case (c1). □

5. Proof of Proposition 3.2

In this section we prove the first decay Proposition 3.2. This will be achieved via a
suitable linearization over a plane using the theory of special multivalued functions.

5.1. Preliminary decay estimate on harmonic multifunctions. The main reason
behind Proposition 3.2 is an analogous decay estimate for Dir-minimizing functions u
taking values in AQ(R).

Lemma 5.1. For every δ > 0 there is a constant r̄(Q,m, δ) > 0 with the following property.
Let B1 ⊂ Rm and let u ∈ W 1,2(B1,AQ(R)) be Dir-minimizing and such that u(0) = Q J0K.
Then there is a 1-homogeneous Dir-minimizing ū ∈ W 1,2(B1,AQ(R)) such that

1

rm+2

ˆ
Br

Gs(u(x), ū(x))2 dx ≤ δ

ˆ
B1

|Du|2 ∀r ≤ r̄. (5.1)

Proof. We first claim that it suffices to prove that the lemma holds under the additional
assumption that η ◦ u ≡ 0 and with the additional conclusion that η ◦ ū ≡ 0. Towards
proving the claim, notice first that, if f : B1 → R is a harmonic function with f(0) = 0,
then it is elementary that, denoting f̄ the linear term in the Taylor series representing f ,
one has

1

rm+2

ˆ
Br

|f − f̄ |2 dx ≤ Cr2
ˆ
B1

|Df |2 . (5.2)

Next, for a general u ∈ W 1,2(B1,AQ(R)) which is Dir-minimizing and such that u(0) =
Q J0K, one denotes f := η ◦ u and v := u ⊖ f ; if v̄ denotes the 1-homogeneous and Dir-
minimizing function with zero average obtained applying the lemma to v, and f̄ denotes the
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linear term in the Taylor series of f then, setting ū := v̄⊕ f̄ one has, for all r ≤ r̄(Q,m, δ)

1

rm+2

ˆ
Br

Gs(u, ū)2 =
1

rm+2

ˆ
Br

Gs(v, v̄)2 +
Q

rm+2

ˆ
Br

|f − f̄ |2

≤ δ

ˆ
B1

|Dv|2 + C Qr2
ˆ
B1

|Df |2

≤ δ

ˆ
B1

(|Dv|2 +Q|Df |2)

= δ

ˆ
B1

|Du|2 ,

where the second to last inequality holds up to choosing a possibly smaller value for r̄ so
that Cr2 ≤ δ.

Next, we prove the validity of the lemma under the additional assumption that η ◦u ≡ 0
and with the additional conclusion that η ◦ ū ≡ 0. We denote by I1 ⊂ W 1,2(B1,AQ(R))
the space of 1-homogeneous Dir-minimizing functions with zero average. We argue by
contradiction and assume therefore that for every choice of r̄ = 1

k
there is a Dir-minimizing

function uk ∈ W 1,2(B1,AQ(R)) such that uk(0) = Q J0K, η ◦ uk ≡ 0, and for which there is
a positive radius rk <

1
k
such that

inf
ū∈I1

1

rm+2
k

ˆ
Brk

Gs(uk(x), ū(x))2 dx ≥ δ

ˆ
B1

|Duk|2 . (5.3)

By rescaling we can, w.l.o.g., assume that
´
B1

|Duk|2 = 1 and thus up to subsequences

we can assume that uk converges to some Dir-minimizing u ∈ W 1,2(B1,AQ(R)), while
statement (5.3) becomes

inf
ū∈I1

1

rm+2
k

ˆ
Brk

Gs(uk(x), ū(x))2 dx ≥ δ . (5.4)

Clearly ˆ
B1

|Du|2 ≤ 1 .

Moreover, by [5, Theorem 3.1], uk is equilipschitz on each compact subset of B1, and thus
the convergence is uniform. In particular u(0) = Q J0K and η ◦ u ≡ 0. Recall next that
the convergence is strong in W 1,2(Br) for every r < 1 (see [7]). Therefore

´
B1

|Du|2 > 0.
Otherwise we would have

lim
k→∞

ˆ
B3/4

|Duk|2 = 0 . (5.5)

Combined with the Lipschitz estimate of [5, Theorem 3.1], the latter would imply

lim
k→∞

∥Duk∥L∞(B1/2) = 0 .
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Observe however that, given the information uk(0) = Q J0K, from this we would easily infer

lim
k→∞

1

rm+2
k

ˆ
Brk

Gs(uk(x), Q J0K)2 dx ≤ C(m) lim
k→∞

∥Duk∥2L∞(B1/2)
= 0 ,

which is incompatible with (5.4) because the function identically equal to Q J0K is certainly
1-homogeneous and with zero average. We thus conclude

η :=

ˆ
B1

|Du|2 > 0 . (5.6)

Consider next the frequency I = Iu,0(0). By [5, Theorem 3.6] we know that I is a positive
integer. If I ≥ 2, it then follows from the monotonicity of the frequency function that

ˆ
Br

|Du|2 ≤M0r
m+2 for every r > 0 .

In particular, for any fixed positive r̄ there would be K := K(r̄) ∈ N such that

ˆ
B2r̄

|Duk|2 ≤ 2m+3M0r̄
m+2 ∀k ≥ K .

By the Lipschitz estimate of [5, Theorem 3.1] we then conclude

∥Duk∥L∞(Br̄) ≤ CM
1/2
0 r̄ ∀k ≥ K

for a geometric constant C. In particular, again using uk(0) = Q J0K we get

1

rm+2

ˆ
Br

Gs(uk(x), Q J0K)2 dx ≤ CM0r̄
2 ∀k ≥ K, ∀r < r̄ .

We thus choose first r̄ sufficiently small so that CM0r̄
2 ≤ δ

2
and k sufficiently large so that

k ≥ K and 1
k
< r̄. Again our conclusion would be in contrast with (5.4) for all such k’s

and we thus conclude that the frequency I cannot be larger than 1. It must therefore be
1. From this, we can draw the following conclusions:

lim
r↓0

rDu,0(r)

Hu,0(r)
= 1 (5.7)

lim
r↓0

Hu,0(r)

rm+1
=: γ > 0 (5.8)

lim
r↓0

Du,0(2r)

Du,0(r)
= 2m (5.9)

lim
r↓0

Wu,0(r) := lim
r↓0

(
r−mDu,0(r)− r−m−1Hu,0(r)

)
= 0 . (5.10)
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In particular, consider the threshold ε̄ > 0 given by [5, Proposition 7.1] for the choice
C = 2m+2. Next choose r̄ sufficiently small so that

Hu,0(r̄) ≥
γ

2
r̄m+1 (5.11)

r̄Du,0(2r̄) ≤ 2m+1Hu,0(r̄) (5.12)

r̄m+1Wu,0(r̄) ≤
ε̄

2
Hu,0(r̄) . (5.13)

For any sufficiently large k we then have

r̄Duk,0(2r̄) ≤ 2m+2Huk,0(r̄) (5.14)

r̄m+1Wuk,0(r̄) ≤ ε̄Huk,0(r̄) . (5.15)

We then can apply [5, Proposition 7.1] to each rescaled function vk(x) := uk(r̄x). We
thus conclude the existence of a constant β (which is geometric) and a constant C̄ (which
depends on r̄) such that there exists a 1-homogeneous Dir-minimizing function ūk with
η ◦ ūk ≡ 0 (although this property is not claimed in the statement of [5, Proposition 7.1],
it can be easily concluded by a rapid inspection of the proof) and with the property that

∥Gs(uk, ūk)∥C0(Br) ≤ C̄r1+β ∀r ≤ r̄ .

In particular, for every k sufficiently large, we would inferˆ
Br

Gs(uk(x), ūk(x))2 dx ≤ C̄rm+2+2β ∀r ≤ r̄ .

Choosing k large enough we also ensure rk ≤ 1
k
≤ r̄ and we thus can write

1

rm+2
k

ˆ
Brk

Gs(uk(x), ūk(x))2 dx ≤ C̄r2βk . (5.16)

Since rk ↓ 0, for k large enough we have C̄r2βk ≤ δ
2
. In particular, given that ūk ∈ I1, (5.4)

and (5.16) are incompatible. □

5.2. Proof of Proposition 3.2. Let δ1 > 0 be given and fix a small constant

r1(δ1,m, n,Q) <
1

2
whose choice will be specified later. We will argue by contradiction and assume that, for the
choice of ε1 =

1
k
, there is a current Tk which satisfies the assumptions of the Proposition but

for which (3.3) fails. We set Ēk := Ē(Tk, 0, 1), denote by Σk the corresponding Riemannian
manifolds and let Ak be the L

∞ norms of their second fundamental forms. We can further
assume to rotate the currents and the ambient manifolds Σk so that Rm × {0} = π0 ⊂
T0Σk = Rm+1 × {0} is a plane minimizing the excess Ēk. We then let vk be the Lipschitz

approximation of T ′
k := Tk C1/2(0, π0) given by Proposition 4.3, and v̄k := Ē

−1/2
k vk their

normalizations. By (4.8) we conclude thatˆ
B1/2

(|v̄k|2 + |Dv̄k|2) ≤ C . (5.17)
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We can therefore appeal to the extension of the classical Sobolev space theory to AQ(Rn)-
valued maps to conclude that v̄k converges to a map v ∈ W 1,2(B1/2,AQ(Rn)) strongly in
L2, up to extraction of a subsequence (not relabeled). Moreover we observe that:

(a) Since Ak → 0, Σk converge to Rm+1 × {0} and thus, by (4.3), v takes values in
π⊥
0 ∩ (Rm+1 × {0}), i.e. it can be regarded as a AQ(R)-valued map;

(b) by [6, Theorem 13.3] v is Dir-minimizing;
(c) since Θ(T ′

k, 0) = Θ(Tk, 0) ≥ Q, by [6, Theorem 23.1] we have that

lim
s↓0

1

sm

ˆ
Bs

Gs(v(y), Q Jη ◦ v(0)K)2 = 0 ;

in fact, the validity of [6, Theorem 23.1] is stated under the assumption that
Θ(T ′

k, 0) = Q, but an inspection of the proof (which is as in [10, Proof of The-
orem 2.7]) shows that the same result also holds when Θ(T ′

k, 0) ≥ Q (precisely, the
condition on the density is crucial in [10, Formula (9.9)], and the latter inequality
is valid also in our setting). Furthermore, one sees that, since the origin is a point
of density at least Q for T ′

k, v(0) = Q Jη ◦ v(0)K = Q J0K.
We are then in a position to apply Lemma 5.1 and conclude that there are r̄ > 0 and a
1-homogeneous Dir-minimizing function h such thatˆ

Br

Gs(v, h)2 ≤
δ1
4Q

rm+2 ∀r ≤ r̄ . (5.18)

Our choice of r1 is then given by the above r̄.

We next consider the rescaled functions hk := Ē
1/2
k h and observe that the supports of

their graphs are open books Sk which belong to B(0). In particular we must have

E(Tk, 0, r1) ≤
1

rm+2
1

(ˆ
Br1

dist2(x,Sk) d∥Tk∥+
ˆ
Sk∩(Br1\Br1/8

(V ))

dist2(x, spt(Tk)) dHm

)
.

We now claim that, for a sufficiently large k,

lim sup
k→∞

1

Ēkr
m+2
1

(ˆ
Br1

dist2(x,Sk) d∥Tk∥+
ˆ
Sk∩(Br1\Br1/8

(V ))

dist2(x, spt(Tk)) dHm

)
≤ δ1

2
,

(5.19)
and the latter will give a contradiction since we were assuming E(Tk, 0, r1) > δ1Ēk for every
k.

Observe first that dist(x,Sk) ≤ r1 for every x ∈ Br1 and we can therefore estimateˆ
Br1

dist2(x,Sk) d∥Tk∥(x) ≤
ˆ
Br1

dist2(x,Sk) d∥Gvk∥(x) + C∥Tk∥((Br1 \Kk)× π⊥
0 )

≤
ˆ
Br1

dist2(x,Sk) d∥Gvk∥(x) + CĒ1+γ
k .
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Moreover we have
ˆ
Sk∩(Br1\Br1/8

(V ))

dist2(x, spt(Tk)) dHm

≤
ˆ
Br1

dist2(x, spt(Gvk CKk
)) d ∥Ghk CKk

∥+ CĒ1+γ
k ,

so that

lim sup
k→∞

1

Ēkr
m+2
1

(ˆ
Br1

dist2(x,Sk)d∥Tk∥(x) +
ˆ
Sk∩(Br1\Br1/8

(V ))

dist2(x, spt(Tk)) dHm

)

≤ lim sup
k→∞

1

Ēkr
m+2
1

(ˆ
Br1

dist2(x,Sk)d∥Gvk∥(x)

+

ˆ
Br1

dist2(x, spt(Gvk CKk
)) d ∥Ghk CKk

∥

)
.

(5.20)

Consider next that Br1 ⊂ Cr1 and that, since the Lipschitz constants of vk and hk converge
to 0, we conclude

lim sup
k→∞

1

Ēkr
m+2
1

ˆ
Br1

dist2(x,Sk) d∥Gvk∥(x)

≤ lim sup
k→∞

1

Ēkr
m+2
1

ˆ
Br1

Q∑
i=1

dist2((y, (vk)i(y)),Sk) dy , (5.21)

as well as

lim sup
k→∞

1

Ēkr
m+2
1

ˆ
Br1

dist2(x, spt(Gvk CKk
)) d∥Ghk CKk

∥(x)

≤ lim sup
k→∞

1

Ēkr
m+2
1

ˆ
Br1∩Kk

Q∑
i=1

dist2((y, (hk)i(y)), spt(Gvk CKk
)) dy , (5.22)

where (
∑

i J(vk)i(y)K , εvk(y)) is the value of the AQ(Rn)-valued function vk at y and
(
∑

i J(hk)i(y)K , εhk(y)) is the value of the AQ(Rn)-valued function hk at y.

Now, observe that hk = Ē
1/2
k h, and that Sk is its support. Thus, if we denote by

(
∑

i Jhi(y)K , ε(y)) the value of h at y, then εhk = ε, (hk)i = Ē
1/2
k hi, and for every y, k and

i there is a j = j(k, y, i) with the property that

|(vk)i(y)− Ē
1/2
k hj(y)| ≤ Gs(vk(y), Ē1/2

k h(y)) .
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Since dist((y, (vk)i(y)) ,Sk) ≤ |(vk)i(y)− Ē
1/2
k hj(y)|, we can write

lim sup
k→∞

1

Ēkr
m+2
1

ˆ
Br1

Q∑
i=1

dist2((y, (vk)i(y)),Sk) dy

≤ lim sup
k→∞

1

Ēkr
m+2
1

ˆ
Br1

QGs(vk(y), Ē1/2
k h(y))2 dy

= lim sup
k→∞

Q

rm+2
1

ˆ
Br1

Gs(v̄k(y), h(y))2 dy

=
Q

rm+2
1

ˆ
Br1

Gs(v(y), h(y))2 dy
(5.18)

≤ δ1
4
. (5.23)

Arguing analogously, one sees that dist((y, (hk)i(y)) , spt(Gvk)) ≤ Gs(Ē1/2
k h(y), vk(y)) for

every y ∈ Br1 ∩Kk, so that

lim sup
k→∞

1

Ēkr
m+2
1

ˆ
Br1∩Kk

Q∑
i=1

dist2((y, (hk)i(y)), spt(Gvk CKk
)) dy ≤ δ1

4
. (5.24)

Combining (5.23) and (5.24) with (5.21) and (5.22), and plugging in (5.20), we conclude
(5.19), thus completing the proof. □

6. Proof of Proposition 3.3: propagation lemmas and behavior of Q-points

Many ingredients in the proof of Proposition 3.3 will be borrowed from [4, Theorem 4.5].
However, several substantial changes are needed, mostly because the “optimal open book”
S in [4, Theorem 4.5] is assumed to be at a fixed distance from a plane, while the one in
Proposition 3.3 is not. The first such change is related to the construction of the graphical
parametrization, where we cannot rely solely on White’s ε-regularity theorem [17], but we
will also need to use Proposition 4.3.

Over the next sections we will work under the following set of assumptions.

Assumption 6.1. We let T and Σ be as in Assumption 3.1, and ε̄, η̄ ∈
(
0, 1

2

)
are fixed

positive constants. There are an open book S =
⋃N
i=1 Hi ⊂ T0Σ and a plane π0 ⊂ T0Σ

such that

(i) A2 ≤ ε̄E(T, π0, 0, 1) ≤ ε̄2;
(ii) E(T,S, 0, 1) ≤ η̄E(T, π0, 0, 1);
(iii) Ē(T, 0, 1) ≥ (1− η̄)E(T, π0, 0, 1).

Setting V = V (S), we write T0Σ = V ⊥0 ⊕ V with coordinates

z = (x, y) = (x1, x2, y1, . . . , ym−1) .

If additionally V = V (S) ⊂ π0, then we set

π0 = {x2 = 0} and π±
0 := π0 ∩ {±x1 > 0} .

Coordinates in T0Σ
⊥ ≃ Rn−1 are denoted w.
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6.1. Angle bound. We start with a lemma bounding the angles formed between the
various pages of S and π0.

Definition 6.2. For every fixed q ∈ T0Σ, let Hq = {H ⊂ S : dist(q,H) = dist(q,S)}, and,
for any m-dimensional plane π ⊂ T0Σ, denote by βπ(q) the maximal angle between half-
planes H ∈ Hq and π. More precisely, for any H ∈ Hq we let τ(H) denote the m-plane
containing H, and then we set

βπ(q) := max{distH(τ(H) ∩B1, π ∩B1) : H ∈ Hq} ,
where dH denotes Hausdorff distance. We record the elementary fact that, when τ and π
are two m-planes in T0Σ,

distH(τ ∩B1, π ∩B1) = sup{|pπ⊥(z)| : z ∈ τ ∩B1} .
We also set

βπ(S) : = max
q∈∂B1∩S

βπ(q)

= max {distH(π ∩B1, πi ∩B1) : πi ⊃ Hi , i ∈ {1, . . . , N}} ,

βmax(S) : = max

{
max

q∈∂B1∩S
βπ(q) : π ⊃ Hi for some i ∈ {1, . . . , N}

}
= max {distH(πi ∩B1, πj ∩B1) : πi ⊃ Hi , πj ⊃ Hj , i, j ∈ {1, . . . , N}} .

βπ(S) is the maximal angle formed by pages of S and π, while βmax(S) is the maximal
angle formed by distinct pages of S. Observe that βmax(S) = 0 if and only if S is an
m-dimensional plane.

Lemma 6.3 (Angle bound). There are positive constants ε4, η4, and C such that, if T
satisfies Assumption 6.1 with ε̄ ≤ ε4 and η̄ ≤ η4, then the following holds:

C−1β2
π0
(S) ≤ E(T, π0, 0, 1) ≤ Cβ2

max(S) ≤ C2β2
π0
(S) . (6.1)

The same conclusions hold if the first inequality in Assumption 6.1(i) is replaced by A ≤
η̄βmax(S).

Proof. We first observe that, under the hypotheses (ii) and (iii) of Assumption 6.1, the
book S cannot be an m-dimensional plane, that is βmax(S) > 0. Indeed, should S be a
plane, we would have, for η̄ < 1

2
, the contradiction

E(T, π0, 0, 1) ≤
1

1− η̄
Ē(T, 0, 1) ≤ 1

1− η̄
E(T,S, 0, 1) ≤ η̄

1− η̄
E(T, π0, 0, 1)

< E(T, π0, 0, 1) .

Next, we prove that there exists a positive geometric constant C such that

1

C
E(T, π0, 0, 1) ≤ β2

max(S) . (6.2)

Indeed, for q ∈ Σ∩B1 set q
′ := pT0Σ(q) , let Hq′ ∈ Hq′ be such that distH(τ(Hq′)∩B1, π∩

B1) = βπ(q
′), and let q′′ ∈ Hq′ be such that dist(q′,Hq′) = dist(q′,S) = |q′ − q′′|. Notice
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that, for π an arbitrary plane in T0Σ, it holds

|pπ⊥(q)| ≤ dist(q′,Hq′) + βπ(q
′′) +A .

Therefore we have thatˆ
B1

dist2(q, π) d∥T∥ ≤ 2

ˆ
B1

dist2(q,S) d∥T∥(q) + 2

ˆ
B1

βπ(q
′′)2 d∥T∥(q) + CA2

≤C E(T,S, 0, 1) + Cε̄E(T, π0, 0, 1) + Cη̄2βmax(S)
2 + 2

ˆ
B1

βπ(q
′′)2 d∥T∥(q)

≤C(η̄ + ε̄)E(T, π0, 0, 1) + Cη̄βmax(S)
2 + 2

ˆ
B1

βπ(q
′′)2 d∥T∥(q) ,

where in the second inequality we have used Assumption 6.1(i) (or the alternative A ≤
η̄βmax(S)) and in the last inequality we used Assumption 6.1 (ii). The above implies

Ē(T, 0, 1) ≤ E(T, π, 0, 1) ≤ C(η̄ + ε̄)E(T, π0, 0, 1) + Cη̄βmax(S)
2 + 2

ˆ
B1

βπ(q
′′)2 d∥T∥(q) ,

which coupled with Assumption 6.1(iii) yields, for η̄ and ε̄ sufficiently small,

E(T, π0, 0, 1) ≤ 4

ˆ
B1

βπ(q
′′)2 d∥T∥(q) + Cη̄βmax(S)

2 . (6.3)

We fix next π to be some m-dimensional plane containing a page Hi of S, so that βπ(q
′′) ≤

βmax(S) for ∥T∥-a.e. q. We then achieve

E(T, π0, 0, 1) ≤ C β2
max(S) . (6.4)

The inequality βmax(S) ≤ 2βπ0(S) immediately follows from the triangle inequality for
the Hausdorff distance.

We next claim that there exists a positive geometric constant C such that

β2
π0
(S) ≤ C E(T, π0, 0, 1) . (6.5)

We assume by contradiction that for every C1 > 0 one could have

β2
π0
(S) > C1E(T, π0, 0, 1) ,

and we let H0 be a half plane realizing βπ0(S), namely βπ0(S) = distH(τ(H0)∩B1, π0∩B1).
Then, let V = V (S) be the spine of S, set W := π0 ∩H0, and define

Ω :=

{
z ∈ H0 : |z| ≤ 1

4
, dist(z, V ) ≥ 1

8
, dist(z,W ) ≥ 1

8

}
.

Notice that Hm(Ω) ≥ cm for some positive geometric constant cm. Notice also that

|pπ⊥
0
(z)|2 ≥ 8−2dist2(z,W ) βπ0(S)

2 for every z ∈ Ω
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Next recall Lemma 2.4:

sup
q̃∈B15/16∩spt(T )

|pπ⊥
0
(q̃)|2 ≤ C0E(T, π0, 0, 1) + C0A

2

≤ C0E(T, π0, 0, 1) + C0ε̄E(T, π0, 0, 1) + η̄βπ0(S)
2 ,

where we have used either Assumption 6.1(i) or the alternative A2 ≤ η̄2βmax(S)
2 ≤

η̄βπ0(S)
2. It follows then that for every z ∈ Ω

2dist(z, spt(T ))2

≥ 8−2dist2(z,W )βπ0(S)
2 − 2 sup

q̃∈B15/16∩spt(T )
|pπ⊥

0
(q̃)|2

≥ ((8−4 − η̄)C1 − 3C0)E(T, π0, 0, 1) .

We then infer that

E(S, T, 0, 1) ≥ E(H0, T, 0, 1) ≥
((8−4 − η̄)C1 − 3C0)

2
cmE(T, π0, 0, 1) ,

which, for η̄ sufficiently small and C1 > 0 sufficiently large, is a contradiction with As-
sumption 6.1 (ii). □

Remark 6.4. A quick inspection of the proof of Lemma 6.3 shows that in order to prove
the inequalities

E(T, π0, 0, 1) ≤ C β2
max(S) ≤ C2 β2

π0
(S)

only the smallness condition E(T,S, 0, 1) ≤ η̄E(T, π0, 0, 1) on the one-sided excess is
needed. The smallness condition in Assumption 6.1(ii) for the double-sided excess, which
involves also a condition on E(S, T, 0, 1), is only needed to prove the other bound

β2
π0
(S) ≤ C E(T, π0, 0, 1) .

6.2. Propagation of graphicality. The following lemmas will be the key to achieve a
graphical parametrization of the current over S.

Lemma 6.5 (Kick-off lemma). There exists η5 > 0 with the following property. Let T and

Σ be as in Assumption 3.1. Assume that there are an open book S =
⋃N
i=1 Hi ⊂ T0Σ and

a plane π0 ⊂ T0Σ such that, for some η̄ ≤ η5

(a1) E(T, π0, 0, 1) ≤ η̄ and Ē(T, 0, 1) ≥ (1− η̄)E(T, π0, 0, 1);
(a2) E(T,S, 0, 1) ≤ η̄E(T, π0, 0, 1);
(a3) A2 ≤ η̄E(T, π0, 0, 1).

Then, there exists a plane π′
0 such that the rescaled current T ′ = (λ0,1/2)♯T satisfies (a1)-

(a2)-(a3) with π0 replaced by π′
0 and η̄ replaced by some η = η(η̄) such that η(η̄) → 0 when

η̄ → 0. Furthermore, π′
0 satisfies the additional properties that

(a4) E(T ′, π′
0, 0, 1) ≤ 2 Ē(T ′, 0, 1/2);

(a5) V (S) ⊂ π′
0.
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Proof. If we choose η5 ≤ min{ε4, η4}, then under the hypotheses of the lemma we can
apply Lemma 6.3, so that we have

C βmax(S)
2 ≥ E(T, π0, 0, 1) ≥ η̄−1A2 , (6.6)

and
βπ0(S)

2 ≤ CE(T, π0, 0, 1) . (6.7)

Consider now sequences {Tk}∞k=1 of currents and {Σk}∞k=1 of manifolds satisfying, for open
books Sk and planes πk in T0Σk, assumptions (a1)-(a2)-(a3) with parameters η̄ = ηk → 0+.
Up to rotations, we can assume that each Σk has the same tangent T0Σk = τ0 and is the
graph of a function Ψk : τ0 → τ⊥0 over a region including all points of interest for the rest
of the proof. Upon applying a further rotation, we may also assume that the planes πk
coincide with a fixed plane π0, and also that the spines V (Sk) have the same projection
onto π0, that is pπ0(V (Sk)) = V ′ for every k, where V ′ is an (m − 1)-dimensional linear
subspace of π0. We let π±

0 denote the two halves of π0 delimited by V ′.
Next, we observe that, for all k sufficiently large, we can apply Proposition 4.3 3 and

guarantee the existence of Lipschitz maps v = vk : B3/4 = B3/4(0, π0) → AQ(π
⊥
0 ) and closed

sets K = Kk ⊂ B3/4 such that (4.3)-(4.8) hold for T = Tk and Σ = Σk. Writing vk =
(
∑

i J(vk)iK , εvk) and Ēk := E(Tk, π0, 0, 1), we consider the functions v̄k : B3/4 → AQ(π
⊥
0 )

defined by

v̄k :=

(∑
i

t
(vk)i

Ē
1/2
k

|

, εvk

)
,

and we let v be a subsequential limit (in the weak topology of W 1,2 over B3/4) of the

v̄k’s. Now consider any linear map ℓk : π0 → π⊥0
0 whose graph describes (on a suitable

half of π0) an arbitrary page of the book Sk. The estimate (6.7) implies that Ē
−1/2
k ℓk is

uniformly locally bounded and it thus converges, up to subsequences, to some function ℓ.
By (a2)-(a3), the support of the graph of v coincides with the union of the graphs of all
linear functions ℓ arising as possible limits as above, after restricting each of them to the
appropriate half plane π±

0 (we shall denote ℓ± such restriction): in other words, there are
positive integers N± and κ±i such that

v =

(
N±∑
i=1

κ±i
q
ℓ±i

y
,±1

)
on π±

0 ,

which in fact takes values in AQ(π
⊥0
0 ). By (6.6) it follows easily that v cannot be trivial,

i.e. the collections {ℓ±i } contains at least three distinct linear maps. The support of the
graph of v then coincides with a non-flat open book with (m−1)-dimensional spine. Notice
that if S̄k denote the rescaled non-flat open books defined as the support of the graphs of

Ē
1
2
k v then there exists a rotation Ok in Π0 such that Ok(V (S̄k)) = V (Sk) and

lim
k→∞

Ē
−1/2
k ∥Ok − Id∥ = 0 . (6.8)

3Notice that the conclusions of Proposition 4.3 still hold true (with a slightly worse constant) if the
second part of hypothesis (b) on the optimality of π0 is replaced by the almost-optimality condition (a1).
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We next observe that, by [6, Theorem 13.3], we have in addition that v̄k converge to v
strongly in W 1,2 on B1/2, and that v is Dir-minimizing. In particular, the averages

ℓ± :=
1

N±

∑
i

κ±i ℓ
±
i

defined on the respective halfplanes π±
0 form a single harmonic function ℓ over π0.

We next consider the planes π̂k which are the graphs of Ē
1
2
k ℓ. Using the estimates of

Proposition 4.3, the strong L2 convergence of the maps above, and the definition of ℓ = η◦v,
it is easy to see that, upon setting T ′

k := (λ0,1/2)♯Tk and A′
k :=

1
2
Ak, we have

lim
k→∞

(
E(T ′

k, π̂k, 0, 1) +
(A′

k)
2

E(T ′
k, π̂k, 0, 1)

+
E(T ′

k,Sk, 0, 1)

E(T ′
k, π̂k, 0, 1)

)
= 0 (6.9)

lim
k→∞

E(T ′
k, π̂k, 0, 1)

Ē(T ′
k, 0, 1)

= lim
k→∞

E(T ′
k, π̂k, 0, 1)

Ē(T ′
k, 0,

1/2)
= 1 , (6.10)

Setting now π′
k := Ok(π̂k), we have that π′

k ⊃ V (Sk) and, thanks to (6.8), the conditions
in (6.9)-(6.10) remain true with π′

k in place of π̂k. This completes the proof. □

The following corollary can be easily proved by iterating Lemma 6.5 (or by following the
same proof).

Corollary 6.6. For every r0 > 0 there exists η6 > 0 such that if T , Σ, S, π0 are as
in Lemma 6.5 and they satisfy (a1)-(a2)-(a3) with η̄ ≤ η6, then, setting V = V (S), for
every y ∈ B1/4 ∩ V and r0 ≤ r ≤ 1/4 there exists a plane π̂y,r so that the rescaled current
Ty,r = (λy,r)♯T satisfies (a1)-(a2)-(a3)-(a4)-(a5) with π0 replaced by π̂y,r and η̄ replaced by
some η = η(η̄) such that η(η̄) → 0 as η̄ → 0.

Lemma 6.7 (Propagation lemma). For every ρ > 0, 0 < r0, δ0 ∈ (0, 1
4
) there exist η7 > 0

and C > 0 with the following property. Let T and Σ be as in Assumption 3.1. Assume
that there are an open book S =

⋃N
i=1 Hi ⊂ T0Σ and a plane π0 ⊂ T0Σ such that, for some

η̄ ≤ η7

(b1) E(T, π0, 0, 1) ≤ η̄ and 2 Ē(T, 0, 1) ≥ E(T, π0, 0, 1);
(b2) E(T,S, 0, 1) ≤ η̄E(T, π0, 0, 1);
(b3) A2 ≤ η̄E(T, π0, 0, 1);
(b4) E(T, π0, 0, 1) ≤ 2 Ē(T, 0, 1/2);
(b5) V (S) ⊂ π0.

Then, the following holds.

(1) Pushing Q-points: writing V = V (S),

Θ(T, q) < Q for all q ∈ spt(T ) ∩B7/8 ∩C 1
8
\Bρ(V ) . (6.11)

(2) Propagation estimates: for every y ∈ B 1
4
∩ V and r0 ≤ r ≤ 1

2
it holds

E(T, π0, y, r) ≤ 2E(T, π0, 0, 1) . (6.12)
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Furthermore, for y and r as above there exists an m-dimensional plane π̂y,r such
that, when we write y for the point (0, y) ∈ V ⊥ × V = Rm+n, it holds

V ⊂ π̂y,r , (6.13)

2 Ē(T, y, r) ≥ E(T, π̂y,r, y, r) , (6.14)

E(T, π̂y,r, y, r) ≤ 2 Ē(T, y, r/2) . (6.15)

(3) No-holes condition:

for any y ∈ B 1
4
∩ V there exists q ∈ Bδ0(y) such that ΘT (q) ≥ Q . (6.16)

Proof. Notice that if η7 ≤ min{ε4, η4} then under the hypotheses of the lemma we can
apply Lemma 6.3 (see also Remark 6.4), and conclude

C2 β2
π0
(S) ≥ C βmax(S)

2 ≥ E(T, π0, 0, 1) . (6.17)

Nonetheless, since (b2) only provides control on the one-sided conical excess, we can’t
conclude that the planar excess is controlling βπ0(S).

Fix now ρ > 0, 0 < r0, and δ0 ∈ (0, 1
4
), and consider sequences {Tk}∞k=1 of currents and

{Σk}∞k=1 of manifolds satisfying, for open books Sk and planes πk in T0Σk, assumptions
(b1)-(b2)-(b3)-(b4)-(b5) with parameters η̄ = ηk → 0+. Since the sequences are arbitrary,
the proof will be complete if we can show that all the conclusions hold true along the
given sequence for all sufficiently large k. Up to rotations, we can assume that each Σk

has the same tangent T0Σk = τ0 and is the graph of a function Ψk : τ0 → τ⊥0 over a region
including all points of interest for the rest of the proof, with Ψk satisfying Ψk(0) = 0 and
DΨk(0) = 0. Upon applying a further rotation, we may also assume that the planes πk
coincide with a fixed plane π0 ⊂ τ0, and, thanks to (b5), also that the spines V (Sk) coincide
with a fixed (m − 1)-dimensional linear subspace V ⊂ π0. We make the following choice
of coordinates: we denote by y = (y1, . . . , ym−1) the coordinates of V , whereas points in τ0
will be given coordinates (x, y) = (x1, x2, y). The plane π0 is the subspace {x2 = 0}, and we
let π±

0 = {±x1 > 0} ⊂ π0 denote the two halves of π0 delimited by V . Coordinates in τ⊥0
are denoted w = (w1, . . . , wn−1). We also give an explicit expression of Sk =

⋃
±
⋃
i(Hk)

±
i

within this coordinate system. For a half-plane (Hk)
±
i there exists ((βik)

±, (γik)
±) ∈ S1 with

±(βik)
± ≥ 0 such that

(Hk)
±
i =

{
(t (βik)

±, t (γik)
±, y) : t ∈ [0,∞)

}
⊂ τ0 .

Notice that the condition that one of the coefficients β = 0 corresponds to the parametriza-
tion of one of the two half-planes of {x1 = 0} delimited by V .
Next, we observe that, as in the proof of Lemma 6.5, for all k sufficiently large, we can

apply again Proposition 4.3 and guarantee the existence of Lipschitz maps v = vk : B3/4 =
B3/4(0, π0) → AQ(π

⊥
0 ) and closed sets K = Kk ⊂ B3/4 such that (4.3)-(4.8) hold for

T = Tk and Σ = Σk. Writing vk = (
∑

i J(vk)iK , εvk) and Ēk := E(Tk, π0, 0, 1), we consider
the functions v̄k : B3/4 → AQ(π

⊥
0 ) defined by

v̄k :=

(∑
i

t
(vk)i

Ē
1/2
k

|

, εvk

)
,
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and we let v be a subsequential limit (in the weak topology of W 1,2 over B3/4, strong over
B1/2) of the v̄k’s.

Now, we apply the same rescaling (in the coordinates (x2, w) of the orthogonal comple-
ment to π0) to the open books Sk, and we thus obtain

S̄k =
⋃
i

(H̄k)
±
i ,

where

(H̄k)
±
i =

{
(t (βik)

±, t Ē
−1/2
k (γik)

±, y) : t ∈ [0,∞)
}

=
{
(t (β̄ik)

±, t (γ̄ik)
±, y) : t ∈ [0,∞)

}
,

having defined

(β̄, γ̄) =
(β, Ē−1/2 γ)

|(β, Ē−1/2 γ)|
.

Upon passing to a (not relabeled) subsequence, the open books S̄k converge to some open
book S∞ with spine V . Notice that, as a consequence of (6.17), S∞ cannot be flat. Next,
we claim that spt(Gv)∩C 1

2
(0, π0)∩B 7

8
⊂ S∞. To see this, notice first that, for any given

k, any point q ∈ spt(Gv̄k) ∩C 3
4
has coordinates

q =
(
x1, Ē

−1/2
k (uk)i(x1, y), y, Ē

−1/2
k Ψk(x1, (uk)i(x1, y), y)

)
, (x1, y) ∈ B3/4 ,

for some i ∈ {1, . . . , Q}. Observe that |Ē−1/2
k Ψk| ≤ Ē

−1/2
k A ≤ ηk → 0, so that a point

q ∈ spt(Gv) ∩C 3
4
necessarily belongs to τ0 and it has coordinates

q = (x1, vi(x1, y), y, 0) , (x1, y) ∈ B3/4 ,

for some i. Now, by the strong convergence of v̄k to v in L2 on B1/2 and the above
observation, we have that∑

i

ˆ
B1/2

dist2((x1, vi(x1, y), y, 0),S∞)dx1dy

= lim
k→∞

∑
i

ˆ
B1/2

dist2((x1, Ē
−1/2
k (uk)i(x1, y), y, 0), S̄k) dx1dy ;

(6.18)

on the other hand, for a point (x1, x2, y) ∈ τ0 we have

dist2((x1, x2, y), S̄k) = inf
{
|x1 − x′1|2 + |x2 − x′2|2 + |y − y′|2 : (x′1, x

′
2, y

′) ∈ S̄k
}

= inf
{
|x1 − x′1|2 + |x2 − Ē

−1/2
k x′2|2 + |y − y′|2 : (x′1, x

′
2, y

′) ∈ Sk

}
≤ Ē−1

k inf
{
|x1 − x′1|2 + |Ē1/2

k x2 − x′2|2 + |y − y′|2 : (x′1, x
′
2, y

′) ∈ Sk

}
= Ē−1

k dist2((x1, Ē
1/2
k x2, y),Sk)
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so that ∑
i

ˆ
B1/2

dist2((x1, Ē
−1/2
k (uk)i(x1, y), y, 0), S̄k) dx1dy

≤
∑
i

Ē−1
k

ˆ
B1/2

dist2((x1, (uk)i(x1, y), y),Sk) dx1dy

≤ Ē−1
k

(
E(Tk,Sk, 0, 1) + C Ē1+γ

k

)
,

where we have used (4.5) and (4.6). Since the right-hand side is infinitesimal by (b1) and
(b2), (6.18) concludes the proof of the claim.

Now recall that v : B3/4(0, π0) → AQ(π
⊥0
0 ) ≃ AQ(R): the fact that its graph is supported

on S∞ implies, in particular, that some of the pages of S∞ are linear graphs over π0.
Next, we claim that the support of the graph of v is not a single hyperplane, but a

non-degenerate open book with spine V . Suppose, towards a contradiction, that, calling
z = (x1, y) the coordinate on π0, v(z) = (Q Jℓ(z)K , εv) for a linear function ℓ : π0 → π⊥0

0 ≃
R. Then, calling π̄k the graph of Ē

1/2
k ℓ we would have

Ēk ≤ 2 Ē(Tk, 0, 1/2) ≤ 2E(Tk, π̄k, 0, 1/2) ,

and thus, in particular,

1

2
≤ lim

k→∞

E(Tk, π̄k, 0, 1/2)

Ēk

≤ C lim
k→∞

ˆ
B 1

2

|v̄k ⊖ ℓ|2 dz = 0 ,

a contradiction.
Now that the fundamental properties of the limit v have been established, we proceed

with proving the validity of conclusions (1)(2)(3), namely that the corresponding estimates
hold true for all sufficiently large k.

Proof of (1). Suppose that (6.11) fails for a subsequence (not relabeled), i.e. that there
exists a sequence of points qk ∈ spt(Tk) ∩B7/8 ∩C 1

8
\Bρ(V ) such that

Θ(Tk, qk) ≥ Q for all k .

Setting zk := pπ0(qk) and wk :=
p
π⊥
0
(qk)

CĒ
1/2
k

for a suitable geometric constant C, Lemma 2.4

implies once again that

|wk| <
1

4
,

so that, up to subsequences, the sequence q̄k = (zk, wk) converges to a point q0 = (z0, w0) ∈
C 1

8
\Bρ(V ).

Applying estimate (4.9) to vk we conclude that for every 0 < r1 < 1/4 it holds

ˆ
Br1 (zk)∩Kk

1

|z − zk|m−2

Q∑
i=1

∣∣∣∣∂r ((v̄k)i(z)− wk)

|z − zk|

∣∣∣∣2 ≤ C .
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Using the strong convergence of v̄k to v in W 1,2 and the dominated convergence theorem,
we conclude that ˆ

Br1 (z0)

1

|z − z0|m−2

Q∑
i=1

∣∣∣∣∂r (vi(z)− w0)

|z − z0|

∣∣∣∣2 ≤ C .

Recall now that, since v is Dir-minimizing and takes values in AQ(R), we can apply [5,
Theorem 3.1] to infer that v is Lipschitz. In particular the real-valued map |v ⊖ w0| is
also Lipschitz and we can use Rademacher’s theorem (cf. [7] for its validity in the case of
multivalued functions) to get∣∣∣∣∂r |v(z)⊖ w0|

|z − z0|

∣∣∣∣2 ≤ Q∑
i=1

∣∣∣∣∂r (vi(z)⊖ w0)

|z − z0|

∣∣∣∣2 .
In particular ˆ

Br1 (z0)

1

|z − z0|m−2

∣∣∣∣∂r |v(z)⊖ w0|
|z − z0|

∣∣∣∣2 ≤ C .

But then the Lipschitz map z 7→ |v(z)⊖w0| must vanish in z0, which in turn implies that
v(z0) = Q Jw0K. Since however z0 does not belong to the spine V , the latter fact would
contradict the structural description of the map v discussed above (in particular, recall
that the graph of v is supported on a non-flat open book with spine V ).

Proof of (2). We first prove the estimate in (6.12). Should it fail, there would be sequences
yk ∈ B 1

4
∩ V and r0 ≤ rk ≤ 1/8 such that

2 ≤ E(Tk, π0, yk, rk)

Ēk

.

Letting y ∈ B 1
4
∩ V and r0 ≤ r ≤ 1/8 be subsequential limits of yk and rk respectively, we

would on the other hand have

lim
k→∞

E(Tk, π0, yk, rk)

Ēk

= r−(m+2)

ˆ
Br(y)

|v|2 =
ˆ
B1

|v|2 ≤ 1 ,

where we have used the invariance of v with respect to V and the lower semi-continuity of
the L2-norm with respect to weak convergence. Now, the last two displayed estimates are
in contradiction.

Next, we show that the set of m-dimensional planes π for which (6.13)-(6.14) hold with
π in place of π̂y,r is not empty; then, we show that for some choice of π̂y,r in such set we

must have (6.15). For the first claim, let ℓ : π0 → π⊥0
0 be the linear function such that

ℓ(z) = η ◦ v(z) for z ∈ B3/4(0, π0), and let πk be the graph of the function x2 = Ē
1/2
k ℓ(z).

Since V is the spine of the support of v, we have that ℓ(0, y) = 0 for every y, and thus
V ⊂ πk by construction. Moreover, we have that

lim
k→∞

E(Tk, πk, y, r)

Ē(Tk, y, r)
= 1 for every y ∈ B1/4 ∩ V and r0 ≤ r ≤ 1/8
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as a consequence of the strong convergence v̄k → v in L2(B3/4(0, π0)) and the definition of
πk. This proves the existence of planes satisfying the conditions in (6.13)-(6.14).

Assume finally that (6.15) fails along a subsequence, that is there are points yk ∈ B1/4∩V
and radii r0 ≤ rk ≤ 1/4 such that whenever πk is an m-dimensional linear subspace of τ0
with V ⊂ πk and 2 Ē(Tk, yk, rk) ≥ E(Tk, πk, yk, rk) we get

E(Tk, πk, yk, rk) > 2E(Tk, πk, yk, rk/2) . (6.19)

First, we claim that such a plane πk must be the graph over π0 of a linear function
hk : π0 → π⊥0

0 with hk|V ≡ 0 satisfying

|∇hk|2 ≤ C(r0) Ēk , (6.20)

where Ēk = E(Tk, π0, 0, 1) as usual. Indeed, for every k let z be a point in Kk ∩Brk/2(yk),
and observe that, if q(z) ∈ spt(Tk) satisfies |z − q(z)| = dist(z, spt(Tk)), then by (4.8) we
have

|z − q(z)|2 ≤ |vk(z)|2 ≤ C Ēk .

On the other hand, by Lemma 2.4 and the almost-optimality of πk we also get

dist(q(z), πk)
2 ≤ C E(Tk, πk, yk, rk) + CA2 ≤ C(r0) Ēk .

This shows that there exists a large set of points z ∈ π0 ∩Brk/2(yk) such that

dist(z, πk)
2 ≤ C(r0) Ēk ,

thus proving the claim.
As a consequence of (6.20), modulo passing to (not relabeled) subsequences, we have

that yk → y ∈ B̄1/4 ∩ V , rk → r ∈ [r0, 1/4], and the functions ℓk = hk

Ē
1/2
k

converge to a

linear function ℓ over π0. Since Brk(yk) ⊂ B1/2, using the Lipschitz bound on vk and the
fact that the Lipschitz constant of hk converges to 0, we get, under the assumption that
(6.19) holds,(

2

r

)m+2 ˆ
B r

2
(y)

|v ⊖ ℓ|2 = lim
k→∞

E(Tk, πk, yk, rk/2)

Ēk

≤ 1

2
lim
k→∞

E(Tk, πk, yk, rk)

Ēk

=
1

2

1

rm+2

ˆ
Br(y)

|v ⊖ ℓ|2 = 1

2

(
2

r

)m+2 ˆ
B r

2
(y)

|v ⊖ ℓ|2 ,

which contradicts the fact that v is non-flat.

Proof of (6.16) Finally assume that (6.16) fails, that is there exists a sequence of points
yk ∈ B 1

4
∩ V such that ΘTk(q) < Q for every q ∈ Bδ0(yk). Therefore (4.12) is satisfied

in the cylinder Bδ0/2(yk, π0) × π⊥
0 and so by Proposition 4.5 we have that vk|Bδ0/2

(yk,π0) =

(
∑

i J(vk)iK , ε) with ε ∈ {−1, 1} a constant, and (vk)1 ≤ · · · ≤ (vk)Q each satisfying the
minimal surfaces equation in Σk. Since up to subsequences we can assume that yk → y ∈
V ∩ B̄1/4, it follows that in Bδ/4(y, π0) the functions (v̄k)i = Ē

−1/2
k (vk)i converge in the

C1 topology to harmonic functions. In particular there would be a C1 selection for v in
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Bδ/4(y, π0), which is not possible, because it would contradict the structural description of
v. □

7. Proof of Proposition 3.3: Whitney decomposition

Using the results of the previous section we can now adapt the graphical parametrization
constructed in [4] to our setting. In view of Lemma 6.5, we start by updating Assumption
6.1 into

Assumption 7.1. Assumption 6.1 holds, and in addition E(T, π0, 0, 1) ≤ 2 Ē(T, 0, 1/2) and
V (S) ⊂ π0.

Recall then that under the above Assumption 7.1 we set coordinates (x, y, w) in Rm+n,
where y = (y1, . . . , ym−1) are the coordinates on the spine V (S), π0 has coordinates (x1, y),
and T0Σ has coordinates (x1, x2, y). The half-planes π

±
0 are defined by π±

0 = {±x1 > 0} ⊂
π0.

Next, we need to identify the domains on which the different graphical approximations
of T are going to be defined. These will consist of a union of cubes in a Whitney-type
decomposition of (a subset of) [0,∞) × V with suitably good properties. Here, the coor-
dinate t on the “abstract” closed half-line [0,∞) will play the role of the distance function
from V .

Fix a large positive integer N0 ∈ N, and consider the rectangle

R0 := [0, 2−N0 ]× [−2, 2]m−1 ⊂ [0,∞)× V ,

as well as the collection LN0 of sub-cubes defined as follows. First, we partition (0, 2−N0 ] into
the dyadic intervals {[2−k, 2−k+1]}k>N0 . Then, we further divide each layer [2−k, 2−k+1] ×
[−2, 2]m−1 into sub-cubes of side-length 2−(k+M), where M is a large integer to be chosen
later, cf. Figure 1. If L ∈ LN0 has side-length 2−(k+M), we will say that L has order k.
Notice that

2M+1

√
m

diam(L) ≥ max
z∈L

dist(z, V ) ≥ min
z∈L

dist(z, V ) ≥ 2M√
m

diam(L) ∀L ∈ LN0 . (7.1)

For any L ∈ LN0 , we shall denote cL = (tL, yL) the center of L and dL the diameter
of L. In order to ease the notation, we will write yL in place of the more cumbersome
(0, yL, 0) ∈ Rm+n, and we will be interested only in those cubes L for which |yL| < 3/4.
For such cubes L we introduce the notation

EL := E
(
T,S, yL, M̄dL

)
and ĒL := Ē

(
T, yL, M̄dL

)
,

where M̄ := 2M+6/
√
m and ĒL is computed by minimizing E(T, π, yL, M̄dL) among m-

dimensional planes π ⊂ T0Σ. The parameter N0 is chosen so large that if L ∈ LN0 is a
cube with |yL| < 3/4 then BM̄dL(yL) ⊂ B1(0).

Definition 7.2. (Whitney domains) We establish the following partial order relation in L:
if L,L′ ∈ L, we say that L is below L′, and we write L ⪯ L′, if and only if pV (L) ⊂ pV (L

′).
Let T be as in Assumption 3.1, and let S ∈ B(0). For τ, η ∈ (0, 1/2), we define the
following regions.
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Figure 1. The Whitney decomposition of [0, 2−N0 ] × [−2, 2]m−1. In the
above example the parameter M equals 2.

(W) The good Whitney domain of R0 associated with (T,S, τ, η,N0), denoted by W =
W(T,S, τ, η,N0), is the subfamily of L ∈ LN0 with |yL| < 3/4 such that

EL′ < τ 2 and EL′ < η ĒL′ (7.2)

for all L ⪯ L′.
(B) The bad Whitney domain of R0 associated with (T,S, τ, η,N0), denoted by B =

B(T,S, τ, η,N0) is the subfamily of L ∈ LN0 with |yL| < 3/4 such that L′ ∈ W for
all L ⪯ L′ with L′ ̸= L and

EL < τ 2 and EL ≥ η ĒL . (7.3)

Since we will often deal with suitable dilations of the cubes in LN0 , we introduce the
following notation. For 1 ≤ λ ≤ 2M , λL is the cube with the same center cL as L and
diameter dλL = λ dL.

We next define the regions where we shall build the graphical parametrization of the
current. First, given 1 ≤ λ ≤ 2M , we set

UλW :=
⋃
L∈W

λL ∪
([

2−N0 , 2−1
]
×Bm−1

3/4 (0)
)
, (7.4)

and, setting UW = U1W , we define the function ϱW : Bm−1
3/4 (0) →

[
0, 2−N0

]
as

ϱW(y) := inf {t : (t, y) ∈ UW} . (7.5)

We also define

RλW := (p−1
π0
(U+

λW) ∪ p−1
π0
(U−

λW)) ∩B3/4 , (7.6)

where, for a domain U ⊂ [0,∞)× V , we have denoted

U± :=
{
(±t, 0, y) ∈ π±

0 ⊂ T0Σ : (t, y) ∈ U
}

(7.7)

the corresponding domains on π±
0 .

Next, we consider the family

F =
{
BM̄dL(yL) : L ∈ B

}
,
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and we let
{
BM̄dLi

(yLi
)
}
i∈N

be a Vitali covering of
⋃
F : that is, each Li ∈ B, the balls

BM̄dLi
(yLi

) are pairwise disjoint, and⋃
L∈B

BM̄dL(yL) ⊂
⋃
i∈N

B5M̄dLi
(yLi

) .

To ease the notation, we set di := dLi
, yi := yLi

, Ei := ELi
, and Ēi := ĒLi

, and, with this
notation in place, we define

RB :=
⋃
i∈N

B5M̄di(yi) \BC⋆(η−1Ei)
1/2di(V ) , (7.8)

where C⋆ is a geometric constant.

Finally, before proceeding we also record the following

Remark 7.3. If T satisfies Assumption 7.1, then we have

ĒL ≤ E(T, π0, yL, M̄ dL) ≤ C (τ 2 + ε̄) ∀L ∈ W ∪ B . (7.9)

Indeed, the first inequality is trivial, while the second inequality follows from

E(T, π0, yL, M̄ dL) ≤ E(T,S, yL, M̄ dL) + C βπ0(S)
2

(6.1)

≤ τ 2 + C E(T, π0, 0, 1) ≤ C (τ 2 + ε̄) .

7.1. Graphicality on good cubes. In the following theorem, we are going to represent T
as a special multi-valued graph in the region RW which “projects” onto the good Whitney
domain. As it will become apparent in the proof, in this region the hypotheses from Propo-
sition 4.5 will be satisfied, so that the special multi-valued function u which parametrizes
T (in the sense that T is the graph of v when v(z) = u(z)+Ψ(z+u(z))) will come equipped
with a C1,1/2 selection as specified in Proposition 4.5. The latter may then be considered
as a “p-multifunction” on the “abstract” domain U = UW over the (degenerate) open book
π0; see [4, Definition 5.4]. More precisely, a p-multifunction in the present context will be

a collection u = {u±j }
Q
j=1 of functions of class C1,1/2 defined on domains U± corresponding

to some domain U ⊂ (0,∞) × V as specified in (7.7). For every ζ = (t, y) ∈ U , we let
ζ± := (±t, 0, y) ∈ π±

0 , and we set

|u(ζ)| : = max
±

max
j

|u±j (ζ±)| ,

|Du(ζ)| : = max
±

max
j

|Du±j (ζ±)| ,

[Du]1/2(ζ) : = max
±

max
j

[Du±j ]1/2(ζ
±) ,

where, for z ∈ U±, we have set

[Du±j ]1/2(z) := inf
ρ>0

sup

{
|Du±j (z1)−Du±j (z2)|

|z1 − z2|1/2
: z1 ̸= z2, zk ∈ U± ∩Bρ(z)

}
.
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Finally, we define the weighted C1,1/2 norm for a p-multifunction u = {u±j }j setting

∥u∥
C

1,1/2
∗ (U)

:= sup
ζ=(t,y)∈U

(
t−1|u(ζ)|+ |Du(ζ)|+ t

1/2 [Du]1/2(ζ)
)
.

Theorem 7.4 (Graphical parametrization). Let T and Σ be as in Assumptions 3.1. For
any N0 ∈ N there are τ8 > 0, η8 > 0, and C ≥ 1, depending on (m,n, p,N0) with the
following property. If:

(a) the values of the parameters η and τ in Definition 7.2 are smaller than η8 and τ8,
(b) Assumption 7.1 holds with ε̄ < C−1τ 2, η̄ < C−1η for some S and π0,

then there is a special Q-valued map u = (
∑

j JujK , ε) over U+
4W ∪ U−

4W , with the following
properties:

(i) ε is constant on each of the two domains U±
4W , each u±j : U

±
4W → π⊥0

0 is of class C
1,1/2
loc ,

and, regarding u as the p-multifunction {u±j }
Q
j=1, we have ∥u∥

C
1,1/2
∗ (U4W )

≤ C τ ;

(ii) T R4W = Gv R4W , where v = (
∑

j JvjK , ε) is the special Q-valued function on

U+
4W ∪ U−

4W defined by

v±j (z) := u±j (z) + Ψ(z + u±j (z)) ; (7.10)

(iii) if L ∈ B(T,S, τ, η,N0) then there exists ξL ∈ BM̄dL/2(yL) with ΘT (ξL) ≥ Q;
(iv) the following estimate holds:ˆ

B1/2\(R2W∪RB)

dist(q, V )2 d∥T∥ ≤ C τη−
3/2 E(T,S, 0, 1) ; (7.11)

(v) For every fixed η, τ , and ρ, if η̄ and ε̄ are chosen sufficiently small, then ϱW(y) ≤ ρ
for all y ∈ B1/4 ∩ V .

Proof. In this proof all constants denoted by C can only depend on Q,m, n, and N0. If
the constant does not depend on N0 it will then be denoted by C̄.
First of all, if the constant C in (b) is chosen large enough, and if tau8 and η8 are chosen

small enough, it follows from Assumption 7.1 and Corollary 6.6 that the cubes of order
(N0 + 1) belong to W . This is important, as it guarantees that every cube L ∈ B has a
father in W . Moreover, for fixed ρ > 0 and δ0 ∈ (0, 1/4), the hypotheses of Lemma 6.7
are satisfied at the scale of all cubes L of order (N0 + 1): that is, conditions (b1) up to
(b5) in Lemma 6.7 are satisfied with T replaced by TL = (λyL,M̄dL)♯T and π0 replaced by
π̂L := π̂yL,M̄dL from Corollary 6.6.

Next, we claim that if L is a cube in W∪B then we can apply Lemma 6.7 at the scale of
L. The proof is by induction on the order k of the cube. The claim is true for k = N0 +1.
Let us then fix a cube L of order k+1 which is inW∪B, and make the induction hypothesis
that Lemma 6.7 can be applied to all cubes L′ of order N0 + 1 ≤ j ≤ k that are in the
ancestry of L. We shall prove that the lemma can be applied to L. We let L′ denote the
“father” of L, i.e. the cube of order k which is closest to L: notice that L′ ∈ W , regardless
of whether L ∈ W or L ∈ B. Now, we observe that:

• Ē(T, yL, M̄dL) ≤ C̄(τ 2 + ε̄) by Remark 7.3;
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• the inequalities

E(T,S, yL, M̄dL) ≤ 2m+2 E(T,S, yL′ , M̄dL′) < 2m+2 η Ē(T, yL′ , M̄dL′)

≤ 2m+2 η Ē(T, yL, M̄dL)

hold by the definitions of B and W and (6.15);
• (M̄dL)

2A2 ≤ (M̄dL)
2 η̄E(T, π0, 0, 1) ≤ 2(M̄dL) η̄ Ē(T, yL, M̄dL) by Assumption 7.1

and an iterative application of (6.15) over the ancestry of L;
• there exists π̂L so that V ⊂ π̂L, 2 Ē(T, yL, M̄dL) ≥ E(T, π̂L, yL, , M̄dL), and

E(T, π̂L, yL, M̄dL) ≤ 2 Ē(T, yL, M̄dL/2) ,

as a consequence of Lemma 6.7 applied at scale L′.

The above considerations imply that, if τ8 and η8 are chosen small enough, then Lemma
6.7 applies indeed. In particular, we conclude that Θ(T, q) < Q for every q ∈ spt(T ) ∩
CM̄dL/8(yL, π̂L)∩B7M̄dL/8(yL) \BρdL(V ). We can then apply Proposition 4.5 in p−1

π0
(8L)∩

BM̄dL/2(yL) (where we used the short-hand notation p−1
π0
(8L) for p−1

π0
(8L+)∪p−1

π0
(8L−)) to

conclude that the support of T decomposes into smooth minimal surfaces over 4L. Observe
that, as a consequence of Lemma 2.4 and of the planar excess estimates obtained at the
scales of all cubes L ∈ W ∪ B, we have

spt(T ) ∩B3/4 ∩CM̄dL/4(yL, π0) ⊂
{
q : |p⊥

π̂L
(q)|2 ≤ C(τ 2 + ε̄) d2L

}
,

so that
spt(T ) ∩B3/4 ∩CM̄dL/4(yL, π0) ⊂ BM̄dL/2(yL) . (7.12)

This guarantees that p−1
π0
(4L) ∩ BM̄dL/2(yL) ∩ spt(T ) = p−1

π0
(4L) ∩ B3/4 ∩ spt(T ). The

graphical representation over U4W follows now from noticing that, where cubes 4L and
2L′ coincide, the corresponding functions must agree because they parametrize the same
piece of the current. In particular this proves (ii). For the argument leading to the precise
estimate claimed in (i) we refer the reader to [4, Section 5]

Fix now L ∈ B and L′ be the “father” of L as above. By Lemma 6.7, we have

∀y ∈ B M̄dL′
4

(yL′) ∩ V ∃ξL ∈ Bδ0M̄dL′ (y) such that ΘT (ξL) ≥ Q . (7.13)

We apply (7.13) with y = yL, and thus we guarantee the existence of ξL ∈ B M̄dL
2

(yL) with

ΘT (ξL) ≥ Q. This proves (iii).
We next come to (iv). We first claim that

spt(T ) ∩B1/2 \R2W ⊂
⋃
L∈B

BM̄dL(yL) ⊂
⋃
i∈N

B5M̄di(yi) . (7.14)

To see this, let L ∈ LN0 with |yL| < 3/4 be such that L /∈ W but L′ ∈ W for every
L ⪯ L′ with L′ ̸= L. In particular, let L′ be the father of L. Since L′ ∈ W , and assuming
τ8 and η8 are sufficiently small, we can apply Lemma 6.3 and Remark 6.4 to conclude that
EL′ ≤ η ĒL′ ≤ C η β2

max(S). Now, since BM̄dL(yL) ⊂ BM̄dL′ (yL′), and since dL′ = 2 dL, we
have that

EL ≤ 2m+2C η β2
max(S) .
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On the other hand, by Lemma 6.3 we have β2
max(S) ≤ C̄ E(T, π0, 0, 1) ≤ C̄ε̄. Hence, a

suitable choice of ε̄ guarantees that EL < τ 2, namely that L ∈ B.
Next, let L ∈ LN0 with |yL| < 3/4 be such that L /∈ W , and let L′ be the largest ancestor

of L such that L′ /∈ W . By the considerations above, L′ ∈ B, and thus pV (int(L)) ⊂
pV (int(L

′)) for some L′ ∈ B.
With this in mind, let now q = (x, y, w) ∈ spt(T ) ∩ B1/2, and let t =

√
|x|2 + |w|2 =

dist(q, V ). If t ≥ ϱW(y), then (t, y) ∈ UW , and q ∈ BM̄dL(yL) for some L ∈ W . Applying
Lemma 2.4 and Remark 7.3, we have, on the other hand,

|pπ0(q)| ≤ C dL
(
E(T, π0, yL, M̄dL) + d2LA

2
)1/2 ≤ C dL (τ + ε̄

1/2) ,

so that, if τ8 is sufficiently small, q ∈ R2W . If, instead, t < ϱW(y) then ϱW(y) > 0 and,
by the considerations above, y ∈ pV (int(L)) for some L ∈ B, and thus q ∈ BM̄dL(yL),
completing the proof of (7.14).

We can now complete the proof of (iv). We notice that for each i ∈ N, denoting
Ui := B5M̄di(yi) ∩BC⋆(η−1Ei)

1/2di(V ), we haveˆ
Ui

dist2(q, V ) d ∥T∥ (q) ≤ C2
⋆

η
d2i Ei ∥T∥ (Ui) ≤

C2
⋆

η
dm+2
i EiE

1/2
i

≤ Cτ

η3/2

ˆ
BM̄di

(yi)

dist2(·,S) d ∥T∥ ,

where we used that E
1/2
i ≤ τ by (7.3), and that, by a simple covering argument and the

monotonicity formula for T ,

∥T∥(Ui) ≤ C dm−1
i η−

1/2 diE
1/2
L .

By (7.14) and the definition of RB in (7.8),

spt(T ) ∩B1/2 \ (R2W ∪RB) ⊂
⋃
i∈N

Ui ,

and thus (7.11) follows by summing over i, keeping in mind that the balls BM̄di(yi) are
pairwise disjoint.

Finally, (v) is just a consequence of Corollary 6.6. □

7.2. Improved L2 estimate. The next results are proved in the same way as in [4,
Sections 6 and 7].

Definition 7.5. We let l±j : π±
0 → π⊥0

0 be the maps whose graphs describe the pages of
the open book S.

Note that all of them must vanish on V = V (S), the (m − 1)-dimensional spine of S.
There are N+ ≥ 1 functions l+j and N− ≥ 1 functions l−j , with N+ + N− ≤ 2Q, and
with the possibility that N+ ̸= N−. The key point of this section is that over the two
halves of the “good” region U4W , namely U±

4W we will be able to select, for each map u±j
in the collection of maps describing u, some linear map l±h±(j) for which the L2 norm of
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w±
j := u±j − l±h±(j) can be estimated in terms of the excess with respect to S, rather than

the excess with respect to π0. The proof is verbatim that given in [4, Section 6] for the
corresponding estimate in that situation and it is therefore omitted.

Theorem 7.6 (Improved L2 estimates). Let T , Σ, S and π0 be as in Theorem 7.4. Let
u be the corresponding map, and let l = {l±j }N

±
j=1 be the maps of Definition 7.5. There

are a geometric constant C and two selection functions h± : j ∈ {1, . . . , Q} 7→ h±(j) ∈
{1, . . . , N±} such that if l̃±j := l±h±(j) and

w±
j := u±j − l̃±j , (7.15)

then

sup
ζ=(t,y)∈U3W

|t|
m
2
+1
(
|t|−1|w(ζ)|+ |Dw(ζ)|+ |t|1/2[Dw]1/2(ζ)

)
≤ C (E(T,S, 0, 1)

1/2 +A) ,

(7.16)∑
±

Q∑
j=1

ˆ
U±
3W

(|w±
j (z)|2 + |x|2|Dw±

j (z)|2) dz ≤ C (E(T,S, 0, 1) +A2) ,

(7.17)

where, for z ∈ π0, |x| denotes, as usual, the distance of z from V .

8. Proof of Proposition 3.3: reparametrization on the new book

In this and the next section we assume that the parameters η and τ defining the Whitney
decomposition used in the previous section are fixed. The two selection functions h± and
the corresponding linear maps l̃±j of Theorem 7.6 identify a new open book S̃ ⊂ S as follows

Definition 8.1. We define

S̃ =
⋃
±

N±⋃
j=1

(id + l̃±j )(π
±
0 ) =:

⋃
±

N±⋃
j=1

H̃±
j . (8.1)

Remark 8.2. Observe that S̃ can be a proper subset of S. However it certainly contains
at least two pages, one on the left and one on the right.

In this section we reparametrize a large portion of the current T as graph over the pages
of S̃. The advantage of S̃ over S is that we have “thrown away useless pages”, i.e. pages
of S which were not really close to spt(T ). In particular the conclusions of this section will
be used to prove Lemma 3.5.

8.1. Reparametrizing over S̃. By Theorem 7.4(ii), in the region RW the current T
coincides with the graph Gv of the special Q-valued function v = u + Ψ(· + u) over
the domains U±

4W . Recall that on each domain U±
4W of π±

0 the function u is canonically
decomposed into C1,1/2 functions u±j , and, since each domain U±

4W is connected, the sign
function εu is constant on each of them. We will then simply reparametrize the graph



42 C. DE LELLIS, J. HIRSCH, A. MARCHESE, L. SPOLAOR, AND S. STUVARD

of each map u±j over the domain U±
4W as the graph of a map ũ±j over a subset of the

corresponding page H̃±
j . Observe that because the orientation of the graph of u is constant

on each U4W± , so is the orientation of the graph of ũ in order for the map ṽ = ũ+Ψ(·+ ũ)
to describe the same current. In particular in this case, with a slight abuse of notation,
we can omit to specify such orientation, and the corresponding sheets will be denoted by
Gṽ±j

, while the sum of them will be denoted by GS̃(ṽ). This is discussed in subsection 8.2.

In subsection 8.3. we will instead aim at reaching a similar parametrization for T over the
“bad” domain RB. Taking advantage of the smallness of planar excess at the scale of each
bad cube L ∈ B, and of the existence of points of density at least Q in the current at that
scale, we may still define Lipschitz approximations uL on suitable planes π̂L satisfying the
estimates of Proposition 4.3. Of course, as specified in Remark 4.2, for each such function
uL we also have a canonical selection by Lipschitz maps. After carefully estimating the
angle between the cone S̃ and the plane πL, we will be able to reparametrize the portion of
the current described by the graphs of the vL = uL +Ψ(·+ uL) over the varying domains
in π̂L for L ∈ B with the union of graphs of functions ṽ±j defined over suitable domains of

H̃±
j . This time we do not have a “sign function” which is locally constant on the regions on

the left and on the right of the spine. On the other hand, every point q = ζ + ṽ±j (ζ) with

ζ ∈ H̃±
j can be rewritten as z+(vL)j(z) for a suitable L ∈ B and z ∈ π̂L, and we orient the

approximate tangent to the graph of ṽ±j at q positively (with respect to the orientation of

H̃±
j ) if εvL(z) = 1 and negatively (with respect to the orientation of H̃±

j ) if εvL(z) = −1.
This defines an integer rectifiable current Gṽ±j

and the sum of all these will be denoted by

GS̃(ṽ).

8.2. Reparametrization over the good domain. As in [4, Section 7], a reparametriza-

tion of the graph of v on the slightly smaller good region R2W over the new book S̃ follows
from Theorem 7.6. The proof can be taken verbatim from [4] and it is therefore omitted.
In what follows, we adopt, for a given domain U ⊂ [0,∞)× V , the notation

Ũ±
j :=

{
(x, y) ∈ H̃±

j : (|x|, y) ∈ U
}
,

where, since each H̃±
j ⊂ S ⊂ T0Σ, we can use (x, y) as a short-hand notation to identify

the point (x, y, 0). We will also adopt the following convention in order to further ease
the notation. The reparametrization algorithm will produce precisely p = 2Q functions, Q
defined on the half planes H̃+

j projecting on π+
0 and the other Q defined on the half planes

H̃−
j projecting on π−

0 . We agree to denote such functions as ũ±j , where j ∈ {1, . . . , Q}, and
to let H̃±

j denote the half plane containing its domain. In particular, if two functions, say

ũ+j and ũ+j′ , are defined on the same half plane, then that half plane will be denoted H̃+
j

or H̃+
j′ depending on whether it is thought of as the domain of ũ+j or ũ+j′ . At the price of
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possibly having H̃±
j = H̃±

j′ for some j ̸= j′, we can think from now on that

S̃ =
⋃
±

Q⋃
j=1

H̃±
j .

Corollary 8.3 (Reparametrization on Good cubes). Let T,Σ,S, and π0 be as in Theorem

7.6, and let S̃ be the open book in Definition 8.1. There are 2Q functions ũ±j : (Ũ2W)±j ⊂
H̃±
j → (H̃±

j )
⊥0 (with j ∈ {1, . . . , Q}) of class C1, 1

2 with the following properties. The
estimate

∥ũ∥
C

1, 12
∗ (Ũ2W )

≤ C(E(T,S, 0, 1)
1/2 +A) (8.2)

holds. Moreover, if we set

ṽ±j (z) := ũ±j (z) + Ψ(z + ũ±j (z)) , (8.3)

there is an appropriate choice of the orientation of the graphs of ṽ±j so that, following the
notation of Section 8.1,

T RW = GS̃(ṽ) RW . (8.4)

Finally,

ˆ
(Ũ2W )±j

(|ũ±j |2 + |x|2|Dũ±j |2) ≤ C

ˆ
U±
3W

(|w±
j |2 + |x|2|Dw±

j |2)

≤ C (E(T,S, 0, 1) +A2) ,

(8.5)

where w is the multifunction over π0 defined in (7.15).

8.3. Multivalued approximation in bad cubes. Here we show that over the “bad”
Whitney region B the current T can still be approximated with a multivalued graph over
S̃, with good estimates, in the following sense.

Remark 8.4 (Graphicality in bad cubes). By virtue of Theorem 7.4(iii) and (7.9), as soon
as τ and ε̄ are chosen sufficiently small, for any cube L ∈ B we may apply Proposition 4.3
in the ball B20M̄dL(yL) and conclude from the Propagation Lemma 6.7 the existence of:

• a plane π̂L so that V ⊂ π̂L, 2 Ē(T, yL, 20M̄dL) > E(T, π̂L, yL, 20M̄dL), as well as
E(T, π̂L, yL, 20M̄dL) ≤ C ĒL,

• a closed set KL ⊂ BL := B10M̄dL(yL) ∩ (yL + π̂L),

• and a function uL : BL → AQ(π
⊥0
L )

such that the corresponding map vL = uL+Ψ(·+uL) satisfies (the rescaled version of) (4.3)-
(4.8), which we record here for future reference, keeping in mind that (M̄dL)

2A2 ≤ η̄ ĒL
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as shown in the proof of Theorem 7.4:

spt(GvL) ⊂ Σ , (8.6)

Lip(vL) ≤ CĒγ
L and osc(vL) ≤ Ch(T,C15M̄dL(yL, π̂L)) + C dL Ē

1/2
L , (8.7)

GvL (KL × π̂⊥
L ) = T (KL × π̂⊥

L ) ∩B15M̄dL(yL) mod(p) , (8.8)

|BL \KL| ≤ ∥T∥(((BL \KL)× π̂⊥
L ) ∩B15M̄dL(yL)) ≤ C dmL Ē1+γ

L , (8.9)∣∣∣∣∥T∥(C10M̄dL(yL, π̂L) ∩B15M̄dL(yL))−Q|BL| −
1

2

ˆ
BL

|DvL|2
∣∣∣∣ ≤ C dmL Ē1+γ

L , (8.10)

d−2
L ∥vL∥2L∞(BL)

+ d
−(m+2)
L

ˆ
BL

(
|vL|2 + |z − yL|2 |DvL|2 dz

)
≤ C ĒL . (8.11)

As in Corollary 8.3, we can reparametrize the function uL on the cone S̃ outside of a
small region around the spine of S̃. Recall the notation RB introduced in (7.8).

Corollary 8.5 (Reparametrization on Bad cubes). Let T,Σ,S, and π0 be as in Theorem

7.6, and let S̃ be the open book in Definition 8.1. There exist 2Q functions ũ±j : RB∩H̃±
j →

(H̃±
j )

⊥0 and an appropriate choice of orientations ε±j with the following properties. The
estimates

Lip(ũ±j ) ≤ Cτ 2γ , ∥ũ±j ∥L∞ ≤ Cτ 2 (8.12)

holds. Moreover, if we set

ṽ±j (z) := ũ±j (z) + Ψ(z + ũ±j (z)) , (8.13)

and denote by GS̃(ṽ) the current described in Section 8.1, then∣∣∣∣ˆ
RB

dist2(q, V ) d∥T∥(q)−
ˆ
RB

dist2(q, V ) d∥GS̃(ṽ)∥(q)
∣∣∣∣ ≤ C

η
E(T,S, 0, 1) (8.14)

and ˆ
RB∩H̃±

j

(|ũ±j |2 + |x|2|∇ũ±j |2) ≤
C

η
E(T,S, 0, 1) . (8.15)

Before coming to its proof we register the following further corollary.

Corollary 8.6. Let T,Σ,S, and π0 be as in Theorem 7.6, and let S̃ be the open book in
Definition 8.1, then we have

rm+2E(T, S̃, 0, r) ≤ C

η3/2
E(T,S, 0, 1) + CA2 , 0 < r ≤ 1

2
. (8.16)

Moreover, if η̄ and ε̄ are sufficiently small, compared to η, then

C(η)−1β2
π0
(S̃) ≤ E(T, π0, 0, 1) ≤ C(η)β2

max(S̃) ≤ C(η)β2
π0
(S̃) , (8.17)

where the constant C(η) depends additionally only upon Q, m, and n. Combining this with
(6.1) we get

βπ0(S) ≤ C(η) βπ0(S̃) . (8.18)
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Proof of Corollary 8.6. The proof of (8.16) follows as in [4] using (7.11), (7.17), (8.14), and
(8.15).

To obtain (8.17) it is sufficient to check that the new book S̃ satisfies the assumptions
of Lemma 6.3 at scale 1/2. As a consequence of (8.16), we have an upper bound of

the double-sided excess between T and S̃ at scale 1/2 in terms of the control quantity
E(T,S, 0, 1) +A2. Since Ē(T, 0, 1

2
) ≥ 1

2
E(T, π0, 0, 1) ≥ 1

4
(η̄−1E(T,S, 0, 1) + ε̄−1A2), this is

sufficient to prove Assumption 6.1(ii) at the scale 1/2 and conclude. □

Proof of Corollary 8.5. Step 1. Here we estimate the tilt of the plane π̂L at the scale of
cubes L ∈ B with respect to the reference plane π0. Let L be any cube in B, and let
L′ ∈ W be its father. As noticed in the proof of Theorem 7.4, Lemma 6.7 can be applied
at the scale of L′, so that, in particular,

ĒL ≤ 2 · 2m+2 ĒL′ , ĒL′ ≤ 2 ĒL . (8.19)

This implies that we can estimate

|π̂L − π̂L′ |2 ≤ C
(
Eno(T, π̂L,BM̄dL/2(yL)) + Eno(T, π̂L′ ,BM̄dL′/2(yL′))

)
≤ C ĒL ,

(8.20)

where Eno is the unoriented tilt excess defined in Definition 4.1, and where we have used
the classical tilt-excess inequality together with the condition (M̄d)2A2 ≤ Ē at the scales
of L and L′ and (8.19).
Next, denoting by β(π,H) = distH(π ∩B1,H ∩B1) the “angle” between a plane π and

a half plane H, we claim that:

β(π̂L,H)2 ≤ C(ĒL + β2
max(S)) for every H ⊂ S . (8.21)

To see this, first apply Lemma 6.7 at the scale of L and with ρ sufficiently small to
conclude that Θ(T, q) < Q for every q ∈ spt(T ) ∩CM̄dL/8(yL, π̂L) ∩B7M̄dL/8(yL) \BdL(V ).
In particular, if we let q ∈ π̂L denote any of the two points with pV (q) = yL and dist(q, V ) =
M̄dL
16

then for every half plane H̃±
j ⊂ S̃

B4dL(q) ∩ H̃±
j ⊂ (Ũ2W)±j ∩CM̄dL/8(yL, π̂L) ∩B7M̄dL/8(yL) \BdL(V ) ,

and, as a consequence of Proposition 4.5,

B2dL(q, π̂L) := B2dL(q) ∩ (q + π̂L) ⊂ KL ,

so that

GvL C2dL(q, π̂L) = T C2dL(q, π̂L) ∩B7M̄dL/8(yL) = GS̃(ṽ) C2dL(q, π̂L) .

As a further consequence of Proposition 4.5, there is a C1,1/2-selection for uL|B2dL
(q,π̂L)

,

which we denote (uL)1 ≤ . . . ≤ (uL)Q. Now, by standard arguments one immediately
concludes that there exists H⋆ ⊂ S such that

Lm
{z ∈ B2dL(q, π̂L) : dist(z + (vL)1(z),S) = dist(z + (vL)1(z),H⋆)}︸ ︷︷ ︸

=:OL

 ≥ c dmL ,
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where c = c(m,Q). For every z ∈ OL, we then have

β(π̂L,H⋆) dL ≤ dist(z,H⋆) ≤ dist(z + (vL)1(z),S) + |(vL)1(z)| ,
so that after squaring and integrating over OL we reach

β(π̂L,H⋆)
2 dm+2

L ≤ C

(ˆ
BM̄dL′ (yL′ )

dist2(·,S) d∥T∥+
ˆ
BL

|vL|2 dz

)
,

which in turn implies, by (8.11), L′ ∈ W (whence EL′ ≤ η ĒL′), and (8.19) that

β(π̂L,H⋆)
2 ≤ C ĒL ,

and (8.21) follows by triangle inequality.
With (8.21) at our disposal, and recalling that βπ0(S) ≤ C βmax(S) as a consequence of

Lemma 6.3, we may conclude that

distH(π̂L ∩B1, π0 ∩B1) ≤ C (ĒL + β2
max(S)) ≤ C (τ 2 + ε̄) . (8.22)

In turn, the L∞ estimate (8.11), the condition ĒL ≤ η−1EL for a cube L ∈ B, and (8.22)
imply that for a suitable choice of the geometric constant C⋆ in (7.8), for each L ∈ B the
graph GvL RB splits into two disjoint parts, one that projects on π+

0 and the other on π−
0 ,

that is
GvL RB = Gv+L

RB +Gv−L
RB . (8.23)

Step 2: Here we exploit the conclusions drawn in Step 1 in order to produce the claimed
reparametrization over RB. Let L be any cube in B. By (8.23), it will be sufficient to seek a

reparametrization for the function v+L over the half-planes H̃+
j projecting onto π+

0 , because

the argument for the function v−L is going to be the same. As noticed above, Proposition
4.5 implies that, for q as in Step 1 which projects onto π+

0 , B2dL(q) ⊂ KL and therefore

Gv+L
C2dL(q, π̂L) = T C2dL(q, π̂L) ∩B7M̄dL/8(yL) = GS̄(ṽ) C2dL(q, π̂L) .

Hence, we can consider the function u+L so that v+L = u+L + Ψ(· + u+L), and, recalling

from Remark 4.2 that we have a fixed selection u+L =
∑Q

j=1

q
(u+L)j

y
of Lipschitz functions

(u+L)1 ≤ (u+L)2 ≤ . . . ≤ (u+L)Q, we proceed as follows. For every j ∈ {1, . . . , Q}, we let

h+(j) be the index such that the half-plane H̃+
h+(j) ⊂ S̃ hosts the domain of the function in

ṽ which reparametrizes (v+L )j over B2dL(q, π̂L). Then, we call (ũ+L)j the reparametrization

of (u+L)j over H̃+
h+(j). By (8.22) and the L∞ bound (8.11), the domain of (ũ+L)j contains

DL,j := H̃+
h+(j) ∩ B8M̄dL(yL) \ BC(τ2+ε̄)(η−1EL)

1/2dL
(V ), and the currents associated to the

graphs of (u+L)j and (ũ+L)j agree, provided the choice of the orientation of the tangent plane
to the graph of (ũ+L)j is made following the algorithm detailed in Section 8.1. Furthermore,
using the estimates produced in Step 1 we can calculate

Lip((ũ+L)j) ≤ C(Lip((u+L)j) + β(π̂L, H̃
+
h+(j))) ≤ C(Ēγ

L + Ē
1/2
L ) ≤ C(τ 2 + ε̄)γ ≤ Cτ 2γ ,

as well as

d−2
L ∥(ũ+L)j∥

2
L∞(DL,j)

≤ C(d−2
L ∥vL∥2L∞(BL)

+ β(π̂L, H̃
+
h+(j))

2) ≤ CĒL ≤ Cτ 2 .
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By the above argument, for each j ∈ {1, . . . , Q} the page H̃+
j hosts a domain Dj such that

Dj ⊃
⋃
L∈B

{
(x, y) ∈ H̃+

j : y ∈ pV (int(V )) and C(τ 2 + ε̄)(η−1EL)
1/2dL ≤ |x| < 5M̄dL

}
.

In particular, since cubes L ∈ B have interiors with disjoint projection onto V , for a
suitable choice of the geometric constant C⋆ in (7.8) we can define a global function ũ+j
over H̃+

j ∩RB. We can now estimate, using that the balls BM̄di(yi) are disjoint:ˆ
RB∩H̃+

j

(|ũ+j |2 + |x|2|Dũ+j |2) dz ≤
∑
i

ˆ
(B5M̄di

(yi)\BC⋆(η−1Ei)
1/2di

(V ))∩H̃+
j

(|ũ+j |2 + |x|2|Dũ+j |2) dz

≤
∑
i

ˆ
BLi

(|vLi
|2 + |z − yi|2|DvLi

|2 + d2i ĒLi
) dz

≤ C
∑
i

dm+2
i ĒLi

≤ Cη−1
∑
i

dm+2
i ELi

≤ Cη−1E(T,S, 0, 1) ,

thus completing the proof of (8.15) for the part over π+
0 . Similarly, we obtain the missing

estimate (8.14) summing the errors in the region where T does not agree with the graph
GS̃(ṽ) by means of (8.8), (8.9), and (8.11). □

8.4. Proof of Lemma 3.5. Fix γ > 0, and let T and Σ be as in Assumption 3.1. Corre-
spondingly, choose the parameters ε̄ and η̄ depending on γ so that whenever Assumption 7.1
holds for some open book S and some plane π0 with ε̄ and η̄ then one can conclude graphi-
cality of T over a suitable subset of S̃ ⊂ S up to distance γ/8 from V (S). Now fix two open
books S and S′ in B(0). Since the Hausdorff distance between any two open books in B(0)
is bounded by a universal constant C̄, if r ≥ γ and A2+E(T,S, 0, 1)+E(T,S′, 0, r) ≥ ᾱ(γ)
then the conclusion in (3.10) is trivially true with the choice C(γ) = C̄2 ᾱ(γ)−1. Hence, we
assume

A2 + E(T,S, 0, 1) + E(T,S′, 0, r) < ᾱ(γ) , (8.24)

where ᾱ(γ) will be chosen momentarily, and we consider the following two cases:

(a) Assumption 7.1 holds for S and a plane π0 with ε̄ and η̄ as specified above;
(b) Assumption 7.1 for S with ε̄ and η̄ as above fails.

In case (a), after denoting S̃ ⊂ S the open book in Definition 8.1, we estimate for r ≥ γ

dH(S̃ ∩B1,S
′ ∩B1)

2 = r−2 dH(S̃ ∩Br,S
′ ∩Br)

2 ≤ C(E(T, S̃, 0, r) + E(T,S′, 0, r))

≤ C γ−(m+2)(A2 + E(T,S, 0, 1) + E(T,S′, 0, r)) ,

where in the last inequality we have used (8.16). On the other hand, it is immediately seen

that dH(S̃∩B1,S∩B1)
2 ≤ C(E(T,S, 0, 1)). This proves (3.10) when (a) holds, and (3.11)

is also a consequence of (8.16).
Now, suppose we are in case (b). Of course, we can assume that the failure of Assumption

7.1 is due to the failure of Assumption 6.1, for otherwise Lemma 6.5 would imply that case
(a) holds for the current T ′ = (λ0, 1

2
)♯T (possibly upon reducing the values of ε̄ and η̄).

Hence, in this case at least one of the following holds:
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(b1) A2 > ε̄ Ē(T, 0, 1),
(b2) Ē(T, 0, 1) > ε̄,
(b3) E(T,S, 0, 1) > η̄ Ē(T, 0, 1),

If (b2) holds, then (8.24) for ᾱ(γ) ≪ ε̄ implies a lower bound on the opening angle
βmax(S). Then by choosing ᾱ(γ) much smaller, if necessary, depending on ε̄, we would

once again deduce graphicality of T over a suitable subset S̃ ⊂ S due to [4, Corollary 6.6]
and conclude as in case (a).

In case (b1) or (b3) holds, (3.10) is a simple consequence of the fact that

dH(S ∩B1, π0 ∩B1)
2 ≤ C

(
Ē(T, 0, 1) +A2

)
when S is optimal for the conical excess and π0 is optimal for the planar excess in B1, as
a consequence of the height bound Lemma 2.4. Analogously, Lemma 2.4 also implies that

E(T,S, 0, 1/2) ≤ C
(
Ē(T, 0, 1) +A2

)
,

which in turn implies (3.11) if (b1) or (b3) holds. □

9. Proof of Proposition 3.3: Simon type estimates

In this section we use one of the crucial ideas of Simon’s work [13] (cf. also [2]): close to
points of high density, the monotonicity formula gives an improved L2 estimate, see (9.1);
in particular, such points of high density are bound to lie close to the spine V at the scale
of the excess E. An analogous estimate was proved in [4], but here the situation is more
subtle as we have to take into account that the “opening angle” of S might be relatively
small.

Theorem 9.1. There are positive constants C, η9, and ε9 depending upon (m,n, p) such
that if T,Σ,S, π0 are as in Assumptions 3.1 and 7.1 with ε̄ < ε9 and η̄ < η9 then the
following conclusion holds. Assume that

(a) S̃ denotes the open book introduced in Definition 8.1
(b) and q0 = (x0, y0) ∈ (V ⊥ × V ) ∩B1/4 is a point with ΘT (q0) ≥ Q.

Then

βπ0(S)
2 |x0|2 + |x⊥0 |2 +

ˆ
B1/4

dist2 (q − q0, S̃)

|q − q0|m+ 7
4

d∥T∥(q) ≤ C(E(T,S, 0, 1) +A2) , (9.1)

where x⊥0 = p⊥
π0
(x0) = p⊥

π0
(q0).

The proof follows the same argument as in [4, Section 8], however we need to suitably
modify [4, Proposition 8.4] to take into account the presence of the bad Whitney region B.
This will be done by taking advantage of the fact that in this region the planar and conical
excess are comparable, and using once more the multivalued approximation to estimate
the required errors.
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9.1. Consequences of the monotonicity formula. We start with an improved version
of the first part of [4, Lemma 8.2]. More precisely, the bound (9.2) differs from the cor-
responding one in [4, Lemma 8.1] in the dependence upon A. The proof is given in the
appendix.

Lemma 9.2. Let T and Σ be as in Assumption 3.1, and assume that g(q) = |q|k ĝ( q|q|)
for some k ≥ 1 and some Lipschitz non-negative function ĝ on the unit sphere. Then, for
every 2 > α > 0 and R ≤ 1 we have

α

2

ˆ
BR

g2(q)

|q|m+2k−α d ∥T∥ (q) ≤
m+ 2k

Rm+2k−α

ˆ
BR

g2 d ∥T∥+ 2

α

ˆ
BR

|∇g(q)|2|q⊥|2

|q|m+2k−α d ∥T∥ (q)

+ CA2∥ĝ∥2∞
∥T∥ (BR)

Rm−α , (9.2)

where q⊥ := q−pT⃗ (q) at Hm-a.e. q ∈ spt(T ) (here, pT⃗ = pT⃗ (q) is the orthogonal projection

onto span(T⃗ (q))).

As a simple corollary we then conclude the following.

Corollary 9.3. Let T and Σ be as in Assumption 3.1. Then, for every r < 1 and any
open book S̄,

ˆ
Br

dist(q, S̄)2

|q|m+ 7
4

d∥T∥ ≤C
ˆ
Br

|q⊥|2

|q|m+2
d∥T∥+ C(E(T, S̄, 0, r) +A2) . (9.3)

Proof. Observe that g(q) := dist(q, S̄) is 1-homogeneous function and that g̃ is 1-Lipschitz.
The inequality follows therefore applying Lemma 9.2 with k = 1 and α = 1

4
. □

We next use the refined Lipschitz approximation of the previous sections to suitably
bound the first summand in the right-hand side of (9.3).

Proposition 9.4. There are positive η10 and ε10 such that the following holds. Let T ,
Σ, and S be as in Assumption 3.1 and 7.1 with η̄ ≤ η10 and ε̄ ≤ ε10. Denote by pV
the orthogonal projection on the spine V of S, and for ∥T∥-a.e. q denote by pT⃗ (q)⊥ the

projection on the orthogonal complement of the tangent plane to T at q. Also set q⊥ :=
q − pT⃗ (q)(q) for Hm-a.e. q ∈ spt(T ). Then

ˆ
B1/3

(∣∣∣pV · pT⃗ (q)⊥
∣∣∣2 +

|q⊥|2

|q|m+2

)
d∥T∥(q) ≤ C (E+A2) , (9.4)

where | · | is the Hilbert-Schmidt norm and the constant C depends upon (m,n, p).
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Proof. Let g ∈ C∞
c (B1), and, denoting pV ⊥ the orthogonal projection onto the complement

V ⊥ to the spine V of S, proceed as in the proof of [4, (8.14) Proposition 8.4] to estimateˆ
|pV · pT⃗⊥|2 g2d∥T∥+ 2

(ˆ
g2d∥T∥ −

ˆ
g2d∥C̃∥

)
≤ −2

ˆ
g2x ·HT d∥T∥︸ ︷︷ ︸

=:(A)

+4

ˆ
|x⊥|2 |∇V g|2 d∥T∥︸ ︷︷ ︸

=:(B)

+ 4

ˆ
g (x · ∇V ⊥g) d∥C̃∥ − 4

ˆ
g (pT⃗ (x) · ∇V ⊥g) d∥T∥︸ ︷︷ ︸

=:(C)

. (9.5)

Here recall that C̃ is a suitable representative mod(p) supported in the book S̃: for its
definition we refer to [4].

Notice that when calculating (B) and (C) we can replace ∥T∥ with ∥GS̄(ṽ)∥ up to an
error of size E thanks to (8.14), since in all instances the integrand can be bounded by |x|2
(see [4, Proof of Proposition 8.4]). The rest of the proof now proceeds as in [4, Proposition
8.4] using Corollaries 8.3 and 8.5 in place of Corollary 6.6 therein. □

We can now combine Corollary 9.3 and Proposition 9.4 to infer the following

Corollary 9.5. Let T , Σ, and S be as in Proposition 9.4. Thenˆ
B1/3

dist(q,S)2

|q|m+ 7
4

d∥T∥ ≤C(E(T,S, 0, 1) +A2) . (9.6)

9.2. Shifted cones. In the next two steps to prove Theorem 9.1 we will make a funda-
mental use of the following geometric lemma.

Lemma 9.6. (a) Assume S is an open book and q, z ∈ Rm+n and O ∈ SO(m + n).
Then:

dist(z, q +O(S)) ≤ dist(z, q + S) + 2|O − Id||z − q| (9.7)

(b) There is a geometric constant C such that the following inequality holds for any
q, q′, z ∈ Rm+n, any m-dimensional plane π with π ⊃ V = V (S) and under the
additional assumptions that pπ(S) = π and βπ(S) ≤ 1

2
:

dist(z, q + S) ≤ dist(z, q′ + S) + |pπ⊥(q − q′)|+ Cβπ(S)|pπ∩V ⊥(q − q′)|. (9.8)

(c) For any constant C0 there is a constant C1 such that the following holds under the
assumption that C−1

0 βπ(S) ≤ βmax(S) ≤ βπ(S). For every q ∈ Rm+n there is a page
H ⊂ S such that

|p⊥
π (q)|+ βπ(S)|pV ⊥(q)| ≤ Cdist(x− q,S) whenever |pV ⊥(x)| ≥ 2|pV ⊥(q)| . (9.9)

Proof. Proof of (a). We can assume without loss of generality that q = 0. Fix z and let y
be a point in S such that dist(z,S) = |z − y|. Observe that certainly |y| ≤ 2|z|, otherwise
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0 ∈ S would be closer to z then y. On the other hand O(y) ∈ O(S) and thus we can
estimate

dist(z, O(S)) ≤ |z −O(y)| ≤ |z − y|+ |y −O(y)| ≤ dist(z,S) + |O − Id||y|
≤ dist(z,S) + 2|O − Id||z| .

Proof of (b). Observe that we can write

q = q′ + pV (q − q′)︸ ︷︷ ︸
q1

+pπ∩V ⊥(q − q′)︸ ︷︷ ︸
q2

+pπ⊥(q − q′)︸ ︷︷ ︸
q3

.

Evidently, it suffices to prove the three claims

dist(z, q′ + q1 + S) = dist(z, q′ + S)

dist(z, q′ + q1 + q2 + S) ≤ dist(z, q′ + q1 + S) + Cβπ(S)|q2|
dist(z, q′ + q1 + q2 + q3 + S) ≤ dist(z, q′ + q1 + q2 + S) + |q3| .

This amounts to show the inequality (9.8) in three particular cases in which q − q′ ∈ V ,
q − q′ ∈ π ∩ V ⊥, and q − q′ ∈ π⊥. In all of these cases we can assume, without loss of
generality, that q′ = 0. The third case is the trivial estimate, while the first one is obvious
because q + S = S when q ∈ V . We are thus left with the second case.
Fix thus z ∈ Rm+n and q ∈ π ∩ V ⊥. Denote by τ the (m + 1)-dimensional plane which

contains S and π and observe that it contains q + S as well. Without loss of generality
we can assume therefore that z ∈ τ . The assumption pπ(S) = π implies the following
geometric property:

(P) for every ξ ∈ π, the line ξ + τ ∩ π⊥ intersects S.

Consider now y such that dist(z,S) = |z − y| and let H be the page containing it. We
further set y′ := pπ∩V ⊥(y). Since π ∩ V ⊥ is 1-dimensional, we can distinguish two cases:

(a) y′ is not contained in the segment [0, q]; in this case pπ(y)+π
⊥∩ τ intersects q+H

in some point yq and |y− yq| ≤ tan β|q|, where β denotes the angle between H and
π. Since β ≤ Cβπ(S) the desired inequality follows.

(b) y′ is contained in the segment [0, q]. In this case |pπ⊥(y)| ≤ |q| tan β. The geometric
property (P) guarantees that y + τ ∩ π⊥ intersects q + S at some point yq. If H

′ is
the page of S such that yq ∈ q +H′, this time we get |pπ⊥(yq)| ≤ tan β′|q|. Since
|y − yq| ≤ |pπ⊥(y)|+ |pπ⊥(yq)| the desired inequality follows again.

Proof of (c). Let Hi be the pages of S and denote by πi the m-dimensional plane which
contains Hi. We will show below the following fact

(F) For every x ∈ Hi with |pV ⊥(x)| ≥ 2|pV ⊥(q)|, we have dist(x, q + S) = dist(x, q +
Hi) = |pπ⊥

i
(q)|.
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From (F) we conclude as follows. We select a page Hi with the property that |pπ⊥
i
(q)| is

maximal. We then have to show that

|pπ⊥(q)| ≤ C|pπ⊥
i
(q)| (9.10)

βmax(S)|pV ⊥(q)| ≤ C|pπ⊥
i
(q)| . (9.11)

Consider the plane τ which contains π and S and observe that

|pV ⊥(q)|2 = |pτ∩V ⊥(q)|2 + |pτ⊥(q)|2

|pπ⊥
i
(q)|2 = |pπ⊥

i
(pτ∩V ⊥(q))|2 + |pτ⊥(q)|2

|pπ⊥(q)|2 = |pπ⊥(pV ⊥∩τ (q))|2 + |pτ⊥(q)|2 .
Since moreover S and q+S are invariant under translations along V , we can just reduce to
the situation in which q ∈ V ⊥∩τ . Moreover, by dilation, we can assume it has unit length.
Note therefore that we are reduced to prove the following claim. We have 2Q lines in R2

with the property that the maximal angle between them is βmax(S) and the maximal angle
between one of them and the horizontal axis is βπ(S). ξ = (cos θ, sin θ) is a unit vector in
R2 and ℓ is the one among the 2Q lines which is further away from ξ, while we wish to
show that

| sin θ| ≤ Cdist(ξ, ℓ) (9.12)

βmax(S) ≤ Cdist(ξ, ℓ) . (9.13)

Pick the two lines ℓ1 and ℓ2 which form the largest angles βmax(S) and let ℓ1 be the one
further away from ξ of the two. The angle between ξ and ℓ1 is thus at least half of βmax(S),
but it is also smaller than the angle between ξ and ℓ and so the second inequality is trivial.
For the other inequality we notice that θ is the angle between ξ and the horizontal axis,
which is bounded by the sum of the angle between ξ and ℓ1 (controlled by βmax(S) and so
by dist(ξ, ℓ)) and the angle between ℓ1 and the horizontal line, which is bounded by βπ(S).
Since the latter is also bounded by βmax(S), which in turn is bounded by Cdist(ξ, ℓ), we
have proved our claim.

We now come to the proof of (F). Let πi be the plane containing Hi and observe that,
since |pV ⊥(x)| ≥ 2|pV ⊥(q)|, we easily see that pπi(x− q) = x−pπi(q) belongs to Hi. Thus
dist(x, q +Hi) = |pπ⊥

i
(q)|. We hence just need to show that

dist(x, q +Hj) ≥ |pπ⊥
i
(q)| = dist(x, q +Hi)

for every other page Hj. We will in fact show that dist(x, q+πj) ≥ dist(x, q+πi) (which is
enough because dist(x, q +Hj) ≥ dist(x, q + πj)). Summarizing, we are left with the task
of proving

dist(x− q, πi) ≤ dist(x− q, πj)

for every x ∈ πi such that |pV ⊥(x)| ≥ 2|pV ⊥(q)|.
Arguing as above, we can ignore the components of q and x along V and along τ⊥.

We thus reduce the claim to a statement about pairs of lines. More precisely, given two
lines ℓ, ℓ′ ⊂ R2, a point x ∈ ℓ and a point q with 2|q| ≤ |x|, we wish to show that
dist(x−q, ℓ) ≤ dist(x−q, ℓ′). By scaling we can assume |q| = 1. We thus fix coordinates on
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the plane in such a way that ℓ = {(s, 0) : s ∈ R}, x = (σ, 0) with σ ≥ 2, q = (cosα, sinα),
and (cos β, sin β) is a unit vector orthogonal to ℓ′. The claim then amounts to the inequality

sin2 α ≤ (σ − cosα)2 cos2 β + sin2 α sin2 β .

Notice however that, since σ ≥ 2, sin2 α ≤ 1 ≤ (2 − cosα)2 and the desired inequality
follows easily. □

9.3. Shifted Q-points. Consider now any point q ∈ B1/16 with ΘT (q) ≥ Q. For each
such q we fix a rotation Oq of the ambient space, with the properties that

(i) Oq(T0Σ) = TqΣ;
(ii) |Oq − Id| is minimal among all rotations which satisfy condition (i).

Clearly

|Oq − Id| ≤ C0|q|A , (9.14)

for some geometric constant C0. The point of this Section is to show that, provided η̄
and ε̄ are small enough, we achieve an estimate as in (9.6) with q replacing the origin and

Oq(S̃) replacing S.

Proposition 9.7. Let T , Σ, π0, and S be as in Assumption 3.1 and 7.1, with parameters
η̄ and ε̄ small enough to apply Theorem 7.6 and define the book S̃. Then there are η11 and
ε11 such that, if η̄ < η11 and ε̄ < ε11, then Corollary 9.5 applies with Tq,1/3 in place of T ,

Oq(S̃) in place of S, and Oq(π0) in place of π0, whenever q ∈ B1/16 satisfies ΘT (q) ≥ Q.
In particular, for any such point we gain the estimate

ˆ
B1/9(q)

dist(z − q, Oq(S̃))
2

|z − q|m+ 7
4

d∥T∥ ≤ C(E(T,Oq(S̃), q, 1/3) +A2) . (9.15)

Proof. In order to show that Corollary 9.5 applies with T ′ = Tq,1/3 in place of T , S′ = Oq(S̃)
in place of S and π′ = Oq(π0) in place of π0 we need to show the following conditions:

(i) 9−1A2 ≤ ε10E(T
′, π′, 0, 1) ≤ ε210;

(ii) E(T ′,S′, 0, 1) ≤ η10Ē(T
′, 0, 1);

(iii) Ē(T ′, 0, 1) ≥ (1− η10)E(T
′, 0, 1).

This will be shown assuming that

(a) A2 ≤ ε̄E(T, π0, 0, 1) ≤ ε̄2;
(b) E(T,S, 0, 1) ≤ η̄E(T, π0, 0, 1);
(c) Ē(T, 0, 1) ≥ (1− η̄)E(T, π0, 0, 1);

where ε̄ and η̄ are two much smaller parameters.

Step 1. Height of q. We first prove that, for every fixed positive ρ, no matter how
small,

|p⊥
π0
(q)|2 ≤ ρ2E(T, π0, 0, 1) (9.16)

provided η̄ and ε̄ are chosen small enough.



54 C. DE LELLIS, J. HIRSCH, A. MARCHESE, L. SPOLAOR, AND S. STUVARD

Assume by contradiction this is not the case. Then there are sequences Tk, Sk, Σk

satisfying Assumption 3.1 and (a), (b), and (c) above with vanishing η̄ = ηk and ε̄ = εk,
and a sequence of points qk ∈ B1/16 with ΘTk(qk) ≥ Q such that

|p⊥
π0
(q)|2 ≥ ρ2E(Tk, π0, 0, 1) . (9.17)

By applying a rotation, we can assume that all Sk have the same spine V . Let now
yk = pV (qk) and recall that, by Lemma 6.7 |qk − yk| → 0. Up to subsequences we can also
assume that yk → y. We argue as in the Proof of Lemma 6.5 and in particular introduce
the maps v̄k and study their limit v, which is a Dir-minimizing map, and is a strong L2

limit. By Proposition 4.3 and because v is 1-homogeneous and invariant by translation
along the spine V , we see that, for every fixed r,

lim
k→∞

E(Tk, π0, y, r)

E(Tk, π0, 0, 1)
= 1 . (9.18)

In particular we also see that

lim
k→∞

E(Tk, π0, yk, r)

E(Tk, π0, 0, 1)
= 1 . (9.19)

So, for k large enough, we have

E(Tk, π0, yk, r) ≤ 2E(Tk, π0, 0, 1) .

Since qk converges towards yk, we can, for a sufficiently large k, apply Lemma 2.4 to
conclude

|pπ⊥
0
(qk)| ≤ CrE(Tk, π0, 0, 1)

1/2 .

The constant C is independent of r. Therefore, by choosing r smaller than ρ
C
we contradict

(9.17).

Step 2. We now wish to prove (i). We argue again by contradiction. This time we
have, however, either

E(Tk, Oqk(π0), qk,
1/3) ≥ ε10 , (9.20)

or
A2
k ≥ 9ε10E(Tk, Oqk(π0), qk,

1/3) . (9.21)

Observe that

E(Tk, Oqk(π0), qk,
1/3) ≤ (1 + 3|qk − yk|)m+2E(Tk, π0, yk, 1/3 + |qk − yk|)

+ C|p⊥
π0
(qk)|2 + CA2

k ,

but also

E(Tk, Oqk(π0), qk,
1/3) ≥ (1− 3|qk − yk|)m+2E(Tk, π0, yk, 1/3 − |qk − yk|)

− C|p⊥
πk
(qk)|2 − CA2

k ,

Recalling (9.18) we conclude that

lim
k→∞

E(Tk, Oqk(π0), qk,
1/3)

E(Tk, π0, 0, 1)
= 1 . (9.22)
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Since however E(Tk, π0, 0, 1) and E(Tk, π0, 0, 1)
−1A2

k are both infinitesimal, clearly we con-
tradict either (9.20) or (9.21).

Step 3. We next prove (iii). Assume by contradiction that there is a sequence of planes
πk ⊂ TqΣk such that

E(Tk, πk, qk, 1/3) ≤ (1− η10)E(Tk, Oq(πk), qk, 1/3) .

Using again the estimate |Oqk − Id| ≤ CAk and the estimates of the previous steps, we
conclude that

E(Tk, πk, y, 1/3 − |qk − y|) ≤ (1− η10/2)E(Tk, π0, y, 1/3 + |qk − y|) .

Observe also that |πk−π0| ≤ CE(Tk, π0, 0, 1)
1/2 =: Ē

1/2
k . Consider the linear maps lk : π0 →

π⊥0
0 whose graph give πk and let l be their limit, up to subsequences.
If v is the limiting function found in the proof of Lemma 6.5, observe that

lim
k→∞

Ē−1
k E(Tk, π0, y, 1/3 + |qk − y|) = 1

3m+2

ˆ
B1/3(y)

|v|2 .

On the other hand we also get

lim
k→∞

Ē−1
k E(Tk, πk, y, 1/3 − |qk − y|) = 1

3m+2

ˆ
B1/3

∑
i

|vi − l|2 .

In particular we would conclude that there is a linear function l such thatˆ
B1/3

∑
i

|vi − l|2 <
ˆ
B1/3

|v|2 .

Recall however that, because E(Tk, π0, 0, 1) ≤ (1 − ηk)
−1Ē(Tk, 0, 1), η ◦ v = Q−1

∑
i vi

vanishes identically. In particular∑
i

|vi − l|2 = |v|2 +Q|l|2 ,

which in turn shows ˆ
B1/3

∑
i

|vi − l|2 ≥
ˆ
B1/3

|v|2 .

Step 4. It remains to show (ii). By Lemma 9.6 we have

dist(z,Oq(S̃) + q) ≤ CA|q||z − q|+ dist(z, S̃+ q)

≤ CA|q||z − q|+ dist(z, S̃) + |pπ⊥
0
(q)|+ Cβπ0(S)|q − pV (q)| .

In particular, we can estimate

E(T ′,S′, 0, 1) ≤ C(E(T, S̃, 0, 1/2) +A2 + |pπ⊥
0
(q)|2 + Cβπ0(S)|q − pV (q)|2)

≤ C(E(T,S, 0, 1) +A2 + |pπ⊥
0
(q)|2 + Cβπ0(S)|q − pV (q)|2) , (9.23)

where in the last line we have used (8.16).
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From the previous steps it follows that each of the summands on the right hand side can
be made arbitrarily small with respect to E(T, π0, 0, 1), provided η̄ and ε̄ are taken small
enough. Since in turn E(T, π0, 0, 1) can be bounded by 2E(T ′, π′, 0, 1) by possibly choosing
the two parameters even smaller, we conclude the proof. □

9.4. Proof of Theorem 9.1. By Proposition 9.7 we haveˆ
B1/9(q0)

dist(q, Oq0(S̃) + q0)
2

|q − q0|m+ 7
4

d∥T∥ ≤ C(E(T,Oq0(S̃), q, 1/3) +A2) ,

provided the parameters are small enough. Using Lemma 9.6 and (8.16) we then getˆ
B1/9(q0)

dist(q − q0, S̃)
2

|q − q0|m+ 7
4

d∥T∥ ≤C
ˆ
B1/3

dist(q, S̃)2d∥T∥+ C(A2 + |x⊥0 |2 + βπ0(S̃)
2|x0|2)

≤CE(T, S̃, 0, 1/2) + C(A2 + |x⊥0 |2 + βπ0(S̃)
2|x0|2)

≤CE(T,S, 0, 1) + C(A2 + C |x⊥0 |2 + Cβπ0(S̃)
2|x0|2) . (9.24)

From now on in order to simplify our notation we use E in place of E(T,S, 0, 1). Fix ρ > 0.
We next wish to show that, provided the parameters ε9 and η9 are small enough, then

|x⊥0 |2 + βπ0(S̃)
2|x0|2 ≤ Cρ

7/4

ˆ
B1/9(q0)

dist(q − q0, S̃)
2

|q − q0|m+ 7
4

d∥T∥+ Cρ−m(E+A2) , (9.25)

where the constant C is independent of η9 and ε9. In particular, for ρ sufficiently small we
can combine (9.25) and (9.24) to get

|x⊥0 |2 + βπ0(S̃)
2|x0|2 ≤ Cρ−m(E+A2) . (9.26)

We fix such a ρ and gain therefore

βπ0(S̃)
2 |x0|2 + |x⊥0 |2 +

ˆ
B1/4

dist2 (q − q0, S̃)

|q − q0|m+ 7
4

d∥T∥(q) ≤ C(E(T,S, 0, 1) +A2)

(where we are treating the fixed ρ as a geometric constant). Since however βπ0(S) ≤
Cβπ0(S̃) by (8.18), we achieve our desired conclusion.

It remains to show (9.25). First of all, by assuming the parameters small enough, Lemma
6.5 implies that 2|pV ⊥(q0)| ≤ ρ. Thus we can apply Lemma 9.6 (c) and select a page Hi

of S̃ with the property that

βπ0(S̃)
2 |x0|2 + |x⊥0 |2 ≤ Cdist(x− q0, S̃)

2 ∀x ∈ Hi \Bρ(V ) .

We next apply Theorem 7.4(v) and assume the parameters ε̄ and η̄ are small enough so

that ρW(y) ≤ ρ for all y ∈ B1/4. Since Hi ∈ S̃, it follows that there is a function ṽj as in
Corollary 8.3 and that Ω := (B2ρ(V ) \ Bρ(V )) ∩ Bρ(q0) belongs to the domain of ṽj. For
each point x, consider the point q = x+ ṽj(x) ∈ spt(T ). We then have

βπ0(S̃)
2 |x0|2 + |x⊥0 |2 ≤ Cdist(q − q0, S̃)

2 + C|ṽj(x)|
≤ Cdist(q − q0, S̃)

2 + C|ũj(x)|2 + CA2 ∀Ω . (9.27)
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Moreover, given the Lipschitz and L∞ bounds on ṽj, it follows that q ∈ B1/9(q0) and that
|q− q0| ≥ ρ

4
. We thus average (9.27) over the set Γ := {x+ ṽj(x) : x ∈ Ω} and use (8.5) to

achieve

βπ0(S̃)
2 |x0|2 + |x⊥0 |2 ≤ Cρ−m

ˆ
Γ

dist(q − q0, S̃)
2dHm + Cρ−m

ˆ
Ω

|ũj|2 + Cρ−mA2

≤ Cρ
7/4

ˆ
Γ

dist(q − q0, S̃)
2

|q − q0|m+7/4
dHm + Cρ−m(E+A2)

≤ Cρ
7/4

ˆ
B1/9

dist(q − q0, S̃)
2

|q − q0|m+7/4
d∥T∥(q) + Cρ−m(E+A2) .

This completes the proof of (9.25) and hence the proof of Theorem 9.1.

10. Proof of Proposition 3.3: binding functions

Following the blueprint of Simon’s work on cylindrical tangent cones, in the form used in
[4] in this section we prove the existence of suitable “binding functions”, which in the final
blow-up proof of Proposition 3.3 will be crucial to show the compatibility of the harmonic
sheets. The central Proposition of this section has its counterpart in [4, Theorem 9.3].
The crucial difference is that we are not able to really estimate the “binding function” ξ
in terms of the excess E (as it is the case for [4, Theorem 9.3]). We will instead be able to
estimate separately its vertical portion pπ⊥

0
(ξ) and the horizontal portion pπ0(ξ): it is in

the estimate for the latter part that we “lose”.

Definition 10.1. A binding function is any Borel measurable function ξ : RW → V ⊥ with
the property that ξ(q) = ξ(q′) for all q = (0, x, y) and q′ = (0, x′, y′) such that (|x|, y) and
(|x′|, y′) belong to the interior of the same Whitney cube.

Theorem 10.2. There are positive constants C, η12, and ε12 depending upon (m,n, p) such
that the following holds. If

(i) T,Σ,S, π0 are as in Assumptions 3.1 and 7.1,
(ii) ε̄ < ε12 and η̄ < η12,

(iii) S̃ denotes the open book introduced in Definition 8.1,
(iv) and ϱ∞ := ∥ϱW∥∞,

then

ˆ
B1/8

dist(q, S̃)2

max{ϱ∞, |x|}1/2
d∥T∥(q) ≤ C(E(T,S, 0, 1) +A2) =: C(E+A2) . (10.1)
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Moreover, there exists a binding function ξ : RW → Rm+n such that the following estimates
hold for every j:ˆ

B1/8∩U±
W

|u±j (q)− lh(j)(q))− (pπ⊥
0
(ξ(q))− lh(j)(pπ0(ξ(q)))|2

|x|5/2
dHm(q) ≤ C(E+A2) ,

(10.2)ˆ
B1/8∩U±

W

|∇u±j (q)−∇lh(j)(q)|2

|x|1/2
≤ C(E+A2) , (10.3)

∥pπ⊥
0
(ξ)∥2∞ ≤ C(E+A2) . (10.4)

∥lh(j) ◦ pπ0(ξ)∥2∞ ≤ Cβπ0(S)
2∥pπ0(ξ)∥2∞ ≤ C(E+A2) . (10.5)

Proof. The proof of (10.1) follows verbatim the one given in [4, Section 9.2] for the anal-
ogous estimate [4, (9.5)]: in this case the argument would substitute Lemma 6.5 to [4,
Proposition 9.4] and Theorem 9.1 to [4, Theorem 8.1]. Note that since the left hand side
of (9.1) has a quadratic dependence on A rather than the linear one of [4, (8.1)], (10.1)
gains the quadratic dependence on A on its right hand side as well.

As for (10.3) we can follow the argument in [4, Section 9.2] in order to show the following
partial statement. For every cube L ∈ W we find a suitable point ξL ∈ spt(T )∩B1/4 with
ΘT (ξL) ≥ Q such that, for every j∑
L∈W±:L∩B1/8 ̸=∅

ˆ
2L

|(uj(z)− lh(j)(z))− (pπ⊥
0
(ξL))− lh(j)(pπ0(ξL))|2

|x|5/2
dz ≤ C(E+A2) (10.6)

and ∑
L∈W±:L∩B1/8 ̸=∅

ˆ
2L

|∇uj(z)−∇lh(j)(z)|2

|x|1/2
dz ≤ C(E+A2) . (10.7)

Again in this case the gain of a quadratic estimate onA, compared to the linear dependence
of the analogous estimates in [4], is due to the quadratic dependence on A of the right
hand side of (9.1).

We now set the binding function to be equal to pV ⊥(ξQ) in each cube Q ∈ W . Summing
over all the cubes we then reach (10.2) and (10.3). At the same time (10.4) and (10.5)
follow immediately from (9.1). □

11. Proof of Proposition 3.3: final blow-up

In this section we introduce a suitable blow-up sequence which will be used to prove
Proposition 3.3.

11.1. Blow-up sequence. The main argument is by contradiction. We therefore fix p =
2Q and fix sequences Σk, Tk, πk, and Sk with the following properties:

(a) Tk and Σk satisfy Assumption 3.1;
(b) T0Σk = Rm+1 × {0n−1} =: τ0 and Ak = ∥AΣk

∥∞;
(c) πk ∈ P(0,Σk) and Ēk := Ēk(Tk, 0, 1) = E(Tk, πk, 0, 1);
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(d) Sk ∈ B(0,Σk) and Ek := E(Tk, 0, 1) = E(Tk,Sk, 0, 1);
(e) the following holds:

lim
k→∞

(
Ēk +

Ek
Ēk

+
A2
k

Ek

)
= 0 . (11.1)

From Lemma 6.5 if we pass to (λ0, 1
2
)♯Tk and change the optimality of πk in (c) to “almost

optimality”, we can additionally assume that V (Sk) ⊂ πk. Since passing to the rescaled
currents just leads to a slightly different radius r2 in the conclusion of Proposition 3.3,
we will keep the notation Tk. Moreover, by possibly applying a rotation, without loss of
generality we can assume in addition to (a)-(e) the following two facts:

(f) π0 = Rm × {0n}, and |πk − π0| ≤ CĒ
1/2
k , and V = V (Sk) = {01} × Rm−1 × {0n};

(g) π0 is almost optimal, namely

lim
k→∞

E(Tk, π0, 0, 1)

Ēk

= 1 . (11.2)

Definition 11.1. A blow-up sequence is a sequence of quadruples (Tk,Σk, πk,Sk) together
with linear subspaces τ0 = T0Σk ⊃ π0 ⊃ V = V (Sk) satisfying (a), (b), (c), (d), (e), (f),
and (g).

We are now in a position of applying Theorem 7.4, Theorem 7.6, Corollary 8.3, Theorem
9.1, and Theorem 10.2, for any k sufficiently large. In particular we can introduce

(α) The Whitney decompositions Wk, the good regions RλWk
with the corresponding

functions uk,±j as in Theorem 7.4, and the radii ρk∞ as in Theorem 10.2;

(β) The new books S̃k and the linear maps l̃k,±j = lk,±hk(j) : π
±
0 → π⊥0

0 parametrizing their

pages H̃k,±
j ;

(γ) The binding functions ξk : RWk
∩B1/8 → Rm+n.

The following is then an easy corollary of the estimates in Theorem 10.2, whose proof is
left to the reader.

Corollary 11.2. Consider a blow-up sequence (Tk,Σk, πk,Sk) and a plane π0 as in Defini-

tion 11.1. Consider books S̃k, with pages H̃k,±
j , and maps ξk and ũ

k,±
j as in (α)-(γ). Hence

set w̄k,±j := E−1/2
k (uk,±j − l̃k,±j ), ξkv := E−1/2

k pπ⊥
0
(ξk), and ξko := E−1/2

k βπ0(S̃)pπ0(ξ
k). Then, up

to subsequences, the following holds:

(i) For each j the sequence w̄k,±j converges locally in C1 to a map w̄±
j : B1/2∩π±

0 → π⊥0
0 ;

(ii) ξ̄ko and ξ̄kv converges locally uniformly to a pair of bounded functions

ξ̄v : B1/8 ∩ π0 → π⊥0
0 (11.3)

ξ̄o : B1/8 ∩ π0 → V ⊥ ∩ π0 (11.4)

which are even with respect to V , namely ξv(t, y) = ξv(−t, y) and ξo(t, y) = ξo(−t, y)
for every (t, y) ∈ (V ⊥ ∩ π0)× V on their domain of definition;

(iii) The normalized linear functions l̄k,±j := (βπ0(S̃))
−1l̃k,±j converge smoothly to linear

functions l̄±j ;
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(iv) The following estimates hold (for a geometric constant C = C(Q,m, n)):

sup
ζ=(t,y)∈π±

0

|t|
m
2
+1
(
|t|−1|w̄±

j (ζ)|+ |Dw̄±
j (ζ)|+ |t|1/2[Dw̄±

j ]1/2(ζ)
)
≤ C (11.5)

ˆ
B1/8∩π±

0

|z|2−m
∣∣∣∣∣∂r w̄±

j (z)

|z|

∣∣∣∣∣
2

dz ≤ C (11.6)

∑
j

ˆ
B1/8∩π±

0

|w̄±
j − (ξ̄v − l̄±j ◦ ξ̄o)|2

|x| 52
+

|∇w̄±
j |2

|x| 12
dz ≤ C . (11.7)

11.2. Strong convergence. Again following the blueprint of Simon’s work, the estimates
of the previous sections will allow us to conclude that the convergence of the w±,k

j is in fact

strong, that the conical excess in B1/8 can be controlled in terms of the limiting w̄±
j , and

that the w̄±
j are indeed harmonic.

Proposition 11.3. Let Tk,Σk, πk,Sk, w̄
±,k
j , and w̄±

j be as in Corollary 11.2. Then thew
following holds.

(i) The convergence of w̄k,±j to w̄±
j is strong in the sense that

ˆ
π±
0 ∩B1/8

(|w̄±
j |2 + |x|2|∇w̄±

j |2) = lim
k→∞

ˆ
B1/8∩U±

Wk

(|w̄k,±j |2 + |x|2|∇w̄k,±j |2) . (11.8)

(ii) The following estimate holds:

lim sup
k→∞

E−1
k E(T,Sk, 0, 1/8) ≤

∑
j

(ˆ
π+
0 ∩B1/8

|w̄+
j |2 +

ˆ
π−
0 ∩B1/8

|w̄−
j |2
)
. (11.9)

(iii) Each w̄±
j is smooth and harmonic in its domain of definition.

The proof is verbatim the same of (i), (ii), and (iii) of [4, Proposition 10.5].

11.3. Simon’s and Wickramasekera’s variational identities. We next introduce two
important functions, which will be crucial to show that in fact the functions w̄±

j can be
suitably extended to harmonic functions over π0∩B1/8. The first function is considered by
Simon in his original work and it is simply the “average” of the w̄±

j in the following sense:

ω(t, y) :=
∑
j

(w̄+
j (t, y) + w̄−

j (−t, y)) , for (t, y) ∈ B1/8 ∩ π+
0 . (11.10)

The second one is instead introduced by Wickramasekera in [18]. We start by recalling
that π⊥0

0 is one-dimensional, and can therefore be identified with R. After fixing such
identification, there exists coefficients µ±

j with the property that

l̄±j (t, y) = µ±
j t . (11.11)
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Wickramasekera’s weighted average takes then the form

ϖ(t, y) =
∑
j

(µ+
j w̄

+
j (t, y) + µ−

j w̄
−
j (−t, y)) , for (t, y) ∈ B1/8 ∩ π+

0 . (11.12)

We note in passing the following obvious consequence of the estimate in Corollary 8.6.

Lemma 11.4. There is a positive constant C depending on m and Q such that

C−1 ≤max{|µαj − µα
′

j′ | : α, α′ ∈ ±, 1 ≤ j, j′ ≤ Q}
≤2max{|µαj | : α ∈ ±, 1 ≤ j ≤ Q} ≤ 2C . (11.13)

Both functions ω and ϖ satisfy then the same variational identity.

Proposition 11.5. Let w̄±
j and l̄±j be as in Corollary 11.2 and consider the functions

ω and ϖ introduced in (11.10) and (11.12). Then the following identities hold for every
w ∈ C∞

c (B1/8 ∩ π0, π⊥0
0 ) which is even in the variable t ∈ V ⊥ ∩ π0 and for every direction

v ∈ V : ˆ
B1/8∩π+

0

∇ω · ∇∂w

∂v
= 0 , (11.14)

ˆ
B1/8∩π+

0

∇ϖ · ∇∂w

∂v
= 0 . (11.15)

Proof. The proof of (11.14) is the same as the proof of (iv) in [4, Proposition 10.5]. In
particular, if we fix a unit vector em+1 ∈ π⊥0

0 and let

W := w em+1 ,

we observe that W is cylindrical in the sense of [4, Definition 10.4], while the identity [4,
(10.7)] is equivalent to (11.14).

The proof of (11.15) follows a slightly different argument. We can definitely argue as
in the proof of (iv) in [4, Proposition 10.5] to assume, without loss of generality, that w
depends only on the y ∈ V variable in a neighborhood Bρ(V ) of V . Hence we let e be a
unit vector which spans V ⊥ ∩ π0, we fix a direction v ∈ V and we consider the vector field

W̄ :=
∂w

∂v
e . (11.16)

Proceeding as in the proof of (iv) in [4, Proposition 10.5] we first choose an orientation for

V , fix a corresponding orientation for the pages of S̃k so that ∂
r
H̃k,±
j

z
= ∂ JV K and hence

introduce the cylindrical current

Ck :=
∑
j

r
H̃k,+
j

z
+

r
H̃k,−
j

z
.

Because W̄ is a derivative along a direction v ∈ V , while Ck is invariant under translations
in the v direction, we have δCk(W̄ ) = 0. On the other hand we have

δTk(W̄ ) = −
ˆ
H⃗T (q) · W̄ (q)d∥T∥(q) .
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As already argued several times, ∥H⃗T∥∞ ≤ A, while H⃗T (q) ·W̄ (q) = H⃗T (q) ·p(TΣq)⊥(W̄ (q))

and ∥p(TΣq)⊥ ◦ W̄∥∞ ≤ CĀ∥W̄∥∞, so that we reach

|δTk(W̄ )− δCk(W̄ )| ≤ C∥W̄∥∞A2
k . (11.17)

Our goal is to show next that

lim
k→∞

1

βπ0(Sk)E
1/2
k

(δTk(W̄ )− δCk(W̄ )) = −
ˆ
B1/8∩π+

0

∇ϖ · ∇∂w

∂v
, (11.18)

which, given (11.1) and the bound in Lemma 6.3, implies (11.15).
In order to show (11.18), we subsequently fix a r > 0 and k sufficient large such that

ρk∞ < r and introduce the currents

T gk := Tk (Br(V ))c (11.19)

Cg
k := Ck (Br(V ))c (11.20)

T rk := Tk Br(V ) (11.21)

Cr
k := Ck Br(V ) . (11.22)

Note in particular that T gk is a multigraph over π0
We will then split our proof of (11.18) in two separate parts, in particular we will show

that

lim sup
k→∞

βπ0(Sk)
−1E−1/2

k

∣∣∣∣ˆ divTkW̄d∥T rk∥ −
ˆ

divCk
W̄d∥Cr

k∥
∣∣∣∣ ≤ Cr

1/2 (11.23)

for a constant C independent of r, and that

lim
k→∞

βπ0(Sk)
−1E−1/2

k

(ˆ
divTkW̄d∥T gk ∥ −

ˆ
divCk

W̄d∥Cg
k∥
)

=−
ˆ
B1/8∩π+

0 \Br(V )

∇ϖ · ∇∂w

∂v
. (11.24)

From (11.23),(11.24) and the facts that ∇ϖ ∈ L2 and r is arbitrary, we conclude (11.18).
Recall that W̄ is directed along e ∈ π0 ∩ V ⊥, while, in the region Bρ(V ), it does

not depend on directions orthogonal to V . In particular, on the latter region we have
tr(pπ0DW̄pV ) = 0. We can thus estimate

| divπ(W̄ )(q)| = |tr(pπpπ0DW̄ (q)pV )| = |tr(p⊥
πpπ0DW̄ (q)pV )|

≤ |tr(p⊥
πpπ0)| |tr(p⊥

πpV )| |DW̄ |(q) ≤ C|pπ0 − pπ||pV · pπ⊥ | |DW̄ (q)| ,

for every q ∈ Bρ(V ) and for every m-dimensional plane π. Recall that r < ρ. In particular,
since V is a subset of any tangent plane to Ck, we immediately concludeˆ

divCk
W̄d∥Cg

k∥ = 0 . (11.25)
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Moreover we can use Proposition 9.4 to estimate∣∣∣∣ˆ divTk W̄ d ∥T rk∥
∣∣∣∣

≤C

ˆ
B 1

4
∩Br(V )

|pT⃗k − pπ0|2d ∥T rk∥

 1
2
ˆ

B 1
4
∩Br(V )

|pV · p⊥
T⃗k
|2d ∥T rk∥

 1
2

≤CE
1
2
k

ˆ
B 1

4
∩Br(V )

|pT⃗k − pπ0|2d ∥T rk∥

 1
2

. (11.26)

Next, using (6.12) in Lemma 6.5 and Lemma 6.3, for k large enough we have

E(Tk, π0, y, 2r) ≤ 2E(Tk, π0, 0, 1) ≤ Cβπ0(Sk)
2

for every y ∈ B1/4∩V . Subsequently, we can use Allard’s tilt-excess estimate [3, Proposition
4.1] to conclude thatˆ

Br(y)

|pT⃗k − pπ0|2d ∥T rk∥ ≤ Crm(βπ0(Sk)
2 +A2

k)

for every y ∈ B1/4 ∩ V (provided k is large enough). Since we can cover B1/4 ∩ V with
Cr−m+1 balls of radius r centered at points y ∈ V ∩B1/4, we clearly conclude that

lim sup
k→∞

βπ0(Sk)
−2

ˆ
B 1

4
∩Br(V )

|pT⃗k − pπ0|2d ∥T rk∥ ≤ Cr . (11.27)

Combining (11.25), (11.26), and (11.27), we then get (11.23).
In order to prove (11.24) we observe that, for r large enough, T rg B1/8 = T (B1/8 \

Br(V )) is the union of the 2Q graphs over π±
0 ∩B1/8 \Br(V ) of the functions

q 7→ vk,±j (q) =
(
wk,±j (q) + l̃k,±j (q),Ψk(q, w

k,+±
j (q) + l̃k,±j (q))︸ ︷︷ ︸
=:ψk,±

j (q)

)
∈ π⊥0

0 × T0Σ
⊥ .

while Ck is the union of the graphs, over the same domains, of the functions

q 7→ ℓk,±j (q) =
(
l̃k,±j (q), 0

)
∈ π⊥0

0 × T0Σ
⊥ .

In particular we can write

δT rk (W̄ )− δCr
k(W̄ ) =

∑
j

(
δGvk,+j

(W̄ )− δGℓk,+j
(W̄ )

)
+
∑
j

(
δGvk,−j

(W̄ )− δGℓk,−j
(W̄ )

)
,

and reduce the proof of (11.15) to

lim
k→∞

E
−1/2
k βπ0(Sk)

−1
(
δGvk,±j

(W̄ )− δGℓk,±j
(W̄ )

)
= −
ˆ
B1/8∩π±

0 \Br(V )

µ±
j ∇w̄±

j · ∇∂w

∂v
(11.28)

(note that summing over ± we then use the fact that the function is even to achieve
(11.15)). The proof is the same for all 2Q functions: we will therefore restrict to the case
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(+, 1) and, in order to simplify our notation, we will drop the indices + and 1, so that our
functions become

vk(z) = (wk(z) + l̃k(z), ψk(z)) , (11.29)

ℓk(z) = (l̃k(z), 0) . (11.30)

It is important to recall that

∥l̃k − βπ0(Sk)µ
+
1 l̄

+
1 ∥C1 = o(βπ0(Sk)) , (11.31)

∥wk − E1/2
k w̄

+
1 ∥C1 = o(E1/2

k ) , (11.32)

∥ψk∥C2 = O(Ak) = o(βπ0(Sk)
1/2) , (11.33)

∥vk∥C1 + ∥l̃k∥C1 = O(βπ0(Sk)) , (11.34)

∥wk∥C1 = O(E1/2
k ). (11.35)

We denote by ζ the function ∂w
∂v

and consider, for small ε, the diffeomorphism Φε(p) =
p + εW̄ (p) of Rm+n onto itself and the diffemorpshim Ψε(z) = z − εζ(z)e. If a current is
the graph Gv of a C1 function v over some domain Ω of π0, then (Φε)♯Gv is the graph of
vε := v ◦Ψε. The variation δGv(W̄ ) can then be computed as

δGv(W̄ ) =
d

dε

∣∣∣∣
ε=0

ˆ
Ψ−1

ε (Ω)

A(Dvε) = −
ˆ
Ω

[
∂A
∂A

(Dv) : (Dv · e⊗∇ζ)−A(Dv)
∂ζ

∂e

]
,

(11.36)
where A(A) is the area integrand. The latter can be written explicitly as

A(A) :=

√
1 + |A|2 +

∑
M∈Mi(A),i≥2

(detM)2 ,

where Mi(A) denotes the set of i× i minors of A.
Observe first that

A(Dℓk)
∂ζ

∂e
=

√
1 + |∇l̃k|2

∂ζ

∂e
(11.37)

and
∂A
∂A

(Dℓk) : (Dℓk · e⊗∇ζ) = (∇l̃k · e)(∇l̃k · ∇ζ)√
1 + |∇l̃k|2

. (11.38)

Note next that, for any M ∈ Mi(Dvk) with i ≥ 2, detM is the product of 2i entries of
Dv, of which at least two are partial derivatives of ψk. Taking then into consideration
(11.31)-(11.35) we get

A(Dvk)
∂ζ

∂e
=

√
1 + |∇l̃k|2

∂ζ

∂e
+

(∇l̃k · ∇wk)∂ζ∂e√
1 + |∇l̃k|2

+ o(βπ0(Sk)E
1/2
k ) (11.39)

∂A
∂A

(Dvk) =
Dvk√

1 + |∇l̃k|2
+O(Ak + Ek + βπ0(Sk)

2E1/2
k ) . (11.40)
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Using then (11.34) and (11.35) we gain furthermore the expansion

∂A
∂A

(Dvk) : (Dvk · e⊗∇ζ)

=
(∇l̃k · e)(∇l̃k · ∇ζ) + (∇l̃k · e)(∇wk · ∇ζ) + (∇wk · e)(∇l̃k · ∇ζ)√

1 + |∇l̃k|2
+ o(βπ0(Sk)E

1/2
k ) .

(11.41)

Inserting (11.37), (11.38), (11.39), and (11.41) in (11.36) we then get

(δGvk(W̄ )− δGℓk(W̄ )

=−
ˆ
π+
0 ∩B1/8\Br(V )

(∇l̃k · e)(∇wk · ∇ζ) + (∇wk · e)(∇l̃k · ∇ζ)− (∇wk · ∇l̃k)∂ζ∂e√
1 + |∇l̃k|2

+ o(βπ0(Sk)E
1/2
k ) . (11.42)

However, since ∇l̃k = µ̃k,+j e for some real numbers µ̃k,+j , we easily see that in fact

(∇wk · e)(∇l̃k · ∇ζ) = µ̃k,+j
∂wk
∂e

∂ζ

∂e
= (∇wk · ∇l̃k)

∂ζ

∂e
In particular

(δGvk(W̄ )− δGℓk(W̄ )) =−
ˆ
π+
0 ∩B1/8\Br(V )

(∇l̃k · e)(∇wk · ∇ζ)√
1 + |∇l̃k|2

+ o(βπ0(Sk)E
1/2
k )

=−
ˆ
π+
0 ∩B1/8\Br(V )

(∇l̃k · e)(∇wk · ∇ζ) + o(βπ0(Sk)E
1/2
k ) . (11.43)

We now use (11.31) and (11.32) to conclude that

(βπ0(Sk)
−1E−1/2

k )(∇l̃k · e)(∇wk · ∇ζ) → µ+
1 ∇w̄+

1 · ∇ζ
uniformly on B1/8 ∩ π+

0 \Br(V ). In particular we finally get

lim
k→∞

(βπ0(Sk)
−1E−1/2

k )(δGvk(W̄ )− δGℓk(W̄ )) = −µ+
1

ˆ
B1/8∩π+

0 \Br(V )

∇w̄+
1 · ∇ζ ,

which completes the proof. □

12. Proof of Proposition 3.3: Decay for the linearization

The aim of this section is to prove the fundamental integral decay property of the blow-up
maps w̄±

j which will allow us to conclude the proof of Proposition 3.3.

Proposition 12.1. There exists a constant C ≥ 0 depending only upon m and Q, with the
following properties. Let w̄±

j be the maps in Corollary 11.2. Then there are:

(i) 2Q linear maps a±j : π0 → π⊥0
0 which vanish on V ,

(ii) a linear map bv : V → π⊥0
0 ,
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(iii) and a linear map bo : V → π0 ∩ V ⊥

such that
∥bo∥C1 + ∥bv∥C1 + ∥a±j ∥C1 ≤ C (12.1)

andˆ
π±
0 ∩Bρ

∣∣w̄±
j (t, y)− a±j (t)− (bv(y)− l̄±j (bo(y)))

∣∣2 dy dt ≤ Cρm+4 ∀ρ < 1

32
. (12.2)

12.1. Smoothness and properties of Simon’s and Wickramasekera’s averages.
In this subsection we use the variational identities (11.14) and (11.15) to conclude the
following

Lemma 12.2. Let w̄ be as in Corollary 11.2 and define ω and ϖ as in (11.10) and (11.12).
Then:

(i) ω and ϖ are harmonic and can be extended to harmonic functions (still denoted ω

and ϖ) on B1/8 ∩ π0 with the property that ∂2ω
∂t∂v

= ∂2ϖ
∂t∂v

= 0 on V ∩B1/8 for every
v ∈ V ;

(ii) ω(0) = ϖ(0) = 0.

The proof is verbatim the same as the ones for the analogous claims in [4, Lemma 11.2]
and is left to the reader. We just remark that corollary 11.2 (iii) together with (11.7)
implies that ˆ

B 1
8
∩π+

0

|∇ϖ|2

t
1
2

dtdy ≤ C .

Hence ∂tϖ has a well-defined trace on V .

12.2. Proof of Proposition 12.1. We start by claiming the existence of a tk ∈ [2−k−1, 2−k]
such that the following estimate holds for every t ∈ [2−k+1, 2−4],ˆ 2t

t

ˆ
B1/16∩V

|(ξ̄v(τ, y)− l̄±j (ξ̄o(τ, y)))− (ξ̄v(tk, y)− l̄±j (ξ̄o(tk, y)))|2 dy dτ ≤ C|t|5/2 . (12.3)

Indeed denote by f the function w̄±
j − l̄±j and by g the function ξ̄v − l̄±j ◦ ξ̄o and first of all

use Fubini and (11.7) to choose a tk ∈ [2−k, 2−k+1] such thatˆ
B1/16∩V

|f(tk, y)− g(tk, y)|2dy dt ≤ C2−3k/2 . (12.4)

Hence integrate in t and use the second part of (11.7) to proveˆ 2−k+1

2−k

ˆ
B1/16∩V

|f(t, y)− f(tk, y)|2dy dt ≤ C2−5k/2

Considering that, again by (11.7)ˆ 2−k+1

2−k

ˆ
B1/16∩V

|f(t, y)− g(t, y)|2dy dt ≤ C2−5k/2 ,
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we can estimateˆ 2−k+1

2−k

ˆ
B1/16∩V

|g(t, y)− g(tk, y)|2dy dt

≤2

ˆ 2−k+1

2−k

ˆ
B1/16∩V

(|g(t, y)− f(t, y)|2 + |f(t, y)− f(tk, y)|2 + |f(tk, y)− g(tk, y)|2 dy dt

≤C2−5k/2 . (12.5)

Observe also that we can use the second part of (11.7) again to proveˆ
V ∩B1/16

|f(tj, y)− f(tk, y)|2 dy ≤ 2−3j/2 ∀j ≤ k .

Combined with (12.4) we then gainˆ
V ∩B1/16

|g(tj, y)− g(tk, y)|2 dy ≤ 2−3j/2 ∀j ≤ k . (12.6)

We can now combine (12.5) and (12.6) to reachˆ 2−j

2−k

|g(t, y)− g(tk, y)|2 dt dy

≤
∑

j+1≤i≤k

ˆ 2−i+1

2−i

2(|g(t, y)− g(ti, y)|2 + |g(ti, y)− g(tk, y)|2) dy dt ≤ C
∑

j+1≤i≤k

2−5i/2 .

Recall next the definition of the coefficients µ±
j , so that l̄±j (ξ̄o(t, y)) = µ±

j (ξ̄o(t, y)) upon

identifying π0 ∩ V ⊥ with R. Use then (11.13) in Lemma 11.4 to conclude the existence of
two indices in the collection {(±, j)} whose absolute value of the difference is larger than
an absolute positive constant. Let µ̄ and µ̂ be the corresponding coefficients and observe
that the inverse of the matrix

M :=

(
1 −µ̄
1 −µ̂

)
is bounded by a universal constant. In particular we can write ξ̄v and ξ̄o as a linear
combination of ξ̄v − µ̄ξ̄o and ξ̄v − µ̂ξ̄o to pass from (12.3) toˆ 2t

t

ˆ
B1/16∩V

|ξ̄v(τ, y)− ξ̄v(tk, y)|2 dy dτ ≤ C|t|5/2 (12.7)

ˆ 2t

t

ˆ
B1/16∩V

|ξ̄o(τ, y)− ξ̄o(tk, y)|2 dy dτ ≤ C|t|5/2 . (12.8)

Note moreover that from the above estimates it follows that the sequences ξ̄v(tk, ·) and
ξ̄o(tk, ·) are Cauchy in L2(V ∩B1/16) and their limits are bounded functions

ξ̄v(0, ·) : V ∩B1/16 → π⊥0
0

ξ̄o(0, ·) : V ∩B1/16 → π0 ∩ V ⊥
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with the property that ˆ
B1/16∩V

|ξ̄v(tk, y)− ξ̄v(0, y)|2 dy ≤ C2−3k/2 (12.9)

ˆ
B1/16∩V

|ξ̄o(tk, y)− ξ̄o(0, y)|2 dy ≤ C2−3k/2 (12.10)

In particular we can combine this information again with (11.7) to estimateˆ 2−k+1

2−k

|w̄±
j (t, y)− (ξ̄v(0, y)− µ±

j ξ̄o(0, y))|2 dt dy ≤ C2−5k/2

Summing over all the dyadic scales we then concludeˆ
B1/16∩π±

0

|w̄±
j (t, y)− (ξ̄v(0, y)− µ±

j ξ̄o(0, y))|2

|t| 94
dt dy ≤ C

∞∑
k=4

2−k/4 ≤ C . (12.11)

We next introduce the coefficients

α :=
∑
j

(µ+
j + µ−

j )

β :=
∑
j

((µ+
j )

2 + (µ−
j )

2) ,

and use (11.10) and (11.12) to show thatˆ
B1/16∩π+

0

|ω(t, y)− (2Qξ̄v(0, y)− αξ̄o(0, y))|2

|t| 94
dy dt ≤ C (12.12)

ˆ
B1/16∩π+

0

|ϖ(t, y)− (αξ̄v(0, y)− βξ̄o(0, y))|2

|t| 94
dy dt ≤ C (12.13)

Consider moreover the 2× 2 matrix

M :=

(
2Q −α
α −β

)
and observe that, by Cauchy-Schwartz and (11.13),

C−1 ≤ − detM ≤ |M |2 ≤ C .

In particular the inverse

M−1 =

(
α′ β′

γ′ δ′

)
satisfies |M−1| ≤ C. Now we gather thereforeˆ

B1/16∩π+
0

|ξ̄v(0, y)− (α′ω(t, y) + β′ϖ(t, y))|2

|t| 94
dy dt ≤ C (12.14)

ˆ
B1/16∩π+

0

|ξ̄o(0, v)− (γ′ω(t, y) + δϖ(t, y))|2

|t| 94
dy dt ≤ C . (12.15)
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Therefore ξ̄v(0, ·) is the trace of the harmonic function

hv := α′ω + β′ϖ

while ξ̄o(0, ·) is the trace of the harmonic function

ho := γ′ω + δ′ϖ .

Since by Lemma 12.2(i) both functions can be extended as harmonic functions on B1/8∩π0
and their L2 norms are bounded by a universal constant, we conclude that

|∇ho(0)|+ |∇hv(0)| ≤ C (12.16)

∥D2ho∥C0(B1/16∩π0) + ∥D2hv∥C0(B1/16∩π0) ≤ C . (12.17)

Next, consider the harmonic functions

ŵ±
j := w̄±

j − (hv − µ±
j ho) .

Observe that the trace of these harmonic function on V ∩ B1/16 is identically 0. So, by
Schwartz reflection they can be extended to an odd harmonic function on π0 ∩ B1/16.
Consider thus that

|∇ŵ±
j (0)| ≤ C (12.18)

∥D2ŵ±
j ∥C2(B1/32∩π0) ≤ C . (12.19)

Moreover ho(0) = hv(0) = 0 by Lemma 12.2 and by (12.11), while ŵ±
j (0) = 0 because the

trace of ŵ±
j on V vanishes identically, we conclude thatˆ

Bρ∩π±
0

|w̄±
j (z)−∇ŵ±

j (0) · z − (∇hv(0) · z − µ±
j ∇ho(0) · z)|2 dz ≤ Cρm+4 . (12.20)

Next observe that ∇ŵ±
j (0) must be directed along the unit vector e ∈ π+

0 ∩ V ⊥, given

that ŵ±
j vanishes identically on V . Thus, if we introduce the orthonormal coordinates

y1, . . . , ym−1 on V , (12.2) holds for the linear functions

a±j (t) =

(
∂ŵ±

j

∂e
(0) +

∂hv
∂e

(0)− µ±
j

∂ho
∂e

(0)

)
t (12.21)

bv(y) =
∑
i

∂hv
∂yi

(0)yi (12.22)

bo(y) =
∑
i

∂ho
∂yi

(0)yi . (12.23)

13. Proof of Proposition 3.3: final step

In this section we finally complete the proof of Proposition 3.3.
We let r2 > 0 be a fixed small radius, whose choice will be specified later, and argue

by contradiction. Assuming that the proposition is false, we find a blow-up sequence
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(Tk,Σk, πk,Sk), together with linear subspaces τ0 = T0Σk ⊃ π0 ⊃ V (Sk) = V as in
Definition 11.1, with the additional property that

E(Tk, 0, r2) ≥
1

2
Ek (13.1)

We can therefore, upon extraction of a suitable subsequence, assume that Corollary 11.2
and Proposition 11.3 apply, and we let w̄±

j : B1/8 → π⊥0
0 be the corresponding functions.

We then consider the linear maps bv, bo, and a
±
j produced by Proposition 12.1.

The linear maps a±j are used to “adjust” the pages of S̃k in the following way. For each

j we consider the half-spaces H̄±,k
j given by the graphs over π±

0 of the linear functions

l̃±j + E1/2
k a

±
j .

Hence we let S̄k be the open book with pages H̄±,k
j . Note that the open book S̄k has the

same spine V as S̃k.
The linear maps bo and bv will instead be used to rotate suitably S̄k. More precisely, with

a slight abuse of notation we let bo and bv denote the vectors such that bo(y) = bo · y and
bv(y) = bv ·y for every y ∈ V , see (12.22)-(12.23), and we then let V → τ0 = V ⊕Re⊕Rem+1

be the linear map

V ∋ v 7→ (e⊗ βπ0(S̃k)
−1 bo)(v) + (em+1 ⊗ bv)(v) ∈ π⊥0

0 × (V ⊥ ∩ π0) = V ⊥ ∩ τ0 ⊂ τ0 .

Observe that there is a unique skew-symmetric linear map bk : τ0 → τ0 which extends it,
i.e. bk = (e ⊗ βπ0(S̃k)

−1 bo + em+1 ⊗ bv) − (βπ0(S̃k)
−1 bo ⊗ e + bv ⊗ em+1). For every real

number s we consider the exponential map exp(sbk) : τ0 → τ0 and observe that it is an

element of SO(τ0). We then set Ŝk := exp(E1/2
k bk)(S̄k). Observe that, by construction, Ŝk

is an open book in B(0,Σk). The proof of Proposition 3.3 will then be completed by the
following

Lemma 13.1. Let (Tk,Σk, πk,Sk) be the blow-up sequence fixed above and consider the

open book Ŝk just defined. Then there is a constant C, independent of k and ρ, such that

lim sup
k→∞

E−1
k (E(Tk, Ŝk, 0, ρ)) ≤ Cρ2 (13.2)

for every fixed ρ < 1
32
.

Indeed, given that Ŝk ∈ B(0,Σk), from (13.2) we conclude

lim sup
k→∞

E−1
k (E(Tk, 0, r2)) ≤ Cr22 . (13.3)

Since C is independent of r2, by choosing r2 sufficiently small we get that (13.1) and (13.3)
are in contradiction, thus proving Proposition 3.3.

Proof of Lemma 13.1. Let Φs(x, z) = (x, z) + s(Xo(x, z), Xv(x, z) + O(s2) the flow of the
vector field X(x, z) = (Xo(x, z), Xv(x, z)) ∈ Rm × Rn and f : Ω ⊂ Rm → Rn a C1 regular
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map. Then there exists fs : Ωs → Rn such that

Gfs(Ωs) = Φs♯Gf (Ω)

where we have the expansion

fs(x) = f(x− sXo(x, f(x))) + sXv(x, f(x)) +O(s2) . (13.4)

Indeed, note that ϕs(x) = pπ0Φs(x, f(x)) = x+sXo(x, f(x))+O(s
2) is a C1-diffeomorphism

from Ω to Ωs with inverse

ϕ−1
s (x) = x− sXo(x, f(x)) +O(s2) ,

and observe that

fs(x) = pπ⊥
0
Φs(·, f(·)) ◦ ϕ−1

s (x) ,

has precisely the claimed properties.

Next let us fix a k in the contradiction sequence, which we will not write in the following,
and apply (13.4) to one of the linear functions f = (l̃j+E 1

2aj) em+1 over the domain Ω = π+
0

and with s = E 1
2 and Φs given by the rotation exp(E 1

2 b). Notice that π0 ∩ {t > r} ⊂ Ω
E

1
2

for sufficient small E, and so

l̂j(t, y) := (f)
E

1
2
(t, y) =

(
l̃j(t) + E

1
2ajt− E

1
2 l̄j(bo(y))

)
em+1 + E

1
2 bv(y) +O(E) (13.5)

where we have used that Xo(t, y, z) = e βπ0(S̃k)
−1 (bo · y)− βπ0(S̃k)

−1 bo t− bv(em+1 · z) and
Xv(t, y, z) = em+1(bv · y), with (t, y, z) ∈ V ⊥∩π0×V ×π⊥

0 , the definition l̄j = βπ0(S̃k)
−1 l̃j,

and moreover that l̃j(bo) = l̃j(bv) = l̃j(0) = 0 given that the vectors b0 and bv are directed
along V .

We are now ready to estimate the excess along the blow-up sequence. We observe that
dist(q, Ŝ) ≤ dist(q, S̃) + E 1

2 |q| hence we deduce from (10.1) for any ρ∞ < rˆ
B 1

8
∩Br(V )

dist(q, Ŝ)2 d ∥T∥ (q) ≤ Cr
1
2E

so that

lim sup
k→∞

E−1
k

ˆ
Bρ∩Br(V )

dist(q, Ŝ)2 d ∥Tk∥ (q) ≤ Cr
1
2 . (13.6)

For E sufficiently small T agrees with the graph of the multi-function u±j , j = 1, . . . ,m

over π0. Furthermore the E− 1
2 (u±j − l̃±j ) converge to the harmonic functions w̄±

j . Hence we
conclude, using (13.5) in the second inequality below, thatˆ

Bρ∩Br(V )c
dist(q, Ŝ)2d ∥T∥ ≤

∑
±,j

ˆ
|x|> r

2

|u±j − l̂±j |2

≤ C
∑
±,j

ˆ
|x|> r

2

|(u±j − l̃±j )− E
1
2

(
a±j t+ bv(y)− l̄±j (bo(y))

)
|2 +O(E2) .
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Thus by Proposition 12.1

lim sup
k→∞

E−1
k

ˆ
Bρ∩Br(V )c

dist(q, Ŝ)2 d ∥Tk∥ (q)

≤ C

ˆ
π±
0 ∩Bρ

∣∣w̄±
j (t, y)− a±j (t)− (bv(y)− l̄±j (bo(y)))

∣∣2 dy dt ≤ Cρm+4 . (13.7)

For the double sided excess we need to bound the distance from Ŝ to T outside of B ρ
8
(V ).

Since T and Ŝ are graph over π0 in this region, we can estimate it as above by the distance
between the graphs. Hence combining (13.6) with (13.7) we conclude

lim sup
k→∞

E−1
k (E(Tk, Ŝk, v0, ρ)) ≤ C

r
1
2

ρm+2
+ Cρ2 .

Since r > 0 is arbitrary, (13.2) follows. □

Appendix A. Proof of Lemma 9.2

The proof follows closely the one given in [4] for [4, Lemma 8.2]
For any 0 < r < R, we consider the vector field

Wa,r(q) :=

(
1

max(r, |q|)m+a
− 1

Rm+a

)+

q .

We then insert g2Wa,r in the first variation formula, cf. [4, Lemma 5.1] to derive

−
ˆ
BR

g2Wa,r · H⃗T d ∥T∥ =
m

rm+a

ˆ
Br

g2 d ∥T∥ − m

Rm+a

ˆ
BR

g2 d ∥T∥

− a

ˆ
BR\Br

g2(q)

|q|m+a
d ∥T∥ (q) + (m+ a)

ˆ
BR\Br

g2(q)
|q⊥|2

|q|m+a+2
d ∥T∥ (q)

+

ˆ
BR

W T
a,r · ∇g2 ∥T∥ ,

where W T
a,r(q) denotes the projection on the tangent plane to T at q of the vector Wa,r(q).

Here, the generalized mean curvature H⃗T (q) is given by

m∑
i=1

AΣ(ei, ei) ,

where e1, . . . , en−1 is an orthonormal base of the approximate tangent space to T at q.
Observe that W T

a,r(q) is in fact parallel to qT . Now we can use the homogeneity of g and

the identity q = qT + q⊥ to deduce that

∇g2(q) · qT = 2kg2(q)− 2g(q)∇g(q) · q⊥ ≥
(
2k − ε

2

)
g2(q)− 2

ε
|∇g(q)|2|q⊥|2 .
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In particular we may choose a = 2k − α, ε = α to estimate

−
ˆ
BR

g2Wa,r · H⃗T d ∥T∥ ≥ m+ 2k − α/2

rm+2k−α

ˆ
Br

g2 d ∥T∥ − m+ 2k − α/2

Rm+2k−α

ˆ
BR

g2 d ∥T∥

α

2

ˆ
BR\Br

g2(q)

|q|m+2k−α d ∥T∥ (q) + (m+ 2k − α)

ˆ
BR\Br

g2
|q⊥|2

|q|m+2k+2−α d ∥T∥ (q)

− 2

α

ˆ
BR

(
1

max(r, |q|)m+2k−α − 1

Rm+2k−α

)+

|∇g(q)|2|q⊥|2 d ∥T∥ (q) .

We now claim that

|g2Wa,r · H⃗T |(q) ≤ C∥ĝ∥2∞A2Rα|q|1−m . (A.1)

First of all observe |H⃗T | ≤ mA. Then note that H⃗T is orthogonal to TqΣ. We can thus
write, for |q| ≤ R,

|g2Wa,r · H⃗T |(q) ≤ C∥ĝ∥2∞ARα|q|−m|pTqΣ⊥(q)| .
However, given that both 0 and q belong to Σ, we see that

|pTqΣ⊥(q)| ≤ CA|q|
Having proven (A.1), we exploit the monotonicity formula to estimateˆ

BR

|q|1−md∥T∥(q) ≤ C
∥T∥(BR)

Rm
.

We thus conclude

α

2

ˆ
BR\Br

g2(q)

|q|m+2k−α d ∥T∥ (q) ≤
m+ 2k

Rm+2k−α

ˆ
BR

g2 d ∥T∥+ CA2∥ĝ∥2∞
∥T∥ (BR)

Rm−α

+
2

α

ˆ
BR

|∇g(q)|2|q⊥|2

max(r, |q|)m+2k−α d ∥T∥ (q) .

Letting r ↓ 0 we then conclude (9.2).
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