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ASYMPTOTIC APPROACH TO SINGULAR SOLUTIONS

FOR THE CR YAMABE EQUATION,

AND A CONJECTURE BY H. BREZIS AND L. A. PELETIER

IN THE HEISENBERG GROUP

GIAMPIERO PALATUCCI AND MIRCO PICCININI

Abstract. We investigate some effects of the lack of compactness in the critical
Sobolev embedding by proving that a famous conjecture of Brezis & Peletier (Essays
in honor of Ennio De Giorgi – Progr. Differ. Equ. Appl. 1989) does still hold in the
Heisenberg framework: optimal functions for a natural subcritical approximations of
the Sobolev quotient concentrate energy at one point which can be localized via the
Green function associated to the involved domain and in clear accordance with the
underlying sub-Riemannian geometry – and consequently a new suitable definition
of domains geometrical regular near their characteristic set is given. In order to
achieve the aforementioned result, we need to combine proper estimates and tools
to attack the related CR Yamabe equation (Jerison & Lee, J. Diff. Geom. 1987)
with novel feasible ingredients in PDEs and Calculus of Variations which also aim
to constitute general independent results in the Heisenberg framework, as e. g. a fine
asymptotic control of the optimal functions via the Jerison & Lee extremals realizing
the equality in the critical Sobolev inequality (J. Amer. Math. Soc. 1988).
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1. Introduction

Let Hn := (Cn × R, ◦, {δλ}λ>0) be the usual Heisenberg-Weyl group and define the

standard Folland-Stein-Sobolev space S1
0(Hn) as the completion of C∞

0 (Hn) with respect

to the horizontal gradient norm ‖DH · ‖L2(Hn). In [12] the authors prove the that the

following Sobolev-type inequality does hold,

(1.1) ‖u‖2∗

L2∗(Hn) ≤ S∗‖DHu‖2∗

L2(Hn) ∀u ∈ S1
0(Hn) ,

where S∗ is positive constant, 2∗ = 2∗(Q) := 2Q/(Q − 2) stands for the Folland-Stein-

Sobolev critical exponent, which depends on the homogeneous dimension Q := 2n + 2

associated to the group of dilations {δλ}λ>0.

The critical Sobolev inequality (1.1) has been an attractive object of study for the last

decades, since it is inextricably linked to the lack of compactness of the related critical

(Folland-Stein-)Sobolev embedding, and to the correspondent Euler-Lagrange equation

in turn describing the important CR Yamabe problem. Several results in accordance with

the classical critical inequality in the Euclidean framework have been proven, despite

the difficulties given by the sub-Riemannian geometry of the Heisenberg framework. On

the contrary, several (somewhat expected) results are still open for the same reasons;

that is, the substantial difference with respect to the Euclidean framework in view of

the complex metric structure of the Heisenberg framework as well as the presence of

characteristic points in the involved domains. The literature is too wide to attempt any

comprehensive treatment in a single paper. We refer the interested readers to the very

important papers [22, 15, 23, 16, 8], the recent book [19], and the references therein.

In the present paper, we are interesting into investigating some of the effects of the

lack of compactness in the critical Sobolev embedding (1.1), by analyzing the asymptotic

behavior of a natural subcritical approximation.

Consider the following maximization problem,

(1.2) S∗ := sup






∫

Hn

|u(ξ)|2
∗

dξ : u ∈ S1
0(Hn),

∫

Hn

|DHu(ξ)|2dξ ≤ 1




 .

The validity of (1.1) is equivalent to show that the constant S∗ defined in the display

above is finite. The existence of the maximizers in (1.2) is a difficult problem because

of the intrinsic dilations and translations invariance of such inequality, as it analogously

happens for the classical critical Sobolev inequality. The situation here is even more

delicate because of the underlying non-Euclidean geometry of the Heisenberg group, and

the obstacles due to the related non-commutativity. The explicit form of the maximizers

has been presented, amongst other results, in the breakthrough paper by Jerison and

Lee [22], together with the computation of the optimal constant in (1.2).

For any bounded domain Ω ⊂ Hn, consider now the following Sobolev embedding in

the same variational form as the one in (1.2),

(1.3) S∗
Ω := sup





∫

Ω

|u(ξ)|2
∗

dξ : u ∈ S1
0(Ω),

∫

Ω

|DHu(ξ)|2dξ ≤ 1



 ,

where the Folland-Stein-Sobolev space S1
0(Ω) is given as the closure of C∞

0 (Ω) with

respect to the homogeneous L2-subgradient norm in Ω. One can check that S∗
Ω ≡ S∗

via a standard scaling argument on compactly supported smooth functions. For this, in
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view of the explicit form of the optimal functions in (1.2) – see forthcoming Theorem 2.3

– the variational problem (1.3) has no maximizers. The situation changes considerably

for the subcritical embeddings. Indeed, since Ω is bounded, the embedding S1
0(Ω) →֒

L2∗−ε(Ω) is compact (for any ε < 2∗ − 2), and this does guarantee the existence of a

maximizer uε ∈ S1
0(Ω) for the related variational problem

(1.4) S∗
ε := sup





∫

Ω

|u(ξ)|2
∗−ε dξ : u ∈ S1

0(Ω),

∫

Ω

|DHu(ξ)|2dξ ≤ 1



 .

Such a dichotomy is evident in the Euler-Lagrange equation for the energy functionals

in (1.4); that is,

(1.5) −∆Huε = λ|uε|2
∗−ε−2uε in (S1

0 (Ω))′,

where λ is a Lagrange multiplier. Whereas when ε > 0 the problem above has a solu-

tion uε, it becomes very delicate when ε = 0: one falls in the aforementioned CR Yamabe

equation, and even the existence of solutions is not granted. In particular, the existence

and various properties of the solutions do strongly depend on the geometry and the

topology of the domain Ω. We refer for instance to: [23] for nonexistence of nonnegative

solutions when Ω is a certain half-space; [8] where the authors show the existence of

a solution in the case when the domain Ω has at least a nontrivial suitable homology

group; [15] for existence and nonexistence results for even more general nonlinearity.

In view of such a qualitative change when ε = 0 in both (1.4) and (1.5), it seems

natural to analyze the asymptotic behaviour as ε goes to 0 of the corresponding optimal

functions uε of the embedding S1
0(Ω) →֒ L2∗−ε(Ω). This is the aim of the present paper.

For what concerns the Euclidean counterpart of such an investigation, several results

have been obtained, mostly via fine estimates and a standard regularity elliptic approach

of the special class of solutions of the equation (1.5) being maximizers for the related

Sobolev embedding. As for instance, the energy concentration results of those sequences

and the subsequent localization of such concentration on special points have been settled

in [6, 29, 18] and many others.

On the contrary, for what concerns the Heisenberg panorama the scene is basically empty

in view of the many difficulties naturally arising in such a framework. Indeed, the sub-

Riemannian geometry precludes the free generalization of several tools and symmetriza-

tion techniques as well as regularity approximations. Very recently, it has been proven

in [25] that, up to subsequences, optimal functions uε for the subcritical Sobolev em-

bedding (1.4) do concentrate energy at one point ξo ∈ Ω, in clear accordance with the

Euclidean counterpart ([14, 1]); see Theorem 2.4 in Section 2.3 for a precise statement.

Now, a natural question arises: can we localize the blowing up; i. e., is the concentra-

tion point ξo related to some extent to the geometry of the domain Ω ?

In the Euclidean framework, under standard regularity assumptions, Han ([18]) and

Rey ([29]) were able to prove the connection with the Green function associated with

the domain Ω by answering to a famous conjecture by Brezis & Peletier ([6]), who had

previously investigated the spherical domains setting. The involved proofs strongly rely

on the regularity of Euclidean domains, which is in clear contrast with the complexity of

the underlying sub-Riemannian geometry here. As well known, even if the domain Ω is
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C∞, the situation is dramatically different because of the possible presence of character-

istic points on the boundary ∂Ω. At such points the vector fields forming the principal

part of the relevant operator ∆H become tangent to the boundary. Hence, near those

characteristic points – as firstly discovered by Jerison [20, 21] – even harmonic functions

on the Heisenberg group can encounter a sudden loss of regularity. Also, one did not

want to work in the restricted class of domains not having characteristic points; that is,

by still including interesting sets as e. g. the torus obtained by revolting the sphere S2n

around the t-axis, but unfortunately excluding an extremely wide class of regular sets

which play a pervasive role in several fundamental problems in the Heisenberg group, as

e. g. the level sets of the Jerison & Lee extremal functions (2.5) and those of the Folland

fundamental solutions; i. e., the Korányi balls. For this reason, and in order to deal

with the aforementioned difficulties, it is then quite natural to work under the assump-

tion that the domain Ω is geometrical regular near its characteristic set in the sense of

the definitions firstly provided in the seminal paper [16] by Garofalo and Vassilev; see

conditions (Ω1)–(Ω4) in forthcoming Section 2.2.

We are eventually able to deal with the aforementioned sub-Riemannian framework

obstacles by proving the desired localization result for the concentration point ξo of the

maximizing sequence uε in terms of the Green function associated with the domain Ω,

in turn establishing the validity of the aforementioned Brezis & Peletier conjecture in the

Heisenberg group. We have the following

Theorem 1.1. Consider a bounded domain Ω ⊂ Hn geometrical regular near its char-

acteristic set, and let uε ∈ S1
0(Ω) be a maximizer for S∗

ε . Then, up to subsequences,

uε concentrates at some point ξo ∈ Ω such that

(1.6)

∫

∂Ω

|DHGΩ(·, ξo)|2〈D, n〉 dH Q−2 = 0,

with GΩ(·; ξo) being the Green function associated to Ω with pole in ξo, and D being

the infinitesimal generator of the one-parameter group of non-isotropic dilations in the

Heisenberg group.

The proof of our main result stated above will be postponed in the final section of

the present manuscript, because it involves several new results – see in particular the

theorem stated below and those in Section 2.3 – together with various general tools in the

sub-Riemaniann framework, as e. g., maximum principles, Caccioppoli-type estimates,

H-Kelvin transform, boundary Schauder-type regularity estimates, as well as with a fine

boundary analysis for the subcritical CR Yamabe equation.

Among other results, in order to prove Theorem 1.1 above, an asymptotic control of

the maximizing sequence uε for S∗
ε in (1.4) via the Jerison & Lee extremals is needed.

This is shown in Theorem 1.2 below, and it reveals to be an independent result which

could be also useful to investigate further properties related to the subcritical Folland-

Stein embedding.

Theorem 1.2. Let Ω ⊂ H
n be a smooth bounded domain such that

(1.7) lim inf
ρ→0+

|(Hn r Ω) ∩ Bρ(ξ)|

|Bρ(ξ)|
> 0 ∀ξ ∈ ∂Ω.
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Then, for each 0 < ε < 2∗ − 2 letting uε ∈ S1
0(Ω) being a maximizer for S∗

ε , there

exist {ηε} ⊂ Ω, {λε} ⊂ R+ such that, up to choosing ε sufficiently small, we have that

(1.8) uε . Uλε,ηε on Ω,

where Uλε,ηε are the Jerison & Lee extremal functions given in (2.4) and the sequences {ηε}

and {λε} satisfy

(1.9) ηε ∼ ξo and λε
ε ∼ 1 as ε ց 0,

with ξo being the concentration point.

The result above reminds somehow to the literature following the pioneering work in

the Euclidean setting due to Aubin and Talenti, and this is one of the key-points in the

subtle proof of the related conjecture by Han in [18]. Here, we have also to deal with

the fact that, in strong contrast with the Euclidean setting, the Jerison & Lee extremals

cannot be reduced to functions depending only on the standard Korányi gauge. For this,

we need to pursuit a delicate strategy which makes use and refines the concentration

result obtained in [25] via the Γ-convergence approach in order to detect the right scal-

ings λε and ηε above. Also, we would need a Global Compactness-type result in Hn, for

which we immediately refer to Section 2.3.

1.1. Related open problems and further developments. Starting from the results proven

in the present paper, several questions naturally arise.

• One could be interested in extending the aforementioned results in the very general

H-type groups setting. In such a framework, a lot of expected result, especially for what

concerns important properties of the related extremal functions, are still unknown. A

starting point could be the investigation of their subclass of groups of Iwasawa type.

For this, one can take advantage of the involved group structure, as well as of important

results present in the literature; that is, the investigation in [17], where positive solutions

to the CR Yamabe equations being invariant with respect to the action of the orthogonal

group in the first layer of the Lie algebra have been precisely characterized.

• For what concerns the natural hypotheses on the domain Ω in order to achieve the

localization Theorem 1.1, it could be interesting to ask if one can obtain such a delicate

result under somewhat different assumptions, still in the spirit of treating a very wide

class of domains also possibly involving the presence of characteristic points. In this

respect, it would be interesting to pursuit such an investigation by taking into account

the different assumptions of nontangentially accessible domains satisfying an intrinsic

outer ball condition, as firstly introduced in the relevant paper [7] to deal with the

solvability of the related Dirichlet problem with summable boundary data.

• Still for what concerns the possible localization of the concentration point in non-

smooth domains, it is worth mentioning the paper [13] in the Euclidean framework, where

Flucher, Garroni and Müller were able to construct an example of a peculiar non-smooth

domain Ω̃ (see Example 9 there), whose related Robin function RΩ̃, the diagonal of the

regular part of the associated Green function, achieves its infimum on the boundary;

and subsequently Pistoia and Rey in [28] showed that concentration can occur on the

boundary in such a domain Ω̃. It could be interesting to understand whether or not one

can construct similar examples in the sub-Riemannian setting.

• The link with the Robin function mentioned above could be expected even in the

case of a wider class of general bounded smooth domains as for instance those with
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no characteristic points. For this, it could be interesting demonstrate whether or not

the localization given in the form of Formula (1.6) in Theorem 1.1 is related to the

horizontal gradient of the diagonal of the regular part of the Green function, as seen in

the Euclidean framework in [6, Theorem 4.4]; see also [24]. This is not linked to the

problem we are dealing with, but it is a general fact on Green functions to be proven in

the Heisenberg group.

• The localization result in Theorem 1.1 can be generalized in the case when one

considers more general nonconvex and discontinuous energies with critical growth. This

seems a very challenging task; we refer to the delicate approach in the Euclidean frame-

work in [13].

• Finally, in the same flavour of subcritical approximations, still in clear accordance

with the Euclidean framework studied in [6, 29, 18], one can consider to investigate

the asymptotic behaviour of the sequences approaching the critical Sobolev inequality

which solve the auxiliary family of equations −∆Huε = λu2∗−1
ε + εuε, so that the lack

of compactness does similarly come into play when ε goes to 0.

We hope that our estimates and techniques will be important in further developments

for a better comprehension of the effects of the lack of compactness in the critical Sobolev

embedding in the Heisenberg group.

1.2. The paper is organized as follows. In Section 2 below we briefly fix the notation

and recall some important results on the effects of the lack of compactness of the critical

Sobolev embedding in Hn which will be necessary in the rest of the paper. We will also

introduce the relevant class of “geometrical regular” sets near their characteristic points

appearing in the statement of our main result in Theorem 1.1. The fine asymptotic

control of the optimal functions via the Jerison & Lee extremals is achieved in Section 3.

In Section 4 we prove the localization result in Theorem 1.1 after pursuing a fine bound-

ary analysis for solutions to the subcritical CR Yamabe equation. A remark about the

validity of such localization result in the simpler case with no characteristic points will

close the paper.

2. Preliminaries

In this section, we briefly fix the notation by recalling a very few properties of the

Heisenberg group; we also present some well-known results regarding the lack of com-

pactness in the critical Sobolev embedding in the Folland-Stein spaces in the Heisenberg

group.

2.1. The Heisenberg-Weyl group. We start by summarily recalling a few well-known

facts about the Heisenberg group.

We denote points ξ in Cn × R ≃ R2n+1 by

ξ := (z, t) = (x + iy, t) ≃ (x1, . . . , xn, y1, . . . , yn, t) ∈ R
n × R

n × R.

For any ξ, ξ′ ∈ R2n+1, the group multiplication law ◦ is defined by

ξ ◦ ξ′ :=
(

x + x′, y + y′, t + t′ + 2〈y, x′〉 − 2〈x, y′〉
)

.

Given ξ′ ∈ Hn, the left translation τξ′ is defined by

(2.1) τξ′(ξ) := ξ′ ◦ ξ ∀ξ ∈ H
n.
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The group of non-isotropic dilations {δλ}λ>0 on R2n+1 is defined by

(2.2) ξ 7→ δλ(ξ) := (λx, λy, λ2t),

and, as customary, Q ≡ 2n+2 is the homogeneous dimension with respect to {δλ}λ>0, so

that the Heisenberg-Weyl group Hn := (R2n+1, ◦, {δλ}λ>0) is a homogeneous Lie group.

The Jacobian base of the Heisenberg Lie algebra H n is given by

Zj := ∂xj + 2yj∂t, Zn+j := ∂yj − 2xj∂t, 1 ≤ j ≤ n, T := ∂t.

Since [Zj , Zn+j ] = −4∂t for every 1 ≤ j ≤ n, it plainly follows that

rank
(

Lie{Z1, . . . , Z2n, T }(0, 0)
)

= 2n + 1,

so that Hn is a Carnot group with the following stratification of the algebra

H
n = span{Z1, . . . , Z2n} ⊕ span{T }.

The horizontal (or intrinsic) gradient DH of the group is given by

DHu(ξ) := (Z1u(ξ), . . . , Z2nu(ξ)) .

The Kohn Laplacian (or sub-Laplacian) ∆H on Hn is the second order operator invariant

with respect to the left-translations τξ′ defined in (2.1) and homogeneous of degree 2

with respect to the dilations {δλ}λ>0 defined in (2.2),

∆H :=

2n∑

j=1

Z2
j .

A homogeneous norm on Hn is a continuous function (with respect to the Euclidean

topology) | · |Hn : Hn → [0, +∞) such that:

(i) |δλ(ξ)|Hn = λ|ξ|Hn , for every λ > 0 and every ξ ∈ Hn;

(ii) |ξ|Hn = 0 if and only if ξ = 0.

We say that the homogeneous norm | · |Hn is symmetric if |ξ−1|Hn = |ξ|Hn for all ξ ∈ Hn.

If | · |Hn is a homogeneous norm on Hn, then the function (ξ, η) 7→ |η−1 ◦ ξ|Hn is a

pseudometric on Hn. In particular, we will work with the standard homogeneous norm

on Hn, also known as Korányi gauge,

|ξ|Hn :=
(
|z|4 + t2

) 1
4 ∀ξ = (z, t) ∈ H

n.

As customary, we will denote by Bρ ≡ Bρ(ηo) the ball with center ηo ∈ Hn and radius ρ >

0 given by

Bρ(ηo) :=
{

ξ ∈ H
n : |η−1

o ◦ ξ|Hn < ρ
}

.

2.2. Geometrical regularity near the characteristic set. Some further notation is needed

in order to introduce the natural assumptions on the domains in accordance with the

by-now classical paper [16]. We denote by D the infinitesimal generator of the one-

parameter group of non-isotropic dilations {δλ}λ>0 in (2.2)

(2.3) D :=

n∑

j=1

(
xj∂xj + yj∂yj

)
+ 2t∂t.
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Definition 2.1 (δλ-starlike sets). Let Ω be a C1 connected open set of Hn containing the

group identity e. We say that Ω is δλ-starlike (with respect to the identity e) along a

subset K ⊆ ∂Ω if

〈D, n〉(η) ≤ 0,

at every η ∈ K; in the display above n indicates the exterior unit normal to ∂Ω.

We say that Ω is uniformly δλ-starlike (with respect to the identity e) along K if there

exists κΩ > 0 such that, at every η ∈ K,

〈D, n〉(η) ≥ κΩ.

A domain as above Ω is δλ-starlike (uniformly δλ-starlike, respectively) with respect to

one of its point ζ ∈ Ω along K if τζ−1 (Ω) is δλ-starlike (uniformly δλ-starlike, respec-

tively) with respect to the group identity e along τζ−1 (K).

Given a domain Ω ⊂ Hn, we recall that its characteristic set Σ(Ω) is given by

Σ(Ω) :=
{

ξ ∈ ∂Ω | Zj(ξ) ∈ Tξ(∂Ω), for j = 1, . . . , 2n
}

.

We finally are in the position to introduce a natural class of regular sets that we take

the liberty to christening for shorten; we refer to [16] for further details.

Definition 2.2 (Geometrical regular domains near their characteristic set). A smooth

domain Ω ⊂ Hn such that ∂Ω is an orientable hypersurface is “geometrical regular near

its characteristic set” if the following conditions hold true,

(Ω1) There exist Φ ∈ C∞(Hn), cΩ > 0 and ρΩ ∈ R such that

Ω :=
{

Φ < ρΩ

}
, and |DΦ| ≥ cΩ.

(Ω2) For any ξ ∈ ∂Ω it holds

lim inf
ρ→0+

|(Hn r Ω) ∩ Bρ(ξ)|

|Bρ(ξ)|
> 0.

(Ω3) There exist MΩ such that

∆HΦ ≥
4|z|

MΩ
〈DHΦ, DH |z|〉 in ω,

where ω is an interior neighborhood of Σ(Ω).

(Ω4) Ω is δλ-starlike with respect to one of its point ζo ∈ Ω and uniformly δλ-starlike

with respect to ζo along Σ(Ω).

2.3. Lack of compactness in the critical Sobolev embedding. In this section, we recall

some important results in the Heisenberg framework regarding the analysis of the effect

of the lack of compactness in the critical Sobolev embedding.

Firstly, we state (in the form adapted to our framework) the aforementioned pioneer-

ing result by Jerison and Lee [22] which gives the explicit expression of the functions

giving the equality in (1.1).
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Theorem 2.3 (Corollary C in [22]). Let 2∗ = 2Q/(Q − 2). Then for any λ > 0 and any

ξo ∈ Hn, the function Uλ,ξo defined by

(2.4) Uλ,ξo := U
(

δ 1
λ

(
τξ−1

0
(ξ)
))

,

where

(2.5) U(ξ) = c0

((
1 + |z|2

)2
+ t2

)− Q−2
4

∀ξ ∈ H
n,

is solution to the variational problem (1.2); that is,

‖Uλ,ξo‖2∗

L2∗ (Hn) = S∗‖DHUλ,ξo ‖2∗

L2(Hn).

where S∗ is the best Sobolev constant.

As in the classical Euclidean setting, several natural properties of the subcritical

extremal functions can be proven. We start by recalling recalling the aforementioned

concentration result in [25].

Theorem 2.4 (Theorem 1.2 in [25]). Let Ω ⊂ Hn be a bounded domain and let uε ∈ S1
0(Ω)

be a maximizer for S∗
ε . Then, as ε = εk → 0, up to subsequences, we have that there

exists ξo ∈ Ω such that

uk = uεk
⇀ 0 in L2∗

(Ω),

and

|DHuk|2dξ
∗

⇀ δξo in M(Ω),

with δξo being the Dirac mass at ξo

We conclude this section by recalling the Global Compactness-result for Palais-Smale

sequences in Hn. For any fixed λ ∈ R consider the problem

(Pλ) −∆Hu − λu − |u|2
∗−2u = 0 in (S1

0(Ω))′,

together with its corresponding Euler–Lagrange functional Eλ : S1
0(Ω) → R given by

Eλ(u) =
1

2

∫

Ω

|DHu|2 dξ −
λ

2

∫

Ω

|u|2 dξ −
1

2∗

∫

Ω

|u|2
∗

dξ.

Consider also the following limiting problem,

(P0) −∆Hu − |u|2
∗−2u = 0 in (S1

0 (Ωo))′,

where Ωo is either a half-space or the whole Hn; i. e., the Euler-Lagrange equation

corresponding to the energy functional E∗ : S1
0(Ωo) → R,

E∗(u) =
1

2

∫

Ωo

|DHu|2 dξ −
1

2∗

∫

Ωo

|u|2
∗

dξ.

We have the following

Theorem 2.5 (Theorem 1.3 in [25]). Let {uk} ⊂ S1
0(Ω) be a Palais-Smale sequence for Eλ;

i. e., such that

Eλ(uk) ≤ c for all k,(2.6)

dEλ(uk) → 0 as k → ∞ in (S1
0(Ω))′.(2.7)

Then, there exists a (possibly trivial) solution u(0) ∈ S1
0(Ω) to (Pλ) such that, up to a

subsequence, we have

uk ⇀ u(0) as k → ∞ in S1
0(Ω).
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Moreover, either the convergence is strong or there is a finite set of indexes I = {1, . . . , J}

such that for all j ∈ I there exist a nontrivial solution u(j) ∈ S1
0(Ω

(j)
o ) to (P0) with Ω

(j)
o

being either a half-space or the whole Hn, a sequence of nonnegative numbers {λ
(j)
k }

converging to zero and a sequences of points {ξ
(j)
k } ⊂ Ω such that, for a renumbered

subsequence, we have for any j ∈ I

u
(j)
k (·) := λ

(j)
k

Q−2
2

uk

(
τ

ξ
(j)

k

(
δ

λ
(j)

k

(·)
))

⇀ u(j)(·) in S1
0(Hn) as k → ∞.

In addition, as k → ∞ we have

uk(·) = u(0)(·) +

J∑

j=1

λ
(j)
k

2−Q
2

uk

(
δ

1/λ
(j)

k

(
τ−1

ξ
(j)

k

(·)
))

+ o(1) in S1
0(Hn);

∣∣∣∣∣log
λ

(i)
k

λ
(j)
k

∣∣∣∣∣+
∣∣∣δ1/λ

(j)

k

(
ξ

(j)
k

−1
◦ ξ

(i)
k

)∣∣∣
Hn

→ ∞ for i 6= j, i, j ∈ I;

‖uk‖2
S1

0
=

J∑

j=1

‖u(j)‖2
S1

0
+ o(1);

Eλ(uk) = Eλ(u(0)) +

J∑

j=1

E∗(u(j)) + o(1).

As firstly shown in a very general setting in [27], the proof of the result above can

be deduced via the so-called Profile Decomposition, originally proven by Gérard for

bounded sequences in the fractional Euclidean space Hs, and extended to the Heisenberg

framework in [4].

3. Asymptotic control via the Jerison & Lee extremals

Before going into the proof of Theorem 1.2, we need to recall some integrability and

boundedness estimates for weak solutions to subelliptic equations in the Heisenberg

group as well as the notion of H-Kelvin transform and a maximum principle for the

sub-Laplacian ∆H .

3.1. Regularity properties for subelliptic equations. Let us consider the following prob-

lem

(3.1)

{
−∆Hu = f(ξ, u)u,

u ∈ S1
0(Ω), u ≥ 0.

We recall that u ∈ S1
0(Ω) is a weak solution to (3.1) if and only if

(3.2)

∫

Ω

DHu · DHφ dξ =

∫

Ω

f(ξ, u)uφ dξ,

for any φ ∈ S1
0(Ω). In Lemma 3.1 below, we state and prove some estimates in the same

spirit of classical Caccioppoli-type inequalities and consequently boundedness results.

We refer also to the Euclidean counterpart in [6, 18] and to related results on Carnot

groups in [30].

Lemma 3.1. Let u ∈ S1
0(Ω) be a weak solution to (3.1). Then, the following statements

hold true.
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(i) If f(ξ, ·) ∈ LQ/2(Ω), for a. e. ξ ∈ Ω, then for any q ∈ [2∗, +∞), it holds

(3.3) ‖u‖
L

q2∗

2 (Ω)
≤ c‖u‖Lq(Ω),

where c ≡ c(n, q, ‖f‖LQ/2(Ω)) > 0.

(ii) If f(ξ, ·) ∈ Lq/2(Ω), for a. e. ξ ∈ Ω and for some q > Q, then it holds

(3.4) sup
Bρ

u ≤ c




1

ρQ

∫

Ω∩B2ρ

u2∗




1
2∗

∀B2ρ ⊂ Ω,

where c ≡ c(n, q, ‖f‖Lq/2(Ω)) > 0.

Proof. Let us prove (3.3). Consider ϕ ∈ C∞
0 (Hn) and, in the weak formulation (3.2),

choose φ := ϕ2uq as test functions, with q ≥ 2∗; it yields

(3.5)

∫

Ω

DH(ϕ2uq) · DHu dξ =

∫

Ω

f(ξ, u)uq+1ϕ2 dξ.

The integral on the left-hand side in (3.5) can be treated as follows via integration by

parts and Young’s Inequality
∫

Ω

DH(ϕ2uq) · DHu dξ

=

∫

Ω

2ϕuqDHϕ · DHu + qϕ2uq−1|DHu|2 dξ

≥ − 2

∫

Ω

ϕu
q+1

2 + q−1
2 |DHϕ||DHu| dξ + q

∫

Ω

ϕ2uq−1|DHu|2 dξ

≥
q

2

∫

Ω

ϕ2uq−1|DHu|2 dξ −
2

q

∫

Ω

uq+1|DHϕ|2 dξ.(3.6)

Using Sobolev’s and Hölder’s Inequality, (3.5) and (3.6) we obtain

(S∗)− 2
2∗




∫

Ω

|ϕu(q+1)/2|2
∗

dξ





2
2∗

≤

∫

Ω

|DH(ϕu(q+1)/2)|2 dξ

≤
(q + 1)2

q

q

2

∫

Ω

ϕ2uq−1|DHu|2 dξ + 2

∫

Ω

uq+1|DHϕ|2 dξ

≤
(q + 1)2

q




∫

Ω

|f(ξ, u)|uq+1ϕ2 dξ +
2

q

∫

Ω

uq+1|DHϕ|2 dξ



(3.7)

+ 2

∫

Ω

uq+1|DHϕ|2 dξ .
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Note now that, by Hölder’s Inequality, for any M > 0 we have

∫

Ω

|f(ξ, u)|uq+1ϕ2 dξ ≤

∫

Ω ∩ {|f(ξ,u)|≥M}

|f(ξ, u)|uq+1ϕ2 dξ

+ M

∫

Ω ∩ {|f(ξ,u)|≤M}

uq+1ϕ2 dξ

≤ ‖f‖LQ/2(Ω ∩ {|f(ξ,u)|≥M})



∫

Ω

|ϕu(q+1)/2|2
∗

dξ




2
2∗

(3.8)

+ M

∫

Ω ∩ {|f(ξ,u)|≤M}

uq+1ϕ2 dξ .

Thus, choosing M > 0 sufficiently large such that

(q + 1)2

q
‖f‖LQ/2(Ω ∩ {|f(ξ,u)| ≥ M}) ≤

(S∗)− 2
2∗

2
,

and absorbing the first integral on (3.8) on the left-hand side of (3.7) yields

(S∗)− 2
2∗

2




∫

Ω

|ϕu(q+1)/2|2
∗

dξ





2
2∗

≤ , M

∫

Ω

uq+1ϕ2 dξ + c(n, q)

∫

Ω

uq+1|DHϕ|2 dξ

which implies the desired estimate in (3.3).

Now we prove (3.4). With no loss of generality, we assume that ρ = 1. Consider

for p > 1, B4(0) ≡ B4 and a nonnegative cut-off function ϕ ∈ C∞
0 (B4), the test function

φ := ϕ2up. So that, the weak formulation in (3.2) yields

(3.9)

∫

Ω

DHu · DH(ϕ2up) dξ =

∫

Ω

f(ξ, u)ϕ2up+1 dξ.

Integrating by parts the first integral on the left-hand side in (3.9) and using Young’s

Inequality yield

∫

Ω

DHu · DH(ϕ2up) dξ

≥ − 2

∫

Ω

ϕup|DHu||DHϕ| dξ + p

∫

Ω

ϕ2up−1|DHu|2 dξ

≥
p

2

∫

Ω

ϕ2up−1|DHu|2 dξ −
2

p

∫

Ω

up+1|DHϕ|2 dξ.

Putting all together we have that

∫

Ω

ϕ2up−1|DHu|2 dξ ≤,
2

p

∫

Ω

f(ξ, u)ϕ2up+1 dξ +
4

p2

∫

Ω

up+1|DHϕ|2 dξ.
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Applying now Sobolev’s Inequality yields that

‖ϕu
p+1

2 ‖2
L2∗ (Ω) ≤ 2(S∗)

2
2∗

∫

Ω

ϕ2up−1|DHu|2 dξ + 2(S∗)
2

2∗

∫

Ω

up+1|DHϕ|2 dξ

≤ 2(S∗)
2

2∗

(1 + p)2 + 3

p2

︸ ︷︷ ︸
=:c̄

∫

Ω

(
f(ξ, u)ϕ2 + |DHϕ|2

)
up+1 dξ,(3.10)

where the constant c̄ is bounded for any p greater than 1.

Using Hölder’s Inequality with q/2 and q/(q − 2) and an interpolative inequality, we

obtain

∫

Ω

f(ξ, u)
(
ϕu

p+1
2

)2
dξ ≤ ‖f‖Lq/2(Ω)‖ϕu

p+1
2 ‖2

L2q/(q−2)(Ω)

≤ ‖f‖Lq/2(Ω)

(
ǫ‖ϕu

p+1
2 ‖L2∗ (Ω) + ǫ− Q

q−Q ‖ϕu
p+1

2 ‖L2(Ω)

)2

,

Thus, by choosing ǫ sufficiently small and absorbing the terms in the left-hand side

in (3.10), we have

(3.11) ‖ϕu
p

2 ‖L2(2∗/2)(Ω) ≤ c p
q

q−Q ‖(ϕ + |DHϕ|)u
p

2 ‖L2(Ω),

where we denoted by p := p+1. We specify now the cut-off function ϕ. Let 1 ≤ σ < ρ ≤ 3

and choose ϕ such that

0 ≤ ϕ ≤ 1, ϕ ≡ 1 on Bσ, ϕ ≡ 0 on H
n \ Bρ, |DHϕ| ≤

2

ρ − σ
.

With such a choice of ϕ, the estimate in (3.11) becomes

(3.12) ‖up/2‖L2(2∗/2)(Bσ) ≤
c p

q
q−Q

ρ − σ
‖up/2‖L2(Bρ).

Thus, once defined Aq,s :=

(
∫

Bs

uq dξ

) 1
q

, we have that the inequality in (3.12) becomes

(3.13) A 2∗p

2 ,σ
≤

(
c p

q
q−Q

ρ − σ

) 2
p

Ap,ρ.

We are finally in the position to start a classical iteration method in order to get the

desired supremum estimate. Taking pj := (2∗/2)jp and ρj := 1 + 2−j, for j = 0, 1, . . . ,

we prove that

(3.14) ApN ,ρN ≤
N∏

j=0



 c p

q
q−Q

j

ρj − ρj+1





2
pj

Ap,2 for any N ≥ 1.
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Clearly the case N ≡ 1 follows from (3.13). We now assume that the estimate above

holds for N and prove it for N + 1. Indeed, recalling (3.13) we have

ApN+1p,ρN+1 ≤

(
c p

q
q−Q

N

ρN − ρN+1

) 2
pN

ApN ,ρN

≤

(
c p

q
q−Q

N

ρN − ρN+1

) 2
pN N∏

j=0


 c p

q
q−Q

j

ρj − ρj+1




2
pj

Ap,2

=
N+1∏

j=0



 c p

q
q−Q

j

ρj − ρj+1





2
pj

Ap,2 ,

and the induction step does follow.

Moreover, note that

∞∏

j=0


 c p

q
q−Q

j

ρj − ρj+1




2
pj

=

(
c p

q
q−Q

ρ0 − ρ1

) 2
p

e

∑
j

2 log

(
c 2j+1p

q
q−Q
j

)

pj ,

where we also used that

∞∑

j=1

2 log
(

c 2j+1p

q
q−Q

j

)

pj
< ∞.

Thus, letting N going to infinity in (3.14), we eventually arrive at

sup
B1

u ≤ c



∫

B2

up dξ




1
p

,

which gives the desired estimate (3.4) choosing p = 2∗. �

3.2. H-Kelvin transform. We briefly recall some notion about the H-Kelvin transform

which will play an important role in the proof of Theorem 1.2.

Definition 3.2. For any ξ = (z, t) ∈ Hn \ {0} we call H-inversion the map

k : Hn \ {0} 7−→ H
n \ {0},

k (ξ) :=

(
z

|z|2 + it
,

t

|z|4 + t2

)
.

With k defined above, given a function u : Hn → R we denote by u♯ its H-Kelvin

transform defined by

u♯ : Hn \ {0} → R,

u♯(ξ) := |ξ|
−(Q−2)
Hn u

(
k (ξ)

)
.

It can be easily verified that

(3.15) k (k (ξ)) = g, and |k (ξ)|Hn = |ξ|−1
Hn .

We would now need to present a few properties of the H-Kelvin transform adapted

to our framework.
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Proposition 3.3 (See Theorem 2.3.5 in [19]). Let Ω be a domain and denote by Ω♯ the

image of Ω under the H-inversion k . Then, we have that the H-Kelvin transform is an

isometry between S1
0(Ω) and S1

0(Ω♯).

Proposition 3.4 (See Lemma 2.3.6 in [19]). Let u be a solution to

{
−∆Hu = up,

u ∈ S1
0(Ω), u ≥ 0,

for some positive exponent p > 0. Then, its H-Kelvin transform u♯ satisfies




−∆Hu♯(ξ) = |ξ|

p(Q−2)−(Q+2)
Hn u♯(ξ)p,

u♯ ∈ S1
0(Ω♯), u♯ ≥ 0.

Lastly we will take advantage of the maximum principle stated below.

Proposition 3.5 (See Proposition 1.3 in [5]). Let E be a smooth bounded domain on Hn

and let f ∈ L∞(E). Then, there exists δ > 0 depending only on n and ‖f‖L∞(E) such

that the maximum principle holds for ∆H + f provided that |E| < δ.

3.3. Proof of Theorem 1.2. Consider a maximizing sequence {uε} of (1.4). Then it holds

that

(3.16)

∫

Ω

|uε|2
∗−ε dξ = S∗ + o(1), as ε → 0,

where we also used Proposition 2.5 in [25].

Step 1. The sequence of the supremum norms ‖uε‖L∞ diverges; i. e.,

(3.17) ‖uε‖L∞(Ω) → ∞, as ε → 0.

By contradiction assume that there exists a sequence {εk}k for which uεk
remains

bounded in Ω for εk → 0+ as k → +∞. This allows to apply the local regularity

theory firstly developed by Folland and Stein in [11, 12] to conclude that uε ∈ C∞(Ω).

Moreover, by taking into account the regularity assumptions on the set Ω as in particular

the measure density condition (1.7), the classical argument via Moser’s Iteration leads

to uε ∈ Γ0,αεk (∂Ω), for some exponent 1 > αεk
> αε̄ > 0 for any εk < ε̄. Hence, up to

subsequences, we can assume that uεk
→ v 6= ∞ uniformly on Ω.

If the limit function v ≡ 0, then by (3.16) we have reached a contradiction since S∗ 6=

0. On the other hand, if v 6= 0 we would have obtained a maximizer of (1.3) which is a

contradiction as well. Thus, (3.17) holds true.

Choose now a sequence of points {ηε} ⊆ Ω and a sequence of numbers {λε} ⊆ R+

such that

(3.18) uε(ηε) = λ
− Q−2

2
ε ≡ ‖uε‖L∞(Ω).

Consider the function

(3.19) vε(ξ) := λ
Q−2

2
ε uε

(
τηε

(
δ

λ
1−

Q−2
4

ε

ε

(ξ)
))

,
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which is a weak solution to

(3.20)





−∆Hvε = v2∗−1−ε
ε in Ωε := δ

λ
Q−2

4
ε−1

ε

(
τ−1

ηε
(Ω)
)

vε(0) = 1,

0 ≤ vε ≤ 1.

Indeed, by the homogeneity of the sub-Laplacian we get

−∆Hvε(ξ) = λ
Q−2

2
ε λ

2− Q−2
2 ε

ε (−∆Huε)

(
τηε

(
δ

λ
1−

Q−2
4

ε

ε

(ξ)
))

= λ
Q+2

2 − Q−2
2 ε

ε u2∗−1−ε
ε

(
τηε

(
δ

λ
1−

Q−2
4

ε

ε

(ξ)
))

= λ
Q−2

2 ( Q+2
Q−2 −ε)

ε u2∗−1−ε
ε

(
τηε

(
δ

λ
1−

Q−2
4

ε

ε

(ξ)
))

= v2∗−1−ε
ε .

Also, recalling the choice of {ηε} and {λε} in (3.18), we have that

vε(0) = λ
Q−2

2
ε uε(ηε) = 1,

and that 0 ≤ vε ≤ 1 in Ωε.

Now, since the sequence {vε} is bounded it is equicontinuous on compact subset of Hn,

and by Ascoli-Arzelà’s Theorem, up to subsequences, there exists a function v∞ 6≡ 0 such

that vε → v∞ uniformly on compact set.

Step 2. The asymptotics in (1.9) for the sequence {ηε} chosen in Step 1 holds true.

Recall that |DHuε|2 dξ
∗

⇀ δξo in M(Ω) for a given point ξo ∈ Ω. Then, considering the

function vε in (3.19), which converges to v∞ uniformly on compact set, it yields

0 <

∫

Bρ(0)

|DHv∞|2 dξ = lim
ε→0+

∫

Bρ(0)

|DHvε|2 dξ

= lim
ε→0+

(
λε

ε

) (Q−2)2

4

∫

B
λ

1−
Q−2

4
ε

ε R

(ηε)

|DHuε|2 dξ,

which, in view of the fact that λε
ε → 1, gives a contradiction if ηε does not converge

to ξo.

Step 3. The concentration point ξo is away from the boundary of ∂Ω. In order to

prove this result, we will employ the maximum principle stated in Proposition 3.5.

We show that there exists an exterior direction ς, such that ∂ςuε < 0. By contradiction

assume that there is no such direction. Then, by choosing ς with |ς|Hn = 1, and denoting

uλ,ε := uε(τδλ(ς)(·)), we have that uλ,ε is such that uλ,ε ≥ uε and it solves the following

problem, {
−∆Huλ,ε = u2∗−1−ε

λ,ε in τ(δλ(ς))−1(Ω)

uλ,ε = 0 on ∂τ(δλ(ς))−1(Ω).

Clearly, because of the boundedness of Ω one has that there exists λo ≥ 0 such that τ(δλo (ς))−1(Ω)∩
Ω = ∅ and Ω ∩ τ(δλ(ς))−1(Ω) 6= ∅ for any λ ∈ [0, λo). We immediately notice that in the

case when λ = 0, one has τ(δλ(ς))−1(Ω) = Ω. For any λ < λo let us consider the

function wλ,ε defined as follows,

wλ,ε := uλ,ε − uε.
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Such a function is the solution of the following problem,
{

∆Hwλ,ε − f(ξ)wλ,ε ≤ 0 in τ(δλ(ς))−1(Ω) ∩ Ω,

wλ,ε = 0 on ∂
(
τ(δλ(ς))−1(Ω) ∩ Ω

)
,

where f ∈ L∞(τ(δλ(ς))−1(Ω) ∩ Ω). Letting δ > 0 be the one given by Proposition 3.5 and

choosing λδ such that

(3.21)
∣∣τ(δλ(ς))−1 (Ω) ∩ Ω

∣∣ < δ for any λ > λδ,

we can apply the maximum principle to get that

wλ,ε ≥ 0 in τ(δλ(ς))−1(Ω) ∩ Ω.

Moreover, by the strong maximum principle, we get in particular that

wλ,ε > 0 in τ(δλ(ς))−1(Ω) ∩ Ω.

Now, define

λ1 := inf
{

λ > 0 : ws,ε > 0 for any s > λ
}

≥ 0.

We show that λ1 = 0. By contradiction assume that λ1 > 0. Note that wλ1 ≥ 0

on τ(δλ1
(ς))−1 (Ω) ∩ Ω and, by the strong maximum principle, wλ1,ε > 0.

Choose a compact set K ⊂ τ(δλ1
(ς))−1(Ω)∩Ω such that |

(
τ(δλ1

(ς))−1 (Ω)∩Ω
)
rK| < δ/3

and

(3.22) ws,ε ≥ 0 on K, for s < λ1.

Fix now 0 < λ < λ1 such that

(3.23) K ⊂ τ(δλ(ς))−1 (Ω) ∩ Ω, and |
(
τ(δλ(ς))−1(Ω) ∩ Ω

)
r K| < δ,

where δ is the one appearing in (3.21).

Choose λ < λ1 sufficiently near to λ1 such that (3.22) and (3.23) are satisfied for

any s ∈ (λ, λ1). This plainly leads to a contradiction. Indeed, ws,ε ≥ 0 on
(
τ(δs(ς))−1(Ω)∩

Ω
)
r K by Proposition 3.5 which together with (3.22) does imply that ws,ε ≥ 0

on τ(δs(ς))−1 (Ω) ∩ Ω. Moreover, recalling that ws,ε > 0 since s > λ > 0, from the

strong maximum principle it follows that ws,ε > 0 for some s < λ1, which is a contra-

diction. Therefore, we have that uε

(
τδλ(ς)(·)

)
is decreasing for anyλ in (0, λo). Hence,

there exists at least one exterior direction such that uε decreases along ς.

Now, for any ξ ∈ {ξ′ ∈ Ω : dist(ξ′, ∂Ω) < ϑ}, up to choosing a constant ϑ > 0 small

enough, we can find Kξ such that

|Kξ| > 0, Kξ ⊂

{
ξ′ ∈ Ω : dist(ξ′, ∂Ω) >

ϑ

2

}
, and uε(ξ′) > uε(ξ), ∀ξ′ ∈ Kξ.

Thus, being {uε} a maximizing sequence for S∗
ε , we finally arrive at

uε(ξ) < −

∫

Kξ

uε dξ ≤, |Kξ|−
1

2∗
−ε ‖uε‖L2∗

−ε(Ω) = |Kξ|−
1

2∗
−ε (S∗

) 1
2∗

−ε + o(1),

Then, since uε(ηε) → ∞, it must follow that ηε is away from the boundary (up to

choosing ε small enough).

Step 4. The function vε in (3.19) converges to U in (2.5) locally uniformly on compact

sets. As proven above we have that the sequence {vε} converges uniformly on compact

set to v∞.
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Moreover, if we denote with Ωo the limiting set for ε → 0 of Ωε, we have that Ωo ≡ Hn.

Indeed, thanks to Step 2 and Step 3 we have that the sequence
{

λ
Q−2

4 ε−1
ε dist(ηε, ∂Ω)

}

ε>0

is unbounded. Then, recalling [8, Lemma 3.4] we have that the limiting space Ωo does

coincide with H
n.

This yields that v∞ is a solution to




−∆Hv∞ = v2∗−1
∞ , in Hn,

v∞(0) = 1,

0 ≤ v∞ ≤ 1,

which implies that v∞ coincides with the function U , defined in (2.5).

Step 5. The sequence {λε} satisfies

(3.24) 0 < c ≤ λε
ε ≤ 1, with c ≡ c(n).

First of all, since λε → 0 when ε → 0, by (3.18), it trivially follows that λε
ε < 1, for ε

sufficiently small. Moreover, since the function vε defined in (3.19) tends to U in (2.5)

uniformly in B1(0), we have that there exists a constant c such that
∫

B1(0)

v2∗−ε
ε dξ ≥ c.

Then, we get
∫

B1(0)

v2∗−ε
ε dξ =

∫

B1(0)

λ
Q−2

2

(
2Q

Q−2 −ε
)

ε u
2Q

Q−2 −ε
ε

(
τηε

(
δ

λ
1−

Q−2
4

ε

ε

(ξ)
))

dξ

= λ
(Q−2)2

4 ε
ε

∫

|ξ◦η−1
ε |Hn ≤λ

1−
Q−2

4
ε

u
2Q

Q−2 −ε
ε (ξ) dξ

≤ λ
(Q−2)2

4 ε
ε

∫

Ω

u2∗−ε
ε (ξ) dξ,

which, together with (3.16), gives the desired estimate for a proper constant c ≡ c(n) > 0.

Step 6. The sequence {λε} satisfies (1.9). By means of the Mean Value Theorem we

have that there exists ϑ ∈ (λε
ε, 1) such that

1

ϑ
=

1∫

λε
ε

1

s
ds =

ln λε
ε

λε
ε − 1

.

Hence, considering t := ln ϑ/ ln λε
ε ∈ (0, 1) we have that

|λε
ε − 1| = λtε

ε ε|ln λε|,

by (3.24), which gives the desired result.

Step 7. The sequence {vε} in (3.19) converges to U in S1
0(Ω). We show now that

the sequence {vε} is a Palais-Smale sequence for E0; i. e., (2.6) and (2.7) hold true. We



CRITICAL SOBOLEV EMBEDDING IN THE HEISENBERG GROUP 19

start by showing the bound in (2.6). For this, we recall the homogeneity of the horizontal

gradient DH and the result in (1.9); we have
∫

Ωε

|DHvε|2 dξ =

∫

Ωε

λ
Q− Q−2

2 ε
ε

∣∣∣(DHuε)
(

τηε

(
δ

λ
1−

Q−2
4

ε

ε

(ξ)
))∣∣∣

2

dξ

= λ
(Q−2)2

4 ε
ε

∫

Ω

|DHuε|2 dξ

= λ
(Q−2)2

4 ε
ε < c.(3.25)

In a similar fashion, by means of (1.1) and (1.9), one has
∫

Ωε

|vε|2
∗

dξ = λ
Q(Q−2)

4 ε
ε

∫

Ω

|uε|2
∗

dξ

≤ λ
Q(Q−2)

4 ε
ε S∗‖DHuε‖2∗

L2(Ω) < c.(3.26)

In view of the estimate (3.25) and (3.26) above, condition (2.6) plainly follows. Condi-

tion (2.7) can be deduced by Ascoli-Arzelà’s Theorem recalling the definition of U . Thus,

thanks to the Global Compactness Theorem 2.5 we have that the vε → U in S1
0(Ω).

Step 8. The asymptotic estimate (1.8) holds true. We start by observing that prov-

ing (1.8) is equivalent to show that the following estimate holds,

(3.27) vε(ξ) . U(ξ) in Ωε as ε → 0+.

Consider the H-Kelvin transform v♯
ε of vε, according to Definition 3.2; we now have that

the proof of (3.27) is equivalent to show that

(3.28) v♯
ε(ξ) ≤ c in Ω♯

ε as ε → 0+,

for a suitable constant c ≡ c(n) and where Ω♯
ε is the H-Kelvin transformed of Ωε.

Also, vε ≤ 1 yields that v♯
ε ≤ |ξ|

−(Q−2)
Hn , and this will reduce the estimate for v♯

ε to be

proven just near the origin.

Let us now focus on the local estimate in (3.28); it suffices to prove it in Bρ ≡
Bρ(0) ⊂ Ωε, for ρ > 0 sufficiently small. Moreover, since we want to apply the H-Kelvin

transform, we consider the punctured ball B0
ρ = Bρ \ {0}. By (3.15) it immediately

follows that the image of B0
ρ under the H-inversion is Hn \ Bρ.

Since vε satisfies (3.20), by Proposition 3.4, its H-Kelvin transform is a solution to




−∆Hv♯

ε(ξ) = |ξ|
−(Q−2)ε
Hn

(
v♯

ε(ξ)
)2∗−1−ε

in Hn \ Bρ,

v♯
ε ≥ 0.

We apply Proposition 3.1 (i), with f(ξ, v♯
ε) ≡ |ξ|

−(Q−2)ε
Hn (vε)2∗−2−ε there. Notice that

such a function f does belong to L
Q
2 (Hn \Bρ), for any ρ > 0. Indeed, we apply Hölder’s

Inequality with exponents

22∗

Q(2∗ − 2 − ε)
=

4

4 − (Q − 2)ε
and

4

(Q − 2)ε
,
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yielding
∫

Hn\Bρ

|f(ξ, v♯
ε)|

Q
2 dξ =

∫

Hn\Bρ

|ξ|
−

Q(Q−2)ε
2

Hn (v♯
ε)

Q(2∗
−2−ε)
2 dξ

≤




∫

Hn\Bρ

|ξ|−2Q
Hn dξ




(Q−2)ε
4




∫

Hn\Bρ

(v♯
ε)2∗

dξ




1−
(Q−2)ε

4

.(3.29)

We now apply Proposition 3.3 to get
∫

Hn\Bρ

(v♯
ε)2∗

dξ =

∫

B0
ρ

v2∗

ε dξ ≤ ,

∫

Ωε

v2∗

ε dξ ≤ , λ
Q(Q−2)

4 ε
ε S∗‖DHuε‖2∗

L2(Ω),

where we also used the estimate (3.26) in the previous step. An application of Proposi-

tion 3.1-(i) (with q = 2∗ there) yields

(3.30)

∫

Hn\Bρ

(v♯
ε)

(2∗)2

2 dξ ≤ c for c ≡ c(n) > 0.

Moreover, by (3.30) we get f(ξ, v♯
ε) ∈ Lq/2

(
Hn \ Bρ

)
once chosen

q

2
:=

(2∗)2

2(2∗ − 2)
=

Q

Q − 2
·

Q

2
>

Q

2
.

Indeed, by Hölder’s Inequality,
∫

Hn\Bρ

|f(ξ, v♯
ε)|

Q2

2(Q−2) dξ

≤

∫

Hn\Bρ

|ξ|
− Q2ε

2

Hn (v♯
ε)

(4−(Q−2)ε)Q2

2(Q−2)2 dξ

≤




∫

Hn\Bρ

|ξ|
− 2Q2

Q−2

Hn dξ




(Q−2)ε
4




∫

Hn\Bρ

(v♯
ε)

(2∗)2

2 dξ




1−
(Q−2)ε

4

.(3.31)

Thus, Proposition 3.1 (ii) yields that

(3.32) sup
(Hn\Bρ)∩Bσ

v♯
ε ≤ c,

where, by Proposition 3.3 and estimate (3.26), the right-hand side in (3.32) is bounded

as ε → 0+. Hence, passing to the limit for ρ → 0+ and ε → 0+, since by a diagonal

argument both integrals in (3.29) and (3.31) stays bounded, we eventually arrive at

sup
Bσ\{0}

v♯
ε ≤ c as ε → 0+ ,

which finally gives the desired estimate (3.28).
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4. Proof of the localization result in Theorem 1.1

This section is devoted to the proof of the localization result in Theorem 1.1. As

mentioned in the introduction, for such a proof we will literarily need all the results

proven in the previous sections and those stated in Section 2.3. We would also need a

few further independent results, as integral estimates for the horizontal derivatives and

boundedness up to the characteristic set for the D-derivatives of uε. This is done in

Section 4.2 below by adapting to our subcritical Heisenberg framework the approach

firstly proposed by Garofalo and Vassilev in the work [16], and by Vassilev in [30] for

the CR Yamabe equation. We also recall in the first part of the section some known

results about intrinsic Hölder classes, Schauder-type estimates on the boundary, and

Pohozaev-type identity.

4.1. Taylor polynomials, boundary Schauder estimates and Pohozaev identity. We start

by recalling the definition of intrinsic Hölder classes Γm,α; for further details we refer to

the work by Folland and Stein in [11, 12].

Definition 4.1. Let α ∈ (0, 1) and Ω ⊂ Hn. A function u : Ω → R belongs to Γ0,α(Ω) if

there exists a positive constant c such that

[u]Γ0,α(Ω) := sup
ξ 6=η ξ,η∈Ω

|u(ξ) − u(η)|

|η−1 ◦ ξ|α
Hn

≤ c.

For any m ∈ N, we say that u ∈ Γm,α(Ω) if Ziu ∈ Γm−1,α(Ω), for any i = 1, . . . , 2n.

The space Γ0,α(Ω) is a Banach space endowed with the following norm,

‖u‖Γ0,α(Ω) := ‖u‖L∞(Ω) + [u]Γ0,α(Ω).

With this notation we recall some boundary Schauder-type estimates.

Theorem 4.2 (Theorem 7.1 in [20]). Let Ω be a smooth bounded domain of Hn and let

φ ∈ C∞
0 (Hn) be supported in a small neighborhood of a non-characteristic point ξ ∈ ∂Ω.

Given f ∈ Γm,α(Ω), m ∈ N ∪ {0}, 0 < α < 1, then for the unique solution u to

−∆Hu = f in Ω, u = 0 in ∂Ω,

one has φu ∈ Γm+2,α(Ω).

Theorem 4.3 (Theorem 1.1 in [3]). Let Ω be a bounded subset of Hn of class C1,β for

some β ∈ (0, 1) and assume that the set Bρ ∩ ∂Ω is non-characteristic. Let u ∈ S1
0(Bρ ∩

Ω) ∩ C(Bρ ∩ Ω) be a weak solution to

−∆Hu = f in Bρ ∩ Ω, u|Bρ∩∂Ω = 0,

with f ∈ L∞(Bρ ∩ Ω). Then, u ∈ Γ1,β(Bρ/2 ∩ Ω), and the following estimate does hold,

[DHu]Γ0,β(Bρ∩Ω) ≤ cρ−1−β
(
‖u‖L∞(Bρ∩Ω) + ρ2‖f‖L∞(Bρ∩Ω)

)
.

Moreover, when sufficiently regularity is assumed the following Pohozaev identity

holds true.

Lemma 4.4 (Pohozaev-type identity; see Theorem 3.4 in [16] and Theorem 2.1 in [15]).

Let Ω be a C1 domain and let u ∈ Γ2(Ω) be a solution to

−∆Hu = f(u) in Ω,



22 G. PALATUCCI AND M. PICCININI

for some function f ∈ C(R) such that f(0) = 0. Setting F (s) :=
s∫

0

f(t) dt , the following

identity holds
∫

Ω

(
2QF (u) − (Q − 2)uf(u)

)
dξ

= 2

2n∑

j=1

∫

∂Ω

DuZju〈Zj, n〉 dH Q−2 −

∫

∂Ω

|DHu|2〈D, n〉 dH Q−2

+2

∫

∂Ω

F (u)〈D, n〉 dH Q−2 + (Q − 2)
2n∑

j=1

∫

∂Ω

uZju〈Zj, n〉 dH Q−2 ,

where ν is the exterior unit normal and D is the vector field generating the anisotropic

dilations {δλ}λ>0.

Lastly, in order to obtain the desired Theorem 1.1, overcoming some difficulties com-

ing from the non-Euclidean structure considered here, we make use of a suitable Taylor-

type expansion.

Definition 4.5. Let u ∈ C∞(Hn. Then, for any m ∈ N ∪ {0} there exists a unique

polynomial P being δλ-homogeneous of degree at most m such that

(Z1, . . . , Z2n, T )IP (e) = (Z1, . . . , Z2n, T )Iu(e)

for any multi-index I = (i1, . . . , i2n+1) with degH(I) := i + · · · + i2n + 2i2n+1 ≤ m. We

say that P := Pm(u, 0)(ξ) is “the MacLaurin polynomial of δλ-degree m associated to

u”.

Let u ∈ C∞(Hn), ξ ∈ Hn and m ∈ N ∪ {0}. Let us consider the MacLaurin polyno-

mial Pm(u(ξ ◦ ·), e) of the function η 7−→ u(ξ ◦ η) The polynomial

Pm(u, ξ)(η) := Pm(u(ξ ◦ ·), e)(ξ−1 ◦ η),

is the Taylor polynomial of Hn-degree m centered at ξ associated to u.

4.2. Boundary behaviour of the solutions to the subcritical CR Yamabe problems. In

view of the assumptions (Ω1)–(Ω4), one can build fine subelliptic barriers as firstly seen

in [16].

Lemma 4.6 (See Theorem 4.3 in [16]). Let Ω be a smooth bounded domain of Hn satis-

fying (Ω1)–(Ω4). For any α ∈ (0, 1] define

Ψα := (ρΩ − Φ)αe−|z|2/MΩ .

Given a neighborhood K of the characteristic set Σ(Ω) such that

(4.1) K ⊂
{

|z|2 ≤
nMΩ

2

}
,

we have that

∆HΨα ≤ −
2n

MΩ
Ψα on ω := Ω ∩ K.

Furthermore, there exist c1, c2 > 0 such that for any ηλ ∈ ∂Ω ∩ K and any λ ∈ [λo, 1] it

holds

c1(1 − λ)α ≤ Ψα(ηλ) ≤ c2(1 − λ)α.
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We now prove the main result of this section. We remark that we denote by K

an open neighborhood of the characteristic set Σ(Ω) not containing the concentration

point ξo and with ω := Ω ∩ K.

Theorem 4.7. Let Ω be a smooth bounded domain of Hn satisfying (Ω1)–(Ω4), and

let uε ∈ S1
0(Ω) be a positive maximizer for S∗

ε . Then, there exists ε̄ ≡ ε̄(n) > 0 such

that, for any ε < ε̄,

(4.2)

∫

γ

|DHuε|2〈D, n〉 dH Q−2 ≤ c sup
η∈∂Ω

〈D, n〉(η)H Q−2(γ),

where γ is any hypersurface contained in ω and c ≡ c(n) > 0.

Let us remark that by the uniformly δλ-starlikeness of Ω along its characteristic

set Σ(Ω) in (Ω4), up to taking a smaller neighborhood K, we get

(4.3) DΦ(η) ≥ c > 0, ∀η ∈ ∂Ω ∩ K,

where Φ is the defining function of Ω in (Ω1) and D is defined in (2.3).

Condition (4.3) implies that the trajectories of D starting from ∂Ω ∩ K fill a full

open set interior of Ω. Indeed, considering η ∈ ∂Ω ∩ K and taking the Taylor expansion

of f(λ) := Φ(δλ(η)) around λ = 1 we obtain that

ρΩ − Φ(δλ(η)) = DΦ(η)(1 − λ) + o(1 − λ) ≥ c(1 − λ).

Hence, with no loss of generality, up to further shrinking K, we assume there exists λo

such that

(4.4) δλ(η) ∈ Ω ∩ K, for λo < λ < 1.

Proof of Theorem 4.7. Consider an open neighborhood K of the characteristic set Σ(Ω)

not containing ξo and such that (4.4) holds true for any η ∈ ∂Ω ∩ K.

With the notation above, we prove that

(4.5) uε(δλ(η)) ≤ c(1 − λ) for any η ∈ ∂Ω ∩ K,

for any ε < ε̄(n); with λ as above.

Indeed, fix ε ∈ (0, 2∗ − 2). By Theorem 1.2 we get that there exists ε̄ ≡ ε̄(n) > 0 such

that

uε . Uλε,ηε on ω := Ω ∩ K, for any ε < ε̄.

Hence, uε ∈ L∞(ω), since Uλε,ηε stays bounded in ω, giving that ξo 6∈ ω. As explained

in the proof of Theorem 1.2, form this we can deduce that uε ∈ C∞(ω) for any ε < ε̄.

Moreover, using condition (Ω2) one can adapt to the present setting the classical Moser

iteration argument to get uε ∈ Γ0,αε(∂Ω ∩ K), for some exponent 1 > αε > 0 for

any ε < ε̄, up to scaling down ε̄. Thus,

uε ∈ Γ0,αε(ω) ∩ C∞(ω).

Now, since uε ≡ 0 on ∂Ω, we have that for any η ∈ ∂Ω

uε(ηλ) . |ηλ ◦ η|αε

Hn for any ε < ε̄.

Since homogeneous norms can be controlled up to a constant c ≡ c(Ω) in the following

way as shown in Lemma 4.1 in [16],

|ηλ ◦ η|Hn ≤ c(1 − λ)1/2,
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where we denoted by ηλ := δλ(η), we obtain that

(4.6) uε(ηλ) ≤ c(1 − λ)
αε
2 , ∀η ∈ ∂Ω ∩ K, ∀λ ∈ [λo, 1].

Noting that, for any ε < min
{

ε̄, 4/(Q−2)
}

, we have that 2∗−1−ε > 1 we choose m ∈ N

such that (2∗−1−ε)−m ≤ αε/2. Since the estimate in (4.6) does hold for any η ∈ ∂Ω∩K

and any λ ∈ [λo, 1], we can assume that the points ηλ cover ω. Thus,

(4.7) uε ≤ c(1 − λ)(2∗−1−ε)−m

on ω ,

up to relabelling ε̄ as above. Hence, up to taking a smaller neighborhood K such

that (4.1) is satisfied, we have that for ηλ, by (4.7) and Lemma 4.6, it holds

−∆Huε(ηλ) = u(ηλ)2∗−1−ε

= c2∗−1−ε(1 − λ)(2∗−1−ε)1−m

≤ c2∗−1−εc−1
1 Ψ(2∗−1−ε)1−m (ηλ)

≤ −c2∗−1−εc−1
1

MΩ

2n
∆HΨ(2∗−1−ε)1−m (ηλ)

≤ −∆H(coΨ(2∗−1−ε)1−m )(ηλ).

Thus,

(4.8) ∆H(coΨ(2∗−1−ε)1−m − uε) ≤ 0 in ω.

Moreover, proceeding as in [30, Theorem 5.14], we get

(4.9) coΨ(2∗−1−ε)1−m ≥ uε on ∂ω.

Combining together (4.8) with (4.9), by Bony’s Maximum Principle we obtain

uε(ηλ) ≤ coΨ(2∗−1−ε)1−m ≤ coc2(1 − λ)(2∗−1−ε)1−m

on ω,

which is a refinement of (4.7). Iterating this procedure m-times yields

uε(δλ(η)) ≤ c(1 − λ) for any η ∈ ∂Ω ∩ K.

Fix now an hypersurface γ ⊂ ω and cover it with a family {B
(i)
ρ }ϑ

i=1 such that Bρ(ξi) ≡

B
(i)
ρ ⊂ ω, for any i = 1, . . . , ϑ. By the interior estimate of [3, Theorem 3.1], we have

that on every ball B
(i)
ρ it holds

‖DHuε‖
L∞(B

(i)
ρ )

≤
2c

ρ

(
‖uε‖L∞(ω) + ρ2‖uε‖2∗−1−ε

L∞(ω)

)

≤
c

ρ

(
(1 − λ) + ρ2(1 − λ)2∗−1−ε

)
,(4.10)

by (4.5), for any λ ∈ [λo, 1]. Note that the estimate above is bounded for any λ ∈ [λo, 1]

and for any value of ε. Moreover, by the δλ-starlikeness we have that

(4.11) 0 <

∫

γ

〈D, n〉 dH Q−2 ≤ sup
ζ∈∂Ω

〈D, n〉(ζ)H Q−2(γ).

Thus, combining (4.10) and (4.11) with a standard covering argument yields
∫

γ

|DHuε|2〈D, n〉dH Q−2 ≤ c sup
ζ∈∂Ω

〈D, n〉(ζ)H Q−2(γ) for any ε < ε̄,

where c does not depend on γ. �
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We conclude this section by noticing that, in view of the hypotheses as in (Ω1)–

(Ω4), it readily follows the boundedness of the D-derivatives using the same argument

developed in [16].

Theorem 4.8. Let Ω be a smooth bounded domain of Hn satisfying (Ω1)–(Ω4), and

let uε ∈ S1
0(Ω) be a positive maximizer for S∗

ε . Then, there exists ε̄ ≡ ε̄(n) such that,

for any ε < ε̄,

(4.12) Duε ∈ L∞(ω),

with ω := Ω ∩ K, where K is an open neighborhood of the characteristic set Σ(Ω) not

containing ξo.

4.3. Proof of the localization result. We are finally in the position to present the proof

of Theorem 1.1, whose argument involves different techniques and results such as the

asymptotic control via the Jerison & Lee optimal functions established in Theorem 1.2,

the Pohozaev identity, the regularity theory for the subcritical CR Yamabe equation in

Theorem 4.8 as well as the integral estimate in Theorem 4.7. Moreover, we will use the

negligibility of the characteristic set, established in the result below.

Theorem 4.9 (See Theorem 1.2 in [10]). Let Ω ⊂ Hn be a C∞ domain and let Σ(Ω) be

its characteristic set. Then, being H Q−2 the (Q − 2)-dimensional Hausdorff measure, it

holds that

H Q−2(Σ(Ω)) = 0.

Proof of Theorem 1.1. For the sake of readability, we divide the proof into several steps.

Step 1. The following limit holds true

(4.13) ‖uε‖L∞(Ω)uε
ε→0
−−−→ c̄ GΩ(·, ξo) in Γ1,β(∂Ω \ Σ(Ω)),

for some β ∈ (0, 1) and c̄ is given by

c̄ :=

∫

Hn

U
Q+2
Q−2 dξ.

with U defined in (2.5).

Define the function

wε := ‖uε‖L∞(Ω)u
2∗−1−ε
ε ≡ λ

− Q−2
2

ε u2∗−1−ε
ε .

We show that wε → c̄δ0, in the sense of distribution. Clearly we have that
∫

Ω

wε dξ = λ
− Q−2

2
ε

∫

Ω

u2∗−1−ε
ε dξ

= λ
−
(

Q−2
2

)2
ε

ε

∫

Ωε

v2∗−1−ε
ε dξ →

∫

Hn

U
Q+2
Q−2 dξ ≡ c̄,(4.14)

where we have used the definition in 3.19, the fact that vε → U uniformly on compact

set (by Ascoli-Arzelà’s Theorem), vε → 0 when |ξ|Hn → ∞ uniformly in ε, Ωε → H
n

and the asymptotic (1.9) for λε
ε.

Moreover, note that when ξ 6= ξo, by (1.8) of Theorem 1.2, we get that

(4.15) wε . λ
− Q−2

2
ε U2∗−1−ε

λε,ηε
→ 0.
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Thus, combining (4.14) and (4.15) we obtain that wε → c̄δ0 in the sense of distribution.

Furthermore, note that the function ‖uε‖L∞(Ω)uε is a solution to

{
−∆H

(
‖uε‖L∞(Ω)uε

)
= ‖uε‖L∞(Ω)u

2∗−1−ε
ε in Ω ∩ ω,

‖uε‖L∞(Ω)uε = 0 in ∂Ω ∩ ω,

where ω is an interior neighborhood of ∂Ω r Σ(Ω).

Consider a ball Bρ such that Bρ ∩ (∂Ω \ Σ(Ω)) is not characteristic and choose r > 0

sufficiently small such that Bρ ∩Ω does not contain ξo. By (4.15) since ‖uε‖L∞(Ω)uε = 0

on ∂Ω, we have that the hypotheses in Theorem 4.3 are satisfied. Thus, the se-

quence {‖uε‖L∞(Ω)uε} is compact in Γ1,β(Bρ ∩ Ω), for some β ∈ (0, 1). Moreover,

from (4.14) and (4.15) it has to converge to c̄GΩ(·, ξo). Indeed, for any test func-

tion φ ∈ C∞
0 (Bρ ∩ Ω) it holds

−

∫

Bρ∩Ω

∆H

(
‖uε‖L∞(Ω)uε

)
φ dξ =

∫

Bρ∩Ω

wεφ dξ

→

∫

Bρ∩Ω

c̄δ0φ dξ

= −

∫

Bρ∩Ω

c̄∆H

(
GΩ(·, ξo)

)
φ dξ.

Hence, (4.13) follows taking an open cover of ∂Ω \ Σ(Ω).

Step. 2 For any ε ∈ (0, ε̄) it holds

(4.16)
ε(Q − 2)

2∗ − ε

∫

Ω

u2∗
−ε

ε dξ =

∫

∂Ω

|DHuε|2〈D,n〉 dH
Q−2.

We start recalling that since Ω is a smooth domain the characteristic set Σ(Ω) is

compact. Moreover, thanks to Theorem 4.9 and Theorem 4.3, we consider an exhaustion

of Ω of C∞ connected open sets {Ωi} such that Ωi ↑ Ω, uε ∈ C2(Ωi) and ∂Ωi = γ
(1)
i ∪γ

(2)
i

with γ
(1)
i ⊂ ∂Ω r Σ(Ω), γ

(1)
i ↑ ∂Ω r Σ(Ω) and H Q−2(γ

(2)
i ) → 0.

We apply the Pohozaev identity on uε in Ωi, getting
∫

Ωi

( 2Q

2∗ − ε
u2∗−ε

ε − (Q − 2)u2∗−ε
ε

)
dξ

= 2

2n∑

j=1

∫

γ
(1)
i ∪γ

(2)
i

Duε Zjuε〈Zj , n〉 dH Q−2 −

∫

γ
(1)
i ∪γ

(2)
i

|DHuε|2〈D, n〉 dH Q−2

= 2
2n∑

j=1

∫

γ
(1)
i

Duε Zjuε〈Zj , n〉 dH Q−2 −

∫

γ
(1)
i

|DHuε|2〈D, n〉 dH Q−2

(4.17)

+ 2

2n∑

j=1

∫

γ
(2)
i

Duε Zjuε〈Zj , n〉 dH Q−2 −

∫

γ
(2)
i

|DHuε|2〈D, n〉 dH Q−2.
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Note that since uε > 0 in Ωi and uε = 0 on γ
(1)
i , then there exists a function w ≤ 0 such

that Duε = wn on γ
(1)
i . Hence,

2n∑

j=1

Duε Zjuε〈Zj , n〉 = w〈D, n〉
2n∑

j=1

Zjuε〈Zj , n〉

= 〈D, n〉
2n∑

j=1

Zjuε〈Zj , wn〉

= 〈D, n〉
2n∑

j=1

Zjuε 〈Zj , Duε〉︸ ︷︷ ︸
=:Zjuε

= |DHuε|2〈D, n〉.

Then, putting the computation above inside (4.17) yields

ε(Q − 2)

2∗ − ε

∫

Ωi

u2∗−ε
ε dξ =

∫

γ
(1)
i

|DHuε|2〈D, n〉 dH Q−2

+ 2

2n∑

j=1

∫

γ
(2)

i

Duε Zjuε〈Zj , n〉 dH Q−2

−

∫

γ
(2)
i

|DHuε|2〈D, n〉 dH Q−2.

Now recalling Theorem 4.7 we have that
∫

γ
(2)
i

|DHuε|2〈D, n〉 dH Q−2 ≈ H Q−2(γ
(2)
i ),

and by Theorem 4.8 the D-derivative of uε stays bounded, uniformly in ε near the

characteristic set. Thus, passing to the limit as i → ∞, recalling the δλ-starlikeness of

Ω and estimate (4.10), by the Dominate Convergence and the Monotone Convergence

theorem we eventually arrive at the desired estimate (4.16).

Step 3. There exists a positive constant c ≡ c(n, Ω) such that

(4.18) ε‖uε‖2
L∞(Ω) ≤ cλQ+6−2ε(Q−2)

ε .

We start proving that there exists a constant c ≡ c(n, Ω) > 0 such that

(4.19)

∫

∂Ω

|DHuε|2〈D, n〉 dH Q−2 ≤ cλ2(Q+2−ε(Q−2))
ε .

Consider the Taylor polynomial P1(uε, ξ) of uε with center in ξ ∈ ∂ΩrΣ(Ω). As proven

in [3, Formula (4.55)] for any point ς ∈ Ω such that

|ς−1 ◦ ξ|Hn ∼ σ̄, dist(ς, ∂Ω) ∼ σ̄,

for σ̄ > 0, it holds

|DHuε(ξ)| ≤ |DHuε(ς) − DHP1(uε, ξ)| + |DHuε(ς)|

≤
c

σ̄

(
‖uε − P1(uε, ξ)‖L∞(Baσ̄(ς)) + σ̄2‖uε‖2∗−1−ε

L∞(Baσ̄(ς))

)
+ |DHuε(ς)|,

where, for a > 0, Baσ̄ is a non-tangential ball from inside of Ω.
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Such a ball can be constructed since we are considering non-characteristic points. In-

deed, up to left translations we assume that ξ ≡ e. Moreover, since e is not characteristic

there exists j ∈ {1, . . . , 2n} such that

〈Zi, n〉(e) 6= 0.

Now, by an orthogonal transformation and the implicit function theorem we can assume

the existence of ρ0 > 0 such that Ω ∩ Bρ0 can be represented as

{
xn > Φ̃(x′, y, t)

}
where x′ := (x1, . . . , xn−1) ∈ R

n−1,

for a Lipschitz function Φ̃ such that Φ̃(e) = 0, ∇x′Φ̃(e) = 0. In view of the Lipschitz

continuity of the function Φ̃ we can assert that, up to taking λ sufficiently small, the

ball Bλs(δλ(en, 0)) is strictly contained in Ω, for s > 0 small enough. We also refer the

reader to the proof of Proposition 3.3 in [3] where a non-tangential ball from outside

was determined, and to the proof of Theorem 7.6 in [9].

Now, we take σ̄ sufficiently small such that ξo 6∈ Baσ̄ and such that

(4.20)
c

σ̄
‖uε − P1(uε, ξ)‖L∞(Baσ̄(ς)) ≤ cσ̄β ≤

1

4
|DHuε(ξ)|.

Note that the first estimate in the display above comes from the proof of Theorem 1.1

in [3]; see in particular Page 26 there.

Recalling now that, choosing φ ∈ C∞
0 (Bρ) with ξo 6∈ Bρ and Bρ ⊂ Ω, the concentra-

tion result of Theorem 2.4 yields

lim
ε→0+

∫

Bρ

φ|DHuε|2 dξ = 0.

Thus, up to taking a smaller ball Bσ ⊂ Bρ and φ such that φ ≡ 1 on Bσ, we

have that ‖DHuε‖L2(Bσ) → 0+ as ε → 0+. Hence, up to subsequences, we have

that |DHuε(ς)| → 0+ as ε → 0+, for a. e. ς 6= ξo. Then, take ε sufficiently small

such that, still up to subsequences,

(4.21) |DHuε(ς)| ≤
1

4
|DHuε(ξ)| for a. e. ς 6= ξo .

All in all, by inserting (4.20) and (4.21) in (4.19) and recalling the interior asymptotic

estimate (1.8), we get that for ε sufficiently small

|DHuε(ξ)| ≤ c‖uε‖2∗−1−ε
L∞(Baσ̄(ς)) ≤ cλQ+2−ε(Q−2)

ε for a. e. ξ ∈ ∂Ω r Σ(Ω),

for some c > 0 bounded uniformly as ε → 0+, since ξo 6∈ Baσ̄(ς), which implies the

desired estimate in (4.19), recalling that

∫

∂Ω

〈D, n〉 dH Q−2 ≤ sup
ζ∈∂Ω

〈D, n〉(ζ)H Q−2(∂Ω),

with supζ∈∂Ω〈D, n〉(ζ) > 0 by the δλ-starlikeness of (Ω4).
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Thus, in view of (3.18), multiplying the Pohozaev identity (4.16) by ‖uε‖2
L∞(Ω) ≡

λ2−Q
ε yields

ε‖uε‖2
L∞(Ω)(Q − 2)

2∗ − ε

∫

Ω

u2∗−ε
ε dξ

= ‖uε‖2
L∞(Ω)

∫

∂Ω

|DHuε|2〈D, n〉 dH Q−2

≤ cλ2(Q+2−ε(Q−2))+2−Q
ε ,

from which (4.18) follows.

Step 4. We prove that (1.6) holds true.

Multiplying (4.16) on both sides by ‖uε‖2
L∞(Ω) gives

ε‖u‖2
L∞(Ω)(Q − 2)

2∗ − ε

∫

Ω

u2∗−ε
ε dξ

=

∫

∂Ω

∣∣DH‖uε‖L∞(Ω)uε

∣∣2〈D, n〉 dH Q−2.

Passing to the limit as ε → 0+ gives the desired result (1.6) recalling (4.13) and (4.18).

�

4.4. The non-characteristic case. In this section we state the analogous of Theorem 1.1

in the case when the set Ω has an empty characteristic set Σ(Ω).

In this framework the hypothesis (Ω1)–(Ω4) are not required, except for condi-

tion (Ω2) in order to apply the Folland-Stein boundary regularity yielding the Γ0,α-

regularity up to ∂Ω. The remaining part of the proof of Theorem 1.1 is relatively

simpler. Indeed, the approximation argument used in Step. 2 in order to establish the

relation (4.16) as well as the integral estimate in (4.2) and the boundedness of the D-

derivatives in (4.12) are not needed. The boundary Schauder estimate due to Jerison

of Theorem 4.2 ensures, via iteration, the smoothness of the maximizer uε up to the

boundary of Ω for any choice of the parameter ε. So that the Pohozaev identity of

Lemma 4.4 can be applied in turn yielding the desired (4.16). The rest of the proof will

follow in a similar fashion as in the characteristic case without considering the presence

of the characteristic set Σ(Ω); especially in Step. 1 for the convergence (4.13) of the

(rescaled) maximizers ‖uε‖L∞(Ω)uε to the Green function GΩ(·, ξo).

Thus, Theorem 1.1 can be re-stated in the following simpler way,

Theorem 4.10. Let Ω be a smooth bounded domain of Hn such that Σ(Ω) ≡ ∅ and for

each 0 < ε < 2∗ − 2 let uε ∈ S1
0(Ω) be a maximizer for S∗

ε . Then, up to subsequences,

uε concentrates at some point ξo ∈ Ω such that
∫

∂Ω

|DHGΩ(·, ξo)|2〈D, n〉 dH Q−2 = 0,

with GΩ(·; ξo) being the Green function related to Ω with pole in ξo and D being the infini-

tesimal generator of the one-parameter group of non-isotropic dilations in the Heisenberg

group.
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Note that a first class of non-characteristic sets where the result presented above finds

its application is torus obtained by revolting the sphere S2n around the t-axis in Hn.

Moreover, some relevant results have been obtained for maximizing sequence of S∗
ε in

non-characteristic domain. Indeed, in [24], the authors are able to construct a concen-

trating sequence of solutions for certain non-degenerate critical point of the regular part

of the Green function of Ω. We also refer to the references in the aforementioned paper.
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