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Abstract. In this paper we study existence and uniqueness of solutions to Dirichlet problems asu− div

(
Du√

1 + |Du|2

)
= f in Ω,

u = 0 on ∂Ω,

where Ω is an open bounded subset of RN (N ≥ 2) with Lipschitz boundary. In particular we explore

the regularizing effect given by the absorption term in order to get a unique solutions for data f
merely belonging to L1(Ω) and with no smallness assumptions. We also prove a sharp boundedness

result for solutions for data in LN (Ω).
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1. Introduction

We aim to study existence and uniqueness of solutions to problemu− div

(
Du√

1 + |Du|2

)
= f in Ω,

u = 0 on ∂Ω,

(1.1)

where Ω is an open bounded subset of RN (N ≥ 2) with Lipschitz boundary and the datum f belongs
to L1(Ω).
The main purpose of this paper is to describe the regularizing effect of zero order absorption terms on
the existence of solutions for boundary value problems as in (1.1).
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Let us recall that equation in (1.1), if f = 0 and without any absorption, falls in the well known case
of minimal surface equation

div

(
Du√

1 + |Du|2

)
= 0

the name deriving from the fact that, for a smooth function u, the involved operator calculates the
mean curvature of the graph of u at each point (x, u(x)); due to this fact such an operator is also called
non-parametric mean curvature operator.
Several cases of (non-parametric) prescribed mean curvature equation of the type−div

(
Du√

1 + |Du|2

)
= f in Ω,

u = 0 on ∂Ω,

(1.2)

have been considered as well in literature starting by [33], [22, 23], [21], and [18] to present a non-
complete list.
Another motivation of our work comes from the fact that the equation in (1.1) corresponds to the
resolvent equation of the following evolution equation

ut = div

(
Du√

1 + |Du|2

)
; (1.3)

roughly speaking, proving existence and uniqueness for (1.1), can be considered as a first step in
order to apply Crandall-Liggett theory ([13]) to look for mild solutions to the corresponding evolution
problem. In a more general context these type of arguments have been successfully applied in order
to get existence and uniqueness of Cauchy initial-boundary value problems involving equations as in
(1.3) in the framework of entropy type solutions and with L1-initial data (see [4, 3, 5, 24] for a quite
exaustive account on this issue).

Concerning less theoretical issues, problems as in (1.2) arise in the study of combustible gas dynamics
(see [30] and references therein) as well as in surfaces capillary problem as pendant liquid drops
([17, 11, 12, 18]) and also in design of water-walking devices ([25], see also [28]).

Prescribed mean curvature equations as in (1.2) formally represent the Euler-Lagrange equation of the
functional

J (v) =

ˆ
Ω

√
1 + |∇v|2 dx−

ˆ
Ω

fvdx ,

involving the area functional.
As regards the solvability of problems as in (1.2), a smallness assumption on the data naturally appears:
indeed, if we formally integrate the equation in (1.2) in a smooth sub-domain of A ⊂ Ω, an application
of the divergence theorem gives the following necessary condition∣∣∣∣ˆ

A

f(x)dx

∣∣∣∣ =

∣∣∣∣∣
ˆ
∂A

Du√
1 + |Du|2

· νAds

∣∣∣∣∣ < Per(A)

where Per(A) indicates the perimeter of A and νA is the outer normal unit vector. That is, some sort
of smallness assumption on the datum f is needed in order to get existence in problems as (1.2). This
is a typical feature of problems arising from functionals with linear growth as, for instance, the one
driven by the 1-laplacian (see for instance [10, 26, 15]). See also Remark 3.4 below for more details on
this structural obstruction. In [21] M. Giaquinta shows the unique solvability in the space of functions
with bounded variation, in a variational sense, if f is measurable and there exists ε0 > 0 such that for
every smooth A ⊆ Ω ∣∣∣∣ˆ

A

f(x) dx

∣∣∣∣ ≤ (1− ε0)Per(A) . (1.4)

In [22] it is shown that

||f ||LN (Ω) < Nω
1
N

N ,

is a general condition under which (1.4) holds, where ωN is the measure of the unit ball of RN and it
is a sharp request in order to get bounded solutions for problem (1.2) (see [19]).
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Less regularity for data f ∈ Lq(Ω) below the threshold q = N is known to be mainly forbidden in
the classical setting of BV -solutions for equations arising from functionals with linear growth and one
need a different approach as for instance an Entropy (or Renormalized) one, see for instance [31] and
[27]. As far as we know, this is the first paper handling the prescribed mean curvature equation with
L1-data. We also point out that these generalized solutions are, in general, bounded only for data
f ∈ LN,∞(Ω) with small norm.

As already mentioned, our main focus consists in analyze the regularizing effect of zero order absorption
terms for problems as in (1.1), also in the case of a more general continuous nonlinearity g(u) that
mimics u at infinity (namely g(s)→ ±∞ as s→ ±∞). In particular, for problems asg(u)− div

(
Du√

1 + |Du|2

)
= f in Ω,

u = 0 on ∂Ω,

(1.5)

we show that solutions do exist for general data f ∈ L1(Ω) no matter of the size of f . Moreover, if
f ∈ LN (Ω), then solutions to (1.5) lie in L∞(Ω), again, without any restriction on the norm of f . As
a remarkable fact this result is sharp at Lorentz scale since, as we will show by means of an explicit
counter-example, unbounded solutions may exist for data in f ∈ LN,∞(Ω).
Finally, if g : R→ R is increasing, then the solution is unique.

In the first part we work by approximation proving existence of a BV -solution of problem (1.1) when
f ∈ L2(Ω); in this case the regular approximation scheme is suitably chosen involving p-Laplacian type
operators. In the second part we look for infinite energy solutions of problem (1.1) when f is a merely
integrable function. In this case the approximation scheme is given by solutions to problems as (1.1)
whose existence has been proven in the first part and we only approximate the datum f .

The plan of the paper is the following: in Section 2 we set the basic machinery on BV spaces (the
natural space in which these problems are well settled), and the Anzellotti-Chen-Frid type theory of
pairings between bounded vector fields whose divergence lies in some Lebesgue spaces and gradients
of BV functions. Section 3 is devoted to present the existence and uniqueness theory of finite energy
solutions to problem (1.1) in case of data f ∈ L2(Ω). The core of the paper is the content of Section
4 in which we prove existence and uniqueness of infinite energy solutions for (1.1) in full generality.
In Section 5 we discuss the boundedness of solutions of problem (1.1) in case f ∈ LN (Ω), while if
f ∈ LN,∞(Ω) a smallness assumption is needed as shown by an explicit example. Finally, in Section 6,
we address to the extension of the previous results to the case of a more general nonlinear lower order
term as in (1.5).

2. Notation and preparatory tools

From here on Ω will always represent an open bounded subset of RN (N ≥ 2) with Lipschitz boundary.
We denote by HN−1(E) the (N−1)-dimensional Hausdorff measure of a set E, while |A| stands for the
N -dimensional Lebesgue measure LN of a set A ⊂ RN . We denote by χA the characteristic function
of a set A ⊂ RN .
By M(Ω) we indicate the space of Radon measures with finite total variation over Ω and we will call
mutually singular (or mutually orthogonal) two Radon measures µ and ν in M(Ω) such that there
exists a measurable set A ⊂ Ω satisfying

µ A = ν (Ω\A) = 0.

For a fixed k > 0, we use the truncation functions Tk : R → R and Gk : R → R defined, respectively,
by

Tk(s) := max(−k,min(s, k)) and Gk(s) := s− Tk(s).

If no otherwise specified, we denote by C several positive constants whose value may change from line
to line and, sometimes, on the same line. These values will only depend on the data but they will
never depend on the indexes of the sequences we will gradually introduce. Let us explicitly mention
that we will not relabel an extracted compact subsequence.
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For simplicity’s sake, and if there is no ambiguity, we will often use the following notation:ˆ
Ω

f :=

ˆ
Ω

f(x) dx.

Finally, we will denote by sgn(s) the multi-valued sign function defined by

sgn(s) :=


1 if s > 0

[−1, 1] if s = 0

−1 if s < 0.

2.1. BV spaces and the area functional. We refer to [1] for a complete account on BV -spaces.
Let

BV (Ω) := {u ∈ L1(Ω) : Du ∈M(Ω)N}.

By Du ∈ M(Ω)N we mean that each distributional partial derivative of u is a Radon measure with
finite total variation. Then the total variation of Du is given by

|Du| = sup

{ˆ
Ω

u

N∑
i=1

∂φi

∂xi
, φi ∈ C1

0 (Ω,R), |φi| ≤ 1,∀i = 1, ..., N

}
.

We underline that the BV (Ω) space endowed with the norm

||u||BV (Ω) =

ˆ
∂Ω

|u| dHN−1 +

ˆ
Ω

|Du|,

is a Banach space.
A Radon measure µ can be uniquely decomposed as µ = µa + µs where µa is absolutely continuous
with respect to the Lebesgue measure LN while µs is concentrated on a set of zero Lebesgue measure,
i.e. µa and µs are mutually singular.

If u ∈ BV (Ω) the measure
√

1 + |Du|2 is defined as

√
1 + |Du|2(E) = sup

{ˆ
E

φN+1 −
ˆ
E

u

N∑
i=1

∂φi

∂xi
, φi ∈ C1

0 (Ω,R), |φi| ≤ 1,∀i = 1, ..., N + 1

}
,

for any Borel set E ⊆ Ω. The notation ˆ
Ω

√
1 + |Du|2

stands for the total variation of the RN+1-valued measure which formally represents (LN , Du). Indeed,
if u is smooth, then

|(LN ,∇u)|(Ω) =

ˆ
Ω

√
1 + |∇u|2

gives the area of the graph of u. Let also observe that it follows from the decomposition in absolutely
continuous and singular part with respect to the Lebesgue measure that one has√

1 + |Du|2 =
√

1 + |Dau|2LN + |Dsu| ,

where we use the following notations Dau := (Du)a and Dsu := (Du)s.
In what follows we will use the following semicontinuity classical results; firstly, the functional

J1(v) =

ˆ
Ω

√
1 + |Dv|2ϕ+

ˆ
∂Ω

|v|ϕdHN−1, for all 0 ≤ ϕ ∈ C1(Ω)

is lower semicontinuous in BV (Ω) with respect to the L1(Ω) convergence. On the other hand the
functional

J2(v) =

ˆ
Ω

√
1− |v|2ϕ for all 0 ≤ ϕ ∈ C1(Ω) (2.1)

is weakly upper semicontinuous in L1(Ω) (see Corollary 3.9 of [8]).
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2.2. The Anzellotti-Chen-Frid theory. Let briefly present the L∞-vector fields theory due to [6]
and [9] in the case of bounded fields z whose divergence is in Lq(Ω).
Let q ≥ 1 and

X(Ω)q := {z ∈ L∞(Ω)N : div z ∈ Lq(Ω)}.
In [6], under suitable compatibility conditions that we shall outline later, given a function v ∈ BV (Ω)
and a bounded vector field z ∈ X(Ω)q, the following distribution (z,Dv) : C1

c (Ω)→ R is defined:

〈(z,Dv), ϕ〉 := −
ˆ

Ω

vϕdiv z −
ˆ

Ω

vz · ∇ϕ, ϕ ∈ C1
c (Ω) . (2.2)

Let us stress that (2.2) is well defined provided one of the following compatibility conditions hold:

v ∈ BV (Ω) and z ∈ X(Ω)N , (2.3)

v ∈ BV (Ω) ∩ L2(Ω) and z ∈ X(Ω)2 , (2.4)

or
v ∈ BV (Ω) ∩ L∞(Ω) and z ∈ X(Ω)1 . (2.5)

We point out that an admissible compatibility condition is also v ∈ BV (Ω) and div z ∈ LN,∞(Ω),
where LN,∞(Ω) is the usual Lorentz space (see [32] for an introduction on such function spaces) also
known as Marcinkiewicz space of exponent N .

Moreover, it holds

|〈(z,Dv), ϕ〉| ≤ ||ϕ||L∞(U)||z||L∞(U)N

ˆ
U

|Dv| ,

for all open set U ⊂⊂ Ω and for all ϕ ∈ C1
c (U), and∣∣∣∣ˆ

B

(z,Dv)

∣∣∣∣ ≤ ˆ
B

|(z,Dv)| ≤ ||z||L∞(U)N

ˆ
B

|Dv| ,

for all Borel sets B and for all open sets U such that B ⊂ U ⊂⊂ Ω. Every z ∈ X(Ω)q has a weak
trace on ∂Ω of its normal component which is denoted by [z, ν], where ν(x) is the outward normal unit
vector defined for HN−1-almost every x ∈ ∂Ω (see [6]), such that

||[z, ν]||L∞(∂Ω) ≤ ||z||L∞(Ω)N .

The following Green formula holds (see for instance [16, Proposition 2.5]):

Lemma 2.1. Let z ∈ L∞(Ω)N and v ∈ BV (Ω), then it holdsˆ
Ω

v div z +

ˆ
Ω

(z,Dv) =

ˆ
∂Ω

v[z, ν] dHN−1 , (2.6)

provided one of the compatibility conditions (2.3), (2.4), (2.5) is in force.

Let us recall the following technical result due again to [6, Theorem 2.4].

Lemma 2.2. Let z ∈ L∞(Ω)N and v ∈ BV (Ω), then it holds

(z,Du)a = z ·Dau.

provided one of the compatibility conditions (2.3), (2.4), (2.5) is in force.

2.3. An algebraic inequality. In what follows we will have to apply an algebraic inequality, which
is next set for the sake of completeness. If a ≥ 0 and 0 ≤ b ≤ 1, then

ab ≤
√

1 + a2 −
√

1− b2. (2.7)

To check it, just realize that writing as

ab+
√

1− b2 ≤
√

1 + a2

squaring and simplifying, we get (2.7) is equivalent to

a2(1− b2)− 2ab
√

1− b2 + b2 ≥ 0.

This inequality holds since the left-hand side is a square. As a consequence of (2.7) and the Cauchy-

Schwarz inequality, we deduce that if A,B ∈ RN with |B| ≤ 1, then

A ·B ≤
√

1 + |A|2 −
√

1− |B|2. (2.8)
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3. BV -solutions in presence of L2-data

In this section we deal with the following problem:u− div

(
Du√

1 + |Du|2

)
= f in Ω,

u = 0 on ∂Ω,

(3.1)

where f belongs to L2(Ω).

Let us start by specifying what we mean by a solution to (3.1).

Definition 3.1. Let f ∈ L2(Ω). A function u ∈ BV (Ω)∩L2(Ω) is a solution to problem (3.1) if there
exists z ∈ X(Ω)2 with ||z||L∞(Ω)N ≤ 1 such that

u− div z = f in D′(Ω), (3.2)

(z,Du) =
√

1 + |Du|2 −
√

1− |z|2 as measures in Ω, (3.3)

u(sgnu+ [z, ν])(x) = 0 for HN−1-a.e. x ∈ ∂Ω. (3.4)

Remark 3.2. Let underline that (3.3) aims to give an interpretation to Du/
√

1 + |Du|2. Indeed, if

u is smooth and z = ∇u√
1+|∇u|2

, then one has

(z,∇u) = z · ∇u =
|∇u|2√

1 + |∇u|2
,

which, after a simple calculation, gives the right-hand of (3.3).
It is also worth mentioning that, under the assumptions of Lemma 2.2, (3.3) turns out to be equivalent
to require that both

z ·Dau =
√

1 + |Dau|2 −
√

1− |z|2 (3.5)

and
(z,Du)s = |Dsu|,

holds. Let us also stress that, once (3.5) is in force, z is uniquely defined by

z =
Dau√

1 + |Dau|2
. (3.6)

This is a striking difference with some others flux-limited diffusion operators as the 1-laplacian or the
transparent media one [5, 2, 20]).
With regard to (3.4), let only say that it is nowadays the classical way the Dirichlet datum is meant
for these type of equations as, the trace of the solutions needs not to be attained, in general, pointwise.
Roughly speaking, it means that at any point of ∂Ω either u is zero or the modulus of the weak trace
of the normal component of z is highest possible at the boundary.
We conclude the discussion on Definition 3.1 by underlining that it is simple to convince that (3.2)
also holds tested with functions in BV (Ω) ∩ L2(Ω).

Let us state the existence result of this section:

Theorem 3.3. Let f ∈ L2(Ω) then there exists a solution to problem (3.1) in the sense of Definition
3.1.

Remark 3.4. Let us stress again that, in absence of the absorption zero order term, existence of
BV -solutions are expected only for small f ’s belonging to LN (Ω). To check that a smallness condition
is needed in this case, assume that there exists a solution of problem (3.1) without the absorption term

and let z be the associated vector field. Then, for every v ∈W 1,1
0 (Ω), Green’s formula implies∣∣∣∣ˆ

Ω

fv

∣∣∣∣ =

∣∣∣∣ˆ
Ω

z · ∇v
∣∣∣∣ ≤ ˆ

Ω

|∇v|

Thus f ∈ W−1,∞(Ω), the dual space of W 1,1
0 (Ω), and ‖f‖W−1,∞(Ω) ≤ 1. Hence, Theorem 3.3 shows

that when dealing with the regularizing absorption term one gains that a solution always exists, and
it belongs to BV (Ω), avoiding any small condition on the size of f .
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By appealing to the presence of the regularizing zero order term, we show that the BV -solution of
(3.1) is unique.

Theorem 3.5. There is at most one solution to problem (3.1) in the sense of Definition 3.1.

3.1. Existence of finite energy solutions. In order to prove Theorem 3.3 we consider the following
scheme of approximation for 1 < p < 2:up − div

(
∇up√

1 + |∇up|2

)
− (p− 1) div

(
|∇up|p−2∇up

)
= fp in Ω,

up = 0 on ∂Ω,

(3.7)

where fp = T 1
p−1

(f). The existence of up ∈W 1,p
0 (Ω) ∩ L∞(Ω) such that

ˆ
Ω

upv −
ˆ

Ω

∇up√
1 + |∇up|2

· ∇v + (p− 1)

ˆ
Ω

|∇up|p−2∇up · ∇v =

ˆ
Ω

fpv , ∀v ∈W 1,p
0 (Ω), (3.8)

follows by standard monotonicity arguments ([29]).
We start proving some estimates for up which are independent of p.

Lemma 3.6. Let f ∈ L2(Ω) and let up be a solution to (3.7). Then up is unifomly bounded in
BV (Ω) ∩ L2(Ω) (with respect to p), and it also holds

(p− 1)

ˆ
Ω

|∇up|p ≤ C, (3.9)

for some constant C independent of p.

Proof. It is sufficient to pick v = up as a test function in (3.8) obtainingˆ
Ω

u2
p +

ˆ
Ω

|∇up|2√
1 + |∇up|2

+ (p− 1)

ˆ
Ω

|∇up|p ≤
ˆ

Ω

fpup ≤
1

2

ˆ
Ω

u2
p +

1

2

ˆ
Ω

f2 (3.10)

after an application of the Young inequality. Then (3.10) gives that

1

2

ˆ
Ω

u2
p +

ˆ
Ω

|∇up|2√
1 + |∇up|2

+ (p− 1)

ˆ
Ω

|∇up|p ≤ C, (3.11)

where C > 0 does not depend on p. Now observe thatˆ
Ω

|∇up|2√
1 + |∇up|2

=

ˆ
Ω

√
1 + |∇up|2 −

ˆ
Ω

1√
1 + |∇up|2

≥
ˆ

Ω

|∇up| − |Ω|. (3.12)

Therefore it follows from gathering (3.11) and (3.12) into (3.10) thatˆ
Ω

u2
p +

ˆ
Ω

|∇up|+ (p− 1)

ˆ
Ω

|∇up|p ≤ C, (3.13)

which concludes the proof. �

From the previous lemma we immediately deduce the following corollary.

Corollary 3.7. Let f ∈ L2(Ω) and let up be a solution to (3.7). Then there exists u ∈ BV (Ω)∩L2(Ω)
such that, up to subsequences, up strongly converges to u in Lq(Ω) for every q < 2, weakly in L2(Ω),
and ∇up converges to Du weak∗ as measures, as p→ 1+.

Hence, from now on, when referring to u we mean the function found in Corollary 3.7.

Lemma 3.8. Let f ∈ L2(Ω). Then there exists z ∈ X(Ω)2 such that

u− div z = f in D′(Ω), (3.14)

and
(z,Du) =

√
1 + |Du|2 −

√
1− |z|2 as measures in Ω, (3.15)

where u is the function found in Corollary 3.7. In particular it holdsˆ
{|u|≥k}

|u| ≤
ˆ
{|u|≥k}

|f |, (3.16)

for any k > 0.
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Proof. Let up be the solution of (3.7). Firstly observe that, since |∇up|(1 + |∇up|2)−
1
2 ≤ 1, there

exists z ∈ L∞(Ω)N such that ∇up(1 + |∇up|2)−
1
2 converges to z weak∗ in L∞(Ω)N as p→ 1+. It also

follows from the weak lower semicontinuity of the norm that ||z||L∞(Ω)N ≤ 1.
Moreover, the above argument, Lemma 3.6 and Corollary 3.7 give that (3.14) holds true. Indeed, we
only need to show that the third term in (3.7) goes to zero in the sense of distributions as p→ 1+; to
do that, consider ϕ ∈ C1

c (Ω) and observe that from the Hölder inequality and from (3.13), one has

(p− 1)

∣∣∣∣ˆ
Ω

|∇up|p−2∇up · ∇ϕ
∣∣∣∣ ≤ (p− 1)

(ˆ
Ω

|∇up|p
) p−1

p
(ˆ

Ω

|∇ϕ|p
) 1

p

≤ (p− 1)
1
p ||∇ϕ||L∞(Ω)N |Ω|

1
p

(
(p− 1)

ˆ
Ω

|∇up|p
) p−1

p

(3.9)

≤ (p− 1)
1
p ||∇ϕ||L∞(Ω)N |Ω|

1
pC

p−1
p ,

(3.17)

which gives that

lim
p→1+

(p− 1)

ˆ
Ω

|∇up|p−2∇up · ∇ϕ = 0.

This implies (3.14) and, in particular, that z ∈ X(Ω)2.

Let us also underline, for later purposes, that, since u and f are in L2(Ω), it holds

− udiv z = (f − u)u in D′(Ω). (3.18)

Now we have to show (3.15) which consists (recall Remark 3.2) in proving both

z ·Dau =
√

1 + |Dau|2 +
√

1− |z|2 (3.19)

and

(z,Du)s = |Dsu|. (3.20)

Hence, let 0 ≤ ϕ ∈ C1
c (Ω) and consider v = upϕ in (3.8); this takes to

ˆ
Ω

u2
pϕ+

ˆ
Ω

|∇up|2ϕ√
1 + |∇up|2

+

ˆ
Ω

∇up · ∇ϕup√
1 + |∇up|2

+ (p− 1)

ˆ
Ω

|∇up|pϕ

+ (p− 1)

ˆ
Ω

|∇up|p−2∇up · ∇ϕup =

ˆ
Ω

fpupϕ.

(3.21)

Dropping the nonnegative fourth term in (3.21), one gets

ˆ
Ω

u2
pϕ+

ˆ
Ω

√
1 + |∇up|2ϕ−

ˆ
Ω

√
1− |∇up|2

1 + |∇up|2
ϕ+

ˆ
Ω

∇up · ∇ϕup√
1 + |∇up|2

+ (p− 1)

ˆ
Ω

|∇up|p−2∇up · ∇ϕup ≤
ˆ

Ω

fpupϕ,

(3.22)

where we used that ˆ
Ω

|∇up|2ϕ√
1 + |∇up|2

=

ˆ
Ω

√
1 + |∇up|2ϕ−

ˆ
Ω

√
1− |∇up|2

1 + |∇up|2
ϕ. (3.23)

Now we aim to take the liminf as p→ 1+ in (3.22). For the first term on the left-hand side of (3.22) we
can apply the Fatou Lemma. The second term on the left-hand side of (3.22) is lower semicontinuous
with respect to the L1 convergence. The nonpositive third term on the left-hand side of (3.22) is weakly
lower semicontinuous with respect to the L1 convergence (recall (2.1)). Concerning the fourth term

on the left-hand side of (3.22) we use the weak∗ convergence of ∇up(1 + |∇up|2)−
1
2 to z in L∞(Ω)N

as well as the strong convergence of up in Lq(Ω) for any q < 2 as p→ 1+. Since up weakly converges
to u in L2(Ω) and fp strongly converges to f in L2(Ω) as p → 1+, then one can pass to the limit on
the right-hand of (3.22) as well.
Let us finally focus on the last term on the left-hand side of (3.22) for which we reason as for (3.17).

Indeed one can apply the Hölder inequality with indexes
(

p
p−1 , 2,

2p
2−p

)
(recall that 1 < p < 2) obtaining

that
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(p− 1)

∣∣∣∣ˆ
Ω

|∇up|p−2∇up · ∇ϕup
∣∣∣∣ ≤ (p− 1)

(ˆ
Ω

|∇up|p
) p−1

p
(ˆ

Ω

|∇ϕ|
2p

2−p

) 2−p
2p
(ˆ

Ω

|up|2
) 1

2

≤ (p− 1)
1
p ||∇ϕ||L∞(Ω)N |Ω|

2−p
2p

(
(p− 1)

ˆ
Ω

|∇up|p
) p−1

p
(ˆ

Ω

|up|2
) 1

2

whose right-hand goes to zero as p→ 1+ thanks to (3.9) and to the boundedness in L2(Ω) of up with
respect to p.
Then we have proved thatˆ

Ω

u2ϕ+

ˆ
Ω

√
1 + |Du|2ϕ−

ˆ
Ω

√
1− |z|2ϕ ≤ −

ˆ
Ω

uz · ∇ϕ+

ˆ
Ω

fuϕ

(3.18)
= −

ˆ
Ω

uz · ∇ϕ−
ˆ

Ω

udiv zϕ+

ˆ
Ω

u2ϕ.

Hence, using (2.2), it holdsˆ
Ω

√
1 + |Du|2ϕ−

ˆ
Ω

√
1− |z|2ϕ ≤

ˆ
Ω

(z,Du)ϕ, ∀ϕ ∈ C1
c (Ω), ϕ ≥ 0. (3.24)

Now observe that since div z, u ∈ L2(Ω) one can apply Lemma 2.2 which allows to deduce from
inequality (3.24) that

z ·Dau ≥
√

1 + |Dau|2 −
√

1− |z|2,
almost everywhere in Ω. This gives (3.19) since the reverse inequality is given by (2.8).
Proving (3.20) is immediate by observing that ||z||L∞(Ω)N ≤ 1 implies

(z,Du)s ≤ |Du|s = |Dsu|,
as measures in Ω. The reverse inequality follows by (3.24).
Finally let us show (3.16); we define the function (k ≥ δ > 0):

Sδ,k(s) =


sgn(s) if |s| > k,

0 if |s| ≤ k − δ,
sgn(s)(|s| − k + δ)

δ
if k − δ < |s| ≤ k,

and we take v = Sδ,k(up) in (3.8) yielding toˆ
Ω

upSδ,k(up) ≤
ˆ

Ω

fpSδ,k(up) ≤
ˆ
{|up|>k−δ}

|fp|,

getting rid of the nonnegative second and third term. Then taking the limsup first as p → 1+ and
then as δ → 0+, one obtains (3.16). �

Lemma 3.9. Let f ∈ L2(Ω). Then it holds

u(sgnu+ [z, ν])(x) = 0 for HN−1-a.e. x ∈ ∂Ω,

where u and z are the function and the vector field found in Corollary 3.7 and in Lemma 3.8.

Proof. Let up be a solution to (3.7) and let us take v = up in (3.8) yielding toˆ
Ω

u2
p +

ˆ
Ω

|∇up|2√
1 + |∇up|2

+

ˆ
∂Ω

|up|dHN−1 ≤
ˆ

Ω

fpup,

since up has zero Sobolev trace.
Moreover reasoning as for (3.23) (there ϕ = 1) one obtains

ˆ
Ω

u2
p +

ˆ
Ω

√
1 + |∇up|2 −

ˆ
Ω

√
1− |∇up|2

1 + |∇up|2
+

ˆ
∂Ω

|up|dHN−1 ≤
ˆ

Ω

fup.

Now we can take the liminf as p → 1+ acting similarly to what done in Lemma 3.8. This allows to
deduce that ˆ

Ω

u2 +

ˆ
Ω

√
1 + |Du|2 −

ˆ
Ω

√
1− |z|2 +

ˆ
∂Ω

|u|dHN−1 ≤
ˆ

Ω

fu.
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Now, recalling (3.18) and (2.6), one can writeˆ
Ω

u2 +

ˆ
Ω

√
1 + |Du|2 −

ˆ
Ω

√
1− |z|2 +

ˆ
∂Ω

|u|dHN−1
(3.18)

≤ −
ˆ

Ω

udiv z +

ˆ
Ω

u2

(2.6)
=

ˆ
Ω

(z,Du)−
ˆ
∂Ω

u[z, ν]dHN−1 +

ˆ
Ω

u2.

Then the proof of Lemma 3.9 easily follows thanks to (3.15) and to the fact that |[z, ν]| ≤ 1. �

Proof of Theorem 3.3. Let up be a solution to (3.7). Then it follows from Lemma 3.6 that up is bounded
in BV (Ω) ∩ L2(Ω) with respect to p. Corollary 3.7 guarantees that up converges, up to subsequences,
to u in Lq(Ω) for every q < 2, weak in L2(Ω), and ∇up converges to Du weak∗ as measures as p→ 1+.
Then (3.2) and (3.3) are proved in Lemma 3.8. Finally (3.4) follows from Lemma 3.9. The proof is
concluded. �

3.2. Uniqueness of finite energy solutions. In this section we prove Theorem 3.5. Let explicitly
highlight that our proof of the uniqueness result is strongly related to the presence of the absorption
term.

Proof of Theorem 3.5. Let u1 and u2 be solutions to (3.1) and let z1 and z2 be the corresponding
vector fields. Using (3.2) (recall Remark 3.2), we readily haveˆ

Ω

uiv −
ˆ

Ω

v div zi =

ˆ
Ω

fv, ∀v ∈ BV (Ω) ∩ L2(Ω), i = 1, 2. (3.25)

We take v = u1 − u2 in the difference between two weak formulations (3.25) related to u1 and u2,
obtaining

ˆ
Ω

(u1 − u2)2 +

ˆ
Ω

(z1, Du1)−
ˆ

Ω

(z2, Du1)

+

ˆ
Ω

(z2, Du2)−
ˆ

Ω

(z1, Du2)−
ˆ
∂Ω

(u1 − u2)[z1, ν] dHN−1

+

ˆ
∂Ω

(u1 − u2)[z2, ν] dHN−1 = 0,

(3.26)

after an application of (2.6).
Observe first that from (3.4) it holds

ui(sgnui + [zi, ν]) = 0 HN−1 − a.e. on ∂Ω for i = 1, 2.

Hence one can rewrite the boundary terms as

−
ˆ
∂Ω

(u1 − u2)[z1, ν] dHN−1 +

ˆ
∂Ω

(u1 − u2)[z2, ν] dHN−1

=

ˆ
∂Ω

(|u1|+ u2[z1, ν]) dHN−1 +

ˆ
∂Ω

(|u2|+ u1[z2, ν]) dHN−1

=

ˆ
∂Ω

(|u1|+ u1[z2, ν]) dHN−1 +

ˆ
∂Ω

(|u2|+ u2[z1, ν]) dHN−1,

(3.27)

which is nonnegative since |[zi, ν]| ≤ 1 for i = 1, 2.
Gathering (3.27) into (3.26) gives that

ˆ
Ω

(u1 − u2)2 +

ˆ
Ω

(z1, Du1)−
ˆ

Ω

(z2, Du1)

+

ˆ
Ω

(z2, Du2)−
ˆ

Ω

(z1, Du2) ≤ 0.

Moreover, using (3.3), one gets

ˆ
Ω

(u1 − u2)2 +

ˆ
Ω

√
1 + |Du1|2 −

ˆ
Ω

√
1− |z1|2 −

ˆ
Ω

(z2, Du1)

+

ˆ
Ω

√
1 + |Du2|2 −

ˆ
Ω

√
1− |z2|2 −

ˆ
Ω

(z1, Du2) ≤ 0.
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Now we aim to prove that √
1 + |Du1|2 −

√
1− |z2|2 ≥ (z2, Du1)

and that √
1 + |Du2|2 −

√
1− |z1|2 ≥ (z1, Du2) ,

as measures in Ω. This easily follows by splitting the measures in the absolutely continuous and
singular parts. Let observe that for the absolutely continuous part of the measures one needs that√

1 + |Dau1|2 −
√

1− |z2|2 ≥ (z2, Du1)a = z2 ·Dau1

and that √
1 + |Dau2|2 −

√
1− |z1|2 ≥ (z1, Du2)a = z1 ·Dau2,

which are given by (2.8) once one recalls that

|zi| =
|Daui|√

1 + |Daui|2
≤ 1 i = 1, 2.

For the singular part it is sufficient to recall that ||zi||L∞(Ω)N ≤ 1.
Hence we have shown that

ˆ
Ω

(u1 − u2)2 = 0,

which concludes the proof. �

4. The case of L1 data

Here we deal with (3.1) in presence of a merely integrable datum f .
In this case one can not expect finite energy solutions. We specify how a weak solution of problem
(3.1) is meant in this case.

Definition 4.1. Let f ∈ L1(Ω). A function u ∈ L1(Ω) with Tk(u) ∈ BV (Ω) for any k > 0 is a solution
to problem (3.1) if there exists z ∈ X(Ω)1 with ||z||L∞(Ω)N ≤ 1 such that

u− div z = f in D′(Ω), (4.1)

(z,DTk(u)) =
√

1 + |DTk(u)|2 −
√

1− |zk|2 as measures in Ω with zk := zχ{|u|≤k}, (4.2)

Tk(u)(sgnTk(u) + [z, ν])(x) = 0 and for HN−1-a.e. x ∈ ∂Ω, (4.3)

for any k > 0.

Remark 4.2. Let explicitly observe that a function u, solution to (3.1) in the sense of Definition 3.1,
is also a solution to the same problem in the sense of Definition 4.1. Indeed, if zk = zχ{|u|≤k}, it
follows from (3.6) that

z ·DaTk(u) =
√

1 + |DaTk(u)|2 −
√

1− |zk|2. (4.4)

Moreover, since (z,DTk(u)) ≤ |DTk(u)| one has that (z,DTk(u))s ≤ |DsTk(u)|. For the reverse
inequality it is sufficient to observe that

(z,Du)s = (z,DTk(u))s + (z,DGk(u))s = |Dsu| ≥ |DsTk(u)|.

As (z,DTk(u)) and (z,DGk(u)) are mutually singular measures, one yields to

(z,DTk(u))s = |DsTk(u)|. (4.5)

Equations (4.4) and (4.5) show that (4.2) holds. This is sufficient to conclude that u is a solution to
(3.1) in the sense of Definition 4.1.

Theorem 4.3. Let f ∈ L1(Ω) then there exists a solution to problem (3.1) in the sense of Definition
4.1.

We also state the following uniqueness result:

Theorem 4.4. There is at most one solution to problem (3.1) in the sense of Definition 4.1.
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4.1. Existence of infinite energy solutions. By appealing to the results of Section 3, we work by
approximation via the following problemsun − div

(
Dun√

1 + |Dun|2

)
= fn in Ω,

un = 0 on ∂Ω,

(4.6)

where fn := Tn(f). The existence of a unique solution un ∈ BV (Ω) ∩L2(Ω) is proved in Theorem 3.3
and Theorem 3.5. This means that there exists zn ∈ X(Ω)2 with ||zn||L∞(Ω)N ≤ 1 such that it holdsˆ

Ω

unv −
ˆ

Ω

v div zn =

ˆ
Ω

fnv, ∀v ∈ BV (Ω) ∩ L2(Ω), (4.7)

(zn, Dun) =
√

1 + |Dun|2 −
√

1− |zn|2 as measures in Ω, (4.8)

un(sgnun + [zn, ν])(x) = 0 for HN−1-a.e. x ∈ ∂Ω. (4.9)

We begin by proving estimates in BV (Ω) with respect to n for any truncation of the approximating
solutions.

Lemma 4.5. Let f ∈ L1(Ω) and let un be the solution to (4.6). Then Tk(un) is bounded in BV (Ω)
with respect to n and for any k > 0. Moreover there exists an almost everywhere finite function u such
that Tk(u) ∈ BV (Ω) for any k > 0 and such that un, up to subsequences, converges to u in L1(Ω) as
n→∞.

Proof. Let k > 0 and let us fix v = Tk(un) in (4.7) obtainingˆ
Ω

unTk(un)−
ˆ

Ω

Tk(un) div zn ≤ k‖f‖L1(Ω).

Then recalling (2.6), (4.9) and the fact that un ∈ BV (Ω), one getsˆ
Ω

unTk(un) +

ˆ
Ω

(zn, DTk(un)) +

ˆ
∂Ω

|Tk(un)| dHN−1 ≤ k‖f‖L1(Ω).

Now, recalling (4.8) and the discussion in Remark 4.2, one hasˆ
Ω

unTk(un) +

ˆ
Ω

√
1 + |DTk(un)|2 −

ˆ
Ω

√
1− |zn|2χ{|un|≤k} +

ˆ
∂Ω

|Tk(un)| dHN−1 ≤ k‖f‖L1(Ω),

(4.10)
which means that Tk(un) is bounded in BV (Ω) with respect to n for any k > 0. This is sufficient
to deduce the existence of a limit function u to whom un converges, up to subsequences, almost
everywhere in Ω as n → ∞. Moreover Tk(u) ∈ BV (Ω). Finally, (3.16) implies that un is bounded in
L1(Ω) with respect to n, one has that u is almost everywhere finite in Ω; moreover,ˆ

{|un|≥k}
|un| ≤

ˆ
{|un|≥k}

|fn|, (4.11)

which means that un is equi-integrable since fn converges in L1(Ω) and un is bounded in L1(Ω) with
respect to n. Hence this is sufficient to deduce that un converges to u in L1(Ω) as n→∞.

�

Lemma 4.6. Let f ∈ L1(Ω). Then there exists z ∈ X(Ω)1 such that

u− div z = f in D′(Ω), (4.12)

and

(z,DTk(u)) =
√

1 + |DTk(u)|2 −
√

1− |zk|2 as measures in Ω and for any k > 0, (4.13)

where u is the function found in Lemma 4.5 and zk = zχ{|u|≤k}.

Proof. Let un be the solution to (4.6) with vector field zn such that |zn| ≤ 1. Then there exists
z ∈ L∞(Ω)N such that zn converges to z weak∗ in L∞(Ω)N as n→∞ and such that ||z||L∞(Ω)N ≤ 1.

Then, recalling that from Lemma 4.5 un converges, up to subsequences, to u in L1(Ω) as n→∞, it is
easy to prove that (4.12) holds since fn converges to f in L1(Ω).
Now in order to prove (4.13) one can take v = Tk(un)ϕ (k > 0 and 0 ≤ ϕ ∈ C1

c (Ω)) in (4.7) getting to
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ˆ
Ω

unTk(un)ϕ−
ˆ

Ω

Tk(un)ϕdiv zn =

ˆ
Ω

fnTk(un)ϕ,

that, using (2.2), gives

ˆ
Ω

(zn, DTk(un))ϕ =

ˆ
Ω

(fn − un)Tk(un)ϕ−
ˆ

Ω

zn · ∇ϕTk(un). (4.14)

Then, recalling Remark 4.2, one has that, for every k > 0

(zn, DTk(un)) =
√

1 + |DTk(un)|2 −
√

1− |zn|2χ{|un|≤k}, as measures in Ω, (4.15)

which gathered in (4.14) yields toˆ
Ω

√
1 + |DTk(un)|2ϕ−

ˆ
Ω

√
1− |zn|2χ{|un|≤k}ϕ =

ˆ
Ω

(fn − un)Tk(un)ϕ−
ˆ

Ω

zn · ∇ϕTk(un).

Now one can let n go to∞ in the previous identity recalling that the left-hand is lower semicontinuous
as already shown in the proof of Lemma 3.8. In particular, for the second term on the left-hand one
uses that znχ{|un|≤k} converges to zχ{|u|≤k} weakly in L1(Ω)N as n → ∞, for almost every k > 0.

Moreover the first term on the right-hand simply passes to the limit since fn,un converge in L1(Ω) and
Tk(un) converges weak∗ in L∞(Ω). This argument takes to (recall that zk := zχ{|u|≤k})

ˆ
Ω

√
1 + |DTk(u)|2ϕ−

ˆ
Ω

√
1− |zk|2ϕ ≤

ˆ
Ω

(f − u)Tk(u)ϕ−
ˆ

Ω

z · ∇ϕTk(u)

= −
ˆ

Ω

div zTk(u)ϕ−
ˆ

Ω

z · ∇ϕTk(u)

=

ˆ
Ω

(z,DTk(u))ϕ,

where the last passages follow from (4.12) and (2.2) respectively. From now on the reasoning to deduce
(4.13) is similar to the one given in the proof of Lemma 3.8. Indeed it is sufficient to observe that
z ·DaTk(u) = zk ·DaTk(u). This shows (4.13) for almost every k > 0. Now observe that, reasoning as
in Remark 3.2, from (4.13) one readily gets

zk =
DaTk(u)√

1 + |DaTk(u)|2
, (4.16)

for almost every k > 0. We claim that, for any fixed k > 0, z = 0 almost everywhere in {|u| = k}. If
this is the case, then znχ{|un|≤k} converges to zχ{|u|≤k} weakly in L1(Ω)N as n→∞, for every k > 0
and this concludes the proof. Let finally check the claim; let us fix h > k such that (4.16) holds for
zh = zχ{|u|≤h}. Then, since zh = 0 almost everywhere in {|u| = k}, also z = 0 almost everywhere on
the same set.

�

Remark 4.7. Looking at (4.16) one would like to identify z as

z =
Dau√

1 + |Dau|2
. (4.17)

This is not accurate as we only ask for u to have truncations in BV (Ω) so that Dau is not well defined
in general.
Nevertheless, reasoning as in [7] it is possible to define (see fon instance [4, Lemma 1]) a generalized
gradient for functions whose truncation is in BV (Ω) which, in turn, (4.17) holds a.e. in Ω. Indeed, let
u be a measurable function finite a.e. on Ω such that Tk(u) ∈ BV (Ω) for any k > 0. Then DaTk(u)
is well defined for any k > 0. A standard argument allows us to select a unique measurable vector
function v : Ω→ RN that satisfies

vχ{|u|≤k} = DaTk(u).

It is possible to show that, if u ∈ BV (Ω), then v = Dau.
Using this generalized gradient, the vector field z given in Definition 4.1 can be uniquely identified by
(4.17).
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Remark 4.8. For subsequent use, we underline that in the previous proof we have shown that
znχ{|un|≤k} converges to zχ{|u|≤k} weakly in L1(Ω)N as n→∞ and for every k > 0.

Lemma 4.9. Let f ∈ L1(Ω). Then it holds for any k > 0

Tk(u)(sgnTk(u) + [z, ν])(x) = 0 for HN−1-a.e. x ∈ ∂Ω,

where u and z are the function and the vector field found in Lemma 4.5 and in Lemma 4.6.

Proof. Let un be the solution of (4.6) and let us pick v = Tk(un) in (4.6) yielding to
ˆ

Ω

unTk(un)−
ˆ

Ω

div znTk(un) =

ˆ
Ω

fnTk(un),

and, after an application of the (2.6), to
ˆ

Ω

(zn, DTk(un))−
ˆ
∂Ω

Tk(un)[zn, ν] =

ˆ
Ω

(fn − un)Tk(un). (4.18)

Now using both (4.15) and (4.9), it follows from (4.18) that
ˆ

Ω

√
1 + |DTk(un)|2 −

ˆ
Ω

√
1− |zn|2χ{|un|≤k} +

ˆ
∂Ω

|Tk(un)| =
ˆ

Ω

(fn − un)Tk(un). (4.19)

Recalling also Remark 4.8, we can take n→∞ by lower semicontinuity of the left-hand of (4.19). For
the right-hand it is sufficient to use the strong convergence of both fn and un in L1(Ω) and the ∗-weak
convergence in L∞(Ω) of Tk(un) as n→∞. Then one deduces

ˆ
Ω

√
1 + |DTk(u)|2 −

ˆ
Ω

√
1− |zk|2 +

ˆ
∂Ω

|Tk(u)| ≤
ˆ

Ω

(f − u)Tk(u). (4.20)

Now observe that from (4.12) one has that (f − u)Tk(u) = −div zTk(u). Then an application of (2.6)
in (4.20) gives

ˆ
Ω

√
1 + |DTk(u)|2 −

ˆ
Ω

√
1− |zk|2 +

ˆ
∂Ω

|Tk(u)| ≤
ˆ

Ω

(z,DTk(u))−
ˆ
∂Ω

Tk(u)[z, ν],

which, from (4.13), implies ˆ
∂Ω

|Tk(u)|+
ˆ
∂Ω

Tk(u)[z, ν] ≤ 0,

and this concludes the proof since |[z, ν]| ≤ 1. �

Proof of Theorem 4.3. Let un be the solution to (4.6). It follows from Lemma 4.5 that Tk(un) is
bounded in BV (Ω) with respect to n and for any k > 0. Moreover, up to subsequences, un converges
to u in L1(Ω) as n→∞. Requests (4.1) and (4.2) are proved in Lemma 4.6. The boundary condition
(4.3) is shown in Lemma 4.9. The proof is concluded. �

4.2. Uniqueness of infinite energy solutions. In this section we prove the uniqueness Theorem
4.4 by strictly follow the lines of the proof of Theorem 3.5 and appealing from the presence of the
absorption term.

Proof of Theorem 4.4. Let u1 and u2 be solutions to (3.1) and let z1 and z2 be the corresponding
vector fields.
Then one has that ˆ

Ω

uiv −
ˆ

Ω

v div zi =

ˆ
Ω

fv, ∀v ∈ BV (Ω) ∩ L∞(Ω), i = 1, 2. (4.21)

Let observe that the main difference with respect to the proof of Theorem 3.5 relies on the fact that
u1, u2 are not suitable test functions in (4.21) anymore.
Hence we have to take v = Tk(u1) − Tk(u2) in the difference between two weak formulations (4.21)
related to u1 and u2, yielding to
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ˆ
Ω

(u1 − u2)(Tk(u1)− Tk(u2)) +

ˆ
Ω

(z1, DTk(u1))−
ˆ

Ω

(z2, DTk(u1))

+

ˆ
Ω

(z2, DTk(u2))−
ˆ

Ω

(z1, DTk(u2))−
ˆ
∂Ω

(Tk(u1)− Tk(u2))[z1, ν] dHN−1

+

ˆ
∂Ω

(Tk(u1)− Tk(u2))[z2, ν] dHN−1 = 0,

(4.22)

where we also used (2.6).
From (4.3) one has

Tk(ui)(sgnTk(ui) + [zi, ν]) = 0 HN−1 − a.e. on ∂Ω for i = 1, 2.

This means that

−
ˆ
∂Ω

(Tk(u1)− Tk(u2))[z1, ν] dHN−1 +

ˆ
∂Ω

(Tk(u1)− Tk(u2))[z2, ν] dHN−1

=

ˆ
∂Ω

(|Tk(u1)|+ Tk(u2)[z1, ν]) dHN−1 +

ˆ
∂Ω

(|Tk(u2)|+ Tk(u1)[z2, ν]) dHN−1

=

ˆ
∂Ω

(|Tk(u1)|+ Tk(u1)[z2, ν]) dHN−1 +

ˆ
∂Ω

(|Tk(u2)|+ Tk(u2)[z1, ν]) dHN−1,

(4.23)

which is nonnegative since |[zi, ν]| ≤ 1 for i = 1, 2.
Gathering (4.23) into (4.22), it holds that

ˆ
{|u1|≤k,|u2|≤k}

(u1 − u2)2 +

ˆ
Ω

(z1, DTk(u1))−
ˆ

Ω

(z2, DTk(u1))

+

ˆ
Ω

(z2, DTk(u2))−
ˆ

Ω

(z1, DTk(u2)) ≤ 0.

Moreover, using (4.2), one gets (zi,k := ziχ{|ui|≤k} for i = 1, 2)

ˆ
{|u1|≤k,|u2|≤k}

(u1 − u2)2 +

ˆ
Ω

√
1 + |DTk(u1)|2 −

ˆ
Ω

√
1− |z1,k|2 −

ˆ
Ω

(z2, DTk(u1))

+

ˆ
Ω

√
1 + |DTk(u2)|2 −

ˆ
Ω

√
1− |z2,k|2 −

ˆ
Ω

(z1, DTk(u2)) ≤ 0.

Now we claim that both √
1 + |DTk(u1)|2 −

√
1− |z2,k|2 ≥ (z2, DTk(u1))

and √
1 + |DTk(u2)|2 −

√
1− |z1,k|2 ≥ (z1, DTk(u2))

hold as measures in Ω. Once again, this follows by splitting it in the absolutely continuous and singular
parts. For the absolutely continuous part of the measures one needs that√

1 + |DaTk(u1)|2 −
√

1− |z2,k|2 ≥ (z2, DTk(u1))a = z2 ·DaTk(u1)

and that √
1 + |DaTk(u2)|2 −

√
1− |z1,k|2 ≥ (z1, DTk(u2))a = z1 ·DaTk(u2),

which is inequality (2.8) once one notices that z2 · DaTk(u1) = z2,k · DaTk(u1) and z1 · DaTk(u2) =
z1,k ·DaTk(u2).
For the singular part it is sufficient to recall that ||zi||L∞(Ω)N ≤ 1.
This proves that

ˆ
{|u1|≤k,|u2|≤k}

(u1 − u2)2 = 0,

for any k > 0. The proof is concluded. �
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5. Bounded and unbounded solutions

In this section we aim to give a sharp condition under which solutions to (3.1) are bounded.
If one considers f ∈ LN (Ω) then, as N ≥ 2, it follows from Theorem 3.3 and Theorem 3.5 that there
exists a unique solution u to (3.1) in the sense of Definition 3.1. In the next theorem we prove that
actually u is bounded no matter of any smallness condition on f . The proof is based on that of the
L∞–estimate in [14, Theorem 1].

Theorem 5.1. Let f ∈ LN (Ω) then the solution to (3.1) in the sense of Definition 3.1 is bounded.

Proof. Let us test (3.2) with Gk(u) ∈ BV (Ω) ∩ L2(Ω) where k > 0, yielding toˆ
Ω

uGk(u)−
ˆ

Ω

Gk(u) div z =

ˆ
Ω

fGk(u). (5.1)

For the right-hand of (5.1) we writeˆ
Ω

fGk(u) =

ˆ
{|f |≤k}

fGk(u) +

ˆ
{|f |>k}

fGk(u)

≤ k
ˆ

Ω

Gk(u) + ‖fχ{|f |>k}‖LN (Ω)

(ˆ
Ω

G
N

N−1

k (u)

)N−1
N

≤ k
ˆ

Ω

Gk(u) + ‖fχ{|f |>k}‖LN (Ω)S1

(ˆ
Ω

|DGk(u)|+
ˆ
∂Ω

|Gk(u)| dHN−1

)
,

(5.2)

after applications of the Hölder and Sobolev inequalities where S1 is the best constant in the Sobolev
inequality for functions in BV . Now we gather (5.2) into (5.1) noticing that the first term on the
right-hand of (5.2) is less or equal than the first term on the left-hand of (5.1); this allows to deduceˆ

Ω

(z,DGk(u))−
ˆ
∂Ω

Gk(u)[z, ν] dHN−1 ≤ ‖fχ{|f |>k}‖LN (Ω)S1

(ˆ
Ω

|DGk(u)|+
ˆ
∂Ω

|Gk(u)| dHN−1

)
,

(5.3)
where we also used (2.6). In particular, since from (3.4) [z, ν] = − sgnu if u 6= 0 on ∂Ω, one has

−
ˆ
∂Ω

Gk(u)[z, ν] dHN−1 =

ˆ
∂Ω

|Gk(u)| dHN−1,

which gathered in (5.3) givesˆ
Ω

(z,DGk(u)) +

ˆ
∂Ω

|Gk(u)| dHN−1 ≤ ‖fχ{|f |>k}‖LN (Ω)S1

(ˆ
Ω

|DGk(u)|+
ˆ
∂Ω

|Gk(u)| dHN−1

)
.

(5.4)
Now observe that from (3.3) one can write

(z,DTk(u)) + (z,DGk(u)) ≥ |DGk(u)| −
√

1− |z|2χ{|u|≤k} −
√

1− |z|2χ{|u|>k},

as measures in Ω. Moreover, as (z,DTk(u)) and (z,DGk(u)) are orthogonal measures then one gets

(z,DGk(u)) ≥ |DGk(u)| −
√

1− |z|2χ{|u|>k}, (5.5)

as measures in Ω. Collecting (5.5) into (5.4) one hasˆ
Ω

|DGk(u)|+
ˆ
∂Ω

|Gk(u)| dHN−1 ≤ ‖fχ{|f |>k}‖LN (Ω)S1

(ˆ
Ω

|DGk(u)|+
ˆ
∂Ω

|Gk(u)| dHN−1

)
+

ˆ
Ω

√
1− |z|2χ{|u|>k}.

Now one can choose k great enough such that ‖fχ{|f |>k}‖LN (Ω)S1 < 1 in order to deduce thatˆ
Ω

|DGk(u)|+
ˆ
∂Ω

|Gk(u)| dHN−1 ≤ |{|u| > k}|
1− ‖fχ{|f |>k}‖LN (Ω)S1

.

An application of the Sobolev inequality gives that (h > k)

|h− k||{|u| > h}|
N−1
N ≤

(ˆ
Ω

|G
N

N−1

k (u)|
)N−1

N

≤ S1|{|u| > k}|
1− ‖fχ{|f |>k}‖LN (Ω)S1

,
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which is

|{|u| > h}| ≤ S
N

N−1

1 |{|u| > k}|
N

N−1((
1− ‖fχ{|f |>k}‖LN (Ω)S1

)
|h− k|

) N
N−1

. (5.6)

Estimate (5.6) is sufficient to apply standard Stampacchia machinery (see [34]) in order to deduce that
u ∈ L∞(Ω). The proof is concluded. �

Theorem 5.1 is sharp as the next example shows. We consider data lying in the Marcinkiewicz space
LN,∞(Ω); again, refer to the monograph [32] for an introduction and basic properties. In particular for

functions in W 1,1
0 (Ω) the natural embedding is in LN,∞(Ω) where the best Sobolev constant is given

by S̃1 = [(N − 1)ω
1
N

N ]−1.
It is worth mentioning that, reasoning similarly to the proof of Theorem 5.1, one can show that the
solution to (3.1) is bounded if ‖f‖LN,∞(Ω) < S̃−1

1 .
Anyway the following example shows that above this critical threshold the unique solution is not
bounded anymore and that the absorption term does not regularize the solution that much.

Example 1. Let us fix Ω = B1(0), let N ≥ 3 and let 0 < α < N − 1; it is not difficult to be convinced
that a radial solution to problem−div

(
Duα√

1 + |Duα|2

)
+ uα =

N − 1

|x|

(
vα(|x|) +

r−α+1 − r
N − 1

)
=: fα(x) in B1(0),

uα = 0 on ∂B1(0)

is given, if |x| = r, by uα(x) = r−α − 1 provided vα : (0, 1) 7→ R+ is given by

vα(r) =
αr−α−1(α2r−2α−2 − α+2−N

N−1 )

(1 + α2r−2α−2)
3
2

.

An explicit calculation of the norm gives that

‖fα(x)‖LN,∞(B1(0)) = (N − 1)ω
1
N

N = S̃−1
1 ;

a similar computation can be found in Example 1 of [19].

6. More general lower order terms

With the approach of previous sections in mind, it is possible to deduce an existence and uniqueness
result when dealing with a more general lower order term involving a nonlinear function of u. Let us
consider g(u)− div

(
Du√

1 + |Du|2

)
= f in Ω,

u = 0 on ∂Ω,

(6.1)

where f ∈ L1(Ω) and g is a continuous function such that

lim
s→±∞

g(s) = ±∞, and g(s)s ≥ 0 s ∈ R. (6.2)

The notion of solution for problem (6.1) is readily re-adapted from Definition 4.1 by requiring g(u) ∈
L1(Ω) instead of u. In particular this gives that u is almost everywhere finite in Ω.
Summarizing, we have the following

Theorem 6.1. Let f ∈ L1(Ω) then there exists a solution u to problem (6.1). In particular, if
f ∈ LN (Ω) then u ∈ BV (Ω) ∩ L∞(Ω). The solution to (6.1) is unique if g is increasing.

Sketch of the proof. The existence result strictly follows the lines of Theorems 3.3 and 4.3. A key
estimate in this case is represented by the analogous to (4.11) which is necessary to pass to the limit
in the term involving g.
Indeed, if un is a suitable approximating solution, by the Fatou Lemma one gets that g(u) ∈ L1(Ω).
Hence, one has that ∀ε > 0 there exists h such that |{|g(un)| ≥ h}| < ε. Using the first assumption in



18 F. OLIVA, F. PETITTA, AND S. SEGURA DE LEÓN

(6.2) there exists a increasing sequence kh > 0 such that {|un| ≥ kh} ⊆ {|g(un)| ≥ h}. Therefore, the
equi-integrability of g(un) will be a consequence ofˆ

{|un|≥kh}
|g(un)| ≤

ˆ
{|un|≥kh}

|f |,

which, as already remarked, can be proven as for (4.11).
This would be sufficient to pass to the limit the approximation scheme.

The L∞-estimate in case f ∈ LN (Ω) once again, with many simplications, follows the idea presented
in [14, Theorem 1]. Indeed, as a sketch of that, one choose Gk(u) to test (6.1) obtaining, for h > 0 to
be chosen later ˆ

Ω

g(u)Gk(u)−
ˆ

Ω

Gk(u) div z =

ˆ
{|f |≤h}

fGk(u) +

ˆ
{|f |>h}

fGk(u)

≤
ˆ
{|f |≤h}

hGk(u) +

ˆ
{|f |>h}

fGk(u) ,

and one can proceed as in the proof of Theorem 5.1; in fact it sufficies to fix h large enough in order
to get

‖fχ{|f |>h}‖LN (Ω)S1 < 1 .

Thus we take k such that
inf

s∈[k,∞)
g(s) > h

and we have

g(k)

ˆ
Ω

Gk(u)−
ˆ

Ω

Gk(u) div z ≤
ˆ

Ω

hGk(u) +

ˆ
{|f |>h}

fGk(u) ,

for any k ≥ k, and so

−
ˆ

Ω

Gk(u) div z ≤
ˆ
{|f |>h}

fGk(u) ≤ ‖fχ{|f |>h}‖LN (Ω)‖Gk(u)‖
L

N
N−1 (Ω)

,

which allow to conclude as in the proof of Theorem 5.1 as from (5.3) on.

Finally one can reshape Theorem’s 4.4 proof in order to show that there is at most one solution if g is
a increasing function.

�
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