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Nicolò De Ponti∗, Sara Farinelli†, Ivan Yuri Violo‡

Abstract

We prove the Pleijel theorem in non-collapsed RCD spaces, providing an asymptotic upper
bound on the number of nodal domains of Laplacian eigenfunctions. As a consequence, we
obtain that the Courant nodal domain theorem holds except at most for a finite number of
eigenvalues. More in general, we show that the same result is valid for Neumann (resp. Dirichlet)
eigenfunctions on uniform domains (resp. bounded open sets). This is new even in the Euclidean
space, where the Pleijel theorem in the Neumann case was open under low boundary-regularity.
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1 Introduction

Given a continuous eigenfunction u of a linear operator L, there is a lot of interest in studying
the properties of its nodal domains, the latter being defined as the connected components of the
set {u ̸= 0}. In the usual setting L is an operator of differential nature, with discrete spectrum
λ1 ≤ λ2 ≤ . . . ≤ λk ≤ . . . , and a classical problem is to bound the number of nodal domains of uk
in terms of k. Here uk is an eigenfunction of eigenvalue λk.

There are two main results known in this direction. The first one, due to Courant [35] (see
also [36]), provides a pointwise bound: for every k the number of nodal domains of uk is less than
or equal to k. The second one is due to Pleijel [78] and provides an asymptotic upper bound, which
implies that for sufficiently large k the number of nodal domains of uk is strictly less than k.

The theorems of Courant and Pleijel have been deeply investigated in a different number of
situations, see [10, 14, 16, 17, 25, 30, 37, 40, 45, 56, 66, 69, 79, 86] for a non-exhaustive list. The main
goal of the present paper is to obtain an asymptotic upper bound on the number of nodal domains

∗Dipartimento di Matematica e Applicazioni, Università di Milano–Bicocca,
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for Dirichlet and Neumann Laplacian eigenfunctions in the setting of possibly non-smooth metric
measure spaces. In particular, we focus on the class of RCD(K,N) spaces consisting of metric
measure spaces satisfying a synthetic notion of Ricci curvature bounded from below by K and
dimension bounded from above by N (see [3] and Section 2.5 for more details). Nevertheless, our
analysis is of interest already in the Euclidean case since we prove the Pleijel theorem for Lipschitz
and even more rough domains (see Corollary 1.3 below and the subsequent discussion). Indeed, the
validity of a Pleijel result in the Neumann case with boundary regularity below C1,1 was an open
question in the field (see the comments after Remark 1.2 in [56]).

About the Courant nodal domain theorem, let us just briefly mention that its validity is open
for RCD spaces. This is mainly due to the fact that the weak unique continuation property for the
Laplacian in this setting is currently not known. We refer to [43, 44] for more on this problem,
where also the failure of the strong unique continuation property in the RCD setting is shown. We
remark that a worse, but still pointwise, upper bound on the number of nodal domains can be easily
deduced from the variational characterization of the eigenvalues (see [66]).

Before stating our main result, let us first introduce the setting and some notations referring to
Section 2 for the precise definitions. Our investigation deals with eigenfunctions of the Dirichlet or
Neumann Laplacian ∆D, ∆N in a bounded domain Ω ⊂ X in a RCD(K,N) space (X, d,HN ), where
HN denotes the N -dimensional Hausdorff measure in (X, d). As usual in this kind of problems, some
additional assumptions are required to deal with the Neumann case and we will demand that Ω is
a uniform domain (see Definition 3.1). We will clarify below why we need to restrict our attention
to RCD spaces endowed with the Hausdorff measure, called non-collapsed in the literature, instead
of considering the full RCD class. Here we limit ourselves to mention that these assumptions are
sufficient for the Dirichlet and Neumann Laplacian in Ω to have discrete spectrum and for the
eigenfunctions to be continuous. We list the Dirichlet and Neumann eigenvalues respectively by

0 ≤ λD1 (Ω) ≤ λD2 (Ω) ≤ · · · ≤ λDk (Ω) ≤ · · · → +∞,

0 = λN1 (Ω) ≤ λN2 (Ω) ≤ . . . ≤ λNk (Ω) ≤ . . .→ +∞,

counted with multiplicity. Thanks to the continuity of a Laplacian eigenfunction u in our setting, it
makes sense to define its nodal domains, which are the connected components of Ω \ {u = 0}. For
any k ∈ N we can now define

MD
Ω (k) := sup

{
# of nodal domains of u : u Dirichlet eigenfunction of eigenvalue λDk (Ω)

}
and analogously MN

Ω in the Neumann case (see Def. 6.3 for more detailed definitions of MD
Ω ,M

N
Ω ).

We finally denote by jα the first positive zero of the Bessel function of index α > 0 and by ωN the
volume of the unit ball in the N -dimensional Euclidean space.

Theorem 1.1 (Pleijel theorem in RCD setting - Neumann and Dirichlet cases). Let (X, d,HN ) be
an RCD(K,N) space, with K ∈ R and N ≥ 2, and let Ω ⊂ X be an open and bounded set. Then

lim
k→+∞

MD
Ω (k)

k
≤ (2π)N

ω2
N j

N
(N−2)

N

< 1 . (1.1)

If moreover Ω ⊂ X is a uniform domain, then

lim
k→+∞

MN
Ω (k)

k
≤ (2π)N

ω2
N j

N
(N−2)

N

< 1 . (1.2)

In particular, for every k ∈ N large enough every Dirichlet (resp. Neumann) eigenfunction of
eigenvalue λDk (Ω) (resp. λ

N
k (Ω)) in any Ω bounded open set (resp. uniform domain) has less than k

nodal domains.

There has been recently a growing interest in the study of eigenvalues and eigenfunctions of the
Laplacian and their zero set in the setting of RCD spaces (see [6–8,18,28,42–44,61,62,92]). However,
to the best of our knowledge, Theorem 1.1 is the first non-trivial result related to nodal domains.
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The class of non-collapsed RCD(K,N) space includes non-collapsed Ricci limit spaces [32,33] and
finite dimensional Alexandrov spaces [77, 91], and our result is new also for these classes of spaces
where the Courant’s nodal domain theorem is not known. Additionally, thanks to the recent [83], we
know that every RCD(K,N) space contains a rich class of non-trivial uniform domains, hence it is
possible to find many sets that satisfy the assumptions of our result also in the Neumann case. We
recall that, in the somewhat easier Dirichlet case, Theorem 1.1 goes back to the work of Pleijel [78]
in the Euclidean plane and to Bérard and Meyer [17] for smooth Riemannian manifolds.

When X is bounded it is allowed to take Ω = X in the Theorem 1.1. In this case Neumann
eigenfunctions coincide with the usual Laplacian eigenfunctions on X and we have the following.

Corollary 1.2. Let (X, d,HN ) be a compact RCD(K,N) space, with K ∈ R and N ≥ 2. Denote by
{λk}k∈N the eigenvalues of the Laplacian in X and by M(k) the maximal number of nodal domains
of any Laplacian eigenfunction of eigenvalue λk. Then

lim
k→+∞

M(k)

k
≤ (2π)N

ω2
N j

N
(N−2)

N

< 1 . (1.3)

The result in Theorem 1.1 in the case of Neumann eigenfunctions is interesting already when
taking (X, d,HN ) to be the N -dimensional Euclidean space. We extract this version below in a
self-contained statement, for the convenience of the reader.

Corollary 1.3. Let Ω ⊂ RN , N ≥ 2, be a uniform domain. For every k ∈ N denote by λNk (Ω) the
Neumann Laplacian eigenvalues in Ω and by MN

Ω (k) the maximal number of nodal domains of a
Neumann eigenfunction of eigenvalue λNk (Ω). Then

lim
k→+∞

MN
Ω (k)

k
≤ (2π)N

ω2
N j

N
(N−2)

N

< 1. (1.4)

Recall that the class of uniform domains in the Euclidean space includes bounded Lipschitz
domains, but also more irregular domains such as quasi disks and in particular the interior of a
Koch Snowflake (see Section 3.1 for more details and references). A Pleijel theorem for Neumann
eigenfunctions of Euclidean domains was firstly proved by Polterovich [79], who considered planar
domains with piecewise real analytic boundary. The general N -dimensional case was obtained in [69]
for domains Ω with C1,1 boundary, where the regularity assumption is required in order to apply
to eigenfunctions a reflection procedure across the boundary of Ω. The same limitation on the
regularity of the boundary appears in [56] (in the context of more general Robin problems), where
it is explicitly stated the problem of the validity of Pleijel theorem under a weaker regularity of the
boundary. Very recently, the techniques introduced in [69] were employed and refined in [15] in the
planar case, where the authors were able to treat 2-dimensional domains with smooth boundaries
except for a finite number of vertices.

Our work introduces a different strategy and avoids any reflection argument, allowing us to handle
more general domains without imposing any restriction on the dimension. To explain the basic idea
of our method we recall that a key step in the original proof of the Pleijel theorem is to exploit the
fact that an eigenfunction u in Ω, when restricted to one of its nodal domains U ⊂ Ω, satisfies a
zero-Dirichlet boundary condition in U itself, thus allowing to apply the Faber-Krahn inequality and
get a lower bound for the volume of U . While this is true for a Dirichlet-eigenfunction and for all its
nodal domains, it is in general false for a Neumann eigenfunction and a nodal domain that touches
the boundary. The reflection procedure in [69] is needed precisely to handle this issue, but requires
smoothness of the boundary. Instead our observation is that, by the very definition of nodal domain,
an eigenfunction u (even in the Neumann case) has indeed zero-Dirichlet boundary conditions in U
but relative to the ambient domain Ω, i.e. ignoring the portion of ∂U which is contained in ∂Ω. The
key point is then to view Ω as a metric space in its own right and prove that it is regular enough
to satisfy a version of the Faber-Krahn inequality, which then allows to carry out the rest of the
argument. This is where the uniform condition will enter into play ensuring the required analytical
properties of Ω.
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Even if we use mostly techniques coming from the metric setting, we also develop some purely-
Euclidean technical tools that we believe could be useful to show other Pleijel-type results in RN

under low boundary-regularity. In particular, we prove a Faber-Krahn-tpye inequality and a Green’s
formula for eigenfunctions of uniform domains (see Corollary 5.2 and Corollary 6.2 respectively).
Both the results were previously available only assuming C1,1-boundary.

We now comment further on the assumptions and the proof of Theorem 1.1.
The uniformity hypothesis on the domain guarantees the discreteness of the spectrum of the

Neumann Laplacian, a fact even needed to state the theorem. Additionally we will make a crucial
use of analytical properties of uniform domains in metric measure spaces, such as Sobolev extension
properties, the validity of a Poincaré inequality and a Sobolev embedding (see Section 3 for more
details).

The non-collapsed assumption is more technical in nature, and we leave for future investigations
the general case of possibly collapsed RCD(K,N) spaces. Let us notice that in collapsed RCD spaces
the spectrum of the Laplacian can produce a singular and in some sense unexpected behaviour in
the asymptotic regime (see the recent [38]), and thus this generalization seems non-trivial as we are
going to further clarify in the next lines commenting the proof.

The main scheme of the proof of Theorem 1.1 is similar to the one usually employed in the
smooth setting, e.g. in [17, 45, 56, 69, 78, 86]. The two primary ingredients are the Weyl law and an
almost-Euclidean Faber-Krahn inequality for small volumes.

The Weyl law has already been investigated in the setting of RCD(K,N) spaces (see [8] and [92]).
In the non-collapsed case it takes the usual formulation

lim
λ→+∞

N(λ)

λN/2
=

ωN

(2π)N
HN (Ω) ,

where N(λ) := ♯{k ∈ N : λDk (Ω) ≤ λ} is the eigenvalues counting function and {λDk (Ω)}k∈N are
the Dirichlet eigenvalues of the domain Ω (see Definition 2.5). We stress that the Weyl law in the
Dirichlet case is sufficient for our purposes, even if in our main statement we consider both Dirichlet
and Neumann eigenfunctions. This thanks to the elementary inequality λNk (Ω) ≤ λDk (Ω) between
Neumann and Dirichlet eigenvalues (see Lemma 2.8). We remark that suitable forms of the Weyl law
on the whole space have been studied under slightly more general assumptions than non-collapsing,
but the situation is more intricate and there exist compact RCD(K,N) spaces for which N(λ) is
not asymptotic to λβ for any β ≥ 0. We refer to [8, 38] for the details.

Concerning the almost-Euclidean Faber-Krahn inequality, it roughly states that the first Dirichlet
eigenvalue of an open set U ⊂ X, of sufficiently small volume, is bounded below by the first Dirichlet
eigenvalue of the Euclidean ball having the same volume and up to a small error. This will be
obtained starting from an almost-Euclidean isoperimetric inequality for small volumes (similar to
the one obtained in [17] in the smooth setting) and rearrangement methods. In contrast with the
proof in the smooth case, our situation requires to deal with a set C of possibly “bad” points, and to
work with sets U that stay sufficiently far from C. We refer to Theorem 5.3 and Theorem 3.2 for the
precise statements, and we suggest to compare them with [17, Lemme 16,15]. For both these results
the non-collapsed assumption also plays a key role to ensure a more regular infinitesimal behaviour
of the ambient space.
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2 Preliminaries

2.1 Calculus in metric measure spaces

The triple (X, d,m) will denote a metric measure space, where (X, d) is a complete and separable
metric space and m is a non-negative Borel measure, finite on bounded sets. We will also always
assume supp(m) = X. For every set A ⊂ X we will denote by A its topological closure, by Ac := X\A
its complement and by ∂A its topological boundary. We denote by Br(x) := {y ∈ X : d(x, y) < r}
the ball of radius r and center x. The same set is also denoted by BX

r (x) whenever we want to
emphasize the role of the space X. By d(A,B) := inf{d(x, y) : x ∈ A, y ∈ B} we denote the
distance between two sets A,B ⊂ X, so that d(A, ∅) = +∞. The open ε-enlargement of a set A ⊂ X
is denoted by Aϵ := {x ∈ X : d(A, x) < ε}. Given a set C ⊂ X, we denote by d|C := d|C×C

the

restriction of the distance to the set C. We will say that (X, d) is proper if closed and bounded
subsets of X are compact.

Given a metric space (X, d) and a rectifiable curve γ : [a, b] → X, we denote by l(γ) its length
(see e.g. [57, Chapter 5.1]). We say that γ joins x ∈ X and y ∈ X if γ(a) = x and γ(b) = y.

Definition 2.1 (Nodal domain). Let (X, d) be a metric space, A ⊂ X be any subset and f : A→ R
be a continuous function. The nodal domains of f (in A) are the connected components of A \ {x ∈
A : f(x) = 0}.

In the next result we recall some elementary properties of nodal sets.

Lemma 2.2. Let (X, d) be a metric space, A ⊂ X be any subset and f : A → R be a continuous
function. Let U ⊂ A be a nodal domain of f. Then either f > 0 or f < 0 in U. Moreover if A is
open and (X, d) is locally connected then U is also open.

Proof. The set U is connected by definition, hence f(U) ⊂ R is also connected and does not contain
zero. It follows that f(U) ⊂ (0,∞) or f(U) ⊂ (−∞, 0). For a proof that (X, d) locally connected
implies that U is open whenever A is open see e.g. [75, Theorem 25.3].

For every open set Ω ⊂ X we denote by LIP(Ω), LIPloc(Ω) and LIPc(Ω) respectively the space of
Lipschitz functions, locally Lipschitz functions and Lipschitz functions with compact support in Ω.
We also denote by LIPbs(Ω) the subset of LIP(X) of functions having support bounded and contained
in Ω. The slope lip(f)(x) of a locally Lipschitz function f ∈ LIPloc(Ω) at a point x ∈ Ω is defined as

lip(f)(x) := lim
y→x

|f(y)− f(x)|
d(y, x)

,

taken to be 0 when x is isolated. The slope satisfies the following Leibniz rule: lip(fg) ≤ f lip(g) +
glip(f), for every f, g ∈ LIPloc(Ω).

Given p ∈ [1,∞], we use the notation Lp(X,m) (resp. Lp
loc(X,m)) for the space of Lebesgue

p-integrable (resp. p-locally integrable) real functions on X endowed with the Borel σ-algebra. For
brevity, the same function space is also denoted by Lp(m). When Ω ⊂ X is an open set, we set
Lp(Ω) := Lp(Ω,m|Ω) where m|Ω is the restriction of the measure m to Ω. For a function u ∈ Lp(Ω)

we define its essential support supp(u) as the smallest closed set C such that u = 0 m-a.e. in Ω \C.
The Cheeger energy Ch : L2(m) → [0,∞] is defined as the convex and lower semicontinuous

functional

Ch(f) := inf
{

lim
n→∞

ˆ
X

lip2(fn) dm : (fn) ⊂ L2(m) ∩ LIPloc(X), lim
n→∞

∥f − fn∥L2(m) = 0
}
.

The Sobolev space W 1,2(X, d,m) (or W 1,2(X) for short) is then defined as W 1,2(X, d,m) := {Ch <
∞} equipped with the norm ∥f∥2W 1,2(X) := ∥f∥2L2(m) + Ch(f), which makes it a Banach space. This

approach to the definition of Sobolev space was introduced in [5], where it is also shown to be
equivalent to the previous definitions given in [31, 85]. For every f ∈ W 1,2(X) there exists a notion
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of modulus of the gradient called minimal weak upper gradient, minimal w.u.g. for short, denoted
by |Df | ∈ L2(m) and satisfying

Ch(f) =

ˆ
X

|Df |2dm .

For every f ∈ LIPloc(X) we have |Df | ≤ lip(f) m-a.e.. Moreover, the following calculus rules are
satisfied (see e.g. [51]): for every f, g ∈ W 1,2(X) it holds

locality: |Df | = |Dg| m-a.e. in {f = g},
chain rule: for every φ ∈ LIP(R) with φ(0) = 0, φ(f) ∈ W 1,2(X) and |Dφ(f)| = |φ′(f)||Df |,
Leibniz rule: for every η ∈ LIP ∩ L∞(X), ηf ∈ W 1,2(X) and |D(ηf)| ≤ |η||Df |+ |Dη||f |.

(2.1)

Given Ω ⊂ X open we also define the following local Sobolev spaces

W 1,2
0 (Ω) := LIPbs(Ω)

W 1,2(X)
,

W 1,2(Ω) := {f ∈ L2(Ω) : fη ∈ W 1,2(X), ∀η ∈ LIPbs(Ω), |Df | ∈ L2(Ω)},

where in the definition of W 1,2(Ω) the minimal w.u.g. |Df | ∈ L2(Ω) is defined by

|Df | := |D(fηn)|, m-a.e. in {ηn = 1}, (2.2)

with ηn ∈ LIPbs(Ω) is any sequence satisfying {ηn = 1} ↑ Ω (there is no dependence on the chosen
sequence, by the locality property of the minimal weak upper gradient). We endow W 1,2(Ω) with
the norm given by

∥f∥2W 1,2(Ω) := ∥f∥2L2(Ω) + ∥|Df |∥2L2(Ω),

which makes it a Banach space. Observe that by the Leibniz rule we have that for every f ∈ W 1,2(X)
it holds that f |Ω ∈ W 1,2(Ω) and also |Df ||Ω = |Df |Ω| m-a.e. in Ω (by the locality). Moreover, for

every f ∈ W 1,2
0 (Ω) we have f = 0 m-a.e. in X \Ω and thus ∥f |Ω∥W 1,2(Ω) = ∥f∥W 1,2(X), which shows

that the map
T : W 1,2

0 (Ω) → W 1,2(Ω), T (f) := f |Ω (2.3)

is a linear isometry. For these reasons, with a little abuse of notation, sometimes we identify W 1,2
0 (Ω)

with T (W 1,2
0 (Ω)) ⊂ W 1,2(Ω) and think to f ∈ W 1,2

0 (Ω) as an element of L2(Ω).
If we choose Ω = X, then W 1,2(X) = W 1,2(X, d,m) with the same norm and minimal w.u.g., so

the notation is consistent with the one given above.

Remark 2.3. It can be shown (see e.g. [6, Remark 2.15]) that W 1,2(Ω) coincides, up to m-a.e.
equivalence of functions, with the Newtonian Sobolev space N1,2(Ω, d,m|Ω) defined in [31, 85] (see

also [19]). The norms of the two spaces coincide as well thanks to the equivalence proved in [5]
between the various notions of minimal weak upper gradients. ■

Following [48] we say that (X, d,m) is infinitesimally Hilbertian if W 1,2(X) is a Hilbert space or
equivalently if the Cheeger energy satisfies the parallelogram identity:

Ch(f + g) + Ch(f − g) = 2Ch(f) + 2Ch(g), ∀f, g ∈ W 1,2(X). (2.4)

If (X, d,m) is infinitesimally Hilbertian, then W 1,2(Ω) is a Hilbert space as well for every Ω ⊂ X
open (see e.g. [27, Remark A.3]). Moreover, we can give a notion of scalar product between gradients
of functions f, g ∈ W 1,2(Ω) by setting

L1(Ω) ∋ ∇f · ∇g :=
1

2

(
|D(f + g)|2 − |Df |2 − |Dg|2

)
, (2.5)

which is bilinear and satisfies

|∇f · ∇g| ≤ |Df ||Dg|, m-a.e., ∀ f, g ∈ W 1,2(Ω),

|∇f · ∇f | = |Df |2, m-a.e., ∀ f ∈ W 1,2(Ω).
(2.6)
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Under the infinitesimally Hilbertian assumption we can define a notion of Laplacian via integra-
tion by parts.

Definition 2.4 (Neumann Laplacian). Let (X, d,m) be an infinitesimally Hilbertian metric measure
space and Ω ⊂ X be open. We say that f ∈ W 1,2(Ω) belongs to the domain of the Neumann
Laplacian, and we write f ∈ D(∆N ,Ω), if there exists h ∈ L2(Ω) such that

ˆ
Ω

hg dm = −
ˆ
Ω

∇f · ∇g dm , ∀ g ∈ W 1,2(Ω). (2.7)

If f ∈ D(∆N ,Ω) then the function h is unique and is denoted by ∆N f.

Definition 2.5 (Dirichlet Laplacian). Let (X, d,m) be an infinitesimally Hilbertian metric measure
space and Ω ⊂ X be open. Then f ∈ W 1,2

0 (Ω) belongs to the domain of the Dirichlet Laplacian,
and we write f ∈ D(∆D,Ω), if there exists h ∈ L2(Ω) such that

ˆ
Ω

hg dm = −
ˆ
Ω

∇f · ∇g dm , ∀ g ∈ W 1,2
0 (Ω). (2.8)

If f ∈ D(∆D,Ω) then the function h is unique and is denoted by ∆Df.

Since under the infinitesimally Hilbertian assumption Lipschitz and bounded functions are dense
in W 1,2(X) (see [5]) we have W 1,2

0 (X) = W 1,2(X) and so the Dirichlet and Neumann Laplacian
coincide for Ω = X. In this situation we simply write ∆ = ∆N = ∆D and call it simply Laplacian
operator and write f ∈ D(∆) in place of f ∈ D(∆N ,X) or f ∈ D(∆D,X).

Definition 2.6 (Eigenfunctions). Let (X, d,m) be an infinitesimally Hilbertian metric measure
space and Ω ⊂ X be open. We say that a non-null f ∈ D(∆D,Ω) (resp. D(∆N ,Ω)) is a Dirichlet
(resp. Neumann) eigenfunction of the Laplacian in Ω of eigenvalue λ ∈ R if ∆Df = −λf (resp.
∆N f = −λf). In the case Ω = X we simply write that f is an eigenfunction of the Laplacian of
eigenvalue λ.

Remark 2.7 (Compatibility with Euclidean Laplacian). If (X, d,m) = (RN , | · |,L N ) and Ω ⊂ RN

is open, the spaces W 1,2(Ω) and W 1,2
0 (Ω) coincide with the usual ones, also with the same norms,

as shown in [85, Theorem 4.5] (see also [19, Theorem A.2 and Corollary A.4] or [51, Section 2.1.5]).
In particular, by polarization, the right-hand side of both (2.7) and (2.8) coincides with the integral
of the scalar product between weak gradients in the classical sense. This shows that the definition
of eigenfunction (and eigenvalue) of the Neumann or Dirichlet Laplacian in Ω given above coincides
with the usual one in the Euclidean case. ■

For later use we observe that, whenever Lipschitz functions are dense in W 1,2(X), for every
bounded and open set Ω ⊂ X it holds that

{f ∈ W 1,2(X) : d(supp(f),X \ Ω) > 0} ⊂ W 1,2
0 (Ω). (2.9)

Indeed there exist η ∈ LIP(X) such that η = 1 in supp(f) and supp(η) ⊂ Ω and a sequence
fn ∈ LIP(X) with fn → f in W 1,2(X), by density. Then ηfn ∈ LIPbs(Ω) and ηfn → f in W 1,2(X),
which shows that f ∈ W 1,2

0 (Ω).
We state in the next lemma an inequality between Neumann and Dirichlet eigenvalues that will

play a key role in the sequel. Note that in the statement by W 1,2
0 (Ω) ↪→ L2(Ω) we mean, more

precisely, that T (W 1,2
0 (Ω)) ↪→ L2(Ω) where T is defined in (2.3).

Lemma 2.8. Let (X, d,m) be an infinitesimally Hilbertian metric measure space and let Ω ⊂ X
be open. Let us suppose that W 1,2

0 (Ω) ↪→ L2(Ω) with compact inclusion. Then −∆D has discrete
spectrum, i.e. the eigenvalues form a diverging sequence (counted with multiplicity) that we denote
by

0 ≤ λD1 (Ω) ≤ λD2 (Ω) ≤ . . . λDk (Ω) ≤ · · · → +∞ . (2.10)
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If moreover W 1,2(Ω) ↪→ L2(Ω) with compact inclusion, then also −∆N has discrete spectrum denoted
by

0 = λN1 (Ω) ≤ λN2 (Ω) ≤ . . . λNk (Ω) ≤ · · · → +∞ , (2.11)

and it holds
λNk (Ω) ≤ λDk (Ω) , ∀k ∈ N. (2.12)

Proof. Let us introduce the local Cheeger energies

ChΩD : L2(Ω) → [0,+∞], ChΩD(f) :=

{´
Ω
|Df |2dm if f = g|Ω for some g ∈W 1,2

0 (Ω) ,

+∞ otherwise,

ChΩN : L2(Ω) → [0,+∞], ChΩN (f) :=

{´
Ω
|Df |2dm if f ∈ W 1,2(Ω) ,

+∞ otherwise,

and notice that they define two Dirichlet forms, i.e. two densely defined, Markovian, closed, quadratic
forms [24, 46]. To check this, it is sufficient to recall the calculus rules given in (2.1) and, for the
L2-lower semicontinuity, the equivalent definition through relaxation (see [27] for all the details). We
denote by LD (resp. LN ) the infinitesimal generator of ChΩD (resp. ChΩN ) with its associated domain
D(LD) (resp. D(LN )). Notice that, by the very definition, D(∆N ,Ω) = D(LN ) with ∆N = LN .
Regarding the Dirichlet Laplacian, we have f ∈ D(∆D,Ω) if and only if f |Ω ∈ D(LD) with ∆Df =

LD(f |Ω). In particular, λ is an eigenvalue of −∆D (resp. −∆N ) if and only if it is and eigenvalue of

−LD (resp. −LN ).
From the classical theory of Dirichlet forms [24,46] we know that −LD and −LN are non-negative,

densely defined, linear, self-adjoint operators on L2(Ω). Under these assumptions, it is well known
(see e.g. [39]) that the compactness of the embedding of W 1,2

0 (Ω) (resp. W 1,2(Ω)) in L2(Ω) implies
the discreteness of the spectrum of −LD (resp. −LN ) and thus of −∆D (resp. −∆N ).

Since T (W 1,2
0 (Ω)) ⊂ W 1,2(Ω) as Hilbert spaces, we also know that whenever W 1,2(Ω) ↪→ L2(Ω)

with compact inclusion both the spectra are discrete.
We also have at disposal the variational characterization of the eigenvalues , see e.g. [39, Theorems

4.5.1, 4.5.3]. More precisely, defined

λN (Ω)[M ] := sup{ChΩN (f) : f ∈M, ∥f∥L2(Ω) = 1},
λD(Ω)[M ] := sup{ChΩD(f) : f ∈M, ∥f∥L2(Ω) = 1},

(2.13)

we know that for every k ∈ N

λNk (Ω) = inf{λN (Ω)[M ] : M ⊂ W 1,2(Ω), dim(M) = k},
λDk (Ω) = inf{λD(Ω)[M ] : M ⊂ T (W 1,2

0 (Ω)), dim(M) = k},
(2.14)

The inequality (2.12) thus follows immediately from (2.14) since the infimum is taken on a larger
set and ChΩN (f) = ChΩD(f) for every f ∈ T (W 1,2

0 (Ω)).

We will use in the sequel the notation introduced in the previous lemma, i.e. whenever −∆D
(resp. −∆N ) has discrete spectrum in Ω we will denote by {λDk (Ω)}k∈N (resp. {λNk (Ω)}k∈N) the
sequence of its eigenvalues. In the case Ω = X, assuming the discreteness of the spectrum of −∆,
we will simply write λk in place of λNk (X).

For an arbitrary m.m.s. (X, d,m) and any Ω ⊂ X open subset we also introduce

λ1(Ω) := inf

{´
|Du|2dm´
u2dm

: u ∈ LIPbs(Ω), u ̸≡ 0

}
(2.15)

and we call λ1(Ω) the first eigenvalue of the Laplacian on Ω with zero Dirichlet boundary conditions.
Recalling the definition definition of W 1,2

0 (Ω) we have the following characterization of λ1(Ω):

λ1(Ω) = inf

{´
|Du|2dm´
u2dm

: u ∈ W 1,2
0 (Ω), u ̸≡ 0

}
. (2.16)
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Note that differently from λD1 (Ω), which we defined only when the inclusion W 1,2
0 (Ω) ↪→ L2(Ω) is

compact, λ1(Ω) is always defined. Nevertheless, even if not needed, we stress that whenever λD1 (Ω)
exists we do have

λ1(Ω) = λD1 (Ω),

as follows by (2.16) and (2.14).

2.2 Sets of finite perimeter

Let f ∈ L1
loc(X,m) and let U ⊂ X be open. Following [4, 73] we define

|Df |(U) := inf

{
lim

n→∞

ˆ
U

lip(fn) dm : fn ∈ LIPloc(U), fn → f in L1
loc(U,m)

}
, (2.17)

and we say that f is of locally bounded variation if |Df |(U) < +∞ for every U open and bounded.
We also set

|Df |(A) := inf{|Df |(U) : U ⊂ X open, A ⊂ U}, ∀A ⊂ X Borel

(note that this coincides with (2.17) if A is open). For every Borel set E ⊂ X and A ⊂ X Borel we
define Per(E,A) := |DχE |(A) < +∞, where χE : X → {0, 1} denotes the characteristic function of
E. We say that E is of finite perimeter if Per(E) := Per(E,X) < +∞.

When f is of locally bounded variation (respectively, E is a set of finite perimeter), the map
A 7→ |Df |(A) (respectively, A 7→ Per(E,A)) defines a Borel measure (see [4,73]). Every f ∈ LIP(X)
is of locally bounded variation and |Df | ≤ lip(f)m (see [4, Remark 5.1]).

From the definitions it immediately follows that E is of finite perimeter if and only if Ec is of
finite perimeter, in which case Per(E, ·) = Per(Ec, ·) holds.

In the sequel we will take advantage of the following coarea-type inequality.

Proposition 2.9. Let (X, d,m) be a metric measure space and fix x ∈ X. Then for a.e. r > 0 the
ball Br(x) has finite perimeter and for every Borel set A ⊂ X it holds

ˆ R

0

Per(Br(x), A) dr ≤ m(BR(x) ∩A), ∀R > 0. (2.18)

Proof. Since the function dx(·) := d(x, ·) is 1-Lipschitz, it is of locally bounded variation and |Ddx| ≤
lip(dx)m ≤ m. Then by the coarea formula (see Proposition 4.2 in [73]) we get directly that Br(x) =
{dx(·) < r} has finite perimeter for a.e. r > 0 and that

ˆ +∞

0

Per(Br(x), E)dr = |Ddx|(E) ≤ m(E), ∀ E ⊂ X Borel.

Then (2.18) follows taking E := BR(x) ∩ A and observing that by the very definition in (2.17) it
holds Per(Br(x), BR(x)) = 0 for every r > R.

Let (X, d,m) be a metric measure space. Given a Borel set E ⊂ X we define the upper and lower
densities at x as

D(E, x) := lim
r→0+

m(Br(x) ∩ E)

m(Br(x))
, D(E, x) := lim

r→0+

m(Br(x) ∩ E)

m(Br(x))
.

Clearly, if x ∈ X is such that D(E, x) > 0, by definition of limit superior we have x ∈ E (since every
open ball with center x must intersect E).

The essential boundary and the essential interior are given respectively by

∂eE := {x ∈ X : D(E, x) > 0, D(Ec, x) > 0},
E(1) := {x ∈ X : D(E, x) = D(E, x) = 1},

which are both Borel sets. As a direct consequence of the definition of these sets, notice that if
E ⊂ F , then E(1) ⊂ F (1). Moreover, ∂eE = ∂e(Ec).

We collect in the next lemma all the elementary facts that we will need about the essential
boundary and the essential interior.
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Lemma 2.10. Let (X, d) be a metric space and E,F ⊂ X be Borel sets. We have the following:

(i) If E is open, E ⊂ E(1).

(ii) ∂eE ⊂ ∂E.

(iii) (E ∩ F )(1) ⊂ E(1) ∩ F (1).

(iv) (Ec)(1) ⊂ (E(1))c. In particular, if E is open then (Ec)(1) ⊂ Ec.

(v) If E and F are disjoint, then also E(1) and F (1) are disjoint.

(vi) ∂e(E ∩ F ) ∪ ∂e(E ∪ F ) ⊂ ∂eE ∪ ∂eF .

Proof. (i) Let x ∈ E. Since E is open, Br(x) ⊂ E for sufficiently small r > 0, thus D(E, x) = 1
and x ∈ E(1).

(ii) As we have already observed, if x ∈ ∂eE it holds x ∈ E and x ∈ Ec, thus x ∈ ∂E.

(iii) The result is a direct consequence of the fact that D(E ∩F, x) ≤ D(E, x) ≤ 1 for every x ∈ X.

(iv) Let x ∈ (Ec)(1), i.e. D(Ec, x) = 1. In particular,

2

3
m(Br(x)) < m(Br(x) ∩ Ec) = m(Br(x))−m(Br(x) ∩ E)

for sufficiently small r > 0. Thus m(Br(x) ∩ E) < 1
3m(Br(x)) for r > 0 small enough, which

implies x /∈ E(1). The second conclusion follows from what we have just proven and point (i).

(v) The assumption E ∩ F = ∅ is equivalent to E ⊂ F c. Passing to the essential interior it
holds E(1) ⊂ (F c)(1) and using (iv) one deduces that E(1) ⊂ (F (1))c which gives the desired
conclusion.

(vi) This is proven e.g. in [23, Prop. 1.16] (note that the doubling assumption on m is not used in
that statement).

We conclude this part with the following elementary and well known result. Since we could not
find it stated exactly in this form in the literature, we include a proof.

Lemma 2.11. Let (X, d,m) be a metric measure space and let C ⊂ X be closed. Then for every
E ⊂ C Borel satisfying d(E,X \ C) > 0 it holds

Per(E) = PerC(E),

where PerC(E) denotes the perimeter of E computed in the metric measure space (C, d|C ,m|C).

Proof. First observe that for every f ∈ LIPloc(X) it holds f |C ∈ LIPloc(C) and lipC(f) ≤ lip(f), where

lipC(f) denotes the slope of f computed in the metric space (C, d|C). This and the definitions implies

PerC(E) ≤ Per(E). For the other inequality it is sufficient to find a sequence fn ∈ LIPloc(C, d|C) such
that d(supp(fn),X \ C) > 0, fn → χE in L1(m) and

´
C
lipC(fn)dm → PerC(E). Indeed extending

fn by zero to the whole X we have
´
X
lip(fn)dm =

´
C
lipC(fn)dm, so that

Per(E) ≤ lim
n→+∞

ˆ
X

lip(fn)dm = lim
n→+∞

ˆ
C

lipC(fn)dm = PerC(E).

To produce such sequence we consider a sequence gn ∈ LIPloc(C, d|C) such that gn → χE in

L1(C,m|C) and
´
C
lipC(gn)dm → PerC(E), which exists by definition. Then we take any η ∈

LIPloc(C) satisfying d(supp(η),X \ C) > 0, η = 1 in a neighbourhood of E, 0 ≤ η ≤ 1 and set
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fn := ηgn ∈ LIPloc(C, d|C). Clearly fn → χE in L1(C;m|C). Moreover by the Leibniz rule for the

slope lipC(fn) ≤ gnlipC(η) + lipC(gn). In addition lipC(η) = 0 in E. Therefore

PerC(E) ≤ lim
n

ˆ
C

lipC(fn)dm ≤ lim
n

ˆ
C

lipC(fn)dm

≤ lim
n

ˆ
C

lipC(gn)dm+ lipC(η)

ˆ
X\E

gndm = PerC(E),

where the second term vanishes because gn → χE in L1(C;m|C).

2.3 PI spaces

Most of the arguments along the note will be carried out in the general setting of locally doubling
m.m. spaces supporting a Poincaré inequality, also called PI spaces. We refer to [19,57] and references
therein for a thorough introduction on this topic and recall here only the properties of these spaces
that will be used in this note.

Definition 2.12 (PI space). A metric measure space (X, d,m) is said to be a PI space if:

i) it is uniformly locally doubling, i.e. if there exists a function CD : (0,∞) → (0,∞) such that

m
(
B2r(x)

)
≤ CD(R)m

(
Br(x)

)
, for every 0 < r < R and x ∈ X,

ii) supports a weak local (1, 1)-Poincaré inequality, i.e there exists a constant λ ≥ 1 and a function
CP : (0,∞) → (0,∞) such that for any f ∈ LIPloc(X) it holds

 
Br(x)

∣∣∣∣f −
 
Br(x)

f dm

∣∣∣∣dm ≤ CP (R) r

 
Bλr(x)

lip(f) dm , for every 0 < r < R and x ∈ X.

Observe that the uniformly locally doubling assumption implies that PI spaces are proper. Ad-
ditionally PI spaces are connected and locally connected (see e.g. [19, Theorem 4.32] or [20, Prop.
4.8]).

We will need the following approximation result, which is a variation of [74, Lemma 3.6].

Lemma 2.13 (Approximation with non-vanishing slope). Let (X, d,m) be a bounded PI space.
Then for every open subset Ω ⊂ X and any non-negative u ∈ LIPc(Ω) there exists a sequence of
non-negative un ∈ LIPc(Ω) satisfying lip(un) ̸= 0 m-a.e. in {un > 0} and such that un → u in
W 1,2(X).

Proof. Since (X, d,m) is a bounded PI space it admits a geodesic distance d̃ that is bi-Lipschitz
equivalent to d, i.e. L−1d̃ ≤ d ≤ Ld̃ for some constant L ≥ 1 (see e.g. [57, Corollary 8.3.16]). Hence
we can apply [74, Lemma 3.6] to deduce that the conclusion of the lemma holds in the m.m.s.
(X, d̃,m). However u ∈ LIPc(Ω; d) if and only if LIPc(Ω; d̃), with lip(u) ≥ L−1 ˜lip(u), where ˜lip(·)
denotes the slope computed in the metric space (X, d̃). Hence if ˜lip(u) ̸= 0 m-a.e. in {u > 0}, then
lip(u) ̸= 0 in {u > 0} m-a.e.. Moreover, since LIPloc(X, d) = LIPloc(X, d̃) and lip(·) ≤ L ˜lip(·) we have
that ∥u∥W 1,2(X,d,m) ≤ L∥u∥W 1,2(X,d̃,m) for all u ∈ LIPbs(X, d). Therefore the conclusion holds also

for the m.m.s. (X, d,m).

The above lemma allows to give the following characterization of λ1(Ω).

Lemma 2.14 (Characterization of λ1(Ω) via functions with non-vanishing slope). Let (X, d,m) be
a bounded PI space and Ω ⊂ X be open. Then

λ1(Ω) = inf

{´
|Du|2dm´
u2dm

: u ∈ LIPc(Ω), u ̸≡ 0, u ≥ 0, lip(u) ̸= 0 m-a.e. in {u > 0}
}
. (2.19)
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Proof. For every for every u ∈ LIPbs(Ω), setting ũ := |u| we have ũ ∈ LIPbs(Ω) and by the chain rule
(see (2.1)) also that |Dũ| = |Du| m-a.e.. This shows that (2.19) holds if we remove the requirement
that lip(u) ̸= 0 m-a.e. in {u > 0}. From this, to get the validity of the full (2.19) it is sufficient to
apply Lemma 2.13.

We recall the following deep result proved in [31], relating the notions of minimal weak upper
gradient and slope, in the setting of PI spaces .

Theorem 2.15. Let (X, d,m) be a PI space. Then

lip(f) = |Df |, m-a.e., for every f ∈ LIPbs(X). (2.20)

The following is a consequence of the Rellich-Kondrachov compactness theorem in PI spaces.

Theorem 2.16 ([54, Theorem 8.3]). Let (X, d,m) be a PI space and Ω ⊂ X be open and bounded.
Then the embedding W 1,2

0 (Ω) ↪→ L2(Ω) is compact.

From Theorem 2.16 and the discussion in Section 2.1 we deduce that

The Dirichlet Laplacian has discrete spectrum on any bounded open subset of
an infinitesimally Hilbertian PI space.

(2.21)

The following result is well known. In particular the proof can be achieved by a standard Moser
iteration scheme (see e.g. [52, Theorem 8.24]), which is available in a PI space. Indeed, as firstly
observed in [84] (see also [54]), a Poincaré inequality and a doubling condition together imply a
Sobolev inequality, which is then sufficient to perform the Moser scheme (see, for example, [19,
Chapter 8] or [21]).

Theorem 2.17 (Continuity of eigenfunctions). Let (X, d,m) be an infinitesimally Hilbertian PI
space, Ω ⊂ X be open and u be a Dirichlet or Neumann eigenfunction of the Laplacian in Ω. Then
u is locally Hölder continuous in Ω.

We now pass to the properties of sets of finite perimeter in the setting of PI spaces . As the
measure m is locally doubling, the Lebesgue’s differentiation theorem holds (see e.g. [57, Section
3.4]) hence we have m(E△E(1)) = 0 for every Borel set E, where E△E(1) := (E \E(1))∪ (E(1) \E)
denotes the symmetric difference between E and E(1). Moreover by [2, Theorem 5.3] we have that
for every set of finite perimeter E ⊂ X the measure P (E, ·) is concentrated on ∂eE. In particular
we get

Per(Bc, .) = Per(B, .) = Per(B, .)|Bc
, (2.22)

for every ball B = Br(x) ⊂ X having finite perimeter, having used ∂eBr(x) ⊂ ∂Br(x) ⊂ (Br(x))
c

(see (ii) in Lemma 2.10).
It is well known that every PI space admits an isoperimetric inequality (see [2,54,73]). We report

in the following statement a simplified version sufficient to our purposes.

Proposition 2.18 (Isoperimetric inequality for small volumes). Let (X, d,m) be a bounded PI space
satisfying for some constant s > 1 and c > 0

m(Br(x))

m(BR(x))
≥ c

( r
R

)s
, ∀x ∈ X, ∀ 0 < r < R. (2.23)

Then there exist constants w0 = w0(X) > 0 and CI = CI(X, s) > 0 such that

Per(E) ≥ CIm(E)
s−1
s , ∀E ⊂ X Borel such that m(E) ≤ w0. (2.24)

Proof. By [2, Theorem 4.3] there exist constants σ = σ(X) ≥ 1 and C = C(X, s) > 0 such that

Per(E,Bσr(x)) ≥ C
m(Br(x))

1
s

r
min (m(Br(x) ∩ E),m(Br(x) \ E))

s−1
s , ∀x ∈ X, ∀r > 0.

Taking r := diam(X) and w0 := m(X)/2 the result follows (recall that m(X) < +∞ since X is
bounded).
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We conclude this part reporting the following technical result.

Proposition 2.19 ([12, Lemma 2.6]). Let (X, d,m) be a PI space. Let E,F ⊆ X be sets of finite
perimeter with P (E, ∂eF ) = 0. Then

P (E ∩ F, ·) ≤ P (E, ·)|F (1)
+ P (F, ·)|E(1)

.

2.4 Pólya-Szegő inequality in metric measure spaces

Here we report a version of the Pólya-Szegő rearrangement inequality for metric measure spaces,
following [74,76]. The main difference with the classical version in the Euclidean space [80] is that,
even if the initial function lives in a metric space, the symmetrization will be defined in RN . The
result is a generalization of the Pólya-Szegő inequality introduced in [17] in the case of Riemannian
manifolds.

Definition 2.20 (Distribution function). Let (X, d,m) be a metric measure space, Ω ⊆ X be an
open set with m(Ω) < +∞ and u : Ω → [0,+∞) be a non-negative Borel function. We define
µ : [0,+∞) → [0,m(Ω)], the distribution function of u, as

µ(t) := m({u > t}). (2.25)

For u and µ as above, we let u# be the generalized inverse of µ, defined by

u#(s) :=

{
ess supu if s = 0,

inf {t : µ(t) < s} if s > 0.

It can be checked that u# is non-increasing and left-continuous.
Next, we define the Euclidean monotone rearrangement into the Euclidean space (RN , | · |,L N ),

where L N is the N -dimensional Lebesgue measure. From now on, we denote by ωN := L N (B1(0))
the Lebesgue measure of the unit ball in the Euclidean space RN .

Definition 2.21 (Euclidean monotone rearrangement). Let (X, d,m) be a metric measure space
and Ω ⊂ X be open with m(Ω) < +∞ and N ∈ N. For any Borel function u : Ω → R+, we define
Ω∗ := Br(0) ⊂ RN , choosing r > 0 so that L N (Br(0)) = m(Ω) (i.e. rN = ω−1

N m(Ω)) and the
monotone rearrangement u∗N : Ω∗ → R+ by

u∗N (x) := u#(L N (B|x|(0))) = u#(ωN |x|N ), ∀x ∈ Ω∗.

In particular u and u∗N are equimeasurable, i.e. m({u > t}) = L N ({u∗N > t}) for all t > 0. In the
sequel, whenever we fix Ω and u : Ω → [0,∞), the set Ω∗ and the rearrangement u∗N are automatically
defined as above. Observe also that, given u ∈ L2(Ω), its monotone rearrangement must be defined
by fixing a Borel representative of u. However, this choice does not affect the outcome object u∗N ,
as clearly the distribution function µ(t) of u is independent of the representative.

The following result is essentially contained in [76], see in particular [76, Remark 3.7], (see
also [74] for a similar result), since the only difference is that here the rearrangement is defined in
RN instead that on an interval. Nevertheless we include a short argument outlining the main points
of the proof.

Theorem 2.22 (Euclidean Pólya-Szegő inequality). Let (X, d,m) be a bounded PI space, Ω ⊊ X be
open and fix N ∈ N \ {1}. Suppose there exists a constant C̃ > 0 such that

Per(E) ≥ C̃m(E)
N−1
N , ∀E ⊂ Ω Borel. (2.26)

Then:
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i) For every u ∈ LIPc(Ω) non-negative, u ̸≡ 0, with lip(u) ̸= 0 m-a.e. in {u > 0}, then u∗N ∈
LIPc(Ω

∗) and it holds

ˆ
{u≤s}

|Du|2 dm ≥
ˆ s

0

(
Per({u > t})

Nω
1
N

N µ(t)
N−1
N

)2 ˆ
RN

|Du∗N |dPer({u∗N > t}) dt, ∀s ∈ (0,maxu].

(2.27)

ii) The Euclidean-rearrangement maps W 1,2
0 (Ω) to W 1,2

0 (Ω∗) and

ˆ
Ω

|Du|2dm ≥
( C̃

Nω
1/N
N

)2 ˆ
Ω∗

|Du∗N |2dL N , ∀u ∈ W 1,2
0 (Ω). (2.28)

Proof. It is enough to prove i), since ii) then follows by approximation with Lipschitz functions
using Lemma 2.13 as in [76, Theorem 3.6] (see also [74]).

We fix u ∈ LIPc(Ω), u ̸≡ 0, with lip(u) ̸= 0 m-a.e. {u > 0}. Set M := supu. Under these
assumptions µ is strictly monotone, absolutely continuous (hence differentiable almost everywhere)
and ˆ

{u≤s}
|Du|2 dm ≥

ˆ s

0

Per({u > t})2

−µ′(t)
dt, ∀s ∈ (0,M ]. (2.29)

This can be seen arguing exactly as in the proof of [74, Prop. 3.12 and (3.23)] (see also [76]),
recalling also that |Du| ≤ lip(u)m = |Du|m (see (2.20)). Next we claim that u∗N ∈ LIPc(Ω

∗).
Recall that by definition Ω∗ = Br(0) ⊂ RN , where r > 0 satisfies L N (Br(0)) = m(Ω). From
the definitions u∗N (x) = ũ∗N (|x|), where ũ∗N : [0, r] → R+ is the rearrangement into the space
([0,∞), |.|, NωN t

N−1dt) as defined in [76, Definition 3.1]. Then the fact that u∗N ∈ LIP(Ω∗) follows
directly from ũ∗N ∈ LIP[0, r] which is proved in [76, Prop. 3.4] under the same assumptions on u and
Ω. Finally supp(u∗N ) ⊂ Ω∗. Indeed supp(u) ⊊ Ω, otherwise Ω would be closed and would coincide
with X (as X is connected). This implies that L N ({u∗N > t}) ≤ m(supp(u)) < m(Ω) = L N (Ω∗),
for all t > 0, because m(Ω \ supp(u)) > 0, as non-empty open sets in X have positive measure. Since
u∗N is a radial function centered at the origin this shows supp(u∗N ) ⊂ Ω. Next we observe that ũ∗N is
strictly decreasing in (0,m(supp(u))) (since µ(t) is continuous) and in particular {u∗N > t} = Brt(0)
(and {u∗N = t} = ∂Brt(0)) for some rt ∈ [0,m(Ω)], for every t ∈ (0,M). Note that rt can be
computed explicitly to be rt = (ω−1

N µ(t))1/N , which also shows that (0,M) ∋ t 7→ rt is a strictly
monotone and locally absolutely continuous map. In particular

HN (∂Brt(0)) = Nω
1
N

N µ(t)
N−1
N . (2.30)

Combining these observations with the expression for the derivative of µ given in [74, Lemma 3.10]
(see also [76, Lemma 3.5]) we have

−µ′(t) =

ˆ
∂Brt (0)

(lip(u∗N ))−1dHN−1 =
Nω

1
N

N µ(t)
N−1
N

lip(ũ∗N )(rt)
for a.e. t ∈ (0,M), (2.31)

where we have used (2.30) and that lip(u∗N )(x) = lip(ũ∗N )(|x|) which easily follows from the identity
u∗N (x) = ũ∗N (|x|). Plugging the above in (2.29) we reach

ˆ
{u≤s}

|Du|2 dm ≥
ˆ s

0

Per({u > t})2lip(ũ∗N )(rt)

Nω
1
N

N µ(t)
N−1
N

dt

=

ˆ s

0

(
Per({u > t})

Nω
1
N

N µ(t)
N−1
N

)2

lip(ũ∗N )(rt)Nω
1
N

N µ(t))
N−1
N dt

=

ˆ s

0

(
Per({u > t})

Nω
1
N

N µ(t)
N−1
N

)2 ˆ
∂Brt (0)

lip(u∗N )dHN−1 dt ,

where for the last step we argue as in (2.31). This concludes the proof.
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2.5 RCD spaces

For brevity we do not recall the definition of RCD(K,N) spaces (with N ∈ [1,∞) and K ∈ R) since
it will not be directly used in this note, instead we recall here all the properties of these spaces that
will be needed. For further details on the definition and on the theory of metric measure spaces with
synthetic Ricci curvature lower bound we refer to the surveys [3, 49] and references therein.

First recall that every RCD space is infinitesimally Hilbertian from the very definition. In every
RCD(K,N) space the Bishop-Gromov inequality holds [87], that is

m(Br(x))

vK,N (r)
≥ m(BR(x))

vK,N (R)
, ∀x ∈ X, ∀0 < r < R, (2.32)

where the quantities vK,N (r) coincides, for N ∈ N, with the volume of the ball of radius r in the
model space of curvature K and dimension N . For the definition of vK,N for non integer N see [87],
however in the results of this note only the case N ∈ N will be relevant.

As a consequence of (2.32) we obtain that for every R0 > 0, N < +∞ and K ∈ R there exists a
constant CR0,K,N such that for every RCD(K,N) space (X, d,m) it holds:

m(Br(x))

m(BR(x))
≥ CR0,K,N

( r
R

)N
, ∀x ∈ X, ∀0 < r < R ≤ R0. (2.33)

Taking R = 2r this shows also that every RCD(K,N) space with N < +∞ is uniformly locally
doubling (recall Definition 2.12). It is also proved in [81, 82] that every RCD(K,N) space supports
also a weak local (1,1)-Poincaré inequality. Combining the last two observations we conclude that
every RCD(K,N) space with N < +∞ is an infinitesimally Hilbertian PI space.

We recall the following embedding result.

Proposition 2.23 ([50, Theorem 6.3, ii)]). Let (X, d,m) be an RCD(K,N) space and let Ω ⊂ X be
bounded. Then the inclusion W 1,2

0 (Ω) ↪→ L2(m) is compact.

Given an RCD(K,N) space (X, d,m) we define the Bishop-Gromov density function θN : X →
(0,+∞] by

θN (x) := lim
r→0+

m(Br(x))

ωNrN
= lim

r→0+

m(Br(x))

vN,K(r)
, (2.34)

where the existence of the limits is ensured by (2.32) (see [41, Def. 1.9]). As shown in [41, Lemma
2.2] the function θN is lower-semicontinuous in X.

A key property that we will need is the validity of a local almost-Euclidean isoperimetric inequal-
ity. We will use the following version essentially proved in [76] (see also [11,29] for similar results in
the setting of RCD spaces and [17] for the Riemannian setting).

Theorem 2.24 (Local almost-Euclidean isoperimetric inequality). Let (X, d,m) be an RCD(K,N)
space for some N ∈ (1,∞),K ∈ R. Then for every x ∈ X with θN (x) < +∞ and every ε ∈ (0, θN (x))
there exists ρ = ρ(ε, x,N) such that

Per(E) ≥ m(E)
N−1
N Nω

1
N

N (θN (x)− ε)
1
N (1− ε), ∀E ⊂ Bρ(x) Borel. (2.35)

Proof. It is sufficient to prove the statement with ε ∈ (0, θN (x)/2 ∧ 1/2). From [76, Theorem 3.9]
there exists R̄ = R̄(ε,K,N) such that for every x ∈ X, R ∈ (0, R̄] it holds

Per(E) ≥ m(E)
N−1
N Nω

1
N

N θN,R(x)
1
N (1− (2C

1/N
ε,R (x) + 1)ε− ε), ∀E ⊂ BεR(x),

where θN,ρ(x) :=
m(Bρ(x))
ωNρN and Cε,R(x) :=

θN,εR(x)
θN,R(x) . Since θN (x) = limρ→0 θN,ρ(x) < +∞ there exists

r̄ = r̄(x, ε) so that θN,ρ(x) ∈ (θN (x) − ε, θN (x) + ε) for all ρ ≤ r̄. Moreover since ε < θN (x)/2

we have that for every R ≤ r̄ it holds Cε,R(x) ≤
3
2 θN (x)
1
2 θN (x)

= 3. Hence choosing ρ = ρ(x, ε,K,N) :=

ε(r̄(ε, x) ∧ R̄(ε,K,N)), we have that

Per(E) ≥ m(E)
N−1
N Nω

1
N

N (θN (x)− ε)
1
N (1− 8ε), ∀E ⊂ Bρ(x),

from which the conclusion follows.
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Next we introduce the subclass of non-collapsed RCD(K,N) space.

Definition 2.25 ([41]). An RCD(K,N) space (X, d,m) is said to be non-collapsed if m = HN ,
where HN denotes the N -dimensional Hausdorff measure on (X, d).

After the works [26,60] this definition is known to be equivalent to one given in [67]. As showed
in [41, Theorem 1.12] if (X, d,m) is a non-collapsed RCD(K,N) space, then N ∈ N. Moreover
by [41, Corollary 1.7] (see also [8, Theorem 1.4]) it holds that

θN (x) = 1, m-a.e. x ∈ X,

θN (x) ≤ 1, ∀x ∈ X.
(2.36)

Remark 2.26 (Consistency with the smooth setting). It is worth to recall that RCD spaces are
compatible with the smooth setting in the following sense. Any N -dimensional Riemannian manifold
(M, g) with Ricci curvature bounded below by a number K ∈ R, i.e. Ricg ≥ Kg, endowed with the
Riemannian distance and volume measure is a non-collapsed RCD(K,N) metric measure space
[34, 90]. In particular the metric measure space (RN , | · |,HN ), where HN is the N -dimensional
Hausdorff measure is a non-collapsed RCD(0, N) space. ■

We conclude recalling the validity of the Weyl law in non-collapsed setting proved in [8, 92].

Theorem 2.27 (Weyl law in RCD spaces). Let (X, d,HN ) be an RCD(K,N) space and Ω ⊂ X be
open and bounded. Then

lim
k→+∞

k

λDk (Ω)
N/2

=
ωN

(2π)N
HN (Ω), (2.37)

where {λDk (Ω)}k∈N denotes the spectrum of the Dirichlet Laplacian in Ω defined in (2.10).

Proof. By the results in [8, 92] it holds that

lim
λ→+∞

N(λ)

λN/2
=

ωN

(2π)N
HN (Ω), (2.38)

where N(λ) := #{k ∈ N : λDk (Ω) ≤ λ}. This implies (2.37). To see this, set N−(λ) := #{k ∈ N :
λDk (Ω) < λ}, and observe

N(λDk (Ω)− 1) ≤ N−(λDk (Ω)) ≤ k ≤ N(λDk (Ω)), ∀k ∈ N.

Note that in [92] formula (2.38) is stated with the further assumption that diam(Ω) < diam(X)
(when Ω ̸= X), however this assumption is needed in [92] only to ensure the discreteness of the
spectrum, for which we know by Proposition 2.23 that the boundedness of Ω is sufficient.

3 Sobolev spaces and Neumann eigenfunctions in uniform
domains

Our method to deal with Neumann eigenfunctions in domains with irregular boundary in RN (or in
more abstract RCD spaces) will be to translate the problem to a global one, by viewing the domain
as a metric measure space. The idea is that if the boundary satisfies an appropriate regularity
condition, then the resulting m.m. space is a PI space and in particular has good analytic properties,
like the isoperimetric inequality and embedding theorems (recall Section 2.3). We stress that the
possibility of using abstract metric spaces to deal with Neumann and mixed boundary value problems
in irregular domains of the Euclidean space was noted before (see e.g. [19, Page 33]).

The key notion that we will use is the one of uniform domain that we now introduce.

Definition 3.1 (Uniform domains). A bounded open subset Ω of a metric space (X, d) is called
a uniform domain if there exists a constant C > 1 such that every pair of points x, y ∈ Ω can be
joined by a rectifiable curve γ : [0, 1] → Ω such that l(γ) ≤ Cd(x, y) and

d(γ(t), ∂Ω) ≥ C−1 min
(
l(γ|[0,t]), l(γ|[t,1])

)
, ∀t ∈ [0, 1].
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Uniform domains were introduced in [72] and [65] (see also [89]) and are central in the theory of
BV and Sobolev extension domains (see [22,47,58,59,65,68]). Uniform domains are also equivalent
to one-sided non tangentially accessible (1-sided NTA) domains (see e.g. [13, Theorem 2.15] or the
Appendix in [55]). They include Lipschitz domains, but also more irregular domains such as the
quasi-disks, i.e. images of the unit ball under a global quasi-conformal maps (see [72, Theorem
2.15], [47], [63, Section 3] or also [88, Remarks 2.1]). In particular the interior of the Koch snowflake
is an example of uniform domain. It has also been proved recently that in every doubling quasi-
convex metric space (in particular any bounded RCD(K,N) space) any bounded open set can be
approximated from inside and outside by uniform domains, see [83] for the precise statement.

It easily follows from the definition that every uniform domain is both connected and locally
connected (see e.g. [71]).

The main goal of this section is to prove the following theorem. It says that a uniform domain in
a non-collapsed RCD(K,N) space (and in particular in RN ) when viewed as a m.m. space admits an
almost Euclidean isoperimetric inequality near almost every point (point (ii)) and the eigenvalues of
the Laplacian satisfy a weak version of the Weyl law (point (iii)). Item (i) is a technical condition
that we will need to apply the Faber-Krahn inequality in Proposition 5.1. We remark that, differently
from the preceding sections, in the following statement we will denote by Y the ambient space, while
the notation (X, d,m) is reserved to the metric measure space associated to the closure of the domain
Ω ⊂ Y.

Theorem 3.2. Let (Y, d̃,HN ) be an RCD(K,N) space and let Ω ⊂ Y be a uniform domain. Then
the metric measure space (X, d,m) := (Ω, d̃|Ω,H

N |Ω) is an infinitesimally Hilbertian PI space and

satisfies the following properties:

(i) there exists a constant c > 0 such that

m(BX
r (x))

m(BX
R(x))

≥ c
( r
R

)N
, ∀x ∈ X, ∀ 0 < r < R.

(ii) For every ε > 0 there exists a closed set Cε ⊂ X with m(Cε) = 0 such that for every x ∈ X\Cε

there exists a constant ρ = ρ(x,N, ε) > 0 satisfying

PerX(E) ≥ (1− ε)Nω
1
N

N m(E)
N−1
N , ∀E ⊂ BX

ρ (x) Borel, (3.1)

where PerX and BX
ρ (x) are respectively the perimeter and the metric ball in the space (X, d,m).

(iii) denoted by {λk}k the spectrum of the Laplacian in (X, d,m) (recall (2.21)) it holds λk = λNk (Ω)
for all k ∈ N and

lim
k→+∞

λ
N/2
k

k
≤ (2π)N

ωNm(X)
. (3.2)

Remark 3.3 (The ‘bad’ set Cε). If the ambient space (Y, d̃,HN ) is the Euclidean space then item
ii) in Theorem 3.2 is immediate by taking Cε = ∂Ω and by the isoperimetric inequality (indeed
∂Ω is negligible as we will show in Lemma 3.6). More generally if (Y, d̃,HN ) is a Riemannian
manifold with d̃ the geodesic distance then item ii) follows taking again Cε = ∂Ω and applying the
local almost-Euclidean isoperimetric inequality in [17, Appendice C]. In the general case, as will be
shown in the proof, the set Cε in Theorem 3.2 can be taken to be

Cε := {x ∈ Ω : θN (x) ≤ 1− ε} ∪ ∂Ω,

where θN : X → (0,+∞] is the Bishop-Gromov density function defined in (2.34). In other words
the set Cε contains ∂Ω plus a subset of the singular points, the latter being the points where θN < 1.
Note that θN ≡ 1 if (Y, d̃,HN ) is a Riemannian manifold, so that Cε reduces to ∂Ω, in accordance
to what we said above. ■

We start with some basic properties of uniform domains.
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Definition 3.4 (Corkscrew-condition). A bounded open subset Ω of a metric space (X, d) satisfies
the corkscrew-condition if there exists a constant ε > 0 such that for every point x ∈ Ω and all
0 < r ≤ diam(Ω), the set Ω ∩Br(x) contains a ball of radius εr.

In Definition 3.4 it is equivalent to require only x ∈ ∂Ω.
For the proof of the following well known fact see e.g. [22, Lemma 4.2].

Lemma 3.5. Every uniform domain satisfies the corkscrew-condition.

Lemma 3.6. Let (X, d,m) be a uniformly locally doubling metric measure space and let Ω ⊂ X
satisfy the corkscrew-condition. Then m(∂Ω) = 0. In particular this holds if Ω ⊂ X is a uniform
domain.

Proof. Thanks to the corkscrew-condition there exists a constant ε > 0 such that for every x ∈ ∂Ω
and r > 0 there exists Bεr(y) ⊂ Br(x) ∩ Ω. Then by the uniformly locally doubling assumption we
have

m(Br(x) ∩ Ω) ≥ m(Bεr(y)) ≥ Cεm(B2r(y)) ≥ Cεm(Br(x)), ∀r ∈ (0, 1), (3.3)

where Cε > 0 is a constant depending only on ε. Therefore no point of x ∈ ∂Ω can be a one-density
point for ∂Ω. The conclusion follows by the Lebesgue differentiation theorem for locally doubling
metric measure spaces (see e.g. [57, Section 3.4]). The result applies to uniform domains, since by
Lemma 3.5 they satisfy they corkscrew-condition.

The following lemma gives a lower bound on the measure of balls in domain satisfying the
corkscrew-condition.

Lemma 3.7. Fix s > 0. Let (X, d,m) be a metric measure space such that for every R0 > 0 there
exists a constant c0 > 0 such that

m(Br(x))

m(BR(x))
≥ c0

( r
R

)s
, ∀x ∈ X, ∀0 < r < R ≤ R0. (3.4)

Then for every bounded domain Ω ⊂ X satisfying the corkscrew-condition there exists a constant
C > 0 such that

m(Br(x) ∩ Ω)

m(BR(x) ∩ Ω)
≥ C

( r
R

)s
, ∀x ∈ Ω, ∀0 < r < R. (3.5)

In particular this holds if Ω ⊂ X is a uniform domain.

Proof. Taking R = 2r in (3.4) shows that (X, d,m) is uniformly locally doubling. Then as in (3.3)
we have the existence of a constant C̃ such that for every x ∈ Ω

m(Br(x) ∩ Ω) ≥ C̃m(Br(x))
(3.4)

≥ c0C̃m(BR(x))
( r
R

)s
≥ c0C̃m(BR(x) ∩ Ω)

( r
R

)s
, ∀0 < r < R ≤ diam(Ω).

This proves (3.5) for 0 < r < R ≤ diam(Ω). If instead r > diam(Ω) we have

m(Br(x)) ∩ Ω

m(BR(x) ∩ Ω)
=

m(Ω)

m(Ω)
= 1 ≥ rs

Rs
, ∀x ∈ Ω, ∀R ≥ r.

This shows (3.5) also for diam(Ω) < r < R and concludes the proof.

The next step is to show that the Sobolev space on a uniform domain coincides with the Sobolev
space on its closure. In what follows, given a m.m. space (X, d,m) and an open subset Ω ⊂ X, we
denote by (Ω, d|Ω,m|Ω) the m.m. space obtained by endowing Ω with the restriction distance d|Ω :=

d|Ω×Ω
and measure m|Ω, obtained by restricting m to the induced Borel σ-algebra on Ω. Note that

by definition (Ω, d|Ω,m|Ω) is a complete and separable metric measure space with supp(m|Ω) = Ω.

Moreover for a function u ∈ L2(Ω,m|Ω) we will denote by u|Ω ∈ L2(Ω,m) the function which agrees

m-a.e. with u in Ω.
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Theorem 3.8 (Equivalence between W 1,2(Ω, d|Ω,m|Ω) and W 1,2(Ω)). Let (X, d,m) be a PI space

and Ω ⊂ X be a uniform domain. Then W 1,2(Ω, d|Ω,m|Ω) = W 1,2(Ω) as function spaces. More

precisely, for every u ∈ W 1,2(Ω, d|Ω,m|Ω) it holds that Φ(u) := u|Ω ∈ W 1,2(Ω) and the map

Φ : W 1,2(Ω, d|Ω,m|Ω) → W 1,2(Ω) is a surjective isometry. Moreover if (X, d,m) is infinitesimally

Hilbertian, so is (Ω, d|Ω,m|Ω) andˆ
Ω

∇u · ∇v dm =

ˆ
Ω

∇(u|Ω) · ∇(v|Ω) dm, ∀u, v ∈ W 1,2(Ω, d|Ω,m|Ω). (3.6)

Proof. The result is well known, but for convenience of the reader we include a short argument
which is a combination of results already present in literature. Fix u ∈ W 1,2(Ω, d|Ω,m|Ω). The

fact that Φ(u) = u|Ω ∈ W 1,2(Ω) is checked e.g. in [6, Remark 2.15]. Moreover by [9, Prop. 6.4]

for every η ∈ LIPbs(Ω), since d(supp(ηu),X \ Ω) > 0, it holds that ηu ∈ W 1,2(X) (when extended
by zero in the whole X) and also that |D(ηu)|X = |D(ηu)|Ω m-a.e. in Ω, where |D(·)|Ω is the
w.u.g. in W 1,2(Ω, d|Ω,m|Ω) and |D(·)|X is the w.u.g. in W 1,2(X). Hence by the arbitrariness of

η and by locality we deduce that |Du|Ω = |D(u|Ω)|Ω m-a.e. in Ω, where |D(·)|Ω is the w.u.g. in

W 1,2(Ω) (as defined in (2.2)). This together with the fact that m(∂Ω) = 0 (recall Lemma 3.6)
shows that Φ(u) preserves the norm. It remains to show that Φ is surjective (note that everything
we said up to now holds for an arbitrary open set Ω with m(∂Ω)=0). Now since Ω is a uniform
domain, by [22, Prop. 5.9], Ω is an extension domain and in particular for every u ∈ W 1,2(Ω)
there exists ũ ∈ W 1,2(X) such that ũ|Ω = u. By density of Lipschitz functions (see [85] or [19,

Theorem 5.1]) there exists a sequence un ∈ LIPbs(X) such that un → ũ in W 1,2(X). In particular
it holds un|Ω → u in L2(Ω;m|Ω). Moreover un|Ω ∈ LIP(Ω, d|Ω) and by definition of slope we have

lipΩ(un|Ω)(x) ≤ lip(un)(x) for every x ∈ Ω, where lipΩ denotes the slope with respect to the metric

space (Ω, d|Ω). Therefore supn
´
Ω
|lipΩ(un|Ω)|

2dm ≤ supn
´
X
|lip(un)|2dm < +∞, which by definition

proves that ũ|Ω ∈ W 1,2(Ω, d|Ω,m|Ω). Since ũ|Ω = u and by the arbitrariness of u ∈ W 1,2(Ω) this

shows that Φ is surjective. Finally if (X, d,m) is infinitesimally Hilbertian then W 1,2(Ω) is a Hilbert
space and since Φ is an isometry, thenW 1,2(Ω, d|Ω,m|Ω) is a Hilbert space as well and so (Ω, d|Ω,m|Ω)
is infinitesimally Hilbertian. Then identity (3.6) follows by polarization using the definition of scalar
product between gradients.

Theorem 3.9. Let (X, d,m) be an infinitesimally Hilbertian PI space and let Ω ⊂ X be a uniform
domain. Then the metric measure space (Ω, d|Ω,m|Ω) is an infinitesimally Hilbertian PI space.

Proof. The fact that (Ω, d|Ω,m|Ω) is a PI space is proved in [22, Theorem 4.4] (see also [1, Prop.

7.1] and [19, Theorem A.21]), recalling also that m(∂Ω) = 0. The infinitesimal Hilbertianity follows
from Theorem 3.8 (alternatively we could apply [48, Prop. 4.22]).

From the previous results about the compatibility of the two Sobolev spaces W 1,2(Ω) and
W 1,2(Ω, d|Ω,m|Ω), we can deduce a compatibility between eigenfunctions and eigenvalues in Ω and

in (Ω, d|Ω,m|Ω).

Corollary 3.10 (Equivalence between λNk (Ω) and λk(Ω, d|Ω,m|Ω)). Let (X, d,m) be an infinitesi-

mally Hilbertian PI space and let Ω ⊂ X be a uniform domain. Then:

i) u ∈ W 1,2(Ω) is an eigenfunction for the Neumann Laplacian in Ω of eigenvalue λ if and only
there exists an eigenfunction ũ ∈ W 1,2(Ω, d|Ω,m|Ω) of the Laplacian in the metric measure

space (Ω, d|Ω,m|Ω) of eigenvalue λ and satisfying ũ|Ω = u. In particular, if this is the case,

then u has a Hölder continuous representative in Ω.
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ii) the embedding W 1,2(Ω) ↪→ L2(Ω) is compact and in particular the Neumann Laplacian in Ω
has a discrete spectrum {λNk (Ω)}k∈N (counted with multiplicity) satisfying

0 = λN1 (Ω) ≤ λN2 (Ω) ≤ . . . λNk (Ω) ≤ · · · → +∞.

iii) denoted by {λk}k the spectrum for the Laplacian in (Ω, d|Ω,m|Ω), it holds that

λNk (Ω) = λk, ∀k ∈ N.

Proof. First observe that the statement makes sense since by Theorem 3.9 we have that (Ω, d|Ω,m|Ω)
is a bounded infinitesimally Hilbertian PI space and so by (2.21) we have that the Laplacian in
(Ω, d|Ω,m|Ω) has a discrete spectrum {λk}k. It is sufficient to show i) and ii), because then iii)

would follow from the definitions. Suppose that u ∈ W 1,2(Ω) is an eigenfunction for the Neumann
Laplacian in Ω of eigenvalue λ. Then by Theorem 3.8 there exists ũ ∈ W 1,2(Ω, d|Ω,m|Ω) such

that ũ|Ω = u. Moreover for every v ∈ W 1,2(Ω, d|Ω,m|Ω), again by Theorem 3.8, we have that

v|Ω ∈ W 1,2(Ω). Then applying (3.6) we obtain

ˆ
Ω

∇ũ · ∇v dm =

ˆ
Ω

∇u · ∇v|Ω dm = −λ
ˆ
Ω

uv|Ωdm = −λ
ˆ
Ω

ũvdm,

where in the second identity we used the definition of eigenfunction and in the last one that m(∂Ω) =
0, because Ω is a uniform domain. This shows that ũ is an eigenfunction of eigenvalue λ for
the Laplacian in (Ω, d|Ω,m|Ω). Then by Theorem 2.17 ũ has a Hölder continuous representative

in Ω, which implies that u has also a continuous representative in Ω. Conversely suppose that
ũ is an eigenfunction of eigenvalue λ for the Laplacian in (Ω, d|Ω,m|Ω). Then by Theorem 3.8

we have ũ|Ω ∈ W 1,2(Ω). Moreover, again by Theorem 3.8, for every v ∈ W 1,2(Ω) there exists

ṽ ∈ W 1,2(Ω, d|Ω,m|Ω) such that ṽ|Ω = v. Therefore as above using (3.6)

−λ
ˆ
Ω

ũ|Ωvdm = −λ
ˆ
Ω

ũṽdm =

ˆ
Ω

∇ũ · ∇ṽ dm =

ˆ
Ω

∇ũ|Ω · ∇v dm.

This shows that ũ|Ω is an eigenfunction of eigenvalue λ for the Neumann Laplacian in Ω and com-

pletes the proof of i). For ii) recall that by Theorem 3.8 the map Φ : W 1,2(Ω, d|Ω,m|Ω) → W 1,2(Ω),

given by Φ(u) = u|Ω is an isometry and that by Theorem 2.16 the inclusion ι : W 1,2(Ω, d|Ω,m|Ω) ↪→
L2(Ω,m|Ω) is compact. Let now un ∈ W 1,2(Ω) be a sequence bounded in W 1,2(Ω). Then the se-

quence Φ−1(un) ∈ W 1,2(Ω, d|Ω,m|Ω) is also bounded, hence it has a converging subsequence in

L2(Ω,m|Ω). However by definition Φ−1(un)|Ω = Φ(Φ−1(un) = un for every n. Hence un has also a

converging subsequence in L2(Ω,m|Ω), which shows that the embedding W 1,2(Ω) ↪→ L2(Ω,m|Ω) is
compact. This completes the proof of ii).

Remark 3.11. If the ambient space (X, d,m) is an RCD(K,N) space, with N < +∞, then the
Neumann and Dirichlet eigenfunctions are actually locally Lipschitz in the interior of the domain,
as follows directly from [64, Theoem 1.1] (see also [7, Prop. 7.1]). Recall that the continuity of
eigenfunctions is crucial to define their nodal domains. ■

Next we show that for a uniform domain Ω there is a one to one correspondence between the
nodal domains in Ω and the nodal domains in its closure.

Proposition 3.12 (Compatibility of nodal domains). Let (X, d) be a metric space, Ω ⊂ X be a
uniform domain and f : Ω → R be a continuous function. Denote by C (resp. C) the set all the
connected components of Ω \ {f = 0} (resp. Ω \ {f = 0}). Then

C = {U ∪ (∂U ∩ (∂Ω \ {f = 0})) : U ∈ C}. (3.7)

In particular the sets C and C have the same cardinality.
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Proof. For every U ∈ C we put φ(U) := U ∪ (∂U ∩ (∂Ω \ {f = 0})) and we want to show that φ
defines a bijective map φ : C → C. We note immediately that φ is injective, because if φ(U) = φ(V )
then U = φ(U) ∩ Ω = φ(V ) ∩ Ω = V .

To conclude it is sufficient to prove that the sets {φ(U)}U∈C are open, closed and connected in
the topology of Ω \ {f = 0} and that their union is Ω \ {f = 0}. Indeed this would show that
{φ(U)}U∈C are exactly the connected components of Ω \ {f = 0}, which would imply (3.7) and in
particular that φ is surjective.

Note first that the elements of C are open in the topology of Ω \ {f = 0} (and thus also in the
one of X) because Ω \ {f = 0} is locally connected (recall Lemma 2.2) since it is an open subset of
Ω which is a uniform domain and thus locally connected.

The key observation is that for every x ∈ ∂Ω \ {f = 0} there exists r > 0 and U ∈ C such that

Br(x) ∩ Ω ⊂ φ(U) = U ∪ (∂U ∩ (∂Ω \ {f = 0})). (3.8)

To prove this note that f(x) ̸= 0. Then by continuity there exists r0 > 0 so that Br(x) ∩ Ω ⊂
Ω \ {f = 0} for every r ∈ (0, r0]. In particular for every r ∈ (0, r0] the set Br(x) ∩ Ω is contained
in
⋃

U∈C U . Suppose that for some r > 0 the set Br(x) ∩ Ω intersects at at least two distinct sets
Ur, Vr ∈ C and take two points ur ∈ Ur ∩ Br(x), vr ∈ Vr ∩ Br(x). Since Ω is a uniform domain
there exists a rectifiable curve γ : [0, 1] → X contained in Ω, connecting ur and vr and of length
l(γ) ≤ Cd(ur, vr) ≤ 2Cr, where C > 0 is some constant independent of r. Then γ([0, 1]) must
intersect {f = 0} otherwise γ([0, 1]) ⊂ Ω \ {f = 0} and Ur ∪ Vr ∪ γ([0, 1]) would be a connected
subset of Ω \ {f = 0}, which contradicts the fact that Ur, Vr are distinct connected components
of Ω \ {f = 0}. Therefore, since γ([0, 1]) ⊂ B(2C+1)r(x), it holds B(2C+1)r(x) ∩ Ω ∩ {f = 0} ≠ ∅
and so by the choice of r0 we must have (2C + 1)r > r0. This proves that for r small enough
Br(x) ∩ Ω intersects at most one set in C. However, as observed above, Br(x) ∩ Ω ⊂

⋃
U∈C U for

every r ∈ (0, r0]. Therefore for r > 0 small enough we must have that Br(x) ∩ Ω ⊂ U for some
U ∈ C. Fix one such r > 0 and fix y ∈ Br(x)∩∂Ω. Then for every s > 0 small enough Bs(y)∩Ω ̸= ∅
and Bs(y) ∩ Ω ⊂ Br(x) ∩ Ω ⊂ U . This shows that y ∈ ∂U . Therefore for every r > 0 small enough
Br(x) ∩ Ω ⊂ U , Br(x) ∩ ∂Ω ⊂ ∂U for some U ∈ C and as observed above Br(x) ∩ Ω ⊂ Ω \ {f = 0}.
Combining these three facts proves (3.8).

Consider now any U ∈ C and note that φ(U) is precisely the closure of U in the topology of
Ω \ {f = 0}. Indeed

U ∩ (Ω \ {f = 0}) =
(
U ∩ (Ω \ {f = 0})

)
∪
(
∂U ∩ (Ω \ {f = 0})

)
= U ∪ (∂U ∩ (∂Ω \ {f = 0})) ∪ (∂U ∩ (Ω \ {f = 0}))
= U ∪ (∂U ∩ (∂Ω \ {f = 0})) = φ(U),

where we used that U ⊂ Ω \ {f = 0} and that ∂U ∩ (Ω \ {f = 0}) = ∅ because U is closed in the
topology of Ω \ {f = 0}, being a connected component, but also open as observed above. Moreover
U is connected in Ω\{f = 0} and thus also in Ω\{f = 0}, hence φ(U) is also connected in the same
topology, being the closure of a connected set. Additionally (3.8) implies that φ(U) is open in the
topology of Ω \ {f = 0}. It remains to prove that the union of the sets {φ(U)}U∈C is Ω \ {f = 0},
which can be seen as follows

Ω \ {f = 0} = (Ω \ {f = 0}) ∪ (∂Ω \ {f = 0})
(3.8)
⊂ (Ω \ {f = 0}) ∪

(⋃
U∈C

φ(U)

)

⊂

 ⋃
U∈C,

U

 ∪

(⋃
U∈C

φ(U)

)
=
⋃
U∈C

φ(U).

We pass now to prove the main result of this section.
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Proof of Theorem 3.2. The fact that (X, d,m) is an infinitesimally Hilbertian PI space is contained
in Theorem 3.9. Recall also that by Lemma 3.6 it holds HN (∂Ω) = 0. Item (i) follows immediately
combining (2.33) and Lemma 3.7 and recalling that Ω is bounded.

We pass to the proof of (ii). Fix ε ∈ (0, 1) arbitrary. We choose

Cε := {x ∈ Ω : θN (x) ≤ 1− ε} ∪ ∂Ω

(see (2.34) for the definition of θN ). From the lower semicontinuity of the function θN (·), it follows
that Cε is a closed subset of Ω. Moreover, since θN (x) = 1 for HN -a.e. x (recall (2.36)) and
HN (∂Ω) = 0, it follows HN (Cε) = 0. Note that by construction 1 − ε < θN (x) ≤ 1 for all
x ∈ Ω \ Cε ⊂ Ω. Therefore we can apply the local almost-Euclidean isoperimetric inequality given
by Theorem 2.24 (recall also Lemma 2.11) and obtain that for every x ∈ Ω\Cε and every ε ∈ (0, 1/4)
there exists ρ = ρ(x,N, ε) < d̃(x,Ωc) such that

PerX(E) ≥ m(E)
N−1
N Nω

1
N

N (1− 2ε)
1
N (1− ε), ∀E ⊂ Bρ(x) = BX

ρ (x) Borel,

which shows (3.1). It remains to show (iii). Denote by λk, k ∈ N the spectrum of the Laplacian
in (X, d,m) (counted with multiplicity and in non-decreasing order). Recall that by Corollary 3.10
λk = λNk (Ω) for every k ∈ N, where λNk (Ω) is the k-th Neumann eigenvalue of Ω (in non-decreasing
order). Recalling Lemma 2.8 we know that λNk (Ω) ≤ λDk (Ω) for every k ∈ N, where λDk (Ω) is the
k-th Dirichlet Laplacian eigenvalue of Ω. Then (3.2) follows from the Weyl law for the Dirichlet
Laplacian (see Theorem 2.27):

lim
k→+∞

λ
N/2
k

k
= lim

k→+∞

(λNk (Ω))N/2

k
≤ lim

k→+∞

(λDk (Ω))
N/2

k
=

(2π)N

ωnHN (Ω)
=

(2π)N

ωnm(X)
,

having used again m(∂Ω) = 0.

4 From local to global isoperimetric inequality

In this section we prove the following crucial result. Informally speaking, it says that in a PI
space satisfying an almost-Euclidean isoperimetric inequality around almost-every point, the same
isoperimetric inequality extends to all sets having sufficiently small volume and avoiding a ‘bad’ but
small region of the space.

Theorem 4.1. Let (X, d,m) be a bounded PI space and fix N > 1. Suppose that for every ε > 0
there exists a closed set Cε ⊂ X with m(Cε) = 0 such that for every x ∈ X\Cε there exists a constant
ρ = ρ(x,N, ε) > 0 satisfying

Per(E) ≥ (1− ε)Nω
1
N

N m(E)
N−1
N , ∀E ⊂ Bρ(x) Borel. (4.1)

Then for every ε ∈ (0, 1) and η > 0 there exists an open set Uε,η ⊂ X with m(Uε,η) < η and constants
β = β(X, ε,N, η) > 0, β′ = β′(ε) > 0 such that

Per(E) ≥ (1− ε)Nω
1
N

N m(E)
N−1
N , (4.2)

for every E ⊂ X Borel satisfying

0 < m(E) ≤ β,
m(E ∩ Uε,η)

m(E)
≤ β′.

Observe that assumption (4.1) is the same as item ii) in Theorem 3.2.
The proof of Theorem 4.1 takes inspiration from the arguments in Appendix C of [17] in the

smooth setting, but requires also to deal with the technical issues arising from working in a non-
smooth metric space.

We start with an estimate for the perimeter of the complement of the union of a finite number
of balls.
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Lemma 4.2. Let (X, d,m) be a PI space. Suppose that Bi := Bri(xi) ⊂ X, i = 1, ..., k, k ∈ N, have
all finite perimeter and satisfy Per(Bi, ∂

eBj) = 0 for all i ̸= j. Then

Per(Bc
1 ∩Bc

2 ∩ ... ∩Bc
k, .) ≤

k∑
i=1

Per(Bi, .)|Bc
1∩Bc

2∩...∩Bc
k

. (4.3)

Proof. We argue by induction on k. By (2.22) we have that for every ball B ⊂ X of finite perimeter

Per(Bc, .) = Per(B, .) = Per(B, .)|Bc
,

which shows that the statement holds for k = 1. Suppose that the statement is true for some k ∈ N
and let Bi := Bri(xi) ⊂ X, i = 1, ..., k + 1 be as in the statement. By a repeated application of (vi)
in Lemma 2.10 we get

∂e(Bc
1 ∩Bc

2 ∩ ... ∩Bc
k) ⊂ ∂eBi ∪ ... ∪ ∂eBk. (4.4)

Using (4.4) and the assumption Per(Bk+1, ∂
eBj) = 0 for all j ̸= k + 1 gives

Per(Bk+1, ∂
e(Bc

1 ∩Bc
2 ∩ ... ∩Bc

k)) = 0.

Hence we can apply Proposition 2.19 and obtain

Per(Bc
1∩Bc

2∩ ...∩Bc
k+1, .) ≤ Per(Bk+1, .)|(Bc

1∩Bc
2∩...∩Bc

k)
(1)

+Per(Bc
1∩Bc

2∩ ...∩Bc
k, .)|(Bc

k+1)
(1)
. (4.5)

Since balls are open sets, by using (iii) and (iv) in Lemma 2.10 it holds

(Bc
1 ∩Bc

2 ∩ ... ∩Bc
k)

(1) ⊂ Bc
1 ∩Bc

2 ∩ ... ∩Bc
k,

that combined with (4.5) and the induction hypothesis gives

Per(Bc
1 ∩Bc

2 ∩ ... ∩Bc
k+1, .) ≤ Per(Bk+1, .)|Bc

1∩Bc
2∩...∩Bc

k

+ Per(Bc
1 ∩Bc

2 ∩ ... ∩Bc
k, .)|(Bc

k+1)
(1)

≤ Per(Bk+1, .)|Bc
1∩Bc

2∩...∩Bc
k

+ Per(Bc
1 ∩Bc

2 ∩ ... ∩Bc
k, .)|Bc

k+1

≤ Per(Bk+1, .)|Bc
1∩Bc

2∩...∩Bc
k∩Bc

k+1

+

k∑
i=1

Per(Bi, .)|Bc
1∩Bc

2∩...∩Bc
k∩Bc

k+1

,

where in the second line we used that (Bc
k+1)

(1) ⊂ Bc
k+1 (recall (iv) in Lemma 2.10) and in the

last line that Per(Bk+1, .) = Per(Bk+1, .)|Bc
k+1

(recall (2.22)) for the first term and the induction

hypothesis for the second term. This concludes the proof.

Combining the above estimate with a covering argument we can prove the following proposition,
from which Theorem 4.1 will easily follow.

Proposition 4.3 (From local-to-global isoperimetric inequality). Let (X, d,m) be a PI space. Sup-
pose there exist constants λ > 0, α ∈ (0, 1] and a compact set K ⊂ X such that for all x ∈ K there
exists ρ(x) > 0 so that

Per(E) ≥ λm(E)α, ∀E ⊂ Bρ(x)(x) Borel. (4.6)

Then there exists a constant C = C(K, α, λ) such that

Per(V ) ≥ λm(V ∩ K)α − Cm(V ), ∀V ⊂ X Borel. (4.7)

Proof. We start by extracting once and for all a finite covering K ⊂ ∪M
i=1B ρ(xi)

2

(xi), with xi ∈ K,

and we set ρ := mini ρ(xi) > 0. It is enough to prove (4.7) for sets V of finite perimeter. Fix one
such set V.

We claim that there exist r1, . . . , rM , with ri ∈
(

ρ(xi)
2 , ρ(xi)

)
such that the following hold:
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a) Bri(xi) has finite perimeter, for every i = 1, ...,M,

b) Per(V, ∂Bri(xi)) = 0, for every i = 1, ...,M,

c) Per(Bri(xi), V
(1)) ≤ 3m(V )

ρ(xi)
, for every i = 1, ...,M ,

d) Per(Bri(xi), ∂Brj (xj)) = 0, for every i, j = 1, ...,M with i ̸= j.

It is sufficient to prove that:

(i) for any i ∈ {1, ...,M}, there exists Ai ⊂
(

ρ(xi)
2 , ρ(xi)

)
with H1(Ai) > 0 such that a),b) and c)

holds for every ri ∈ Ai,

(ii) for every ri > 0 such that Bri(xi) has finite perimeter, d) holds for every j ̸= i and for a.e.
rj > 0.

Indeed if these were true, up to removing from each Ai a set of measure zero, we would have that
every choice (r1, . . . , rM ) ∈ Ai × . . . ,×AM satisfies all a),b), c) and d). We start proving (i). Fix
i ∈ {1, ...,M}. From Proposition 2.9 we have that Br(xi) has finite perimeter for a.e. r > 0 (i.e. a)
holds for a.e. ri > 0). Moreover since Per(V, .) is a finite measure and {∂Br(xi)}r>0 are pairwise
disjoint sets, we must have that Per(V, ∂Bri(xi)) = 0 for a.e. ri > 0 (i.e. b) holds for a.e. ri > 0).
By applying Proposition 2.9 with R := ρ(xi) we get

ˆ ρ(xi)

ρ(xi)

2

Per(Br(xi), V
(1)) dr ≤

ˆ ρ(xi)

0

Per(Br(xi), V
(1)) dr ≤ m(Bρ(xi)(xi)∩V

(1)) = m(Bρ(xi)(xi)∩V ),

and by the Markov inequality

H1

({
r ∈

(
ρ(xi)

2
, ρ(xi)

)
: Per(Br(xi), V

(1)) > 3m(V ∩Bρ(xi)(xi))/ρ(xi)

})
≤ ρ(xi)

3
,

which shows that the set{
r ∈

(
ρ(xi)

2
, ρ(xi)

)
: Per(Br(xi), V

(1)) ≤ 3m(V ∩Bρ(xi)(xi))/ρ(xi)

}
has positiveH1-measure, i.e. c) holds for every ri in a subset of

(
ρ(xi)

2 , ρ(xi)
)
of positiveH1-measure.

Combining all the above observations gives (i). To show (ii) fix i, j ∈ {1, ...,M}, i ̸= j and ri > 0
such that Bri(xi) has finite perimeter. As above {∂Br(xj)}r>0 are pairwise disjoint sets, therefore
we must have Per(Bri(xi), ∂Br(xj)) = 0 for a.e. r > 0. This proves (ii) and completes the proof of
the claim.

From now on we assume to have fixed r1, . . . rM such that a), b), c) and d) above hold (note
that this choice might depend on the set V ) and we set Bi := Bri(xi). By construction K ⊂ ∪M

i=1Bi.
Consider the pairwise disjoints sets {Ui}Mi=1 defined inductively as follows:

U1 := B1, Ui := Bi ∩ (Bc
i−1 ∩ ... ∩Bc

1), ∀ i = 2, ...,M.

Clearly {Ui}Mi=1 is a family of disjoint Borel sets which is a covering of K. We claim that

Per(V, ∂eUi) = 0, ∀ i = 1, ...,M. (4.8)

Indeed, from (vi) and (ii) of Lemma 2.10 one infers that

∂eUi ⊂ ∂eB1 ∪ ∂e(Bc
2) ∪ ... ∪ ∂e(Bc

i−1) ⊂ ∂B1 ∪ ... ∪ ∂Bi−1.

From this (4.8) follows recalling b). Thanks to (4.8) we are in position to apply Proposition 2.19 to
deduce that

Per(V ∩ Ui) ≤ Per(V,U
(1)
i ) + Per(Ui, V

(1)), ∀ i = 1, ...,M. (4.9)
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The goal is now to give an upper bound on each term on the right-hand side of (4.9). Since Ui are

pairwise disjoint by construction, by point (v) of Lemma 2.10 it follows that also the sets U
(1)
i are

pairwise disjoint, hence
M∑
i=1

Per(V,U
(1)
i ) ≤ Per(V ). (4.10)

To estimate Per(Ui, V
(1)) we note that from d) it holds

Per(Bi, ∂
e(Bc

1 ∩ ... ∩Bc
i−1)) = 0,

indeed ∂e(Bc
1 ∩ ... ∩Bc

i−1) ⊂ ∂B1 ∪ ... ∪ ∂Bi−1 (recall (ii) in Lemma 2.10). Hence, recalling that by
construction Ui = Bi ∩ (Bc

i−1 ∩ ... ∩Bc
1), we can apply again Proposition 2.19 to get

Per(Ui, V
(1)) ≤ Per(Bi, V

(1)) + Per(Bc
1 ∩ ... ∩Bc

i−1, V
(1))|

B
(1)
i

.

From this and Lemma 4.2

Per(Ui, V
(1))

(4.3)

≤ Per(Bi, V
(1)) +

i−1∑
j=1

Per(Bj , V
(1))|

B
(1)
i ∩Bc

1∩...∩Bc
i−1

≤ Per(Bi, V
(1)) +

i−1∑
j=1

Per(Bj , V
(1))|Bi∩Bc

1∩...∩Bc
i−1

= Per(Bi, V
(1)) +

i−1∑
j=1

Per(Bj , V
(1))|Ui

,

where in the second line we used that B
(1)
i ⊂ Bi ∪ ∂Bi and that Per(Bj , ∂Bi) = 0 for all j ̸= i,

thanks to d). Summing in i and recalling that Ui are disjoint

M∑
i=1

Per(Ui, V
(1)) ≤

M∑
i=1

Per(Bi, V
(1)) +

M∑
i=1

i−1∑
j=1

Per(Bj , V
(1))|Ui

≤
M∑
i=1

Per(Bi, V
(1)) +

M∑
j=1

M∑
i=1

Per(Bj , V
(1))|Ui

≤ 2

M∑
i=1

Per(Bi, V
(1))

c)

≤ 6

M∑
i=1

m(V )

ρ(xi)
≤ 6M

m(V )

ρ̄
.

(4.11)

Combining (4.11), (4.10) and (4.9) we get

M∑
i=1

Per(V ∩ Ui) ≤ Per(V ) + 6M
m(V )

ρ̄
. (4.12)

On the other hand V ∩ Ui ⊂ Bi ⊂ Bρ(xi)(xi), hence by assumption (4.6)

M∑
i=1

Per(V ∩ Ui) ≥ λ

M∑
i=1

m(V ∩ Ui)
α ≥ λ

(
M∑
i=1

m(V ∩ Ui)

)α

≥ λm(V ∩ K)α,

since the function x 7→ xα is subadditive and the sets {Ui}Mi=1 cover K. This combined with (4.12)
yields

Per(V ) ≥ λm(V ∩ K)α − 6M
m(V )

ρ̄
.

The constants M and ρ̄ depend only on the initial choice of the covering B ρ(xi)

2

(xi) and thus depend

only on K, α and λ, (and not on V ). This concludes the proof.

25



An application of Proposition 4.3 yields immediately the main result of this section.

Proof of Theorem 4.1. Fix ε ∈ (0, 1) and η > 0. Let Cε/2 ⊂ X be as in the statement. Since Cε/2 is
closed, by upper regularity there exists an open set Uε,η containing Cε/2 and such that m(Uε,η) < η.
Set Kε,η := X \Uε,η, which is compact (because it is closed and bounded and X is a proper, being a
PI space). In particular (4.1) holds also for every x ∈ Kε,η. Therefore the hypotheses of Proposition

4.3 are satisfied with K = Kε,η, α = N−1
N and λ = (1 − ε)Nω

1
N

N and we deduce that there exists a
constant C depending only on Kε,η, N and ε (and thus only on X, ε, N and η) such that

Per(E) ≥ (1− ε/2)Nω
1
N

N m(E ∩ Kε,η)
N−1
N − Cm(E)

= (1− ε/2)Nω
1
N

N m(E)
N−1
N

[(
1− m(E ∩ Uε,η)

m(E)

)N−1
N

− Ĉm(E)
1
N

]

≥ (1− ε/2)Nω
1
N

N m(E)
N−1
N

[
1− m(E ∩ Uε,η)

m(E)
− Ĉm(E)

1
N

]
, ∀E ⊂ X Borel,

where Ĉ = C((1− ε/2)Nω
1
N

N )−1. From this we obtain that the conclusion of theorem holds taking

β := Ĉ−NδNε and β′ := δε, where δε :=
1
2

ε
2−ε .

5 Almost Euclidean Faber-Krahn inequality for small vol-
umes

Similarly to the classical Faber-Krahn inequality in RN , combining the almost Euclidean isoperimet-
ric inequality for small volumes in Section 4 and the Pólya-Szegő inequality of Section 2.4, we deduce
here an almost-Euclidean Faber-Krahn inequality for small volumes similar to [17, Lemme 16] in the
case of Riemannian manifolds. However it is not possible to apply directly the Pólya-Szegő inequal-
ity as in [17], because our isoperimetric inequality applies only to sets that have small volumes and
avoid a bad set with small measure. This technical difficulty will require a more careful argument,
which will eventually lead to a Faber-Krahn inequality that applies only to sets that again avoid a
portion of the space with small measure (see Theorem 5.3).

We start by recalling the well known expression of the first Dirichlet eigenvalue of a ball in the
N -dimensional Euclidean space (see e.g. [17]):

λ1(B
RN

r (0)) =

(
ωN

L N (BRN

r (0))

)2/N

j2(N−2)
N

, ∀ r > 0, (5.1)

where j (N−2)
N

denotes the first positive zero of the Bessel function (of the first kind) of index (N−2)
N .

Next we obtain a weaker Faber-Krahn inequality, i.e. with a rough constant, but that applies to
sets also with large volume.

Proposition 5.1 (Faber-Krahn inequality in PI spaces). Let (X, d,m) be a bounded PI space satis-
fying for some N ∈ N and some constant c > 0

m(Br(x))

m(BR(x))
≥ c

( r
R

)N
, ∀x ∈ X, ∀ 0 < r < R.

Then there exist constants v0 = v0(X) > 0 and C = C(X, N) > 0 such that

λ1(Ω) ≥
C

m(Ω)
2
N

, ∀Ω ⊂ X open, 0 < m(Ω) ≤ v0. (5.2)

Proof. By Proposition 2.18 there exist constants w0 = w0(X) > 0 and CI = CI(X, N) > 0 such that

Per(E) ≥ CIm(E)
N−1
N , ∀E ⊂ X Borel such that m(E) ≤ w0 (5.3)
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In particular if m(Ω) ≤ v0 := w0, then (5.3) holds for every E ⊂ Ω Borel. Moreover taking v0 < m(X)
we have Ω ̸= X. Therefore we can apply the Pólya-Szegő inequality (2.28) and deduce

´
Ω
|Du|2dm´

Ω
|u|2dm

≥
( CI

Nω
1/N
N

)2 ´
Ω∗ |Du∗N |2dL N´
Ω∗ |u∗N |2dL N

≥ C

m(Ω)
2
N

, ∀u ∈ W 1,2
0 (Ω), u ≥ 0, u ̸≡ 0, (5.4)

where we have also used that ∥u∥L2(Ω,m) = ∥u∗N∥L2(Ω∗,L N ), m(Ω) = L N (Ω∗), and in the last passage

the identity (5.1) and the fact that u∗N ∈ W 1,2
0 (Ω∗). By taking the infimum with respect to all the

possible u in the characterization (2.16), we get the result.

From the previous proposition we can deduce the following version of the Faber-Krahn in the
Euclidean setting. Even if it will be not used in this note, we think it is worth to be isolated in a
separate statement. Indeed it has been pointed out repeatedly in the previous literature that one of
the major difficulties in counting nodal domains for non-Dirichlet boundary condition in subset of
RN with irregular boundary is the absence of a suitable Faber-Krahn inequality for subdomains close
to the boundary (see e.g. discussions in [56, Section 2], [69, Section 1.2], [53, Section 1.2], [15, Section
1.1]). This was one of the main issues faced [69] which also forced the assumption of a C1,1 boundary
(see also [56]). Here we show precisely that a Faber-Krahn-type inequality does hold in any uniform
domain, no matter how close is the support of the function to the boundary.

Corollary 5.2 (Faber-Krahn inequality for uniform domains). Let Ω ⊂ RN be a uniform domain.
Then there exist constants v0 ∈ (0,L N (Ω)) and C > 0, depending only on Ω, such that

´
Ω
|∇u|2dL N´
Ω
u2dL N

≥ C

(L N (supp(u)))
2
N

, ∀u ∈ W 1,2(Ω), u ̸≡ 0, such that L N (supp(u)) ≤ v0.

Proof. Let u ∈ W 1,2(Ω). Then by Theorem 3.8 there exists ũ ∈ L2(Ω,L N ) such that ũ = u L N -
a.e. in Ω and such that ũ ∈ W 1,2(Ω, d|Ω,L

N |Ω) where d denotes the Euclidean distance (recall

also Remark 2.7). Moreover by Theorem 3.2 the m.m.s. (X, d,m) := (Ω, d|Ω,L
N |Ω) satisfies the

hypotheses of Proposition 5.1. Finally by Lemma 3.6 we have L N (∂Ω) = 0. Let v0 < m(X) =
L N (Ω) and C > 0 be the constants given by Proposition 5.1, which depend only on Ω. Consider the
open set Uε := (supp(ũ))ε, ε > 0. Then L N (Uε) → L N (supp(ũ)) = L N (supp(u)) as ε→ 0, having
also used that L N (∂Ω) = 0. Hence assuming that L N (supp(u)) < v0(X) we have that m(Uε) ≤ v0
for ε small enough. Clearly ũ ∈ W 1,2

0 (Uε) (recall (2.9)), hence we can apply (5.2) and obtain
´
Ω
|∇ũ|2dL N´
Ω
ũ2dL N

≥ C

m(Uε)
2
n

.

Letting ε→ 0 and recalling that
´
Ω
|∇ũ|2dL N =

´
Ω
|∇u|2dL N concludes the proof.

We pass to the statement of our main Faber-Krahn inequality for small volumes.

Theorem 5.3 (Almost Euclidean Faber-Krahn inequality for small volumes). Let (X, d,m) be a
bounded PI space satisfying for some N ∈ N and some constant c > 0

m(Br(x))

m(BR(x))
≥ c

( r
R

)N
, ∀x ∈ X, ∀0 < r < R.

Suppose that for every ε > 0 there exists a closed set Cε ⊂ X with m(Cε) = 0 such that for every
x ∈ X \ Cε there exists a constant ρ = ρ(x,N, ε) > 0 satisfying

Per(E) ≥ (1− ε)Nω
1
N

N m(E)
N−1
N , ∀E ⊂ Bρ(x) Borel, (5.5)

Then for every ε ∈ (0, 1) and η > 0 there exists an open set Uε,η with m(Uε,η) < η and constants
δ = δ(X, ε,N, η) > 0, δ′ = δ′(X, ε,N) > 0 such that for every Ω ⊂ X open satisfying

m(Ω) ≤ δ,
m(Ω ∩ Uε,η)

m(Ω)
≤ δ′,
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and, denoted by Ω∗ := Br(0) ⊂ RN the ball satisfying m(Ω) = L N (Ω∗), it holds

λ1(Ω) ≥ (1− ε)λ1(Ω
∗). (5.6)

The key point of Theorem 5.3 is that the constant δ′ does not depend on η. This will be crucial
in the proof of the main result, which will be done in Section 6. Indeed we will eventually need to
get rid of δ′ by sending η → 0 (see in particular (6.8)).

Remark 5.4. Thanks to Theorem 3.2 we know that, given (Y, d̃,HN ) an RCD(K,N) space and Ω ⊂
Y a uniform domain, the metric measure space (X, d,m) := (Ω, d̃|Ω,H

N |Ω) satisfies the hypotheses

of the above Theorem 5.3. This will actually be the way in which we will apply this result in the
sequel. ■

In the proof of Theorem 5.3 we will make use of the following elementary observation.

Lemma 5.5. Let (X, d,m) be a m.m.s. and f ∈ LIPc(X), f ̸≡ 0, f ≥ 0. It holds

´
X
|Df |2 dm´

X
|f |2 dm

≥ λ1({f > 0}),

where {f > 0} := {x ∈ X: f(x) > 0}.

Proof. Let ψn := (f − 1
n )

+. Then ψn ∈ LIPc({f > 0}) and for n ∈ N sufficiently large, ψn ̸≡ 0. Then
for n large ψn is a competitor in (2.15), so

λ1({f > 0}) ≤ lim
n→+∞

´
X
|Dψn|2 dm´

X
|ψn|2 dm

= lim
n→+∞

´
{f≥1/n} |Df |

2 dm´
{f≥1/n} |f − 1/n|2 dm

=

´
X
|Df |2 dm´

X
|f |2 dm

,

where the first equality follows from the locality of the weak upper gradient.

We are now ready to prove the Faber-Krahn inequality for small volumes.

Proof of Theorem 5.3. Fix ε ∈ (0, 1) and η > 0. Let β = β(X, ε2 , N, η) > 0, β′ = β′( ε2 ) > 0, U ε
2 ,η

⊂ X
be respectively the constants and the set as given in Theorem 4.1 and recall that m(U ε

2 ,η
) < η. In

the following we will simply write β and β′ to denote these constants and write U to denote the set
U ε

2 ,η
.
Let δ, δ′ ∈ (0, 1) be constants small enough to be chosen later and in such a way that δ will

depend in the end only on X, ε,N, η, while δ′ only on X, N, ε.
Fix Ω ⊂ X open such that

m(Ω) ≤ δ,
m(Ω ∩ U)

m(Ω)
≤ δ′,

and define Ω∗ := Br(0) ⊂ RN where r > 0 is so that L N (Ω∗) = m(Ω). Up to choosing δ < m(X) we
can also assume that Ω ̸= X.

Let u ∈ LIPc(Ω) be a competitor in the infimum of (2.19). In particular u ̸≡ 0, u ≥ 0 and
lip(u) ̸= 0 m-a.e. in {u > 0}.

We divide two cases:
Case 1: m({u > 0}) ≤ 3

√
δ′m(Ω). From Lemma 5.5 and Proposition 5.1 we have

´
X
|Du|2dm´
X
u2dm

≥ λ1({u > 0}) ≥ C(X, N)

m(u > 0)
2
N

≥ C(X, N)(3
√
δ′)−

2
N

m(Ω)
2
N

≥
2(jN−2

N
)2ω

2
N

N

L N (Ω∗)
2
N

(5.1)
= 2λ1(Ω

∗),

(5.7)
with C(X, N) > 0 is the constant given by Proposition 5.1, which can be applied if 3

√
δ′δ ≤ v0(X)

(where v0(X) is given by Proposition 5.1) and the last inequality in (5.7) holds provided 3
√
δ′ <

C(X,N)N/2

2N/2(jN−2
N

)NωN
.
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Case 2: m({u > 0}) > 3
√
δ′m(Ω). Set

s := sup{t : m({u > t}) ≥ 2
√
δ′m(Ω)}

and observe that s > 0 and that

m({u > s}) ≤ 2
√
δ′m(Ω),

m({u > t}) ≥ 2
√
δ′m(Ω), ∀ t < s.

The first one follows because m({u > s}) = limt→s+ m({u > t}) ≤ 2
√
δ′m(Ω), while for the second

note that t 7→ m({u > t}) is monotone non-increasing. Set û := u ∧ s and ũ := (u − s)+, so that
u = û+ ũ and û, ũ are in LIPc(Ω) and û ≥ 0, ũ ≥ 0, û ̸≡ 0, ũ ̸≡ 0. Observe that if multiply u by a
constant c > 0, u still satisfies the hypotheses of Case 2 and the number s defined above gets also

multiplied by c. Hence also û gets multiplied by c. Therefore, since the value
´
|Du|2dm´
u2dm

is scaling

invariant, up to multiplying u by a constant we can assume that
´
X
û2dm = 1. Then

´
X
|Du|2dm´
X
u2dm

=

´
X
|Dû|2 + |Dũ|2dm´

X
û2dm+

´
X
ũ2 + 2

´
X
ûũdm

≥
´
X
|Dû|2 + |Dũ|2dm

1 +
´
X
ũ2dm+ 2

√´
X
ũ2dm

. (5.8)

Using again Lemma 5.5 applied with f = ũ and noting that {ũ > 0} = {u > s} we have

´
X
|Dũ|2dm´

X
|ũ|2dm

≥ λ1({u > s}) ≥ C(X, N)

m({u > s}) 2
N

≥ C(X, N)

(2
√
δ′m(Ω))

2
N

, (5.9)

where the second inequality follows from Proposition 5.1 (which as above can be applied provided
2
√
δ′δ ≤ v0(X)). Moreover, since m({u > t}) ≥ 2

√
δ′m(Ω), for every t < s, we have

m({u > t} ∩ U)

m({u > t})
≤ m(Ω ∩ U)

m({u > t})
≤ δ′m(Ω)

2
√
δ′m(Ω)

=

√
δ′

2
< β′, ∀ t < s,

provided δ′ ≤ (β′)2 (recall that β′ depends only on ε). We also have m({u > t}) ≤ m(Ω) ≤ δ ≤ β,
provided δ ≤ β. Therefore we can apply Theorem 4.1 to the set E = {u > t} and obtain

Per({u > t}) ≥ (1− ε

2
)Nω

1
N

N m({u > t})
N−1
N , ∀ t < s.

We can then apply the Pólya-Szegő inequality in point i) of Theorem 2.22 to the function û (note
that assumption (2.26) is satisfied by provided δ ≤ w0(X), where w0(X) is the constant given by
Proposition 2.18), to get

ˆ
|Dû|2dm =

ˆ
{u≤s}

|Du|2dm ≥ (1− ε

2
)2
ˆ s

0

ˆ
RN

|Du∗N |dPer({u∗N > t})dt

= (1− ε

2
)2
ˆ
{u∗

N≤ s}
|Du∗N |2dL N = (1− ε

2
)2
ˆ
RN

|D(u∗N ∧ s)|2dL N ,

where u∗N ∈ LIPc(Ω
∗) is the Euclidean monotone rearrangement of u (see Definition 2.21) and where

in the second to last equality we used the coarea formula in the Euclidean space (see e.g. [70, Theorem
18.1]). Moreover since u∗N ∧ s ∈ LIPc(Ω

∗) we have

ˆ
RN

|D(u∗N ∧ s)|2dL N ≥ λ1(Ω
∗)

ˆ
RN

|u∗N ∧ s|2dL N = λ1(Ω
∗)

ˆ
X

|û|2dm = λ1(Ω
∗),

where in the first identity we used the equimeasurability of u and uN . Hence
´
|Dû|2dm´
X
û2dm

≥ (1− ε

2
)2λ1(Ω

∗). (5.10)
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Therefore we can plug (5.9) and (5.10) into (5.8) to get

´
X
|Du|2dm´
X
u2dm

≥
(1− ε

2 )
2λ1(Ω

∗) + C(X,N)

(2
√
δ′m(Ω))

2
N
A2

1 +A2 + 2A
,

where A :=
(´

X
ũ2dm

) 1
2 . We now minimize in A ∈ [0,∞). To do so we observe that the function

f(t) := a+bt2

1+t2+2t , a, b > 0, has derivative f ′(t) = 2(bt−a)
(1+t)3 . Hence f has a global minimum in [0,∞) at

t = a
b of value f(ab ) =

a
1+ a

b
. Therefore we obtain

´
X
|Du|2dm´
X
u2dm

≥
(1− ε

2 )
2λ1(Ω

∗)

1 + (1− ε
2 )

2λ1(Ω∗)(2
√
δ′m(Ω))

2
N C(X, N)−1

(5.1)
=

(1− ε
2 )

2λ1(Ω
∗)

1 + (1− ε
2 )

2(jN−2
N

)2(ωN2
√
δ′)

2
N C(X, N)−1

.

Choosing δ′ small enough, depending only on ε,N and X, such that

(1− ε
2 )

2

1 + (1− ε
2 )

2(jN−2
N

)2(ωN2
√
δ′)

2
N C(X, N)−1

> 1− ε,

we get the conclusion.

6 Proof of main theorem

In this part we prove Theorem 1.1 and Corollaries 1.2, 1.3 combining the results of all the previous
sections. One last ingredient, contained in the next statement, is a crucial inequality relating the
eigenvalue of an eigenfunction with the first Dirichlet eigenvalue of one of its nodal domains. This
can be seen as a generalization of Lemme 2 in Appendix D of [17] proved there in the setting of
Riemannian manifolds. Recall also that eigenfunctions of the Laplacian in PI spaces are continuous
(see Theorem 2.17).

Proposition 6.1. Let (X, d,m) be a bounded infinitesimally Hilbertian PI space, U ⊂ X be open
and f be a Dirichlet or Neumann eigenfunction of the Laplacian in U of eigenvalue λ. If Ω ⊂ U is
a nodal domain of (the continuous representative of) f , then Ω is open in X and it holds

λ1(Ω) ≤ λ =

´
Ω
|Df |2 dm´
Ω
f2 dm

. (6.1)

In [17] (in Riemannian setting) it is shown that the first in (6.1) is actually an equality in the
Dirichlet case, however we do not know whether the same is true also in this more general setting.
Nevertheless (6.1) will be sufficient for our purposes.

Specializing Proposition 6.1 to the Euclidean setting we also obtain the following result which,
even if not needed in the sequel, we believe it is interesting on its own. In particular it extends
previous results in [69, Proposition 1.7] and [15, Lemma 3.3], where the same was proved respectively
for C1,1 domains and for planar piecewise smooth domains.

Corollary 6.2 (Green’s formula for eigenfunctions). Let Ω ⊂ RN be a uniform domain and let f
be a Neumann eigenfunction in Ω of eigenvalue λ. Then for every U nodal domain of f it holds

ˆ
U

|∇f |2 dL N = λ

ˆ
U

f2dL N .

Proof. Let f be as in the statement and U be a nodal domain of f. From Corollary 3.10 there
exists f̃ ∈ L2(Ω,L N ) such that f̃ = f L N -a.e. in Ω and such that f̃ is an eigenfunction for the
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Laplacian of eigenvalue λ in the m.m.s. (Ω, d|Ω,L
N |Ω) where d denotes the Euclidean distance

(recall also Remark 2.7). Moreover (Ω, d|Ω,L
N |Ω) is an infinitesimally Hilbertian PI space thanks

to Theorem 3.9. Hence f̃ is continuous in Ω (recall Theorem 2.17). Proposition 3.12 then says that
the set φ(U) := U ∪ (∂U ∩ ∂Ω \ {f = 0}) is a nodal domain of f̃ . Finally by Lemma 3.6 we have
L N (∂Ω) = 0. Therefore applying Proposition 6.1 to (X, d,m) = (Ω, d|Ω,L

N |Ω) and f̃ we get

λ

ˆ
U

f2 dL N = λ

ˆ
φ(U)

(f̃)2 dL N (6.1)
=

ˆ
φ(U)

|Df̃ |2 dL N =

ˆ
U

|Df̃ |2 dL N =

ˆ
U

|∇f |2 dL N ,

where the last equality follows by Theorem 3.8. This concludes the proof.

Proof of Proposition 6.1. Let f be a Dirichlet or Neumann eigenfunction of the Laplacian in U of
eigenvalue λ and let Ω be one of its nodal domains. Since (X, d,m) is a PI space, the metric space
(X, d) is locally connected, hence by Lemma 2.2 we have that Ω is open and that either f > 0 or f < 0

in Ω. Assume without loss of generality that f is positive in Ω. Define ψn :=
(
f − 1

n

)+
χΩ and note

that d(supp(ψn),X\Ω) > 0.We claim that ψn ∈W 1,2
0 (Ω). To see this let φ ∈ LIP(R) satisfy |φ| ≤ 1,

φ(t) = 0 for t ≤ 0 and φ(t) = 1 for t ≥ d(supp(ψn),Ω
c). Then ψn =

(
f − 1

n

)+
φ(d(·,X \ Ω)) with(

f − 1
n

)+
in W 1,2(X) from the chain rule (see (2.1)) and φ(d(·,X \ Ω)) ∈ LIP ∩ L∞(X). Therefore

the Leibniz rule for the minimal weak upper gradient (see (2.1)) implies that ψn ∈ W 1,2(X). Since
d(supp(ψn),X \ Ω) > 0, the claim follows (recall (2.9)). From (2.16) we have

λ1(Ω) ≤ lim
n→+∞

´
Ω
|∇ψn|2 dm´
Ω
ψ2
n dm

. (6.2)

Now we observe that (ψn)n∈N converges to fχΩ in L2(m). Indeed

lim
n→+∞

ˆ
Ω

|ψn − f |2 dm ≤ lim
n→+∞

1

n2
m (Ω) = 0.

Moreover

lim
n→+∞

∥|Dψn|∥2L2(X) = lim
n→+∞

ˆ
Ω∩{f> 1

n}
|Df |2 dm =

ˆ
Ω

|Df |2 dm,

where the first equality follows from the locality of the weak upper gradient and the second by
monotone convergence theorem. This implies that fχΩ ∈ W 1,2(X) (see e.g. Proposition 2.1.19
in [51]). Again by the locality of the weak upper gradient we have

∥|D(fχΩ)|∥L2(X) = ∥|Df |∥L2(Ω),

and so {ψn}n∈N converges to fχΩ in W 1,2(X). In particular

lim
n→+∞

´
Ω
|∇ψn|2 dm´
Ω
ψ2
n dm

=

´
Ω
|∇f |2 dm´
Ω
f2 dm

.

The result follows once we observe that ´
Ω
|∇f |2 dm´
Ω
f2 dm

= λ. (6.3)

To see this by definition of eigenfunction (both in the Dirichlet case and the Neumann case) and
since supp(ψn) ⊂ Ω one has

−
ˆ
Ω

∇f · ∇ψn dm = λ

ˆ
Ω

fψn dm , ∀n ∈ N,
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from which (6.3) follows passing to the limit and noting

lim
n→+∞

∣∣∣∣ˆ
Ω

∇f · ∇ψn dm−
ˆ
Ω

∇f · ∇f dm
∣∣∣∣ ≤ lim

n→+∞
∥|Df |∥L2(Ω)∥|D(ψn − fχΩ)|∥L2(Ω) = 0,

where we used the bilinearity of the scalar product, (2.6) and that |D(ψn − f)| = |D(ψn − χΩf)|
m-a.e. in Ω, by the locality.

Before proving Theorem 1.1 we give a precise definition of the nodal domain counting function
which appears in its statement.

Definition 6.3 (Nodal domains counting functions). Let (X, d,m) be an infinitesimally Hilbertian
PI space and Ω ⊂ X be a uniform domain (resp. bounded open set). The nodal domain counting
function MN

Ω : N → N ∪ {+∞} (resp. MD
Ω : N → N ∪ {+∞}) is given by

MN
Ω (k) := sup{M(u) : u Neumann eigenfunction in Ω of eigenvalue λNk (Ω)},(

resp. MD
Ω (k) := sup{M(u) : u Dirichlet eigenfunction in Ω of eigenvalue λDk (Ω)}

)
, k ∈ N,

where {λNk (Ω)}k (resp. {λDk (Ω)}k) are the eigenvalues of the Neumann (resp. Dirichlet) Laplacian
in Ω, which has discrete spectrum by Corollary 3.10 (resp. by observation (2.21)), and where M(u)
is the number of nodal domains of the continuous representative of u in Ω, which exists by Theorem
2.17.

We are finally ready to prove the main result of the note. We will first prove the Neumann case
and then the Dirichlet case. The proofs are essentially identical with our approach, but to avoid
confusion we decided to keep them separated.

Proof of Theorem 1.1 in the Neumann case. Consider the m.m.s. (Ω, d|Ω,m|Ω) and observe that by

Theorem 3.2 it satisfies the hypotheses of Theorem 5.3 (see also Remark 5.4). Fix ε ∈ (0, 1), η > 0
and let δ = δ(Ω, ε,N, η) > 0, δ′ = δ′(Ω, ε,N) > 0 and Uε,η ⊂ Ω be the constants and the set given
by Theorem 5.3 applied to (Ω, d|Ω,m|Ω). Recall that m(Uε,η) ≤ η.

Let u ∈ W 1,2(Ω) be a Neumann eigenfunction in Ω of eigenvalue λNk (Ω) > 0. Let {Ωi}M(u)
i=1 an

enumeration of the nodal domains of its continuous representative. Note that the nodal domains
are countable because they are open, since (X, d) is locally connected (recall Lemma 2.2). However
a priori it could be that M(u) = +∞. Thanks to Corollary 3.10, we know that there exist ũ ∈
W 1,2(Ω, d|Ω,m|Ω) eigenfunction of the Laplacian in (Ω, d|Ω,m|Ω) of the same eigenvalue λNk (Ω) and

such that ũ|Ω = u. By Theorem 2.17 it holds that ũ has a continuous representative in Ω. Hence

thanks to Proposition 3.12 we deduce that ũ has the same number of nodal domains {Ω̃i}i=1,...,M(u),

where Ω̃i ⊂ Ω. Thanks to Theorem 3.2 we can now apply Proposition 5.1 and Proposition 6.1 to
the m.m.s. (Ω, d|Ω,m|Ω) and deduce that for any i ∈ 1, . . . ,M(u) it holds

λNk (Ω) ≥ λ1(Ω̃i), λ1(Ω̃i) ≥
C(Ω)

m(Ω̃i)
2
N

, (6.4)

where λ1(Ω̃i) is the first eigenvalue of the Dirichlet Laplacian computed in the m.m.s. (Ω, d|Ω,m|Ω)
(see Definition 2.15) and where C(Ω) > 0 is a constant depending only on Ω and N. Combining the
two inequalities above we deduce that M(u) < +∞ and that

M(u)

(
C(Ω)

λNk (Ω)

)N
2

≤
M(u)∑
i=1

(
C(Ω)

λ1(Ω̃i)

)N
2

≤
M(u)∑
i=1

m(Ω̃i) ≤ m(Ω),

because the sets Ω̃i are pairwise disjoint. We define three sets:

S1 := {i ∈ 1, ...,M(u) : m(Ω̃i) ≥ δ} ,
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S2 := {i ∈ 1, ...,M(u) : m(Ω̃i ∩ Uε,η) ≥ δ′m(Ω̃i)} ,

S3 := {i ∈ 1, ...,M(u) : m(Ω̃i) ≤ δ,m(Ω̃i ∩ Uε,η) ≤ δ′m(Ω̃i)} .

Notice that S1 ∪ S2 ∪ S3 = {1, ...,M(u)}. Clearly

#S1 ≤ m(Ω)

δ
. (6.5)

On the other hand, similarly as above, using (6.4)

#S2 · δ′
(
C(Ω)

λNk (Ω)

)N/2

≤
∑
i∈S2

δ′m(Ω̃i) ≤
∑
i∈S2

m(Ω̃i ∩ Uε,η) ≤ m(Uε,η) ≤ η ,

and thus

#S2 ≤
(
λNk (Ω)

C(Ω)

)N
2 η

δ′
. (6.6)

Finally by Theorem 5.3 it holds that λ1(Ω̃i) ≥ λ1(Ω
∗
i )(1− ε) for every i ∈ S3, where Ω∗

i := Br(0) ⊂
RN is the ball satisfying m(Ω̃i) = L N (Ω∗

i ). Therefore for every i ∈ S3

λNk (Ω)
(6.4)

≥ λ1(Ω̃i) ≥ λ1(Ω
∗
i )(1− ε)

(5.1)
= (1− ε)

(
ωN

L N (Ω∗
i )

) 2
N

j2(N−2)
N

= (1− ε)
αN

m(Ω̃i)
2
N

,

where we have put αN := ω
2/N
N j2(N−2)

N

. This leads to

#S3 ≤
(

λNk (Ω)

(1− ε)αN

)N
2

m(Ω). (6.7)

Combining (6.5), (6.6) and (6.7) we reach

M(u)

k
≤ #S1 +#S2 +#S3

k
≤ m(Ω)

kδ(Ω, ε,N, η)
+
λNk (Ω)

N
2

k

1

C(Ω)
N
2

η

δ′(Ω, ε,N)
+

(
λNk (Ω)

(1− ε)αN

)N
2 m(Ω)

k
.

Note that the right hand side is independent of u, hence we can take the supremum among all
Neumann eigenfunctions in Ω of eigenvalue λNk (Ω) and obtain

MN
Ω (k)

k
≤ m(Ω)

k

1

δ(Ω, ε,N, η)
+
λNk (Ω)

N
2

k

1

C(Ω)
N
2

η

δ′(Ω, ε,N)
+

(
λNk (Ω)

(1− ε)αN

)N
2 m(Ω)

k
,

where MN
Ω (k) is as in Definition 6.3. Passing to the lim as k → +∞, using (3.2),

lim
k→+∞

MN
Ω (k)

k
≤ (2π)N

ωNm(Ω)

1

C(Ω)
N
2

η

δ′(Ω, ε,N)
+

(2π)N

ωN

1

((1− ε)αN )
N
2

, (6.8)

sending first η → 0 and then ε→ 0 (note that both δ′ and ε are independent of η) we conclude that

lim
k→+∞

MN
Ω (k)

k
≤ (2π)N

ωNα
N
2

N

=
(2π)N

ω2
N j

N
(N−2)

N

< 1,

where for the last inequality we refer to [17, Lemme 9].

Proof of Theorem 1.1 in the Dirichlet case. Let u ∈ W 1,2
0 (Ω) be a Dirichlet eigenfunction in Ω of

eigenvalue λDk (Ω). Without loss of generality we can assume that (X, d,m) satisfies the hypotheses
of Theorem 5.3. Otherwise we can take a uniform domain U ⊂ X such that Ω ⊂ U (which exists
by [83]) and replace (X, d,m) with (U, d|U ,m|U ), which by Theorem 3.2 satisfies the hypotheses of
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Theorem 5.3. Moreover it is a direct verification that the function u ∈ L2(Ω) remains a Dirichlet
eigenfunction in Ω of eigenvalue λDk (Ω) also in the new space (U, d|U ,m|U ). Indeed W 1,2

0 (Ω) viewed

as a subset of L2(Ω) in the space (X, d,m) coincides with W 1,2
0 (Ω) viewed as a subset of L2(Ω) in

the space (U, d|U ,m|U ), and the corresponding minimal w.u.g. also coincide (see [9, Prop. 6.4]).

Fix now ε ∈ (0, 1), η > 0 and let δ = δ(X, ε,N, η) > 0, δ′ = δ′(X, ε,N) > 0 and Uε,η ⊂ X be
the constants and the set given by Theorem 5.3 applied to (X, d,m). Recall that m(Uε,η) ≤ η. From
here the proof proceeds almost verbatim as in the Neumann case, by considering the sets

S1 := {i ∈ 1, ...,M(u) : m(Ωi) ≥ δ} ,

S2 := {i ∈ 1, ...,M(u) : m(Ωi ∩ Uε,η) ≥ δ′m(Ωi)} ,

S3 := {i ∈ 1, ...,M(u) : m(Ωi) ≤ δ,m(Ωi ∩ Uε,η) ≤ δ′m(Ωi)},

where {Ωi}M(u)
i=1 is an enumeration of the nodal domains of the continuous representative of u, and

then exploiting the inequalities

λNk (Ω) ≥ λ1(Ωi), λ1(Ωi) ≥
CX

m(Ωi)
2
N

, for all i ∈ 1, . . . ,M(u)

which hold by Proposition 5.1 and Proposition 6.1 (that we can apply again by Theorem 3.2),
together with

λ1(Ωi) ≥ λ1(Ω
∗
i )(1− ε), for all i ∈ S3,

(Ω∗
i := Br(0) ⊂ RN being the ball satisfying m(Ωi) = L N (Ω∗

i )) that holds by Theorem 5.3.

For completeness, we conclude with the proofs of the Corollaries 1.2 and 1.3, even if they are
essentially already included in Theorem 1.1.

Proof of Corollary 1.2. We apply Theorem 1.1 with Ω = X. Notice that the choice is admissible
since X is assumed to be compact, and thus Ω is trivially a uniform domain inside X. From the
discussion in Section 2.1 we know that ∆ = ∆N in this situation, and thus the result follows.

Proof of Corollary 1.3. The metric measure space (RN , | · |,HN ), where HN is the N -dimensional
Hausdorff measure is a non-collapsed RCD(0, N) (recall Remark 2.26). Hence the result follows
applying Theorem 1.1, recalling also the compatibility between Neumann eigenfunctions in the
metric setting and the usual ones (see Remark 2.7).
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