SUFFICIENT CONDITIONS FOR THE EXISTENCE OF
MINIMIZING HARMONIC MAPS WITH AXIAL SYMMETRY
IN THE SMALL-AVERAGE REGIME
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ABSTRACT. The paper concerns the analysis of global minimizers of a Dirichlet-type en-
ergy functional defined on the space of vector fields H'(S, T), where S and T are surfaces
of revolution. The energy functional we consider is closely related to a reduced model
in the variational theory of micromagnetism for the analysis of observable magnetization
states in curved thin films. We show that axially symmetric minimizers always exist,
and if the target surface T is never flat, then any coexisting minimizer must have line
symmetry. Thus, the minimization problem reduces to the computation of an optimal
one-dimensional profile. We also provide a necessary and sufficient condition for energy
minimizers to be axially symmetric.

MATHEMATICS SUBJECT CLASSIFICATION. 35A23, 35R45, 49R05, 49505, 82D40.
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1. INTRODUCTION AND MOTIVATION

For given surfaces of revolution S, 7 C R3 around the e3 axis, we consider the Dirichlet-type
energy defined for every m € H'(S,T) by

e(m) = [ [Vm(©)Pds + [ gm(©)-a©)ds+ [ [m)s x eafuR@)de, (L)

where ¢ : R — R, is an anisotropic potential, a : S — R? is a prescribed vector field that
can be either axially symmetric or axially antisymmetric (see section 2.1.3), (m)g, is the

average of m along the circle of latitude S¢ := (£ - e3)es +S'(¢ - e1), ie.,

1
(m)s, Sel s,
and w : S — Ry is a generic measurable function that weights the strength of the tendency
of (m) e to be aligned along the unit vector es. Detailed hypotheses on the regularity of
the involved quantities, as well as precise definitions of the terms employed, will be given in
section 2. Here, we only want to point out that the term vector field is used interchangeably
with map, i.e., no tangential requirement is implicit in its use.

m(§)dg, (1.2)
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The main aim of this paper is to show that under mild conditions on the weight function
w, every global minimizer of &, has axial symmetry. When a is axially symmetric, a par-
ticular case of our findings gives a necessary and sufficient condition for energy minimizers
to be axially symmetric: the existence of axially symmetric energy minimizers is equiva-
lent to the existence of axially null-average minimizers, i.e., to the existence of minimizers
m € HY(S,T) such that (m)s, x e3 =0 for every § € S (see section 4 and Theorem 3 in
there). This characterization also holds when the last term in (1.1) is absent. Note that
while it is always the case that axially symmetric configurations are axially null average,
minimality allows for the converse implication.

In what follows, to shorten notation and enhance readability, we set

Dy(m)i= [ [Vm(©Fds, Astm) = [ g(m(€) - a(©)de, (1.3)
and
Ps(m) = [ |(m)s, x es u2(€)d (14)
so that the energy functional we are interested in takes the form
£.(m) = Ds(m) + As(m) + Ps(m). (L5)

Our investigations fit with that thread of results concerned with the study of harmonic
maps with symmetries. Indeed, when S is a surface with boundary, our analysis applies to
the existence of axially symmetric solutions of the Euler-Lagrange equations of &,, which
are harmonic-type equations between surfaces of revolution.

Also, when T := S?, the energy functional &, is closely related to a reduced model in
the variational theory of micromagnetism, a model relevant for the description of observ-
able magnetization states in curved thin films. As explained in section 1.2, the functional
&, can be considered a model of the micromagnetic energy functional in the asymptotic
regime of curved thin films where, in addition to magnetocrystalline and shape anisotropies,
higher-order magnetostatic effects are taken into account through the term Pg, which fa-
vors configurations that are Se-null-average in the perpendicular component. According
to our findings, micromagnetic ground states always have axial symmetry in the curved
thin-film regime and under the influence of nonnegligible higher-order magnetostatic ef-
fects. The conclusions we reach can be applied to other significant physical systems, e.g.,
to understand the existence of symmetric textures in the Oseen-Frank theory of nematic
liquid crystals [23, 34].

1.1. Outline. In the next section 1.2, we briefly present the physical context that led us to
the investigation of (1.1), so to give the reader a broader perspective on the relevance of the
energy functional &,. In section 1.3, after a brief review of earlier research on the symmetry
of harmonic maps, we discuss previous studies on the symmetry properties of minimizers
of the micromagnetic energy functional in the curved thin film regime. In section 2, we
describe the rigorous setting of the problem and detail the contributions of the present
work. Proofs are given in section 3. In section 4, we present further results and some
applications to the existence of axially symmetric solutions of elliptic PDEs.

1.2. Physical context. Over the last decade, considerable experimental and theoretical
research has been done on the physics of ferromagnetic systems with curved shapes. One of
the main reasons is that the curved geometry can lead to effective antisymmetric interactions
and, as a result, to the consequent formation of magnetic skyrmions, i.e., chiral spin textures
with a non-trivial topological degree, even in the absence of spin-orbit coupling mechanism,
responsible for Dzyaloshinskii-Moriya interactions (DMI). The evidence of these states



MINIMIZING HARMONIC MAPS WITH AXIAL SYMMETRY 3

sheds light on the role of geometry in magnetism: magnetic skyrmions can be stabilized by
curvature effects only, in contrast to the planar case where DMI is required [31].

Also, recent advances in the nanofabrication of magnetic hollow particles have sparked
interest in these geometries, which lead to artificial materials with unexpected characteris-
tics and diverse applications spanning from logic devices to biomedicine [40].

From a mathematical point of view, the analysis of mesoscale magnetism in curved
geometry can be carried out within the framework of the variational theory of micro-
magnetism [8,16,27], where the order parameter is the magnetization m subject to the
saturation constraint of being S?-valued. In this framework, the energy term Ag accounts
for the so-called crystal and shape-anisotropy effects. Indeed, it is well-known that when
the ferromagnet occupies a thin shell whose thickness is significantly smaller than the
size of the system, the dominant energy contribution is encapsulated in the energy func-
tional [9,13,17,22]

Foime H'(S,5%) o [ [Vm(@Pde + r [ (m(©): n(§)de, (1.6)
S S

where S is the surface generating the hollow nanoparticle by extrusion along the normal
direction n, and x € R is an effective anisotropy parameter accounting for both shape and
crystal anisotropy. For large x > 0, tangential vector fields are energetically favored; for
large K < 0, i.e., when perpendicular crystal anisotropy prevails over shape anisotropy,
energy minimization prefers normal vector fields. Note that, from the variational point of
view, the expression of F,; is nothing but a particular case of the energy functional &, when
T :=§?% a(¢) = ng(€) and g(s) := ks? if K > 0 and g(s) := |s|(1 — s?) if K < 0. In
other words, our energy term Ag in (1.3) accounts for possible generalizations of the second
term in (1.6). Other typical expressions of a and g issuing from the variational theories of
micromagnetics and nematic liquid crystals are a(§) := ng(§), a(§) := np(€), a(§) = es,
or g(s) = A(1 — 52)? for some ) € R,.

In the language of the variational theory of micromagnetism, we can think of the energy
term Pg as accounting for higher-order effects in the long-range magnetic dipole-dipole
interactions. Indeed, it is well-known that in the classical three-dimensional setting, the
magnetostatic self-energy associated with a distribution of magnetization m € H!(2,R?)
in a domain Q C R3, favors solenoidal vector fields, i.e., divergence-free vector fields that
are tangential to the boundary [7,8]. From the variational point of view, this means that
the magnetostatic self-energy is minimized when

divm=0 inQ, m- -ngg=0 on . (1.7)

Now, as shown in [9,13,22], but also apparent from (1.6), at the leading order in the energy
reduction from 3d to 2d, only the tendency of being tangential to the boundary is preserved.
At the same time, any aspect of the divergence-free conditions is lost. To explain this last
point better, we recall that any vector-field m € H'(Q,R?) satisfying (1.7) is necessarily
null-average in Q. Indeed, for i € {1, 2,3}, we have div (mx;) = z;div m+m-e;; therefore, if
m satisfies (1.7), then (m-e;)q = (div (mz;))q = 0, because of the divergence theorem and
the tangential boundary condition on m. Despite being a simple mathematical consequence
of (1.7), the favoring of null-average configurations is often the main qualitative property
used to describe the physical effect of the demagnetizing field (see, e.g., [5]).

Maintaining some of these structural consequences of (1.7) in the passage from 3d to
2d would be desirable, and this is the main motivation for considering the term Pg in our
analysis: to keep track of some of the qualitative features of the demagnetizing field that
get lost at the leading order in the energy expansion. Indeed, under suitable symmetry
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assumptions, we can infer something stronger than (m)qg = 0. Specifically, let Q5 be an
open tubular neighborhood, of sufficiently small thickness § > 0, of a smooth surface of
revolution S. For simplicity, we assume that ng(§) # +es except possibly for a finite set of
points in S (compare it with never flat condition in Definition 2). Let J5 be the projection
of 25 onto the ez-axis and, for every h € Js, let ¥, be the horizontal section of 25 at height
h. We claim that if m satisfies (1.7), and m - e3 depends only on the vertical coordinate
corresponding to es, then for every h € Js there holds (m x eg>25’h = 0. In fact, using
div (maz;) = m - e; with i € {1,2}, by the divergence theorem we have

/ m(z) - e;dz = d3(m - 63)(h)/ x - e;dr + om(o) - vas,, (0)do =0
Ssn X5 0%s.n '
because, as we are going to show next, both integrals on the right-hand side vanish. By
limiting arguments it follows that (m x e3)s, = 0 for every £ € S, and this is the hard
contraint version of the Pg term in (1.1).

The first term in the above formula vanishes because, by construction, s is an annu-
lus. To show that also the second integral vanishes, we begin observing that nsq, (o) is in
the plane spanned by vps; , (o) and e3 and, therefore, given that m satisfies (1.7), we have

0 =m - npo; = (Nag; - Voas,, ) (M - Vos,,) + (naq, - e3)(m - e3).
Since ng(£) # +es except possibly for a finite set of points in S, the previous relation
implies that on 035} we have

Nopns - €3)(M - €3
s, = — 0% es)m es),

noQs Vo, ,

However, the right-hand side of the previous relation depends only on h and not on the
specific point of 9Xs. It follows that

/ om(o) - Voss), (0)do =m - Voss, / o;do = 0.

0%sp, %5,

Although the argument fails when one drops the assumption that m - es depends only on
the vertical direction ez, what we pictured motivates us enough to explore the impact that
a soft penalization term like Pg in (1.4) has on the energetic landscape.

1.3. State of the art. The minimization problem for Dirichlet-type energy function-
als between manifolds naturally arises in differential geometry in the study of unit-speed
geodesics and minimal submanifolds [19,39]. It also occurs in nonlinear field theories every
time local interactions are brought into the realm of elastic deformations. Prominent exam-
ples are the elastic free energy in the Oseen-Frank theory of nematic liquid crystals [3,41],
symmetric and antisymmetric exchange interactions in the variational theory of micromag-
netism [8, 27], and M-theory [1,4]. The systematic treatment gained impetus after the
seminal work of Eells and Sampson [20], who showed that under certain technical condi-
tions on the base and target manifolds, every continuous map is homotopic to a harmonic
map.

The existence of minimizing harmonic maps with symmetry has been the topic of sev-
eral studies, typically set around specific geometries. In [36,37], it is shown that for any
symmetrical domain in R? and any symmetrical boundary datum that takes values in a
closed hemisphere, minimizing harmonic maps must be radially symmetric. In [12], using
projection and averaging procedures introduced in [11], Coron and Helein study harmonic
diffeomorphisms between the Euclidean n-ball (minus a finite number of points) and a
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Riemannian manifold. They show that under some conditions on the involved parame-
ters, there always exists a smooth SO(3)-equivariant map defined on B? with values in
E3(a) == {(z,y) € R* xR : |z|?> + y*/a? = 1} improving some earlier results of Baldes [2].
In [24], Hardt, Lin, and Poon investigated the existence of S?-valued axially symmetric
harmonic maps with prescribed singularities (see also [24,25] and [32]).

The literature on the subject is vast, and only a systematic review could give due
recognition to the results obtained over the years. Some references are available in [6, 35].
Here, we limit ourselves to the literature intimately related to our investigations on the
energy functional &, and we refer the reader to [19,26,30,39] and the references therein
for further results on the topic.

Magnetic hollow nanoparticles usually are of the shape of a surface of revolution, and
symmetry properties of the ground-states are usually derived in specific geometries. For
spherical thin films, i.e., when S = S%, we showed in [18] that when x < —4, the nor-
mal vector fields £n are the only global minimizers of the energy functional F, defined
in (1.6). The interest in results of this kind is in the topological remark that +n carry
different skyrmion numbers because of deg(+n) = +1 —see also [33] for stationary states
topologically distinct from the ground state. In physical terms, this translates into their
robustness against thermal fluctuations and external perturbations with far-reaching con-
sequences for modern magnetic storage technologies [21]. The vector fields +n have full
rotational symmetry, and their local stability persists up to x < 0. They lose stability for
% > 0 when, therefore, new ground states have to appear. No more than this is currently
known. The reason is that when x > —4, the energy landscape of F, is very hard to
describe analytically, and it is unclear which aspects of the symmetry of the problem are
retained in the shape of minimizers. Numerics suggest that when x > 0, the energy Fjx
exhibits magnetic states with skyrmion numbers 0, 1, all having axial symmetry [28,29].
However, no mathematical evidence of this has been established. Our paper aims to gain
some insight into the question.

In [14], it is shown that when S = S! x [0, 1], the S!-valued normal vector fields 4+n are
the unique ground state when provided that « is sufficiently negative (kx < —3), but almost
nothing is currently known when x > —3. The only thing one can say is that if the ground
states are, as we expect, in-plane, then global minimizers lose axial symmetry because they
are no more null average (see [14, Figure 5] and [10]).

However, the axial symmetry of the minimizers certainly fails, for example, when S =
D is the unit disk in R?. Indeed, on the one hand, as we show in [15], the absence of
curvature favors radial ground states rather than axially symmetric, i.e., minimizers satisfy
the relation m(z) = m(|z|) for every x € D. On the other hand, our proofs still work if
one adds to the expression of &, a penalization on the boundary as in [15]. Therefore, we
conclude that in the generality we are treating the problem, it is essential to consider the
term Pg to obtain the existence of axially symmetric minimizers regardless of the specific
choices of S and T in the class of surfaces of revolution.

2. CONTRIBUTIONS OF THE PRESENT WORK

2.1. Notation and setup. The main results of the present work concern the symmetry
properties of energy minimizing maps. To state our results precisely, we need to set up the
framework, the mathematical notation, and the terminology used throughout the paper.
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2.1.1. Sobolev spaces on surfaces. For a given Cl-surface S C R?, we denote by H'(S,R?)
the Sobolev space of vector-valued functions defined on S endowed with the norm

Il sy = [ Imi@Pag + [ [Vm(©)de (2)

Here, V is the tangential gradient of m at € € S, and |[Vm(¢)|? = 222,10 (om(&)? if
(11(£), po()) is an orthonormal basis of T¢S. Also, given two surfaces S, T C R?, we write

H'(S,T) for the metric subspace of H'(S, R3) made by vector-valued functions with values
inT.

2.1.2. Surfaces of revolution. In what follows we denote by I C R a closed interval, by
(e1, ez, e3) the standard ordered basis of R?, and by AT (¢) the rotation matrix about the
es-axis given by

cos¢p —sing 0
AT(¢) := ( sin¢g cos¢ 0 ) (2.2)
0 0 1

By a regular simple curve, we mean the image of a C*-map ~ : I — R3 such that 4(t) # 0 for
every t € I, and with no self-intersections, i.e., such that the only possible loss of injectivity
in «y arises at the endpoints of I, case in which the curve closes into a loop. As customary,
we often refer to v as a curve rather than just its image.

Given a regular simple curve v : t € I — y(t) = (z(t),0,2(t)) € R3, with 2(¢) > 0, the
surface of revolution S C R? generated by + is the image of the parameterization defined
for0<¢p<2mrandt el by

&(g,1) = AT ()V(1). (2.3)
In more intrinsic terms, given a regular simple curve 7 in the z, z-plane, which lies at a
nonnegative distance from the es-axis, the surface of revolution S generated by ~ is the set
S := Ugey((€-e3)es +S'(€-e1)), where S'(r) is the circle in R? x {0} centered at the origin
and of radius 7 > 0. For our purposes, it is convenient to denote by S¢ := (£-e3)ez+S'(¢-e1)
the circle of latitude at £ € S. After that, we have that

S = UEE'ysf' (2.4)

Given that v is defined on a closed interval, the resulting surface of revolution is always
topologically closed and possibly with a boundary (see Figure 1).
The tangent space to S at £(¢,t) is generated by the two vectors

To(0,1) = 0p€(,1) = DA ()Y(D), (2.5)
Ti(,1) = 0(,1) = AT(9)F (D). (2.6)

Given that A(¢)6¢AT(¢)U = e3 x v for every v € R3, one easily gets that
To(0,1) - Tu(, ) = A(P)Dp AT (9)7(t)-4(t) = (e3 x (1)) -4(t) = (v(t) x (1)) -e3 = 0, (2.7)

because ~y(t) x 4(t) is directed along ey. Thus, the coordinate system is orthogonal but, in
general, not orthonormal. Indeed, the metric coefficients are given by

bi(t) := 7ol = lz(®)],  ba(t) == [7e| = [(D)]- (2.8)

Since T4(¢,t) and T4(¢,t) are orthogonal, the area element on S assumes the form

g(t) = [0€ x 0i&| = |T(¢,1)] - |T4(0, )| = b1(2) - ba(2)- (2.9)
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FI1GURE 1. Given a regular curve v in the x,2-plane, which lies at a nonnegative distance
from the es-axis, the surface of revolution S generated by < is the set S := UgeS¢, where
Se := (€ - e3)es + SH(E - eq) is the circle of latitude at £ € S. The resulting surface can have a
boundary or not.

Note that the area element in (2.9) depends only on the ¢ variable and, by the regularity
hypotheses in Remark 1, we have that \/g(t) > 0 for every ¢ € I with the possible exception
of the two boundary points of v if v touches the es-axis.

Remark 1. (On the regularity of surfaces of revolution) Throughout the paper, we always
assume that the generated surface of revolution S is regular, i.e., that the parameterization
(2.3) is of class C*', and that the induced area element (2.9) never vanishes. Now, since the
generating curve -y is regular, the surface of revolution S induced by 7 is certainly regular
whenever o, := infycr (t) > 0. Instead, if o, = 0, we assume, as in the case of the meridian
arc generating S?, that ~ touches the es-axis perpendicularly and (at most) at two distinct
points so that a smooth surface of revolution results. In what follows, whenever we name a
surface of revolution, it is always understood that the previous regularity assumptions are
met.

2.1.3. Symmetric vector fields. The results of our paper guarantee the existence of mini-
mizers with specific symmetry properties. The notion of an axially symmetric vector field
is standard.

Definition 1. With S,T C R3 being two surfaces of revolution, we say that a vector field
u: S — T is axially symmetric when the following property holds:

u(A'(9)¢) = AT (Pu(§) Yo ER,VE €S, (2.10)
We say that u is axially antisymmetric if
u(AT(9)§) = A(P)u(§) Vo ER,VEES. (211)

We say that a vector field u has line symmetry if for every fired & € S one has either
u(AT(9)€) = AT(P)u(§) for every ¢ € R or u(A(9)€) = A()u() for every ¢ € R.

Remark 2. Surfaces of revolution are G-sets with respect to the action of the group G
of rotations around the es-axis. In the language of transformation groups, an axially
symmetric vector field can be equivalently defined as an equivariant map with respect
to the G-sets S and T, where G is the group of rotations around the es-axis. Similarly, one
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could define an axially antisymmetric vector field as an equicontravariant map with respect
to the G-sets S and T'.

In local coordinates, and with the convenient abuse of notation u(¢,t) := (u o &)(¢,t),
the vector field w : S — T is axially symmetric if, and only if, u(¢,t) = AT (¢)u(0,t) for
every (¢,t) € R x I, and is axially antisymmetric if, and only if, u(¢,t) = A(¢)u(0,t) for
every (¢,t) € Rx . Instead, in general, if u has line symmetry, then we are still allowing for
the existence of t; # to € I such that u(e,t1) = AT(¢)u(0,t1) and u(ep,ts) = A(¢)u(0,t2)
for every ¢ € R.

Note that the class of axially symmetric vector-field is essentially disjoint from the class
of axially antisymmetric vector fields. Indeed, if AT(¢)a(t) = A(¢)B(t) for T-valued profiles
a and B, then necessarily a = 8 and « is directed along the es-axis. Also, note that the
vector field v(¢,t) = A(¢)a(t) is axially antisymmetric if, and only if, u(¢,t) = v(—¢,t) is
axially symmetric.

We provide some examples to help clarify the notion of line symmetry. Suppose v: I —
R3 is the image of the curve generating the surface of revolution S and « : I — T is a smooth
vector field along «. The vector field w : S — T defined in local coordinates by wu(¢p,t) =
AT (p)a(t) is axially symmetric. The vector field v : S — T defined in local coordinates
by v(¢,t) = A(¢)a(t) is axially antisymmetric. Axially symmetric and antisymmetric
vector fields belong to the class of vector fields with line symmetries. However, there are
examples of vector fields with line symmetry that are neither axially symmetric nor axially
antisymmetric. For that, consider the surface of revolution S = 2D given by the disk of
radius two centered at the origin. If v : D — T is any axially antisymmetric vector field
such that v|gp = e3, and u : 2D\D — T is any axially symmetric vector field such that
ujgp = es, then the vector field w : 2D — T' obtained by gluing u and v along ID is a
continuous vector field with line symmetry, which is neither axially symmetric nor axially
antisymmetric; the example is prototypical because it can be easily generalized to build
smooth line-symmetric vector fields defined on arbitrary surfaces of revolution that are not
axially symmetric nor axially antisymmetric.

We stress that for a given profile e : I — T, the axially symmetric vector field
AT(¢)a(t) and the axially antisymmetric vector field A(¢)c(t) generated by « are, in
general, different from the global point of view. For example (cf. Figure 2), for a : t € I
(sint,0,cost) € S?, I = [~1,1], the axially symmetric vector field AT (¢)a(t) has mirror
symmetry with respect to every plane orthogonal to S' x {0}, while the generated axially
antisymmetric vector field has only a finite number of mirror symmetries. However, note
that both share the same Dirichlet energy Dgs and the same energy Pg. In our setting, the
anisotropy term Ag is the only contribution that, from the variational point of view, can
ultimately favor one over the other.

2.2. Statement of main results. Even though our primary motivation comes from
curved thin-film structures, we formulate and prove our results for the case where the
target space is a generic surface of revolution rather than just S2. With the usual abuse of
notation, we set w(¢,t) = w(&(¢,1)), (¢,t) € [0,27] x I, and, for every ¢t € I we introduce
the circular integral weight

2 L 2m 2
W2(1) ._/0 W26, £)do. (2.12)

We recall that the metric coefficient h;(¢) := |x(¢)| measures the distance of the curve ~
generating .S from the es-axis or, equivalently, the radius of the circle of latitude S, ;). The
first result of our paper is stated in the following theorem.
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(1)

t

m(¢,t)=AT(¢)7(t) m(o,t) = A($)y(t)

FIGURE 2. Given the profile v : t € I + (sint,0,cost) € S, I = [~1, 1], the axially symmetric
vector field m(¢p,t) := AT(¢)y(t) (depicted on the left) and the axially antisymmetric vector
field m(¢,t) := A(¢)y(t) (depicted on the right) can look pretty different. Nevertheless, they
have the same Dirichlet energy.

Theorem 1. For given surfaces of revolution S,T C R3, we consider the energy functional
defined for every m € HY(S,T) by (cf. (1.1))

£.(m) = /S Vm(€)[2de + /S g(m(€) - a())de + /S [(m)s, x es2w?(€)de

with w : S — Ry a measurable weight such that sup,c;(h1(H)W(t)) < 400, g: R - Ry a
Lipschitz function and a : S — R3 a Lipschitz vector field.

If b1 ()W (t) > V27 for every t € I, the following assertions hold:

i. If the vector field a is axially symmetric, then any minimizer m € H'(S,T) of &, has
an azially symmetric representative, in the sense that if m is a minimizer of &, then
there exists an azially symmetric vector field w € H(S,T), built from m, such that
Eu(u) = Ey(m).

ii. If the vector field a is awially antisymmetric, then any minimizer m € HY(S,T) of &,
has an azially antisymmetric representative, in the sense that if m is a minimizer of
&, then there exists an azially antisymmetric vector field w € HY(S,T), built from m,
such that E,(u) = E,(m).

In any case, if a is azially symmetric or antisymmetric, when b1 ()W (t) > 21 any
minimizer m € HY(S,T) of &, is of the form

m(p,t) = o (t)coso + B (t)sing + n(t)es. (2.13)

for some ay,B, € H'(I,R?), n € H'(I,R), subject to the constraint of the resulting m
being T -valued.

Remark 3. Configurations of the form (2.13) belong to the class of vector fields satisfying the
property that (m ) se = 0 for every £ € S, and later on referred to as azially null-average
(see Definition 3). Thus, in particular, Theorem 1 says that any minimizer is axially null-
average provided that b1 (t)W (¢) > /27 for every t € I. When infc;(h1(£)W (t)) = /27 we
cannot conclude that minimizers are still axially null-average. However, it will be evident
from the proof (cf. (3.34)) that any minimizer must be of the (more general) form m(¢,t) =
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¢(t) + ay(t)cos¢ + B (t)sin ¢ for suitable a;, 8, € H'(I,R?), ¢ € H(I,R?) subject to
the constraint of the resulting m being T-valued.

Remark 4. The assumption of T" being a surface of revolution (around the ez-axis) cannot
be removed. Indeed, the entire argument is based on the closure property that if m is
T-valued, then AT (¢)m(&) € T for every ¢ € R and every ¢ € S. However, note that it is
not necessary to (and we do not) assume a to be T-valued. When we say that a : S — R3
is, e.g., axially symmetric, what we rigorously mean, that matches with Definition 1, is that
the image of a is included in a surface of revolution which can be different from 7.

Remark 5. As it will be apparent from the proofs, our arguments still work if one considers
a multivariable potential of the form g(m(&)-a1(§), m(§)-az2(§),...,m(§)-a,(§)) where the
vector fields (a;)!"; are either all axially symmetric or all axially antisymmetric. Also, as we
explain in Remark 6, our arguments extend to the case in which the surface of revolution
S has a boundary, and we look for minimizers in H'(S,T) satisfying prescribed axially
symmetric (or axially antisymmetric) Dirichlet boundary conditions. More generally, our
results still hold when the anisotropy energy Ag assumes the form

Ag(m) = /S g(m(€) - ar (€))de + /8 _Hm(o) - as(o))do,

i.e., when, as in [15], boundary penalizations are involved. To control the complexity of
the formulas, we do not treat these generalizations. However, it should be evident from the
arguments that our results cover these more general settings with no technical changes at
all.

The expression of the minimizer m in (2.13) allows for both axially symmetric and
antisymmetric vector fields. Indeed, if we set a(t) := a, (t) + n(t)es then we can express
the vector field m in (2.13) under the equivalent forms (cf. (3.40)-(3.41))

m(¢,t) = AT(g)a(t) + (sin 9)(BL () — e3 x a1 (1)), (2.14)
and

m(¢,t) = A(¢)a(t) + (sin@)(BL (1) + ez x ay (1)) (2.15)
Thus, m is axially symmetric when 8 (t) = es X aj (t), and it is axially antisymmetric
when B (t) = —e3 X a (t). Theorem 1 guarantees the existence of axially symmetric or

axially antisymmetric representatives, but, in general, it cannot rule out the coexistence
of minimizers with a broken symmetry term of the type (sin¢)(8, () £ es x ay (t)). But
things go better if one requires an additional condition on the target manifold 7', which
prevents the existence of flat zones in T'.

Definition 2. Let | be the projection of R3 onto ¥g := R? x {0} and, for every z € R,
let 33, := zes + X be the plane parallel to Xg and passing through zes. Note that if T is
a surface of revolution, then 7 (T NX,) is either empty or the union of circles in 3g. We
say that T is never flat if for any z € R the following property holds: either w (T NX,) is
empty, or w1 (T NX,) consists of a unique circle, or it consists of a finite family of circles
at a positive distance from each other.

If the profile v generating the surface of revolution 7 is the graph of a smooth function,
i.e., of the form v(t) = (¢,0, 2(¢)), then the never-flat condition amounts to asking that the
function z does not have intervals where it is constant. The never-flat condition is quite
general and satisfied, e.g., by all surfaces of revolution represented in Figure 1. Instead, the
unit disk in Yy does not satisfy the never-flat condition.
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Theorem 2. For given surfaces of revolution S,T C R3, we consider the energy functional

defined for every m € HY(S,T) by (cf. (1.1))

Eu(m) == /S Vm(€)2de + /S g(m(€) - a(€))de + /S (m)s, x es|w?(€)de

with w : S — Ry a measurable weight such that sup,c;(h1(H)W(t)) < 400, g: R —- Ry a
Lipschitz function and a : S — R3 a Lipschitz vector field.

If b1 ()W (t) > /2m for every t € I and T is never flat, then the following assertions hold:

i. If the vector field a is azxially symmetric, then either every minimizer is azially sym-
metric, or there also coexist minimizers with line symmetry. An axially symmetric min-
imizer is given by m(¢,t) := AT(¢)v4(t) where v, is a solution to the one-dimensional
minimization problem

Fs(7) = Eu(AT(9)7(1))

among all possible profiles v € H*(I,T).

7. If the vector field a is azially antisymmetric, then either every minimizer is axially
antisymmetric, or there also coexist minimizers with line symmetry. An axially anti-
symmetric minimizer is given by m(o,t) := A(¢)v,(t) where v, is a solution to the
one-dimensional minimization problem

Fa(v) = Eu(A(D)7(1))
among all possible profiles v € H*(I,T).

In any case, if the vector field a is axially symmetric or antisymmetric, then any minimizer
m € HY(S,T) of &, has line symmetry and is of the form

m(¢,t) = ay (t)cos¢ + B (t)sing + n(t)es. (2.16)

for some oy, B, € H'(I,R?), n € H'(I,R), subject to the orthogonality conditions B, (t) -
a (t)=0and |B(t)| = |aL(t)|, and to the conditions of the resulting m being T -valued.

3. AXIALLY (ANTI)SYMMETRIC MINIMIZERS: PROOFS OF THEOREMS 1 AND 2

We prove Theorems 1 and 2, assuming that the vector field a : S — R3 is axially symmetric.
The proof works the same when a : S — R? is axially antisymmetric, provided that the
words symmetric and antisymmetric are exchanged in the proper obvious places and formula
(3.23) is replaced with the assignment wu(¢,t) := A(¢) AT (¢de)m(¢s,t).

For clarity, we subdivide the proof in several steps. In order to improve the readability
of the argument, we summarize here the steps. In STEP 1, we reformulate the energy
functional in local coordinates through the parameterization € of S defined by (2.3). In
STEP 2, we derive an auxiliary estimate which, in particular, assures that the construction
in STEP 3 is well-posed. In STEP 3, we show that if by ()W (t) > /27, then given any
minimizer m of &,, there exists an axially symmetric vector field w € H'(S,T), built from
m, with the same minimal energy. In working out the details in STEP 3 we assume that the
minimal vector field m is smooth, and we show in STEP 5 how to avoid this assumption.
In STEP 4, we finalize the proofs of Theorems 1 and 2.

First, we rephrase the problem in local coordinates by using the parameterization
& of S defined in (2.3). With the usual abuse of notation, we set m(¢,t) := m(&(¢,t)),
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being aware that the context will always clarify such an overload of the symbol m. In local
coordinates, the shape anisotropy term Ag in (1.3) reads as

(m) _/61/% a(@,t))der/g(t)dt. (3.1)

Also, with m | := (m-ej)e;+(m-es)es, and the assignment (m | )(t) == 5 02” m (0,t)dd,
the term Pg in (1.4) can be written as follows:

-/ IW(£)<mL>s§IQdE (3.2

L s fatia (3.3)

o)do

|S§(¢>t /Ss<¢,t>

2m 1 2m 2
= [ ] )| g [ mae.nioe0.01 | asy/sar 3.4
- /.( / 2(€(6.0)d0 ) (m.) (1) fale)de (335)
= [ WAOlm 0P s (3.6)
In computing the previous expressions we took into account that [Sgs4)| = 2mhi(t) and

|06€(0, )] = b1(t).

Finally, we focus on the expression in local coordinates of the Dirichlet energy term
Dg in (1.3). To that end, we observe that with the notation introduced in Section 2, in
particular (2.5) and (2.6), and with the usual abuse of notation m(¢,t) := (m o &)(¢, 1),
there holds that

(87'¢m o é)((ba t) = a¢m(¢ t) (aTtm 0 5)(¢7 t) = 8,5771((}5, t)’ (37)
because, e.g., Opym(p,t) = [Dm o &(¢,t)|T4(¢,t). Hence, we find that

o 2 |8¢m(¢ 7 | 10m(¢,1)]?
(Vmog)(s.0f - 12iE o

with b1 and by the metric coefficients defined in (2.8). It follows that the Dirichlet energy
reads under the form

o ’8 m (b \(%m gf)
\Y% 2d / / ¢ ) , d " 20
/ [Vm(§)Pd¢ = . ¢\/’ (3.9)
Overall, in the coordinate chart induced by E , the energy functlonal on H 1(5’, T) assumes
the form
2 ya¢m qS t)| |8tm ¢’
d dt
/EI/ ¢\/7
+ /tg W2<t>|<ml><t>| Mdt
2T
" /te[/o 9(m(6.1) - a(6,1))dey/a(t)dt. (3.10)

From now on, we are going to work with the local coordinates expression (3.10).

(3.8)

The main aim of this step is to guarantee that the construction in the next STEP 3
is well-posed. In what follows, we denoted by z (&) the distance of £ € S from the es-axis, i.e.,
the radius of the circle of latitude Sg. Note that, in local coordinates, x(£(¢,t)) = hi(t). We
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want to show that if m € H'(S,T) has finite £,-energy (in particular, if it is a minimizer)
and h3(t)W?2(t) > 27 then
[ ms ) (3.11)

In order to establish (3.11), it is sufficient to show that in local coordinates one has

27 |lm 2
/tg/o deﬁ@dt < oo (3.12)

For that, we recall that for periodic functions there holds the following Poincaré-Wirtinger
inequality

2

2m 2m 1
[ o) - @Pdo < [T psu@)fas, @ i=en [Cu@ds (313)
0 0 0

Moreover, given the quadratic setting, the left-hand side of the previous relation can be
written as

[ o)~ wdo = [ () - ltwPds. (3.14)

Therefore, if we write m =m | + (m - 63)63 then for every t € I, there holds

/EI /2“ m1 (6,t) ( dqsf dt
/61/27r |8¢’mL ¢’ d¢\/7dt (3.15)

Hence, whenever h3(t)W?2(t) > 27 we get

/GI /27f lm ( <Z57) d¢\/>dt (3.16)
<J b ‘%m“ii’t doy/alt)at +2m | m§>t(t)|2@dt (317
/EI/zw |a¢mL(t<;)s,t d¢\/>dt+/ W2(1) (0)/a(t)dt, (3.18)

and this shows that the integral in (3.11) is finite provided that m € H'(S,T) has finite
E.-energy and 2 (t)W?2(t) > 2.

Given any minimizer m of &, there exists an axially symmetric vector field
w € H'(S,T), built from m, with the same minimal energy.

By direct methods in the calculus of variations, we know that there exists a (global)
minimizer m € H'(S,T) of the energy functional &, but, in general, more than one. We
want to show that given any (global) minimizer m of &,,, there exists an axially symmetric
texture w € H'(S,T), built from m, with the same minimal energy, i.e., such that &,(u) =
E,(m). We first assume that m € H!(S,T) is a smooth minimizer of the energy &,.
Afterward, in STEP 5, we show how to remove this assumption through a density argument.

The idea is to introduce the real variable function

de: ¢ €[0,271] = Dp(d) + Pa(d) € Ry, (3.19)
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where
m 2 tTN @, 2
@4(0) = | a(m(6.0)- a(.0)\/a(0)d. (3.21)

For ¢, € argmingcpo o Pe(¢) we have that

_ |mJ_(¢*7t)|2 |atm(¢*7t)|2 /
q>€(¢*) - /t€1< h%(t) + h%(ﬂ > g(t)dt
+ / _,9(m(@..0)- a(..0)\/a(t)at. (3.22)

Next, we define a new vector field u € H*(S, T) via the relation

u(¢,t) == AT () A(ds)m(es, ). (3.23)

We then have dyu(¢,t) = AT (¢)A(dx)0ym(¢s,t) and dpu(p,t) = O AT (¢)A(ps)m (s, t),
from which, observing that A(¢)9,AT(¢)v = e3 x v for every v € R3, we infer that

0cu(6,1)]* = |0m(ex, 1), (3.24)
and

Dpu(6.8) = |A(6) AT (9) Al )b, )
— Jes x A(¢)m(du. 1)
= Je3 x m(d., )]

= [m (¢, 1)[*. (3.25)

Remark 6. (The construction preserves boundary conditions) The construction that leads
to (3.23) is compatible with eventually prescribed boundary conditions: if S is a surface
of revolution with boundary, then mygs = wgs. Indeed, suppose to fix the ideas that
I = [0,1] and that, e.g., m(#,1) = AT(¢)e for some e € T, then we have u(¢,1) :=
AT (D) A(d)m(¢s, 1) = AT (0)A(d4)AT (¢.)e = AT (¢)e and, therefore, the boundary value
is preserved.

Also, using the local coordinate representation of the characterization of axially sym-
metric vector fields expressed by (2.10), we obtain that

AT(6)A(G)m(6ert) - AT (6)a(0, 1))

A(6)m(.,1) - al0,1))

AT (6)a(0,1))

- a(ps,1)). (3.26)

g(u(d% t) ’ CL(¢, t)) =
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From the previous computations, using (3.22) and (3.18), we infer that when b2 (t)W?2(t) >
27, the following estimates hold

:/277 /GI mL(%¢*> ‘8tm ¢*7 \/7dtdgb
[T atmiont a(cb*,t))\@dm (3.27)
=/ " 090 (3.28)

2w
<[ Be(p)do (3.29)

/ [T Imae O | PP s
tel
+/t 1/27r a(é, 1) d¢rdt (3.30)
2 [0gmy (¢, 1)]? |<9 @b,
[ e o
+ [ wrolm) e Mdt
+/€1/2ﬂ a(@,t))dey/g(t)dt (3.31)

< E,(m). (3.32)

The minimality of m entails the equality &,(m) = &,(u) from which the conclusions .
and % of Theorem 1 follow.

Up to now, we know that if m is a smooth minimizer of &, then there exists an
axially symmetric vector field w € H'(S,T), built from m, such that &,(u) = &,(m). We
now show that, as a consequence, if by (¢)W (t) > /2w, then the conclusions of Theorem 2

hold, i.e., that any minimizer of &, is necessarily axially symmetric. Indeed, given that
Euw(u) = &,(m), one gets that (3.30)=(3.31)=(3.32), and these equalities entail that

LR L i
/EI/%'"“ %,t) dgb\/idt (3.33)

But then, Poincaré-Wirtinger inequality (3.13), together with the previous equality (3.33),
implies that any minimizer for which (3.30)=(3.31)=(3.32), must necessarily satisfy the
relations

W - ff@)] mL) (1) = 0, (3.34)
|0sm(o,t) - e3]? = 0. (3.35)

In writing the previous two relations, we took into account that by hypotheses (see Re-
mark 1), we have \/g(t) > 0 for every ¢t € I with the possible exception of the two boundary
points of «y if v touches the es-axis. Also, from (3.34), (3.35), and (3.33) we get that any
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minimizer of &, satisfies the relation

/tg(/ogn(l%muqb,t)\? —|mi(,t) - <mL>(t)]2)d¢) \ég((?dt =0, (3.36)

and the integrand is nonnegative by Poincaré-Wirtinger inequality. It follows that for a.e.
t € I there holds

[ Qs 6,08 ~ I (6.1) ~ ma) )6 = . (3.37)

But this means that the equality sign is reached in the Poincaré-Wirtinger inequality (3.13),
and this is known to happen if, and only if, m | (¢,t) = (m ) (t) + ay (t) cosp+ B (t)sin ¢
for suitable functions a1, 8, : t € I — R%2x{0}. Also, we know from (3.35) that m(¢,t)-e3
depends only on the t-variable. Therefore, every minimizer is of the form

m(¢,t) = (my)(t) + ar(t)cosd+ B (t)sing +n(t)es (3.38)

for a suitable scalar function f : I — R which is nothing but m(¢,t) - es. Moreover, if
h1(t)W (t) > v/2m, then (m)(t) = 0 and, therefore, the minimizer m is necessarily of the
form

m(¢,t) = ai(t)cosd + B (t)sing +n(t)es. (3.39)
This proves (2.13) and completes the proof of Theorem 1.
From now on, we focus on the claims made in Theorem 2, and therefore, we assume
that the target surface 7' is never flat.
Note that, in general, the previous expression includes both axially symmetric and

antisymmetric vector fields. Indeed, if we set a(t) := (. (t),n(t)) then we can express the
vector field m in (3.39) both as a perturbation of an axially symmetric vector field,

m(¢,t) = (cosd)ars () + (sinp)es x a1 (t) + (e3 ® e3)ax(t)
+ (sing)(BL(t) — es x a(t))
= AT(¢)a(t) + (sin¢)(B (t) — es x ay (1)) (3.40)

and as a perturbation of an axially antisymmetric vector field,

m(,t) = (cosdp)ai () — (sing)es x ai (1) + (e3 ® e3)ax(t)
+ (sing) (B (t) + es x ap (t))
= A(¢)a(t) + (sing)(BL(t) + ez X ay(t)). (3.41)

In other words, m is axially symmetric when 8 () = e3 X a (t) and axially antisymmetric
when 8 (t) = —e3 x a| (t). As a consequence, for a minimal configuration m of the form
(3.39) to have line symmetry, it is sufficient to satisfy the orthogonality conditions

BL@)] =lar®)], BL({t)- aLl)=0. (3.42)

Indeed, if these conditions are met, then for every ¢ € I there holds 3 (t) = +es x a (1),
and therefore, from (3.40)-(3.41), we get that for every (¢,t) € R x I either m(¢,t) =
AT(P)e(t) or m(¢,t) = A(d)ex(t).

It remains to show that any minimizer satisfies the orthogonality conditions (3.42).
But this is a consequence of the assumption on the target manifold T of being never flat
(cf. Definition 2). Indeed, for any ¢ € I the map m(-,t) takes values in 7 (T' N X, ).
This means that |m (-,t)| is a Sobolev function taking values into a finite set, i.e., in the
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set of radii associated with the circles in 7 (T'N %, ). It follows that ¢ € I — |m(-,t)
is constant and, therefore, that |m (-,¢)| depends only on the t-variable. Therefore we get

laL ()] = [mL(0,0)] = |mi(7/2,0)]" = [BL()% (3.43)

and this proves the first condition in (3.42). But now, from (3.39) and (3.43), we obtain

mL(6,1)]* = L () + BL(1) - aL(t)sin(20) (3.44)

and the only way for |m (¢, t)| to be constant in ¢ is that also the second orthogonality
condition in (3.42) is satisfied.
If the vector field a is axially symmetric, given that we know from STEP 3 the existence
of axially symmetric minimizers of £, we conclude an axially symmetric minimizer is given
m(¢,t) := AT(¢)y,(t) where ~, is a solution to the one-dimensional minimization
problem

- B v ()] |7 ()
Fo(v) i= Eu(AT(9)7(t)) = 27 s ;g(t 2 3(6) th

2
n EI/ a(g,t))dp\/o(t)dt  (3.45)

among all possible profiles v € H(I,T).

In this final step, we show how to remove the smoothness assumption on the
minimizer. For that, we improve the ideas in [14]. Let m be a minimizer of &, and let
m® € C®(S,T) be a family such that m® — m strongly in H*(S,T). Such a family
certainly exists because of a well-known result of Schoen and Uhlenbeck (see [38, p.267]).
For every € > 0, we consider the continuous function

+ ) 9mi(et) a(¢«,1))y/a(t)dt, (3.46)

and we choose a point ¢. € argmingecjgoq Pz(¢). We then define the axially symmetric
vector field u. € H'(S,T) via the relation

us(p,t) = AT (¢)A(pe)mE (¢, t). (3.47)
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Computing as in STEP 3, we have that

_ 2 ’m6(¢67t)|2 |8tm€(¢€7t)‘2

gu,(ua)_/0 /tel Lh%(t) + e doy/g(t)dt (3.48)
2T

[ am*00)- a(ee)aoy oty (3.49)

- O%fbiwadqb (3.50)

< [ 2(0)ds (3.51)

o ]m lﬁtm <Z57
[ [ e
+/2w/ g(m a(¢,t) dqb\/idt (3.52)
+ /tEIWZ(t)I<mi>(t)I Mdt
+/2”/€I a(@,t))dey/a(t)dt (3.54)

< E,(m°). (3.55)

Now, we observe that since &, (m*) is uniformly bounded, so is &,(u.). Therefore, there
exists w € H'(S,T) such that u. — w weakly in H'(S,T) and, by compactness, up
to a subsequence, one also has that u. — w strongly in L?(S,T) and u. — w a.e. in
S. But also, the family (A(¢)uc(¢,t) = A(¢e)m(pe,t)) is bounded in H'(I,T) and,
therefore, there exists u, € H'(I,T) such that A(¢:)m®(¢pe,t) — u, weakly in H(I,T).
By compactness, up to a subsequence, one also has that A(¢.)m®(¢e,t) — u, strongly in
L*(I,T) and A(¢.)m®(¢.,t) — u, a.e. in I and, due to the independence of the family
(A(p-)m* (¢, t))e on the ¢-variable, the same convergence relations also hold, respectively,
weakly in H'(S,T), strongly in L?(S,T) and a.e. in S.

A first consequence of the previous convergence relations is that the limit vector field
u is axially symmetric. Indeed, we know that

A(p)us (¢, t) = A(¢d)u(o,t) a.e. in S, (3.56)
A(P)uc (¢, t) — ui(t) ae. in S, (3.57)

and, therefore, also that w(¢,t) = AT (¢)u.(t). This shows that u is axially symmetric.

Also, by the weak lower semicontinuity of the norm, the strong convergence in L?(S, T),
from (3.48) and (3.55) we conclude that

o : - : o
Ew(u) < hgl,%lf Ew(ue) < il_r)r(l) (3.54) < il_r% Eu(m®) = E,(m). (3.58)

By the minimality of m, all previous inequalities are actually equalities, and we can pass to
the limit under the integral sign in (3.54). Hence, we are back to the hypotheses necessary
to resume the argument from STEP 4 and conclude the proof. Indeed, STEP 4 starts from
the assumptions that if m is a minimizer of &, then there exists an axially symmetric vector
field w € H'(S,T), built from m, such that &,(u) = &,(m), and this step does not rely on
any smoothness assumption on m.
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4. FURTHER RESULTS AND APPLICATIONS

In this last section, we want to emphasize a particular case of Theorem 2. Formally, when
w(&) :== X € Ry is constant and A — 400, the energy functional £\ converges, in the sense
of I'-convergence, to the energy functional

£(m) := Dg(m) + Ag(m) (4.1)

subject to the constraint that (m) Se X e3 =0 for every § € 5. It is convenient for us to
introduce the following notion.

Definition 3. We say that a vector field m € H'(S,T) is axially null-average, along the es-
azis, if (m)s, X e3 = 0 for every £ € S. Equivalently, given that |(m)s, x es|* = |[(m1)s,|?,
the vector field m is axially null-average when (my)s, = 0 for every & € S. In local
coordinates, m is axially null-average if, and only if, for every t € I there holds that

1 27

(m(-1)) =5 [~ mai(6.1d0 =0, (4.2)

where m (0,t) :== (my 0 &)(0,1).

Remark 7. Vector fields with line symmetry are axially null-average (i.e., satisfies (4.2)).
In particular, so are axially symmetric and antisymmetric configurations. Indeed, if m is
axially symmetric with respect to the es-axis then, in local coordinates, we have that

m(p,t) = AT (p)a(t) Y(p,t) eRxT (4.3)

for some profile a € H'(I,T). Hence, (m(-,t)) = (a(t) - e3)es for every t € I, and this
implies that (m ) se = 0 for every £ € 5. A similar argument shows that, more generally,
vector fields with line symmetry are axially null-average.

Note that the class of axially null-average vector fields is not directly related to the
class of null-average configurations in H'(S,T). Even if m is t-invariant, (4.2) does not
imply that m is null-average, but only that its projection m is null-average.

The main idea behind the proofs of Theorems 1 and 2 is geometric and relatively
intuitive. Yet, it brings up many interesting consequences. Specifically, as a byproduct of
our analysis, we get that if m is a minimizer of £ in H'(S, T, which, a posteriori, turns out
to be axially null-average, then any minimizer of £ is of the form (2.13) and, if in addition,
T is never-flat, then any minimizer of £ has line symmetry. Indeed, one can repeat verbatim
the argument used to prove Theorems 1 and 2 to obtain the following result.

Theorem 3. For given surfaces of revolution S,T C R?, we consider the energy functional

defined for every m € H(S,T) by (cf. (4.1))
Em) i= [ [Vm(©Pde+ [ g(m(€) - al6))dg
with g : R — R, a Lipschitz function and a : S — R® a Lipschitz vector field. The following

assertions hold:

i. If the vector field a is axially symmetric or antisymmetric, and m € H*(S,T) is an
azially null-average minimizer of £, then m is of the form (cf. (2.13))

m(¢,t) = ay(t)cosg+ B (t)sing +n(t)es

for some oy, 8, € HY(I,R?), n € HY(I,R), subject to the constraint of the resulting
m being T-valued.
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ii. If T is never flat, a is azially symmetric, and m € H'(S,T) is an azially null-average
minimizer of £, then either every minimizer is axially symmetric, or there also coexist
azially antisymmetric minimizers.

If T is never flat, a is avially antisymmetric, and m € H'(S,T) is an azially null-
average minimizer of £, then either every minimizer is axially antisymmetric, or there
also coexist axially symmetric minimizers.

In any case, if the vector field a is axially symmetric or antisymmetric, then any
axially null-average minimizer m € HY(S,T) of & has line symmetry and is of the
form

m(¢,t) = a(t)cosp + B (t)sin g + n(t)es.
for some o, B, € H'(I,R?), n € H'(I,R), subject to the orthogonality conditions
B (t) - al(t)=0and|B(t)] = |aL(t)|, and to the conditions of the resulting m being
T-valued.

Remark 8. We want to highlight the main message contained in Theorem 3: while it is
always the case that axially symmetric configurations are axially null average, minimality
allows for the converse implication.

Remark 9. Note that in the statement of Theorem 3 there is no more reference to the
weight w and to the circular integral weight W.

Remark 10. We are presenting Theorem 3 in a concise form that particularizes only the
main assertions contained in Theorems 1 and 2 to the current context of axially null-
average configurations. However, every claim in Theorems 1 and 2 transposes to the current
setting. In particular, the results about the existence of axially symmetric (and axially
antisymmetric) minimizers specified in Theorem 1.7 and 1.7 still apply to axially null-
average minimizers.

To better explain the interest in Theorem 3, one can imagine the following scenario,
which will be explained through a concrete example soon, in which by writing down the
Euler-Lagrange equations associated with £ in (4.1), one infers that every stationary point
of € has to be axially null-average. In other words, if by any means one can prove that for
some specific choices of S and T" minimizers of £ are necessarily axially null-average, then
the statements of Theorems 1 and 2 still hold regardless of whether or not the condition
h1(t)W (t) > /27 on the circular integral weight W is satisfied.

Example 1. Let us consider the simplest case in which S := A is the annulus of R? of inner
radius ¢; and outer radius to, T is the whole space R?, and g(m(¢) - a(€)) = k(m(£) - e3)?
for some k € R. The functional £ has to be minimized among all possible vector fields in
H'(A,R?) that satisfy the boundary condition m = b; on #;S! and m = by on t,S* for
axially symmetric vector fields by, bs. We want to understand the symmetry properties of
the minimizers. For that, we observe that any minimizer of £ has to satisfy the Euler—
Lagrange equations

—Am +k(m-e3)e3=0 in A, (4.4)
under the prescribed boundary conditions m = b; on t1S* and m = by on t,S!. By
the previous relation, it follows that any minimizer of £ is such that —Am_ ; = 0 in A.
Expressing A in local coordinates through the classical polar map &(¢,t) = AT (4)y(t),
v(t) := tey, case in which the metric coefficients are h2(¢t) = t2, h3(t) = 1, and then
integrating in the ¢-variable, we conclude that any minimizer of £ is such that

— Ot (m ) (£)) = 0 in [ty ta], (4.5)
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and subject to the boundary conditions (m )(t1) = (my)(t2) = 0. But the only solution
of this boundary value problem is the zero solution, i.e., the solution (m )(t) = 0 for every
t € [t1,t2]. Tt follows that any solution of the boundary value problem (4.4) is azially
null-average and, therefore, the conclusions of Theorem 3 apply. But as pointed out in
Remark 10, also the conclusions of Theorem 1 apply from which we infer that there always
exist axially symmetric solutions of the boundary value problem (4.4).
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