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ABSTRACT. In this paper we study the convergence of nonlinear Dirichlet problems for systems of
variational elliptic PDEs defined on randomly perforated domains of R™. Under the assumption
that the perforations are small balls whose centres and radii are generated by a stationary
short-range marked point process, we obtain in the critical-scaling limit an averaged nonlinear
analogue of the extra term obtained in the classical work of Cioranescu and Murat [12]. In
analogy to the random setting recently introduced by Giunti, Hofer, and Veldzquez [2I] to
study the Poisson equation, we only require that the random radii have finite (n — ¢)-moment,
where 1 < ¢ < n is the growth-exponent of the associated energy functionals. This assumption
on the one hand ensures that the expectation of the nonlinear g-capacity of the spherical holes is
finite, and hence that the limit problem is well defined. On the other hand, it does not exclude
the presence of balls with large radii, that can cluster up. We show however that the critical
rescaling of the perforations is sufficient to ensure that no percolating-like structures appear in
the limit.

1. INTRODUCTION

In this paper we study the limit behaviour as ¢ — 0% of sequences of nonlinear Dirichlet
boundary value problems of the type

Aul=0 in D,

(1.1)
u=0 on O0D.,

where A is an elliptic differential operator and D, := D\ H. is obtained by removing from an open,
bounded, Lipschitz set D C R™ a collection H. of small, spherical inclusions. Here we assume
that H. = HY is a random set, namely, that the centres of the spherical holes are generated
according to a stationary point process in R™ and that the associated radii are (suitably scaled)
unbounded random variables with short-range correlations. Under minimal assumptions both on
the nonlinearity and on the set of perforations, we prove that, almost surely, solutions to
converge weakly in a suitable Sobolev space to the solution of a limit problem

Aofu] =0 in D

1.2
u=20 on OD. (1.2)

In , the nonlinear homogenised operator Ay depends both on A and on the geometry of the
perforated domain, through some sort of limit averaged nonlinear capacity density of HX. In
particular our result extends the stochastic homogenisation result of Giunti, Hofer, and Veldzquez
[21] for the Poisson equation to the nonlinear setting.

The study of homogenisation problems in perforated domains has a long history with seminal
contributions of Marchenko and Khruslov [22, 23], Cioranescu and Murat [12], and Papanicolaou
and Varadhan [24] (see also [10} 15, [16]). In a periodic setting a typical H. is chosen as

H. = | ) Beoy(ei), (1.3)
1EL™

for some p > 0 and o > 1. In (|1.3) the parameter € represents the characteristic distance between
the centres of the spherical holes, while ¢* <« ¢ is proportional to the size of their (common)
1
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radius. If, moreover, the linear case of the Poisson equation is considered, the boundary value

problem (1.1) becomes

(1.4)
u=20 on 0D,

where 1 € W~12(D). In this linear, periodic framework, Cioranescu and Murat [12] showed the

existence of a critical scaling for the perforation radius such that the sequence of solutions (u¢) to

(1.4) converges weakly to the solution of a limit Dirichlet problem. Namely, assuming that n > 2,

for « = n/(n — 2) and € > 0, the unique solution u. € Wol’z(DE) to converges weakly in

Wh2(D), as € — 0%, to the unique solution uy € Wy*(D) of

{—Au—&—uou:z/) in D

{Au =1 in D,

1.5
u=20 on OD. (1.5)

In (1.5)) the zero-order term pou is reminiscent of the homogeneous Dirichlet boundary conditions
prescribed on the boundary of the spherical holes in (1.4]), and pq is a positive constant of geometric
nature which represents the limit capacity density generated by the set H.. Namely, we have

Ho = lim Cap(HE N Q7Rn) )
e—0+
where @ is a unit cube in R™ and Cap(H. N Q,R™) denotes the elliptic, or 2-capacity of H. N Q
in R™; i.e.,

Cap(H:. N Q,R") :=inf { /

In view of (L.3]), by the subadditivity of the capacity and the fact that e® < ¢ it is easy to see
that

Vo2 de: ve Wi (R™), v=1 on H. OQ} .

po = lim Cap ( U Beop(et) N Q,R") = Cap(B,(0),R"), (1.6)

e—0t
ISYAL

where the last equality follows from the fact that the number of holes in @ is of order e, and

Cap(Bgo,(ei), R™") = ™ Cap(B,(0),R™) for every ¢ € Z", if & = n/(n — 2). Moreover, in this case
the constant p is explicit and given by

o = (TL _ 2)anl(snfl)pn72 .

Choices for the scaling of the perforation radius different from the critical value a = n/(n—2) give
trivial convergence results. More precisely, in the case of tiny holes, corresponding to the choice
a > n/(n—2), it is immediate to see that ug = 0, so that the limit problem (1.5)) reduces to

—Au=1 in D
u=20 on OD.

For large holes, corresponding to choosing o < n/(n — 2), the sequence of solutions to
converges strongly to zero in W12(D) (see [I, Lemma 3.4.1]).

In the last three decades the result of Cioranescu and Murat [12] has been extended in a number
of directions, ranging from the case of general nonlinear elliptic operators in periodically perforated
domains [3} [15] to the case where a random distribution of holes is also allowed [} [8 [9] [18], 201 21],
just to mention a few examples.

As far as a nonlinear variant of [I2] is concerned, in [3] Ansini and Braides proved a nonlinear
vectorial version of the Cioranescu and Murat result when the Dirichlet boundary value problem
is of variational nature; i.e., when Afu] = 0 in D, is the Euler-Lagrange system associated
to an integral functional defined on D.. In [3] the corresponding limit problem is obtained by
resorting to a direct I'-convergence approach instead of the more classical PDE approach. The
variational methods used in [3] allow for minimal assumptions on the integral functionals and
hence on the nonlinearity; these assumptions are the same considered in this paper and will be
discussed below. On the other hand, as far as the geometry of the perforated domain is concerned,
in [21] Giunti, Hofer, and Veldzquez proved a stochastic counterpart of [12] for the linear problem
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Beapy (exy)

Figure 1. Realisation of the random domain D¢.

, where H, = HZ is a random set given by the union of small balls with random centres and
radii, for which clusters occur with overwhelming probability (see Figure [1|for an illustration). In
fact, the assumptions on H¥ formulated in [2I] are shown to be the minimal ones in order to have
homogenisation.

The aim of this work is to combine the two general frameworks described above to devise
minimal assumptions both on the nonlinearity and on the random set of the spherical perforations
HY, for which, almost surely, the corresponding Dirichlet problems admit a homogenised limit
of the type .

For the sake of the exposition, to illustrate our main result we consider here a prototypical
random geometry for the set H¥, while we refer the reader to Section [2.3] for the more general
probabilistic framework considered in the paper.

In what follows (€2, 7,P) denotes a given underlying probability space. We consider a marked
point process (®,R) on R™ x Ry where ® is a Poisson point process, ®(w) := (;);, of constant
intensity 0 < A < +00; i.e., the average number of points of the process per unit volume satisfies
(N(Q)) = A, where N(Q) = #(® N Q). For the marks we assume that R(w) = (p;)s,cd(w), With
p; identical and independently distributed unbounded random variables.

The random set of perforations associated to (®,R) is defined as

HZ = U Beoy, (e1), (1.7)
z; €P(w)

where oo = n/(n — 2) is the critical scaling for problems with quadratic growth. The analogue of
(1.6 follows from the strong law of large numbers, which guarantees that almost surely
lim Cap(H®NQ,R") < lim &" )~ Cap(B,, (cx;),R") = \(Cap(B,(0),R™)). (1.8)
e—0t

+
&0 2, €P(w)N(e~1Q)

Moreover, an explicit calculation gives
fio = MCap(B,(0),R™)) = (n — 2)H"HS" " HA(p" ), (1.9)

where clearly fig reduces to pg if ® = Z" and p; = p, constant and deterministic.
We observe that in view of (|1.9), the minimal condition for jiy to be well-defined is that the
following stochastic integrability condition

(p"?) < 400 (1.10)

holds. We note, however, that does not prevent the balls generating H® from overlapping.
Indeed, it is easy to check that the expected number of holes that may overlap (that is, for which
e/ (n=2) p. > ¢ with Ae being the typical distance between two points in ®) is of the order e~ "2
while the expected total number of holes is of order e™". In [2I] Giunti, Hofer, and Veldzquez
proved that, even though with probability one there are regions where the holes cluster, the
moment condition is indeed sufficient to ensure that almost surely these regions have a
vanishing capacity, as ¢ — 07. Moreover, this moment condition allows to extend the Cioranescu
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and Murat construction of the “oscillating test functions” to this random setting and to prove
that the stochastic analogue of [12] holds true, almost surely, up to replacing in (1.5 po with .

In this paper we extend the result by Giunti, Hofer, and Veldzquez to the nonlinear vectorial
setting. In the same spirit as in [3], we work with functionals rather than with the associated
Euler-Lagrange systems. Therefore, we consider 1 < ¢ < n, m € N, and a Borel-measurable
function f: R™*™ — R, with f(0) = 0, satisfying a g-growth and coercivity condition; i.e.,

cr(|§l? —1) < f(§) < o€ +1) VEER™™

with 0 < ¢; < ¢o. Then, we introduce the vectorial, random functionals defined on WO1 9(D;R™)
as

Fe(u) = /D\H f(Vu)dz, if u=0in HSND, (1.11)

and 400 otherwise. In (L.11), H¥ is as in (|1.7) with a being the critical scaling in the case of
g-growth, namely o = n/(n — ¢). Moreover, for every £ € R™*" we set

g(&) = lim "/ =DQf(e/ (=g
e—0t

where @ f denotes the quasiconvex envelope of f. Upon passing to a subsequence the function g
is always well-defined (see Section [3| for more details), moreover the limit in € becomes redundant
when f (and hence @ f) is positively homogeneous of degree q.

Eventually, for every z € R™ we define the random variables

©p.(2) = inf{/n g(VQ)dz: ¢ — 2z € W (R™;R™), (=0on Bpi(O)} .

We observe that for w € €2 fixed, ¢,(z) can be interpreted as a nonlinear g-capacity density of the
ball B,(0) in R™; furthermore, for f(§) = |£|? we have

pp(2) = Capy(B,(0),R™)[z|7,

where Cap,(B,(0),R") denotes the classical g-capacity of B,(0) relative to R™ (cf. (3.11))). In
general, however, ¢, is not positively g-homogeneous as a function of z (as observed by Casado-
Diaz and Garroni in [I0]), hence in the definition of ¢,(z) (and in the case m = 1) we cannot
reduce to the case z = 1 just by unscaling.

Thanks to the growth conditions of order g satisfied by f, it is easy to show that

Cilz|"p" ™" < pp(2) < Calz]*p" 77,

for some 0 < Cy < C» only depending on n, g, ci, and ¢2 (see Lemma [4.1)). Hence, in analogy to
(1.9)-(1.10), in this nonlinear framework the homogenised problem is well-defined up to assuming
the stochastic integrability condition

("7 < +o0 (1.12)
for the perforations radii.

The main result of this paper is Theorem [3.2] which establishes an almost sure I'-convergence
result for the random functionals . Namely, Theorem states that if (®,R) is a marked point
process as above whose marks additionally satisfy the moment condition , then, almost surely,
the functionals F¥ T'-converge, as € — 07, to the deterministic functional given by

Fo(u) ::/IDQf(Vu)dx—i—)\/[)(gop(u))dx, if uwe W, 9D;R™).

In particular, if f is convex and differentiable, by the fundamental property of I'-convergence we
deduce that for P-a.e. w € Q the unique solution v € Wy '4(D;R™) to

—divDf(Vu¥) =1 in D¥
ug =0 on 0DY
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converges weakly in W14(D;R™) to the unique solution u € VVO1 9(D;R™) of the boundary value
problem

—divDf(Vu) + Ap’(u) =4 in D

u =0 on 0D,
where ¢(z) 1= (p,(2)) and ¢ € W L7 (D;R™). Thus, in particular, for f(£) = |¢|9 we obtain a
convergence result for the g-Laplace equation in randomly perforated domains of general geometry.

To prove the I'-convergence result in Theorem we follow a proof methodology which is
similar in spirit to that of Ansini and Braides [3]. This approach is purely variational and is based
on a so-called “joining lemma on perforated domains” which allows to replace any sequence with
equibounded energy F¢ with a sequence which is constant in a spherical layer surrounding each
perforation, without essentially changing the energy. In [3] this construction is then pivotal both
in the proof of the lower-bound and in the upper-bound inequalities. Indeed, when proving the
lower-bound inequality the joining lemma allows to estimate separately the energy close to and
far from the perforations. Moreover, using the modified sequence it is possible to recover the
nonlinear capacitary term as the limit of some suitable discrete energy densities. On the other
hand, in the proof of the upper-bound inequality the joining lemma enters in the construction of
the recovery sequence.

Crucially, in [3] to prove the joining lemma and thus the I'-convergence result, it is of fun-
damental importance that the perforations are well-separated from one another. In the periodic
setting this is a straightforward consequence of the regular arrangement of the holes on an e-scale
together with the e* <« ¢ scaling for their (constant) radius. Whereas, as already observed, in our
framework for almost every realisation we have to deal with the presence of large radii or centres
very close to each other and thus of clustering holes. This technical issue is tackled similarly as in
[21] by showing that, almost surely, the set of perforations H* can be partitioned into two sets:
a set of “good” holes H., and a set of “bad” holes HZ,. In the set of good holes we identify
a subset of “small” balls which are “ec-separated” from one another, in which then a stochastic
variant of the joining lemma holds. The set of bad holes HZ} contains, among others, all those
balls which overlap with probability one. We then show that H, can be enclosed into a “safety
layer” DZ, which is still well-separated from H. , and such that ‘the nonlinear g-capacity of HZy
relative to D¢, vanishes as ¢ — 0%. In other words, the set of bad holes is well-separated from
HZ, and is asymptotlcally negligible. Then, one of the main difficulties of this work is to show
that the energy contribution relative to the “good” perforations is actually enough to reconstruct
the nonlinear capacitary term in Fy (cf. Proposition [6.1).

Similarly, in the construction of the recovery sequences for the I'-limit the only energy contri-
bution that is relevant for the capacitary term is the one carried by the balls in H? . However,
since a recovery sequence needs to be admissible for F, it has to vanish also in the bad balls
and hence in particular in the clusters. This constraint makes for a rather delicate proof of the
upper bound which also relies on a corrector-like construction in the bad holes for the g-Laplace
equation (cf. Lemma [7.4)).

This paper is organized as follows. In Section [2] we recall the basics of marked point processes
(®,R), and we list the assumptions that the process generating the holes H¥ needs to satisfy.
These assumptions are quite mild: our analysis is valid for rather general stationary point processes
® whose associated marks in R need not be independent, as long as their correlation-range is
suitably controlled (cf. and (2.12)). In Section [3] we state the main result of this paper,
Theorem[3.2] To prove it, we need a number of technical results of both analytical and probabilistic
nature. The analytical preliminaries are collected in Section[f] which contains, among other results,
a variant of the joining lemma which is relevant in our case (cf. Lemma4.7]). Section [5|is instead
entirely devoted to some probabilistic auxiliary results. In this section we prove, in particular, a
version of the strong law of large numbers for correlated marked point processes in the nonlinear
setting (cf. Proposition . In Section |§| we build upon sections 4| and [5| to prove a discrete
approximation result for the nonlinear capacitary term (cf. Proposition [6.1)). Section [7|is devoted
to the proof of the I'-convergence result Theorem (cf. Proposition nd Proposition .



6 L. SCARDIA, K. ZEMAS, AND C. I. ZEPPIERI

2. NOTATION AND SETUP
In this section we collect some useful notation and we introduce the probabilistic setup.

2.1. Notation. We denote with B(R™) the o-algebra of Borel subsets of R™. For every A C R"
and x € R™, we denote by 7, A the shift of the set A by x; i.e., 7, A := x + A. The diameter of
A is denoted with diam(A) and the characteristic function of A with x4. Given A,B C R™ we
write A CC B iff A ¢ B. By #A we denote the cardinality of a discrete set A. For n,k € N
we denote by £" and H* the n-dimensional Lebesgue measure and the k-dimensional HausdorfF
measure, respectively.

Given p > 0 and =z € R”, we denote with B,(x) the open ball centred at « with radius p.
(We also use the notation B} (z) to clarify the dimension, if needed.) We denote with Q,(x) the
half-open cube centred at x with side-length p > 0, namely

Qp(x) =2 +pl-5,3)",

and we omit the subscript when p = 1, so that Q(z) = @Q1(x). The unit sphere in R™ is denoted
with S”~1. Moreover, we use the notation 3, := £"(B1(0)) for the volume of the unit ball in R™.

For every a,b € R we use the standard notation a Ab := min{a, b} and a Vb := max{a, b}. From
time to time we use the notation lim and lim to indicate the limsup and lim inf respectively. The
symbols ~an s, S M,,... indicate that the corresponding equality, inequality is valid up to a
(positive multiplicative) constant that depends only on the parameters M7, Ma, ... and the space
dimension, but is allowed to vary from line to line.

Let (92, T,P) denote an underlying given probability space; the expected value of a random
variable X :  — R with respect to the probability measure PP is denoted by (X); i.e.,

(X) ::/QX(w)dIP’(w) ::/Rasd(X*IP’)(x),

where X, P is the push-forward measure of P onto R, or the probability distribution of X, defined
via (X.P)(B) := P(X~1(B)), for every B € B(R).

2.2. Marked point processes. We refer the reader to [14, Chapter 9, Definitions 9.1.1 - 9.1.1V],
[25] Section 3.5] and [I1, Chapter 4] for a systematic treatment of marked point processes.

Throughout the paper (®,R) denotes a marked point-process (in short, m.p.p.) where ® is
a point process (unmarked, called ground process) in R™, and R is the associated mark space,
with marks in Ry. For a fixed realisation w € 2, the set ®¥ := ®(w) = {z; }ien is a locally finite
countable collection of points in R™; i.e., ®“ N B is a finite set for every bounded B € B(R™).
Similarly, for w € Q, R¥ := R(w) = {pi}ien, where, for every i € N, p; € R, is the mark
associated to the point z; € R".

The first moment measure of the point process ® is the measure p(!) defined on B(R™) by
pD(B) = (N(B)), where N(B) := #®(B), with ®(B) := ® N B is the number of points of the
process in B. This is also called the intensity measure of ®. The Campbell Theorem connects the
integration with respect to the probability measure P with integration in p(), since

<Z g(%pi)> = /Rn L 9(@p) du™ () dPF (p) (2.1)

z, EP

for every nonnegative measurable function g on R™ x R, where P® is a probability measure
on (Ri,B(Ry)), which can be interpreted as the distribution of the mark of a point at . We
assume that PR is absolutely continuous with respect to the one-dimensional Lebesgue measure
and denote its density with fi(z, p), namely

PX(B) :/ fi(z,p)dp forall B € B(Ry). (2.2)
B

Hence (2.1)) can be written as

<Z g(wi7pi)> = /IR . 9(@.p) hi(.p) dp™M () dp. (2.3)

;€D



HOMOGENISATION OF NONLINEAR DIRICHLET PROBLEMS IN RANDOMLY PERFORATED DOMAINS 7

The second moment measure of ® is the measure u(?) defined on B(R?*") by u(?(B; x By) =
(N(B1)N(Bz)). The second-order factorial measure O® of ® is defined on B(R?*") by

0®)(B; x By) = t™M(By N By) + P (By x By). (2.4)

In particular, ©) (B x By) = u?(B; x By) if BiNBy = ). A more refined version of the Campbell
Theorem connects the integration with respect to the probability measure P with integration in
03 since

<Z > g(:ciym,xj,pj)> :/ gz, 2, p, p) dOP (w,2") AP, (p, p') (2:5)
(R™ xRy )?

;€D x;€P
T;FT;

R

for every nonnegative measurable function g on (R™ x R, )2, where P, is a probability measure

on ((R4)?% B((R4)?), which can be interpreted as the two-point mark distribution. It gives the
joint distribution of the marks at the two locations z and z’, under the condition that there
are points of ® at x and z’. We assume that P:fo/ is absolutely continuous with respect to the

two-dimensional Lebesgue measure and denote its density with fo((x, p), (2/, p’ )), namely

PR(BxC)= / / f2((z,p), (z',p"))dpdp’  for all B,C € B(R,). (2.6)
BJc

Hence ([2.5)) can be written as

<Z > g(xi,pi,xj,pj)> =/ g(z. ' p, ) fo((x,p), (2, p')) dOP) (z,2") dpdp’.
(R xR )2

z;, €D :E_]'€<I>
T;FT;

(2.7)

2.3. Assumptions on the m.p.p. (®,R). Below we list the assumptions we require on the
m.p.p. (P, R); these are in the same spirit as the ones formulated in [2T], Section 2].

(H1) The point process ® is stationary; i.e., for every x € R™ the processes 7,® := {x +x; }4,co
and ® have the same probability distribution. This implies in particular that the intensity
measure ;1) of ® is a multiple of the Lebesgue measure, namely

pM(B) = (N(B)) = AL™(B),
where A > 0 is called the intensity of the process and it is possibly infinite.

(H2) The point process ® has finite intensity 0 < A < +oo. In particular it is locally square
integrable; i.e., for every unitary cube @ C R,

((N(@))?) < A% (2.8)
We note that the stationarity of ® ensures that the bound in (2.8) is independent of the
centre of the cube Q.

(H3) The point process ® satisfies the following strong mizing condition. For A € B(R"), let
T (A) denote the smallest o-algebra with respect to which the random variables N(B)
are P-measurable for every Borel subset B C A. We assume that there exist constants
C > 0 and v > n with the following property. For every A € B(R"), every z € R"
with |z] > diam(A), and for every random variables Z;, Z> measurable with respect to
T(A), T (1, A) respectively, there holds

C
| < .
1+ (Jz| — diam(A))
We observe that (2.9) in particular ensures the ergodicity of @, cf. [I4, Paragraph 12.3].
(H4) Let f1 and fy be as in (2.2) and (2.6)), respectively. In view of the stationarity of ®, the

density f; is independent of z; i.e., for every x € R™ we have fi(z,p) = h(p), for some
h € LY(Ry;R,) with fR+ hip)dp=1.

(Z122) = (Z1)(Z2) AZD) 2R (2.9)



8 L. SCARDIA, K. ZEMAS, AND C. I. ZEPPIERI

We assume that h satisfies the following integrability condition:

+oo
/ p" " h(p)dp < 400, (2.10)
0

which is equivalent to asking (p"~?) < +oco. For the density fo the stationarity of @
implies that its dependence on x,z’ is only via  — x’. Moreover we assume that

f2((@.p), (2", )) = h(p)h(p') + K|z = 2’|, p, ), (2.11)
for some function K satisfying
/ K(r,p,p))dpdp’ =0 for every r >0,
R+ XR+
and c
K(r,p,p')| < ;
S O e 7D
for some C' > 0 and s > n — ¢q, and where v > n is the constant in |(H3)
The interested reader is referred to |21} Subsection 2.1] for some explicit examples of m.p.p. (®, R)

satistying [(FLL)} [(FL4]]

Remark 2.1 (Independent marking). Under our assumptions the marks have the same distribu-
tion, but they are not independent. If the m.p.p. is in addition independently marked, then the
expression of fo simplifies to

(2.12)

f2((, p), (2", p")) = R(p)h(p') -
The additional (location-dependent) term in introduces a short-range correlation between
the marks conditioned on the point positions, thus giving a measure of the lack of independence
of the marks. We note that if, conditional to the point process ®, all the marks are independent
but not necessarily identically distributed, then the density of the 2-point mark distribution still
factorises as

fg((.’ﬂ, ID)’ (:L'/a pl)) = fl(xa ,0) fl(x/? p/) ;
but is location-dependent.
Remark 2.2. As in [21], the assumptions [(H1)H(H4)| guarantee the validity of the strong law of

large numbers-type results stated in Section |5 (see Lemmata therein), which will play an
important role in what follows.

3. STATEMENT OF THE MAIN RESULT

In this section we state the main result of the paper. To this end, we need to introduce some
additional notation.

Let n e Nand 1 < ¢ < n, and let (®,R) be a m.p.p. satisfying [(HI1)H(H4)| For w €  fixed, we
consider a countable family of points ®¥ = (z;); and the corresponding marks R“ = (p;);. For
fixed e > 0, we associate to (2, p;); the family of open balls (Ba,, (ex;)), , where

o =™/ (=D (3.1)

Let D C R™ be an open, bounded, Lipschitz set, star-shaped with respect to the origin. The
set of random spherical perforations in D is given by

HY = U Ba.p(e2i); (3.2)
;€PN (e—1D)
note that the sets (71D).~¢ are nested as ¢ — 0, since D is star-shaped with respect to the
origin. We finally define the randomly perforated domain as
DY :=D\ HY.
Now, let m € N, and let f : R™*™ — R be a Borel-measurable function of g-growth; i.e., there
exist two constants 0 < ¢; < ¢g, such that

cr([§1? —1) < f(§) < eo([€]* +1) VE € R™7. (3.3)
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Without loss of generality we assume that f(0) = 0.
Finally, we introduce the nonlinear vectorial (random) functionals 7~ : L'(D;R™) — R U
{+00} defined as

f(Vu)dz if ue W) YD;R™)and u=0in H* N D,
Fe(u) :== < Jpw (3.4)
+o0 otherwise in L'(D;R™).
We recall that the a.-scaling (3.1]) for the radii of the perforations is the critical one in the case
of energies with g-growth, under Dirichlet boundary conditions (cf. [3]).

The aim of this paper is to study the limit behaviour of the functionals F¥ as ¢ — 07 (see
Theorem |3.2)).

Remark 3.1. Without loss of generality we can additionally assume that HY CC D for € > 0
small enough. Indeed, we will see that the holes intersecting 0D have both negligible volume and
capacity (cf. Section [5).

We now define the nonlinear capacitary term which appears in the limit functional of F.
Let (g5) \( 0; we define the functions g; : R™*™ — R as

9i(€) ==l Qf (az'€) VEER™ ™, (3.5)
where «. is as in (3.1) and Qf denotes the quasiconvex envelope of f; i.e.,

Qi) =t { [ e+ vupde: v w0 1R}

We note that g; is quasiconvex for every j € N; moreover, by (3.3),
e (|87 —ad) < g;(§) < ea(|€]* + o)) (3.6)

for every & € R™*™. Invoking, e.g., [0, Remark 4.13], we then get that (g,;) are locally equi-
Lipschitz continuous, namely

195(61) = g;(&2)] < Lo + [&]77" + €| 1)[ér — &l (3.7)

for every £1,& € R™*" every j € N, and for some constant L := L(cy, ¢a,q) > 0. Consequently,
Yy

up to a subsequence (not relabelled), for every £ € R™*"™ there exists the limit

9(&) := lim g;(¢). (3.8)
Jj—r+oo
The function g is quasiconvex, and in view of (3.6 and (3.7)) it satisfies the growth conditions
clé]? < g(§) < e2f€)? VEER™, (3.9)

as well as the bound

9(&1) — 9(&)| < L&) + |&]T )16 — &f V&,& e R™*. (3.10)

Given two open sets A CC B C R™, with A bounded, we define the g-capacity of A relative to B
as

n

Cap, (A, B) := inf {/ |Vol?de: ve WyY(B;R), v=1 on A} . (3.11)

In the definition above Cap,(A, B) depends on A only via its closure A, which is compact since
A is bounded. Hence (3.11)) agrees with the classical definition of g-capacity for compact sets, see
e.g., [I7]. Note that, if A C A’ CC B C B’, then

Cap,(A, B") < Cap,(A, B) < Cap,(4A', B). (3.12)

Moreover, Cap, is countably subadditive with respect to the first entry (see, e.g. [17], Section 3),
namely

if AC | JA;, then Cap,(A,B) <Y Cap,(4; B). (3.13)

i=1 i=1
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Given A CC B C R™ and z € R™, we define the g-capacity of A relative to B at z as

Cap, (4, B; 2) := inf { /

As in the deterministic setting [3], the g-capacity of the ball (with respect to R™) appears in the
definition of the limit functional. For this reason we consider

n

g(V¢)dz: ¢ —z € Wy UB;R™), (=0on A}.

pl2) = Cap,(B,(0), R"; 2) = inf { [ o0 ¢ -z e wirEnE™), (=0 Bp<o>} ,

(3.14)
which is well-defined for every z € R™ and every p > 0. Throughout the paper the function ¢, is
referred to as the nonlinear g-capacity density.

We note that if p € R, namely p : @ — Ry is a random variable, then w — ¢, (2) is also a
random variable. Indeed, for every z € R™ the function p — ¢,(2) is continuous (see Lemma
below and the estimates in ), hence the composite function w — @« (z) is T-measurable. We
can then define the average g-capacity density at z € R™ as the expected value of ¢, (2). That
is, we set

+oo
0(2) = (ppl2)) = / wo(2)h(p) dp, (3.15)
where h € L*(R;;Ry) satisfies (2.10).

We are now in a position to state the main result of this paper.

Theorem 3.2. Let (D, R) be a m.p.p. satisfying |(HL)H(HA) and let (F¥)eso be the functionals
defined in (3.4)), forw € Q. Then there exists a sequence (¢5) 0 and a set Q' € T withP(Q') =1,

such that for every w €
-7:;;;]:0 with respect to the strong L*(D;R™)-topology,
where Fo : LY(D;R™) — R U {+oc} is the deterministic functional defined as
/ Qf(Vu)dzx + )\/ o(u)dz if ue Wy Y(D;R™),
]:o(u) = D D
+o0 otherwise in L*(D;R™),

with N(Q) and ¢ as in (2.8) and (3.15]), respectively.

In general the I'-convergence result in Theorem [3.2] holds true only up to subsequences. In fact
the limit density g appearing in the definition of ¢ clearly depends on the choice of the subsequence
(cf. and ) This phenomenon is typical of the nonlinear setting and is also observed in
[3] (see Remark 2.7 therein).

(3.16)

Remark 3.3 (Convergence of the Euler-Lagrange equations). Let (¢;) be the vanishing sequence
and " € T be the set of probability one whose existence is established by Theorem Let
¥ € WHaT1(D;R™) be fixed; we consider the functionals defined for u € L'(D;R™) as

féj(u)+/Dw:udx7 (3.17)

where wa : udz denotes the duality pairing between Wol’q(D;Rm) and W_l’q%l(D;Rm). By
continuity it is immediate to check that for every w € ' the functionals in (3.17) I'-converge,

with respect to the strong L'(D;R™)-topology, to the deterministic functional defined for u €
LY(D;R™) as

]-'O(u)—k/Dwzudm.

Let now f be convex and differentiable; by the L'(D;R™) equi-coerciveness of (3.17) and the
fundamental property of I'-convergence we can deduce a convergence result for the corresponding
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Euler-Lagrange equations. That is, for every w € €', the sequence (u‘;’j ), where ug € VVO1 4(D;R™)
is the unique solution to
{—divD f(Vu¢)=4v in D

w w
ug =0 on D¢,

converges weakly in W4(D;R™) to the unique solution ug € Wol’q(D;Rm) of the following de-
terministic problem

ug =0 on 0D .

Finally, we observe that when f is g-homogeneous, the convergence in defining g holds true
for the whole sequence. Hence the function g (and, consequently, ¢ in (3.1F)) is independent
of the subsequence. Therefore both the convergence of the functionals in Theorem [3:2] and the
convergence of the optimality conditions above hold true for the whole sequence. Our result then
provides an extension of [2I, Theorem 2.1] to the nonlinear g-homogeneous vectorial setting.

{—diva(Vuo) + A (ug) =4 in D

4. ANALYTICAL BUILDING BLOCKS

In this section we collect some analytical technical results which will be used in the proof of
Theorem 3.2

We start by establishing some properties of the nonlinear capacity density ¢, defined in .
Moreover, we introduce some auxiliary capacity densities whose role will become apparent in the
next sections. Finally, we state and prove a so-called joining lemma, Lemma [4.7] in the same
spirit of [3l Lemma 3.1].

Lemma 4.1. There exist two constants C1 := Ci(n,q,c1),Cy := Ca(n,q,c2) > 0 such that
Cilz]p" ™9 < pp(2) < Calz]p" 71, (4.1)

for every z € R™ and every p > 0, where ¢1,cy > 0 are the constants in (3.3)). Moreover, for every
0 < p1 < p2 and every z € R™ we have that

o) <o) < on()(2)" (14 g (A 4 A - ). G2

C1pP2

where L is the constant in (3.10)).
Proof. Let z € R™ and p > 0 be fixed; let

Pp(z) := inf { /Rn IV¢|ida: ¢ — 2 € Wy d(R™;R™), ¢ =0 on FP(O)} (4.3)

be the nonlinear capacity density corresponding to the ¢g-Dirichlet energy; namely &, is the density

defined as (3.14) in the model case f(&) = ¢(&) = |£]|?. The unique solution ¢, , of (4.3) satisfies
the following ¢g-Laplace boundary value problem

div(|VC. ,772VC ) =0 inR™\ B,(0),

Cz,p —z € W()Lq(Rn;Rm)a Cz,p|§p(0) =0.
This can be computed explicitly and is given by the radially symmetric function
Cz,p(x) = Z( - (p/‘xD(n_q)/(q_l) + 1)XR"\§p(O)'
A direct calculation yields

Dp(2) = Cp qlz]7p" 71, (4.4)
where

n=g\" 1 an—1
Chq = ( ) ST
»q q-— 1 H ( )
Therefore, gathering the upper bound in (3.9)), (3.14)), and (4.4)), we get

22 2 [ 9V A < eaBylz) = a2l
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which gives the second inequality in (4.1)) with Cy 1= ¢2C,, 4.
Similarly, for every ¢ such that ( — z € Wol’q(R";Rm) and ¢ = 0 on B,(0), again using (3.9),
(3.14), and (4.4), we obtain

/ g(V()dx > cl/ IV¢|9da > c19,(2) = c1Cp g]2|%p" 2.
n Rn
Taking the infimum in ¢ we get the first inequality in (4.1]) with Cy := ¢1C,, 4. This concludes the

proof of (4.1)).

For note that the first inequality follows by monotonicity, since for 0 < p; < po every
competitor ¢ for the minimisation problem defining ¢,, (z) is also a competitor for the minimisation
problem defining ¢, (2). To prove the second inequality, let ¢; be the minimiser of the problem
defining ¢,, (2). Set (a(x) := 1 (p12/p2); then (o is a competitor for the minimisation problem

defining ¢, (2). Moreover, by and we get
9(Vé(x)) < 9(VGi(prx/p2)) + L(IVG(@)771 + [V (p1a/p2) |17 1) [V Ga(x) = VCi(pr/po)|
< a(Vamalon) + L (14 (2)7) (1 2) Iaoia )l
(pi’_l + 03_1) (p2 — pl)) :

By integrating over R™, a change of variables and the definition of {; give

/n 9(V¢) dz < ¢, (2)(%)71 (1 + cleg (Pg_l + Pg_l)(Pz - ,01)> .

Eventually, since ( is a competitor for the minimization problem defining ¢, (z), we obtain

o) < om ) (2) (14 g (o7 4 o172 = )

C1P2

and thus (4.2). O

< a(Vapa/on) (14 2

Remark 4.2. As an immediate corollary of Lemma (cf. the estimates in (4.1)) we have that
¢p(u) € L' (D) whenever u € LY(D;R™) and 0 < p < +00. Moreover, again by Lemma and
by (2.10) and (3.15) we have also that p(u) € L'(D) whenever u € L9(D;R™), where ¢ is defined

in (3.15).
Let 6 € (0,1) and p > 0 be fixed. Let (g;) \, 0; we set

K= j—; =,/ (4.5)
where a.; is defined as in , and assume that j € N is large enough to guarantee that
0K; > 2p. (4.6)
Moreover, for z € R™ we define the class of functions
X3 = {C ¢ = 2 € W (Box, (0, R™), (=000 B,(0)},

and the auxiliary capacity densities
<pg’p(z) := inf {/ g;(VQ)dz: C € Xg’p’z} . (4.7)
BQKJ- (O)

We observe that the function p — gpg p(z) is increasing. Indeed, if 0 < p; < po, then every
competitor for the minimisation problem defining <p§’ 0, (#) 1s also a competitor for the minimisation

problem defining g0§7 o0 (2).

The next lemma is the analogue of Lemma for the functions Lpg o
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Lemma 4.3. Let (¢;) 0, 8 € (0,1) and p > 0 be fized, and let K; be defined as in (4.5).
Assume that (4.6)) is satisfied. Let <p797p be as in (4.7); then

(i) there exist constants Cy,...,Cy > 0 depending only on n,q,c1,ca, such that for every
zeR™

@g)p(z) > Cl|z|q(p(qfn)/(q71) _ (ng)(qfn)/(qfl))l—q — 0" (4.8)
and
80]97,3(2’) < C3|Z|q(p(q7n)/(q71) _ (ng)(qfn)/(qfl))lfq + L0 (4.9)
(ii) Let M > 0, and assume in addition that p € (0, M|, and that j € N is large enough so that
0K; > 2M . (4.10)
Then, there exists a constant Cpy > 0, with Cpy — +00 as M — 400, so that
04,,(2) — ) )] < Car (6700 a4 20wl ) e —wl, (411)
for every z,w € R™ .

Proof. We start proving (¢). To this end, for every z € R™ we set
@} ,(2) = inf{/ IV¢|?da: ¢ € Xgpz}. (4.12)
' Box;(0)

Similarly as in the proof of (4.1]), the unique solution Eg p O (4.12) can be computed explicitly.
Moreover, a direct calculation gives

i )/ (q— ) /(g1 1—
@g,p(z)zcn)q|z|q(p(q V(a1 _ (g ;) a1/l 1)) q7 (4.13)

where the constant Cnyq > 0 can be computed explicitly.
To prove ([4.§)), let ¢ € X} .23 Dote that ( is a competitor for the minimisation problems defining

<p07p( z) and <p07p( z). By combining (3.6) and (4.13), also recalling (B.1), (4.5, we find
/ 9;(V¢)dz > 1 (/ V(|9 da — Bn(0K;) "o ) > (‘Pe (7)) — Br0")
Byx,;(0) Bk (0)

— 1 (Cngl2|9 (pla/ (= 1) — (ng)(q*n)/(qfl))lfq — Ba0") .

Then, by taking the infimum over ¢ € Xe > We obtain (4.8) with C1 := cicpq > 0 and Cy :=
Clﬂn > 0. ]
To prove (4.9) we use the fact that 5 ».» 18 a competitor for the minimisation problem defining

cpgv ,(2), which together with (3.6) and (4.13) gives

A< [ ngZz,p,z)dwécg( / |VZ5,p,z|qu+ﬂn<eKj>”azj>
Bok;(0) Bok,; (0)

=y (@é,p(z) T Bu8") = cacnglel? (pl1~/ 107D = (BF ) e/ a=DY Ty g gn)

which proves with C3 := cacp,g > 0 and Cy := 28, > 0.
We now prove (zz) By the quasiconvexity and coercivity of g; (cf. and . the Direct

Method of the Calculus of Variations ensure the existence of a functlon Ce oz € X7 such that

0,p,z
©h,0(%) :/ 9;(V¢ ) dx. (4.14)
Bok . (0)

We now modify Cg ,.» to construct a competitor for the minimization problem defining cpg p(w).
To this end, we consider a radial cut-off function ny; € C°(B2ps(0)) satistying

1 1
< — 4.1
2M —p — M’ (4.15)

0<nu <1, nulg, =1, [IVoullr~ <



14 L. SCARDIA, K. ZEMAS, AND C. I. ZEPPIERI

where in the last inequality we used that p € (0, M]. We now define the function Cg pow S

Cg,p,w = Cg,p,z + (1 - 77]\/[)(’(1) - Z) .

In view of (4.15) and (4.10), for j € N large enough we have that 77M|339Kj = 0, and therefore

ngpyw € Xg,p,w thus, it is an admissible competitor for the minimisation problem defining @g,p(w)-
Note that

VG p = VG e =V ® (2 — w) € CZ(Baar(0); R™™) . (4.16)
By [@.7), @14), (3.7), (3-6), (4.10) (4.15) and (4.16), we obtain

o () — ¢l (2) < /B 976 0) 0,09, )
SKj

<L / (0l +19G .l + 19,1 )IVG .0 — VG, |
Bz (0)

L . .

<= (5n<2M>”az;1 ) (196l 196, 1) dx) w2
B2 (0)

C Mn =1

~ n,qg—1 _ -1 n/ J q _
< M(M ol e — w4+ M q(/BQM(O)wg@)p,zw) >|w 2]

—1

< Y <a‘§j_1 + 2|77 4w + <30]9’p(z) + M”ag]_) e ) |lw—z|, (4.17)

where C' is a positive constant depending only on ¢1, ¢2, n, q, L. Now, by (4.9)

(péw(z) < 03|Z‘q(p(qfn)/(qfl) _ (ng)(q*n)/(qfl))lfq + O40"

< Cyl2]9(1 — 2@/ (@ D)1= ynma | g gn (4.18)
where the last inequality follows from (4.10)), for j € N large enough (depending on 6, M). Finally,
[EI7) and [@I8) imply that
g=1
hp(w) = ) (2) < CM" (azﬁ S E i e (E R T B ) fw =21
< oMt (9n<fH>/q +af~l o 4 \wrﬂ) lw— 2.

Then, interchanging the role of z and w in the previous argument we obtain (4.11]), and this
concludes the proof. O

Note that, as detailed in the remark below, sequences of minimisers of (wg, p) ;j are pre-compact,
modulo a straightforward extension.

Remark 4.4 (Compactness after extension). Let 6 € (0,1), M >0, p € (0, M], z € R™ be fixed,
and let j € N be so large that (4.10)) holds. Let (¢7) C X3, ,.. be such that

sup/ g;(V¢)da =: Cp . < 400, (4.19)
€N J By, (0)

where g; is as in (3.5). We set

G ¢ in Byg, (0),
"~ |z inR™\ By, (0).
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Clearly (¢7) C Wﬁ)’cq(]R”; R™), and {7 —z € Wy ?(R™; R™). Moreover, in view of (8.6), (3.1), (&35)),
and (4.19) we have

sup/ V(¢ —2)|9da = sup/ V|9 dae = sup/ VI | da
n n BHKj(O)

jeN jEN jEN

S ([ (V) o+ 0K, at)
Box (0 !

JEN
S Cop-+ 0" (4.20)
Then, by the Sobolev Embedding Theorem we deduce the existence of ¢, 4 > 0 such that
sup/ 17— 2|7 da < Cn.q sup/ V¢ da < Cop. +0", (4.21)
jEN n jeN n

where ¢* := ng/(n — ¢) denotes the conjugate Sobolev exponent of q. The estimates (4.20]) and
(4.21)) then guarantee that

(I — 2 = ¢ weakly in Wli’q(R”;Rm) as j — +oo,

C

for some ( € W9 (R R™). Equivalently, setting ¢ := G+ 2, we have that ¢ — z € T
<|§p(0) =0, and
¢ = ¢ weakly in Wied(R™R™) as j — +00.

C

The following result is an immediate consequence of Lemma [£.3]

Corollary 4.5. Let M > 0 and p € (0, M] be fized. Let 6 € (0,1) and j € N satisfy (4.6) and let
<p§7p be as in (4.7). Then we have the following.

(i) There exists a subsequence (not relabelled) and a measurable function @g ,: R™ — R such

that ‘
., — Pop 1 Ligc(R™), as j — +00. (4.22)
Moreover, the function g , satisfies
Ch|z]7p" ™1 = O™ < g p(2) < Cs|z|1p" "1+ Cs”  VzeR™, (4.23)
and
l00,p(2) — @o,p(w)] < CM(H"(q_l)/q + |27t + \w|q_1)|z —w| Vz,weR™, (4.24)

where Cq,...,Cq > 0 and Cp; > 0 are as in Lemma . Additionally, for 6 € (0,1) and
z € R™ fized, the function p — g ,(z) is increasing.

(i) There exists a subsequence (not relabelled) and o measurable function @,: R™ — R such

that
o, — Dp i LS (R™), as — 07 . (4.25)
Moreover, the function @, satisfies
Cul2l70"™1 < G,() < Cul#l?p"™ ¥z e R™, (4.26)
and
18p(2) — Gp(w)| < Crr (2197 + |w]?Y) |z —w| Vz,weR™, (4.27)

where C1,C3 > 0 and Cpr > 0 are as in Lemma[{.3 Additionally, for = € R™ fized the
function p — ¢,(2) is increasing.

Our next goal is to prove that the abstract limit density ¢, given by Corollary (i) coincides
with ¢, defined in (3.14). To do so, we follow a similar approach as in [2, Section 7.

Proposition 4.6. Let M > 0, and p € (0, M] be fized. Let ¢, be as in (3.14)) and let ¢, be given
by C’orollary (i1). Then, @, = ¢,. Therefore, in particular, ¢, satisfies the estimates (4.26))

and .
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Proof. We divide the proof into two main steps.

Step 1: ¢, > ¢,. Let z € R™, § € (0,1) and K > 2M be fixed. Moreover, let (g;) ~\, 0, and
take j € N so large that K; > K holds, where K is defined in (4.5). '

In view of the quasiconvexity and coercivity of g; (cf. (3.5) and (B.6])), there exists (¥ € X é’ P2
so that

dh)= [ (v da.
Bok (0
Hence, up to a subsequence, (4.22) ensures that
sup/ gj(VCj) de < Cyp.z,
JENJ By ; (0)
for some constant Cy , . > 0. As observed in Remark we can extend (¢7) to obtain a new

sequence (¢7) and a function ¢ € W;24(R™";R™) such that (3 — ¢ weakly in W9(R™; R™) as

loc loc

j — 400. Then, in particular using (3.6]), (4.5)), (3.1)), and since

/ 01(VG) > —eraf, £ (Borc,(0) \ Bx(0)) > ~fncr”
Borc, (0\Bxc (0) |
we get
©o,p(2) = lim gpg p(z) = lim gj(VCj)dx > lim gj(VZj) de—pFhc10™ . (4.28)
j—+4oo ’ Jj—+o0 BGKj (0) j—+o00 J Bk (0)

Now consider the auxiliary integral functionals defined as

| a(V0de it¢e W BkO)Rm),
Bk (0)
+00 otherwise in L' (B (0); R™),

G5(Q) =

and
| a(vode it ¢e W Bi()Rn),
Bk (0)
+oo otherwise in L!(Bg(0); R™),

where g is as in (3-8). Then, we can invoke [5, Proposition 12.8] to deduce that the function-
als (G%); I-converge to Gi with respect to the strong L'(Bg(0); R™)-topology and the weak-
Wh4(Bg (0); R™)-topology. Since ¢/ — ¢ weakly in W14 (B (0); R™), in particular we can deduce
that

Gr(Q) =

liminf /B o g;(V¢) dz > / g(V¢)dz. (4.29)

Jj—+oo Bk (0)
Therefore, gathering (4.28) and (4.29) gives
©o,p(2) > / 9(V¢)dx — Bpe 6™
Bk (0)
Passing to the limit as K — 400 and using the Dominated Convergence Theorem, we obtain
posle) 2 [ g(VOdn = B8 2 9y(2) ~ Burd”.

where we also used that ( is a competitor for the minimisation problem defining ¢,(2). Eventually,
passing to the limit as @ — 07 and recalling ([4.25)), we get that $,(z) > ¢,(2).

Step 2: ¢, < ¢,. Let z € R™ be fixed; by the quasiconvexity and coercivity of g (cf. (3.8) and
(13.9))), there exists ¢ with ¢ — z € Wol’q(]R”;]Rm), §|§p(0) = 0, such that

Pp(2) = / 9(V()dz. (4.30)
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Let 6 € (0,1) and K > 2M be fixed, and let (g;) N\ 0; we take j € N so large that 6K, > K holds.
Consider a smooth radial cut-off function nx € C°(Bg(0)) satisfying

2

0<nk <1, nklp, =1, [IVixlw= < e

and define
(k= +(1—nk)z. (4.31)

Then (k is an admissible test function for the following minimisation problem
i p(2) := min { /B o 9;(VQ)dz: ¢ =z € Wy (B (0);R™), Clg, (0 = 0} :
K

By the I'-convergence of (Q;() j to G, and by [5 Proposition 1_1.7], there exists a recovery sequence
for G4 converging to (x. More precisely, there is ((%);, with (% — (x weakly in W19(Bg (0); R™),
j 1, m j _

(e — 2 € W' (Bk(0);R™), Cxlg5,00) =0,

and for which the energies converge, namely
lim 9;(VCh)da = / 9(V¢k)dz. (4.32)
=4 J B (0) B (0)

We extend C}'( to Byk, (0) by setting

5 _ [ in Bk(0)
(e = {z in Bon (0) \ Bg(0). (4.33)

Then Z}( € Xg%z, SO E}( is an admissible competitor for the minimisation problem defining cpgvp(z)

in (4.7). Therefore, by (4.33]) we have

)< [ g(VG)de= [ (Ve
Box, (0) B (0)

Taking the limit as j — 400 (possibly passing to a subsequence), and using (4.22)), (4.32), (3.9)
and (4.31]), we obtain

po(2) < / 9(Vex) da = / o(Ver)do + / 9(Vex) da
Bk (0) Bk (0)\Bk/2(0) B /2(0)

< 02/ |V<K|qu—|—/ g9(V¢) dzx. (4.34)
Bk (0)\Bk/2(0) Bk 2(0)

We claim that

lim |V(k|?dz =0. (4.35)
K =400 /By (0)\Bx,2(0)

By (4.31)), and since by the Sobolev Embedding Theorem ¢ — z € L9 (R™; R™), we have

/ |ng|de=/ |Vnk @ (¢ — 2) + nx V¢|* dz
Bk (0)\Bk/2(0) Bk (0)\Bgk/2(0)
Sy 6= =" do+ et~ [ Vel ds
Bk (0)\Bk/2(0) Bk (0)\Bk/2(0)

< KR (/ ¢ — z|‘I*da:)T* +/ |V¢| da
B (0)\Br/2(0) Brc(0)\Br/2(0)

a_
<(/ C-apdz) "+ [ IVl de,
R™\ Bk /2(0) R™\ Bk 2(0)
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where we have used that K—9K"!~7%) = 1. Hence, passing to the limsup as K — +oo yields
(4.35). Taking the limsup as K — +o0 in (4.34)), by (4.30)), (4.35), and the Dominated Convergence
Theorem we get

©0,0(2) < @p(2) -
Eventually, by taking the limit as & — 0% in the above inequality, and by (4.25)), we have that
Pp(2) < ¢p(2). U

The following result, Lemma [£.7] is an adaptation to the non-periodic setting of the so-called
“Joining Lemma” (cf. [3, Lemma 3.1]). This is a technical tool which allows to modify sequences
of functions near “good perforations” without increasing the energy too much, and will be crucial
in the proof of Theorem [3.2] First, we need to define the class of the good perforations, consisting
of balls which are well-separated from one another and not too large, in the sense specified below.

Let € > 0 and M > 0 be fixed, and let D C R™ be an open, bounded, Lipschitz set, star-shaped
with respect to the origin. We define ¥ s as the collection of points in R™ satisfying the following
two properties:

(a) |z; —xj| > 2/M for every i # j;
() Us.eq. , Beym(eai) € D.
We note that by @ and @ the family of balls (B./n(e2))a,e9. ,, consists of pairwise disjoint
subsets of D; therefore we immediately get that
(B M ™™ #YG. < L™(D). (4.36)

For 6 € (0, 1) fixed, we refer to (Bg./n(€24))z,e%. 5, as the family of “truncated good perforations”
in D. By we have that By, y(ex;) CC D, for every x; € 9. ar.
For z; € 4. »r and | € N we define the annulus

Cl gy (e;) = {1: eR": 270 /M < |z — ey < 2’195/M} C Boem(e;). (4.37)
If (¢5) "\« 0 we adopt the shorthand notation ¥ rr := %, as -
We are now ready to state and prove the following variant of the Joining Lemma.

Lemma 4.7 (Joining Lemma). Let (¢;) \, 0, M > 0, 8§ € (0,1) and k € N be fizred. Let
(u;) € Wy (D;R™) be such that

u; — u weakly in Wh4(D;R™) (4.38)
or some u € Wa' D:;R™), and let 9; pr be a collection of points in R™ satisfying |(a)i(b)} Then
0 7,
or every x;; € 9; v there exists ki ; € {0,...,k—1} and a corresponding annulus C_7} \ (e;x;;
Y Zj, s s g e;,0,M\E5T3,

(defined as in (4.37) with €, I, and x; replaced by €;,k;;, and x;,;, respectively), such that we can
construct a sequence (w;) C Wol’q(D;Rm) satisfying the following properties:

. _ . kji i
(i) wi =u; in D\U,, ey, , Cc)o.m(E5%54) ;

J
(ii) w; = uj; on 0Bs, ,(gj24:), where

3.
Uji 5:][ - ujde, Ojji = 7270 —= (4.39)
C:j:;,M(EjfL’j,i) 4 M
(iii) w; — u weakly in WH4(D;R™);
C
(iv) ‘/ f(Vw;)dz —/ f(Vuj)dx’ < T for some C > 0 depending on c2, n, m, q, D, and
D D

SUpjey Vsl La(prmxny.
If, additionally, the sequence (|Vu;|9) is equi-integrable, then also (|Vw;|?) is equi-integrable,
and one can take kj; = 0 for all x;; € ¥ v, up to Teplacmg with the following estimate

(/Df(ij)da: - /Df(wj)dx) < Cpo™ + % (4.40)

where Cy > 0 can blow up as k — +o0.
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Proof. The proof is an adaptation of that of [3, Lemma 3.1], and we present it in detail for the
convenience of the readers.
For every j € N, z;; € ¥, ar, and | € {0, ...,k — 1} we define the shorthand

Cli=Cl 0 M(Eg% i)

jio ] ; the quantities defined as in , with [ replacing k;;. Let w;l €
Cgo(lel) be a cut-off function satisfying

and we denote with @

C

Z[Jé',i’aBalv v = 1, 0 < % Q < 1 vag z||L°°(C’l T ’ (441)
3t _] [

with ¢ > 0, and set
wéz =t 1/’51(1_121 —uj). (4.42)
Note that wél = u; outside the annulus C’ll- and wél = aéz on 8365_’1_. By (3.3) and (4.41) we
have
F(Va) ) da < 02/ (19940 ® (s — ) + (1= 0} ) Ve | +1) o
c, c,
< (5;-71-)*‘1/ luj — ﬂé-ﬂ-|q dx —|—/ (1+|Vuy;|?) de / (1+ }Vuj|q) dx
cl, cl, cl,
(4.43)
where to conclude we have used the Poincaré inequality in the annulus C]lﬂ-. Since the sets
(le',i)lzo,...,kfl are pairwise disjoint and

U € € Boc, jarlejwsi) \ Bo-rge, jna(€55.6) C Boe, yr(j54)

we obtain for every j € N and z;; € ¥ ur,

k—1
> [, (v (14| ") do
=0 g,

0, /M (5%5,4)

In particular, for fixed j € N and z;; € ¥, ur, there exists k;; € {0,...,k — 1} so that

Lo, 0+ vula<g [ (149" az
2t B

G esj/M(Ejl’j,i)

k = .— k] d . k
) 0j4 = and wj; ‘= w;

iy ;i we define the sequence (w;) as

Setting C;; := C’jjz‘, Uj; =1,

U4 in D \ U Cjﬂ' 5
wj = 25,1 €9; M (4.44)
Wi 4 in Cj,i .
From the definition and by (4.41]) and (4.42)) we have that w; satisfies properties Moreover

by (4.43) - (4.44), and the fact that the balls (By., /ar(€j%,i))z; .9, ,, are pairwise disjoint subsets
of D, we have

)/ f(Vw;) dxf/ f(Vuy) da:‘ < Z / F(Vw;,) — f(Vuy)|dz

;€9 M

A
=

(1+[Vuy|?) dz

w51 €G; 0 Y Boejrm(€524.0)

/D (14 [Vay|) da

<

El i

Then, follows immediately by (4.38]).



20 L. SCARDIA, K. ZEMAS, AND C. I. ZEPPIERI

It only remains to check that w; satisfies |(iii)} To do so, we start by showing that w; — u
strongly in LI(D;R™), as j — 4o0o. Indeed, by (4.41), (4.42)), (4.44), and by using the Poincaré
inequality in the annuli Cj;, we get

—ul?dr = —u|’ dz + / + uj) —ul’d
/D‘w] uff dw /D\ U o), ufides 3 g + 031 @ uf'de

zj i €95 M n leeg]M
/|u —ul?dz + Z / u”‘ dz
5,i€9 M
5/ |ujfu|qu+(0€j/M)qsup/ |Vu,;|?de, (4.45)
D JENJD

which is infinitesimal as j — +o00 by (4.38), and since (g;) N\, 0. By combining (4.44), 7 and
([#.43) we also obtain

/|ij|qu:/ Vltdet Y / V|7 dr
D DN U o

z; i €95 M T;,i€9) M
< [ wmrarse S [ (T as
25169, 01
/'V“ [zt Y / +\Vuj|")dx5/(1+|wj|q>dx
5 i€9 m 395 /M(5J£J1) D

which by (4.38)) and (4.45]) yields the desired convergence

Suppose now that the sequence (|Vu;|?) is equi-integrable. In this case, for each z;; € ¥ ur
we set

3 0¢,
Cj,i = {961/(2M) < |l’*€jf£j,i| <9€j/M}, Uj g ::][ ujdx, 0ji = 4 ]\4]
and
Wi = vy + P50 —ug)
where 1;; € C2°(C} ;) is a cut-off function such that
c
0<7%;.<1, ¢j,i|aBﬁji =1, [[V¥jilleec,) < =

Oji

with ¢ > 0. Similarly to (4.43]), also in this case we have

/ f(Vw;;)dz S / (1+ |Vu;|?) dz
Cj,i C

gt
Setting
Uj in D \ U Cj,i y
wj = ©5,i€95,m
wj; in each Cj;,
one can easily check that |(1)ll(ii)| and are satisfied. To prove (4.40)) note that for every T' > 0
large enough,

(/fij dxf/fVuJ dx‘< 3 /B (1 + [V, |9) da

z;, 16% Oc; /M(EJI] i

S (U+T7) 0,/ #%500 + | [Vl do.
Dn{|Vu;|>T}

By (4.36) we get

’/ f(ij)dxf/ f(Vuj)dx’ §(1+T‘7)6’”+/ V|9 da.
D D DN{|Vu;|>T}
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For k£ € N, taking first 7' = T} > 0 large enough, using the equi-integrability assumption on
(IVu;]9) we have

=

Sup/ |Vu;|?de <
JENJ DN{|Vu;|>Tx}

and hence (4.40). O

5. PROBABILISTIC BUILDING BLOCKS

In this section we collect some probabilistic results that we use in the proof of Theorem [3:2}
Preliminarily we recall that for a bounded set £ C R™ we have set

®(E):=dNE, N(E):=#bE).

Moreover for € > 0 we also define the e-dependent random variables

O (E) :=®(c'E), N.(E):=#d.(F) (5.1)
and for 6 > 0, we introduce the thinning process ®° of d-isolated centres, defined by
o' = {zeav: mi —a| > 6} 5.2
T € yegfg¢xly x| > (5.2)
Analogously, we define
P°(E):=d°NE, P(E) = (e7'E), 5.3
5.3

NY(B) = #0°(E),  N(E):=#0}(E).

Lemma below is a statement on the asymptotic random geometry of the perforations and is a
straightforward adaptation of [2I, Lemma 4.2] to our setting. Since we deal with functionals with
g-growth (rather than quadratic), the critical scale of the perforations for us is gn/(n=a) (rather
than £"/("=2)). This difference in the scale causes some minor changes in the statement of the
result, but is of no consequence in its proof for which we refer to [2I] and omit here.

In what follows Q' € T denotes a set with P(£2’) = 1 that may vary from line to line and
depends only on the m.p.p. (®,R). If a property holds true for every w € Q' we may equivalently
write that it holds P-a.e. in € or, in short, almost surely.

Lemma 5.1. Let (&, R) be a m.p.p. satisfying the assumptions|(HL)H(H4 ), and let HY, for e >0
and w € Q, be the family of random holes associated to the m.p.p. defined as in (3.2)).

There ezist €g := €o(n,m,q) > 0, random variables (r:) with re : @ — Ry, and a set ' € T
with P(Q') = 1 with the following properties. For every w € ¥,
lim r¥ =0, (5.4)

e—0+

and for every w € Q' and every ¢ € (0,e0] there evists a set I¥, C ®Z(D) such that, defining
I2, = ®(D)\ 12, and

;jb = U Eaapi(g‘ri)’ ng = U §2aepi(€xi>7 H;),g = U Baapi(8$i)7 (5.5)

IiGI:b :EiGI:b xiGI‘E“’)g
we have
. y w ery . noTw . n n—gq _
dist(HZ ,, Dgy) > 5 5141)161‘*'8 #I12,=0, ag%l+6 Z (p)""71=0, (5.6)
:EiEI;‘”b
min |z; —z;| > 2r¥ max agp; < ere lim e"#I¥ = AL"(D) (5.7)
wz,IiEI:),g e €’ ziGI?,g = 2 ’ e—=0t .9 ' '
T AT
Finally, if § > 0, for the thinning process defined in (5.2)), for every w € Q' there holds
lim e"#{z; € ®2*“(D): dist(ex;, D¥,) < e} = 0. (5.8)

e—0+t
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safety layer

bad hole

good hole

£ 4» bad holes H‘:b,

Figure 2. Domain decomposition into good holes H, and safety layer DY, .

In what follows we refer to the sets H) and H, in as good and bad perforations, respec-
tively, while DZ) is referred to as the safety layer. Note that HY = HZ U HZ,. In short, the
good perforations are (er?/2)-separated from the safety layer, they are er¥-separated from one
another, their radii are bounded by (er¢)/2, and asymptotically they are the only relevant set of
perforations. An illustration of the geometry is shown in Figure

Note that, by (3.12)-(3.13]), proceeding as in the proof of (4.13]), we have that for every w € Q'
and z € R™

Cap, (HZ,, DZ) Capq< U Ba, p, (e2;) > Z Capq< aapi(sxi)7D:b>

z, €12, z, €12,

3" Cap,(Ba.p,(e2i), Bza.pi (c2:))

x'eI“’
~ Z aspl (q n)/(g—1) _ (20{ Di )(q n)/(g— 1))
T €lZy
~e" Z (pi)"" 7 =0 ase—0", (5.9)
xiEIgb

where we have used . Condition (with Cap, replaced by the classical harmonic capacity)
is explicitly stated in [2I, Lemma 4.2] instead of the last equality in ; however the analogue
of can be found in the proof of their result (cf. equation (4.58) and the one above it therein).
Moreover by following the steps in the proof of [21Il Lemma 4.2] it is easy to verify that in our case
the random variables (r¥) can be chosen as

re = (en/("=9) . max i ) Vv e®/% for some o € (0, ).

Following [2I], we now introduce for w € Q' the subset of I/ given by the (centres of the) balls
that are deterministically spaced apart from one another and from the safety layer, and have
uniformly bounded rescaled radii p;. More precisely, for M € N fixed we define

Ge v = {z; € I2,:d; >e/M and p; < M}, (5.10)
where, for z; € ¥ (D), we set

d?; = min {dist(sxi,D‘g’b), 3 min elz; — xi|,e} . (5.11)
’ ’ TFT;
If () ¢ 0 we adopt the shorthand notation G¥ = G‘:j’ M - Without loss of generality, in all

that follows we can assume that B, /m(exi) C D for every z; € G¢ ;. Indeed, set

G2% = {wi € G2y Bojpr(ew;) NOD # 0} ;
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then
U EE/M(EZ’Z') C (8D)25/M = {.’E eR™: diSt(:L',aD) < 2€/M},
:EiGG?:;}
from which we infer that

,c"( U EE/M(%»)) gw—l(ap)% 0, as e 0",

o,w
xieGs,]\/[

0. are pairwise disjoint, we also obtain

Moreover, since the balls {B./n(e7:)},
K e, M

#G25 Sp (/M)
Consequently, we have

e" Z pr T < M (#G?,’;\}) <p M*@te 50, as e — 0%,

3,
T EGE,;J{

so that the capacitary contribution of these balls is negligible as well.

Compared to the good centres [ , where the same scale ery controlled both the size of the
perforations and their separation, for the balls centred at G¢ ), the separation is of order £, while
the size is much smaller, of the critical order a..

Below we show that the family of points G ), satisfies, almost surely, properties before
(4.36). Hence we can deduce a probabilistic version of Lemma for P-a.e. w € €2, where

sequences will be modified around balls with centres in G/ ;.

Lemma 5.2 (Probabilistic Joining Lemma). There ezxists a set Q' € T with P(Q)) = 1 satisfying
the following property. Let (¢;) \ 0, M € N, 6 € (0,1) (with 4 € N) and k € N be fived. Let
(u;) € Wy (D;R™) be such that

u; = u weakly in Wha(D;R™),

for some u € Wy U(D;R™), and let (G pr)j be collections of points in R™ defined as in (5.10),
with w € Q. Then for every w € Q' and for x;; € G, there exists k%, € {0,...,k — 1} and

. . -
corresponding annuli C_ g w(€5%5), such that we can construct a sequence (w$') C Wy'(D; R™)

satisfying the following properties:

. ‘ K,
(i) w¢ =wu; in D\ Ux;.{,ieG;M Celom(€is)

(ii) wy =uf,; on 635;{1(6]'%,@‘)7 where

W .
Uji =

o Sk,
ujdx, au.—ZQ Js

Sle

k‘{”i
Cs;:e,M(ejIJﬂi)
(iii) ws — u weakly in WH4(D;R™);

(iv) ‘fD f(Vwy)dz — [, f(Vuj)da:‘ < £, for some C > 0 depending on ¢z, n, m, q, D, and

SUupPjeN ||Vuj HL‘I(D;RMX")-

If, additionally, the sequence (|Vu;|?) is equi-integrable, then also (|Vw¥|?) is equi-integrable,
and in the definition of 63, one can take k; =0 for all x;; € G% ,, up to replacing with the
following estimate

C
‘/ f(Vwy)dz —/ f(Vuj)dx‘ <G+ —,
D D k
where Cy > 0 can blow up as k — +o00.

Proof. Let M € N be fixed; by Lemma there exists Qps € T with P(Q237) = 1 such that for
every w € {2y the collection of points G¥ , satisfies properties (note that @ and|(b)| follow
immediately from and , and the discussion right after them. Hence, as in (4.36)), we
get that for every w € Qpy

s_telg(ﬁnM*”e?)#G;fM < L*(D). (5.12)
J



24 L. SCARDIA, K. ZEMAS, AND C. I. ZEPPIERI

Finally, set Q' := (,,cy Qar; clearly P(Q') = 1 and for w € Q' fixed, Lemma applied to the
family of the truncated good perforations (B, /M(ijj,i))mj,ierM provides us with a sequence

(wy) C Wol’q(D; R™) enjoying the desired properties. O

Remark 5.3. We observe that, by (5.10) and (5.11]), the points in I’, whose distance from the
safety layer D¢, is smaller than e/M do not belong to the set G? js- This guarantees that

( U Oﬁquwn)m< U a%quww)zw

zj»iEG;},IVI :zj,ielgwb

namely that the annuli around the truncated good perforations where the sequence is modified do
not touch the bad balls.

This request is also present in [2I, Equation (4.65)] to ensure that the correctors provided by
[21, Lemma 3.1] are well-defined.

Note, however, that the annuli around the truncated good perforations, might in principle
intersect balls centred at I  \ G¥ ;.

5.1. Strong laws of large numbers for marked point processes. In this section we state
three generalizations of the strong law of large numbers for marked point processes which are
relevant for our problem. The first two results, Lemma and Lemma [5.5] were originally stated
and proven in [2I], Section 5]. We recall their statements here for the readers’ convenience.

First, we need to introduce some notation. Let (®,)) be a m.p.p. in R® x R, with ® satisfying
the assumptions [(H1 )H1 H3)| of Subsection and Y := (Y;)z,caw, with Y; : @ — Ry measurable,
satisfying [(H4)| therein, with (2.10)) replaced by

+oo
(Y) := / yh(y) dy < +o0, (5.13)
0
and (2.12)) replaced by

c
|K (r,y1,92)] <

(L)@ + 27+ 5077
(Think of Y := (p; %) for our application.)

(5.14)

Lemma 5.4. Let Q C R™ be a unit cube, ($,)) a m.p.p. as above and B C R™ a bounded set
star-shaped with respect to the origin. Then, for P-a.e. w € Q,

lim e"NZ(B) = AL"(B) (5.15)
e—0t
and
li " Y= " . .
lim e > YE =MY)L(B) (5.16)
z,€P¥(B)
Moreover, for any bounded set A C R™, the thinning process ®° defined in (5.2)) satisfies
lim (N°(A)) = (N(A)) = A\L"(A). (5.17)
6—0+

A by-product of Lemma[5.4] (cf. [21], Section 5]) is the following.

Lemma 5.5. Let (9,)) be a m.p.p. as above and B C R™ a bounded set star-shaped with respect
to the origin. Let I¥ C ®¥(B) be such that, for P-a.e. w € Q,

lim e"#IY =0.

e—0t

lim &" Z Y =0.

e—0*t
T; GI;’

Then, for P-a.e. w € ),
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We conclude this section with a technical result which can be seen as the nonlinear counterpart
of 21}, Lemma 5.3]. This result will then be used to prove a stochastic Riemann-sum approximation
for the capacitary term appearing in the I'-limit Fy in (3.16]).

Let M € N be fixed and let £ : R™ x Ry — R be a Borel function bounded from below, such
that

k(0,-) =0, k(z,y) <Cx(lz]%y" +1) for 0 < ¢, 7 <m, (5.18)
and
|k(z1,y) — k(22,y)| < Crm(1+ |20|771 + [22]77 1) |21 — 2| for every y € [0, M], (5.19)

for some Cj,,C ar > 0. We observe that (-, y) € W,2"°(R™), with norm uniformly bounded in

loc

y € [0, M]; i.e., for every open and bounded set E CC R™ and for any y € [0, M],
|k(21,9) — K(22,9)| < Cumplz1 — 22| V21,220 € E, (5.20)

for some Cy g > 0.
Let (®,Y) be a m.p.p. as defined above; we furthermore assume that

Y : Q— [0, M]. (5.21)
Finally, let u € C°(D;R™) be fixed and let X* : D x  — R be defined as
X (z,w) == k(u(x),Y?). (5.22)

Then, X¥(x,-) is (T, B(R))-measurable and X} (-,w) is continuous. Let A" := (X*);,c3~ denote
this family of space-dependent marks, and let (®, X*) be the corresponding marked point process

in R” x R. Moreover, we assume for the average function z — (X (x fo y)h(y)dy
that

M
(X" = / w(u(-),y)h(y) dy € L=(D). (5.23)

Proposition 5.6. Let Q@ C R™ be a unit cube and (®,X") be the m.p.p. in R™ x Ry defined
above, where @ satisfies|(H1)H(H3), and X} are defined in (5.22)). Let r- > 0 be such that

lim r. =0. (5.24)

e—0+

Then there exists Q' € T with P(Q') = 1 and a subsequence in € > 0 (not relabelled) such that

lim ¢g" E
e—0t B,

EXT;
ll6¢2/Mw < (ez3)

(,0) dz = (N (Q)) / (X*(z, )} dx. (5.25)

D

for every w € ', every M € N, and every u € C°(D;R™).

Proof. In what follows, by lim,_,g+ we mean limits taken up to an w-independent subsequence.
Let u € C°(D;R™) and M € N be fixed. We split the proof into a number of steps.

Step 1: Properties of the space-dependent marks. We observe that (X*), weqpw(p) satisty the
following properties.

(P1) For every w € 2 and z; € ¥(D) we have
X (z,w) =0 for every x € 0D.
(P2) There exists A := A(q, 7, &, ||t]|co, M) € (0, +00) such that

sup  sup || X{(,w)|lLepy <A (5.26)
weR z;€P¥(D)

(P3) For every w € Q the functions X! (-, w) belong to W1°°(D), with Lipschitz norm uniformly
bounded in ¢ (and similarly for their expected value (X*(z,))).
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Property follows immediately from u|sp = 0, since for every w € Q, z; € ®¥(D), and
x € 9D, by (5.18]) we have

X0 (,w) = w(u(), ) = £(0,Y*) = 0.

Property |(P2)|is a consequence of (5.18)), , and the fact that v € C°(D;R™). Indeed,
for every w € Q, z; € ®¥(D), and x € D we have
[ X3 (2, )| = [r(u(2), Yi*)| < Celu(@)|*(V¥)" +1) < Cu((ull&M™ +1),
thus (5.26)) is satisfied with A := C,(||lu]|%M"™ + 1), which is independent of both w and i.
Finally, by (5.20) and (5.21)), for every w € Q, a; € ®¥(D), and x,2’ € D we deduce that

X (2, w) = X (2", w)| = |k(u(x), V) — r(u(a’), Y;)|

(2

< Cﬁ,M,HuHoo|u(x) — U(CL‘/)‘ < CK’M,IluHoo ||Vu||oo|x — $/| , (5.27)

and therefore|(P3)l We observe that by passing to the expected value, the analogue of (5.27)) holds
true for (X"(z,-)) as well.
Step 2: Replacz'ng re with € in (5.25). If r. satisfies ([5.24)), by a change of variables and by

(5-27) and (5.3) we get
e” ][ X“xw)dx—a ][ X (z,w)dx
Z B B (ex;)

€@/ M (p re (e24) 2/Mw

En

B

/ (Xf(sa:i +r.z,w) — X (ex; + gz7w)) dz
B1(0)

z; €02/ (D)

< Clre —ele"N¥Me (D) < Ce(e"N2 (D)) — 0

e—=0t

for P-a.e. w € €, thanks to (5.15)). Therefore, to prove (5.25)) it suffices to show that there exists
Qpr € T with P(Qp7) = 1 such that, up to subsequences

im u o 2/M “ . .
51—>0+ Z/Mw( /B(Ezl Xi'(z,w)dx = B, (N (Q)>/D<X (z,-))dz, (5.28)

z;€EP

for every w € Qs and every u € C°(D;R™).

Step 3: Reducing to a dense subset D C C°(D;R™). Let D C C°(D;R™) be countable
and dense with respect to the strong L?(D;R™)-topology. Assume that there exists Qs € T with
P(Q2ps) = 1 such that, up to subsequences, holds true for every w € Qs and every u € D.

Let now w € Qy and u € CX(D;R™), and let (uy) C D be such that u, — u strongly in
LY(D;R™) as k — +00. We have

/ X2 () dz — Bu(N?M (Q)) / (X%, )) de
B.(ex;)

D

x16¢2/M “(D

<

/ XU (2,0) dz — B, <N2/M(Q)>/ (X (z,-)) do
Be(exi)

D

/ )—X;““(x,w)‘dx
B, (536)
T, €P;

L(N2M(Q /‘X“ )Y — (X (x -)}‘dx. (5.29)

1€(I>2/1Ww(D

2/Mw

The first term in the right-hand side of ((5.29) converges to zero as e — 0T by assumption, since
up € D. For the second term, by the definition of X and by (5.19) we find that for every
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2/M,
z; € /M (D)

/ ‘Xf(:c,w)fX;“““(x,w)‘dzgC’H,M/
B (ex;

(1 +ul \ukrﬂ) u — | dz
Be(ezy)

qg—1
S (6"/" + lullLa(B. (exi)) + NunllLas. (m))) lu — ukllLa(B. (c2:))

S E T+ [l pagseern) ™l = urll pags. ) »
where in the last inequality we used the fact that up — w strongly in L7(D;R™). Adding up the

previous inequality over all z; € o2/ “(D), using the fact that each ball B.(ez;) overlaps with
at most a finite number (depending only on M) of other balls of the family (Bg(ami))mE(Dz/M,w(D),
and by a discrete Holder inequality, we deduce

S

T €<I>2/MW

< Z (/9 + lullLo(B. (ca)))® It — ullLa(B. )
z;€02/M (D)

ﬂ 1
(X @t hlseen) (X / g — )
2.€92/M* (D) s e<1>2/M “( (ez:)
< (e Y / al") ™ e~ wlzao
. E(1)2/1\/1m < (ez¥)
< ("N (D) + ||u||Lq<D))Huk ~ o). (5.30)

Hence, by (5.30]), the second term in the right-hand side of ([5.29)) converges to zero as k — +oo.
To conclude, we show that the third term in the right—hand side of ([5.29)) converges to zero as
k — 400 as well. By the definition and ( we estimate

/‘X“ — (XM (n d:c<// y) — k(ur(z), y)|h(y) dy de

< Cooar [ (1 fusl ™+l = ] < Cone(1+ ||u||%;3D)>Huk ), (5.3D)
D

where we used that fR+ h(y)dy = 1 (see |(H4)|), and that up — w strongly in L9. This term is
indeed infinitesimal as k — 400, so the proof of this step is complete.

Step 4: Proving (5.28)) in D. Let v € D. We estimate

P> / LX) de = N@) [ (X7, ) da] < ) 4.
2/1Mu.7 e (exy)

D
where
at(w) =| [ ey s Q) [ eeoa]. Ga)
i €q>2/JVIu(D) B.(ez:) D
and
b (w) ::‘ / (X?(2,w) — (X*(x,))) dz‘. (5.33)
o e(1>2/MW( D) Be(ex;)

We claim that there exists Q3, € 7 with P(Q},) = 1, so that up to a deterministic subsequence
in € > 0 (independent of v € D),
lim a(w) = lim b(w) =0 VYwe QY. (5.34)

e—0t e—0*+

Note that since D is countable, by setting Qa; := [ QY,, we obtain directly (5.28) in D.
veD
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In what follows, to not overburden the notation, we omit the possible extraction of a subsequence
in € > 0, as long as this can be chosen independently of the realisation w € €.

Substep 4.1: Rewriting . We start by rewriting a?. Since, by for every w € Q and
every x; € ®¥Y(D) we have X! (z,w) = (X"(x,-)) = 0 for every z € 9D, by setting X?(z,w) =
(XV(z,-)) = 0 for every x € R™\ D, we obtain functions defined in the whole of R™. We now
tessellate R™ into unitary cubes {Q;}jen with Q; := Q(z;) and {z;};en = Z", and observe that

|z — 2] < (1+/n/2)e, for every x € B.(ex;), 7; € /M (Q,). (5.35)
Set N.(D) :={j € N: eQ; N D # (0}; noticing that eQ; = Q-(¢z;), by (5.32) we split

aw@=] > (X /B o ) do = N Q) / (X" (a,)) dz)

JeNe(D)  ,€02/M* (eQ;) “
(5.36)

where we have used that (X"(x,-)) = 0 for every x € R™\ D. Now, for every j € N.(D) we write

X?(x,)) dz — By (N>/M X?(z,-)) dz
> [, X s @) [ )

b

ey
T; €<I>§/M"" Qi

- Z (/ ((X”(x,-»—(Xv(gzj’.))) _5n/ <<X’U(x’_)>_<XU(8Zj7_)>) dx)
pred? e oy \IBelem) -,

+ B (N2/M(Q5) — (NPM(Q))) /Q_<X”(:r, ) dz . (5.37)

By (5:27) (for (X")) and (5.35) we estimate for every x € B.(ex;) with z; € ®¥Mw(Q;) =
2/M,w .
d; (eQ;), and similarly for x € €Q);,

(XY (@, ) = (X (e2j, W < Cra ol [VOllool = €25] < Cror oo [VVlloo (1 + v/n/2) . (5.38)
Hence, from ([5.36), (5.37)) and (5.38)), we can estimate

al(@) S Crnt o) VVlloce Y e"NZM¥(eQy)

JEN:(D)
H X @) - Q) [ ).
JENL(D) eQj
S COLVENM D) + | 37 (NP(Qp) ~ (V@) [ (X, ) dal.
JENL(D) £Q;

In view of (5.15)), to prove (5.34) for a?, it then suffices to show that there exists %, € T with
P(QY,) = 1, such that

l_igl+ S1e(w)=0 YweQj,, (5.39)
where
Sielw) = Y al(NMQ) —(VQ)), ol [ (X de (a0

JENe (D)
We now rewrite (5.34)) for % in (5.33). First we split
pa=| XY [ el
JjEN: (D) me@Z/M'“(an) B (ex;)

where we set

XP (2, w) = X2 (z,w) — (X(z,-)). (5.41)
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Then, proceeding as for a?(w), by (5.27) for )A(:f and (5.35)), by a similar inequality as (5.38) we

get,
Z Z )?f(szj,w)‘ .

JeN(D) 3,€02/M % (eQ;)

Hence, again by (5.15]), to prove (5.34) for bY, it suffices to show that there exists Qf, € T with
P(2%,) = 1, such that

b (w) S C(M,v)(e" NZ/M“(D))e + "

lim S (w) =0 VYweQj,, (5.42)
e—0t
where N
Soc(w) :=¢" Z Z X7 (ezj,w) . (5.43)

JEN(D) g ep2/Me (cQ,)

Substep 4.2: Rewriting (5.39) and (5.42). Assume that there exists a subsequence (ey); inde-
pendent of the realisation w € €2, with e \, 0 as £ — 400, such that
(oo}
D (SPe,) < +oo, forl=1,2. (5.44)
k=1
We now show that then (5.39) and (5.42)) follow. Indeed, for | = 1,2, (5.44)) implies in particular
that

<ZSﬁEk> < 400 = ZSﬁEk(w) < 400 for P—ae. we.
k=1 k=1

In particular, limy_, 4o Si e (w) = 0 for P-a.e. w € Q. As already remarked, the set of events
where the last assertion holds depends on M € N and v € D, and hence it is an admissible Q}, as
in the claims.

Substep 4.3: Proving (5.44) for I = 1. We note that, by [(P2)| the deterministic (v-dependent)
coefficients () defined in (5.40)) satisfy

o] < [{X") Lo (pye™ < Ae™, (5.45)

with A > 0 as in (5.26). Recalling that (XV) € WH(D) (recall |(P3)) and (XV) = 0 in R" \ D,
we get

S2w) = > (ad)2(NFMe(Q)) — (NYM(Q)))°
JENL (D)
+ Y adal (NYMe(Q)) — (NYM(Q))) (N¥M(Qy) — (NYM(Q))) . (5.46)
j#j €N (D)

Note that the thinning process ®*/™ inherits the properties in Subsection [2.3[ from ®.
In particular, the stationarity condition for ®2/M and ([2.8)) yield
(NFM(@Qy)) = (N*M(Q)),  (N*M(Q))?) = (N*M(Q))?)  for every j € No(D),
and
(NMQINM(Qy) < (N*M(Q))%) < N for every j,j' € N(D).  (5.47)
Then, taking the expected value in (5.46)), by (5.45)), (5.47) and (2.8)), we have
(52.) S e (NAND) + YD INTM(Q)NTM(Qi) — (N (Q))Y)
J#j'€Ne(D)
Syt Y (VM@ NPM(Qy) — (NPM(Q))?)
Jj#i’'€Ne(D)
lzj—z;1<2v/m
TN INM@INTMQ)) — (NMQ)

Jj#j' €N (D)
\zj—zj/\>2\/ﬁ
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where we have also used the fact that #N.(D) < £L"(D)e™™, and split the sum over j # j' €
N.(D) into contributions “close to the diagonal” and “far from the diagonal”. For the “close”

contribution, by and we estimate
Do UNTM@Q)NQu N = (NP SN Y # |z—2p] < 2vn} Sh #N(D).

J#j' €N (D) JEN:(D)

lzj =z |<2vm

For the “far” contribution, by (2.9) applied, by stationarity, to the random variables N2/M (Qz;—
zjr) and N2/M(Q(0)), we get

C{(N?M(Q))?)
> UNM@INTNQ) - NMQPIS Y T
§#5'€N=(D) §#5'€N.(D) 7
lzj =z 1>2vm lzj—z;1>2vm
1
,SA Z | . ‘77
Jj#j' €N (D) J

\ijzjl [>2vn

where we have used the elementary fact that diam(Q) = y/n. Hence, we estimate

1
(SP) e e S (5.48)
Jj#j'€N: (D) | = |
lzj =z |>2vm

To conclude the proof of (5.44]) for I = 1, we are now left to estimate the second summand in
(5.48)). To this end, note that for every j € N,

{/ €N: |z; — zj| > 2y/n} C U{k €N: 2z, € 0Q2(25)}-

=1
Since |z; — 21| > £ for every k € N such that 2z, € 0Q2¢(2;), and
#{k € N: 2, € 0Qau(2j)} < 20" — 24 — 1) S 7t
we can estimate

Z |Z —zgl”_ Z (Z Z |%_1zlm)

Jj#j'€Ne (D) JEN:(D) €21 keN
lzj—z41>2vm 2K €9Qap(25)

D E#{k € N: 21, € 0Qa(2)}

JEN.(D) £>1
]‘ n —n
S ;W #N:(D) S, L™ (D)™™, (5.49)

where we used the assumption that v > n. Gathering (5.48]) and (5.49)), if we choose a deterministic
(ex) \( 0 such that }, e}l < +00, we obtain

o0 o0

2
D (S.) Saaps D ek < oo,
k=1 k=1

hence the desired summability condition (5.44) for S; ., .

Substep 4.4: Proving (5.44) for 1 = 2. To simplify the presentation, it is convenient to introduce
some shorthand notation for S; .. Namely, for j € N and w € €, set

Zj(w) == Z )zf(azj,w)

S )
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so that, by (5.43] -, we have
fw=( ¥ 20) = ¥ 2w Y @20,
JEN(D) JjEN (D) j#j' €N (D)

By the definition of X? after (5.40) and by (5.26) for X, we can estimate the diagonal term in
S2 _(w) as

~ 2
> zws > (X IRCwl=) Sa Y ().
JEN(D) JENe(D) €2/ M (Qy) JEN:(D)
Therefore, for the expected value of 52276, by (2.8), we get
(S5.) SA N #N(D)+&™ > (Z;Zy) Sanp "+ Y (Z;Zy),  (5.50)
j#j/eNs(D) J?éj,eNe(D)

where we have used again that #N.(D) < L™(D)e™™. We now estimate the last sum in the right-
hand side of (5.50). We start by splitting again the sum into contributions “close to the diagonal”
and “far from the diagonal”, as

N (Zizpy= Y. (ZiZin+ Y. (ZiZy). (5.51)
J#j'€Ne(D) Jj#j'€Ne(D) J#j'€N:(D)
lzj—z;1<2v/m lzj ==z 1>2v/m
By the definition of Z; and by we can estimate
ZiZy= ) S XP(ex, ) Xpezy, ) < A2NPM(Q)NM(Q;),

r;€P2/Mw (QJ) T, E<I>2/M*“’(Qj/)

hence, by (5.47),

(Z;Z;0) < N(NPM(Q)N*M(Qy0)) < (AN)?. (5.52)
For the contribution close to the diagonal in (5.51)), using ([5.52)) we obtain

> (ZZpy= )] > (ZjZjr)

J#j'€N:(D) JENe(D)  j’eNg(D)
\zjfzj/\S2\/ﬁ J'#3, \Z’*Z-/|§2’\/E
23 # €T |5y - 5 S2VR) Saan #N(D). (5.53)
JEN:(D)
Hence, from ([5.50)), by (5.51)) and (5.53]), we have
(S5.) Saanp €'+ > (ZZy). (5.54)

J#5' €N (D)
lzj =z 1>2vm

We are now left to estimate the sum in the right-hand side of (5.54), namely the contribution far
from the diagonal. Let then j, j € N.(D) be such that |z; — zj| > 2/n and recall that

<ijj/>< 3 >y Xf(szj,~)Xﬁ(EZj/,~)>- (5.55)
wi€q>2/M’“’(Qj) wi/€<1>2/MvW(Qj/)

Let © 2)( -) denote the second- order factorial moment measure of the point process /M. Then,

by the Campbell Theorem (cf. - -, and ( we get
zzn- %(v(ezﬂ,y)%(v(em,y')fz((w,y),(x’,y’»d@;?(x,w')dydy'
(QJ‘ ><Qj/)><[0,]\4]2

= / R(o(ez), v)R(v(ezy), v ) K (Jo — /|, y,y) A0S (z,2") dy dy,  (5.56)
(Q;xQ,r)x[0,M]?
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where
R(0(e), Y) 1= k(v(e%,), V) — (k(0(e2)), Yo))
To estimate (5.56)), we note that for every x € Q; and 2’ € Q) there holds

2j — 2| < zj —al + o — 2|+ |2 — zp| <Vt v — 2| < L]z — 2| + |2 — 2, (5.57)
since |z; — zj| > 2y/n. Hence, for every z € Q; and z’ € @/, by (5.14) and (5.57) we have that,
C
K(lx -2 Nl <
| (|SC ZT ‘7yvy )‘ = (1 I |$ _ $/|7)(1 ¥ yg/(n_q))(l I (y/)s/(n_q))
(5.58)
C
U T~ T D)1 ) )
Appealing to (5.58), [(P2)|, (2.8), and recalling that s > n — ¢, we have
CA2 @) M 1 ?
’<ZZ> 7‘7@ i (Q5 X Qyr) /0 Wdy
CA2 too g 2
< ¥ N2ZM 2/M a4y
S e (i [ s )
AN)? teo g ?
57 L 1+/ 7y
1+ |25 — 2|7 . ys/(n—a)
1
< _ 5.59
S |zj T (559
Finally, gathering (5.54) and ( , we get
1
(S3.) Saamp ™+ Z my
73’ €Ne (D) !
lzj—z, I‘>2\/7
therefore the claim follows by ([5.49), arguing as in the end of substep 4.3. O

Remark 5.7. Proposition is the key result in the identification of the limit capacitary term
in the stochastic I'-convergence result Theorem [3.2] This identification will be done via successive
approximations, and Section |§| (in particular Proposition will be devoted to this.
We want to flag up that while the statement of Proposition contains the thinning process
(I>2/M the results in Section |§| are formulated for centres in the set G, s in 7 and G v C
2/ M The technical reason for using @g/ Min Proposition is that the thinning process inherits
the properties m (H3)| from @, while G, 57, which depends further on the random safety layer
D¢, does not. However, by . this choice is of no consequence in the proof of the results of
the next sections.

6. DISCRETE APPROXIMATION OF THE LIMIT CAPACITARY TERM

The main result of this section is Proposition [6.1] below, where we state that the capacitary
term in (3.16)) can be obtained as the limit of a “random” Riemann sum of the auxiliary capacities
(4.7), where the sum is restricted to the perforations centred in the set defined in (5.10).

Proposition 6.1. Let (;) \, 0, and let (u;),u € Wy*(D;R™) N L= (D;R™) satisfy

L :=sup |Ju;| L= (prm) < +00, (6.1)
JEN

and u; — u weakly in WH4(D;R™). Then, there exist ' € T with P()') = 1 such that for every
w € Q' we have (possibly along w-independent subsequences)

lim lim lim €7 Z on,p“ D 7)\/ o(u)dz, (6.2)

M—400 §—0+ j—+o0
xj, 1EG
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where G, is as in (5.10), 902» pya 081N (4.7), with p replaced by p;; (namely the mark associated
to x;,), Uy, as in Lemma and ¢ is defined in (3.15)).

The rest of this section is devoted to the proof of Proposition This will be carried out in a
number of intermediate steps, via successive approximations.

In what follows we assume that the sequence (u;) converges to u pointwise £"-a.e. in D, which
can be achieved up to passing to a subsequence. Moreover, throughout this section we always
assume that 1/0 € N, and that j € N is so large that holds true. Finally, we do not relabel
the (w-independent) subsequences along which the limits as j — +oc and as § — 0T are taken.

Our first step, Lemma below, shows that in the discrete approximation (6.2)), the auxiliary
capacity gpé, , can be replaced by its limit in j, namely by the capacity ¢g,, defined in (4.22)).

Lemma 6.2. Under the same assumptions and notational conventions as in Proposition[0.1], there
exists Q¥ € T with P(Y) = 1 such that for every w € ', we have

lim lim e ) 109, (W53) = Po.p,. . (@5)| = 0, (6.3)

00+ j—+
- I o IJ'JEG;J,JM
for every M € N, where @ ., is defined via (4.22)), with p replaced by pj,;.

Proof. Let M € N be fixed. For j € N and 6 € (0,1), we define the function ﬂg : (0, M] — Ry as
B3 (p) = ||<P‘;,p = 0,pllL=(By(0)) - (6.4)

In view of Corollary and the fact that in (6.4) an essential sup is involved, the functions 55

are measurable. Moreover, by (4.22)), Bg — 0 pointwise in (0, M] as j — +oo0.
Let now 7 € (0,1) be fixed. By the Egoroff Theorem there exists a measurable set Jp psr C
(0, M] such that

LY Joarr) > M —7 and [|B]n~( ) =0 as j— +oo. (6.5)

Jo, M+

We now start estimating the sum in (6.3]). For fixed j € N and w € Q, we get

> 198, (W13) = ©0,p,., (U5 < > (15,5, . (@5 + 100,055 (@5)]) X 0,01\ To v, (P51)

3771160]“1»1 %weGj,M

+ Z ’@je,pjl(ﬁ;},z) - wG,Pj,i(a?}i)‘XJs,M,f (Pj,i) ) (66)

caw
zJJEGJ',M

since by (5.10) p;; < M for z;,; € G%,,. Moreover, for every z;; € G5, and for j € N large

enough, by , , and we obtain
18, (@5 + 90,0, (53) | S J5317(pg.0)" 0 + 0", (6.7)
for some C' > 0. Hence, from , using , and , and since G5, C <I>‘;’j (D), we get
o b, () = 00, (15

z;€GY

.M
SO (B )X don, (i) Y BPi) X0 arr (P1)
zj,iEG;M wj,iEG;ilu
S LY Z (3.0)" X (0. M T ar.r (P30) F (O 4 1B 1w (7o arn)) (G ar) - (6.8)

zj,:€P¢, (D)
Define now the random variables Yj; : § — R as

Y= (pj)"" "X (0.MN\Jp s, (P1,1):
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then Lemma (see (5.16)), applied to (Y} ;), ensures that there exists Qar9,» € T with P(Qar9,,) =
1 such that for every w € Qur .+,

—+oo
Jm e Y VA= (V@)L DY) = (NQDED) [ 0 N (0)h(0) do.
2;,/€2¢, (D) 0
(6.9)
Note that, by (2.10), the function y : R — R, defined as y(p) := p"~9h(p) satisfies y € L'(R).
Let Q' € T be defined as

Q= m Qar,0,73 (6.10)
M,0-1, 71N

clearly P(Q') = 1, since Q' is a countable intersection of sets of probability 1. By (6.5), (6.8),
and (5.15)), for every w € Q' and for every T > 0, we find

m < Y 19, (@) = 9o, (a5)] SL,A,D/ p"~h(p)dp + 0"

j—+oo mj’iGGjM (O,M}\ngjvjﬂ—
STLY((0, M)\ Jorrr) + / y(p) dp + 0
{y(p)>T}
SLTT+/ y(p)dp+0",
{y(p)>T}

which holds true for every 7 € (0, M), and 6 € (0,1). By taking first the limit as 7 — 0%, then as
T — +oo, by using the fact that y € L'(R,;R,) and finally by taking the limit as § — 07, we
obtain (6.3)) in the set Q' defined in (6.10)), and hence the claim. O

In the following lemma we derive a qualitative result for the capacity g, ,.

Lemma 6.3. Under the same assumptions and notational conventions as in Proposition[0.1], there
exists Q¥ € T with P(Y) = 1 such that for every w € ', we have

tm e Y fenn (@50 - f 00,9, da| = 0, (6.11)
J—+oo lfj,ieG;M Beaj/M(’fjxj‘i)
and
Jm e > |4 o) do — Gop (wda| =0, (612

@ i€GY 0,/ (€5%5,1) Boc;/m(€jwj,1)

for every fizted M € N and 6 € (0,1) with 1/6 € N.

Proof. Let j € N be large enough so that (4.10) holds true, and k € N be fixed. Then, by (4.24))
and by the bound (6.1) that extends to (u¥,), for every w € (2 we can estimate

E? Z ‘9097/)1',1' (a;},z) - 7[ $0,p;,i (uj) d$‘

2 €G% Boe,/m(€575,1)

< 6? Z ]LB |<'097Pj,i(uj) - ¢9)Pj,i(ﬂ;ii)| dz

xj, LEG'WM Oe; /M (ejxj,:)
<y cM][ (0m@=1/T 4 |70 4 a9 fuy — 0| da
xj, zer Bye /]W(ngj i
SCOu(LT 4 omaD/a)en N ][ — %, de, (6.13)
i €GY o Boej/m (g525, @)
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w

where we used that, by (5.10), p;; < M for every x;; € G ). Let now C}; := ClC Ty (€xi) be

the annulus defined as in Lemma [5.2] and, for every z;; € G% ), set

ﬂj,i = ][ U dx.
Boc; /n(€T;,4)
By Hélder’s inequality, and since C¥; C By, /a(€575,i), we can estimate the integral in the right-

hand side of (6.13]) as
1/q
][ ju; — @, | da < (][ Juj — 5,17 de)
BSaj/M(EjIj,i) BQE]'/M(ijjw'i)

1/q
<(f 0y = Tyaltdo + £ [ - a7 do)
Boc, /m(e5m;,i) cy

Jii

( 1 1/q
N ][ |uj — w57 + / \uj—%-il‘w][ |Uj—u°’-|q> :
~ Boc,/m(e5w,i) " Ln (Cw ) Boc; m(ejm,i) s o

Hence, by Poincaré’s inequality, and since £"(C};) and diam(CY;) differ from the corresponding
quantities of By, /s (ejz; ;) only by a multiplicative constant (which can be bounded from above
and below uniformly in 4, j and w), we have

f 0y — | do e 05/00)' 7 ([
Boc;/m(e5w;,i) B

By adding up the estimate above over all i such that z;; € G%,, and by the discrete Holder
inequality, we have

—w -2
> f fuj — | Sk (0e5/M)' " a (/ v l)
Boc,/m(e5m,i)

1/q
|Vuj|q)

eej/M(Ejﬂfj,i)

;i €GY Boe;/m (ejwj,:) w“er
_n -1 1
e 050 e (2 [ V)
;i €GY 5 Boc;/m(e5m,i)
1T -1
Sk (05/M) " 1 (#G5 ) 1 VullLapy (6.14)

where in the last step we used the fact that the good perforations (Boe, /v (€;%;,))e, e ,, are
pairwise disjoint subsets of D. By (6.13)) and - we then obtain the bound

ey ‘soa,pj,i(@ﬁi)—]i 0.0, ()| Sonrpi &5 (EF#GIN)

. EFjTj 4
mjviEG?,JVI GEJ/AI( J J,z)

Q\H

Vsl La(py -

(6.15)

In view of (5.12)) and since (u;) is weakly convergent in W¢(D;R™), by taking in ([6.15) the limit
(superior) as j — +o00, we deduce (6.11)).
The proof of m follows similarly. In particular, using again (4.24]) and (6.1]), we estimate

5? ][ ((pg?p] i (U]) (pg?p] i ) ‘ dz
xj, LEGW BGE RYICTIRY!
<Cyel > ][ (™M@= D9 4 | |97 |97 fuy — | da
Tj, ZEG“’ BGE RYICTEIRY!
S Cpr (L1 4 070D/ e (g iy S / w; — u| de
z;, Ier B@s /M(ij] z)

SL.e.D / luj —uldz Sp,me,p [[uj — ullLep)
D



36 L. SCARDIA, K. ZEMAS, AND C. I. ZEPPIERI

Then, since u; is weakly convergent to w in Wh4(D;R™), taking again the limit (superior) as
j — 400 in the above estimate, we obtain (6.12)) . O

We are now ready for the proof of Proposition

Proof of Proposition[6.1 In view of Lemmata [6.2] and [6.3] it suffices to show that there exists
V' e T with P(©') =1 and subsequences in j € N and 6 € (0,1) (not relabelled), such that for all
w e @, and every u € W,y U(D;R™) N L®(D; R™),

lim lim lim &7 Z ]{B gogypjvi(u)dx:(N(Q))/ p(u)de. (6.16)

+
M—+o00 §—0t+ j—+o0 ©54€G e, /M (e524,4) D

We will prove (6.16) in a number of steps.
Step 1: Eztending the sum in ) to a thinning process with well-separated perforations upon
truncation. For M € N, j € N and w € Q, let @Q/Mw(D) denote the thinning process defined in

(5.3). For every z;; € @2/ M “(D) we define the truncated radius of the corresponding perforation
as pji,m = min{p;,, M} (Note that for x;; € G¥,, we have that p;; < M, so the truncation is
not necessary.) We claim that there exists Q' € T with P(Q') = 1 such that for every w € €0/,

hm e? ][ 909,ji(u)_ ][ #0,p;,i (’LL) =0,
j—+oo J Z B & Z Boc;/m(e5w;,i) P

90" 25 €GY ¥ Boes/m(€iTi0) 2, €02/ (D)
M —+oc0 >
(6.17)
where it is important to mention that the order with which the limits are taken is j — +o00,0 — 07

and finally M — 400 (as stated also in (6.16])). To prove (6.17), we start by estimating the sum
over the centres in the thinning process ®2/ M’w( D) which are not in the good set G ). For fixed

j €N, by (4.23), (6.1)), (5.1), Lemma [5.1] and recalling the definitions of I 2 and I , therein,

we have

5?‘ Z ][ ¥0.p5,i, M (u) dz

By, . EiTj g
$]1€<I>2/MW(D)\G;‘{M GEJ/M( 3T5,i)

s Y (e f jultdz + 0"
Boe,/m(ejTj.1)

wj.riE‘PgJ/-M‘w(D)\G;’),M

S Lie} Z (pjim)" "1+ 0" (] NE (D))
w5 €02/ MY (DNGY

Seep Yo (i) + ey > (pjinr)" "7 + 0" (ePNE (D). (6.18)

o w 2/M,w w
zj €l ;. €(02 (D)NIE, INGY ur

By (5.6), (5.15) (and the fact that we will send § — 07), we just need to focus on the second term
in the right-hand side of (6.18)) and show it is infinitesimal as j — +o00, # — 07 and M — +co.
We split
(‘I)ZM’UJ(D) NIE NG =L VIS
where (recalling (5.10)), (5.11))
19y = A{z;; € BZM(D)NIL ) pji > MY, (6.19)
I = {z;; € q’z_{M’w(D) NIZ gt pja <M, dist(ejzy,, DE ) < e;/M}, '

so that

e} > (i) =7 3" (paa)" T Y (praan)" 7% (6.20)

zj,ie(d)fj/.M’“’(D)ﬁI;’jyg)\Gj“’yM @j €15 zj €T
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For the sum over I¥,,, by (5.16)) (applied to the random variables Yj; := (p;,i)" ™ X (0, +00) (Pj,i))
there exists Qp; € T with P(Qs) = 1, such that for every w € Qs we have

j@méy S lpi)" < Tm el > (05)" I (Moo (P)

z; €15y, dmtee xj7i€¢gj (D)
+oo
= (NQE"D) [ hip)dp. (6.21)
Let Q:= () Qus; note that P(Q) = 1. Let w € Q; by (6.21)) and (2.10) we deduce that
MeN
; ) \n—q < n 3 n—gq —0. .
yim T & ;d (ps.)" ™ < (N(@Q)L"(D) Fm | = p"*h(p)dp=0 (6.22)
Tj,i &L 0

For the sum over J%'), in (6.20)), we first note that by (5.8) (with ¢ := M~1), there exists QM € T
with P(QM) = 1, such that for every w € QM|
im i T, =0, (6.23)

Hence, we can apply Lemmato the m.p.p. (®,Y), with Y;,; = (p;:)" "%, over the set of indices
Jy in (6.19), to obtain that for every w € oM

Jim s X =0 021

zj,i€J7

Now we set €/ := QN (Naren2™); then QeT, P(ﬁ’) =1, and € depends only on the m.p.p.
(®,R), but is independent of all the parameters ¢, 6, M and the function u. For every w € % , by
taking the limit (superior) in (6.18) as j — 400, § — 07 and then M — +o0 in this order, and
by (6.20), (6.22)), (6-24), (5.6), and (B.15)), we arrive at

lim lim lim &7 g 0, . (w)dz =0
M—+400 90+ j—4oo 7 B (e v 7p]’1"M( ) ’
@2/ Mw w 0cj /M €5;,1)

ije‘bsj (D)\Gij

which proves (6.17)).

Step 2: Proof of a simplified version of by . In view of , to prove it
suffices to show that there exists Q' € 7 with P(£2') = 1 and subsequences in j € N and 6 € (0,1)
(not relabelled), such that for all w € €, and every u € Wy'?(D; R™) N L>®(D; R™)

M1—1>m+oo oD, jilinoo K ;\4 ]{99 ai(e5ia) #0250 () do = (N(Q)) /D plujdz.  (6.25)
zj €02 (D) T o

First of all, by a standard density argument (along the very same lines as the arguments between
7, using the bounds f ), and by the Dominated Convergence Theorem we

may suppose without loss of generality that u € C°(D;R™).
To prove we apply Proposition to the m.p.p. (¥, X"), for the space-dependent marks
X (2,w) = o0, (w(@)) — G0, ,,(0), (6.26)
and for the radii 7., := fe;/M, which satisfy for fixed M € N, 8 € (0,1). We first check
that the marks satisfy the assumptions in the proposition. Comparing with , we have

that in our case

K(z,Y) == @oy(2) — pay(0), for (z,y) € R™ x R4, (6.27)
and that Y;; = pj;m. Due to the truncation to M the marks Y;; satisfy , since h €
L'(R,;R.). Moreover, due to the truncation to M they also satisfy (5.21). We now check
that the function s in satisfies the requirements for Proposition %D First of all, k is
Carathéodory and hence measurable, since by Corollarythe function z — g () is continuous,

while y — g ,(2) is increasing, and hence measurable. Moreover, x(0,y) = 0 and & is bounded
from below by (4.23), which implies that x(z,y) > —(Cs + C4) for every y € [0, M] and 6 € (0, 1).
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By (4.23) it is immediate to see that (5.18) holds true with C,, = max{C2+C4,Cs} and r :=n—gq,
for every 6 € (0,1); also, (4.24]) guarantees the validity of (5.19)), again for every 6 € (0,1). Finally,
by (5.18)) we have that, for every z € R™,

+o0 Foo
)| = [ In(u@) ) lb) dy < Colu@* [ 9w dy +C,
0 0
< Cylu(@)|TM™ 9 + C.,
where we have used that fR+ h = 1. Hence (|5.23) is also satisfied.

By applying (5.25)) to the m.p.p. (®, X*) and (5.16) to the m.p.p. (®>/M, vo,pnm(0)), we have
that for fixed M € N and 6 € (0,1) (with § € N), there exists Qa9 € T with P(Qa79) =1 and a
subsequence in j € N (not relabelled) such that for every w € Qs g,

lim <7 (f (P05 (0) = P05, (0)) d)
oo Z Boe; /nm(e5T;,4) P o

fj,¢€‘1>§§M’w(D)

= (N(Q) [ (tenpman@) = e nau(0)) do.
and by Lemma applied to the process ®2/M for the marks (@0,/3]',1',1\4(0))1-’

dim g 3T 0 (0) = (V@)L (D)o, (0))
wj,iECPQ/M’W(D)

which gives
wme Y f P00 (0(2)) o = (V@) [ (g mas(a)) (o) o
J=teo . ’_6@2/'1\/1@([)) Besj/M(Ej%',i D

(6.28)
Finally, we set

0= () Q.
M,%€N
which by its definition only depends on the m.p.p. (®,R), and satisfies P(2") = 1. Then for every
w € Q using (4.25)), Proposition the fact that for £L"-a.e. 2 € D and L'-a.e. p > 0,
opnnm(u(z)) = o,(u(x)) as M — 400,

and passing to the limit as § — 0% and then M — +oco in ([6.28)), by the Dominated Convergence
Theorem and ([5.17)) we obtain (6.25)) and conclude the proof. d

Remark 6.4. In the periodic setting, an important assumption for the validity of the analogue
of Proposition i.e., [3, Proposition 4.3], was that the corresponding radii for the application
of the joining lemma therein were all equal to a constant multiple of the lattice spacing (with
constant less that 1/2) (cf. the Erratum [4]). Such a fact is also reflected here in the proof of
Proposition where the radii of all the auxiliary spherical perforations are equal to fe;/M,

M eN, 0e€(0,1), for all z;,; € G ar-
7. PROOF OF THEOREM
7.1. The I'-liminf inequality. In this subsection we prove the following result.

Proposition 7.1. Let (g;) N\ 0. There exists ' € T with P(Y) = 1, and a deterministic
subsequence of (¢;) (not relabelled), such that for every w € ' and every (u;),u € Wy*(D; R™)
satisfying u; — u in L'(D;R™), we have

liminf FZ (u;) > Fo(u), (7.1)
j——o0 7

where Fe and Fy are defined in (3.4)) and (3.16) respectively.
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Proof. To prove (7.1) we follow closely the arguments in the periodic case (cf. [3, Section 5], and
[]), and adapt them to our stochastic setting.
Without loss of generality, we assume that liminf; ;o 7 (u;) < +o0. Then

u; =0 on (HZ ND)UID,
where HZ is defined as in (3.2), and by (3.3) and up to a non-relabelled subsequence,
u; —u weakly in WH9(D;R™) as j — +oo. (7.2)

Step 1: Truncating (u;) and w. Using [6l Lemma 3.5], for every L € N and n > 0, there exists
Ry, > L and a Lipschitz function ¥y, : R™ +— R™ with Lipschitz constant at most 1, satisfying

Wy (2) = z if |z| < Rp,
P00 |2 > 2R,

and such that for every w € §,

lim inf 72 (uy) > lim inf 72 (¥1(u)) ~ 1. (7.3)
Moreover, setting
uJL =V (uy), ubi=Tp(u), (7.4)
we also have that
(7) UJLEOOH (HS ND)uoD, $1€1§||u]@||Lm(D) < 2Ry,
J
(7.5)

(i1) uf — oF and v — wu weakly in WhY(D;R™).
j—+oo L—+o00

Step 2: Applying the Probabilistic Joining Lemma to (ujL) Let now M,k € N, § € (0,1) (with

4 € N) be fixed, and take j € N large enough so that
0K; > 2 M2, (7.6)

where K is as in (4.5). For w € Q, let G ), be the set defined in (5.10)), with ¢ replaced by ;. By
Lemma there exists Q' € 7 with P(Q) = 1 such that for every w € Q' and every z;; € G¥),
there exists k¥, € {0,...,k — 1} and corresponding annuli C¥; := C’ff:;,M(ejxj,i), such that we
can construct a sequence (w$') C Wy %(D; R™) satisfying properties |(i)[{(iv)} with ﬂﬁ;‘” and 0%,
defined as in therein.

Note that the modified sequence (w$) vanishes on the perforations centred in GY,,, and on
0D. Indeed, by Lemma we have that

w} = uf in D\ U Cyi- (7.7)
:tj,j,GG;f)’M
Moreover, by (3.1)), (4.5), , for j € N large enough (with respect to k, M, ) and for every
z;; € G ) we have
ac,pji < (e5/K;)M < 27%0e; /M,
and hence
Ba.,p;.i(€jji) C Bo-rge, yna(€5%,0) Vw0 € G5l

It then follows that

U Bas.zadcdy |J o5

Ij,ieGL;:M Ij,ieG;’:A[
and so by (77) and by ) (1),
w¥ =uf =0 on ( U B, p;.(€jj,i) N D> uabD. (7.8)

P w
25,1 €GY o
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@ gy weakly in Wh4(D;R™),

Moreover, since w
J ‘]‘)OO

sup [|[wf lwr.a(prmy < C < +00, (7.9)
jeN

where the constant C' > 0 might depend on L, u but not on w € Q.
Step 3: Splitting of the energy. By Lemma we have

Fe(uf) = /Df(VujL)dz 2/ f(Vw‘;’)da:qL/Ee’M’w f(Vwy)dz — ¢

7.10
- N (ST

where we set
E?’M’w = U Bg;i (ijj,i) .
z; i €GY pr
In what follows we deal with the two integrals in the right-hand side of separately. We will
show that the integral outside E?’M’w will result in the first integral in Fy, while the integral on

ESMe will give the capacitary term in the limit.

M
Eg: W

Step 3.1: The energy contribution outside . For every w € ' we define the auxiliary

sequence
vy =

w : 0,M,w
" {wj in D\ E; ,

—L,w

- D - w
U in Bsw  for each z;; € G ) .

Jyi
Note that v} is a modification of w? in D at no additional cost in terms of f, since v}’ is piecewise
constant on Ej’M’w and f(0) = 0 by assumption, so that

/ f(Vw;-J)dx:/ f(Voy)da. (7.11)
D\EJ™M D

Moreover, by construction the sequence (v$) is bounded in W14(D; R™) independently of w € Q/,
since by ([7.5)) and (7.9)),

sup [[v} lwr.a(prm) S Rr +sup [[w} [[wie(prm) < C < +00. (7.12)
JEN jEN

We now show that there exists a set Q' € T with P(Q') = 1 (which may be different from the one
in Step 2, but depends only on the m.p.p. (®,R), and hence will not be relabelled) such that for
every w €

vy = u®  weakly in Wh4(D;R™) as j — +oo. (7.13)

Note that any subsequence (v%) is bounded in W'4(D;R™) by (7.12), and hence admits a (not-
relabelled) convergent subsequence, converging weakly in W14(D;R™) to a function v“, that a
priori might be probabilistic. It therefore suffices to show that there exists Q' € T with P(Q2") =1
such that for every w € |

vw=ul LM —ae inD.

We have that
o =wf =uj in D\ U Boe,u(ejwi) C D\ | Boe,ul(esmsa) -

-’IJj,iE(I)?/M’w(D) ‘Tj,ieG;':M
In particular, this means that
L .
(v —uj)xj =0, where xj = Xp\ U Boe, ar(ej;0) - (7.14)
2/M,w
:ijieéj (D)

By the stationarity assumption and of Subsection for ®2/M (these properties being
transferred to it by the corresponding ones of ®), we have that $2/M is ergodic. Hence, Birkhoff’s
Ergodic Theorem (see, e.g., |26, Property 2.10]) guarantees that, since 6 € (0, 1), there exists a
set Q' € T with P(Q") = 1 such that for every w €

xXj — K >0 weakly* in L™, (7.15)
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where K > 0 is a deterministic constant. From (7.14)), (7.15)), (7.5)(é¢) and by the convergence
(up to subsequences) of v$ to v, we then conclude that

Oz/x‘ﬂv;’—uﬂdx'—) K/ v —ul|da,
D J D

—+o0
and hence v = u” L"-a.e. in D, as desired. This proves (7.13).
Then, by taking the liminf as j — 400 in , we obtain that for every w in a set ' € T
with P(Q') = 1 (which depends only on the m.p.p. (®,R), but is independent of all the parameters
and the functions involved in the arguments),

l_iminf/ f(Vwy dxfhmmf/ F(Vvy) dx>/ Qf(Vub) (7.16)
D\ES,IW,W

Jj—+oo Jj—+oo

where we have used (7.13)), and the fact that the functional [, Qf(V-)dz is the lower semicontin-
uous envelope of [}, f(V-) dz with respect to the weak W4(D; R™)-topology (cf. [3]).

Step 3.2: The energy contribution in E?’M’w. Let j € N be large enough so that (|7.6) is satisfied,
where K is as in (4.5)), and let z;; € G¥ 5y We define Cf; : By, (0) = R™ as

w;}(gjxjyi + any) in B&fi/agj (0) )

@ (y) == (7.17)
358 I, .
uj,iw in Byg; (0) \Bc‘r;{i/aaj (0),
where 7, and ﬂﬁ;“’ are defined as in Lemma u) In particular,
w — W _ -Lw
gj,i|635;’i/a5j (0) = W |aBa‘;’i(5j$j.i) =Uiq (7.18)

and Bse /a. (0) = B3

127163.{1.é)Kj/M(O) C Byk;(0). Moreover, since z;,; € G, by (7.6) we have
that

By , 7 and ( ., we have

C;jz - —Lw c Wol q(BGK (O) Rm)a C;,)z|§p71(0) =w

62k 3, O _ _u
aejp“<aEJM<K]M< M= <27 1>MJ < 5%,

« =
7 |§"Eﬂj,i(5ﬂj,i) =0, (7.19)
ie., Cj“-fi is a competitor in the minimisation problem defining @g,pj,i(ﬁf‘w) (see 7).

32

By a change of variables we rewrite the energy contribution in (7.10)) relative to the set Ef’M"”,

[ ga= Y [ v

d zj €GY,, " DY ', (€5%5,4)

=al, ) /B F(Vws (ejz5 + ae,y)) dy

Ij,iGG;A, 55/ e (0)
SCED N R FICE A
Yo X
Recalling that f(0) = 0, since V(¥; = 0 in By, (0) \B(—,fi/%j (0), for every x;; € G¥ ), we have

/ al f(az'VEsi(y) dy = / al f(aZ'VEgi(y) dy
Bsw /o, (0)

Bk (0)

as

> [ VG Az 6, @),
BgK. (0)
where we have used that f > Qf, (3.5), (4.7), and (7.19). In conclusion,

LG,M,W f(Vw‘f) de 2 6? Z S0‘9,pj NG ) : (7.20)

J T €GY o
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Taking now in ([7.20) the liminf as 5 — +o0, then (up to a not-relabelled subsequence) 6 — 0%
and then M — +o0, and using (7.5 and Proposition we deduce that there exists Q' € T with
P(Q') =1 (depending only on (®,R)) such that for every w € Q,

lim lim lliminf/Eg,IV[,w f(Vw?)dz > (N(Q))/ o(ul)dz. (7.21)

M—400 §—0+ j—+o0 D

Step 4: Conclusion. Taking in (7.10]) the liminf as j — +00, and then the (subsequential) limits
as # — 07 and M — +oo, and since the left-hand side of ((7.10)) is independent of 8, M, in view
of (7.16) and (7.21) we obtain that for P-a.e. w € Q,

hm_&nf]:W / Qf(Vur)dz + (N (Q)>/ o(ul) — % (7.22)
D
Combining (7.22), (7.3) and (7.4) we conclude that for P-a.e. w € Q
lim inf 72 (u;) > / Qf(Vu)dx + <N(Q)>/ o(uf)de — o . (7.23)
Jj—+oo D D k

By the arbitrariness of k, 7, L > 0 we first let Kk — 400 in , then  — 07, and finally L — +oo0.
Then, (7.5) (i), the lower semicontinuity of the functional [, Qf(V-)dz with respect to the weak
Wh4(D; R™)-topology and the continuity of [}, ¢(-) dz with respect to strong L?(D;R™)-topology,
guarantee the existence of a set Q' € T with P(Q') = 1 (depending only on (®,R)) such that for
every w € Q' and every (u;),u € Wy (D; R™) with u; e ¥ weakly in W14(D;R™),

lim inf 7 (u;) / Qf(Vu)dz + (N (Q)>/ o(u)dz = Folu),

Jj—+oo D

which concludes the proof of the proposition. O

7.2. The I'-limsup inequality. In this subsection we prove the following result.

Proposition 7.2. Let (g;) \, 0. Let Q' € T with ]P’(Q) = 1 be such that the conclusions of
Proposztwn. hold true for everyw € ', and let u € WO’q(D R™). Then there exists a sequence
(u;) € Wy (D; R™) satisfying u; — u in L*(D;R™), and such that

limsup 7 (u;) < Fo(u), (7.24)
j—+o00

where .7-'; and Fo are defined in ) and (3.16) respectively.

Before embarking on the proof of the proposition, we present some auxiliary lemmata, that
can be thought of as partially constructing “correctors” in the spirit of [2I, Lemma 3.1]. These
auxiliary results will be crucial in the construction of an admissible recovery sequence, namely
that vanishes on the entire set of perforations H* N D.

We first introduce the set of very good perforations as follows. Let ¢ > 0, M € N, 6 € (0,1)
(with 1/6 € N) be fixed, and assume that

3
0<f< 3 (7.25)

For every w € Q we define
2, o ={zi € IZ: Jap € IZ )\ {z;} with 0By.(ew;) HEET? (exy) # 0},

where (r¢') and I, are as in Lemma These are the good centres that are not (0+r¥)-separated
from other good centres. We recall that points in I, are at least 2r.-separated from one another

(cf. (5.7)). Recalling (5.10]), we define the mildly goyod centers as
(MG)Z g pr = TE N\ GE) U(GE (NI ), (7.26)

and the very good centers as

(VG):,G,M = G?,M \ (MG)ZQ,M . (7.27)
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In short, the very good centres are the subset of G ,, for which the corresponding balls are
determlmstlcally separated, at scale ¢, also from other good balls in [/, which is a priori not
guaranteed (see Remark [5.3)).

We also use the shorthand notations (MG)7 5 : (MG)E o and (VG)Tg (VG)EWQ M

for a sequence (g;) \ 0.
A fundamental property that we will use is that the mildly good perforations do not contribute
to the limit capacity, as made precise in the following lemma.

Lemma 7.3. Let (¢j) N\, 0. There exists Q' € T with P(Q') = 1 such that for every w € Q' we
have (possibly along w-independent subsequences)

lim  lim lim &7 S (pa) =0, (7.28)

M—+00 §—0+ j—+o0 "
fﬁj,ie(MG)j,e,M

Proof. We show separately that

. . n \n—q _
M1—1>m+oo ]Einoo 5] Z (p],z) 0 (729)
xj,ie(lsjyg\G;)yM)

and

lim lim lim &% E
M—+00 §—0+ j—+00

Ij,iG(G;",MﬁI;’j,g’e)
so that (7.28)) follows by (7.26]).
Let €' € T be as in Lemma[5.1] and let M € N, j € N and 6 € (0,1) (with 1/ € N) be such

that (by (7.25))

(pji)" 1 =0, (7.30)

0<ry <9<8iM (7.31)
To prove ([7.29), we first decompose in €V,
12, =2 ,0 @2/M’”(D)) U1, \ @M (D))
= (Gm ULy U I U T2\ @2/M(D)),
where I3, and J¥), are defined in , so that we can write

15,9\ Gl = ]MUJ“ u(Ig ,\ @2M(D)). (7.32)
Hence, by (6.22) and (6.24)), the claim (7.29)) follows if we show that
i i n S \n—q
pim lim e > (pj.i) 0. (7.33)

zji€le \®ZM (D)
Let R € N be fixed. Then we can write

> (pj)" ™1

2/M,w
@i €12 \®ZM(D)

< ) (p3,1)" ™ x10,R) (Pj,i) + > (P3,i)" " X(R,+00) (Ps.)
z],jelg"j’g\@?;M’“(D) Ij,iEI?jﬁﬂ\‘I)?]/'M’w(D)
S RYIH(IE N\ OTMUD) + Y (03)" T N (R0 (4i)- (7.34)

9”.7‘,7:€<I>2"]- (D)

Since by (5.6 we have that e?#l‘;"j,b — 0 as j — 400, we deduce that there exists a set Qp; € T,
Qp C ', with P(Qr) = 1, such that

lim ef# (12 ,\2/M (D)) = lim ef#(2¢ (D)\@2/M (D)) = ((N(Q))—(N*M(Q)))L"(D),

j——o0 J—+oo
(7.35)
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for w € Qp, where we have used (5.15) and (5.17). Moreover, by Lemma applied to Yj,; =
(pj,i)nin(R#oo)(Pj,i) we have that

lim & Z (B)<pj,z->"*qx<moo>(pj,a — (N (@) (0" (1,00 () L(D) (7.36)
T, €D,

in a set of full probability Qs r. Hence, by (7.34), (7.35) and (7.36) it follows that P-a.e. in
lim e} > (pj.0)" ™" < R"U((N(Q)) — (N*M(Q)))L™(D)
J—+oo
zj,ielgj)g\@g]/,M,w(D)
+ (N(@) " IX (R, +00) () L™(D) -
Now, by letting M — 400, thanks to (5.17)), we have

(pj.)" ™" S AN(@))(P" ™ IX(R,400)(P)) £"(D) .

lim  lim &7 E
M —+o00 j—+o00 Y
5, €1¢, N\ (D)

Finally, by letting R — +oo, since (p"~9) < +oo by (2.10), we obtain ([7.29)), for every w in a
set of probability 1, where the latter can be chosen independently of M € N and 0 € (0,1) (with

1/6 € N). For the proof of (7.30]), we claim that by the choice (7.31])

G NI g CIZ \@2M(D). (7.37)
If (7.37)) is proved, by proceeding as above for the proof of (|7.33]), we can conclude. So it remains
to prove (7.37).

To this aim, let @;; € G, NIZ 4. Then there exists 2, € I ; \ {z;;} (and in fact a

posteriori z;x € I, \ G¥ /) and y € R™ such that
Y € OBoc, (€525:) N Beyre (€551) -
This and (|7.31) imply that

3¢, 2¢
€550 = €55kl < lesse =yl + |y —ejainl < (0+72))e; <205 < 50 < 7
i, zj; €12\ @M (D) as we claimed in (7.37). O

We now present a construction of “partial correctors” in the spirit of [21, Lemma 3.1].

Lemma 7.4. There exists a set Q' € T with P(Q') = 1 with the following property. Let (¢;) 0,
M eN, and 6 € (0,1) (with 1/0 € N) such that (7.31) holds true. For every w € ' there exists a
corrector function ¢5, \ € Whe(D;[0,1]) satisfying the following properties:

(7') ¢;),9,M =0 on H:—;;,b U ( U Easjpj,i(gjxjvi)) ’
2 i €(MG)5 g mr

(ZZ) (ﬁ;f:&M =1 on D\ <D§Jj,b U U EE]'T?J. (5]'.%]',,')) s (738)
z;, i €(MG)S g

(iit) M it L 650,00 — Lwrap) =0.

Proof. First of all, for every w € ' € T as in Lemma by the definition of the g-capacity in
(B.11)) there exists ¢ ; € Wol’q(Dng?b; [0,1]) such that

90,

", =1, /w |V¢)‘6’,j|q dz < 2Capq( ;uj»b’Dgwb)'

sj.b

By setting ¢7; :=1—¢f; (extended to 1in D\ D¢, ;) we obtain a function ¢f; € Wha(D;0,1])
such that '

d)ij'H:j’b =0, ¢°1J,j|D\ng)b =1, /D Vo7 ;|7 de < 2Cap, (H ,, DY ) - (7.39)

s
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Analogously, for every x;; € (MG)j g 5/, let 6 ;; € Wol’q(BEjrgj (€x;4);10,1]) be such that
L(Jd,j,i|§%jpj,i(sjz_,,i) =1, /B (o IV@G,5,i|* dz < 2Capy(Ba. p;,:(€5%),0), Bejre (€5254)) -
ejTe iTj,i

Note that, all the functions ¢g; ; have disjoint supports. Proceeding as in the proof of | ., we
estimate

) (o )/ (g—1)\ 1—
Capq(Baejﬂj,i(ejxj,i)7Baj'f';}j(ijj7i)) Scn,q((aejpj,i)(q )/(¢g—1) _ (E r )('1 )/ (q 1))

S ef(pga)" e
Set
¢‘20,j,9,M =1- Z ¢6J,j,i;

%5, €(MG)5 g ar
then ¢5 ;5 1y € whe(D;|0,1]),

w — w — n
55,0,m =0 on U Ba. p;.(€j%5i) 5 955000 =1 0n D\ U Baﬂ“ (€j254) »
’E97E(MG)‘J”6 M ije(MG);J,G,IVI

and, since the functions ¢g ; ; have disjoint supports (cf. .

/;|v¢;$9JAQdm:= }j /" Vo, rdr<er S (p)n (7.40)

@ €(MG) Bejre (2525,) 2 €(MG)% 4 o
Setting now
Coar = S5 NG5 0 € WHI(D;[0,1]), (7.41)
it is clear by (7.39)-(7.41)) that @3¢ o satisfies the claims (i) and (7). To prove (iii), since
e, mlop =1, by the Poincaré 1nequahty in D it suffices to verify that

: . : W a g, —
Ml—l}Eoo elg(r)l+ jBrJPoo/D VToal"dz =0. (7.42)

By (7.39) and (7.40)) it is straightforward to estimate
| wosauitas < [ 965,10+ [ 1965000170
D D D

S Capg(HY 4, DE ) " S (pa)" e
z; i €(MG)S g\

The claim ) then follows from (5.9)) and - O

We are now ready for the proof of the limsup inequality.

Proof of Proposition[7.24 For the proof of we follow broadly the approach developed for the
periodic setting in [3, Section 6] and [4]. We note, however, that extra care has to be taken here
for the construction of an admissible recovery sequence to guarantee that it vanishes in the set
HY, due to the lack of separation of the perforations. We give the whole argument in detail for
the sake of completeness.

Let (u;) € Wy 9(D;R™) be such that

u;j—u  weakly in WH9(D;R™) as j — 400, (7.43)
and
lim / f(Vu;)de = / Qf(Vu)dz. (7.44)
Jj—=+© Jp D
Note that the existence of a sequence (u;) satisfying (7 and ([7.44]) follows by the characteriza-
tion of [, Qf(V-) dz as the lower semicontinuous envelope of f D ) dx with respect to the weak

Wha(D;R™)- topology By [0, Lemma C.5, Remark C.6] and [19, Lemma 1.2] we may also sup-
pose, without loss of generality, that (u;) C Wy '™ (D;R™) and that (|Vu;|9) are equi-integrable.
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We now modify the sequence (u;) to make it admissible for the energy ]-';’j. In particular, the
functions u; need additionally to be set to zero on the perforations.

Let 5 € N be large enough so that is satisfied, where K; is defined as in (4.5). Let
k.M €N, 6 € (0,1) (with 1/8 € N) be fixed and assume that also holds true. Let now
0 = 493M; note that 8" € (0,1/2) by . We apply Lemma with the ¢’ defined above,
to the sequence (u;), but where G¥,, is replaced by the smaller set (VG)$ , defined in (727).

Then we find a modified sequence (w$) C Wy '(D; R™) satisfying
(i) wy =u; in D \ Uzj,,;e(vc;);e’e,M ng,e/,M(gjxj,i)§

(i) wy =uf; on 0Bsw (g;x;,), for every x;; € (VG)% g 1> Where

30'e;
s, = ][ ujde, 0l =~ - e ; (7.45)
ng)elyM(ejzj,i) 4 M

(il)) wy — u weakly in WH(D;R™);
(iv) ‘fD f(Vwy)dz — [, f(Vuy) dx‘ < Cp(0)" + €, where Cj, > 0 can blow up as k — +o0;
(v) (wg) Cc WHe(D;R™) and [|w|| L (py < llu;ll Lo (D)

Note that, since (|[Vu;|?) are equi-integrable, one can choose k%, = 0 in (i)-(ii) above for every

T (VG) 9.0 C G5 - Moreover, following the explicit constructlon of the modified sequence

in the proof of Lemmata 4.7/and 5.2} one can see that also (w%') has equi-integrable g-gradients,

and that it satisfies (v).

We now proceed with the proof of the lim sup inequality (7.24]) in two steps.

Step 1: Assuming that sup;ey |[u;llp=py =: L < 4+00. Let n > 0 be fixed. By the character-
ization of [, Qf(V-)dxz as the lower semicontinuous envelope of [;, f(V-)dz with respect to the
weak W14(D;R™)-topology, and by (3.5) and , for every z;; € (VG)‘;Q?M C G¥ ) we can
pick a test function (7’; satisfying

o U € Wo’q(BgK (0);R™), (=0 on EP%(O) ) (7.46)

7yt
such that

/ O‘g:'f(a;jlvqji) de < gp‘é#}j’i(a;ii) +n. (7.47)
Box;(0)
We now set

v (@) 1= {w;"(x) for z € D\U,, AEWVE)Y Bye, (e525,)
gom(@) =9 B
(i (w —ejay3))  for x € B, (ajmj,i) %5 € (VG g -

Recall that by property (7.45) and (7.46) we have that wy = u¥; on 0By, (gjx;,) for every
zji € (VG)jg - Hence vy, € W, Y(D;R™), since (wy) C WyY(D; R™) (and actually in
Wy Oo(D R™)), and with no loss of generality we can assume that By, (¢;2;,;) C D for every

zji € (VG)S g0 by repeatmg a similar argument as the one presented rlght after (5.11)) (see also
the proof of Proposmon ) Moreover, by (7.46) and ( - we have that

Won =0 in U B,y (c250) (7.49)
z;:€(VG)

(7.48)

J,60,M

We now further modify v5'p pr tO Obtain a sequence that vanishes on all perforations. To this aim,
we set
Fo.00 = D50 MV 00 5 (7.50)
where the corrector ¢7, ,, is deﬁned as in Lemma
By (7.38) (), (7. 26[) (7.27) and (7.49) we have that Uy ,, = 0 in HZ ; moreover, by and
that v¥, ,, = 0 on 9D, we also have that Ubome =0 on BD We next show that Uy ,, — u
weakly in WH9(D;R™), as j — +o0, 6 — O+ and M — +o0o. We do so by proving a uniform
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bound for the energy (3.4 of ( =, ), which guarantees a bound on its ¢g-gradients by (3.3)), and

hence a bound on the W'4-norm of (U¥) ,;) by the Poincaré inequality on D.

First we set for notational convenience

Hf&,M = D;;,b U U Ee;-r;’j (gj2j) s ;'fe,M = U Boe; (ejzjq). (7.51)
IJ‘JE(MG);J,Q,M z.i,ie(VG)}”,e,M

Note that, by (5.5) and(5.7)),
L"(H ) S Z (ce;pji)" + Z (g5re)"

a:j,ielg’jyb xjviE(MG);'d,e,I\l
n( o \N—q\ = W\
< Y ()T Y ()
25 €12 zji€P¢ (D)

n

(5? Z (Pj,i)nq> o + (ef N (D) ()", (7.52)

P w
%,zeIsi,b

IN

where we used that, for « > 1 and ¢; > 0 for every ¢ € N,
«
S < (Yn)
ieN ieN

By (5.4)-(5.7) we have that L‘”( “9.0r) — 0 as j — +00. Analogously,

L™M(D5g ) < en(s;Ngj (D)). (7.53)
Finally we estimate the energy (3.4)) of ( ;je,M Using (7.48 and (3.3), we estimate

D%

/f YoM dx_/D\Ew f(VU5, eM)de‘f'/ F(VUS g\ ) dz

7,0, M
< /  f(Vug)da+ / (VU2 1) da
D\(D“;:syMUH;jGJ\/I) G(VG Bes (Ejz
T / . (1950, VVS0.01 + V6501 © ”;J,e,M\q +1) . (7.54)
3,0, M

We deal with each term on the right-hand side of ([7.54)) separately. For the first term, by (3.3
and by property (iv) of (w¥),

/ - f(Vw;’)dxg/f(Vw;’-“)dx+cl/~ (- Vet de
D\(DYUHYy ) D < o UHY

3.0.M

n C n Nw ~UJ
< /D f(Vuj)dz + Crp(6)" + - +c L (Dj,e,M U Hj,a,M). (7.55)

For the second term on the right-hand side of (7.54]), by a simple change of variables, (|7.38) (i),
(7.47) and (7.48)), for every x;, € (VG)‘;&M we have

/ f(VU;:97M(x)) dz = / f(oz;jlvgfji (oz;jl(:c — {—:jmj,i))) dz
Boe, (ej7j,:) Boe . (ej15,:)

= [t a2 VG ) dy < e, 50+ e
Box (0)
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Moreover, by (7.27) and (4.8),
E;L Z (‘Oé,p]‘,i(a;}»» = E? Z @g,m,z‘(a?’i) - E;L Z wévﬂj,i(a;\ii)

;i €(VG)S o 0 x5, €GY 2 €(MG)S o (NG
n J —w n(.narw
<égj Z 809,,%1-(“]‘,1) + C20" (¢ Ng (D)) .
z;,i €GY )

Finally, we consider the third term on the right-hand side of (7.54). By the fact that 0 < ¢%, ,, <
1, and that vy 5, = w in f[;"’&M by (7.48) and ([7.51)), we have

/f{ (|¢Z0,MVUZ0,M + Voo @i |7+ 1)da /~ (|vw§)|q + LUV @S g v+ 1)dz,

HY
(7.56)

3,0, M 3,0, M

where we have used that |[w¥||L~(p) < |[ujllL=(p) < L < 400, by property (v) of (wy') and by
the assumption in this step.
The upper bound estimate ([7.54]), together with (7.55)—(7.56)), (7.53)), yields

/D F(VUE pp) dz < /D f(Vuy) + €7 Z gog,pj_i(a;i)

P w
mJ,LEGjYM

+C/~ |Vw;9|qu+CLq/ V6 0|7 da
er,M D

(7.57)

= Q

+ CLY(HYy o) + Cn + 0")(€7NE (D)) + Cr(0)" +

By (7.44), (4.18)), the growth condition (3.3)), property (iv) for (w?), (7.42)), (7.52)), and (5.4)—(5.7)

it follows that
sup [ f(VUS, ) de < o < 4,
M,0,5JD w
and hence
sup |‘U;}9’M|‘W1,q(D;Rm) <Cp <+,
M,0,5

for a constant Cr, > 0 independent of w € Q. By (7.43), proceeding as for the proof of (|7.13]), we
deduce that for P-a.e. w € €,

UM — u weakly in WH(D;R™) as j — +00, 0§ = 0%, M — +o00.

Finally, we show that the admissible sequence (U, f ’M’“’) is a recovery sequence, up to a diagonal

procedure. Indeed, taking in (7.57) the limsup as j — 400, and using the subadditivity of the
limsup, (7.44), the equi-integrability of (|Vw¢|?), (7.52) and (5.15]), we deduce

o [ KVUzade < [ QfVwdrs T S i, 5

Jj—+oo
x5, €GY o

+cLt Tm / V6 |7 + C 5 + 07 (N(Q))L" (D)
J—+oo D

c
+CL(OM)" + .

Passing further to the limit superior in the above inequality in § — 0%, and M — +oc0, using

Proposition [6.1] and (7.42) we get

T T [ AUz a0 < [ Qi(Vayde + (V@) [ plwde+Clr+1/k).

M—+o00 §—0+ j—+o0
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By finally choosing a diagonal sequence (u$) C VVO1 “4(D;R™), with uy := +0,.0m,» we conclude
that for P-a.e. w € Q (u$) is admissible;i.e., u¥|xv uop = 0, and
J

limsup/Df(Vﬂ‘J‘-’)dx§/DQf(Vu)dx+<N(Q)>/ p(u)de +C(n+1/k),

j—+oo D

where we have used that for P-a.e. w € (2 the sequence (u$

and hence also in L'(D;R™).
Hence, ([7.24)) follows by the arbitrariness of ¥ € N and n € (0,1), with (4%) as a recovery

J
sequence.

) converges to u weakly in W14 (D; R™),

Step 2: Removing the uniform L -bound on (u;). This is done by following verbatim the final
argument in [3]. Indeed, assume first that u € Wy'?(D; R™)NL®(D;R™), and let L := 4|ul| o (D).
Let ¥y : R™ +— R™ be a Lipschitz function with Lipschitz constant at most 1 such that

z if |z2| < L/2,
v =
£(2) {o it 2] > L.

Let again (u;) € Wy %(D;R™) be such that (7.43)-(7.44) hold true. Without loss of generality we
assume that u; — u pointwise L"-a.e in D as j — 400, and that (|]Vu;|?) is equi-integrable on
D. We now set uJL := U (u;). By the L™-a.e. pointwise convergence u; to u we have that

L ({ug # u}) < L ({lu;] > |lull(py}) — 0as j— +oo,
hence, we also have that uJL — o weakly in Wh4(D;R™) as j — +oo. Furthermore, by the
equi-integrability of (|Vu,;|?) we obtain
lim / f(Vur)dz = lim / f(Vu;)dz :/ Qf(Vu)dz,
D ' D D

j—+oo Jj—r+oo

and we can therefore repeat all the reasonings of Step 1, with (uJL) in the place of (u;) in order to
obtain the desired limsup inequality.

Finally, given an arbitrary u € VVO1 (D;R™), we can approximate it by a sequence (u®) C
Wy Y(D; R™) N L®(D; R™) with respect to the strong W14(D, R™)-topology. Then, for P-a.e.
w € Q by the lower semicontinuity of the functional

Fol =T- limsup FZ
J—+oo

with respect to the strong L%(D;R™)-topology (cf. [B, Remark 7.8]), we obtain

//w < . . Ilw L _ . L _
Fo(u) < liminf Fo®(u™) = lim Fo(u™) = Fo(u),

which, by the definition of ]-'(;/‘*’, is just another way of writing the desired limsup inequality in the
general case. The proof is now complete. O
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