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Abstract. In this paper we study Monge solutions to stationary Hamilton–Jacobi equations associated
to discontinuous Hamiltonians in the framework of Carnot groups. After showing the equivalence between

Monge and viscosity solutions in the continuous setting, we prove existence and uniqueness for the
Dirichlet problem, together with a comparison principle and a stability result.

1. Introduction

The study of Hamilton–Jacobi equations plays an important role in modern analysis, and its applications
are related to many research areas, e.g. control theory and mathematical physics. The interested reader
can find complete surveys of this topic in the monographs [33, 4, 16]. The prototypical stationary
Hamilton–Jacobi equation is the so-called eikonal equation, that is

(1.1) |∇u| = f(x)

on Ω, where Ω is a domain in Rn and f is a continuous function. The study of this kind of equations
is typically carried out in the setting of viscosity solutions (cf. [22, 21]). Thanks to the effort of many
authors (cf. [22, 33, 20, 6, 9, 10, 5, 24] and references therein), problem (1.1) has been generalized by
considering first-order differential equations of the general form

H(x, u,∇u) = 0

on Ω, together with their evolutionary counterparts. Here H, the so called Hamiltonian, is a continuous
function which usually satisfies suitable convexity and coercivity properties. A further step has been
made by taking into account the case in which the Hamiltonian is not assumed to be continuous (cf.
[32, 38, 41, 15, 14]). In all these papers the authors had to adapt the definition of viscosity solutions
taking into account the new measurable setting. In particular, in [38] the authors introduced the notion
of Monge solution to the eikonal-type equation

H(∇u) = n(x)

on Ω, where H is convex and continuous and n is lower semicontinuous. The importance of this notion,
which is shown by the authors to be equivalent to the viscosity one when n is continuous, is motivated by
the fact that the classical Hopf–Lax formula (cf. [33]) does not provide in general a viscosity solution if
n is only lower semicontinuous. On the other hand, the setting of Monge solutions is shown to be the
right one to establish existence, uniqueness, comparison and stability results. The results in [38] have
been later generalized in [14], where the authors extended the notion of Monge solution to discontinuous
Hamilton–Jacobi equations of the form

H(x,∇u) = 0

on Ω. Here H is only assumed to be Borel measurable, together with some mild assumptions in the
gradient variable. In particular, a crucial hypothesis in [14] consists in requiring that there exists a positive
constant β > 0 such that

(1.2) H(x, p) ⩽ 0 =⇒ |p| ⩽ β

for any x ∈ Ω and any p ∈ Rn. This condition, which can be seen as a weak coercivity requirement, turns
out to be fundamental even in the classical viscosity approach. However, as it is well known (cf. e.g. [42]),
there are many interesting situations in which (1.2) fails. As a significant instance, one can consider the
eikonal-type equation

(1.3) |∇u · C(x)T | = 1
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on Ω ⊆ R3, where C(x) is a 2× 3 matrix whose rows encodes the coefficients of the vector fields

X1|q =
∂

∂x1
+ x2

∂

∂t
and X2|q =

∂

∂x2
− x1

∂

∂t
,

where we denoted points q ∈ R3 by q = (x1, x2, t). Being the kernel of C(x)T non-trivial, it is easy to
notice that the Hamiltonian associated to (1.3) does not satisfy (1.2). A standard approach to overcome
this difficulty consists in changing the underlying geometry of the ambient space. Indeed, X1 and X2 make
up a particular example of generating vector fields associated to a Carnot-Carathéodory structure, that is
the sub-Riemannian Heisenberg group H1 (cf. [17, 31] for an exhaustive survey of the topic). Therefore
(1.3) can be rephrased by considering the corresponding sub-Riemannian equation

(1.4) |Xu| = 1

on Ω, where Xu denotes the so-called horizontal gradient associated to the vector fields X1 and X2 (cf.
Section 2.3). The sub-Riemannian eikonal equation (1.4) has been studied in the viscosity setting in [25]
in general Carnot–Carathéodory spaces, whereas more general equations has been considered for instance
in [35, 43, 12, 42, 18, 11, 7]. In the broad generality of metric spaces the notion of viscosity solution
for the Hamilton–Jacobi equation has been studied by [30, 1]. In [28] the authors introduced a different
notion of metric viscosity solution for continuous Hamiltonians H(x, u, |∇u|) based on the local metric
slope |∇u|, that is a generalized notion of the gradient norm of u in metric spaces, and they showed
several comparison and existence results. Moreover, in [34] the authors studied the eikonal equation (1.1)
in complete and rectifiably connected metric spaces, providing the equivalence between their notion of
viscosity solutions and Monge solutions when the right hand side f is continuous with respect to the
metric distance. To the best of our knowledge, in a general metric space a notion of metric gradient is not
available, and only the local metric slope |∇u| can be considered (cf. [2]). Accordingly, the last entry
of the metric Hamiltonian is a scalar and not a vector. However in Carnot–Carathéodory spaces, that
are examples of length metric spaces, the notion of horizontal gradient Xu is well-known and general
stationary discontinuous Hamiltonians H(x,Xu) can be considered.

In the present paper, inspired by [14], we study sub-Riemannian Hamilton–Jacobi equations of the form

(1.5) H(x,Xu) = 0

on Ω, where here and in the following Ω denotes a subdomain of a Carnot group G of rank m, Xu is
the horizontal gradient associated to G and the Hamiltonian H : Ω × Rm −→ R satisfies the following
structural assumptions (H):

(H1) H : Ω× Rm → R is Borel measurable;
(H2) The set

Z(x) := {p ∈ Rm : H(x, p) ⩽ 0}
is closed, convex and ∂Z(x) = {p ∈ Rm : H(x, p) = 0} for any x ∈ Ω;

(H3) There exist α > 1 such that

B̂ 1
α
(0) ⊂ Z(x) ⊂ B̂α(0)

for any x ∈ Ω, where B̂α(0) is Euclidean ball of radius α centered at the origin in Rm.

Before describing our approach, let us make more precise some of the sub-Riemannian notions that we
just introduced. We recall that G is a Carnot group of step k and rank m if it is a connected and simply
connected Lie group whose Lie algebra g admits a stratification of step k, i.e. there exist linear subspaces
g1, . . . , gk of g such that

(1.6) g = g1 ⊕ . . .⊕ gk, [g1, gi] = gi+1, gk ̸= {0}, [g1, gk] = {0},
where [g1, gi] is the subspace of g generated by the commutators [X,Y ] = XY − Y X with X ∈ g1 and
Y ∈ gi. We denote by k the step of G, by m := dim(g1) its rank and by n := dim(g) its dimension. We
say that a basis X = (X1, . . . , Xn) of g is adapted to the stratification whether

(Xhj−1+1, . . . , Xhj
) is a basis of gj for any j = 1, . . . , k,

where h0 := 0 and hj :=
∑j

i=1 dim(gi). Since the exponential map associated to a Carnot group is a global
diffeomorphism (cf. [13]), here and in the following we identify G with Rn, with group law inherited by G
by means of the Campbell–Baker–Hausdorff formula (cf. [13]). In the following, we refer to X1, . . . , Xm

as generating horizontal vector fields. Moreover, we recall that an absolutely continuous γ : [a, b] → G is
said to be horizontal if there exists a(t) = (a1(t), . . . , am(t)) ∈ L∞((a, b),Rm) such that

(1.7) γ̇(t) =

m∑
i=1

ai(t)Xi(γ(t))
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for a.e. t ∈ (a, b). The structural assumptions (H) allows us to associate a suitable norm to the Hamiltonian
H. More precisely, inspired by [14], we define σ⋆ : Ω× Rm −→ [0,∞) by

(1.8) σ⋆(x, p) = sup{⟨−ξ, p⟩ : ξ ∈ Z(x)}
for any x ∈ Ω and any p ∈ Rm. It is easy to observe that σ⋆ is a sub-Finsler norm defined on the horizontal
bundle HΩ, that is the subbundle of TΩ of the horizontal vector fields. Accordingly, we exploit σ⋆ to
induce a distance dσ⋆ on Ω, whose Euclidean counterpart is known in literature as optical length function,
by

(1.9) dσ⋆(x, y) = inf

{∫ 1

0

σ⋆(γ(t), γ̇(t)) dt : γ : [0, 1] −→ Ω, γ is horizontal, γ(0) = x, γ(1) = y

}
for each x, y ∈ Ω. Chow’s connectivity theorem (cf. [31]) implies that dσ⋆ is well defined. Again inspired
by [38, 14], we are ready to state the main definition of this paper.

Definition 1.1 (Monge solution). Let Ω ⊂ G be an open and connected subset of G. If u ∈ C(Ω), we say
that u is a Monge solution (resp. subsolution,supersolution) to (3.1) in Ω if

(1.10) lim inf
x→x0

u(x)− u(x0) + dσ⋆(x0, x)

dΩ(x0, x)
= 0 (resp. ⩾,⩽)

for any x0 ∈ Ω, where dΩ is the standard Carnot-Carathéodory distance on Ω (cf. Section 2).

The aim of this paper is to investigate the main aspects of this definition in the sub-Rimannian setting,
recovering the Euclidian results achieved in [14]. A first step consists in relating this notion to the classical
sub-Riemannian notion of viscosity solution. To this aim, after describing some properties of the optical
length function (1.9) (cf. Section 3) and of viscosity solutions in Carnot groups (cf. Section 4), we will
show that the theory of Monge solutions embeds the theory of viscosity solutions, proving the equivalence
of these two notion as soon as the Hamiltonian is continuous.

Theorem 1.2. Let Ω ⊆ G be a domain. Let H be a continuous Hamiltonian satisfying (H). Then
u ∈ C(Ω) is a Monge subsolution (resp. supersolution) to (1.5) if and only if it is a viscosity subsolution
(resp. supersolution) to (1.5).

In order to prove Theorem 1.2, we will first need to recover a suitable Hopf–Lax formula for the Dirichlet
problem associated to (1.5). Anyway, it is interesting to observe that the solution of this particular issue
let our sub-Riemannian approach differs from the Euclidean one. Indeed, in the classical theory of Monge
solutions (cf. [38, 14]) the optical length function is defined on the whole Ω. This possibility relies on the
fact that every two points in Ω can be joined by an Euclidean Lipschitz curve as soon as the boundary of
Ω is locally Lipschitz. Unfortunately this property is no longer true in our setting, since it is not always
the case that two points on ∂Ω can be connected by a horizontal curve. A useful consequence of the
Euclidean approach is that the optical length function is a geodesic distance, which is no longer true in our
case. To solve this problem we will often need to localize our arguments to suitable neighborhoods. The
key point in which one would like to exploit the fact that the optical length function is defined up to the
boundary is the validity of the classical Hopf–Lax formula. To be more precise, assume that g ∈ C(∂Ω)
satisfies the compatibility condition

g(x)− g(y) ⩽ dσ⋆(x, y)

for any x, y ∈ ∂Ω. Then (cf. [14, Theorem 5.3]) the function w defined by

w(x) = inf
y∈∂Ω

{dσ⋆(x, y) + g(y)}

is a Monge solution to (1.5) and coincides with g on ∂Ω. Since our optical length function is defined only
on Ω, this formula would become meaningless. To overcome this difficulty, we propose a possible solution
by suitably extending our original Hamiltonian. To this aim, we let

(1.11) K0(H,Ω) := {K : Ω0 × Rm −→ R : Ω ⋐ Ω0 is a domain, K satisfies (H), K ≡ H on Ω× Rm}.
For any fixed K ∈ K0(H,Ω), we consider the associated metric σ⋆

K and optical length function dσ⋆
K
.

Since now Ω ⋐ Ω0, dσ⋆
K

is defined on the whole Ω. Moreover, we will show (cf. Proposition 5.2) that
the definition of Monge solution on Ω is invariant by replacing H with any K ∈ K0(H,Ω). These facts
motivate the following result.

Theorem 1.3 (Hopf–Lax formula). Let Ω ⊆ G be a domain and let H satisfy (H). Let g ∈ C(∂Ω) be
such that there exists K ∈ K0(Ω) for which

(1.12) g(x)− g(y) ⩽ dσ⋆
K
(x, y)
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for any x, y ∈ ∂Ω. Let us define

(1.13) w(x) := inf
y∈∂Ω

{dσ⋆
K
(x, y) + g(y)}.

Then w ∈ Lip(Ω, dΩ) ∩ C(Ω) and w is a Monge solution to the Dirichlet problem

H(x,Xw) = 0 in Ω

w = g on ∂Ω.

After proving Theorem 1.3, we move on the study of the Hamilton–Jacobi equation in the discontinuous
setting. First, we show the validity of the following comparison principle for Monge solutions.

Theorem 1.4 (Comparison Principle). Let H be an Hamiltonian satisfying (H), let u ∈ C(Ω̄) be a Monge
subsolution of (3.1) and v ∈ C(Ω̄) be a Monge supersolution of (3.1). If u ⩽ v on ∂Ω, then u ⩽ v in Ω.

Notice that, combining Theorem 1.3 and Theorem 1.4, we guarantee existence and uniqueness for the
Dirichlet problem associated to (1.5) under the compatibility condition (1.12). Finally, inspired by [14],
we show that the notion of Monge solution is stable under suitable notions of convergence for sequences of
Hamiltonians and Monge solutions.

Theorem 1.5 (Stability). Let (Hn)n∈N and H∞ satisfy (H) with a uniform choice of α. For any n ∈ N,
let un ∈ C(Ω) be a Monge solution to

Hn(x,Xun(x)) = 0

on Ω. Assume that dσ⋆
n
→ dσ⋆

∞
locally uniformly on Ω×Ω, where, for any n ∈ N, dσ⋆

n
is the optical length

function associated to Hn and dσ⋆
∞

is the optical length function associated to H∞. Assume that there
exists u∞ ∈ C(Ω) such that un → u∞ locally uniformly on Ω. Then u∞ is a Monge solution to

H∞(x,Xu∞(x)) = 0

on Ω.

The paper is organized as follows. In Section 2 we recall some basic facts and properties about Carnot
groups. In Section 3 we study some properties of the induced metric σ⋆ and the optical length function
dσ⋆ . Section 4 is devoted to a short survey about viscosity solutions in Carnot groups. In Section 5 we
introduce the Hopf-Lax formula (1.13) and we prove Theorem 1.3. In Section 6 we show the equivalence
between Monge and viscosity solutions, proving Theorem 1.2. Finally, Section 7 is devoted to the proof of
Theorem 1.4 and Theorem 1.5.

Acknowledgements. The authors would like to thank Andrea Pinamonti for suggesting them the study
of this problem, and Eugenio Vecchi for useful discussions about these topics.

2. Preliminaries

2.1. Carnot groups. Here and in the following, we fix a Carnot group G ≡ (Rn, ·) of step k, rank m and
dimension n ⩾ m, where · is the group law. Moreover, we fix an adapted basis X1, . . . , Xn that coincides
with the canonical basis of Rn at the origin, and we denote points y ∈ G by

y = (y(1), . . . , y(k)),

where y(j) = (yhj−1+1, . . . , yhj
) for each j = 1, . . . , k, and where we recall that the usual identification

between G an its Lie algebra is given by

y = exp

(
k∑

j=1

hj∑
ℓ=hj−1+1

yℓXℓ

)
.

Moreover, if d is a distance, we denote by Br(x, d) the d-metric ball of radius r > 0 centered at x ∈ G.
For any λ > 0 and any x ∈ G, we define the left translation τx : G −→ G and the intrinsic dilation
δλ : G −→ G by

τx(z) := x · z and δλ(y) := (λy(1), λ2y(2), . . . , λky(k))

for any y, z ∈ G. Both τx and δλ are smooth diffeomorphisms, and δλ is a Lie group isomorphism.
The subbundle of the tangent bundle TG that is spanned by the vector fields X1, . . . , Xm is called the
horizontal bundle HG, with fibers given by

HxG = span {X1(x), . . . , Xm(x)} .
As costumary, being the horizontal bundle trivial, we identify each fiber HxG with Rm, considering an
horizontal vector field

∑m
j=1 aj(x)Xj |x as the vector-valued function x 7→ (a1(x), . . . , am(x)). In this
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way, a sub-Riemannian structure can be defined on G considering a scalar product ⟨·, ·⟩x that makes
{X1, . . . , Xm} orthonormal at each point x ∈ G. Moreover, we denote by | · |x the norm induced by ⟨·, ·⟩x,
namely |v|x :=

√
⟨v, v⟩x for every v ∈ HxG. Notice that, with the above identification between HxG and

Rm, ⟨·, ·⟩x coincides with Euclidean scalar product ⟨·, ·⟩ on Rm. Finally, we denote by π : G −→ HG the
smooth section defined by

π(y) =

m∑
j=1

yjXj(y)

for any y ∈ G.

2.2. Sub-Riemannian distances. We recall that a horizontal curve γ : [a, b] −→ G is called sub-unit
whenever the vector-valued function a as in (1.7) satisfies ∥a∥∞ ⩽ 1. In the following, for any domain
Ω ⊆ G, we denote by H(Ω) the set

H(Ω) := {γ : [0, T ] −→ Ω : γ is sub-unit, T > 0}.
and we define the Carnot–Carathéodory distance on Ω by

dΩ(x, y) := inf {LΩ(γ) : γ : [0, T ] −→ Ω, γ ∈ H(Ω), γ(0) = x, γ(T ) = y} ,
where

LΩ(γ) :=

∫ T

0

|γ̇(t)| dt

and by γ̇(t) we mean as usual the coordinates of γ̇(t) with respect to X1|γ(t), . . . , Xm|γ(t). Let us notice
(cf. [36]) that an absolutely continuous curve is horizontal if and only if it is dΩ-Lipschitz. We recall that
when Ω = G then dG is a geodesic distance, while dΩ is not geodesic in general. The following crucial
result is a consequence of [37, Proposition 1.1].

Theorem 2.1. Let G be a Carnot group of step k, and let Ω ⊆ G be open and connected. Then the
following properties hold.

(i) (Ω, dΩ) is a Carnot–Carathéodory space.

(ii) For any domain Ω̃ ⋐ Ω there exists a positive constant CΩ̃ such that

C−1

Ω̃
|x− y| ⩽ dΩ(x, y) ⩽ CΩ̃|x− y| 1k for any x, y ∈ Ω̃.

The rich algebraic structure of G allows to define the well known Gauge–Koranyi distance on G (cf.
[13]). To this aim, consider the function

∥(y(1), . . . , y(k))∥ =

(
k∑

j=1

|y(j)|
2k!
j

) 1
2k!

for any y ∈ G. This is an homogeneous norm (cf. [13]) on G, which induces the homogeneous distance

(2.1) dg(y, z) = ∥y−1 · z∥
for any y, z ∈ G. It is well known (cf. [37]) that dg and dG are equivalent distances on G. Moreover, if
Ω ⊆ G is any domain, then clearly dG ⩽ dΩ. Thanks to Theorem 2.1, the following holds.

Proposition 2.2. Let G be a Carnot group of step k, and let Ω ⊆ G be open and connected. Then dΩ,
dG and dk are locally equivalent on Ω.

To prove Proposition 2.2, we need the following result.

Lemma 2.3. Let G be a Carnot group of step k, and let Ω ⊆ G be open and connected. Then, for any
x0 ∈ Ω, there exists r > 0 such that, for any x, y ∈ Br(x0, dG), any optimal curve for dG(x, y) lies in Ω.

Proof. Assume by contradiction that there exists x0 ∈ Ω and sequences (xh)h, (yh)h, (γh)h such that
dG(x0, xh), dG(x0, yh) <

1
h , γh : [0, Th] −→ G is sub-unit and is optimal for dG(xh, yh), and there exists

0 < th < Th such that zh := γh(th) ∈ ∂Ω. Up to a subsequence, there exists R > 0 such that
(xh)h, (yh)h ⊆ BR(x0, dG) ⋐ Ω. Set

D = inf{dG(z, w) : z ∈ ∂Ω, w ∈ ∂BR(x0, dG)}.
Since BR(x0, dG) ⋐ Ω, then D > 0. On one hand

dG(xh, yh) ⩽ dG(x0, xh) + dG(x0, yh) → 0

as h→ ∞. On the other hand, in view of the choice of γh,

dG(xh, yh) = dG(xh, zh) + dG(yh, zh) ⩾ 2D > 0.
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A contradiction then follows. □

Proof of Proposition 2.2. In view of the previous considerations, we are left to show that for any domain
Ω̃ ⋐ Ω there exists KΩ̃ > 0 such that dG ⩾ KΩ̃dΩ. Assume by contradiction that there exists a domain

Ω̃ ⋐ Ω and two sequences (xh)h, (yh)h ⊆ Ω̃ such that

dG(xh, yh) <
1

h
dΩ(xh, yh)

for any h ∈ N. Let D be the Euclidean diameter of Ω̃. Since Ω̃ is bounded, then D < ∞. Thanks to
Theorem 2.1, we have that

dG(xh, yh) <
1

h
dΩ(xh, yh) ⩽

1

h
sup

x,y∈Ω̃

dΩ(x, y) ⩽
CΩ̃

h
sup

x,y∈Ω̃

|x− y| 1k ⩽
CΩ̃D

1
k

h
.

This implies that dG(xh, yh) → 0. Therefore, up to a subsequence, we can assume that xh, yh → x0 for
some x0 ∈ Ω. Choose r as in Lemma 2.3, and assume up to a subsequence that (xh)h, (yh)h ⊆ Br(x0, dG).
Then Lemma 2.3 implies that

dG(xh, yh) = dΩ(xh, yh),

a contradiction. □

2.3. Calculus on Carnot groups. Given u ∈ L1
loc(Ω), we define its distributional horizontal gradient

Xu by

Xu(φ) := −
∫
Ω

u

m∑
j=1

Xjφj dx

for any φ ∈ C∞
c (Ω). This notion allows to define in the obvious way the classical functional spaces

W 1,∞
X (Ω), W 1,∞

X,loc(Ω) and C1
X(Ω). More specifically, we say that u ∈ W 1,∞

X (Ω) if u ∈ L∞(Ω) and

Xu ∈ L∞(Ω,Rm), and that u ∈ C1
X(Ω) if u is continuous and Xu is continuous. The space W 1,∞

X,loc(Ω) is
defined accordingly. If d is a distance, we define the space

Lip(Ω, d) :=

{
u ∈ C(Ω) : there exists C > 0 such that sup

x̸=y∈Ω

|u(x)− u(y)|
d(x, y)

⩽ C

}
.

The space Liploc(Ω, d) is defined in the obvious way. It is well known (cf. [29]) that

W 1,∞
X,loc(Ω) = Liploc(Ω, dΩ).

We conclude this section recalling the following differentiability result due to Pansu (cf. [39]).

Theorem 2.4. Let Ω ⊂ G be an open set. Let u ∈W 1,∞
X,loc(Ω). Then u is Pansu-differentiable at almost

every x0 ∈ Ω, that is

lim
x→x0

u(x)− u(x0)− ⟨Xu(x0), π(x−1
0 · x)⟩

dΩ(x0, x)
= 0

for almost every x0 ∈ Ω.

2.4. Subgradient in Carnot groups. In this section we recall some properties of the so-called (X,N)-

subgradient of a function u ∈ W 1,∞
X,loc(Ω), introduced in [40] as a generalization of the classical Clarke’s

subdifferential (cf. [19]) and defined by

∂X,Nu(x) := co
{

lim
n→∞

Xu(yn) : yn → x, yn /∈ N and lim
n→∞

Xu(yn) exists
}

for any x ∈ Ω, where N ⊆ Ω is any Lebesgue negligible set containing the non-Lebesgue points of Xu and
co denotes the closure of the convex hull. In the sequel we will need the following result, which can be
found as [40, Proposition 2.5].

Proposition 2.5. Let u ∈W 1,∞
X,loc(Ω) and let γ ∈ AC([−β, β],Ω) be a horizontal curve as in (1.7). The

function t 7→ u(γ(t)) belongs to W 1,∞(−β, β), and there exists a function g ∈ L∞((−β, β),Rm) such that

d(u ◦ γ)(t)
dt

= ⟨g(t), a(t)⟩

for a.e. t ∈ (−β, β). Moreover

g(t) ∈ ∂X,Nu(γ(t))

for a.e. t ∈ (−β, β).
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3. Some properties of σ⋆ and dσ⋆

Here and in the following we will be focused on Hamilton–Jacobi equations as in (1.5), that is

(3.1) H(x,Xu) = 0

on Ω, where Ω is a subdomain of G and H satisfies the structural assumptions (H). Since the notion of
Monge solution heavily depends on the properties of the associated optical length function, and hence
on the properties of σ⋆, let us make some preliminary considerations on these objects. First, notice that
condition (H3) is equivalent to the estimate

(3.2)
1

α
|v|x ⩽ σ⋆(x, v) ⩽ α|v|x for every (x, v) ∈ HG.

Moreover the following simple result, which is the sub-Riemannian analogous of [14, Lemma 4.2], will
be useful to state the equivalence between Monge and viscosity solutions in the continuous setting. We
refer to [26] for an account of sub-Finsler metrics.

Lemma 3.1. σ⋆ : HΩ −→ R is a sub-Finsler convex metric. Moreover, for any v ∈ Rm, the following
hold.

(i) If H is upper semicontinuous on HΩ, then σ⋆(·, v) is lower semicontinuous on Ω.
(ii) If H is lower semicontinuous on HΩ, then σ⋆(·, v) is upper semicontinuous on Ω.

Regarding the optical length function, an easy computation shows that

(3.3) dσ⋆(x, y) = inf

{∫ T

0

σ⋆(γ(t), γ̇(t)) dt : γ : [0, T ] −→ Ω, γ ∈ H(Ω), γ(0) = x , γ(T ) = y

}
for any x, y ∈ Ω. The quantity (3.3) is well-defined, both because the map t 7→ σ⋆(γ(t), γ̇(t)) is Borel
measurable on the horizontal bundle, and because, as already mentioned, every two points in Ω can be
connected by a horizontal curve. However, dσ⋆ can presents some pathological behaviour without some
semicontinuity assumptions (see [26, Example 5.5]). Let us discuss some properties of dσ⋆ which will be
useful in the sequel.

Lemma 3.2. The following properties hold.

(i) dσ⋆ is a non-symmetric distance on Ω.
(ii) dσ⋆ is equivalent to dΩ on Ω, i.e.

1

α
dΩ(x, y) ⩽ dσ⋆(x, y) ⩽ αdΩ(x, y)

for any x, y ∈ Ω.
(iii) dσ⋆ is dΩ-Lipschitz on Ω× Ω, that is

|dσ⋆(x, y)− dσ⋆(z, w)| ⩽ α(dΩ(x, z) + dΩ(y, w))

for any x, y, z, w ∈ Ω.

Proof. The proof of (i) follows as in [26, Lemma 5.7]. (ii) is an easy consequence of estimate (3.2). Let
us show (iii). To this aim, fix x, y, z, w ∈ Ω. Being dσ⋆ a distance and thanks to point (ii), we have that

dσ⋆(x, y)− dσ⋆(z, w) = dσ⋆(x, y)− dσ⋆(z, y) + dσ⋆(z, y)− dσ⋆(z, w)

⩽ dσ⋆(x, z) + dσ⋆(w, y)

⩽ α(dΩ(x, z) + dΩ(y, w))

and

dσ⋆(z, w)− dσ⋆(x, y) = dσ⋆(z, w)− dσ⋆(x,w) + dσ⋆(x,w)− dσ⋆(x, y)

⩽ dσ⋆(z, x) + dσ⋆(y, w)

⩽ α(dΩ(x, z) + dΩ(y, w)).

□

Therefore (Ω, dσ⋆) is a non-symmetric metric space. The definition of dσ⋆ trivially implies that it is a
length space. However, we already know that it is not geodesic in general, since, for instance, (Ω, dΩ) may
not be geodesic. Nevertheless, exploiting standard arguments of analysis in metric spaces (cf. [3]) it can
be shown that (Ω, dσ⋆) is locally geodesic in the following sense.
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Proposition 3.3. For any x0 ∈ Ω there exists r > 0 such that for any x, y ∈ Br(x0, dΩ) there exists
γ ∈ H(Ω) such that γ : [0, T ] −→ Ω, γ(0) = x, γ(T ) = y and

dσ⋆(x, y) = Lσ⋆(γ),

where

Lσ⋆(γ) =

∫ T

0

σ⋆(γ(t), γ̇(t)) dt.

We first need the following technical lemma.

Lemma 3.4. For any x0 ∈ Ω, and for any R > 0 such that BR(x0, dΩ) ⋐ Ω, there exists 0 < r < R and
ε̄ > 0 such that, for any x, y ∈ Br(x0, dΩ) and for any 0 < ε < ε̄, every horizontal curve γ : [0, T ] −→ Ω
such that γ(0) = x, γ(T ) = y and

dσ⋆(x, y) ⩾ Lσ⋆(γ)− ε

lies in BR(x0, dΩ).

Proof. Assume by contradiction that there exists x0 ∈ Ω, R > 0 with BR(x0, dΩ) ⋐ Ω and sequences
(xh)h, (yh)h and (γh)h such that dσ⋆(x0, xh), dσ⋆(x0, yh) <

1
h , γh : [0, Th] −→ Ω is sub-unit, γh(0) = xh,

γh(Th) = yh and

dσ⋆(xh, yh) ⩾ Lσ⋆(γh)−
1

h
,

and moreover there exists 0 < th < Th such that zh := γh(th) satisfies dΩ(x0, zh) = R. Up to a subsequence,
(xh)h, (yh)h ⊆ BR

2
(x0, dΩ) ⋐ Ω. Set

D := inf{dΩ(z, w) : z ∈ BR
2
(x0, dΩ), w ∈ ∂BR(x0, dΩ)} > 0.

On one hand
dΩ(xh, yh) ⩽ dΩ(xh, x0) + dΩ(x0, yh) → 0

as h→ ∞. On the other hand, in view of the choice of the curves γh,

dΩ(xh, yh) ⩾
1

α
dσ⋆(xh, yh)

⩾
1

α
dσ⋆(xh, zh) +

1

α
dσ⋆(zh, yh)−

1

hα

⩾
1

α2
dΩ(xh, zh) +

1

α2
dΩ(zh, yh)−

1

hα

⩾
D

α2

for h big enough. A contradiction then follows. □

Proof of Proposition 3.3. Let x0 ∈ Ω and R > 0 be such that BR(x0, dΩ) ⋐ Ω. Then let r > 0 be as in
Lemma 3.4. Let x, y ∈ Br(x0, dΩ) and let (γh)h be a sequence of horizontal curves such that γ(0) = x,
γ(1) = y and

(3.4) Lσ⋆(γh) ⩽ dσ⋆(x, y) +
1

h
.

In view of Lemma 3.4, we can assume that γh([0, Th]) ⊆ BR(x0, dΩ) ⊆ Ω for any h ∈ N. Notice that (3.4)

and (H3) implies that (γh)h is equicontinuous on (BR(x0, dΩ), dσ⋆). Since the latter is a compact metric
space, Ascoli–Arzelà’s Theorem implies the existence of a horizontal curve γ : [0, 1] −→ Ω such that (γh)h
converges uniformly to γ. Since dσ⋆ is lower semicontinuous with respect to the uniform convergence of
curves, (3.4) allows to conclude. □

Proposition 3.5. Assume that H is upper semicontinuous on HΩ. Then it holds that

lim inf
t→0+

dσ⋆(x, x · δt(ξ, η))
t

⩾ σ⋆(x, ξ)

for any x ∈ Ω, ξ ∈ Rm and η ∈ Rn−m.

Proof. Let us fix x ∈ Ω, ξ ∈ Rm and η ∈ Rn−m. Since H is upper semicontinuous on HΩ, then σ⋆(·, ξ)
is lower semicontinuous on Ω by Lemma 3.1. This is equivalent to say that, for any ε > 0 and for any
ξ̃ ∈ Sm−1, there exists r = r(x, ϵ, ξ̃) such that σ⋆(y, ξ̃) ⩾ σ⋆(x, ξ̃) − ε for any y ∈ Br(x, dΩ). Recalling
that σ⋆ is Lipschitz in the second entry and exploiting a standard compactness argument, we infer that
for any ε > 0 there exists r = r(x, ε) > 0 such that

(3.5) σ⋆(y, ξ̃) ⩾ σ⋆(x, ξ̃)− ε
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for any y ∈ Br(x, dΩ) and any ξ̃ ∈ Sm−1. Let us choose a sequence of sub-unit curves γh : [0, th] −→ Ω in
such a way that γh(0) = x, γh(th) = x · δth(ξ, η) and

lim inf
t→0+

dσ⋆(x, x · δt(ξ, η))
t

= lim inf
h→∞

∫ th

0

σ⋆(γh(t), γ̇h(t)) dt.

Since limt→0+ x · δt(ξ, η) = x, and in view of Lemma 3.4, the sequence of curves can be choosen in such a
way that γh([0, th]) ⊆ Br(x, dΩ) for any h ∈ N. Therefore, exploiting (3.5), we infer that

lim inf
h→∞

∫ th

0

σ⋆(γh(t), γ̇h(t)) dt ⩾ lim inf
h→∞

∫ th

0

σ⋆(x, γ̇h(t)) dt− ε.

For any h ∈ N, set γh = (γ1h, . . . , γ
m
h , γ

m−1
h , . . . , γnh ). We recall that in the previous equations γ̇h is

the m-tuple of the components of γ̇h along the generating vector fields. In other words, we mean
γ̇h(t) = (a1h(t), . . . , a

m
h (t)), where γ̇h(t) =

∑m
j=1 a

j
h(t)Xj(γh(t)). It is then easy to see that γ̇jh = ajh for any

j = 1, . . . ,m. Therefore, by the convexity properties of σ⋆ and Jensen’s inequality, we get that

lim inf
h→∞

∫ th

0

σ⋆(x, γ̇(t)) dt− ε ⩾ lim inf
h→∞

σ⋆

(
x,

∫ th

0

γ̇h(t) dt

)
− ε = σ⋆(x, ξ)− ε.

The thesis follows letting ε go to 0. □

4. Viscosity solutions for continuous Hamilton-Jacobi equations

When the Hamiltonian H is continuous, the study of (3.1) can be carried out in the setting of sub-
Riemannian viscosity solutions. To introduce this notion, we recall that the first order superjet of u ∈ C(Ω)
at a point x0 ∈ Ω is defined by

∂+Xu(x0) = {v ∈ Rm : u(x) ⩽ u(x0) + ⟨v, π(x−1
0 · x)⟩+ o(dΩ(x0, x))},

while the first order subjet of u at x0 is defined by

∂−Xu(x0) = {v ∈ Rm : u(x) ⩾ u(x0) + ⟨v, π(x−1
0 · x)⟩+ o(dΩ(x0, x))}.

It is easy to see that ∂+Xu(x0) and ∂
−
Xu(x0) are closed and convex, and that they may be empty in general.

Moreover, in view of Proposition 2.2, in the previous definition dΩ can be equivalently replaced by dg or
dG. In the Euclidean setting (cf. [21]) the notion of viscosity solution can be equivalently given exploiting
either jets or suitable test function (cf. [22, 20]). Following this path (cf. [35, 43]) we say that a function
u ∈ C(Ω) is a jet subsolution to (3.1) in Ω if

H(x0, v) ⩽ 0

for every x0 ∈ Ω and every v ∈ ∂+Xu(x0). Similarly, u is a jet supersolution to (3.1) in Ω if

H(x0, v) ⩾ 0

for every x0 ∈ Ω and every v ∈ ∂−Xu(x0). Finally, u is a jet solution to (3.1) if it is both a jet subsolution
and a jet supersolution. On the other hand, we say that u is a viscosity subsolution to (3.1) if

H(x0, Xψ(x0)) ⩽ 0

for any x0 ∈ Ω and for any ψ ∈ C1
X(Ω) such that

u(x0)− ψ(x0) ⩾ u(x)− ψ(x)

for any x in a neighborhood of x0. We say that u is a viscosity supersolution to (3.1) if

H(x0, Xψ(x0)) ⩾ 0

for any x0 ∈ Ω and for any ψ ∈ C1
X(Ω) such that

u(x0)− ψ(x0) ⩽ u(x)− ψ(x),

for any x in a neighborhood of x0. Again, we say that u is a viscosity solution to (3.1) if it is both
a viscosity subsolution and a viscosity supersolution. The next proposition shows that even in this
sub-Riemannian setting these two definitions are equivalent. The following proof is inspired by [35].

Proposition 4.1. Let Ω ⊆ G be open. Assume that H is continuous. Then u ∈ C(Ω) is a jet subsolution
(resp. supersolution) to (3.1) if and only if it is a viscosity subsolution (resp. supersolution) to (3.1).
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Proof. We prove only the half of the claim concerning subsolutions, being the other half analogous. The
fact that a jet subsolution is a viscosity subsolution follows from [18, Proposition 3.2]. On the contrary,
assume that u is a viscosity subsolution to (3.1), let x0 ∈ Ω and p ∈ ∂+Xu(x0). Let dg be as in (2.1). It
is well known that y 7→ dg(x0, y) is smooth outside x0 and its horizontal gradient is bounded near x0.
Therefore

(4.1) u(x) ⩽ u(x0) + ⟨p, π(x−1
0 · x)⟩+ o(dg(x0, x)).

Let R > 0 be such that BR(x0, dg) ⋐ Ω, and define g : (0, R] −→ R by

g(r) := sup
x∈Br(x0,dg)

max{0, u(x)− u(x0)− ⟨p, π(x−1
0 · x)⟩}

dg(x0, x)
.

Then g is nondecreasing and, by the choice of p, limr→0 g(r) = 0, Hence there exists g̃ ∈ C([0, R])
such that g̃ is nondecreasing, g̃(0) = 0 and g̃ ⩾ g. Let G(r) :=

∫ r

0
g̃(τ)dτ . Then G ∈ C1([0, R[) and

G(0) = G′(0) = 0. Moreover, for any 0 < r < R
2 , it holds that

(4.2) G(2r) ⩾
∫ 2r

r

g̃(τ)dτ ⩾ rg̃(r) ⩾ rg(r).

Let us define φ(x) = u(x0) + ⟨p, π(x−1
0 · x)⟩+G(2dg(x, x0)). Then φ ∈ C1

X(BR
2
(x0, dg)), u(x0) = φ(x0)

and Xφ(x0) = p. Finally, notice that (4.2) and the definition of g imply that u(x) ⩽ φ(x) on BR
2
(x0, dg).

Therefore, being u a viscosity subsolution, we conclude that

H(x0, p) = H(x0, Xφ(x0)) ⩽ 0.

□

Moreover, when H enjoys some mild convexity properties in its second entry, a locally Lipschitz
functions is a viscosity subsolution if and only if it satisfies (3.1) pointwise almost everywhere.

Proposition 4.2. Let Ω be an open subset of G. Assume that H is continuous and that Z(x) is convex

for any x ∈ Ω. Let u ∈W 1,∞
X,loc(Ω). Then the following conditions are equivalent.

(i) u is a viscosity subsolution to (3.1).
(ii) u is a jet subsolution to (3.1).
(iii) H(x,Xu(x)) ⩽ 0 for almost every x ∈ Ω.

Proof. The implication (i) ⇐⇒ (ii) follows from Proposition 4.1. Moreover, (iii) =⇒ (i) follows from
[18, Theorem 3.7]. Finally, we prove (ii) =⇒ (iii). Let x ∈ Ω be such that u is Pansu-differentiable at x.
Then clearly Xu(x) ∈ ∂+Xu(x), and so H(x,Xu(x)) ⩽ 0. □

To conclude this section, we point out that the sub-Riemannian Hamilton–Jacobi equation (3.1) can
be viewed as an Euclidean equation in the following sense. Let C(x) denote the m × n matrix whose
rows correspond to the coefficients of the generating vector fields of g1 at x. We define the auxiliary
Hamiltonian H̃ : Ω× Rn −→ R by

(4.3) H̃(x, v) = H(x, v · C(x)T )

for any (x, v) ∈ Ω×Rn. It is easy to see that H̃ ∈ C(Ω×Rn) when H is continuous. With the next result,
we show that sub-Riemannian viscosity solutions to (3.1) coincides with Euclidean viscosity solutions to
the Hamilton–Jacobi equation associated to (4.3).

Proposition 4.3. Let Ω be an open subset of G. Let H̃ be as in (4.3). Then u ∈ C(Ω) is a viscosity
solution to

(4.4) H(x,Xu) = 0

if and only if u is a viscosity solution to

(4.5) H̃(x,∇u) = 0.

Proof. Since C1(Ω) ⊆ C1
X(Ω), then a viscosity solution to (4.4) is a viscosity solution to (4.5). To prove

the converse implication we only show that viscosity subsolutions to (4.5) are viscosity subsolutions to
(4.4), being the other part of the proof analogous. Therefore, assume that u is a viscosity subsolution to
(4.5), let x0 ∈ Ω and let φ ∈ C1

X(Ω) be such that u(x0) = φ(x0) and φ(x) > u(x) for any x ∈ B2r(x0, dg),
for some r > 0 small enough to ensure that B2r(x0, dg) ⋐ Ω. Thanks to [18, Proposition 2.4] (cf. also
[27, Proposition 1.20]), there exists a sequence (φh)h ⊆ C∞(Ω) converging to φ in C1

X(B2r(x0, dg)). For

any h ∈ N, let xh be a maximum point for u − φh in Br(x0, dg). We claim that xh → x0 as h → +∞.



MONGE SOLUTIONS FOR DISCONTINUOUS HAMILTON–JACOBI EQUATIONS IN CARNOT GROUPS 11

Otherwise, we can assume that, up to a subsequence, xh → x1 for some x1 ̸= x0 such that x1 ∈ Br(x0, dg).
Recalling that u(xh)−φh(xh) ⩾ u(x0)−φh(x0) for any h ∈ N, and since xh → x1 and φh → φ uniformly
on B2r(x0, dg), we pass to the limit and we infer that u(x1) − φ(x1) ⩾ u(x0) − φ(x0) = 0. Therefore
φ(x1) ⩽ u(x1), a contradiction. By our choice of xh, and thanks to (4.5), we get that

H(xh, Xφh(xh)) = H̃(xh,∇φh(xh)) ⩽ 0.

Therefore, since H is continuous, xh → x and Xφh → Xφ uniformly on B2r(x0, dg), passing to the limit
in the previous inequality we conclude that

H(x0, Xφ(x0)) ⩽ 0.

Hence u is a viscosity subsolution to (4.4). □

5. A Sub-Riemannian Hopf–Lax Formula for the Dirichlet Problem

As already mentioned, the properties of Monge subsolutions and supersolutions strictly depend on
those enjoyed by the optical length function dσ⋆ . Moreover, as it happens in the viscosity setting, dΩ can
be equivalently replaced by dg or dG. Now we explain how to replace dσ⋆ with suitable extensions as
already explained in the introduction. Set

K(H,Ω) := {K : Ω0 × Rm −→ R : Ω ⊆ Ω0 is a domain, K satisfies (H), K ≡ H on Ω× Rm}.

Notice that K0(H,Ω) ⊆ K(H,Ω), where K0(H,Ω) is defined by (1.11). For a fixed K ∈ K, we can consider
the associated σ⋆

K and dσ⋆
K
. We want to show that the notion of Monge solution is independent of the

choice of K ∈ K. To this aim, we prove the following preliminary result.

Lemma 5.1. For any K ∈ K, for any x0 ∈ Ω and for any R > 0 such that BR(x0, dΩ) ⊆ Ω there exists
r > 0 and ε̄ > 0 such that, for any x ∈ Br(x0, dΩ) and for any 0 < ε < ε̄, any curve γ : [0, T ] −→ Ω0 such
that γ is sub-unit, γ(0) = x0, γ(T ) = x and

dσ⋆
K
(x0, x) ⩾ Lσ⋆

K
(γ)− ε

lies in BR(x0, dΩ).

Proof. Assume by contradiction that there exists K : Ω0×Rm −→ R such that K ∈ K, x0 ∈ Ω, R > 0 with
BR(x0) ⊆ Ω and sequences (xh)h and (γh)h ⊆ H(Ω0), with γh : [0, Th] −→ Ω0, γh(0) = x0, γh(Th) = xh
and

dσ⋆
K
(x0, xh) ⩾ Lσ⋆

K
(x0, xh)−

1

h
such that xh → x0 and for any h there exists 0 < th < Th such that zh := γ(th) ∈ ∂BR(x0, dΩ). Since K
satisfies (H) on Ω0, it follows that

dσ⋆
K
(x0, xh) ⩽ αdΩ0

(x0, xh) ⩽ αdΩ(x0, xh) → 0

as h→ ∞. On the other hand, in view of the choice of γh and Proposition 2.2, there exists C > 0 such
that

dσ⋆(x0, xh) ⩾ dσ⋆(x0, zh) + dσ⋆(zh, xh)−
1

h

⩾
1

α
dΩ0

(x0, zh)−
1

h

⩾
1

α
dG(x0, zh)−

1

h

⩾
C

α
dΩ(x0, zh)−

1

h

⩾
CR

2α

for any h big enough. A contradiction then follows. □

Proposition 5.2. Let K : Ω0 ×Rm −→ R be such that K ∈ K. A function u ∈ C(Ω) is a Monge solution
(resp. subsolution, supersolution) to (3.1) in Ω if and only if

(5.1) lim inf
x→x0

u(x)− u(x0) + dσ⋆
K
(x0, x)

dΩ0(x0, x)
= 0 (resp. ⩾,⩽)

for any x0 ∈ Ω.
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Proof. It suffices to observe that, thanks to Lemma 5.1 and the definition of K(Ω), for any x0 ∈ Ω there
exists r > 0 such that

dσ⋆(x0, x) = dσ⋆
K
(x0, x)

for any x ∈ Br(x0) and for any K ∈ K(Ω). □

Thanks to the results of Section 3, we are in position to prove Theorem 1.3. The proof of this result is
inspired by [14].

Proof of Theorem 1.3. Let K : Ω0 ×Rm −→ R be as in the statement. Fix x, z ∈ Ω and, for any h ∈ N+,
let yh ∈ ∂Ω be such that w(z) ⩾ dσ⋆

K
(z, yh) + g(yh)− 1

h . Then

w(x)− w(z) ⩽ dσ⋆
K
(x, yh)− dσ⋆

K
(z, yh) +

1

h
⩽ dσ⋆

K
(x, z) +

1

h
⩽ dσ⋆(x, z) +

1

h
⩽ αdΩ(x, z) +

1

h
.

Letting h→ ∞, and since w(z)− w(x) can be estimated similarly, we conclude that w ∈ Lip(Ω, dΩ). Fix
x ∈ ∂Ω. Then, by definition of w, it follows that w(x) ⩽ g(x). On the other hand, if y ∈ ∂Ω, (1.12)
implies that

dσ⋆
K
(x, y) + g(y) ⩾ g(x),

and so, taking the infimum over ∂Ω, we conclude that w(x) ⩾ g(x). Therefore w = g on ∂Ω. Let now
x ∈ ∂Ω and let (xh)h ⊆ Ω be such that xh → x as h→ ∞. Then

w(xh)− w(x) ⩽ dσ⋆
K
(xh, x) + g(x)− g(x) ⩽ αdΩ0(xh, x)

and there exists (yh)h ⊆ ∂Ω such that

w(x)− w(xh) ⩽ g(x)− g(yh)− dσ⋆
K
(xh, yh) +

1

h
⩽ dσ⋆

K
(x, yh)− dσ⋆

K
(xh, yh) +

1

h
⩽ dσ⋆

K
(x, xh) +

1

h
.

Hence we conclude that w ∈ C(Ω). Let us show that w is a Monge subsolution. To this aim, let x0 ∈ Ω
and let (xh)h ⊆ Ω be such that xh → x0 as h → ∞. For any h ∈ N, by definition of w, there exists
yh ∈ ∂Ω such that

w(xh) ⩾ dσ⋆
K
(xh, yh) + g(yh)−

∥x−1
0 · xh∥
h

.

Therefore we infer that

w(xh)− w(x0) + dσ⋆
K
(x0, xh)

∥x−1
0 · xh∥

⩾
dσ⋆

K
(x0, yh) + g(yh)− w(x0)

∥x−1
0 · xh∥

− 1

h
⩾ − 1

h
.

Letting h → ∞, being the sequence (xh)h arbitrary and recalling Proposition 5.2, we infer that w is a
Monge subsolution. Conversely, let x0 ∈ Ω and assume without loss of generality that B 1

h
(x0, dg) ⊆ Ω for

any h ∈ N+. Fix such an h and choose yh ∈ ∂Ω such that

w(x0) ⩾ dσ⋆
K
(x0, yn) + g(yn)−

1

h2
.

Moreover, for any h, let γh : [0, Th] −→ Ω0 be a sub-unit curve with the property that γh(0) = x0,
γh(Th) = yh and

dσ⋆
K
(x0, yh) ⩾

∫ Th

0

σ⋆
K(γ(t), γ̇(t)) dt− 1

h2
.

Pick th ∈ (0, Th) such that γ(th) ∈ ∂B 1
h
(x0, dg) and set xh := γ(th). Then clearly xh → x0 as h → ∞

and therefore, by definition of w and the choice of (γh)h, we infer that

w(xh)− w(x0) + dσ⋆
K
(x0, xh) ⩽ dσ⋆

K
(xh, yh)− dσ⋆

K
(x0, yh) + dσ⋆

K
(x0, xh) +

1

h2
⩽

2

h2
.

Noticing that ∥x−1
0 · xh∥ = 1

h for some C > 0, we conclude that

lim inf
h→∞

w(xh)− w(x0) + dσ⋆
K
(x0, xh)

∥x−1
0 · xh∥

⩽ lim inf
h→∞

2

h
= 0,

and so w is a Monge supersolution. □
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6. Monge and Viscosity Solutions

In this section we show that, as in the Euclidean setting (cf. [38, 14]), when H is continuous the notions
of Monge and viscosity solution coincide. We begin to prove that Monge solutions are viscosity solutions.

Proposition 6.1. Let H be continuous. If u ∈ C(Ω) is a Monge subsolution (resp. supersolution) to
(3.1), then u is a viscosity subsolution (resp. supersolution) to (3.1).

Proof. Let u be a Monge supersolution to (3.1), fix x0 ∈ Ω and p ∈ ∂−Xu(x0). Then it follows that

0 ⩾ lim inf
x→x0

u(x)− u(x0) + dσ⋆(x0, x)

∥x−1
0 · x∥

⩾ lim inf
x→x0

⟨p, π(x−1
0 · x)⟩+ dσ⋆(x0, x)

∥x−1
0 · x∥

Let (xh)h be a minimizing sequence for the right hand side. Let us set th := ∥x−1
0 · xh∥ and ξh :=

1
th
π(x−1

0 · xh). In this way, th → 0+ when h→ ∞. For any h ∈ N, let ηh ∈ Rn−m be such that

δ 1
th

(x−1
0 · xh) = (ξh, ηh).

By construction, (δ 1
th

(x−1
0 · xh))h is bounded. Then there exists ξ ∈ Rm and η ∈ Rn−m such that, up to a

subsequence, (ξh, ηh) → (ξ, η) as h→ ∞. Then, by Proposition 3.5 and the choice of (xh)h, we infer that

lim inf
x→x0

⟨p, π(x−1
0 · x)⟩+ dσ⋆(x0, x)

∥x−1
0 · x∥

= lim inf
h→∞

(
⟨p, ξh⟩+

dσ⋆(x0, xh)

th

)
= ⟨p, ξ⟩+ lim inf

h→∞

dσ⋆(x0, x0 · δth(ξh, ηh))
th

= ⟨p, ξ⟩+ lim inf
h→∞

dσ⋆(x0, x0 · δth(ξ, η))
th

⩾ ⟨p, ξ⟩+ σ⋆(x0, ξ).

Therefore we conclude that ⟨−ξ, p⟩ ⩾ σ⋆(x0, ξ). If it was the case that H(x0, p) < 0, then p is an interior
point of Z(x0). But then ⟨−ξ, p⟩ < σ⋆(x0, ξ), since q 7→ ⟨−ξ, q⟩ is a linear and non-constant, and so
it achieves its maximum on ∂Z(x0). A contradiction then follows. Assume now that u is a Monge
subsolution to (3.1), let x0 ∈ Ω and p ∈ ∂+Xu(x0). Assume by contradiction that H(x0, p) > 0. Hence,
by Hahn–Banach Theorem, there exists ξ ∈ Sm−1 such that ⟨−ξ, p⟩ > σ⋆(x0, ξ). For any h ∈ N \ {0}, let
xh := x0 · δth(ξ, 0), where (th)h ⊆ (0, 1) goes to 0 as h → ∞. Then xh → x0 as h → ∞, and moreover
x−1
0 · xh = (thξ, 0). Therefore, being u a Monge subsolution, it follows that

0 ⩽ lim inf
x→x0

u(x)− u(x0) + dσ⋆(x0, x)

∥x−1
0 · x∥

⩽ lim inf
x→x0

⟨p, π(x−1
0 · x)⟩+ dσ⋆(x0, x)

∥x−1
0 · x∥

⩽ lim inf
h→∞

⟨p, π(x−1
0 · xh)⟩+ dσ⋆(x0, xh)

∥x−1
0 · xh∥

= ⟨p, ξ⟩+ lim inf
h→∞

dσ⋆(x0, x0 · δth(ξ, 0))
th

.

Let us set γ : [0, 1] −→ Ω by γ(t) := x0 · δt(ξ, 0). Notice that γ̇(t) ≡ ξ, and so γ is sub-unit. Moreover
γ(0) = x0 and γ(th) = xh. Hence, since the continuity of H implies the continuity of σ⋆(·, ξ), we infer that

lim inf
h→∞

dσ⋆(x0, x0 · δth(ξ, 0))
th

⩽ lim inf
h→∞

∫ th

0

σ⋆(γ(t), ξ) dt = σ⋆(x0, ξ).

Therefore we conclude that ⟨−ξ, p⟩ ⩽ σ⋆(x0, ξ), a contradiction.
□

In order to prove the converse implication, we need some preliminary results.

Proposition 6.2. Let H be continuous. Let u ∈ C(Ω) and assume that u is a viscosity subsolution to

(3.1). Then u ∈W 1,∞
X,loc(Ω).

Proof. Let x0 ∈ Ω and p ∈ ∂+Xu(x0) with p ̸= 0. Then H(x0, p) ⩽ 0, which implies that p ∈ Z(x0).
Therefore it holds that |p| ⩽ α by (H3). Hence u is a viscosity subsolution to

(6.1) |Xu| ⩽ α

on Ω. Thanks to Proposition 4.3 and [42, Proposition 2.1], we conclude that u ∈W 1,∞
X,loc(Ω). □
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Proposition 6.3. Assume that H is continuous. If u is a viscosity subsolution to (3.1) in Ω, then

(6.2) u(x)− u(y) ⩽ dσ⋆(x, y)

for any x, y ∈ Ω.

Proof. Let x, y ∈ Ω. If x = y the thesis is trivial. If instead x ̸= y, let γ : [0, T ] −→ Ω be a sub-unit curve
such that γ(0) = x and γ(T ) = y for some T > 0. Thanks to Proposition 6.2 and Proposition 4.2 we know

that u ∈W 1,∞
X,loc(Ω) and that

(6.3) H(z,Xu(z)) ⩽ 0

for almost every z ∈ Ω. Let N be a Lebesgue negligible subset of Ω containing all the non-Lebesgue
points of Xu and all the points where (6.3) does not hold. Then, in view of [40, Lemma 2.7], we infer
that H(z, p) ⩽ 0 for any z ∈ Ω and for any p ∈ ∂X,Nu(z). Therefore, in particular,

(6.4) p ∈ Z(z)

for any z ∈ Ω and for any p ∈ ∂X,Nu(z). Hence, thanks to (6.4) and Proposition 2.5, we conclude that

u(x)− u(y) =

∫ T

0

⟨γ̇(t),−g(t)⟩ dt ⩽
∫ T

0

σ⋆(γ(t), γ̇(t)) dt.

Since γ is arbitrary, the thesis follows.
□

Proposition 6.4. Let H be a continuous Hamiltonian satisfying (H). Let u ∈ C(Ω) be a viscosity
subsolution to (3.1). Then u is a Monge subsolution to (3.1).

Proof. Let x0 ∈ Ω. Hence, in view of (6.2), we infer that

u(x)− u(x0) + dσ⋆(x0, x) ⩾ 0

for any x ∈ Ω, from which the thesis easily follows. □

In order to prove that viscosity supersolutions are Monge supersolutions, we argue as in [38]. To
this aim, we combine Theorem 1.3 and Proposition 6.1 to show the solvability of the Dirichlet problem
associated to a continuous Hamiltonian in the setting of viscosity solutions.

Theorem 6.5. Let H be a continuous Hamiltonian satisfying (H), and let g ∈ C(∂Ω) be such that (1.12)
holds. Then the function w defined by (1.13) is a viscosity solution to the Dirichlet problem

H(x,Xw) = 0 in Ω

w = g on ∂Ω.

We need also the following sub-Riemannian comparison principle, whose proof is inspired by [8].

Proposition 6.6. Let Ω be a bounded domain. Assume that H is continuous and satisfies (H). Assume

that u ∈ C(Ω) ∩W 1,∞
X,loc(Ω) is a viscosity subsolution to (3.1) on Ω and that v ∈ C(Ω) is a viscosity

supersolution to (3.1) on Ω. If u ⩽ v on ∂Ω, then u ⩽ v on Ω.

Proof. We can assume without loss of generality that u, v > 0. Let us fix δ ∈ (0, 1) and set w := δu.

Clearly w ∈ C(Ω) ∩W 1,∞
X,loc(Ω) and w ⩽ v on ∂Ω. If we prove that w ⩽ v on Ω, then the thesis follows

letting δ → 1.
Step 1. We first claim that for any Ω̃ ⋐ Ω there exists η > 0 such that w is a viscosity subsolution to

H(x,Xw) + η = 0 on Ω̃.

If it was not the case, then there exists Ω̃ ⋐ Ω and sequences (xh)h ⊆ Ω̃, (ph)h ⊆ Rm such that
ph ∈ ∂+Xw(xh) and

H(xh, ph) +
1

h
> 0

for any h ∈ N+. Since by assumption Z(xh) ⊆ B̂α(0) for any h ∈ N+, then we can assume up to a
subsequence that xh → x̃ ∈ Ω and ph → p̃ ∈ Rm. Being H continuous, we infer that H(x̃, p̃) ⩾ 0. On
the other hand, notice that ph

δ ∈ ∂+Xu(xh) for any h ∈ N+, and so, being u a subsolution, we infer that

H
(
xh,

ph

δ

)
⩽ 0. Since H is continuous, we conclude that

H

(
x̃,
p̃

δ

)
⩽ 0.
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The last equation implies that p̃
δ ∈ Z(x̃). But then, being Z(x̃) convex and since |p̃| < |p̃|

δ , we conclude
that p̃ is an interior point of Z(x̄), and so H(x̃, p̃) < 0, a contradiction.
Step 2. Let us define M := maxΩ(w − v), and assume by contradiction that M > 0. Let us define, for
any ε ∈ (0, 1),

φε(x, y) := w(x)− v(y)− dg(x, y)
2r!

ε2
.

Being φε continuous on Ω× Ω, there exists (xε, yε) ∈ Ω× Ω such that

Mε := max
Ω×Ω

φε = φε(xε, yε).

Step 3. We claim the following facts.

(i) Mε →M as ε→ 0.
(ii) w(xε)− v(yε) →M as ε→ 0.

(iii)
dg(xε,yε)

2r!

ε2 → 0 as ε→ 0.
(iv) Let us set

pε :=
(2r!)dg(xε, yε)

2r!−1Xdg(xε, yε)

ε2
.

Then (pε)ε is bounded.

(v) There exists Ω̃ ⋐ Ω such that xε, yε ∈ Ω̃ for any ε small enough.

Indeed, since from the choice of (xε, yε) it is easy to see that M ⩽ Mε for any ε ∈ (0, 1). Let us set
R := max{∥w∥∞, ∥v∥∞}. Then we have that

M ⩽ 2R− dg(xε, yε)
2r!

ε2
.

Since we assumed that M > 0, we infer that

dg(xε, yε)
2r!

ε2
⩽ 2R.

This implies in particular that dg(xε, yε) → 0 as ε→ 0. This fact, together with the compactness of Ω,

allows to assume up to a subsequence that there exists x̄ ∈ Ω such that

(6.5) lim
ε→0

dg(xε, x̄) = lim
ε→0

dg(yε, x̄) = 0.

Moreover, notice that M ⩽ Mε implies that M ⩽ w(xε) − v(yε) for any ε > 0. This last inequality,
together with (6.5), implies that

(6.6) M ⩽ lim inf
ε→0

w(xε)− v(yε) ⩽ lim sup
ε→0

w(xε)− v(yε) ⩽M.

This proves (ii). The fact that M ⩽Mε, combined with (6.6), allows to conclude that

M ⩽ lim inf
ε→0

Mε ⩽ lim
ε→0

w(xε)− v(yε) =M.

This proves (i) and (iii). To prove (v), it suffices to observe that

M = lim
ε→0

w(xε)− v(yε) = w(x̄)− v(x̄),

and thus, recalling that M > 0 and that w ⩽ v on ∂Ω, (v) follows. Finally, we prove (iv). Indeed, notice
that, in view of the choice of xε, yε, then

w(yε)− v(yε) = φε(yε, yε) ⩽ φ(xε, yε) = w(xε)− v(yε)−
dg(xε, yε)

2r!

ε2
,

which implies that
dg(xε, yε)

2r!

ε2
⩽ w(xε)− w(yε) ⩽ Cdg(xε, yε),

where C > 0 is the dg−Lipschitz constant of w on Ω̃. Therefore

dg(xε, yε)
2r!−1

ε2
⩽ C.

The proof is concluded noticing that z 7→ Xdg(z0, z) is bounded on Ω \ {z0} uniformly with respect to
z0 ∈ Ω.
Step 4. Let us define

φ1
ε(y) := w(xε)−

dg(xε, y)
2r!

ε2
and φ2

ε(x) := v(yε) +
dg(x, yε)

2r!

ε2
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for any x, y ∈ Ω. These are smooth function on Ω. Moreover, xε is a maximum point for x 7→ w(x)−φ2
ε(x)

and yε is a maximum point for y 7→ −v(y) + φ1
ε(y). Therefore, if η > 0 is the constant coming from Step

1 and relative to Ω̃ as in (v), then

H(xε, pε) + η ⩽ H(yε, pε).

Being (pε)ε bounded, we can assume that pε → p̄ as ε → 0. Therefore we conclude from the previous
inequality that

H(x̄, p̄) + η ⩽ H(x̄, p̄),

a contradiction. □

Proposition 6.7. Let H be continuous. Let u ∈ C(Ω) be a viscosity supersolution to (3.1). Then u is a
Monge supersolution to (3.1).

Proof. Let u be as in the statement. If by contradiction u is not a Monge supersolution to (3.1), there
exists x0 ∈ Ω, r > 0 and δ > 0 such that

(6.7) u(x)− u(x0) + dσ⋆(x0, x) ⩾ δ∥x−1
0 · x∥

for any x ∈ Br(x0, dg). Notice that, without loss of generality, we can assume that u(x0) = 0. Set
ψ(x) = −dσ⋆(x0, x) + δr. Notice that, as Br(x0, dg) ⋐ Ω, then H ∈ K0(Br(x0, dg)). Moreover, notice that

ψ(x)− ψ(y) = dσ⋆(x0, y)− dσ⋆(x0, x) ⩽ dσ⋆(x, y)

for any x, y ∈ ∂Br(x0, dg), and so (1.12) is satisfied by ψ. Therefore we know from Theorem 6.5 that, if

we define w : Br(x0, dg) −→ R as in (1.13) with Ω = Br(x0, dg) and g = ψ, then w ∈ C(Br(x0, dg)) and
w solves in the viscosity sense the Dirichlet problem

H(x,Xw) = 0 in Br(x0, dg)

w = ψ on ∂Br(x0, dg).

Moreover, in view of (6.7), u ⩾ ψ on ∂Br(x0, dg). Therefore, recalling that w ∈ C(Br(x0, dg)) ∩
W 1,∞

X,loc(Br(x0, dg)), we conclude from Proposition 6.6 that w(x0) ⩽ u(x0) = 0, but this is impossible,

since w(x0) = δr > 0. □

Proof of Theorem 1.2. It follows from Proposition 6.1, Proposition 6.4 and Proposition 6.7. □

7. Comparison Principle and Stability

7.1. Comparison Principle. In this section we prove Theorem 1.4. This result, as customary, yields
uniqueness for the Dirichlet problem associated to (3.1). The proof of Theorem 1.4, strongly inspired by
[23], is based on the validity of the following two properties of Monge subsolutions.

Proposition 7.1. Let u ∈ C(Ω). Assume that u is a Monge subsolution to (3.1). Then u ∈W 1,∞
X,loc(Ω).

Proof. Assume that u ∈ C(Ω) is a Monge subsolution to (3.1). Then

lim inf
x→x0

u(x)− u(x0) + αdΩ(x0, x)

∥x−1
0 · x∥

⩾ lim inf
x→x0

u(x)− u(x0) + dσ⋆(x0, x)

∥x−1
0 · x∥

⩾ 0

for any x0 ∈ Ω. Let K(x, ξ) := |ξ| − α. Then σ⋆
K(x, ξ) = α|ξ| and dσ⋆

K
(x, y) = αdΩ(x, y). This implies

that u is a Monge subsolution to (6.1) on Ω. Since K is continuous, then u is also a viscosity subsolution
to (6.1), in view of Proposition 6.1. The conclusion follows as in the proof of Proposition 6.2. □

Proposition 7.2. If u is a Monge subsolution to (3.1) in Ω, then for any x0 ∈ Ω there exists r > 0 such
that

u(x)− u(y) ⩽ dσ⋆(x, y)

for any x, y ∈ Br(x0, dΩ).

Proof. Let r > 0 be as in Proposition 3.3. Then in particular Br(x0, dΩ) ⋐ Ω. Moreover, since u and

dσ⋆ are continuous on Br(x0, dΩ), it suffices to consider points in Br(x0, dΩ). Let x, y ∈ Br(x0, dΩ). If
x = y the thesis is trivial. If instead x ̸= y, in view of Proposition 3.3 there exists a sub-unit curve
γ : [0, T ] −→ Ω such that γ(0) = x, γ(T ) = y for some T > 0 and γ is optimal for dσ⋆(x, y). Set

f(t) := dσ⋆(x0, γ(t)) and g(t) := u(γ(t)). Therefore Proposition 7.1 implies that both f, g ∈W 1,∞
loc (0, T ).

We infer that the derivative of f + g exists almost everywhere on (0, T ). To conclude, it suffices to show
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that it is non-negative. To this aim, recalling that u is a Monge subsolution to (3.1) and by the choice of
γ, we observe that

d

dt
(f + g)

∣∣∣
t=t0

= lim
h→0+

g(t0 + h)− g(t0) + f(t0 + h)− f(t0)

h

= lim
h→0+

u(γ(t0 + h))− u(γ(t0)) + dσ⋆(x0, γ(t0 + h))− dσ⋆(x0, γ(t0))

∥γ(t0)−1 · γ(t0 + h)∥
· ∥γ(t0)

−1 · γ(t0 + h)∥
h

⩾ lim inf
h→0+

u(γ(t0 + h))− u(γ(t0)) + dσ⋆(γ(t0), γ(t0 + h))

∥γ(t0)−1 · γ(t0 + h)∥
· ∥γ(t0)

−1 · γ(t0 + h)∥
h

⩾ 0

for almost every t0 ∈ (0, T ). Finally, integrating d
dt (f + g) in [0, T ] we get the result. □

Lemma 7.3. Let H,K : Ω× Rm −→ R satisfy (H), and assume that there exists δ ∈ (0, 1) such

(7.1) ZK(x) ⊆ δZH(x)

for any x ∈ Ω. Assume that u ∈ C(Ω) is a Monge subsolution to K(x,Xu) = 0 and that v ∈ C(Ω) is a
Monge supersolution to H(x,Xv) = 0. If u ⩽ v on ∂Ω, then u ⩽ v on Ω.

Proof. Assume by contradiction that there exists x0 ∈ Ω such that u(x0) > v(x0). Let us define H̃, K̃ by

H̃(x, ξ) :=

{
H(x, ξ) if (x, ξ) ∈ Ω× Rm

|ξ| − α otherwise

and

K̃(x, ξ) :=

{
K(x, ξ) if (x, ξ) ∈ Ω× Rm

|ξ| − 1
α otherwise.

Then H̃ ∈ K0(H,Ω) and K̃ ∈ K0(K,Ω). Notice that, since H̃, K̃ are defined on the whole G× Rm, then

dσ⋆
H̃
, dσ⋆

K̃
are geodesic distances (cf. [26]). Moreover, (7.1) and the definition of H̃, K̃ imply that

(7.2) ZK̃(x) ⊆ δZH̃(x)

holds for any x ∈ Ω. We claim that there exists ε > 0 such that

fε(x, y) := u(x)− v(y)−
dσ⋆

H̃
(x, y)2

ε

achieves its maximum over Ω×Ω on Ω×Ω. If not, then for any h ∈ N+ there exists (xh, yh) ∈ (Ω×Ω)\Ω×Ω
which realizes the maximum for f 1

h
. Up to a subsequence, we can assume that xh → x̄ and that yh → ȳ.

Moreover, we can assume without loss of generality that x̄ ∈ ∂Ω. Notice that

(7.3) 0 < f 1
h
(x0, x0) ⩽ u(xh)− v(yh)− hdσ⋆

H̃
(xh, yh)

2.

Therefore hdσ⋆
H̃
(xh, yh) is bounded, an hence dG(xh, yh) → 0. This implies that x̄ = ȳ. Hence, noticing

that f 1
h
(x0, x0) does not depend on h, (7.3) implies that u(x̄) > v(x̄), which is impossible since x̄ ∈ ∂Ω.

Let then (x̃, ỹ) ∈ Ω×Ω be a maximum point for fε, and let γ : [0, T ] −→ G be a sub-unit curve such that
γ(0) = x̃, γ(T ) = ỹ and

dσ⋆
H̃
(x̃, ỹ) = Lσ⋆

H̃
(γ),

and set

h(t) :=
1

ε
(dσ⋆

H̃
(x̃, ỹ) + dσ⋆

H̃
(γ(t), ỹ)).

We claim that h(0) ⩽ δ. If x̃ = ỹ, the thesis is trivial. So assume x̃ ̸= ỹ. Notice that fε(x̃, ỹ) ⩾ fε(γ(t), ỹ)
for any t small enough, and so

u(x̃)− u(γ(t)) ⩾ h(t)(dσ⋆
H̃
(x̃, ỹ)− dσ⋆

H̃
(γ(t), ỹ)) ⩾ h(t)dσ⋆

H̃
(x̃, γ(t))

for any t small enough. Since u is a subsolution to K(x,Xu) = 0, we can apply Proposition 7.2 to infer
that

dσ⋆
K̃
(x̃, γ(t)) ⩾ h(t)dσ⋆

H̃
(x̃, γ(t))

for any t > 0 small enough. Moreover (7.2) implies that dσ⋆
K̃
(x̃, γ(t)) ⩽ δdσ⋆

H̃
(x̃, γ(t)) for any t ∈ [0, T ].

We conclude that

δdσ⋆
H̃
(x̃, γ(t)) ⩾ h(t)dσ⋆

H̃
(x̃, γ(t))
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for any t > 0 small enough, which yields the claim. Noticing that fε(x̃, ỹ) ⩾ fε(x̃, y) for any y close
enough to ỹ, we see that

v(ỹ)− v(y) = fε(x̃, y)− fε(x̃, ỹ) +
1

ε
(dσ⋆

H̃
(x̃, y)2 − dσ⋆

H̃
(x̃, ỹ)2)

⩽
1

ε
(dσ⋆

H̃
(x̃, y) + dσ⋆

H̃
(x̃, ỹ))dσ⋆

H̃
(ỹ, y)

<
1 + δ

2
dσ⋆

H̃
(ỹ, y)

for any y in a neighborhood of ỹ, where the last inequality follows from h(0) ⩽ δ and from the local
uniform continuity of dσ⋆

H̃
(x̃, ·). Therefore we can conclude that

v(y)− v(ỹ) + dσ⋆
H̃
(ỹ, y) ⩾

1− δ

2
dσ⋆

H̃
(ỹ, y) ⩾

1− δ

2α
dG(ỹ, y),

which is a contradiction since v is a supersolution to H(x,Xv) = 0. □

Proof of Theorem 1.4. The proof, in view of Proposition 7.1, Proposition 7.2 and Lemma 7.3, follows
with the obvious modifications as in [23, Theorem 5.8]. □

7.2. Stability. Finally, following [14], we prove Theorem 1.5, which is the analogue of [14, Theorem 6.4].

Proof of Theorem 1.5. Fix x0 ∈ Ω and let r > 0 be such that Br(x0, dΩ) ⋐ Ω and Proposition 3.3 holds.
Then Hn ∈ K0(Hn, Br(x0, dΩ)) for any n ∈ N and H∞ ∈ K0(H∞, Br(x0, dΩ)). Moreover, in view of
Proposition 7.2, un(x)− un(y) ⩽ dσ⋆

Hn
(x, y) for any n ∈ N and for any x, y ∈ ∂Br(x0, dΩ). Hence, in view

of Theorem 1.3,
un(x) = inf

y∈∂Br(x0)
{dσ⋆

Hn
(x, y) + un(y)}

for any x ∈ Br(x0, dΩ) and any n ∈ N. By the local uniform convergence assumptions we infer that

u∞(x) = inf
y∈∂Br(x0)

{dσ⋆
H∞

(x, y) + u∞(y)}

for any x ∈ Br(x0, dΩ), and so we conclude thanks to Theorem 1.3. □

Remark 7.4. The convergence condition in the hypotheses of Theorem 1.5 is based on the optical length
functions rather than on the Hamiltonians. Arguing as in [14], one can easily find sufficient conditions on
the Hamiltonians in order to guarantee the local uniform convergence of the optical length functions.
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[5] M. Bardi, M. G. Crandall, L. C. Evans, H. M. Soner, and P. E. Souganidis. Viscosity solutions and applications, volume

1660 of Lecture Notes in Mathematics. Springer-Verlag, Berlin; Centro Internazionale Matematico Estivo (C.I.M.E.),
Florence, 1997.

[6] M. Bardi and L. C. Evans. On Hopf’s formulas for solutions of Hamilton–Jacobi equations. Nonlinear Anal., 8(11):1373–

1381, 1984.
[7] M. Bardi and A. Goffi. New strong maximum and comparison principles for fully nonlinear degenerate elliptic PDEs.

Calc. Var. Partial Differential Equations, 58(6):Paper No. 184, 20, 2019.

[8] G. Barles. An Introduction to the Theory of Viscosity Solutions for First-Order Hamilton–Jacobi Equations and
Applications. In: Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications, volume 2074.
Springer, Berlin, Heidelberg, lecture notes in mathematics edition, 2013.

[9] G. Barles and B. Perthame. Comparison principle for Dirichlet-type Hamilton–Jacobi equations and singular perturba-
tions of degenerated elliptic equations. Appl. Math. Optim., 21(1):21–44, 1990.

[10] E. N. Barron and R. Jensen. Semicontinuous viscosity solutions for Hamilton–Jacobi equations with convex Hamiltonians.
Comm. Partial Differential Equations, 15(12):1713–1742, 1990.

[11] T. Bieske, F. Dragoni, and J. Manfredi. The Carnot–Carathéodory distance and the infinite laplacian equation. Journal
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[17] L. Capogna, D. Danielli, S. D. Pauls, and J. T. Tyson. An introduction to the Heisenberg group and the sub-Riemannian
isoperimetric problem, volume 259 of Progress in Mathematics. Birkhäuser Verlag, Basel, 2007.
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