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Abstract. — This paper is devoted to prove that any domain satisfying a
(δ0, r0)−capacitary condition of first order is automatically (m, p)−stable for all m ⩾ 1 and
p > 1, and for any dimension N ⩾ 1. In particular, this includes regular enough domains
such as C 1−domains, Lipchitz domains, Reifenberg flat domains, but is sufficiently weak
to also include cusp points. Our result extends some of the results of Hayouni and Pierre
valid only for N = 2, 3, and partially extends the results of Bucur and Zolésio for higher
order operators, with a different and simpler proof.
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1. Introduction

Let Ω ⊂ RN be a bounded and open set. Following [10, 4, 5], we say that Ω is
(m, p)−stable if

Wm,p(RN) ∩
{
u = 0 a.e. in Ω

c}
= Wm,p

0 (Ω).

This notion is related to the continuity of a 2m−order elliptic PDE with respect to domain
perturbation. In particular, if Ω is (m, 2)−stable, then it implies that for any sequence
of domains (Ωn)n∈N converging to Ω in a certain Hausdorff sense, one has that (un)n∈N
converges strongly in Hm to u, where un is the unique solution in Hm

0 (Ωn) for the equation
(−∆)m(un) = f in Ωn, and u is the solution of the same problem in Ω. It is also equivalent
to the convergence of (Wm,p

0 (Ωn))n∈N to Wm,p
0 (Ω) in the sense of Mosco (see Section 6).

In the literature, a lot of attention has been devoted to the case m = 1 and p = 2

because of its relation to the Laplace operator. On the other hand, very few results are
available for the higher order spaces Hm

0 (Ω), related to bi-harmonic or more generally
poly-harmonic equations, that have a lot of applications. The objective of this paper is to
give a short and elementary proof of the fact that any domain which is “regular enough”
is always (m, p)−stable for all m, p and all dimensions N .

Notice that in general, the stability for Wm,p
0 (Ω) does not simply reduce to the one of

W 1,p
0 (Ω). To enlight this fact we recall that for every open set Ω ⊂ RN , we have the

characterisation (see for instance [1, Chapter 9])

Wm,p
0 (Ω) = Wm,p(RN) ∩

{
∇ku|Ωc = 0 (m− k, p)− q.e. for all k ⩽ m− 1

}
,

where ∇ku := (∂αu)|α|=k and ∂αu is the (m−k, p)−quasicontinuous representative, which
is in particular defined pointwise (m − k, p)−q.e. If Ω is (1, p)−stable, then for any
|α| ⩽ m − 1 and from the assumption ∂αu = 0 a.e. in Ω

c we would only deduce that
∂αu = 0 (1, p)−q.e. on Ωc, whereas in order to prove that u ∈ Wm,p

0 (Ω) we would need
the stronger condition ∂αu = 0 (m− |α|, p)−q.e. on Ωc.

In [7], Hayouni and Pierre exploited the compact embedding of H2 into continuous
functions in dimensions 2 and 3, in order to get some stability results for the space
H2

0 . In particular, they proved that, in dimension 2 and 3, any (1, 2)−stable domain is
automatically (2, 2)−stable (see [7] or [10]). They also proved in the same paper that, in
dimensions 2 and 3, any sufficiently smooth domain is a (2, 2)−stable domain.

In the present paper, we show that there is no true restriction on the dimension N

to obtain (m, p)−stability. Our main result asserts that any domain that satisfies a
variant of the classical (1, p)−capacitary condition, will be automatically (m, p)−stable,
in any dimension, and for any m. This includes a large class or “regular” domains such
as C 1−domains, Lipschitz domains, Reifenberg-flat domains, domains satisfying the so-
called external corkscrew condition (see Definition 5.1), ε-cone property, or even domains
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with the segment property which allows domains with cusps, or more generally domains
with the so called flat cone property [3].

In the sequel, we restrict ourselves to open subset of a fixed ball D ⊂ RN , and we
denote the set of admissible domains by

O(D) := {Ω | Ω ⊆ D is open} .

In the following definition, the precise definition of capacity has no real importance
since they are most often equivalent up to a constant. In this paper we will work with
the Bessel capacity, that will be precisely defined in the next section.

Definition 1.1. — Let r0 > 0, δ0 > 0 and p ∈ (1,+∞). An open set Ω ⊆ RN satisfies
the (r0, δ0)−capacitary condition if for all x ∈ ∂Ω and for all r ⩽ r0,

Cap1,p

(
1

r

(
Ω

c ∩B(x, r)− x
))

⩾ δ0,(1.1)

where Cap1,p is the Bessel capacity of first order. The class of open subset of D having
the (r0, δ0)−capacity condition is denoted by Oδ0,r0

cap (D).

Here is our main statement.

Theorem 1.1. — If Ω ∈ Oδ0,r0
cap (D) satisfies |∂Ω| = 0, then Ω is (m, p)−stable for any

m ⩾ 1 and p ∈ (1,+∞).

Let us provide some comments about the result. One of the main feature and somewhat
surprising is that the condition involves only the (1, p)−capacity even if the conclusion
yields (m, p)−stability for all m ⩾ 1.

Our main statement reminds the classical one in [5], where Bucur and Zolésio proved
that a domain is (1, 2)−stable under a weaker condition with (1, 2)−capacity. More
precisely, in [5] the authors prove that the following is enough

∀x ∈ ∂Ω,∀r ≤ r0,
Cap1,2(Ω

c ∩B(x, r), B(x, 2r))

Cap1,2(B(x, r), B(x, 2r))
⩾ δ0.(1.2)

In (1.2), the notation Cap1,2(A ∩ B(x, r), B(x, 2r)) refers to the so called “condenser
capacity” (see Section 4 for a definition). Actually, it can be proved (see Remark 4.1 in
Section 4) that (1.2) is equivalent to

∀x ∈ ∂Ω,∀r ≤ r0, Cap1,2

(
1

r
(Ωc ∩B(x, r)− x)

)
⩾ δ0.(1.3)

Observe that (1.3) looks similar to (1.1) but without a bar over Ω, which stands for a
substantial difference. Since (1.1) clearly implies (1.3), the main result of [5] is stronger
than ours.
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The typical example of domain that satisfies (1.3) but not (1.1) is a domain with a crack.
For instance the unit ball of R2 minus a radius, i.e. B(0, 1)\([0, 1]×{0}). The capacity of
Ωc in a small ball B(x, r) centered at the boundary has a positive (1, 2)−capacity, because
it always contains a segment of length at least a radius, so (1.2) is satisfied. On the other
hand for a small ball centered on the crack, the complement of Ω in the ball is empty,
thus our condition (1.1) is not satisfied.

In other words for the special case of m = 1 and p = 2 we only partially recover
the result in [5]. In contrast, under the similar and slightly stronger (1, 2)−capacitary
condition (1.1), we obtain (m, 2)−stability for all m ⩾ 1, which is interesting. It is worth
mentioning that our proof is different and simpler than the one [5], thus provides an
alternative argument for many standard classes of domains (such as Lipschitz domains
or domain satisfying the uniform flat cone property, or corkscrew property) which is new
even for the standard case m = 1, and works similarly for p ̸= 2.

Let us further emphasis that the difference between Ω and Ω has a crucial importance.
Indeed, under our assumption |∂Ω| = 0, the question of (m, p)-stability is equivalent to
asking whether

Wm,p(RN) ∩ {u = 0 a.e. in Ωc} = Wm,p
0 (Ω).

For instance for m = 1 and p = 2, as already mentioned before, it is known that

H1
0 (Ω) = H1(RN) ∩ {u = 0 q.e. in Ωc} ,

thus the main question for stability is whether {u = 0 a.e in Ωc} ⇒ {u = 0 q.e in Ωc}.
If we add a bar on Ω then the simliar question becomes trivial because Ω

c is open and
therefore we always have, for a precise representative u ∈ H1(RN),

{u = 0 a.e in Ω
c} ⇔ {u = 0 q.e in Ω

c}.

This fact will play a major role in the proof of our main result. Another fact that we use
in our proof is the following, valid for any u ∈ Wm,p(RN),

{u = 0 a.e in Ω
c} ⇒ {∇ku = 0 a.e. in Ω

c for all k ⩽ m}.

Again, this follows from the fact that Ω
c is open and explains why we need a bar over Ω

in the capacitary condition (1.1) for our proof to work.
Another difference with [5] is the assumption |∂Ω| = 0 that we need in our main

statement Theorem 1.1 (here |∂Ω| denotes the Lebesgue measure of ∂Ω). In practice this
assumption is not very restrictive since it will be easily satisfied by all standard classes
of domains. For instance it holds true as soon as a corckscrew condition is satisfied (see
Proposition 5.1). We do not know whether the capacity condition (1.1) directly implies
|∂Ω| = 0, in which case this assumption would be redundant.

As a consequence of our main result we get a capacity condition which implies stability
for the polyharmonic equation along a Hausdorff converging sequence of domains. We
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refer to Section 6 for the definition of Hausdorff convergence, Mosco convergence and
γm-convergence, and we give here in the introduction two different statements. In the
first one (Corollary 1.1) we assume only the limiting domain Ω to be “regular” while in
the second (Theorem 1.2) we assume the whole sequence to be “regular”.

Corollary 1.1. — Let Ω ∈ Oδ0,r0
cap (D) and (Ωn)n∈N be a sequence in O(D). If |∂Ω| = 0,

(Ωn)n∈N dH−converges to Ω, and (Ωn)n∈N dHc−converges to Ω, then the sequence (Ωn)n∈N
γm−converges to Ω, or equivalently, (Hm

0 (Ωn))n∈N converges to Hm
0 (Ω) in the sense of

Mosco.

Corollary 1.1 follows from gathering together Proposition 6.3 and Theorem 1.1. Let us
now mention a few remarks.

1. The interesting feature of Corollary 1.1 is that only the limiting domain Ω is assumed
to be stable (thus somehow “regular”) and nothing is assumed on the sequence
(Ωn)n∈N, which could be arbitrary open sets.

2. It is worth mentioning that in [5] the authors assumed only Ωn
dHc−→ Ω to obtain the

γm−convergence of a sequence (Ωn)n∈N. On the other hand they assumed that every
term Ωn along the sequence satisfies a capacitary condition with uniform constants.
A similar statement will be given later in Theorem 1.2.

3. It is easy to construct an example of stable domain Ω (even smooth) and a sequence
(Ωn)n∈N such that Ωn

dHc−→ Ω and (Ωn)n∈N does not γm−converges to Ω. This
shows that without any other assumption on the sequence, the second assumption
Ωn

dH−→ Ω is pivotal for the result to hold true. The construction is rather classical :
consider the sequence made from an enumeration xi ∈ B(0, 1) of points with rational
coordinates. Then define

Ωn := B(0, 2) \
n⋃

i=0

{xi}.

It is easy to see that (Ωn)n∈N converges to Ω := B(0, 2) \ B(0, 1) for the comple-
mentary Hausdorff distance, which is clearly a (m, 2)−stable domain because the
boundary is smooth. On the other hand, for dimension N ⩾ 2m we know that
Capm,2({xi}) = 0, so it is classical that (Ωn)n∈N does not γm−converge to Ω (see
[10, Section 3.2.6, page 80] for the case m = 1). On the other hand Ωn = B(0, 2)

clearly does not Hausdorff converge to Ω = B(0, 2) \ B(0, 1), which explains why
Theorem 6.3 does not apply.

Next, in order to get existence of shape optimisation problems for higher order equa-
tions under geometrical constraints, the following variant is more usefull. Notice that here
we suppose (1.1) on the whole sequence and by this way we can avoid the assumption
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Ωn
dH−→ Ω but Ωn

dHc−→ Ω suffices.

Theorem 1.2. — Let Ω ∈ O(D) and (Ωn)n∈N all belonging to Oδ0,r0
cap (D). If |∂Ω| = 0

and (Ωn)n∈N dHc−converges to Ω, then (Ωn)n∈N γm−converges to Ω, or equivalently,
(Hm

0 (Ωn))n∈N converges to Hm
0 (Ω) in the sense of Mosco.

Since complementary Hausdorff topology is relatively compact, it is easy to get existence
results for shape optimisation problems using Theorem 1.2, with additional geometrical
constraints on the domain. This applies to various standard classes of domains such as
uniformly Lipschitz domains, Reifenberg-flat, corkscrew, or ε−cone, as described in the
last section of the paper (see Theorem 8.1).

2. Preliminaries

The term domain and the symbol Ω will be reserved for an open and bounded set in
the N−dimensional euclidean space RN . We will denote the Lebesgue measure of a set
A ⊂ RN by |A|. The norm of a point x ∈ RN is denoted by |x| := (

∑N
i=1 x

2
i )

1/2. If α is a
multi-indice, i.e. α ∈ NN , then the norm of α is |α| :=

∑N
i=1 αi and we define the partial

derivative operator

∂α :=
∂|α|

∂α1
1 · · · ∂αk

N

,

and the vector ∇k := (∂α)|α|=k. The notations ∂Ω and Ω stand for the boundary and the
closure of Ω, respectively. Let C ∞

c (Ω) be the space of smooth functions with compact
support in Ω. The ball of radius r ⩾ 0 and centered at x ∈ RN is denoted by B(x, r). For
m ∈ N and p ∈ (1,+∞), we consider the usual Sobolev space Wm,p(Ω) endowed with the
norm

∥u∥Wm,p(Ω) :=

(
m∑
k=0

∥∇ku∥pLp(Ω)

)1/p

,

where
∥∇ku∥pLp(Ω) :=

∫
Ω

|∇ku|p dx.

Finally, the space Wm,p
0 (Ω) is the completion of C ∞

c (Ω) with respect to the norm
∥ · ∥Wm,p(Ω).

When the dimension N < mp, elements of Wm,p(RN) can be represented as continuous
functions. However, if N ⩾ mp, this is no longer the case and the natural way of measuring
by how much the functions deviate from continuity is by means of capacity.

In this paper we will work with the Bessel capacity defined for instance in [13, Chap-
ter 2.6]. If K ⊂ RN is any set, then we define the (m, p)−capacity of K by

Capm,p(K) := inf
{
∥f∥pp

∣∣ f ≥ 0 and gm ∗ f ⩾ 1 on K
}
,(2.1)
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where gm with m ≥ 1 is the Bessel kernel, defined as being the function whose Fourier
transform is ĝα(x) = (2π)−N/2(1+|x|2)−m/2. We refer to [13, Chapter 2.6] for more details
and several basic properties of the Bessel Capacity.

In this paper, while considering a function u ∈ W 1,p(RN), we will always tacitly
mean that u is a quasicontinuous representative, without mentioning it explicitly (see
for instance [1] for a definition).

The proof of the main result will use the following Poincaré type inequality that can
be found for instance in [13, Corollary 4.5.2, page 195]. To be more precise, we can use
the inequality stated for B(0, 1) in [13, Corollary 4.5.2, page 195], and apply it to the
function x 7−→ u(Rx) to get (2.2). A similar statement can also be found in [9, Theorem
4.1]. According to [9], Lemma 2.1 was first proved in [8] by Hedberg in 1978.

Lemma 2.1. — [13, Corollary 4.5.2, page 195] Let r > 0, p ∈ (1,+∞) and u ∈
W 1,p(B(0, r)). We define Z(u) := {x ∈ B(0, r) | u(x) = 0}. If Cap1,p(Z(u)) > 0,
then ∫

B(0,r)

|u|p dx ⩽ C
rp

Cap1,p(r
−1Z(u))

∫
B(0,r)

|∇u|p dx,(2.2)

where C > 0 depends only on p and N .

3. Proof of Theorem 1.1

Proof of Theorem 1.1. — Let Ω be a bounded domain satisfying the assumptions of The-
orem 1.1 and let u ∈ Wm,p(RN) be given satisfying u = 0 almost everywhere in Ω

c. To
prove the theorem it suffice to prove that u can be approximated in the Wm,p(RN) norm
by a sequence of functions in C ∞

c (Ω). To do so we will first truncate u near the boundary
of Ω as follows. For all n ∈ N, we consider

Kn :=
{
x ∈ Ω

∣∣ d(x, ∂Ω) ⩾ 2−n
}
.

The exhaustive family of compact (Kn)n∈N satisfies Kn ⊆ Kn+1 and Ω =
⋃

n∈N Kn. Then
take a test function ρ ∈ C ∞

c (B(0, 1)) such that ρ ⩾ 0 and∫
RN

ρ(x)dx = 1.

We define ρε(x) := ε−Nρ(x/ε) and

θn,ε(x) := 1Kn ∗ ρε(x) = ε−N

∫
Kn

ρ

(
x− y

ε

)
dy,

which satisfies Supp (θn,ε) ⊆ Kn+B(0, ε). We take εn := 2n+1 and denote now θn := θn,εn
so that θn ∈ C ∞

c (Ω), θn = 1 on Kn−1, θn = 0 on Kc
n+1,

Supp (∇kθn) ⊆ Kn+1 \ Int(Kn−1).
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To prove the theorem it suffices to prove that

un := uθn −−−−−→
n−→+∞

u in Wm,p(RN),

because then we can conclude by using the density of C ∞
c (Ω) into Wm,p(Int(Kn+2)), and a

diagonal argument. Let k ⩽ m be a positive integer. To prove the claim we first estimate
the Lp norm :

∥un − u∥p
Lp(RN )

⩽
∫
Ω\Kn−1

|u|p dx.

Using the fact that (Ω\Kn)n∈N is a decreasing sequence of Lebesgue measurable sets, and
thanks to the condition |Ω \ Ω| = 0, we know that |Ω\Kn| −→ 0 as n −→ +∞ and
therefore un −→ u in Lp(RN).

Next for the norm of gradients we will use a covering of ∂Ω. More precisely, the infinite
family (B(x, 2−(n−2)))x∈∂Ω is a cover of Supp (∇kθn) and by the famous 5B -covering
lemma (see for instance [2, Theorem 2.2.3]) there exists a countably subcover indexed
by (xi)i∈N ⊆ ∂Ω such that (B(xi, 2

−(n−2)))i∈N is a disjoint family,

Supp (∇kθn) ⊆
⋃
i∈N

B(xi, 5 · 2−(n−2)), and
∑
i∈N

1B(xi,5·2−(n−2)) ⩽ N0,

for a universal constant N0 ∈ N. In the sequel, we simply write Bn(xi) instead of
B(xi, 5 · 2−(n−2)). Afterwards, we estimate

∥∇kun −∇ku∥p
Lp(RN )

⩽ C

∫
Ω\Kn−1

|∇ku|p dx+ C
∑

k=|β|+|γ|
γ ̸=0

∫
Ω\Kn−1

|∂βu|p|∂γθn|p dx.

The first term converges to 0 as n −→ +∞ for the same reasons as before. For the other
term we use the following estimate

|∂γθn(x)|p ⩽ ε−pN
n

∫
Kn

ε−p|γ|
n

∣∣∣∣∂γρ

(
x− y

εn

)∣∣∣∣p dy ⩽ Cε−p|γ|
n .

The function u vanishes almost everywhere on the open set Ω
c, so ∂βu is zero in D ′(Ω

c
)

and vanishes almost everywhere on this open set. Hence the Poincaré inequality (2.2)
applies to all the ∂βu for |β| < m, and for all ball Bn(xi) such that 2−(n−2) ⩽ r0, thanks
to our capacitary condition (1.1) we get

Cap1,p(5
−1 · 2n−2(Z(∂βu)− xi)) ⩾ Cap1,p(5

−1 · 2n−2(Ω
c ∩B(xi, 5 · 22−n)− xi)) ⩾ δ0.

Therefore, ∫
Bn(xi)

|∂βu|p dx ⩽ Cδ−1
0 εpn

∫
Bn(xi)

|∇∂βu|p dx,(3.1)
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and using successively (k − |β|)−times the Poincaré inequality and the covering of ∂Ω,
we get ∫

Ω\Kn−1

|∂βu|p|∂γθn|p dx ⩽ Cε−p|γ|
n

∫
Ω\Kn−1

|∂βu|p dx

⩽ Cε−p|γ|
n

∑
i∈N

∫
Bn(xi)

|∂βu|p dx

⩽ C
∑
i∈N

∫
Bn(xi)

|∇ku|p dx

⩽ CN0

∫
Ω\Kn−5

|∇ku|p dx

and this tends to zero as n −→ +∞ so follows the proof.

4. Equivalent condition with condencer capacity

In this section we give an equivalent condition to (1.1) with the notion of “condenser
capacity” which allows us to compare it with the condition in [5]. More precisely, in [5]
the condition involves the condenser capacity defined for any compact subset K ⊂ RN

and p ∈ (1,+∞) by

Cap1,p(K ∩B(x, r), B(x, 2r)) :=

inf

{∫
B(x,2r)

|∇φ|p dx | φ ∈ C∞
0 (B(x, 2r)), φ ≥ 1 on K ∩B(x, r)

}
.

This notion can then be extended to arbitrary sets K by approximation (see for instance
[1, Definition 2.2.4]). The difference with the Bessel capacity defined in (2.1) can be
seen through the following well known equivalent definition of Bessel Capacity (See for
instance [9, Section 2]), for a closed set K,

Cap1,p(K) = inf

{∫
RN

|φ|p + |∇φ|p dx | φ ∈ C∞
0 (RN), φ ≥ 1 on K

}
.

The next proposition says in particular that our condition implies the one in [5].

Proposition 4.1. — Let Ω ⊂ RN be open. Then the condition

∃δ0, r1 > 0 s.t. ∀x ∈ ∂Ω, ∀r ≤ r1, Cap1,p

(
1

r

(
Ω

c ∩B(x, r)− x
))

⩾ δ0,(4.1)

is equivalent to the following one

∃δ0, r1 > 0 s.t. ∀x ∈ ∂Ω,∀r ≤ r1,
Cap1,p(Ω

c ∩B(x, r), B(x, 2r))

Cap1,p(B(x, r), B(x, 2r))
⩾ δ0.(4.2)

Proof. — The condenser capacity enjoys a nice scaling property. Assume for simplicity
and without loss of generality, that x = 0. It is easy to prove by a simple change of
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variables that for all λ > 0,

Cap1,p((λK) ∩B(0, λr), B(0, 2λr)) = λN−pCap1,p(K ∩B(0, r), B(0, 2r)).(4.3)

In particular,
Cap1,p(B(0, r), B(0, 2r)) = C0r

N−p,

with C0 := Cap1,p(B(0, 1), B(0, 2)), and it follows that

Cap1,p(Ω
c ∩B(0, r), B(0, 2r))

Cap1,p(B(0, r), B(0, 2r))
=

rN−pCap1,p

(
(1
r
Ω

c
) ∩B(0, 1), B(0, 2)

)
Cap1,p(B(0, r), B(0, 2r))

.

=
1

C0

Cap1,p

(
(
1

r
Ω

c
) ∩B(0, 1), B(0, 2)

)
.

Therefore, to prove the Proposition it suffices to prove that there exist some constants
C1, C2 > 0 such that for all sets K ⊂ B(0, 1),

C1Cap1,p(K) ≤ Cap1,p (K ∩B(0, 1), B(0, 2)) ≤ C2Cap1,p(K).

But this is a well known fact about relative capacity. A proof can be found for instance
in [10, Proposition 3.3.17].

Remark 4.1. — Of course arguing as in the proof of Proposition 4.1 we can also prove
that the condition in [5],

∃δ0, r1 > 0 s.t. ∀x ∈ ∂Ω,∀r ≤ r1,
Cap1,p(Ω

c ∩B(x, r), B(x, 2r))

Cap1,p(B(x, r), B(x, 2r))
⩾ δ0,(4.4)

is equivalent to the following one

∃δ0, r1 > 0 s.t. ∀x ∈ ∂Ω,∀r ≤ r1, Cap1,p

(
1

r
(Ωc ∩B(x, r)− x)

)
⩾ δ0.(4.5)

5. Examples of domains satisfying our condition

As we said in the introduction, any smooth enough domain will satisfy our condition.
For instance domains satisfying an external corkscrew condition as defined below.

Definition 5.1. — Let Ω ⊂ RN be an open and bounded set, a ∈ (0, 1), and r0 > 0.
We say that Ω satisfies an (a, r0)−external corkscrew condition if for every x ∈ ∂Ω and
r ⩽ r0, one can find a ball B(y, ar) such that

B(y, ar) ⊂ B(x, r) ∩ Ω
c
.

We give a non-exhaustive list of class of domains includes in O(D) :

— Oconvex(D) := {Ω ⊆ D | Ω open and convex}.
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— Or0
seg(D) := {Ω ⊆ D | Ω open and has the r0−external segment property}. We say

Ω satisfies the r0−external segment property if for every x ∈ ∂Ω, there exists a
vector yx ∈ SN−1(0, r0) such that x + tyx ∈ Ωc for t ∈ (0, 1). This notion can also
be generalized by the “flat cone” condition as in [5, Definition 5.2] (see also [3]).

— Oλ
Lip(D) := {Ω ⊆ D | Ω open and is a Lipschitz domain}.

— Oδ0,r0
Reif flat(D) := {Ω ⊆ D | Ω open and is (ε0, δ0)− Reifenberg flat}. We say Ω is

(ε0, δ0) − Reifenberg flat for ε0 ∈ (0, 1/2) and δ0 ∈ (0, 1) if for all x ∈ ∂Ω and
δ ∈ (0, δ0], there exists an hyperplan Px(δ) of RN such that x ∈ Px(δ) and

dH
(
∂Ω ∩B(x, δ),Px(δ) ∩B(x, δ)

)
⩽ δε0.

Moreover for all x ∈ ∂Ω, the set

B(x, δ0) ∩
{
x ∈ RN

∣∣ d(x,Px(δ0)) ⩾ 2δ0ε0
}

has two connected components: one is contained in Ω, the other one in RN\Ω.

— Oε
cone(D) := {Ω ⊆ D | Ω open and has the external ε− cone condition}. We say Ω

has the external ε−cone condition if there exists a cone C of angle ε such that for
every x ∈ ∂Ω, there exists a cone Cx with non empty interior, congruent to C by
rigid motion and such that x is the vertex of Cx and Cx ⊂ Ωc.

— Oa,r0
corks(D) := {Ω ⊆ D | Ω open and has the (a, r0)−external corkscrew condition},

see Definition 5.1.

— Oδ0,r0
cap (D) := {Ω ⊆ D | Ω open and has the (δ0, r0)−capacity condition (1.1)}.

It is easy to see that for some fixed parameters we have the inclusions

Oε
cone(D) ⊆ Oa,r0

corks(D),

and
Oconvex(D) ⊆ Oλ

Lip(D) ⊆ Oδ0,r0
Reif flat(D) ⊆ Oa,r1

corks(D) ⊆ Oδ1,r2
cap (D).

Since a segment has positive (1, p)-Capacity provided p > N−1 (see [6, Proposition 2.5])
we have

Or0
seg(D) ⊆ Oδ0,r1

cap (D) for p > N − 1.

Any C1 domain or Lipschitz domain satisfies an external corkscrew condition. It also
follows from porosity estimates that the crokscrew condition implies |Ω\Ω| = 0, as stated
in the following useful proposition.

Proposition 5.1. — If Ω ∈ Oa,r0
corks(D), then |∂Ω| = 0.
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Proof. — For all x ∈ ∂Ω and r ⩽ r0, there exists y ∈ RN such that

B(y, ar) ⊂ B(x, r) ∩ Ω
c ⊂ RN\∂Ω.

In other words, ∂Ω is a σ−porous set in RN , in the sense of [12, Definition 2.22], with
σ = 2a. In virtue of [12] (see the last paragraph at the bottom of page 321 in [12], or see
also [11, Proposition 3.5]), we conclude that |∂Ω| = 0.

Corollary 5.1. — If Ω belongs to one of the following classes : Oε
cone(D), Oconvex(D),

Oλ
Lip(D), Oδ0,r0

Reif flat(D), or Oa,r0
corks(D), then Ω is (m, p)−stable for any m ⩾ 1 and 1 < p <

+∞.

6. Stability with respect to domain perturbation

As before, we consider a fixed bounded domain D ⊂ RN . Let Ω and (Ωn)n∈N be
bounded subdomains of D such that Ωn −→ Ω and D\Ω −→ D\Ω as n −→ +∞ for
the Hausdorff convergence. In particular, this implies the convergence “in the sense of
compacts” (see [10, Section 2.2.4]). In this section we verify that the (m, 2)−stability of
Ω implies the Mosco convergence of the sequence (Hm

0 (Ωn))n∈N towards Hm
0 (Ω). This

will follow from the same argument as for the classical case of H1
0 (see for instance

[10, Proposition 3.5.4]), but for the sake of completeness we give here the full details.
For this purpose, we first prove the equivalence between γm−convergence and Mosco
convergence (Proposition 6.1). Then we show that (Ωn)n∈N γm−converges to Ω when Ω

is (m, 2)−stable (Proposition 6.3).

Definition 6.1. — The sequence (Ωn)n∈N γm−converges to Ω if for all f ∈ H−m(D),
the sequence (un)n∈N strongly converges in Hm

0 (D) to u, where un (resp. u) is the unique
solution of the Dirichlet problem (−∆)mun = f (resp. (−∆)mu = f) in Hm

0 (Ωn) (resp.
Hm

0 (Ω)).

Definition 6.2. — The sequence (Hm
0 (Ωn))n∈N converges to Hm

0 (Ω) in the sense of
Mosco if the following holds :

1. If (vnk
)k∈N is a subsequence, where vnk

∈ Hm
0 (Ωnk

), and weakly converges to v ∈
Hm

0 (D), then v ∈ Hm
0 (Ω).

2. For all v ∈ Hm
0 (Ω), there exists a sequence (vn)n∈N, where vn ∈ Hm

0 (Ωn), which
strongly converges to v in Hm

0 (D).

Proposition 6.1. — The sequence (Ωn)n∈N γm-converges to Ω if, and only if,
(Hm

0 (Ωn))n∈N converges to Hm
0 (Ω) in the sense of Mosco.
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Proof. — Assume that the sequence (Ωn)n∈N γm-converge to Ω. Let (vnk
)k∈N be a sub-

sequence which weakly converges to v ∈ Hm
0 (D), where vnk

∈ Hm
0 (Ωnk

). Consider the
distribution f := (−∆)mv. Then f ∈ H−m(D) and v is the unique solution of the Dirich-
let problem in H1

0 (D). To prove the first item in the definition of Mosco convergence we
need to prove that v ∈ H1

0 (Ω).
The γm−convergence implies that (unk

)k∈N strongly converges in Hm
0 (D) to u ∈ Hm

0 (Ω)

where unk
satisfies (−∆)munk

= f in Ωnk
and u satisfies (−∆)mu = f in H1

0 (Ω). So it
suffices to show that u = v. For all k ∈ N,∫

D

∇munk
: ∇m(unk

− vnk
) dx =

∫
Ωnk

∇munk
: ∇m(unk

− vnk
) dx

= ⟨f, (unk
− vnk

)⟩.

Then as k −→ +∞, we use the strong convergence of (unk
)k∈N and the weak convergence

of (vnk
)k∈N to obtain ∫

D

∇mu : ∇m(u− v) dx = ⟨f, (u− v)⟩.

Then according to equality f := (−∆)mv, we have∫
D

|∇m(u− v)|2dx =

∫
D

∇m(u− v) : ∇mu dx−
∫
D

∇m(u− v) : ∇mv dx

= ⟨f, (u− v)⟩ − ⟨f, (u− v)⟩ = 0,

thus u = v and the first point of Mosco convergence follows.
The proof of the second item of the Mosco convergence is simpler. Consider v ∈

Hm
0 (Ω) ⊆ Hm

0 (D) and let f := (−∆)mv. We need to find a recovery sequence un ∈
Hm

0 (Ωn) that converges strongly to v. It suffice to define un being the solution of
−∆un = f in H1

0 (Ωn). By γm−convergence we directly have un → v strongly in Hm(D).
Now we prove the converse. Namely, we suppose that (Hm

0 (Ωn))n∈N converges in the
sense of Mosco to Hm

0 (Ω). Then we want to prove the γm−convergence. Consider
f ∈ H−m(D) and the associated solutions un of the Dirichlet problem in Ωn. For all
n ∈ N, ∫

D

|∇mun|2dx =

∫
Ωn

∇mun : ∇mun dx = ⟨f, un⟩.

We infer that the sequence (un)n∈N is bounded in Hm
0 (D) since

|⟨f, un⟩| ⩽ ∥f∥H−m(D)∥un∥Hm
0 (D).

Let (unk
)k∈N be a subsequence which weakly converges to a function v ∈ Hm

0 (D). Using
the Mosco convergence, v ∈ Hm

0 (Ω) and for all φ ∈ Hm
0 (Ω), there exists a sequence



14 JEAN-FRANÇOIS GROSJEAN, ANTOINE LEMENANT AND RÉMY MOUGENOT

(φk)k∈N, with φk ∈ Hm
0 (Ωnk

), strongly converging to φ in Hm
0 (D). Hence, for all k ∈ N,∫

D

∇munk
: ∇mφk dx =

∫
Ωnk

∇munk
: ∇mφk dx = ⟨f, φk⟩,

and using the strong convergence of (φk)k∈N and the weak convergence of (unk
)n∈N as

k −→ +∞, we obtain ∫
Ω

∇mv : ∇mφ dx = ⟨f, φ⟩.

The uniqueness of the solution of the Dirichlet problem proves u = v. Moreover,∫
D

|∇munk
|2dx = ⟨f, unk

⟩

and

⟨f, unk
⟩ −−−−→

k→+∞
⟨f, u⟩ =

∫
D

|∇mu|2dx.

This yields

∥unk
∥Hm

0 (D) −−−−→
k→+∞

∥u∥Hm
0 (D),

and the convergence of the subsequence is strong. By uniqueness of the limit, the whole
sequence is strongly converging to u in Hm

0 (D), and this achieves the proof of the γm-
convergence, so follows the Proposition.

Definition 6.3. — For two closed sets A,B ⊂ RN , the Hausdorff distance dH(A,B) is
defined by

dH(A,B) := max
x∈A

dist(x,B) + max
x∈B

dist(x,A).

A sequence of closed sets (An)n∈N converges to A for the Hausdorff distance if
dH(An, A) −→ 0 as n −→ +∞. In this case, we will write An

dH−→ A.

Next, we define the complementary Hausdorff distance over O(D) by

dHc(Ω1,Ω2) := dH(D\Ω1, D\Ω2),

and one can show that the topolgy induced on O(D) is compact. In the sequel we will
use the following well known result.

Proposition 6.2. — If (Ωn)n∈N is a sequence in O(D) such that Ωn
dHc−→ Ω ∈ O(D),

then for any compact set K ⊂ Ω there exists n0 ∈ N depending on K such that K ⊂ Ωn

for all n ⩾ n0.
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Proof. — Since K is compact and Ω is open, we know that

inf
x∈K

dist(x,Ωc) =: a > 0.

By Hausdorff convergence of the complements, there exists n0(a) ∈ N such that for all
n ⩾ n0(a),

Ωc
n ⊂ {y ∈ RN | dist(y,Ωc) < a/2}.

We deduce from the triangle inequality that infx∈K dist(x,Ωc
n) > 0 for n large enough and

in particular K ⊂ Ωn.

We are now ready to state the following result that will directly imply Corollary 1.1
stated in the introduction.

Proposition 6.3. — Let (Ωn)n∈N be a sequence in O(D) such that Ωn
dH−→ Ω and

Ωn
dHc−→ Ω where Ω ∈ O(D). If Ω is (m, 2)−stable, then the sequence (Ωn)n∈N

γm−converges to Ω or equivalently, (Hm
0 (Ωn))n∈N converges to Hm

0 (Ω) in the sense of
Mosco.

Proof of Proposition 6.3. — Under the assumptions of the Proposition we will prove the
γm−convergence. Consider then f ∈ H−m(D). We know that the sequence (un)n∈N of
solutions to the Dirichlet problem associated with f in Hm

0 (Ωn), is bounded in Hm
0 (D).

Therefore there exists a subsequence (unk
)k∈N that weakly converges to a function v ∈

Hm
0 (D). Let φ ∈ C ∞

c (Ω) be a test function. By complementary Hausdorff convergence,
there exists an integer k0 ∈ N such that for all k ⩾ k0,

Supp(φ) ⊆ Ωnk
.

Thus, for all k ⩾ k0, ∫
Ωnk

∇munk
: ∇mφ dx = ⟨f, φ⟩,

and by weak convergence of (unk
)k⩾k0 in Hm

0 (D),∫
Ω

∇mv : ∇mφ dx = ⟨f, φ⟩.(6.1)

Let us now prove that v ∈ Hm
0 (Ω). Up to a subsequence, we can assume that (unk

)k∈N
converges almost everywhere to v. The functions unk

vanishes (m, 2)−quasi everywhere on
Ω

c

nk
so almost everywhere. By Hausdorff convergence of the adherence we know that for

all compact K ⊂ Ω
c then K ⊂ Ω

c

n for n large enough thus finaly v = 0 almost everywhere
in Ω

c. Using the definition of (m, 2)−stability, we conclude that v ∈ Hm
0 (Ω). Therefore

v = u, the unique solution to the Dirichlet problem associated to f in Hm
0 (Ω).
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To conclude the proof it remains to show the strong convergence in Hm
0 (D). By density

the equality (6.1) stays true for φ ∈ Hm
0 (Ω). In particular for φ = v we get∫

Ω

|∇mv|2 dx = ⟨f, v⟩.

On the other hand by weak convergence we have∫
Ωnk

|∇munk
|2 dx = ⟨f, unk

⟩ −−−−→
k→+∞

⟨f, v⟩.

In other words ∥∇munk
∥L2(D) → ∥∇mv∥L2(D) which together with the weak convergence,

proves the strong convergence of unk
to v in Hm(D). At the end, from the uniqueness of

the possible limit we infer that the whole sequence converges to v, not only a subsequence.
This achieves the proof of γm-convergence.

7. Proof of Theorem 1.2

In this section we give a proof of Theorem 1.2 stated in the introduction.

Proof of Theorem 1.2. — Let Ω,Ωn ⊂ D be bounded domains as in the statement of
Theorem 1.2 that satisfies

Ωn
dHc−→ Ω,

and such that (1.1) holds true for all Ωn with the same δ0 > 0 and r0 > 0. We want to
prove that Ωn γm−converges to Ω. To this aim we start with a similar argument as in
the proof of Proposition 6.3. Consider f ∈ H−m(D). We know that the sequence (un)n∈N
of the solutions to the Dirichlet problem associated to f in Ωn is bounded in Hm

0 (D).
There exists a subsequence (unk

)k∈N which weakly converges to a function v ∈ Hm
0 (D).

Let φ ∈ C ∞
c (Ω) be test function. By complementary Hausdorff convergence, there exists

an integer k0 ∈ N such that for all k ⩾ k0,

Supp(φ) ⊆ Ωnk
.

Thus, for all k ⩾ k0,∫
Ω

∇munk
: ∇mφ dx =

∫
Ωnk

∇munk
: ∇mφ dx = ⟨f, φ⟩

and by weak convergence of (unk
)k⩾k0 in Hm

0 (D),∫
Ω

∇mv : ∇mφ dx =

∫
Ω

fφ dx.

Now argument as in the proof of Proposition 6.3, in order to conclude it suffices to prove
that v ∈ Hm

0 (Ω). In particular, the strong convergence would then follow by use of the
same argument as in the proof of Proposition 6.3.
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Thus let us prove that v ∈ Hm
0 (Ω). Since Ω satisfies the (δ0, r0)−capacitary condition

we know from Theorem 1.1 that Ω is a (m, 2)−stable domain. Thus we are left to prove
that v = 0 a.e. in Ω

c. From here the proof differs from the one of Proposition 6.3 because
we do not know anymore that Ωn

dH−→ Ω. Instead, we shall benefit from the fact that
(1.1) holds true for the whole sequence Ωn and we will use a construction similar to the
one used in the proof of Theorem 1.1, but on the functions un. From now on we will
simply denote by n instead of nk for the subsequence un → v in Hm(D) as n −→ +∞.
Let K ⊂ Ω

c be an arbitrary compact set and let ε > 0 be given. Our goal is to prove
that v = 0 a.e. on K. For a general closed set F ⊂ RN and λ > 0 we denote by (F )λ the
λ−enlargement of F , namely,

Fλ :=
{
x ∈ RN

∣∣ dist(x, F ) ⩽ λ
}
.

By the Hausdorff convergence of Ωc
n to Ωc we know that there exists n0(ε) ∈ N such that

for all n ⩾ n0(ε),
Ωc ⊂ (Ωc

n)ε, and Ωc
n ⊂ (Ωc)ε.

From the above we deduce that

K ⊂ Ωc ⊂ (Ωc
n)ε ⊂ (Ωc)2ε.(7.1)

Next, we want to construct a test function in C ∞
c (Ωn) which is very close to un in L2 and

equal to 0 on K. Let us consider the following subset of Ωn,

An,ε := {x ∈ Ωn | d(x,Ωc
n) ⩾ 10ε} ,

and the function
wn,ε := un1An,ε .

The main point being that wn,ε = 0 in (Ωc
n)ε and in virtue of (7.1) we deduce that

wn,ε = 0 on K. Now we estimate the difference wn,ε − un in L2(RN) using a covering of
∂Ωn. More precisely, the infinite family (B(x, 20ε))x∈∂Ωn is a cover of Ωn \ An,ε and by
the 5B -covering Lemma there exists a countably subcover indexed by (xi)i∈N ⊂ ∂Ω such
that (B(xi, 20ε))i∈N is a disjoint family,

Ωn \ An,ε ⊂
⋃
i∈N

B(xi, 100ε), and
∑
i∈N

1B(xi,100ε) ⩽ N0,

for a universal constant N0 ∈ N. Then we can estimate,∫
D

|wn,ε − un|2 dx ⩽
∫
Ωn\An,ε

|un|2 dx.

The functions ∂βun vanishes almost everywhere on the open set Ωn
c, so thanks to our

capacitary condition (1.1) we have for ε small enough

(100ε)−(N−p)Cap1,2(Z(∂
βun)) ⩾ Cε−(N−p)Cap1,2(Ωn

c ∩B(0, 100ε)) ⩾ Cδ0.
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Therefore, the Poincaré inequality (2.2) applied to ∂βun in all ball B(xi, 100ε) gives∫
B(xi,100ε)

|∂βun|2 dx ⩽ Cδ−1
0 ε2

∫
B(xi,100ε)

|∇∂βun|2 dx.(7.2)

We deduce that ∫
Ωn\An,ε

|un|2 dx ⩽
∑
i∈N

∫
B(xi,100ε)

|un|2 dx

⩽ C
∑
i∈N

ε2m
∫
B(xi,100ε)

|∇mun|2 dx

⩽ CN0ε
2m

∫
D

|∇mun|2 dx

⩽ Cε2,

since the sequence un is uniformly bounded in H1(D). In conclusion we have proved the
following : for each ε > 0, we have n0(ε) ∈ N such that for all n ⩾ n0(ε), there exists
wn,ε ∈ L2(D) such that ∥wn,ε − un∥L2 ⩽ Cε and wn,ε = 0 on K. Now for n sufficiently
large let ε = 2−n and let wn := wn0(2−n),2−n . We can assume that n0(2

−n) → +∞. The
function wn converges to v in L2 because un converges to v in L2, and wn = 0 on K for
all n ∈ N. Therefore, up to a subsequence, wn converges a.e. on K and this shows that
u = 0 a.e. on K. Since K is arbitrary, this shows that v = 0 a.e. on Ω

c, hence u ∈ Hm
0 (Ω)

because Ω is (m, 2)−stable. This achieves the proof.

8. Existence for shape optimisation problems under geometrical constraints

Let D ⊂ RN be a fixed bounded open set and let OD := {Ω ⊆ D | Ω is open} denote all
open subsets of D. For a shape functional F : OD −→ R+, it is a natural question to ask
if there exists extremal points. In order to answer this question, we introduce a subfamily
of OD which is compact for the γm−convergence and satisfies the capacitary condition
(1.1). If F is lower semi-continuous for the γm−convergence, then we use Theorem 1.2 to
conclude.
Proposition 8.1. — Any class of the following list is compact for the complementary
Hausdorff convergence : Oconvex(D), Oε

cone(D), Oa,r0
corks(D).

Proof. — 1. Case O = Oconvex(D),Oε
cone(D). The proof can be founded in [4, Propo-

sition 5.1.1, page 126].

2. Case O = Oa,r0
corks(D). Suppose (Ωn)n∈N is sequence of (a, r0)−corkscrew domains

which converges to an open set Ω ⊂ D. Let x ∈ ∂Ω and r ⩽ r0. By Hausdorff
complementary convergence properties, there exists a sequence (xn)n∈N such that
xn ∈ ∂Ωn and xn −→ x as n −→ +∞. By corkscrew conditions, one finds
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B(yn, ar) ⊂ Ω
c

n ∩B(xn, r) with, up to a subsequence, yn −→ y as n −→ +∞. First
of all, it is obvious that B(y, ar) ⊂ B(x, r), it remains to prove that B(y, ar) ⊂ Ω

c.
Let ε > 0, from the enlargement characterisation of Hausdorff convergence, there
exists N(ε) ∈ N such that for every n ⩾ N(ε), D\Ωn ⊂ (D\Ω)ε where

(D\Ω)ε :=
{
x ∈ RN

∣∣ dist(x,D\Ω) ⩽ ε
}
.

Thus B(yn, ar) ⊂ (D\Ω)ε and passing to the limit as n → +∞, then taking the
intersection in ε, we get

B(y, ar) ⊂
⋂
ε>0

(D\Ω)ε = D\Ω.

The ball B(y, ar) is open so we conclude B(y, ar) ⊂ Ω
c ∩B(x, r).

Proposition 8.2. — Any class of the following list is compact for the γm−convergence:
Oconvex(D), Oε

cone(D), Oa,r0
corks(D).

Proof. — Let O be one of the class of domains listed above and let (Ωn)n∈N be a sequence
in O. Because of the compactness of the complementary Hausdorff convergence in O(D),
there exists a subsequence (Ωn)n∈N denoted by the same indices which dHc−converges to
Ω ∈ O(D). Using Theorem 1.2 and Proposition 5.1, it is sufficient to prove that Ω ∈ O,
i.e. O is closed for dHc−convergence. Proposition 8.1 concludes the proof.

Theorem 8.1. — Let O be a γm−compact class of subset listed in Proposition 8.2. Let
F : O −→ R be a lower semi-continuous functional for the γm−convergence. There exists
Ω ∈ O such that

F (Ω) = inf {F (ω) | ω ∈ O} .

Proof. — Let (Ωn)n∈N be a minimising sequence in O, i.e. F (Ωn) converges to
inf {F (ω) | ω ∈ O} as n −→ +∞. Using Proposition 8.2, up to a subsequence there
exists an open set Ω ∈ O such that

Ωn
γm−−−−−→

n−→+∞
Ω.

Then by lower semi-continuity of the functional we get

F (Ω) ⩽ lim inf
n→+∞

F (Ωn) = inf {F (ω) | ω ∈ O} ,

which finishes the proof.
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