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AN ELEMENTARY RECTIFIABILITY LEMMA AND SOME

APPLICATIONS

CAMILLO DE LELLIS AND IAN FLESCHLER

Abstract. We generalize a classical theorem of Besicovitch, showing that, for any positive
integers k < n, if E ⊂ R

n is a Souslin set which is not H
k-σ-finite, then E contains a

purely unrectifiable closed set F with 0 < H
k(F ) < ∞. Therefore, if E ⊂ R

n is a Souslin
set with the property that every closed subset with finite H

k measure is k-rectifiable, then
E is k-rectifiable. We also point out that this theorem holds in a suitable class of metric
spaces. Our interest is motivated by recent studies of the structure of the singular sets of
several objects in geometric analysis and we explain the usefulness of our lemma with some
examples.

1. Introduction

The purpose of this note is to show the following lemma in geometric measure theory and
to show some interesting applications of it. As usual Hs denotes the Hausdorff s-dimensional
measure, while for the definition of Souslin sets (also called analytic sets) we refer to [11,
Section 2.2.10].

Theorem 1.1. Let 1 ≤ k < n be two given integers. Assume E ⊂ R
n is a Souslin set which

is not Hk σ-finite. Then E contains a closed subset F such that 0 < Hk(F ) < ∞ and which
is purely k-unrectifiable, namely Hk(F ∩ Γ) = 0 for every Lipschitz k-dimensional graph Γ.

In our proof the set F is the support of a nontrivial Frostman measure µ, namely a non-
negative Radon measure µ with the property that

µ(Br(x)) ≤ rk for every x and every r. (1)

As a simple corollary we then get the following

Corollary 1.2. Let 1 ≤ k < n be two given integers. Assume E ⊂ R
n is a Souslin subset

and assume that any nonnegative Radon measure satisfying (1), supported in E, and with
lim infr↓0 r−kµ(Br(x)) > 0 for µ-a.e. x is k-rectifiable (namely there is a k-rectifiable set R

and a Borel function f such that µ = fHk R). Then E is k-rectifiable.

Remark 1.3. Since any Borel set is a Souslin set, the theorem and the corollary apply to
Borel sets E.

Remark 1.4. The theorem also holds when E ⊂ (X, d) is a Souslin subset of a σ-compact
doubling metric space, i.e. a metric space for which there exists M with the property that
every ball of radius r can be covered by at most M balls of radius r/2. Since our main interest
is in the Euclidean space we will only briefly sketch how to handle this more general case.

The case n = 2 and k = 1 of Theorem 1.1 is contained in a classical work of Besicovitch,
cf. [5, Theorem 6]. However, in spite of its rather elementary nature, we have not been
able to find Theorem 1.1 in the literature, nor we have found any work asking the fairly
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2 C. DE LELLIS AND I. FLESCHLER

obvious question of whether Besicovitch’s theorem can be generalized to arbitrary dimension
and codimension.

1.1. Rectifiability questions in geometric analysis. Our interest has been partially
spurred by the groundbreaking work of Naber and Valtorta [19]. In several problems of
geometric nature, for instance in the theory of minimal surfaces, that of harmonic maps, or
that of Ricci limits, one is naturally lead to study solutions of PDEs, or minimal/critical
points of variational problems, or generalized spaces, which are not everywhere smooth, but
for which a suitable regularity theory gives upper bounds on the dimension of the singular
set (defined as the complement of all points at which the object of interest is smooth). When
the upper bound is optimal, namely it matches the dimension of the singular set for some
known examples, the next natural question is whether the singular set has some more struc-
ture. In some of the examples mentioned above, i.e. in the case of singularities of harmonic
maps and of minimal surfaces, showing even just the rectifiability of the singular set has
been surprisingly hard. In some notable cases (minimizing harmonic maps, area-minimizing
hypersurfaces, and mod-2 minimizing surfaces in any dimension and codimension) this was
achieved in pioneering works of Leon Simon in the nineties. We refer to chapter 15 of [18]
for a more detailed overview of questions on the rectifiability of singularities of solutions to
geometric variational problems.

A few years ago Naber and Valtorta introduced in [19] a rather powerful and flexible
technique to recover and improve Simon’s rectifiability results. The approach of [19] has in
fact been extended to several other situations, especially due to its flexibility (cf. for instance
[1, 2, 6, 8, 9, 10, 13, 14, 15, 21, 20]): while Simon’s proof uses quite hard PDE techniques, the
approach of Naber and Valtorta uses very little of the problem at hand, the real key point
being the availability of a monotonicity formula with some suitable structure, a property
which is common to a variety of situations in geometric analysis.

Roughly speaking the approach of [19] can be subdivided into three steps. To fix ideas we
assume that the singular set we are interested in has Hausdorff dimension k.

(i) A first general theorem, which has been independently discovered by Azzam and Tolsa
in [4], ensures the k-rectifiability of a k-dimensional measure µ under a suitable sharp
control of what in the literature is called L2 β-number. For a particular case of the
statement see Theorem 1.5 below (the version of [10] is slightly stronger, the version
we refer to was already proved combining [4] and [25]).

(ii) The sharp control needed in (i) is then achieved for every Frostman k-dimensional
measure µ which is supported in the singular set using in a careful and clever way the
monotonicity formula available for the problem.

(iii) If one knew the σ-finiteness of the singular set with respect to the Hk measure, (i) and
(ii) would then immediately imply its rectifiability. However we only know a priori
that its Hausdorff dimension is k. To overcome this difficulty, Naber and Valtorta
use quite subtle covering arguments and an approximate version of (i)-(ii) for suitably
discretized measures. An alternative approach is given in [6] through what the authors
call “neck regions”

The reason of our interest in Theorem 1.1 should now be obvious: with the latter at hand,
we can just completely bypass point (iii) in the Naber-Valtorta strategy, and conclude imme-
diately the σ-finiteness and rectifiability from (i) and (ii) at an “abstract level”. It must be
however noted that, while Theorem 1.1 is thus a useful general tool, which allows to bypass
a quite sizable and difficult argument in (iii), it does not have its exact same power. In fact,
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under certain additional assumptions, Naber and Valtorta are able to use their arguments
in step (iii) to conclude also the local Hk-finiteness of the singular set. We do not exclude
the possibility that, once we know the rectifiability through Theorem 1.1, the argument of
Naber-Valtorta for proving Hk local finiteness could be simplified and streamlined: we have
simply not tried to do it.

For completeness we end this paragraph by stating the Azzam-Naber-Tolsa-Valtorta The-
orem referenced in point (i) above.

Theorem 1.5. Let S ⊂ R
n be an Hk-measurable set with 0 < Hk(S) < ∞ and consider

µ := Hk S. Then S is k-rectifiable if and only if
ˆ 1

0
βk

2,µ(x, s)2 ds

s
< ∞ for µ-a.e. x,

where

βk
2,µ(x, s) := inf




{

r−k−2

ˆ

Br(x)
dist2(y, L) dµ(y)

)1/2

: L is a k-dim. affine space



 .

1.2. Quantitative rectifiability. We are also interested in Theorem 1.1 in the broader
context of quantitative rectifiability. In quantitative rectifiability many questions (which a
posteriori can have many fruitful applications) can be phrased in the following form:

(Q) Consider a quantity αE(x, r) which measures “how close to k-rectifiable a set E is”
(such as some form of flatness or symmetry) at the scale r around the point x. Having
fixed E consider

AαE
:=

{
x ∈ E :

ˆ 1

0
αE(x, r)2 dr

r
< ∞

}
.

Is A rectifiable? More specifically, if we knew that AαE
= E, is E rectifiable?

The idea is then to use Theorem 1.1, in appropriate situations, to reduce the question above
to the much more favorable case where E has finite Hk measure and AαE

= E.
For concreteness we will give two examples. We define the β coefficient for the Hausdorff

content as:

β̃k
2,E(x, r) := inf





(
r−k−2

ˆ

Br(x)∩E
dist2(y, L) dHk

∞(y)

)1/2

: L is a k-dim. affine space



 .

The integral above is with respect to the Hausdorff content Hk
∞, which is not a measure. In

particular we define such integral as
ˆ

A
f(x)pdHk

∞(x) :=

ˆ ∞

0
Hk

∞ ({x ∈ A|f(x) > t}) tp−1dt.

Let E be a compact set. We first remark that A
β̃k

2,E

is Borel. The coefficient β̃2,E is upper

semicontinous on (x, r) and the integral can be equivalently taken as a discrete sum over
dyadic scales. This information is enough to verify that the set is Borel since the coefficient
is a Borel measurable function of x.

Let µ be any Frostman (or k upper regular) measure supported on E. It is rather easy to
see then that:

βk
2,µ(x, r) . β̃k

2,E(x, r).
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This means that, if F ⊆ A
β̃k

2,E

is a Borel set such that µ = cHk F (for some constant c > 0)

is Frostman, then µ has finite βk
2,µ square function. In particular we can use Theorem 1.5

to say that every such subset is rectifiable. Fix now any F ⊂ A
β̃k

2,E

with finite Hausdorff

measure. A simple exercise shows that F can be written as a countable union Z ∪ ⋃i Fi,
where the Borel sets Fi enjoy the above property and Z is Hk-null. We can apply Theorem

1.1 and conclude that the answer to (Q) is positive. The coefficients β̃k
2,E were introduced by

Azzam and Schul in their work [3] on the analyst’s traveling salesman theorem in the context
of lower content regular sets. The study of the set A

β̃k
2,E

has been done in the context of

tangent points to lower content regular sets by Villa in [26]. The argument above gives that
the latter set is rectifiable even when the lower content regularity is dropped.

The second author was also interested in Theorem 1.1 due to his work on the higher
dimensional Carleson ε2 conjecture, joint with Tolsa and Villa. Let Ω+, Ω− ⊂ R

n+1 be open
and disjoint and let B(x, r) ⊂ R

n+1 be a ball. Let H ⊂ R
n+1 be a halfspace such that x ∈ ∂H.

Denote S+
H = ∂B(x, r) ∩ H and S−

H = ∂B(x, r) \ H. Define

εn(x, r) =
1

rn
inf
H

∑

i=+,−

Hn(Si
H \ Ωi).

Theorem 1.6. Let Ω+, Ω− ⊂ R
n+1 be open and disjoint and let

E :=

{
x ∈ R

n+1 :

ˆ 1

0
εn(x, r)2 dr

r
< ∞

}
.

Then E is n-rectifiable.

The strategy used in [12] is to prove that every subset of this set with finite measure is
rectifiable. In order to conclude that the whole set has σ-finite measure (and hence is n-
rectifiable) [12] uses a specific argument which still relies on Lemma 3.4. Alternatively we
can now use Theorem 1.1 and Corollary 1.2. We only need to check that Aεn is Souslin, but
indeed it is Borel. This is already remarked in [12], but we include a brief discussion here.
Indeed the coefficients εn(x, r) are upper semicontinous on (x, r) and thus, for every positive

s, the map x 7→
´ 1

s εn(x, r)2 dr
r is upper semicontinous. This is enough to check that the Aεn

is Borel.

1.3. Acknowledgments. Both authors acknowledge the support of the National Science
Foundation through the grant FRG-1854147. The second author wishes to thank Tuomas
Orponen, Pablo Shmerkin, Xavier Tolsa, and Michele Villa for some really useful conversations
about the question.

2. Geometric preliminaries

We denote by Qj the family of closed dyadic cubes of Rn with sidelength 2−j .

Definition 2.1. We say that a set E is sparse if there is a sequence of integers lj ↑ ∞ with
the following property. For every Q ∈ Qlj there is a subcube Q′ ⊂ Q with Q′ ∈ Qlj+j such
that

E ⊂
⋃

Q∈Qlj

Q′ . (2)
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For the purpose of Theorem 1.1 the latter definition would be enough and we would need
the rather standard fact that any subset of a sparse set cannot be k-rectifiable for any k ≥ 1.
In order to handle the more general case of doubling metric spaces it is however useful to
consider a version of the sparsity defined above which uses balls in place of cubes.

Definition 2.2. We say that a set E is weakly sparse if there is a sequence of real numbers
rj ↓ 0 and a universal constant N with the following property. For every ball B of radius rj

there exist at most N balls {Bl}1≤l≤N of radius 2−jrj such that

E ∩ B ⊂
⋃

1≤l≤N

Bl . (3)

Remark 2.3. Notice that if E is sparse then it is weakly sparse with N = 3n. This follows
from the fact that a ball of radius 2−j+1 can intersect 3n cubes of sidelength 2−j .

The main tool we need from this section towards Theorem 1.1 is the following proposition.

Proposition 2.4. Let k be a positive integer and (X, d) a metric space. If F ⊂ X is an
Hk-measurable set which is weakly sparse, then F is purely k-unrectifiable.

Proof of Proposition 2.4. We can reduce to the case where X is Banach space by embedding
the metric space X isometrically into some Banach space.

Suppose that F is not purely k-unrectifiable. This means there exists a Borel set B ⊂ R
k

and a Lipschitz function f : B → X such that Hk(f(B) ∩ F ) > 0. We will show that this
cannot happen. It will be enough to show this to be the case when f is a bi-Lipschitz map on
B. Indeed, a rectifiable subset of a Banach space can be covered, up to a set of Hk measure
zero, by a countable union of bi-Lipschitz images of Borel sets. We appeal to chapter 7 of
[18], page 56, for this particular characterization of rectifiable subsets of Banach spaces.

We will denote the bi-Lipschitz constant by L. We can further restrict B to an Hk-
measurable subset, such that its image via f is now contained in F . We claim that B must
be a weakly sparse subset of Rk. Let B̂ be any ball of radius (2L)−1rj.

Then f(B̂) ⊆ B where B is a ball of radius rj. This means that there exist {Bl}1≤l≤N

balls of radius 2−jrj such that

B ∩ B̂ ⊆
⋃

1≤l≤N

f−1(Bl).

There exists balls B̂l of radius L2−jrj that contain the ball f−1(Bl) ⊂ B̂l. This is indeed the
weakly sparse condition.

Now the weakly sparse condition will give us that for every x ∈ B, the lower Lebesgue
density is zero (i.e. Θk

∗(x,B) = 0). This implies that B has zero Lebesgue measure, and thus
f(B) has zero Hk measure. This completes the proof of the proposition. �

3. Generalized Hausdorff measures

In this section we collect the other tool which is needed to prove Theorem 1.1. We follow
[23] and introduce the following generalization of the Hausdorff measure Hk.

Definition 3.1. Given a continuous increasing function r 7→ h(r) with h(0) = 0 and a set E
we define

Hh
δ (E) = inf

{
∞∑

i=1

h (diam(Ci))

∣∣∣∣∣diam(Ci) ≤ δ,
∞⋃

i=1

Ci ⊇ E

}
.
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We also define Hh(E) = limδ→0 Hh
δ (E).

In particular the usual Hausdorff measure Hk amounts to the choice of h(r) = ωk

(
r
2

)k
.

We will need three key lemmas. The following is a generalization of Frostman’s lemma.

Lemma 3.2. Let r 7→ h(r) be a continuous increasing function with h(0) = 0. Given an
analytic set E such that Hh(E) > 0 there is a Radon measure µ such that µ(E) > 0 and
µ(Q) ≤ h(diam(Q)) for every dyadic cube Q.

Proof. We can use [23, Corollary 2, Section 6.2] to find an Fσ set E′ ⊂ E with Hh(E′) =
Hh(E), which in turn reduces the lemma to the case of a compact E. We can then follow the
proof of [17, Theorem 8.8]. We report it here for the reader’s convenience to highlight that,
even though the proof in [17, Theorem 8.8] is written for the case h(r) = ωs

(
r
2

)s
, namely that

of classical Hausdorff measures, it works for general h.
Without loss of generality we assume that E ⊂ [0, 1]n. We fix a positive integer m and

define the measure µm,m as

• µm,m Q = h(diam(Q))2−nmL n Q for every Q ∈ Qm such that Q ∩ E 6= ∅;
• µm,m Q = 0 otherwise.

We then define µm,l inductively with l decreasing till µm,0. Assuming that µm,l has been
defined and l > 0, we define µm,l−1 on each cube Q ∈ Ql−1 as follows:

• µm,l−1 Q = µm,l Q if µm,l(Q) ≤ h(diam(Q));
• µm,l−1 Q = h(diam(Q))(µm,l(Q))−1µm,l Q otherwise.

We then set µm := µm,0 and observe that µm,0(Rn) ≤ h(diam([0, 1]n)) = h(
√

n). In par-
ticular we can assume the existence of a subsequence, not relabeled, converging weakly∗

to some Radon measure µ. Observe that µm(Q) ≤ h(diam(Q)) for every dyadic cube
Q with diam(Q) ≥ √

n2−m. However, since Q is closed, we have the inequality µ(Q) ≥
lim supm↑∞ µm(Q), which of course cannot be used to get an upper bound on µ(Q). Rather,
for every fixed Q, consider the 3n dyadic cubes Q1, . . . , Q3n with same diameter which
have nonempty intersection with it. If we let U be the interior of

⋃
i Qi, then obviously

µm(U) ≤ 3nh(diam(Q)) whenever
√

n2−m ≤ diam(Q). On the other hand U is open and
contains Q, so we can conclude

µ(Q) ≤ µ(U) ≤ lim inf
m→∞

µm(Q) ≤ 3nh(diam(Q)) .

In particular, up to dividing by 3n, we achieve the inequality µ(Q) ≤ h(diam(Q)) for every
dyadic Q.

Next consider that µm is, by construction, supported in the union of cubes of diameter√
n2−m which intersect E, and thus in the

√
n2−m-neighborhood of E. Since E is closed, µ

is therefore supported in E. Hence, as soon as we show that µ(Rn) > 0, we are done. On the
other hand µ is supported in [0, 1]n and therefore µ(Rn) = limm µm(Rn). It thus suffices to
find a lower bound for µm(Rn). Fix m and observe that each x ∈ E is contained in a cube
Q of diameter at least

√
n2−m such that µm(Q) = h(diam(Q)) and Q ⊂ [0, 1]n. Denote it

by Qx. {Qx}x∈E is then a finite collection of dyadic cubes. So, given two different x and y
in E, either Qx ⊂ Qy, or the intersection of Qx and Qy is contained in ∂Qx. In particular
if we let C denote the family of those Qx which are maximal under inclusion, we find that
the elements of C have disjoint interiors, while they form a covering of E. Note that µm

is absolutely continuous with respect to the Lebesgue measure: though two distinct cubes
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Q, Q′ ∈ C might have nonempty intersection, the latter has zero Lebesgue measure, and hence
zero µm measure. We therefore have

∑

Q∈C

h(diam(Q)) =
∑

Q∈C

µm(Q) ≤ µm(Rn) .

However, because C is a cover of E, we find

Hh
∞(E) ≤

∑

Q∈C

h(diam(Q)) ≤ µm(Rn) .

Now, since Hh(E) > 0, we must have Hh
∞(E) > 0 as well, in particular we have found the

desired positive lower bound for µm(Rn). �

The second is a classical result for “usual” Hausdorff measures, which follows from combin-
ing [17, Theorem 8.8] with [17, Theorem 8.13].

Lemma 3.3. Assume ν is a (nontrivial) Radon measure on R
n and s > 0 a real number such

that ν(Q) ≤ (diam(Q))s for every dyadic cube Q. Then there is a closed subset F ⊂ spt (ν)
such that 0 < Hs(F ) < ∞.

The third is perhaps the most critical ingredient. In the case of a closed set E it is a
theorem of Rogers in [22], generalizing a classical one by Besicovitch in the plane, cf. [5,
Theorem 3]. The case of an analytic set is achieved combining Roger’s Theorem with [24,
Theorem 6.6], which implies that any analytic set which is not Hh σ-finite contains a compact
set which is not Hh-σ-finite (the case h(r) = rs of the latter theorem is due to Davies in [7]).

Lemma 3.4. Let r 7→ h(r) be a continuous increasing function with h(0) = 0 and let E ⊂ R
n

be an analytic set which is not Hh-σ-finite. Then there is a continuous function r 7→ g(r)
with g(0) = 0 such that E is still not Hg-σ-finite and

lim
r↓0

g(r)

h(r)
= 0 . (4)

4. Proof of Theorem 1.1

We start with a set E as in Theorem 1.1 and we apply Lemma 3.4 to find a continuous
function h such that h(0) = 0, r 7→ h(r) is increasing,

lim
r↓0

h(r)

rk
= 0 , (5)

and E is not Hh σ-finite. We next apply Lemma 3.2 to find a corresponding measure µ. We
can, without loss of generality, assume µ(Rn \ E) = 0, since we can restrict µ to E (note
that, since E is analytic, E is also universally measurable, which in particular implies that
it is µ-measurable). Since µ is a Radon measure, we can find a compact subset E′ such that
µ(E′) > 0. Without loss of generality we assume that µ is in fact supported in E′ (again, it
suffices to substitute µ with µ E′). We next prove the following lemma.

Lemma 4.1. Let h be a continuous increasing function such that (5) holds and µ a nontrivial
Radon measure such that µ(Q) ≤ h(diam(Q)) for every dyadic cube Q. For any given integer
ℓ there is nontrivial Radon measure ν with the following properties:

(a) ν(Q) ≤ (diam(Q))k for every dyadic cube Q;
(b) the support of ν is contained in the support of µ;
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(c) the support of ν is sparse.

Having Lemma 4.1 at our disposal, we find a corresponding measure ν. We can then apply
Lemma 3.3 to find a set F in the support of ν such that 0 < Hk(F ) < ∞. It follows from our
discussion so far that F is contained in the set E given at the very beginning. On the other
hand such set F must be sparse and hence, by Proposition 2.4, it is purely k-unrectifiable,
thus completing the proof of Theorem 1.1. We are thus left with proving Lemma 4.1.

Proof. We fix µ as in the statement and, without loss of generality, we assume that µ is
supported in [0, 1]n and that µ is a probability measure. We also assume, without loss of
generality, that

µ(∂Q) = 0 for every dyadic cube Q. (6)

In fact, if the condition (6) does not hold, it means that µ(F ) > 0 for some face F of ∂Q. We
can then restrict µ to the latter face, and reduce the statement to the same one in R

n−1. We
can iterate this procedure and note that however it has to stop before lowering the dimension
of the ambient space to k, since obviously the support of µ is not Hk σ-finite.

The measure ν will be constructed as weak∗ limit of an appropriate sequence νj of measures.
The latter, which will be constructed inductively from µ = ν0, will all be probability measures
satisfying the following properties.

(i) The support of νj is contained in the support of νj−1 and (6) holds with νj in place
of µ.

(ii) νj(Q) ≤ min{2j2nh(diam(Q)), C0(diam(Q))k} for all dyadic cubes Q, where the con-

stant C0 ≥ 1 is chosen so that h(r) ≤ C0rk for every r ≤ √
n.

Moreover, there will be a sequence of integers lj satisfying l1j+1 ≥ lj + j such that νj satisfies
the following additional properties:

(iii) νj(Q) = νj−1(Q) for all dyadic cubes Q ∈ Qlj .
(iv) For j ≥ 1 there is a family Fj ⊂ Qlj+j such that

(iv’) νj is supported in
⋃

Q′∈Fj
Q′;

(iv”) For each cube Q ∈ Qlj there is at most one cube Q′ ∈ Fj such that Q′ ⊂ Q.

Observe that, combining (iii) and (i) we actually know that

(iii’) νj(Q) = νj−1(Q) for all dyadic cubes Q ∈ Ql with l ≤ lj .

Moreover ν0 = µ satisfies all the requirements.
Before coming to the inductive construction of νj , let us observe that νj converges weakly∗

to some measure ν (we could in fact appeal to the weak∗ compactness of probability measures
to conclude the existence of such a limit for an appropriate subsequence, but actually by
(iii’) there is no need for such an extraction) and that such ν satisfies the requirements of
the lemma. In fact spt (ν) ⊂ spt (νj) for every j by (i), which in particular implies that
spt (ν) ⊂ spt (ν0) = spt (µ). Moreover, because of (iv), we conclude that spt (ν) is ℓ-sparse.
Observe that, because of (ii), νj([0, 1]n) = µ([0, 1]n) = 1 for every j, and in particular ν must
be a probability measure. Finally, from (ii) and (iii) we also conclude (a) after rescaling.

We now come to the construction of νj from νj−1. First we pick lj ≥ lj−1 + j so that

h(diam(Q))

(diam(Q))k
≤ 2−nj2 ∀Q ∈ Ql with l ≥ lj, (7)
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which obviously is possible because of (5). Next, select all the cubes Q ∈ Qlj for which

νj−1(Q) > 0 and call this collection G . Secondly, subdivide each cube Q into 2nj cubes
belonging to Qlj+j and select one Q′ among them so that

νj−1(Q′) ≥ 2−njνj−1(Q) .

We next define Fj to be the collection of such Q′ and and we define νj on each cube Q ∈ G

as

νj Q =
νj−1(Q)

νj−1(Q′)
νj−1 Q′ . (8)

Note that the latter gives a well defined measure because we know νj−1(∂Q) = 0 for every
dyadic cube Q.

Observe that (i), (iii), and (iv) all hold by construction. As for (ii), because of (iii’), the
inequality holds for any cube Q ∈ Ql with l ≤ lj . We thus need to show it for any cube

Q ∈ Ql with l > lj . But by construction such a cube must be contained in an element Q̄ ∈ G .

If we denote by Q̄′ the element of Fj contained in Q̄, (8) yields the inequality

νj(Q) ≤ νj−1(Q̄)

νj−1(Q̄′)
νj−1(Q) ≤ 2njνj−1(Q) .

Next, observe that, since (iii) holds for νj−1, we have

νj(Q) ≤ 2nj min{2(j−1)2nh(diam(Q)), C0(diam(Q))k}
≤ 2j2nh(diam(Q)) = min{2j2nh(diam(Q)), C0(diam(Q))k} ,

where we have used (7), which we can apply because Q ∈ Ql and l > lj . In particular this
shows the estimate (ii) for any dyadic cube, and hence completes the proof. �

Sketch of the proof of Remark 1.4. We provide a brief sketch of the modifications to be made.
The interested reader can fill the details.

First of all, any σ-compact metric space X can be written as the countable union of compact
subsets Xi of X, while if E ⊂ X is not σ-finite for the Hausdorff k-dimensional measure, then
for some i E ∩ Xi must be non σ-finite for the Hausdorff k-dimensional measure on Xi. This
shows that our statement reduces to compact metric spaces.

Lemma 3.4 can be used in the same way as before, in particular in the paper [24] the lemma
is proved in compact metric spaces.

The proofs of Lemma 4.1 and Lemma 3.2 rely on the dyadic cube structure of the Euclidean
space, which still exists on doubling metric spaces. Note that the constant N will depend
precisely on the doubling constant of the metric space.

The dyadic cube structure of doubling metric spaces has been frequently exploited in har-
monic analysis and there is much literature on the topic. The reader can consult for instance
[16].

We can then complete the proof using Proposition 2.4. �
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