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Abstract. We consider a non-local interaction energy over bounded densities of fixed mass

m. We prove that under certain regularity assumptions on the interaction kernel these en-

ergies admit minimizers given by characteristic functions of sets when m is sufficiently small

(or even for every m, in particular cases). We show that these assumptions are satisfied by

particular interaction kernels in power-law form, and give a certain characterization of mini-

mizing sets. Finally, following a recent result of Davies, Lim and McCann, we give sufficient

conditions on the interaction kernel so that the minimizer of the energy over probability

measures is given by Dirac masses concentrated on the vertices of a regular (N + 1)-gon of

side length 1 in RN .

1. Introduction

Given a radial, interaction kernel g ∈ L1
loc(RN ), one can consider the corresponding energy

in different classes. The first natural class is the one of the sets with finite volume, for which

the energy is given by

E(E) =

∫
E

∫
E
g(x− y) dx dy . (1.1)

A standard relaxation suggests then to consider L1 functions with values in [0, 1] (which will

be often called “densities”) in place of sets, for which the energy is

E(h) =
∫
RN

∫
RN

g(x− y)h(x)h(y) dx dy . (1.2)

A further relaxation consists in directly considering finite positive measures M+, and defining

E(µ) =
∫∫

g(x− y) dµ(x) dµ(y) . (1.3)

The corresponding minimization problems are then, for any given m > 0,

min
{
E(E) : E ⊆ RN , |E| = m

}
, (1.4)

min
{
E(h) : h ∈ L1(RN ), 0 ≤ h ≤ 1, ∥h∥1 = m

}
, (1.5)

min
{
E(µ) : µ ∈ M+(RN ), ∥µ∥M = 1

}
. (1.6)
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Of course, each problem extends the previous ones, since for any set E ⊆ RN one has

E(E) = E(χ
E
) and |E| =

∥∥χ
E

∥∥
1
, and similarly for any function h : RN → [0, 1] one has

E(h) = E(hL ) and ∥h∥1 = ∥hL ∥M, where L denotes the Lebesgue measure in RN . These

minimization problems and the relation between them – often for a specific choice of g – have

been extensively investigated by many authors, with a particular effort in the last decade;

some references are, for instance, [2, 4, 5, 9, 10, 14, 17, 18, 22]. As soon as g is lower semicon-

tinuous and g(x) → +∞ when |x| → +∞, the existence of a minimizer in (1.6) follows from

compactness arguments (see [3, 6, 24]).

Let us briefly describe some of the known results in a specific, important case, namely, for

the attractive-repulsive kernel given in the power-law form g1(x) = |x|α + 1
|x|β , where α > 0

and 0 < β < N . First of all, in [2], it was shown that a set E is a minimizer for (1.4) if and

only if its characteristic function χ
E
is a solution of (1.5). The same holds true also in a more

general setting.

If N − 2 ≤ β < N , in [7] it is shown that the optimal measures are actually L∞-functions.

Recently, in [6], the first two authors extended this result to a wide class of generic interaction

kernels, also providing an a priori bound on the L∞-norm of minimizers.

In addition, if 0 < β < N − 1, using quantitative rearrangement inequalities Frank and

Lieb proved in [18] the existence of a threshold mball ∈ (0,∞) such that the ball with volume

m is the only (up to translation) minimizer of (1.4) for m > mball. In the special case of

quadratic attraction (α = 2), Burchard, Choksi and the third author had proven the same

result in [2], by exploiting the convexity of the energy among densities h with fixed center of

mass. Consequently, Lopes used a similar argument in [22] to prove that for 2 < α ≤ 4 (and

any 0 < β < N) minimizers of (1.5) are radially symmetric and unique up to translations.

Recently, the first author extended the results of [18] and showed that when the interaction

kernel is given by g(x) = |x|α + g̃(x), for a wide class of functions g̃(x), the unique (up to

translations) minimizers of (1.5) are given by the characteristic function of balls when m is

sufficiently large (see [4]). The stability and local minimality of the ball when 0 < β < N − 1

has also been studied in [1]. On the other hand, in the small volume regime, the energy (1.4)

does not admit a minimizer for N > 2, α = 2, N − 2 ≤ β < N , and for N = 3, α > 0, β = 1,

as was shown in [2] and [17] respectively. In these cases, the minimizers of (1.5) actually

satisfy h < 1 almost everywhere.

In this paper, we are interested in generic interaction kernels which are weakly repulsive (at

the origin). This means that g(0) = 0, and g is negative for small distances and positive for

larger ones. In particular, while for strongly repulsive kernels, like g1, a measure containing

some atom has always infinite energy, for weakly repulsive kernels atomic measures have finite

energy, and hence they are possible candidates for the minimization problem (1.6). This is

not just a theoretical possibility; in fact, Carrillo, Figalli and Patacchini showed in [8] that
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global minimizers of (1.3) over probability measures are supported on finitely many points

if g(x) ≈ |x|β for some β > 2 when |x| ≪ 1. Here, writing with a small abuse of notation

g(|x|) = g(x), by “ g(x) ≈ |x|β ” we mean that g(0) = 0 and g′(t)t1−β → −C as t → 0 for

some C > 0.

An important example of a weakly repulsive kernel is given by

g2(x) =
|x|α

α
− |x|β

β
, α > β > 0 . (1.7)

Dividing by α and β clearly makes no difference, but it is convenient so that the minimal

interaction is reached at distance 1. It is possible to apply arguments by Frank and Lieb

to g2 and see that again, when m is large enough, the minimizers of (1.5) are characteristic

functions of a ball. This kind of kernel has been studied by Davies, Lim and McCann in a

series of papers ([12, 13, 21]), and they are able to precisely characterize the solutions of (1.6)

in some cases.

Theorem 1.1 (Davies–Lim–McCann, [12, 13]). Let N ≥ 2, and g = g2 be given by (1.7).

If β = 2 < α < 4, then the unique minimizer of (1.6), up to rigid motion, is given by the

uniform distribution over a sphere, that is, µ = cH N−1 ∂Br for a suitable choice of c and

r. If α ≥ 4, β ≥ 2 and (α, β) ̸= (4, 2), then the unique minimizer is given by a purely atomic

measure uniformly distributed over the vertices of the unit regular (N + 1)-gon ∆N .

The minimizers have been investigated also in dimension N = 1. In this case, the unique

minimizer is given by two equal masses at distance 1 as soon as α ≥ 3, β ≥ 2 (see [13]),

while for 2 < α < 3, β = 2 the minimizer, which is computed explicitly in [15], is absolutely

continuous and supported on an interval.

The goal of this paper is to study the question of existence of optimal sets, that is, min-

imizers of (1.4). First of all, we underline that existence should not be expected in general.

Indeed, as said above, relaxation arguments allow to deduce that a minimizing set exists if

and only if there is a function minimizing (1.5) which is a characteristic function, and this

is, of course, a peculiar situation. As a matter of fact, in all the results where existence

of optimal sets is established, as in the ones described above, the optimal sets are actually

balls, and there is not really an argument which provides existence, but rather the existence

is simply obtained as a consequence of the optimality of the balls. It is worth noting that

there are, in fact, non-local energies for which existence of optimal sets (different from balls)

is known. However, they are not of the form (1.1), but of the form

Ẽ(E) = P (E) +

∫
E

∫
E
g̃(y − x) dx dy , (1.8)

where P (E) denotes the perimeter of E and g̃ is a rather general function, the prototype

being negative powers of the distance. For energies of this form, existence of optimal sets
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has been established under different assumptions, see for instance [16, 19, 20, 23]. However,

the situation is completely different, due to the presence of the perimeter instead of a non-

local double integral. This dramatically changes the situation, because the class of sets is no

more dense, in the energy sense, in the class of L1 functions (of course, among functions, the

perimeter term has to be replaced by the total variation). Hence, it is not true that existence

of optimal sets implies that some optimal L1 function must be a characteristic function. As

a consequence, existence of optimal sets is not something to be in general unexpected, on the

contrary it usually comes as a rather standard application of compactness in BV, the only

difficulty being in excluding loss of mass at infinity.

Summarizing, up to now in the literature existence of optimal sets was either more or less

simple by standard methods, as for energies like (1.8), or it was only obtained in special cases

where the optimal sets are actually balls, for energies like (1.1). What we are able to do

in this paper is to provide a first argument ensuring the existence of optimal sets for some

weakly repulsive kernels. That is, we prove that in some cases when an optimal measure

is concentrated on a negligible set, an optimal set exists if the mass is small. Even though

the precise statement, Theorem 3.2, has rather technical assumptions, its meaning becomes

particularly evident having in mind Theorem 1.1. Indeed, when the powers ensure that the

optimal measure is uniformly distributed over the vertices of the unit, regular (N + 1)-gon

∆N , then we get existence of optimal sets for small mass, and these sets are made by N + 1

disjoint, convex subsets close to the vertices of ∆N , see Theorem 3.6. Instead, when the

powers are so that the optimal measure is uniformly distributed over a sphere, then we get

existence of optimal sets for every mass, and the solutions are always either annuli or balls,

see Theorem 3.8.

We remark that the existence of minimal sets for similar energies was also investigated,

with different techniques, by Clark in her Ph.D. thesis [11].

1.1. Plan of the paper. The plan of the paper is the following. In Section 2 we introduce

some notation and some basic results, in particular the existence of minimizers for (1.5)

and the corresponding optimality conditions, and an explicit bound on the diameter of their

support, see Proposition 2.4.

In Section 3 we prove our main results. Specifically, Theorem 3.2 provides existence of an

optimal set for small mass under some technical assumptions on g. Then, in Theorem 3.6, we

observe that this abstract result can be applied for instance in the cases when Theorem 1.1

ensures that the optimal measure is given by atoms in the vertices of ∆N . The existence

of optimal sets is true also when Theorem 1.1 says that the optimal measure is uniformly

distributed over a sphere, and this is the content of Theorem 3.8, which is valid not only for

small mass but for all m values. Finally, Theorem 3.10 gives some technical conditions under

which the minimal measures are concentrated on the vertices of ∆N . This generalizes the
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results by Davies, Lim and McCann. In this case the abstract existence result of Theorem 3.2

can be applied again to show that optimal sets exist for small mass. We highlight that the

hypotheses of this last theorem are stable with respect to small perturbations, showing that

the existence of minimizing sets is not a feature possessed only by some specific kernels.

We conclude by observing that, in the cases considered by Theorem 1.1, we prove existence

of an optimal set for small mass, and as described above existence is also known for large

mass, when the optimal set is a ball. This leaves open the question of what happens in the

intermediate volume regimes. On one side, as noted above, one should in general not expect

existence of optimal sets. But on the other side, at least for the cases when the optimal mea-

sure is uniformly distributed over a sphere, our results provide existence of optimal measures

also for intermediate masses.

2. Notation and preliminary results

This section is devoted to introduce the few notation that we use and to gather a couple of

useful results. Through this paper, g : RN → R denotes a radial, L1
loc, lower semicontinuous

function. Since g is radial, with a slight abuse of notation we will often write g(t) = g(x) for

any |x| = t. We use the letter E to denote the interaction between two densities. This means

that, given h1, h2 ∈ L1(RN ; [0, 1]), we write

E(h1, h2) =
∫
RN

∫
RN

g(x− y)h1(x)h2(y) dx dy ,

so that in particular, according to the notation (1.2), we have E(h) = E(h, h). The very

same notation is used for the case of two sets, or two measures, extending (1.1) and (1.3)

respectively. The potential of a measure µ is the function ψµ : RN → R defined as

ψµ(x) =

∫
g(x− y) dµ(y) ,

and given the density h we denote for brevity by ψh the potential of the measure hL .

The potential is very useful in computing the energy of a measure, in particular of course

E(µ) =
∫
ψµ dµ. Moreover, it naturally appears in the Euler–Lagrange conditions for the

minimization problem, thanks to the following standard result (we give a short sketch of the

proof, the formal one can be seen for instance in [7] or [2]).

Proposition 2.1. Let g ∈ L1
loc(RN ) be a function bounded from below. If f and µ are

minimizers of (1.5) and (1.6) respectively, then
ψf = λ L -a.e. in {0 < f < 1},

ψf ≥ λ L -a.e. in {f = 0},

ψf ≤ λ L -a.e. in {f = 1},

ψµ = E(µ) µ-a.e.,

ψµ ≥ E(µ) in RN \ sptµ,
(EL)

for some constant λ ∈ (−∞,+∞].
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Sketch of the proof. We concentrate only on the case of densities since it is the most relevant

one in this paper, the other case is completely similar. Given any function h : RN → [−1, 1]

with compact support and satisfying
∫
h = 0 and 0 ≤ f + h ≤ 1, for any t ∈ [0, 1] we have

E(f + th) = E(f) + 2t

∫
ψf (x)h(x) dx+ t2E(h) .

For any 0 ≤ t ≤ 1 the function f + th is an admissible competitor in (1.5), thus by minimality

we have E(f) ≤ E(f + th). Then, also using that E(h) < +∞ since spth is compact, we

deduce that ψf (x) ≤ ψf (y) for any two points x, y such that f(x) > 0 and f(y) < 1. This is

stronger than (EL). □

Another standard result is the existence of minimizers for problems (1.5) and (1.6). The

proof in our general setting can be easily adapted from those already available in the literature,

see for instance [3, 4, 24].

Lemma 2.2. Assume that g ∈ L1
loc(RN ) is bounded from below, lower semicontinuous and

lim|x|→+∞ g(x) = +∞. Then, for any m > 0 there exist a minimizer of (1.5) and a minimizer

of (1.6).

The last result that we present is an a-priori bound on the diameter of the support of

a minimizing density, and this deserves a quick comment. When dealing with minimizing

measures, the boundedness of the support is a quite standard result, and it has been proved

in several different contexts (see for instance [3, 6]). As we have already noticed, for many

properties (for instance the existence given by the above lemma) working with measures or

with densities does not make much difference. However, the compactness of the support of

minimizers is more delicate for the case of densities due to the fact that the Euler–Lagrange

condition (EL) for densities has an additional constraint (see [17] for the special case when

g is given by a power-law of the form g1). As a consequence, the proof of the result below

does not follow by a simple generalization of the proofs available for the case of measures.

Therefore we provide a complete proof.

Definition 2.3. A radial function g : RN → R is said definitively non-decreasing if there

exists some R ≥ 0 such that g(s) ≥ g(t) for every s ≥ t ≥ R.

Proposition 2.4. Let g ∈ L1
loc(R

N ) be a radial, lower semicontinuous, bounded from below,

definitively non-decreasing function such that lim|x|→+∞ g(x) = +∞. Then, there is a con-

stant D = D(g,m) such that the diameter of the support of any density minimizing (1.5)

is bounded by D. If, in addition, g is locally bounded, then one can take the same constant

D(g,m) for every m ≤ 1.

Proof. We can assume without loss of generality that g ≥ 0. Let f : RN → [0, 1] be any

minimizer of (1.5). In particular, E(f) ≤ Cm, where Cm = Cm(g,m) is the energy of a ball of
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volume m. Then, let us fix a constant R = R(g,m) so that g is non-decreasing on [R,+∞),

the volume of the ball of radius R is bigger than κm, where κ = κ(N) is a purely geometric

constant that will be defined later, and

g(R) >
5Cm

m2
. (2.1)

Let us now call f1 = fχ
BR

and δ = m − ∥f1∥L1 . Up to a translation, we can assume that

δ ≤ m/5. Indeed, if this was not true, then for any x ∈ RN the mass of f outside of the ball

B(x,R) would be more than m/5, and then also by (2.1)

E(f) ≥
∫
RN

∫
RN\B(x,R)

g(y − x)f(y)f(x) dy dx ≥
∫
RN

g(R)

(∫
RN\B(x,R)

f(y) dy

)
f(x) dx

≥
∫
RN

m

5
g(R)f(x) dx =

m2

5
g(R) > Cm ,

against the optimality of f . We let now R+ = R+(g,m) ≥ 50R be another constant, so that

g(R+ −R) ≥ 2g(6R) +
5

2m

∫
B11R

g(x) dx , (2.2)

and we aim to prove that f is supported in BR+ , so that the proof will be concluded with

D = 2R+. Let us call f2 = fχ
B
R+\BR

and f3 = fχ
RN \B

R+
, so that f = f1 + f2 + f3. Calling

now ε = ∥f3∥L1 ≤ δ ≤ m/5, our claim can be rewritten as ε = 0, thus we assume ε > 0 and

we look for a contradiction.

Let z+ be a minimizer of the potential ψf2(z) =
∫
RN g(z − y) f2(y) dy within the support

of f3. Notice that such a minimizer exists. Indeed, by assumption the support of f3 is a

non-empty closed set, and the above function is either constantly 0 if f2 ≡ 0 (and in such a

case any point of the support is a minimizer), or it is a continuous function which explodes

for |z| → ∞. The minimality property of z+ ensures that

E(f2, f3) =
∫
RN

ψf2(z)f3(z) dz ≥ ψf2(z
+)∥f3∥L1 = ψf2(z

+)ε . (2.3)

Let us now define the set

C =

{
z ∈ RN : 4R ≤ |z| ≤ 5R,

z · z+

|z| · |z+|
≥ cos(π/15)

}
,

which is the portion of cone highlighted in Figure 1. We call then κ = ωNR
N/|C|, which is a

purely geometrical constant only depending on N . Then, since by construction |BR| > κm,

we have |C| = |BR|/κ > m. Since ∥f∥L1(BR+ ) = m − ε, there exists a positive density f̃3,

concentrated in C, such that

∥f̃3∥L1 = ε , 0 ≤ f̃ := f1 + f2 + f̃3 ≤ 1 .



8 D. CARAZZATO, A. PRATELLI, AND I. TOPALOGLU

BR
w

BR+
B5R

B4R

z+
y′′′

y′′

Figure 1. The construction in Proposition 2.4.

In particular, the fact that f̃3 is concentrated in C gives

z · z+

|z| · |z+|
≥ cos(π/15) ∀ z ∈ spt(f̃3) . (2.4)

We will conclude our proof by showing that E(f) > E(f̃), which will contradict the minimality

of f since by construction f̃ is a competitor for problem (1.5). Notice that

E(f)− E(f̃) = 2
(
E(f1, f3)− E(f1, f̃3) + E(f2, f3)− E(f2, f̃3)

)
+ E(f3)− E(f̃3) . (2.5)

Let us evaluate separately the different pieces. First of all, by construction

E(f1, f3) ≥ g(R+ −R)∥f3∥L1∥f1∥L1 = g(R+ −R)ε(m− δ) ,

E(f1, f̃3) ≤ g(6R)∥f̃3∥L1∥f1∥L1 = g(6R)ε(m− δ) ,

thus by (2.2) and since δ ≤ m/5 and (2.1) we have

E(f1, f3)−E(f1, f̃3) ≥
4

5
mε

(
g(6R)+

5

2m

∫
B11R

g(x) dx

)
> 4ε

Cm

m
+2ε

∫
B11R

g(x) dx . (2.6)

To estimate E(f2, f3)−E(f2, f̃3), it is convenient to subdivide RN into three pieces. The first

one is the ball H ′ = B6R, and the other two are

H ′′ =

{
x /∈ H ′ :

x · z+

|z+|
≤ 1

2
R+

}
, H ′′′ =

{
x /∈ H ′ :

x · z+

|z+|
>

1

2
R+

}
,

which are respectively on the left and on the right of the dashed hyperplane in the figure. We

call then f ′2, f
′′
2 and f ′′′2 the restrictions of f2 to H ′, H ′′ and H ′′′, so that f2 = f ′2 + f ′′2 + f ′′′2 .

We now observe that

E(f ′2, f̃3) =
∫
RN

∫
H′
g(y′ − z) f̃3(z)f2(y

′) dy′ dz ≤
∫
RN

∫
B6R

g(y′ − z)f̃3(z) dy
′ dz

≤
∫
RN

∫
B11R

g(x)f̃3(z) dx dz = ε

∫
B11R

g(x) dx .

(2.7)

Next, we pass to f ′′2 . For any y
′′ ∈ H ′′∩BR+ and z ∈ spt(f̃3), by construction and using (2.4)

we have R < |y′′ − z| ≤ |y′′ − z+|. Since g is non-decreasing on [R,+∞), also by (2.3) we can
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evaluate

E(f ′′2 , f̃3) =
∫
H′′

∫
RN

g(y′′ − z)f2(y
′′)f̃3(z) dz dy

′′

≤
∫
RN

∫
RN

g(y′′ − z+)f2(y
′′)f̃3(z) dz dy

′′ = ε

∫
RN

g(y′′ − z+)f2(y
′′) dy′′

= εψf2(z
+) ≤ E(f2, f3) .

(2.8)

The argument to estimate E(f ′′′2 , f̃3) is similar. Since for any w ∈ BR, any y
′′′ ∈ H ′′′ ∩ BR+ ,

and any z in the support of f̃3 we have, by construction and an elementary trigonometric

calculation, |y′′′ − w| ≥ |y′′′ − z| > R, we evaluate

E(f ′′′2 , f̃3) =
∫
H′′′

∫
RN

g(y′′′ − z)f2(y
′′′)f̃3(z) dz dy

′′′ ≤ ε

∫
H′′′

g(y′′′ − w)f2(y
′′′) dy′′′ .

Since this is true for every w ∈ BR, and f1 is concentrated on BR, we obtain

(m− δ)E(f ′′′2 , f̃3) =
∫
BR

E(f ′′′2 , f̃3)f1(w) dw ≤ ε

∫
BR

∫
H′′′

g(y′′′ − w)f2(y
′′′)f1(w) dy

′′′ dw

= ε E(f1, f ′′′2 ) ≤ εE(f) ≤ εCm ,

which since δ ≤ m/5 implies

E(f ′′′2 , f̃3) ≤ 2ε
Cm

m
. (2.9)

Putting together (2.7), (2.8) and (2.9), we have

E(f2, f3)− E(f2, f̃3) > −2ε
Cm

m
− ε

∫
B11R

g(x) dx (2.10)

Lastly, since the support of f̃3 is contained in C, whose diameter is much smaller than 11R,

we can readily estimate

E(f̃3) = E(f̃3, f̃3) ≤
∫
RN

∫
B11R(z)

g(z − y)f̃3(z) dy dz = ε

∫
B11R

g(x) dx . (2.11)

Inserting (2.6), (2.10) and (2.11) into (2.5), and minding also E(f3) ≥ 0, we finally obtain

E(f)− E(f̃) ≥ 4ε
Cm

m
+ ε

∫
B11R

g(x) dx > 0 ,

thus the contradiction E(f) > E(f̃) is established and this concludes the first part of the

proof.

Assume now that g is locally bounded, and let us notice that a simple modification of the

proof provides the same constant D(g,m) for every m ≤ 1. Notice first that any ball with

volume m ≤ 1 has diameter less than ω
−1/N
N , thus Cm ≤ Cm2, where C = sup{g(x), |x| ≤

2ω
−1/N
N }. As a consequence, one can take the same radius R in (2.1) for every m ≤ 1. The
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radius R+ defined in (2.2) explodes when m ↘ 0, but the local boundedness of g allows for

a much simpler definition of R+. More precisely, (2.7) can be clearly modified by saying

E(f ′2, f̃3) ≤
εm

5
g(11R) ,

and then the proof works with no other modification replacing the definition (2.2) of R+ by

g(R+ −R) ≥ 2g(6R) + g(11R) ,

which does not depend on m. Since D(g,m) = 2R+, the proof is concluded. □

3. Existence of minimal sets with small volume

3.1. Existence results for general kernels. A minimizer of the problem (1.5) exists under

mild hypotheses on g, as we recalled in Lemma 2.2 (and this can be also found in [4, 10]),

but, in general, this problem does not necessarily admit a minimizer if considered among the

restricted class of the characteristic functions (see e.g. [2, 17] and [6, Remark 3.16]). Here we

show that, under certain rather general conditions on g, the solutions to the problem (1.5)

are characteristic functions of sets also when m is small enough. First we prove a general

statement, and then we specialize further connecting our results to those present in [12, 13].

Lemma 3.1. Let g ∈ C(RN ) be definitively non-decreasing such that lim|x|→+∞ g(x) = +∞.

Let fj be a minimizer of (1.5) with ∥fj∥1 = mj for any sequence mj ↘ 0. Then, up to trans-

lations and up to taking a subsequence, m−1
j fj

∗
⇀ µ for some µ ∈ P(RN ) minimizing (1.6).

Moreover, if ψµ > E(µ) in RN \ sptµ, then for any ε > 0 there is j̄ such that

sptfj ⊆ Bε + sptµ ∀ j > j̄ . (3.1)

Proof. Since g is continuous, thus locally bounded, Proposition 2.4 ensures that the supports

of the densities fj are uniformly bounded. Therefore, the probability measures µj = m−1
j fj

have uniformly bounded support and then, up to subsequences and translations, we have

µj
∗
⇀ µ for some probability measure µ with bounded support.

Let now µ̄ be any minimizer of (1.6), and for any j let Pj be a partition of RN made by

pairwise disjoint cubes of volume mj , and define the function f̃j as

f̃j(x) = µ̄(Q) ∀Q ∈ Pj ,∀x ∈ Q .

By construction, 0 ≤ f̃j ≤ 1 and that ∥f̃j∥1 = mj , so by the minimality of fj we have

E(fj) ≤ E(f̃j). The continuity of g easily guarantees that E(m−1
j f̃j) → E(µ̄), and then also

by the lower semicontinuity of E we deduce

E(µ) ≤ lim inf E(µj) = lim infm−2
j E(fj) ≤ lim infm−2

j E(f̃j) = lim inf E(m−1
j f̃j) = E(µ̄) .

Hence, µ is a minimizer of E in P(RN ).
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Suppose now that ψµ > E(µ) outside of sptµ, and keep in mind that ψµ = E(µ) on sptµ

by Proposition 2.1. Since g is continuous and explodes at infinity, and since µ has bounded

support, we deduce that the potential ψµ is continuous and explodes at infinity, thus for any

ε > 0 there exists γ > 0 such that ψµ(x) ≥ E(µ) + γ whenever dist(x, sptµ) ≥ ε. Let us now

call U = sptµ + Bε and V = sptµ + Bδ, with δ so small that ψµ(x) < ψµ(y) − γ/2 for any

x ∈ V and any y ∈ U c. Since g is continuous and sptµj are uniformly bounded, then ψµj are

locally uniformly continuous with a common modulus of continuity. The convergence µj
∗
⇀ µ

guarantees then that ψµj converge pointwise to ψµ, and thanks to the common modulus of

continuity this convergence is locally uniform. Therefore, if j is large enough we have that

ψµj (x) < ψµj (y)−
γ

3
∀x ∈ V, y ∈ U c . (3.2)

Suppose now by contradiction that (3.1) does not hold true, thus that for some arbitrarily

large j the function fj is not concentrated on U . Then, for every η ≪ 1, we can define a

modified function 0 ≤ f̂ ≤ 1 by “moving a mass η from U c to V ”. Formally speaking, f̂ is a

function such that 0 ≤ f̂ ≤ fj on U c while fj ≤ f̂ ≤ 1 on V , and so that∫
V
f̂ − fj =

∫
Uc

fj − f̂ = η .

The existence of such a function f̂ is obvious as soon as |V | ≤ mj , which is certainly true

for j large enough. We can then call µ̂ = m−1
j f̂ , and ν = µj − µ̂ = m−1

j (fj − f̂), so that

∥ν∥ = 2m−1
j η. So, we estimate

E(µ̂)− E(µj) = E(ν) + 2E(µj , ν) = E(ν) + 2

∫
RN

ψµj (x)dν(x) ≤ C∥ν∥2 − γ

3
∥ν∥ ,

where we have used (3.2) and the fact that g is continuous and the support of ν is bounded.

For η ≪ 1 this gives E(µ̂) < E(µj), thus E(f̂) < E(fj), and this is impossible since fj is a

minimizer of (1.5) and f̂ is a competitor. □

Theorem 3.2. Let g ∈ C2(RN ) be a definitively non-decreasing function such that

lim|x|→+∞ g(x) = +∞. Let fj be a minimizer of (1.5) with ∥fj∥1 = mj and any sequence

mj ↘ 0, and assume that m−1
j fj

∗
⇀ µ ∈ P(RN ). If ψµ > E(µ) in RN \ sptµ and for any

x ∈ sptµ there exists v ∈ SN−1 such that ∂2vψµ(x) > 0, then fj is the characteristic function

of a set when j is large enough.

Proof. By Lemma 3.1 we know that µ is a minimizer of (1.6), and that (3.1) holds. By

assumption, for any x ∈ sptµ there exists some vx ∈ SN−1 such that ∂2vxψµ(x) > 0, and since

∂2ψµ is continuous (because g is of class C2 and µ has bounded support) there exist some

δx, rx > 0 such that ∂2vxψµ(y) > 2δx for every y ∈ Brx(x). By compactness, there are finitely

many points x1, x2, . . . , xk ∈ sptµ, corresponding directions v1, v2, . . . , vk ∈ SN−1, and two
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constants δ, r > 0 such that the balls Br(xi) cover the whole sptµ, and one has

∂2viψµ(y) > 2δ ∀ i ∈ {1, . . . , k},∀ y ∈ Br(xi) . (3.3)

Since sptµ is covered by the finitely many balls Br(xi), there exists some ε > 0 such that the

balls cover also sptµ + Bε, thus also sptfj for any j large enough, by (3.1). Moreover, since

g ∈ C2(RN ) and m−1
j fj

∗
⇀ µ, we have that m−1

j D2ψfj converges to D2ψµ locally uniformly.

Therefore, (3.3) holds also replacing 2δ with δ and ψµ with ψfj for every j large enough. This

condition clearly implies that each level set of ψfj has zero measure. But the Euler-Lagrange

condition (EL) ensures that {0 < fj < 1} is contained in a single level set. We deduce then

that the function fj has value 0 or 1 almost everywhere, thus it is a characteristic function. □

Corollary 3.3. Let g ∈ C2(RN ) be a definitively non-decreasing function such that

lim|x|→+∞ g(x) = +∞. Suppose that, for any minimizer µ of E in P(RN ), we have

(1) ψµ > E(µ) in RN \ sptµ;
(2) for any x ∈ sptµ there exists v ∈ SN−1 such that ∂2vψµ(x) > 0.

Then, there exists m > 0 such that any fm minimizing (1.5) with ∥fm∥1 = m is the charac-

teristic function of a set when m < m.

Proof. We proceed by contradiction. If the thesis is false, there exists some sequence mj ↘ 0

and densities fj which minimize (1.5) with mass mj and are not characteristic functions.

Since, as already noticed in the proof of Lemma 3.1, their supports are uniformly bounded, up

to a translation and a subsequence we have that m−1
j fj

∗
⇀ µ ∈ P(RN ). Since µ is a minimizer

of E in P(RN ) by Lemma 3.1, our assumption ensures that we can apply Theorem 3.2, clearly

obtaining a contradiction. □

Remark 3.4. We observe that the proofs of Theorem 3.2 and Corollary 3.3 work also if we

have a function g ∈ C2k(RN ) and, for a given µ that minimizes E in P(RN ) (or any minimizer,

in the corollary), we have that for every x ∈ sptµ there exist v ∈ SN−1 and j ∈ {1, . . . , k}
with ∂2jv ψµ(x) > 0.

3.2. More precise results for power-law kernels. This section is devoted to discuss the

situation in the special case of a function g given by (1.7). Let us start with a couple of

definitions. We define by ∆N := {x1, . . . , xN+1} ⊂ RN the vertices of the standard regular

(N + 1)-gon centered at the origin and with mutual distance 1. We call HN =
√

N+1
2N its

height, and CN =
√

N
2N+2 its circumradius. Moreover, we define

µN :=
1

N + 1

N+1∑
i=1

δxi (3.4)
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the probability measure which is uniformly distributed over the points of ∆N . We present

now a geometric result which will provide us a positive bound on the second derivative of the

potential.

Lemma 3.5. The constant

KN := min

{
N+1∑
i=1

⟨v, xi − x1⟩2 : v ∈ SN−1

}
(3.5)

satisfies KN = 1 if N = 1 and KN = 1/2 if N ≥ 2.

Proof. First of all, we claim that for every N ≥ 2 and every v ∈ SN−1

N+1∑
i=1

⟨v, xi⟩2 =
1

2
. (3.6)

To do so, we decompose v = v1 + v2, where v2 is the projection of v onto the hyperplane Π

parallel to the face containing x2, . . . , xN+1 and passing through the origin. We can write

N+1∑
i=1

⟨v, xi⟩2 =
N+1∑
i=1

(
⟨v1, xi⟩+ ⟨v2, xi⟩

)2
=

N+1∑
i=1

⟨v1, xi⟩2 +
N+1∑
i=1

⟨v2, xi⟩2 + 2

N+1∑
i=1

⟨v1, xi⟩⟨v2, xi⟩ .

Notice now that by definition ⟨v2, x1⟩ = 0, and ⟨v1, xi⟩ has the same value for each i ≥ 2.

Since
∑N+1

i=1 xi = 0, we deduce that the last sum vanishes. Moreover, notice that |xi| = CN ,

and the distance of any xi with i ≥ 2 from the hyperplane Π is HN − CN . Therefore

N+1∑
i=1

⟨v, xi⟩2 = |v1|2C2
N +

N+1∑
i=2

⟨v1, xi⟩2 +
N+1∑
i=2

⟨v2, xi⟩2

= |v1|2
(
C2
N +N

(
HN − CN

)2)
+
(
1− |v1|2

)N+1∑
i=2

⟨ v2
|v2|

, xi⟩2

=
|v1|2

2
+
(
1− |v1|2

)N+1∑
i=2

⟨ v2
|v2|

, xi⟩2 .

The last expression is linear with respect to |v1|2. Therefore, either it is constant, or it is

minimized for |v1| = 0 or |v1| = 1. This means that, if the sum in (3.6) is not constant, then

it is minimized only if v is either parallel or orthogonal to x1. However, the same should

be true also with any other xi, and this is clearly impossible. We deduce then that the sum

in (3.6) is constant, and then it is enough to choose |v1| = 1 to deduce that the constant value

is 1/2, that is, (3.6) is proved.
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Let us now consider the sum in (3.5). We can assume that N ≥ 3, since the cases N = 1, 2

are elementary computations. Arguing similarly as before, we get

N+1∑
i=1

⟨v, xi − x1⟩2 =
N+1∑
i=2

⟨v1, xi − x1⟩2 + ⟨v2, xi − x1⟩2 + 2⟨v1, xi − x1⟩⟨v2, xi − x1⟩

= NH2
N |v1|2 +

N+1∑
i=2

⟨v2, xi⟩2 − 2HN ⟨v1,
x1
|x1|

⟩
N+1∑
i=2

⟨v2, xi⟩

=
N + 1

2
|v1|2 +

N+1∑
i=2

⟨v2, xi⟩2 + 2HN ⟨v1,
x1
|x1|

⟩⟨v2, x1⟩ =
N + 1

2
|v1|2 +

N+1∑
i=2

⟨v2, xi⟩2

=
N + 1

2
|v1|2 +

(
1− |v1|2

)N+1∑
i=2

⟨ v2
|v2|

, xi⟩2 .

Notice now that the projections of the points xi with 2 ≤ i ≤ N on the (N − 1)-dimensional

hyperplane Π are the vertices of the standard regular N -gon centered in the origin. Therefore,

the property (3.6) in dimension N − 1 ≥ 2 ensures us that the value of the last sum in the

above estimate is 1/2, regardless of what v2 is. Therefore, we have

N+1∑
i=1

⟨v, xi − x1⟩2 =
N + 1

2
|v1|2 +

1− |v1|2

2
=
N |v1|2 + 1

2
,

and the minimum of this expression among all v ∈ SN−1 is clearly 1/2. Therefore, the proof

is completed. □

We can now present our main results for the power-law kernel g given by (1.7).

Theorem 3.6. Let N ≥ 2 and let g = g2 be defined by (1.7), with α > β ≥ 2, α ≥ 4 and

(α, β) ̸= (4, 2). Then, if m is small enough, every minimizer of (1.5) is the characteristic

function of some set Em which is then a minimizer of (1.4). Moreover, Em consists of N +1

convex components, each of which is contained in a small neighborhood of a vertex of ∆N .

Proof. With this choice of powers α, β, we know by [13, Theorem 1.2, Corollary 1.4] that

the measure µN defined in (3.4) is the only minimizer of E in P(RN ), and that ψµN > E(µN )

outside of sptµN = ∆N . We now want to compute the first and second derivatives of the

function

ψµN =
1

N + 1

N+1∑
i=1

ψδxi
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at the point x1. First of all, notice that for a radial function g : RN → R and any choice of

x ∈ RN , v ∈ SN−1, t > 0 one has

d

dt
g(x+ tv) = g′(|x+ tv|) ⟨x, v⟩+ t

|x+ tv|
,

d2

dt2

∣∣∣∣
t=0

g(x+ tv) = g′′(|x|) ⟨x, v⟩
2

|x|2
+
g′(|x|)
|x|

(
1− ⟨x, v⟩2

|x|2

)
.

(3.7)

So, with the function g = g2, keeping in mind that g′(1) = 0 and g′′(1) = α− β, we have for

every i ≥ 2 that

∂2vψδxi
(x1) = g′′(|xi − x1|)

⟨xi − x1, v⟩2

|xi − x1|2
+
g′(|xi − x1|)
|xi − x1|

(
1− ⟨xi − x1, v⟩2

|xi − x1|2

)
=

(
α− β

)
⟨xi − x1, v⟩2 ,

while of course

∂2vψδx1
(x1) = g′′(0) .

We have now to distinguish the cases β = 2 and β > 2. If β > 2, then g′′(0) = 0 and then by

Lemma 3.5

∂2vψµN (x1) =
1

N + 1

N+1∑
i=2

∂2vψδxi
(x1) ≥

(α− β)KN

N + 1
≥ α− β

2(N + 1)
,

so ∂2vψµN (x1) > 0 for every v ∈ SN−1. Instead, if β = 2, then g′′(0) = −1, and then

∂2vψµN (x1) =
1

N + 1

(
− 1 +

N+1∑
i=2

∂2vψδxi
(x1)

)
≥ −1 + (α− 2)KN

N + 1
. (3.8)

Since KN = 1/2 by Lemma 3.5 and α > 4 because we are considering β = 2, then −1 +

(α − 2)KN > 0, hence again ∂2vψµN > 0 for every v ∈ SN−1. The fact that any minimizer of

problem (1.5) with ∥fm∥1 = m is given by a characteristic function fm = χ
Em

is then ensured

by Corollary 3.3. Moreover, we know that the sets Em converge to ∆N in the Hausdorff sense

by (3.1) of Lemma 3.1, and m−1D2ψfm converges to D2ψµN locally uniformly as noticed in

Theorem 3.2. As a consequence, D2ψfm is strictly positive definite in a neighborhood of each

point xi when m is sufficiently small, and so the set Em∩B1/2(xi) is convex for each i because

it coincides with the sublevel set of a convex function. □

Remark 3.7. The same result is true also if N = 1 for α > β ≥ 2, α ≥ 3 and (α, β) ̸= (3, 2).

The proof is exactly the same, the only difference is that the term in (3.8) was strictly positive

since α− 2 > 2 and KN = 1/2, while now it is strictly positive since α− 2 > 1 and KN = 1.

In contrast, the next theorem shows that for certain choices of the parameters α and β the

minimizer of (1.5) is the characteristic function of a set for all values of m.
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Theorem 3.8. Let g be defined by (1.7) with β = 2, N ≥ 2 and α ∈ (2, 4), or β = 2, N = 1

and α ∈ (3, 4). Then, for every m > 0 the minimizer fm of (1.5) is the characteristic function

of a radial set, which is either an annulus or a disk. In particular, as m ↘ 0, the set is an

annulus which converges to a circle in Hausdorff distance.

Proof. Let us consider any m > 0. Since α ∈ (2, 4) and β = 2, it is known that the energy

E is strictly convex among the functions with barycenter in the origin, see for instance [6,

Section 4]. This implies that there is only a single minimizer among the functions with

barycenter in the origin, and thanks to the invariance of the energy by rotation we obtain

that this minimal function has to be spherically symmetric. Since fm is spherically symmetric,

and since α > 2 for N ≥ 2 or α > 3 for N = 1, [12, Theorem 2.2] ensures that the potential

ψfm has positive third derivative, that is, calling φ(s) = ψfm(se1) one has φ
′′′(s) > 0 for every

s > 0. Moreover, φ′(0) = 0 because ψfm is regular and radial. This implies that all level sets

of φ are given by either one or two points, hence for every λ ∈ R the set {x ∈ RN : φ(|x|) = λ}
is negligible. Since Proposition 2.1 ensures that in the set where 0 < fm < 1 the potential has

a constant value λ, this gives that the set {0 < fm < 1} is negligible, and this precisely means

that fm is the characteristic function of some set Em, which, in turn, is radial because so is

fm. Moreover, calling I ⊆ R the set such that Em = {x ∈ RN : |x| ∈ I}, again Proposition 2.1

ensures that I = {s ∈ R : φ(s) < λ} for some λ ∈ R. Keeping again in mind that φ′(0) = 0

and φ′′′(s) > 0 for all s > 0, we have that the sublevel sets of φ are all intervals, either of

the form (a, b) for some 0 ≤ a < b, or of the form [0, b) for some b > 0. This means that Em

is either an annulus or a disk. In particular, Lemma 3.1 ensures that Em is an annulus for

m ≪ 1, since it must converge in the Hausdorff sense to a circle for m ↘ 0. On the other

hand, Em is surely a whole disk for m≫ 1. □

3.3. Last results for general kernels. We have seen that, by Theorem 1.1, in the special

case when g is a power-law kernel of the form (1.7) for a suitable choice of the parameters

α, β, the unique minimizing measure is the purely atomic measure µ̄ uniformly distributed

over the vertices of the regular (N + 1)-gon ∆N . The goal of this last section is to show that

minimality of such a measure does not necessarily require the particular form (1.7), but it can

also be a consequence of more geometrical, general properties of g. Let us be more precise. If

we assume, just to fix the ideas, that g(0) = 0, g(1) = −1 and g(t) > −1 for every t ̸= 1, then

pairs of points in the support of an optimal measure have convenience to stay at distance 1,

but it is impossible that all pair of points have distance 1 since every point of the support has

distance 0 from itself. It is reasonable to guess that in some cases the most convenient choice

could be to have as many points as possible with mutual distance 1, hence, with N +1 points

in the vertices of a unit regular (N + 1)-gon. In particular, one can imagine that this could
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happen whenever g ≈ −1 only in a small neighborhood of −1, and g is flat enough close to

0. In this section, we are going to prove that it is indeed so. In order to present a simple

proof of geometric flavour, we use highly non-sharp assumptions, and we write the proof in

the planar case N = 2 for simplicity of notations. The general case N ≥ 3 does not require

any different ideas. The only caveat is notational complication due to several indices. The

final Remark 3.11 discusses the case of higher dimensions with slight improvements of the

constants.

The first result we present is a “confinement result”, which says that if g is close to −1 only

close to 1 and not so much negative otherwise, then an optimal measure must be supported

in a union of 3 small balls around the vertices of ∆2.

Lemma 3.9 (Confinement around ∆2). Let g ∈ L1
loc(R2) be a radial, continuous function

such that g(0) = 0, g(1) = min g = −1, and for some η < 1/64 and ξ < 1/165 one has

g(t) > −η for t ∈ [0, 3/2] \ (1− ξ, 1 + ξ) , g(t) > 0 for t ≥ 3/2 .

Then every minimizing measure µ is concentrated in the union of three sets with diameter

less than 5ξ and mutual distance between 1− 6ξ and 1+ ξ. More precisely, given any point in

any of the three sets, its distance with each of the other two sets is between 1− 6ξ and 1 + ξ.

Proof. The assumptions on g imply that its graph must be in the shaded region in Figure 2,

left (a possible choice of g is depicted just as an example). Let µ be an optimal measure. We

divide the proof in few steps.

Step I. The diameter of sptµ is at most 3/2.

Let us call µ̄ the measure which is uniformly distributed over the vertices of an equilateral

triangle of side 1. Then by minimality of µ we have

E(µ) ≤ E(µ̄) = −2

3
. (3.9)

Assume now the existence of x1, x2 ∈ sptµ with |x1 − x2| > 3/2. For a small r ≪ 1, that will

be specified in few lines, we can take two measures µ1, µ2 ≤ µ so that ρ := ∥µ1∥ = ∥µ2∥ > 0

and sptµi ⊂ Br/2(xi). For every −1 < ε < 1 we define µε = µ + ε(µ1 − µ2), which is still a

probability measure. We have

E(µε) = E(µ) + 2ε
(
E(µ, µ1)− E(µ, µ2)

)
+ ε2

(
E(µ1) + E(µ2)− 2E(µ1, µ2)

)
.

However, keeping in mind Proposition 2.1 and the fact that µ1 ≤ µ, we have

E(µ, µ1) =
∫ ∫

g(x− y) dµ1(x) dµ(y) =

∫
ψµ(x) dµ1(x) = ρ E(µ) ,

and similarly E(µ, µ2) = ρ E(µ). Therefore, the above expression becomes

E(µε) = E(µ) + ε2
(
E(µ1) + E(µ2)− 2E(µ1, µ2)

)
. (3.10)
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Since by assumption g(0) = 0 < C := g(|x1 − x2|)/2 > 0, we can pick r > 0 so small that

g(s) < C < g(t) for every 0 ≤ s ≤ r and |x1 − x2| − 2r ≤ t ≤ |x1 − x2|+ 2r .

We have then

E(µ1) =
∫ ∫

g(y − x) dµ1 dµ1 < Cρ2 and E(µ2) =
∫ ∫

g(y − x) dµ2 dµ2 < Cρ2 ,

while

E(µ1, µ2) =
∫ ∫

g(y − x) dµ1 dµ2 > Cρ2 .

This ensures that the term in parentheses in (3.10) is strictly negative, giving E(µε) < E(µ)
which contradicts the minimality of µ. This concludes the step.

Step II. The sets Ax, Ay and Qx,y.

Let us now fix any point x ∈ sptµ, and call

Ax =
{
y : 1− ξ < |y − x| < 1 + ξ

}
the annulus centered at x with radii 1− ξ and 1 + ξ. By (3.9) and minding (EL), we have

−2

3
≥ E(µ) = ψµ(x) =

∫
Ax

g(y − x) dµ(y) +

∫
R2\Ax

g(y − x) dµ(y) ≥ −µ(Ax)− η(1− µ(Ax))

≥ −µ(Ax)− η ,

which can be rewritten as

µ(Ax) ≥
2

3
− η . (3.11)

−η

1− ξ 1 + ξ

−1

3/2 x y

z AyAx

Qx,y

Figure 2. Left: the graph of g must be in the shaded region. Right: the

points x, y and z and the sets Ax, Ay and Qx,y in Step II.

We can then take a second point y in sptµ so that y ∈ Ax, and then also x ∈ Ay. The

intersection Ax ∩ Ay is made by two different connected pieces, orange in Figure 2, right. A

trivial computation ensures that, by the assumption on ξ, the diameter of each piece is less

than 5ξ and the distance between the two pieces is more than 3/2. Step I implies then that
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at least one connected piece of Ax ∩ Ay is µ-negligible. On the other hand, applying (3.11)

both to x and y we obtain that µ(Ax ∩Ay) ≥ 1/3− 2η > 0, and then exactly one connected

piece of Ax ∩Ay has positive µ-measure. We call Qx,y this piece, so that, as just observed,

µ(Qx,y) ≥
1

3
− 2η . (3.12)

Step III. The point z and the conclusion.

We can now define a third point z ∈ sptµ ∩ Qx,y, so that each of the annuli Ax, Ay and Az

centered at one of the points x, y, z contains the other two points. Moreover, keeping the

same notation as in Step II, we call Q1 = Qx,y, Q2 = Qx,z and Q3 = Qy,z. Let now w be any

point in sptµ; since by Step I we know that the distance between w and any of the points

x, y, z is at most 3/2, an immediate computation ensures that, thanks to the bound on ξ,

the distance between w and at least one of the points x, y, z is less than 1 − 6ξ. To fix the

ideas, we can assume that

|z − w| < 1− 6ξ . (3.13)

We assume then the existence of a point v ∈ Q1 such that

|v − w| > 5ξ , (3.14)

and we look for a contradiction. Notice that this contradiction will conclude the proof;

indeed, if (3.14) is false for every v ∈ Q1, there are some consequences. The first one is that

the whole sptµ is contained in the three balls of radius 5ξ centered at x, y and z. Then, a

second consequence is that the intersection of any of these balls with sptµ has diameter at

most 5ξ, and thus µ is concentrated in the union of three sets with diameter less than 5ξ.

Moreover, by construction, for every point a in one of these sets, the annulus Aa intersects

both the other two sets, and as a consequence the distance between a and each of the other

two sets is between 1− 6ξ and 1 + ξ. Therefore, we only have to get a contradiction.

Let us write ψµ = ψ1 + ψ2 + ψ3 + ψ∞, where we define

ψi(a) =

∫
Qi

g(b− a) dµ(b) ∀ i ∈ {1, 2, 3} , ψ∞(a) =

∫
R2\(Q1∪Q2∪Q3)

g(b− a) dµ(b) .

Notice now that, for every b ∈ sptµ∩Q1, since the diameter of Q1 is less than 5ξ and by (3.13)

we have |b− v| < 5ξ < 1− ξ and |b− w| < 1− ξ, and by the assumption on g this implies

ψ1(w) > −ηµ(Q1) , ψ1(v) > −ηµ(Q1) . (3.15)

Moreover, using (3.11) also with Ay and Az in place of Ax, and keeping in mind that by

construction Q1 ∩Q2 ∩Q3 = ∅, we obtain that

µ
(
R2 \ (Q1 ∪Q2 ∪Q3)

)
< 3η , µ(Q1) ≤

1

3
+ η , (3.16)
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and the first bound immediately yields

ψ∞(w) + ψ∞(v) =

∫
R2\(Q1∪Q2∪Q3)

g(b− w) + g(b− v) dµ ≥ −6η . (3.17)

Take now any two points p ∈ Q2, q ∈ Q3. As seen before, Ap ∩Aq has diameter less than 5ξ,

so by the assumption (3.14) at least one between v and w does not belong to Ap ∩Aq, hence

g(p− v) + g(p− w) + g(q − v) + g(q − w) ≥ −3− η .

Consequently, also by the second bound in (3.16) with Q2 and Q3 in place of Q1, we have

µ(Q2)
(
ψ3(w) + ψ3(v)

)
+ µ(Q3)

(
ψ2(w) + ψ2(v)

)
=

∫
Q2

∫
Q3

g(p− v) + g(p− w) + g(q − v) + g(q − w) dµ(p) dµ(q)

≥ −(3 + η)µ(Q2)µ(Q3) ≥ −(3 + η)

(
1

3
+ η

)2

.

(3.18)

Again by (3.9) and (EL), and using (3.15), (3.17), (3.12) and (3.18) we have then

−4

3
≥ ψµ(w) + ψµ(v) = ψ1(w) + ψ2(w) + ψ3(w) + ψ∞(w) + ψ1(v) + ψ2(v) + ψ3(v) + ψ∞(v)

> −2ηµ(Q1)− 6η +

(
1

3
− 2η

)−1(
µ(Q2)

(
ψ3(w) + ψ3(v)

)
+ µ(Q3)

(
ψ2(w) + ψ2(v)

))
≥ −2

3
η − 2η2 − 6η −

(
1

3
− 2η

)−1

(3 + η)

(
1

3
+ η

)2

,

and we derive the searched contradiction since this inequality is impossible for η < 1/64. □

The main result of this section is that under suitable assumptions on the second derivative

of g around 0 and around −1 the unique optimal measure is the purely atomic measure

uniformly distributed over the vertices of a triangle of side 1. More precisely, we have the

following result:

Theorem 3.10. Let g be as in Lemma 3.9, and assume in addition that

g′′(t) > −12 g′′(s) ∀ t ∈ (0, 5ξ), s ∈ (1− 6ξ, 1 + 6ξ) .

Then, the unique optimal measure (up to translations and rotations) is the purely atomic one,

uniformly distributed over the vertices of ∆2.

Proof. Let µ be an optimal measure. By Lemma 3.9, µ is concentrated on three sets

B1, B2, B3, with diameter less than 5ξ and mutual distance between 1− 6ξ and 1+ ξ. More-

over, by (3.12) and (3.16), each of them has measure between 1
3 − 2η and 1

3 + η. Let us call

C ′ = −min{g′′(t) : 0 ≤ t ≤ 5ξ} and C ′′ = min{g′′(t) : 1− 6ξ ≤ t ≤ 1 + 6ξ}.
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Let us take any four points x, y, z, w in sptµ, in particular x, y ∈ B1, z ∈ B2 and w ∈ B3.

By construction and by Lemma 3.9, we have that

|y − x| ≤ 5ξ , |x− z| ≤ 1 + 6ξ , |x− w| ≤ 1 + 6ξ , |z − w| ≥ 1− 6ξ .

Calling for brevity θa,b the direction of the vector a − b for any two points a ̸= b ∈ R2, the

above estimates give

sin
(
|θx,z − θy,z|

)
≤ 5ξ

1− 6ξ
, sin

(
|θx,z − θx,w|

2

)
≥ 1

2
· 1− 6ξ

1 + 6ξ
. (3.19)

Two elementary trigonometric estimates tell that, for a generic direction ν,

|θx,z · ν|2 + |θx,w · ν|2 ≥ 2 sin2
(
|θx,z − θx,w|

2

)
,∣∣∣|θx,z · ν|2 − |θy,z · ν|2

∣∣∣ ≤ sin
(
|θx,z − θy,z|

)
.

(3.20)

In particular, we set ν = θx,y. Let us now consider the difference
∣∣|y − z| − |x − z|

∣∣. By

convexity of the distance, we can estimate this difference from below by |y − x| multiplied

either by |θx,z · ν| or by |θy,z · ν|, unless the projection of z onto the line passing through x

and y is contained inside the segment xy, which means that θx,z and ν are very close to be

perpendicular (and we discuss this case, which is in fact simpler, in a moment). We then have

that ∣∣∣|y − z| − |x− z|
∣∣∣ ≥ min

{
|θx,z · ν|, |θy,z · ν|

}
|y − x| ,

which in turn yields

g(x− z) + g(y − z) ≥ −2 +
C ′′

4
min

{
|θx,z · ν|, |θy,z · ν|

}2
|y − x|2 . (3.21)

We can now repeat the very same argument with w in place of z. Again unless θx,w is very

close to be perpendicular to ν, we have

g(x− w) + g(y − w) ≥ −2 +
C ′′

4
min

{
|θx,w · ν|, |θy,w · ν|

}2
|y − x|2 . (3.22)

Putting together (3.19) and (3.20), and in particular observing that the second estimate

in (3.19) holds also with y in place of x since x and y are generic points in B1, we get that

min
{
|θx,z · ν|, |θy,z · ν|

}2
+min

{
|θx,w · ν|, |θy,w · ν|

}2

≥ 2 sin2
(
|θx,z − θx,w|

2

)
−
∣∣∣|θx,z · ν|2 − |θy,z · ν|2

∣∣∣ ≥ 1

2

(
1− 6ξ

1 + 6ξ

)2

− 5ξ

1− 6ξ
≥ 2

5
,

where the last estimate is true by the assumption in Lemma 3.9 that ξ < 1/165. This last

estimate together with (3.21) and (3.22) gives

g(x− z) + g(y − z) + g(x− w) + g(y − w) ≥ −4 +
C ′′

10
|y − x|2 . (3.23)
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Recall that (3.23) holds under the assumption that ν is not very close to be perpendicular

to either θx,z or θx,w. However, if this is the case then an even stronger estimate holds; in

fact, if for instance ν is almost perpendicular to θx,w, then we simply have∣∣∣|y − z| − |x− z|
∣∣∣+ ∣∣∣|y −w| − |x−w|

∣∣∣ ≥ ∣∣∣|y − z| − |x− z|
∣∣∣ ≥ min

{
|θx,z · ν|, |θy,z · ν|

}
|y − x| ,

and since the minimum is close to
√
3/2 because the triangle xyz is nearly equilateral, the

resulting estimate is stronger than (3.23). Hence, the validity of (3.23) is established in any

case. Concerning g(y − x), on the other hand, we have

g(y − x) ≥ −C
′

2
|y − x|2 . (3.24)

Let us write ψ− = ψµ (B2∪B3), that is, ψ−(a) =
∫
B2∪B3

g(a − b) dµ(b). Using (3.23), and

recalling that g(x− z) + g(y − z) and g(x− w) + g(y − w) are both surely greater than −2,

we obtain

ψ−(x) + ψ−(y) =

∫
B2

g(x− z) + g(y − z) dµ(z) +

∫
B3

g(x− w) + g(y − w) dµ(w)

≥ −2µ(B2 ∪B3) +
C ′′

10
|y − x|2min

{
µ(B2), µ(B3)

}
≥ −2µ(B2 ∪B3) +

C ′′

10
|y − x|2

(
1

3
− 2η

)
≥ −2µ(B2 ∪B3) +

C ′′

34
|y − x|2 .

(3.25)

We now evaluate E(µ B1, µ), which by (EL) coincides with µ(B1)E(µ). We have

E(µ B1, µ) =

∫
B1

∫
B1

g(y − x) dµ(y) dµ(x) +

∫
B1

∫
B2∪B3

g(y − x) dµ(y) dµ(x) =: E1 + E2 .

By (3.24), we get

E1 ≥ −C
′

2

∫
B1

∫
B1

|y − x|2 dµ(y) dµ(x) .

Instead, concerning E2, by (3.25) we have

E2 =
∫
B1

ψ−(x) dµ(x) =
1

2µ(B1)

∫
B1

∫
B1

ψ−(x) + ψ−(y) dµ(x) dµ(y)

≥ 1

2µ(B1)

∫
B1

∫
B1

−2µ(B2 ∪B3) +
C ′′

34
|y − x|2 dµ(x) dµ(y)

= −µ(B1)µ(B2 ∪B3) +
C ′′

68µ(B1)

∫
B1

∫
B1

|y − x|2 dµ(x) dµ(y) .

Now, the assumptions imply that C ′′ ≥ 12C ′ ≥ 34µ(B1)C
′. Hence, from the two estimates

above we get that

E(µ B1, µ) ≥ −µ(B1)µ(B2 ∪B3) ,
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with strict inequality unless µ B1 is concentrated in a single point. Since the same estimate

clearly works with µ B2 and µ B3 in place of µ B1, calling ci = µ(Bi) for i ∈ {1, 2, 3}
and keeping in mind that c1 + c2 + c3 = 1, we get

−E(µ) ≤ c1(c2 + c3) + c2(c1 + c3) + c3(c1 + c2) = c1(1− c1) + c2(1− c2) + c3(1− c3)

= 1−
(
c21 + c22 + c23

)
≤ 2

3
.

Since we already noticed that E(µ) ≤ −2
3 , we finally deduce that necessarily c1 = c2 = c3 =

1
3

and each of the three measures µ Bi is concentrated in a single point. In addition, all the

distances between any two of these three points must be equal to 1, as claimed. □

Remark 3.11. In the general case of dimension N ≥ 3, one can perform the very same

construction as in Lemma 3.9 and Theorem 3.10, and obtain the very same results. More

precisely, there are explicitly computable constants η̄, ξ̄, c1 and c2, only depending on the

dimension, such that the following holds. If g ∈ L1
loc(RN ) is a radial, continuous function

such that g(0) = 0, g(1) = min g = −1, and for some η < η̄ and ξ < ξ̄ one has g(t) > −η for

t ∈ [0,
√
3HN ] \ (1− ξ, 1 + ξ) and g(t) > 0 for t ≥

√
3HN , then every minimizing measure is

concentrated over the union of N + 1 sets with diameter less than c1ξ and mutual distance

between 1 − (1 + c1)ξ and 1 + ξ. In addition, if g′′(t) ≥ −c2g′′(s) for every t ∈ (0, c1ξ) and

s ∈
(
1− (1 + c1)ξ, 1 + (1 + c1)ξ

)
, then the unique optimal measure is the purely atomic one,

uniformly distributed over the vertices of ∆N .
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[20] H. Knüpfer & C. Muratov, On an isoperimetric problem with a competing nonlocal term II: The general

case, Comm. Pure Appl. Math. 67 (2014), no. 12, 1974–1994.

[21] T. Lim & R. J. McCann, Isodiametry, variance, and regular simplices from particle interactions. Arch.

Ration. Mech. Anal. 241 (2021), no. 2, 553–576.

[22] O. Lopes, Uniqueness and radial symmetry of minimizers for a nonlocal variational problem, Commun.

Pure Appl. Anal. 18 (2019), no. 5, 2265–2282.

[23] M. Novaga & A. Pratelli, Minimisers of a general Riesz-type problem, Nonlinear Anal. 209 (2021), Paper

No. 112346, 27 pp.
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