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1. Introduction

In these lecture notes we recall some definitions of non-absolutely convergent
integrals and present a new type of integral which works well in the setting of
metric spaces.

The theory of Lebesgue integral is satisfactory for a majority of applications,
but not for all. If our space admits more structure than just a measure, it is
sometimes desirable consider a concept of integral which respects the geometry of
the space. The drawback of the Lebesgue integral is easily seen on the example

f(x) =
(
x2 sin(1/x2)

)′
, f(0) = 0. Although the function f is a derivative, it is not

integrable in the Lebesgue sense.
The problem to find a concept of integral which contains the Lebesgue integral

and integrates all derivatives arose naturally with the discovery of the Lebesgue
integral. It leads to a variety of definitions of the so-called non-absolutely convergent
integrals. These integrals differ in the approach to the definition and sometimes
(but not always) in the classes of integrable functions.

For further survey and comments we refer to sections. Our plan is first to show a
simple, but new, one-dimensional definition of a nonabsolutely convergent integral
(Section 2). Then we discuss the problem of multidimensional setting (Sections 3,
Section 4) and explain our definition in the metric-valued setting (Section 6). We
apply the new integral to a new form of the Gauss-Green-Stokes theorem (Subsec-
tion 8.1).

1.1. Notation and conventions. If X is a metric space, x ∈ X and r > 0, then
B(x, r) denotes the open ball with center at x and radius r and B(x, r) is the
corresponding closed ball.

If E(X) is a space of scalar functions and Y is another space, we let E(X,Y )
denote the corresponding space of Y -valued functions.

We use the notation Y ∗ for the dual space of a normed space Y .
If Y and Z are normed linear spaces, L(Y,Z) stands for the space of all con-

tinuous linear operators mapping Y to Z. The action of an operator ` ∈ L(Y,Z)
on y ∈ Y is denoted simply as `y. Sometimes we use a ∈ R where a ∈ L(Y, Y ) is
expected, then we operate with a as with the operator y 7→ ay.

The symbol 〈T , ϕ〉 is used for the action of a functional (possibly vector-valued,
in fact operator) T on a function ϕ.

All measures are ≥ 0 unless labeled as “signed”.
If f is a function on X, then spt f is the smallest closed set F such that f = 0

on X \F . If µ is a Borel measure on X, then sptµ is the smallest closed set F such
that µ(X \ F ) = 0.

If µ is a measure on X, E is a µ-measurable set with 0 < µ(E) <∞ and f is a
µ-integrable function on E, we write

−
∫
E

f dµ =
1

µ(E)

∫
E

f dµ.

We use symbol C for a generic constant which may change at each step of the
computation.

2. One-dimensional integral

2.1. Denjoy-Perron integral. Recall that we seek for a concept of integral which
contains the Lebesgue integral and integrates all derivatives. First such a definition
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is due to Denjoy [16] in 1912, shortly followed by Luzin [39] and Perron [45]. We
present below Luzin’s version on the Denjoy integral.

Luzin’s definition is descriptive, we describe which properties a function should
have to deserve the name “indefinite integral”.

Throughout this section I = [a, b] will be a bounded closed interval.
Classically, a function F : I → R is said to be an antiderivative (or indefinite

integral) of a function f : I → R if F ′(x) = f(x) for each x ∈ I. The definite
integral of f over I is then the increment of F over I, namely F (b) − F (a). This
concept of integral goes back to Newton.

The requirement of everywhere existence of F ′ is very restrictive, for example,
the function F (x) = |x| fails to have derivative at 0, although we would like to
consider |x| as the indefinite integral of the function f(x) = sgnx, where

sgnx =


1, x > 0,

−1, x < 0,

0, x = 0.

A good idea is to neglect sets of measure zero, this means that the property F ′(x) =
f(x) is required not everywhere, but only for points not belonging to an exceptional
set.

However, well known examples (the Cantor ternary function) show that the
uniqueness of the indefinite integral is then lost. To get it back, complicated addi-
tional assumptions on the function F like absolute continuity or its generalizations
must be imposed. We give such a definition here:

Definition 2.1 (ACG*). If E ⊂ I, we say that a function F : I → R is AC* on E
is if for each ε > 0 there exists δ > 0 such that for each finite system {[aj , bj ]} of
non-overlapping intervals with endpoints in E we have∑

j

(bj − aj) < δ =⇒
∑
j

osc[aj ,bj ] F < ε.

We say that F is ACG* on I if there exists a sequence {Ek} of sets such that
I =

⋃
k Ek and F is AC* on each Ek.

Now, we are ready to formulate the definition of the restricted Denjoy integral.

Definition 2.2 (Denjoy-Luzin). We say that a function F : I → R is a restricted
Denjoy indefinite integral of f if F is ACG* and F ′ = f almost everywhere. Then
the definite integral of f is F (b)− F (a).

Remark 2.3. Following tradition, we say that f is Denjoy-Perron integrable if f
is integrable in the sense of definition 2.2, although this definition is not exactly
the definition by Denjoy, nor the definition by Perron. However, all the mentioned
definitions lead to the same class of integrable functions.

2.2. Henstock-Kurzweil integral. In late fifties, a “generalized Riemann inte-
gral” has been introduced independently by Kurzweil [35] and Henstock [27], see
also [37], [28], [29]. This definition leads to the same family of Denjoy-Perron inte-
grable functions. Its advantage is that it resembles the Riemann definition which is
respected as the most transparent and comprehensible definition of integral. In con-
trast with descriptive definitions, definitions based on approximation and Riemann
sums (or something similar) are called constructive.
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Definition 2.4 (partitions). A tagged partition is a selection of points of the form

D : a = x0 ≤ t1 ≤ x1 ≤ t2 ≤ · · · ≤ tm = b.

The Riemann sum to a function f using the partition D is

S(f,D) =

m∑
i=1

f(ti)(xi − xi−1).

Let δ : I → (0,∞) be a function (called a gauge). Then a tagged partition D is
said to be δ-fine if xi − xi−1 < δ(ti) for each i = 1, . . . ,m.

Definition 2.5 (Henstock-Kurzweil integral). We say that a number K is the
Henstock-Kurzweil integral of f over I if for each ε > 0 there exists a function
δ : I → (0,∞) such that for each δ-fine partition D we have

|S(f,D)−K| < ε.

Notice that the only change in comparison with the Riemann integral is that δ
is not a constant but a variable.

2.3. MC-integral. We return back to the descriptive idea. We want to avoid
the ACG* condition. We present a definition given in [10]. This is completely
elementary, it uses only the simple notion of increasing function. The abbreviation
“MC” refers to “monotonically controlled”.

Definition 2.6. Let f, F : I → R be functions. We say that F is an MC-
antiderivative (or an indefinite MC-integral) of f if there exists an increasing
(=strictly increasing) function γ : I → R (the so-called control function to the
pair (F, f)) such that

(1) lim
y→x

F (y)− F (x)− f(x)(y − x)

γ(y)− γ(x)
= 0, x ∈ I.

Then we define the (definite) integral of f over I as∫ b

a

f(x) dx := F (b)− F (a).

Remark 2.7. If F is the ordinary indefinite integral of f , we may use just γ(x) = x
and recover the classical definition of indefinite integral (primitive function, anti-
derivative). But we are allowed to choose other control functions to integrate more
functions f . This “small” variation of the definition is very powerful. The sim-
plest example how to use it is the pair F (x) = |x|, f(x) = sgnx. If we choose
γ(x) = x + sgnx, then γ controls the pair (F, f), so that F is an antiderivative of
f in the new sense (but not in the classical sense). But much more is enabled. In
fact, the MC integral covers the Lebesgue integral, whose usual definition is, in
comparison with the definition above, quite complicated.

We present here some basic facts, for proofs we refer to [49], [38], [10].

Theorem 2.8. All (definite) integrals defined in this section are uniquely deter-
mined by the integrand.

Theorem 2.9. Let f : I → R be a function. Then the following properties are
equivalent

(i) f is Denjoy integrable in the restricted sense,
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(ii) f is Henstock-Kurzweil integrable,
(iii) f is MC-integrable.

Theorem 2.10. Let f : I → R be a function.
(a) If f is Lebesgue integrable, then f is Denjoy-Perron integrable.
(b) If f is Denjoy-Perron integrable, then f is Lebesgue measurable.
(c) If f is Denjoy-Perron integrable and nonnegative, then f is Lebesgue inte-

grable.

3. Integration of functions of several variables

The task to develop the multidimensional theory of nonabsolutely convergent
integral brings new significant difficulties. The one-dimensional integration can be
understood as an inverse process to differentiation. In the multidimensional case,
an attempt to develop parallel thoughts leads to differentiation of set functions.
If we want to obtain a rich non-absolutely convergent integral, we need to start
from a narrow class of sets. The class of intervals is the most natural choice. (One
could also think about the class of all balls, but it has inconvenient partitioning
properties.) Thus, we observe constructive definitions based on partitions into
intervals or descriptive definitions based on differentiation of interval functions.

The Denjoy-Perron integral has been generalized to higher dimension by Bauer
[9]. Both Kurzweil and Henstock considered also multidimensional or abstract
versions of their integral, [28], [29], [37].

In this section we discuss several definitions of multidimensional nonabsolute
convergent integrals. For various other definition of multidimensional integrals,
discussion of problems and further bibliography we refer to [11], [15], [30], [32],
[33], [38], [44], [47], [48].

3.1. Multidimensional Henstock-Kurzweil integral. In this subsection, let
I ⊂ Rn be a bounded closed interval (this means, a cartesian product of one-
dimensional bounded closed intervals).

Definition 3.1 (partitions). A partition of I is a system D = (I1, . . . , Im) of non-
overlapping closed subintervals of I such that I =

⋃m
i=1 Ii. A tagged partition is

a system D = ((I1, t1), . . . , (Im, tm)): a partition (I1, . . . , Im) is equipped with a
selection of points ti ∈ Ii, i = 1, . . . ,m. The Riemann sum to a function f using
the tagged partition D is

S(f,D) =

m∑
i=1

f(ti) |Ii|.

Let δ : I → (0,∞) be a function (called a gauge). Then a tagged partition D =
((I1, t1), . . . , (Im, tm)) is said to be δ-fine if diam Ii < δ(ti) for each i = 1, . . . ,m.

Definition 3.2 (Henstock-Kurzweil integral). We say that a number K is the
Henstock-Kurzweil integral of f over I if for each ε > 0 there exists a function
δ : I → (0,∞) such that for each δ-fine partition D we have

|S(f,D)−K| < ε.

Remark 3.3. For the multidimensional Henstock-Kurzweil integral, the Fubini
theorem is available, [36], [37]. However, in contrast with the one-dimensional case,
this integral does not integrate all derivatives.
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Mawhin [41] restricted the class of admissible partitions to obtain an integral
which integrates all derivatives. His partitions are regular, this means that we con-
trol the shape of intervals in the partition (the proportion of the longest edge to the
shortest edge should be watched). Such regular integrals integrate all derivatives,
however, the Fubini theorem is lost. This is not a symptom of cumbersomeness of
the definition but a general feature. The example in [32] shows that the validity of
Fubini’s theorem is not compatible with the property of integrating all derivatives.
It demonstrates the following

Theorem 3.4. There exists a differentiable function u on R2 and a set E ⊂ R of
positive Lebesgue measure such that for each x ∈ E we have the following behavior:

∂u

∂x
(x, y) ≥ 0, y ∈ [0, 1],

and ∫ 1

0

∂u

∂x
(x, y) dy =∞.

(this is the Lebesgue integral).

3.2. Pfeffer integral. A disadvantage of the theory of integral based on interval
functions is that such integral depends on the choice of the coordinate system and
we do not obtain reasonable results on change of variables. In more sophisticated
theories, the indefinite integral is a function defined on a more general family of
sets. The natural choice for such a system of sets is the family of all BV -sets. This
direction has been developed by Pfeffer, see e.g. [46], [48]. We present here the
descriptive definition, following [48].

The importance of the BV class is that it is one of few natural function spaces
which distinguishes between “regular” and “irregular” sets: it contains some non-
trivial characteristic functions of bounded measurable sets but not all of them.

Definition 3.5 (BV -set). We say that E ⊂ Rn is a BV -set if E is Lebesgue
measurable, 0 < |E| <∞, and the distributional derivative of χE is a vector Radon
measure. We denote by ‖E‖ the total variation of the measure of DχE . The family
of all BV sets is denoted by BV.

Definition 3.6 (Charge). Charge is an additive function F on BV with the fol-
lowing continuity property:

If Ej ∈ BV, supj ‖Ej‖ <∞, |Ej | → 0 and diam
⋃
j Ej <∞, then F(Ej)→ 0.

Definition 3.7 (Pfeffer gauge). A function δ : Rn → [0,∞) is called a Pfeffer
gauge if the set {x : δ(x) = 0} is of σ-finite (n−1)-dimensional Hausdorff measure.
The collection of all Pfeffer gauges on Rn is denoted by P.

Definition 3.8 (δ-fine partition). The regularity of a BV set E is the number

reg(E) =
|E|

‖E‖ diamE
,

with the convention that reg(E) = 0 if |E| = 0. We also denote

regxE = reg(E ∪ {x}).

Let δ ∈ P and η > 0. An η-regular δ-fine partition on E ⊂ Rn is a system
{(E1, t1), . . . , (Em, tm)} of disjoint bounded BV -sets accompanied with points, such



NON-ABSOLUTELY CONVERGENT INTEGRALS IN METRIC SPACES 7

that ti ∈ E, regti(Ei) > η and

diam(xi ∪ Ei) ≤ δ(ti), i = 1, . . . ,m.

Definition 3.9 (Derivates). If F is a charge, x ∈ Rn, δ, η > 0, we denote

DF(x) = inf
η>0

sup
δ>0

sup
{F(E)

|E|
: E ∈ BV, E ⊂ B(x, δ), regx(E) > η

}
,

and
DF(x) = −D(−F)(x).

If DF(x) = DF(x) ∈ R, we say that F is derivable at x and the derivate DF(x) is
defined as the common value of DF(x) and DF(x).

Definition 3.10 (Variation). If F is a charge, δ ∈P and η > 0, we denote

Vδ,ηF(E) = sup
{ m∑
i=1

F(Ei) : {(Ei, ti)} is a η-regular δ-fine partition on E
}

and
V∗F(E) = sup

η>0
inf
δ∈P

Vδ,ηF(E),

The set function
V∗F : E 7→ V∗F(E)

is a Borel measure, which may be infinite even on compact sets.

Definition 3.11 (AC∗-charge). We say that a charge F is AC∗ if V∗F is absolutely
continuous (this means, |E| = 0 =⇒ V∗F(E) = 0).

Definition 3.12 (Pfeffer integral). Let f : Rn → R be a function. We say that a
AC∗ charge F is an indefinite Pfeffer integral of f if DF(x) = f(x) for a.e. x ∈ Rn.
If E ∈ BV and F is an indefinite Pfeffer integral of f , then the value F(E) is called
the definite Pfeffer integral of f over E.

Remark 3.13. The definition of the Pfeffer integral looks fairly complicated, but
for some versions of the Gauss-Green theorem it is probably optimal.

4. UC-integral

In our approach, we do not use set functions but functionals. An important
step towards this setting was the PU -integral (referring to “partition of unity”)
introduced by Jarńık and Kurzweil [30], [31]. Here the partition of unity to smooth
functions replaces the partition into intervals. The PU -integral fits into the gener-
ality of manifolds and has been applied to establish a version of the Stokes theorem.

We will work fully in the functional setting. Our method is descriptive. One of
advantage of the functional approach is that this falls within the well established
theory of distributions. Further, function spaces provides much more possibilities
for the choice of test objects than classes of sets. Indeed, characteristic functions
of sets are irregular on principle, whereas we use smooth functions to test with.

Some authors think on distributions in connection with nonabsolutely convergent
integrals in the sense that an indefinite integration can be applied not only to
functions but to distributions, [42], [6], [51]. Our aim is different: the indefinite
integral is a distribution, but our integrand is always a function. The idea to
integrate with respect to a distribution appears in the work by Burkill [12], where

the Stieltjes type integral
∫ 1

0
f(dng/dxn−1) is considered.
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Also in our case, the integration is an inverse process to differentiation: we differ-
entiate distributions with respect to distributions similarly as the Radon-Nikodým
differentiation (in the geometric setting by Lebesgue and Besicovitch) differentiates
measures with respect to measures. Our approach, following [40] is new even in the
case that the underlying distribution is just the Lebesgue measure.

In what follows, let Ω ⊂ Rn be an open set.
Recall that the space C∞c (Ω) of “test functions” is defined as the class of all

infinitely differentiable functions ϕ on Ω with a compact support. This space is
often labeled as D(Ω); however, we reserve the symbol D for a different space.

The action of a distribution F on a test function ϕ ∈ C∞c (Ω) is denoted by
〈F , ϕ〉.

We denote

D(x, r) = {ϕ ∈ C∞c (Ω,Rn), sptϕ ⊂ B(x, r), ; Lipϕ ≤ 1/r}.
Let T be a distribution on Ω, and B(x, r) ⊂ Ω is a ball. We define

‖T ‖x,r = sup
{
〈T , ϕ〉 : ϕ ∈ D(x, r)

}
.

The definition of UC-integral in Ω is the following (UC refers to “uniformly con-
trolled”; the control is uniform with respect to ϕ ∈ D(x, r)):

Definition 4.1 (UC integral in Ω). Let F , G be distributions on Ω and f : Ω→ R
be a function. We say that F is an indefinite UC-integral of f with respect to G if
there exist σ ≥ 1 and a Radon measure µ on Ω such that

lim
r→0+

‖F − f(x)G ‖x,r
µ(B(x, σr))

= 0

for each x ∈ Ω. If the indefinite UC-integral exists, we say that f is locally UC-
integrable with respect to G .

Remark 4.2. Another natural idea is to consider a limit process for quotients

〈F , ϕ〉 − f(x)〈G , ϕ〉∫
R ϕdµ

.

This would follow more closely the idea of MC-integration. Our experience indi-
cates that our approach based on Definition 4.1 is more efficient.

Theorem 4.3. The UC integral is uniquely determined by G and f .

Proof. See the general case in Section 6 below. �

Definition 4.4. Let ν be a Radon measure on Ω. Then the UC-integral of a
function f with respect to ν is defined by means of the identification of ν with the
distribution

ϕ 7→
∫

Ω

ϕdν.

Theorem 4.5. Let ν be a Radon measure on Ω and f : Ω→ R be a function.
(a) If f is locally ν-integrable, then f is locally UC-integrable with respect to ν

and

ϕ 7→
∫

Ω

f ϕ dν

is the corresponding indefinite UC-integral.
(b) If f is locally UC-integrable with respect to ν, then f is ν-measurable.
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(c) If f ≥ 0 is locally UC-integrable with respect to ν, then f is locally ν-
integrable.

Proof. See the general case in Section 6 below. �

4.1. Weakly differentiable functions. In this subsection, we define a class of
“weakly differentiable functions” which is a simultaneous generalization of the
classes of Sobolev functions (namely, function whose distributional derivatives are
locally Lebesgue integrable) and pointwise differentiable functions.

Definition 4.6. Let Ω ⊂ Rn be an open set. A function g : Ω→ Rn is said to be
a UC-derivative of a locally Lebesgue integrable function u : Ω → R if there exist
a constant σ ≥ 1 and a Radon measure µ on Ω such that

(2) lim
r→0+

sup
ϕ∈D(x,r)

∣∣∣∫Ω(u(y)− u(x)− g(x) · (y − x)
)

divϕ(y) dy
∣∣∣

µ(B(x, σr))
= 0, x ∈ Ω.

Proposition 4.7. Let u : Ω→ R be a locally Lebesgue integrable function.

(a) A function g is a UC-derivative of u if and only if the distributional deriva-
tive of u becomes the indefinite UC-integral of g with respect to the Lebesgue
measure.

(b) If g, g∗ are UC-derivatives of u, then g = g∗ a.e. in Ω.
(c) If 0 is a UC-derivative of u and Ω is connected, then u is a.e. in Ω equal to a

constant.
(d) If u is pointwise differentiable, then ∇u is a UC-derivative of u.

(e) If u belongs to the Sobolev space W 1,1
loc (Ω), then ∇u is a UC-derivative of u.

Proof. See [40]. �

5. Function spaces

5.1. Lipschitz spaces. If we want to define a version of the UC-integral on metric
spaces, we must keep in mind that Lipschitz smoothness is the ultimate smoothness
in the generic metric space setting. Therefore, “distributions” will be functionals
not on infinitely smooth functions but just on Lipschitz functions.

It is well known that spaces of Lipschitz functions can be represented as dual
spaces. The result goes back to Arens and Eells [7], see [52]. The approach below
is based on [34].

Let (X, ρ) be a metric space. In this section, our space X will be separable
and boundedly compact. The latter means that all balls are relatively compact.

Definition 5.1 (Spaces of continuous functions and measures). We use the follow-
ing notation. Cb(X) is the Banach space of all bounded continuous functions on X,
Cc(X) is the set of all continuous functions on X with compact support and C0(X)
is the closure of Cc(X) in Cb(X). The norm in the space Cb(X) is

‖u‖C = supx∈X |u(x)|.
Linear functionals F on Cc(X) satisfying the condition

u ≥ 0 =⇒ F(u) ≥ 0

are called Radon integrals. According to the Riesz representation theorem, there is
an one-to-one correspondence between Radon integrals and Radon measures, this
means, nonnegative Borel measures on X such that µ(K) < ∞ for each compact
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set K ⊂ X. The term “Borel measure” does not mean that we measure only Borel
sets, for each fixed measure µ we extend the measure from the Borel σ-algebra to
the σ-algebra of µ-measurable sets by the completion process.

If possible, we identify Radon integrals with Radon measures.
The dual to the space C0(X) is the space C0(X)∗ of all signed Radon integrals on

X. These are integrals with respect to signed Radon measures. Signed measures are
always real-valued. Hence, there is no inclusion between Radon measures (allowed
to attain infinite values) and signed Radon measures.

Definition 5.2 (Lipschitz function). A Lipschitz constant of a mapping between
metric spaces f : (Z, ρZ)→ (Y, ρY ) is the smallest K ∈ [0,∞] such that

ρY (f(x), f(y)) ≤ KρZ(x, y), x, y,∈ Z.

The Lipschitz constant of f is denoted by |f |Lip. We say that f is Lipschitz if
|f |Lip <∞.

Definition 5.3 (Lipschitz and “co-Lipschitz” spaces). We start from the Banach
space D(X) of all bounded Lipschitz functions u on X (“test functions”) endowed
with the norm

‖u‖D(X) = max{‖u‖C , |u|Lip}.
Recall that D(X)∗ denotes the dual Banach space to D(X). Each element of the
space C0(X)∗ is identified with the continuous linear functional

u 7→
∫
X

u dν, u ∈ Cb(X),

where ν is the signed measure representing the given functional. Since D(X) is
trivially continuously embedded into Cb(X), by the dual process, C0(X)∗ is naturally
embedded into D(X)∗ (and, in what follows, identified with the corresponding
subclass of D(X)∗). The closure of C0(X)∗ in D(X)∗ is the space of convergent
(metric) distributions on X, it is denoted by D′(X). The term “convergent” is
motivated by the feature that it is possible to determine the definite integral if the
indefinite integral is a convergent metric distribution.

Let u ∈ D(X). Then the functional

κ(u) : µ 7→
∫
X

u dµ, µ ∈ C0(X)∗

is continuous with respect to the D(X)∗ norm and thus it can be uniquely extended
as a continuous linear functional on D′(X). The mapping

κ : u 7→ κ(u) : D(X)→ (D′(X))∗

is called canonical embedding.

Definition 5.4 (Localization). The co-Lipschitz spaces can be localized as follows.
If K ⊂ X is compact, let CK(X) be the subspace of C0(X) consisting of all C0(X)
function with support in K and DK(X) be the subspace of D(X) consisting of all
test functions with support in K. Then D′K(X) is defined as the closure of CK(X)∗

in DK(X)∗.We define Dc(X) as the union of all DK(X) over all compact K ⊂ X
and D′loc(X) as the intersection of D′K(X) over all compact K ⊂ X. The elements
of D′loc(X) will be called (metric) distributions. In what follows, we study in detail
the “global versions” of spaces.
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Theorem 5.5. The dual of D′(X) is (isometrically isomorphic to) D(X). The
dual of D′K(X) is (isometrically isomorphic to) DK(X).

Proof. We prove only the first assertion. Obviously the canonical embedding κ :
D(X)→ (D′(X))∗ is an isometrical endomorphism, we need only to show that it is
onto. Let T be a continuous linear functional on D′(X). We set

u(x) = T(δx), x ∈ X,
where δx is the Dirac measure at x. Then u is a function on X. If x, y ∈ X, then

|u(y)− u(x)| = |T(δy − δx)| ≤ ‖T‖D′(X)∗‖δy − δx‖D(X)∗ ≤ ‖T‖D′(X)∗ρ(x, y)

and

|u(x)| = |T(δx)| ≤ ‖T‖D′(X)∗‖δx‖D(X)∗ ≤ ‖T‖D′(X)∗

Hence u ∈ D(X) and ‖u‖D(X) ≤ ‖T‖D′(X)∗ . Choose µ ∈ C0(X)∗. As an exercise we
find signed measures µj such that µj → µ in D(X)∗ and µj are linear combinations
of Dirac measures in X. Then ∫

X

u dµj = T(µj)

and passing to the limit we obtain∫
X

u dµ = T(µ).

Then it is easy to conclude that T = κ(u). �

Remark 5.6. We identify D(X) with (D′(X)∗, so that from now, we have weak*
topology and convergence on D(X) (and similarly on DK(X)) well defined.

Proposition 5.7. Let u, uj ∈ D(X), j = 1, 2, . . . . Then the following assertions
are equivalent:

(i) uj → u weak* in D(X),
(ii) uj is bounded in D(X) and uj → u pointwise,

(iii) uj is bounded in D(X) and uj → u locally uniformly.

Proof. (i) =⇒ (ii). By the Banach-Steinhaus theorem [18, Theorem 3.12]), each
weak* convergent sequence is bounded. Since each Dirac measure is in D′(X), the
pointwise convergence follows.

(ii) =⇒ (iii): Boundedness in D(X) implies equicontinuity and each equicontin-
uous pointwise convergent sequence converges locally uniformly (this is related to
the Arzelà-Ascoli theorem).

(iii) =⇒ (i): It follows form the facts that κ(uj)(µ)→ κ(u)(µ) for each measure
µ ∈ C0(X)∗, that the measures are dense in D′(X) and that the sequence (uj)j is
bounded. �

Proposition 5.8. The following properties of a linear functional T : D(X) → R
are equivalent:

(i) T ∈ D′(X),
(ii) T is weak* continuous on D(X),
(iii) T is sequentially weak* continuous on D(X).

Proof. This follows from Proposition 5.7 using basic facts from functional analysis.
�
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Proposition 5.9. Dc(X) is weak* dense in D(X)

Proof. It is left as an exercise. Here it is essential that X is boundedly compact. �

Remark 5.10. If T is a distribution on Ω ⊂ Rn, then it can be extended to a
functional from D′(Ω) (in our notation) if and only if T is bounded on C∞c (Ω) in
the D(Ω)-norm and

〈T , ϕj〉 → 0

whenever ϕj ∈ C∞c (Ω) and ϕj → 0 weak* in D(Ω).
We can consider the example

(3) 〈T , ϕ〉 = ϕ′(0), ϕ ∈ C∞c (Rn).

Then T is bounded on C∞c (Rn) in the D(Rn)-norm and can be extended as a
bounded linear functional on D(Rn). However, such an extension is not constructive
(the use of Hahn-Banach theorem) and is not weak* continuous on D(Rn). Hence
T from (3) is not a metric distribution.

Definition 5.11 (Banach space valued distributions). Let Y be a Banach space.
We say that a linear mapping T : Dc(X)→ Y is a Y -valued metric distribution if
for each compact set K ⊂ X, T is sequentially weak* continuous from DK(X) to Y .
The collection of all Y -valued metric distributions on X is denoted by D′loc(X,Y ).

5.2. Pointwise BV functions. In the metric measure space setting, BV -functions
can be defined as functions, for which a Poincaré-type inequality holds. In this
approach, we say that u ∈ L1(X,λ) is BV -function if there exist constants C, σ ≥ 1
and a Radon measure ν such that the inequality

(4)

∫
B(x,r)

|u− ux,r| dλ ≤ rν(B(x, σr))

holds for each ball B(x, r) ⊂ X. Here ux,r is the integral average of u over B(x, r).
The measure ν appearing in (4) has the role of an “upper gradient” to u. For the
BV theory in the metric space setting see [43], [1], [2], [8], [26].

We obtain a much more wider class of functions if we let (4) hold for small balls
only and with the constant C depending on the point.

Definition 5.12. We say that u ∈ L1
loc(X,λ) is a pointwise BV function (we

abbreviate a PBV function) there exist a constant σ ≥ 1 and a Radon measure ν
such that the asymptotic behavior

(5) lim sup
r→0+

∫
B(x,r)

|u− ux,r| dλ
rν(B(x, σr))

<∞

holds for each x ∈ X.
The measures serving for (5) are called pointwise upper gradients to u. The class

of all pointwise upper gradients to u is denoted by PUG(u).

Example 5.13. A typical example of a PBV function is a Sobolev function on an
Euclidean domain. However, it is easily seen that also each pointwise differentiable
function is PBV , with the Lebesgue measure serving as an pointwise upper gradi-
ent. Of course, not all pointwise gradients are Lebesgue integrable; recall that this
was one of main motivation for the theory of nonabsolutely convergent integrals.
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Example 5.14. Another typical example of a BV (and thus PBV ) function in
the Euclidean setting is a characteristic set of a set of finite perimeter. However, if
the (topological) boundary of a set G ⊂ Rn is countably (n−1)-rectifiable, then χG
is also a PBV function. In particular, we may consider the case that there exists
an exterior normal vector at each boundary point x to G, see [3, Theorem 2.61] for
the proof of countable rectifiability in such a situation. Note that we do not require
the normal vector to depend continuously on x and thus the perimeter of G may
happen to be locally infinite.

6. Integration in metric spaces

In this section, based on [34], we introduce our concept of an integral with respect
to a metric distribution, prove that this integral makes sense and investigate some
basic properties.

In the sequel, we assume that X is a complete separable metric space
equipped with a doubling measure λ. This means that λ is a Radon measure
and there exists a constant C2 such that

λ(B(x, 2r)) ≤ C2λ(B(x, r))

for each x ∈ X and r > 0. Note that such a space X is always boundedly compact.
Notice that for each τ > 1 there exists a constant Cτ such that

(6) λ(B(x, τr)) ≤ Cτλ(B(x, r)).

For example, we can use Cτ = C2 for 1 < τ ≤ 2, Cτ = C2
2 for 2 < τ ≤ 4 and so on.

Definition 6.1. If x ∈ X and r > 0, we denote

D(x, r) = {ϕ ∈ D(X), sptϕ ∈ B(x, r), |ϕ|Lip ≤ 1/r, ‖ϕ‖C ≤ 1.}
If Z is a Banach space and T ∈ D′(X,Z), we write

‖T ‖x,r = sup
{
|〈T , ϕ〉| : ϕ ∈ D(x, r)

}
,

where | · | is the norm in Z.

Definition 6.2. Let Y,Z be Banach spaces and L = L(Y,Z). Let F ∈ D′loc(X,Z),
G ∈ D′loc(X,Y ) and f : X → L be a function. We say that F is an indefinite
UC-integral of f with respect to G if there exist σ ≥ 1, and a finite Radon measure
µ on X such that

(7) lim
r→0+

‖F − f(x)G ‖x,r
µ(B(x, σr))

= 0

holds for each x ∈ X.
We denote the indefinite UC-integral of f with respect to G (which is unique by

Theorem 6.7 below) by

G bf.
We say that f is UC-integrable with respect to G if G bf exists and belongs to
D′(X). Then we define the definite UC-integral of f with respect to G as∫

G

f = 〈G bf, 1〉.

By Proposition 5.9, the definite integral is determined by the values of F on
Dc(X,Z)).
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We develop most of the theory in the scalar case, the vector valued generalization
is only a matter of a more careful notation.

Remark 6.3. The purpose of the scaling factor σ is to avoid the dependence of
the concept of integral on the geometry of balls. As it is, the integral is invariant
under bilipschitz transformations (see Subsection 6.2) and, in particular, it does
not depend on the choice of a norm in Rn.

Definition 6.4. Let τ > 1, µ be a Borel measure on X and x ∈ X. We say that
r > 0 is a τ -absorbing radius for µ and x if

µ(B(x, τr)) + λ(B(x, τr)) ≤ 2Cτ
(
µ(B(x, r)) + λ(B(x, r))

)
,

where Cτ is as in (6).

Lemma 6.5. Let µ be a Radon measure on X, x ∈ X, τ > 1 and δ > 0. Then
there exists a τ -absorbing radius r ∈ (0, δ) for µ and x.

Proof. Denote µ̄ = µ+λ. Suppose the assertion is not true. Starting withR ∈ (0, δ),
by iteration we obtain

(2Cτ )mµ̄(B(x, τ−mR)) ≤ · · · ≤ 2Cτ µ̄(B(x, τ−1R)) ≤ µ̄(B(x,R)),

m = 1, 2, . . . .

Hence

λ(B(x,R)) ≤ Cmτ λ(B(x, τ−mR)) ≤ Cmτ µ̄(B(x, τ−mR)) ≤ 2−mµ̄(B(x,R)),

m = 1, 2, . . . ,

which is a contradiction. �

Lemma 6.6 (Partition of unity). Let µ be a Radon measure on X, ∆ : X → R be
a strictly positive function, σ ≥ 1 be a constant and K ⊂ X be a compact set. Then
there exist a constant C and a finite system (ωi)

m
i=1 of smooth functions, accompa-

nied with a system ((B(xi, ri))
m
i=1 of pairwise disjoint balls such that

∑m
i=1 ωi = 1

on K and the following properties are satisfied for i = 1, . . . ,m:

(8) ωi ≥ 0 on X,

(9) ωi ∈ DB(xi,5ri)(X),

(10) |ωi|Lip ≤ 2/ri,

(11) ri ≤ ∆(xi),

(12) B(xi, 5σri) ⊂ X

and

(13) µ̄(B(xi, 5σri)) ≤ C µ̄(B(xi, ri)),

where µ̄ = µ+ λ.

Proof. Using Lemma 6.5, with each x ∈ K we associate a 5σ-absorbing radius r(x)
for µ and x such that r(x) < ∆(x). . We cover K with the balls B(x, r(x)) and
using compactness, we select a finite subcovering. Now, the Vitali covering theorem
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yields a finite sequence (B(xi, ri))
m
i=1 of pairwise disjoint balls from the collection

{B(x, r(x) : x ∈ K} such that

K ⊂
m⋃
i=1

B(xi, 3xi).

We may assume that these balls are ordered so that

(14) r1 ≥ r1 ≥ · · · ≥ rm.
We set

ηi(x) =


1, x ∈ B(xi, 3ri),

4− ρ(x, xi), x ∈ B(xi, 4ri) \B(xi, 3ri),

0, x /∈ B(xi, 4ri),

ωi = max
j=1,...,i

ηj − max
j=1,...,i−1

ηj , i = 1, . . . ,m

and (in the notation of (6))
C = 2C5σ.

Then all the requirements are satisfied. �

Theorem 6.7. Let Y,Z be Banach spaces. Let G ∈ D′loc(X,Y ) and f : X →
L(Y,Z) be a function. There exists at most one indefinite integral of f with respect
to G .

Proof. For simplicity we consider the case that Z = R. Assume that F1 and F2

are indefinite integrals of f with respect to G . Then F = F1 − F2 is an indefinite
integral of 0. Therefore, it is enough to show that there is only the trivial indefinite
integral of 0. (Notice that the distribution G plays no role if we integrate the zero
function.) Let F be an indefinite integral of 0 and η ∈ Dc(X) be a test function.
Let K be the support of η and U ⊂ X be a relatively compact open set containing
all balls B(x, 1) with x ∈ K. Let µ be as in Definition 6.2 and µ̄ = µ+ λ. For each
x ∈ K we find ∆(x) ∈ (0, 1) such that

(15) |〈F , ϕ〉| ≤ εµ(B(x, 5σr)), ϕ ∈ D(x, 5r), 0 < r ≤ ∆(x).

Using Lemma 6.6 we find a finite system (ωi)
m
i=1 of smooth functions and a sys-

tem ((B(xi, ri))
m
i=1 of pairwise disjoint balls such that

∑m
i=1 ωi = 1 on K and the

properties (8)–(13) are satisfied for i = 1, . . . ,m. Since ri ≤ 1, from (10) we obtain

|ωiη|Lip ≤
3

ri
‖η‖D(X) i = 1, . . . ,m.

By (15) and (13), ∣∣〈F , ωiη〉∣∣ ≤ C‖F‖xi,5ri ≤ Cεµ(B(xi, 5σri))

≤ Cεµ̄(B(xi, ri)), i = 1, . . . ,m.

Since the balls B(xi, ri) are pairwise disjoint, summing over i we obtain∣∣〈T , η〉
∣∣ ≤ Cεµ̄(U).

Letting ε→ 0 we conclude the proof. �

Proposition 6.8. Let f be UC-integrable with respect to G . Then∫
G

f ϕ = 〈G bf, ϕ〉.
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Proof. The proof is left as an exercise. �

Example 6.9. Let L be the integration with respect to the Lebesgue measure
on X = (0,∞) and f(x) = sin x

x . Then f is not UC-integrable with respect to L .
Indeed, we cannot substitute ϕ(x) = sinx to the indefinite integral

〈F , ϕ〉 =

∫ ∞
0

sinx

x
ϕ(x) dx

although sin ∈ D(X). If we want to give a reasonable sense to the UC-integral

(16)

∫ ∞
0

sinx

x
dx,

we change the distance function on X to the “hyperbolic distance”

ρ̃(x, y) =
∣∣∣log

y

x

∣∣∣.
and write X̃ = ((0,∞), ρ̃). The space X̃ is obviously equipped with a doubling
measure (for example, the measure with density 1/x). We set

〈F , ϕ〉 =

∫ ∞
0

1− cosx

x2

(
ϕ(x)− xϕ′(x)

)
dx, ϕ ∈ D(X̃).

If ϕ ∈ D(X̃), then the Lipschitz condition implies that |ϕ′(x)| ≤ 1
x a.e. and thus

〈F , ϕ〉 ≤ C‖ϕ‖D(X̃).

Assume that ϕj → 0 weak* in D(X̃) and u ∈ C∞c ((0,∞)). Then∫ ∞
0

u(x)xϕ′j(x) dx = −
∫ ∞

0

(
u(x) + xu′(x)

)
ϕj(x) dx→ 0.

Since C∞c ((0,∞)) is dense in L1((0,∞)), it follows that ψj → 0 weak* in L∞((0,∞)),
where ψj(x) := xϕ′j(x). Since the function

x 7→ 1− cosx

x2

belongs to L1((0,∞)), we deduce that 〈F , ϕj〉 → 0. Hence F ∈ D′(X̃). It is easy
to verify that F is a weak* continuous extension of the functional

ϕ 7→
∫ ∞

0

sinx

x
ϕ(x) dx, ϕ ∈ Dloc(X̃)

to D(X̃) and thus we may define the definite UC-integral (16) as 〈F , 1〉.
We however admit that the ordinary Denjoy-Perron integral is better to handle

integrals over unbounded subintervals of the real line than the UC-integral, which
covers a wide range of local oscillations, but is not optimized with respect to the
global convergence.

We are convinced that for fine studies of the definite integral, it is better to
modify the definition according to particular structures than to try to propose
universal directives based only on the setting of metric spaces.
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6.1. Integration with respect to a measure. We prove that the Lebesgue in-
tegral with respect to a Radon measure is included in our integral. We also show
that each UC-integrable function is measurable, so that the difference between the
Lebesgue integral and the UC-integral is a matter of cancellation if the integrand
attains large negative and positive values simultaneously.

In Theorem 6.15 and Remark 6.16, we compare our integral with the Denjoy-
Perron integral.

Lemma 6.10. Let µ be a Radon measure on X and N ⊂ X be a µ-null set. Then
there exist a Radon measure µ∗ on X which absolutely continuous with respect to µ
and a lower semicontinuous function w on X such that w ≥ 1, w = ∞ on N and
dµ∗ = w dµ.

Proof. For each j = 1, 2, . . . we find an open set Wj ⊂ X such that N ⊂ Wj and
µ(Wj) < 4−j . Then the the function

w =
∑
j

2jχWj

and µ∗ determined by dµ∗ = w dµ have obviously the required properties. �

Lemma 6.11. Let ν, µ be finite Radon measures on X. Then

lim sup
r>0

µ(B(x, r))

ν(B(x, 3r))
<∞ for ν-a.e. x ∈ spt ν.

Proof. Let

Es =
{
x ∈ X : lim sup

r→0+

µ(B(x, r))

ν(B(x, 3r))
> s
}
, s > 0

and K ⊂ Es be a compact set. Then we use Vitali covering theorem we cover K
with open balls B(xi, 3ri) such that B(xi, ri) are pairwise disjoint and

sν(B(xi, 3ri) < µ(B(xi, ri)), i = 1, . . . ,m.

Summing over i and passing to supremum over K ⊂ Es (notice that Es is a Borel
set) we obtain

sν(Es) ≤ µ(X).

Letting s→∞ we obtain the assertion. �

Theorem 6.12. Let ν be a Radon measure on X and Gν be the metric distribution
induced by ν. Let f : X → R be a ν-integrable function. Then UC-integral Gνbf
exists as well and 〈

Gνbf, ϕ
〉

=

∫
X

f ϕ dν, ϕ ∈ D(X).

Proof. We will show that

F(ϕ) =

∫
X

f ϕ dν.

is the indefinite UC-integral of f with respect Gν We find a sequence (fj)
∞
j=1 of

continuous functions such that∫
X

|fj − f | dν < 2−j−1
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and write

g =

∞∑
j=1

j|fj − fj+1|.

Then g is Lebesgue integrable with respect to ν. Set

µ(E) =

∫
E

g dν + λ(E), E ⊂ X Borel.

We pick x ∈ X, choose ε > 0 and distinguish two cases.
Case (a): Suppose that

∑
j |fj(x)− fj+1(x)| <∞. Then f(x) = lim fj(x). We

find m ∈ N such that εm > 1 and |fm(x)− f(x)| < ε. Further we find δ > 0 such
that |fm − f(x)| < ε on B(x, δ). Let 0 < r < δ and ϕ ∈ D(x, r). Then we estimate∣∣∣〈F , ϕ〉 − f(x)〈Gν , ϕ〉

∣∣∣ =
∣∣∣∫
X

(f − f(x))ϕdν
∣∣∣

≤
∫
X

|f − fm| |ϕ| dν +

∫
X

|fm − f(x)| |ϕ| dν

≤
∫
X

( g
m

+ ε
)
|ϕ| dν ≤ 2ε µ(B(x, r)).

Case (b): Suppose that
∑
j |fj(x) − fj+1(x)| = ∞. We find m ∈ N such that

εm > 1. We observe that g(x) = ∞, and since g is lower semicontinuous, there
exists δ > 0 such that |fm − f(x)| < εg on B(x, δ). Let 0 < r < δ and ϕ ∈ D(x, r).
Then we estimate∣∣∣〈F , ϕ〉 − f(x)〈Gν , ϕ〉

∣∣∣ =
∣∣∣∫
X

(f − f(x))ϕdν
∣∣∣

≤
∫
X

|f − fm| |ϕ| dν +

∫
X

|fm − f(x)| |ϕ| dν

≤
∫
X

( g
m

+ εg
)
|ϕ| dν ≤ 2ε µ(B(x, r)).

In any case, we have shown that F has the required properties. �

Theorem 6.13. Let ν be a Radon measure on X and Gν be the metric distribution
induced by ν. Let a function f : X → R be UC-integrable with respect to Gν . Then

(a) f is ν-measurable,
(b) if Gνbf = 0, then f = 0 ν-a.e.,
(c) if f ≥ 0, then

0 ≤
∫
X

f dν <∞.

Proof. We only sketch the proof. Denote F = Gνbf . Let σ and µ be as in Definition
6.2. We consider the “derivate” g : sptµ→ [−∞,∞] defined as

g(x) = inf
ε>0

lim inf
r→0+

gr,ε(x),

where

gr,ε(x) = inf

{
〈F , ϕ〉+ εµ(B(x, σr))

〈Gν , ϕ〉
: ϕ ∈ D(x, r), ϕ ≥ 0, 〈Gν , ϕ〉 > 0

}
.
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In can be seen that g is Borel measurable and g ≥ f . It remains to prove that
g ≤ f ν-a.e. Set

(17) E =
{
x ∈ spt ν : lim sup

r>0

µ(B(x, r))

ν(B(x, 3r))
<∞

}
where µ = µ+ λ. By Lemma 6.5,

lim inf
r→0+

µ(B(x, σr))

µ(B(x, r/6))
<∞., x ∈ E.

From Lemma 6.11 we infer that ν(X \ E) = 0. If x ∈ E and ε > 0, we find a
sequence rj ↘ 0 and a sequence (ϕj)j of nonnegative test functions, ϕj ∈ D(x, rj),
such that ϕj ≥ 1/2 on B(x, rj/2) and thus

µ(B(x, σrj)) ≤ Cµ(B(x, rj/6)) ≤ Cν(B(x, rj/2)) ≤ C〈Gν , ϕj〉.

Then

lim inf
j→∞

grj ,s ≤ lim inf
j→∞

(
〈F , ϕj〉 − f(x)〈Gν , ϕj〉

)
+ f(x)〈Gν , ϕj〉+ εµ(B(x, σrj))

〈Gν , ϕ〉

≤ f(x) + lim inf
j→∞

2εµ(B(x, σrj))

〈Gν , ϕj〉
≤ f(x) + Cε.

Letting ε → 0 we obtain that g ≤ f on E, this means ν-a.e. It follows that f is
ν-measurable, this proves (a).

From the above reasoning we also see that f ≥ 0 λ-a.e. on {x ∈ E : g(x) ≥ 0}.
If F = 0, then it follows that f ≥ 0 λ-a.e. on X and from the symmetry reason we
obtain that f = 0, which is (b).

Finally, assume that f ≥ 0 and the indefinite UC-integral Gνbf exists. Similarly
to the proof of Theorem 6.7 we are able to show that nonnegative functions have
nonnegative integrals, thus, the integral depends monotonically on the integrand.
Since f is a ν-measurable function, there exist ν-integrable functions fj ≥ 0 such
that fj ↗ f . The monotonicity arguments and Theorem 6.12 show that

lim
j

∫
X

fj dν = lim
j

∫
Gν

fj ≤
∫

Gν

f <∞.

By the monotone convergence theorem, f is ν-integrable. �

Corollary 6.14. Let ν be a Radon measure on X, f : X → R be a function. Then
f is ν-integrable if and only if the UC integral of f with respect to Gν “converges
absolutely”, this means, both f and |f | are UC-integrable.

Proof. This follows from Theorems 6.12 and 6.13.
�

Theorem 6.15. Let F be an indefinite Denjoy-Perron integral of f : (a, b) → R
on (a, b). Let a distribution F be defined as

〈F , ϕ〉 = −
∫ b

a

F (x)ϕ′(x) dx, ϕ ∈ D((a, b)).

Then F is an indefinite UC-integral of f with respect to the Lebesgue measure.
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Proof. We use the coincidence of the Denjoy-Perron integral with the MC-integral.
By (1), there exists an increasing function γ on (a, b) such that

lim
y→x

F (y)− F (x)− f(x)(y − x)

γ(y)− γ(x)
= 0, x ∈ (a, b).

Let µ be a Lebesgue-Stieltjes measure induced by γ, so that

µ((y, z]) = γ(z)− γ(y), y, z ∈ (a, b), y < z.

Given x ∈ (a, b) and ε > 0, let δ > 0 be so small that (x− δ, x+ δ) ⊂ (a, b) and

|F (y)− F (x)− f(x)(y − x)| ≤ ε|γ(y)− γ(x)|, y ∈ (x− δ, x+ δ).

If 0 < r < δ and ϕ ∈ D(x, r), then∣∣∣∫ b

a

F (y)ϕ′(y) dy − f(x)

∫ b

a

ϕ(y) dy
∣∣∣ =

∣∣∣∫ b

a

(
F (y)− F (x)− f(x)(y − x)

)
ϕ′(y) dy

∣∣∣
≤ 2r ε sup

y∈(a,b)

|ϕ′(y)| µ((x− r, x+ r))

≤ 2εµ(B(x, r)).

This shows that F is the indefinite UC-integral of f with respect to the Lebesgue
measure. �

Remark 6.16. The converse of Theorem 6.15 is not true. Whereas the indefinite
Denjoy-Perron integral is always continuous, there exists a UC-integrable function
on R such that its indefinite UC-integral cannot be represented by a continuous
function.

6.2. Change of variables. In this subsection we describe what we mean by the
phrase that “the UC-integral is invariant with respect to a bilipschitz change of vari-
ables”. We assume that X,Y are locally compact separable metric spaces equipped
with doubling measures λX , λY , respectively.

Definition 6.17 (Push forward). Let G ∈ D′(X) and Φ : X → Y be a bilipschitz
mapping. Then we define the push forward Φ]G as〈

Φ]G , ψ
〉

=
〈
G , ψ ◦ Φ

〉
, ψ ∈ D(Φ(X)).

Theorem 6.18. Let G ∈ D′(X) and Φ : X → Y be a bilipschitz mapping. Let
f : Φ(X) → R be a function. Suppose that the UC-indefinite integral G b(f ◦ Φ)
exists. Then there exists a UC-indefinite integral (Φ]G )bf and

(Φ]G )bf = Φ](G b(f ◦ Φ)).

Proof. It is left as an exercise.
�

7. Application to currents

Throughout this section we consider Banach spaces Y , Z and write L = L(Y,Z).
We use | · | for the norms in Y , Z and L. In standard examples, Y is finite-
dimensional and Z = Y ∗ or R. However it can easily happen that a future research
will find the general case important.

The idea of currents in metric spaces goes back to De Giorgi [14] and has been
developed in the pioneering paper by Ambrosio and Kirchheim [4]. Our motivation
is to study integration of “differential forms” with wild coefficients.
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Lp and Sobolev differential forms on Lipschitz manifolds have been studied e.g.
in [23], [22].

We follow [34] in this section.

Definition 7.1 (Current). Let Dk(X) be the family of all ordered (k+1)-tuples
~ψ = (ψ0, . . . , ψk) of Lipschitz functions on X such that ψ0 is bounded. The elements
of Dk(X) are called test differential forms. The support of a test differential form
~ψ is defined as the support of the product ψ0ψ1 . . . ψk. The family of all compactly
supported test differential forms with a compact support is denoted by Dkc (X). We

say that ~ψ(n) ∗→ ~ψ in Dk(X) if the Lipschitz constants of ~ψ(n) and C-norms of ψ
(n)
0

form bounded sequences and ~ψ(n) → ~ψ pointwise. The
∗→ convergence in Dkc (X)

requires in addition that all ~ψ(n) have the same compact support. We say that a
mapping T : Dkc (X) → Y is a Y -valued k-current if the following properties are
satisfied:

(C-1) T is (k+1)-linear (this means, linear in each variable separately).

(C-2) ~ψ(n) ∗→ ~ψ in Dkc (X) =⇒ T (~ψ(n))→ T (~ψ) in Y .
(C-3) If a linear combination of ψ1, . . . , ψk is constant on {x ∈ X : ψ0(x) 6= 0},

then T (~ψ) = 0. Specially, T is alternating in ψ1, . . . , ψk.
(C-4) T (ψ0, uv, ψ2, . . . ψk) = T (uψ0, v, ψ2, . . . ψk) + T (vψ0, u, ψ2, . . . ψk).

The collection of all Y -valued k-currents on X is denoted by D′k,loc(X,Y ). The

family D′k(X,Y ) of all convergent currents on X is defined analogously, with the
difference that they are defined inDk(X) and continuous with respect to theDk(X)-
convergence.

We say that a current T has a locally finite mass if there exists a Radon measure
µ on X such that

(18) |T (~ψ)| ≤ |ψ1|Lip . . . |ψk|Lip

∫
X

|ψ0| dµ, ~ψ ∈ Dk(X).

We also say that T is dominated by µ if (18) is satisfied.
The boundary of a k-current T is defined as

∂T (ψ0, . . . , ψk−1) = T (1, ψ0 . . . , ψk−1),

it is a (k−1)-current. We say that T is boundary-free if ∂T = 0.
We identify 0-currents with metric distributions.
We use also the alternative (and more intuitive) notation

〈T , ψ0 dψ1 ∧ · · · ∧ dψk〉
for T (ψ0, ψ1, ψ2, . . . ψk).

Definition 7.2 (Integral with respect to a current). f : X → L be a function and
F ∈ D′k,loc(X,Z), G ∈ D′k,loc(X,Y ) be currents. We say that F is an indefinite

integral of f with respect to G if for each k-tuple (ψ1, . . . ψk) of Lipschitz functions
on X we get that F(·, ψ1, . . . ψk) is an indefinite integral of f with respect to
G (·, ψ1, . . . ψk). The indefinite integral is uniquely determined by G and f , it is
denoted by G bf . The definite integral is defined by∫

G

f dψ1 ∧ · · · ∧ dψk = G bf(1, ψ1, . . . , ψk)

if G bf ∈ D′k(X).
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Example 7.3. 1. The integration over a 2-dimensional smooth surface M is cus-
tomarily expressed by the current

T (ψ0, ψ1, ψ2) =

∫
M
ψ0 dψ1 ∧ dψ2.

Example 7.4. However, we can model such an integration by the R3-valued 1-
current

T (ϕ,ψ) =

3∑
i=1

ei

∫
M
ϕdψ ∧ dxi.

If f = (f1, f2, f3) :M→ R3 is a smooth vector field, g = (g1, g2, g3) = curl f , and
ϕ ∈ Dc(M), then we have∫

M
ϕ(g1 dx2 ∧ dx3 + g2 dx3 ∧ dx2 + g3 dx1 ∧ dx2)

=

3∑
i=1

∫
M
ϕdfi ∧ dxi = −

3∑
i=1

∫
M
fi dϕ ∧ dxi

= −(T bf)(1, ϕ) = −∂(T bf)(ϕ).

Example 7.5. Similarly, if Ω ⊂ R3 is an open set, f : Ω→ R3 is a smooth vector
field and ϕ ∈ Dc(Ω), then

(19)

∫
Ω

ϕ(x) div f(x) dx = −∂(T bf)(ϕ),

where

T (ϕ,ψ) = e1

∫
Ω

ϕdψ∧dx2 ∧dx3 + e2

∫
Ω

ϕdψ∧dx3 ∧dx1 + e3

∫
Ω

ϕdψ∧dx1 ∧dx2.

Remark 7.6. We see from the examples that there is no relation between the
“dimension” k of the k-current and the “natural dimension” of the domain of in-
tegration. Also we observe that the setting of 1-currents is rich enough to describe
the integration over k-dimensional manifolds, but then we are lead to the “vector-
valued” setting, see also Remark 7.11.

Lemma 7.7. Suppose that T ∈ D′1,loc(X,Y ) is a 1-current and f : X → L is

a function such that T bf exists. Let ϕ,ψ ∈ Dc(X). If fψ = 0 on X, then
〈T bf, ϕ dψ〉 = 0.

Proof. We may assume that ψ ≥ 0. If spt f ∩ sptϕ = ∅, then the conclusion is
an easy consequence of (C-3). In the general case, we consider the sequence (ψj)j ,
where

ψj = (ψ − 2−j)+.

Then for each j we have 〈T bf, ϕ dψj〉 = 0 by the first part of the proof. Since

(ϕ,ψj)
∗→ (ϕ,ψ) in D1

c (X), using the axiom (C-2) we obtain the assertion. �

Proposition 7.8. Suppose that T ∈ D′1,loc(X,Y ) is a 1-current dominated by λ,

f : X → L be a locally λ-integrable function and ϕ,ψ ∈ Dc(X). Then∣∣〈T bf, ϕ dψ〉∣∣ ≤ |ψ|Lip

∫
W

|fϕ| dλ,

where W = {x ∈ X : ψ(x) 6= 0}.
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Proof. We only sketch the proof. By Lemma 7.7 we may assume that f = 0 on
X \W . Therefore, it is enough to prove the assertion with integration over X. We
choose ε > 0 and find a lower semicontinuous function u : X → [0,∞], u ≥ |fϕ|,
such that ∫

X

u dλ ≤
∫
X

|fϕ| dλ+ ε.

Let µ and σ be as in the definition of the integral of f with respect to T . With
each x ∈ X we associate a ∆(x) > 0 such that

|f(x)ϕ(y)| ≤ u(y), y ∈ B(x,∆(x))

and

‖T bf(·, ψ)− f(x)T (·, ψ)‖x,5r ≤ εµ(B(x, 5σr)), 0 < r < ∆(x).

Then we use the partition of unity and estimate the sum as in the proof of Theorem
6.7. �

Definition 7.9 (UC-differential). The UC-differential of a function f : X → L
with respect to a Y -valued 1-current T is defined as the “commutator”

(∂T )bf − ∂(T bf)

and denoted by T bdf . The definite integral has a good sense in the “convergent
case” T bdf ∈ D′k(X,Z), in which we define∫

T

df = 〈T bdf, 1〉

More generally, if V is a further Banach space, g : X → L(Y, V ), f : X → L(V,Z),
we define ∫

T

f dg = 〈(T bdg)bf, 1〉

if (T bdg)bf ∈ D′k(X,Z).

Example 7.10. Let Ω ⊂ Rn be a bounded open set. If f : Rn → Rn is a smooth
vector field and T is the current from Example 7.5, then

〈T bdf , ϕ〉 =

∫
Ω

ϕ(x) div f(x) dx, ϕ ∈ D(Ω).

This works for all test functions, whereas (19) is valid only for compactly supported
test functions.

Remark 7.11. If we develop the theory only for scalar 1-currents, we can still
define some version of the divergence operator, for example, if n = 3, the operator

f 7→ T1bdf1 + T2bdf2 + T1bdf3,

where (in the notation of Example 7.5)

T1(ϕ,ψ) =

∫
Ω

ϕdψ ∧ dx2 ∧ dx3,

T2(ϕ,ψ) =

∫
Ω

ϕdψ ∧ dx3 ∧ dx1,

T3(ϕ,ψ) =

∫
Ω

ϕdψ ∧ dx1 ∧ dx2.
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However, then we lose some important applications. Indeed, due to cancellation,
divergence of a vector field is often more regular than the individual summands
∂fi
∂xi

. If we relax smoothness assumptions, it can happen that the currents T1bdf1

do not make sense, but the current from Example 7.10 does.

Remark 7.12 (Stokes formula). The “Stokes formula”

(20)

∫
∂T

f −
∫

T

df = 0

is trivial in our setting, as the left hand part of (20) is

∂(T bf)(1) = T bf(1, 1) = 0.

A version of Stokes formula which is worth being considered is presented in Sub-
section 8.1 below.

8. Integration by parts

Throughout this section we assume that X is a locally compact separable metric
space equipped with a doubling measure λ. We consider a 1-current T dominated
by λ.

We will present here results from [34] on integration by parts and on the Stokes
formula.

The formula on integration by parts∫
∂T

fg =

∫
T

f dg +

∫
T

g df

holds under fairly reasonable assumptions. However, this setting is quite technical
and the main ideas are already visible in the special situation that ∂T = 0 which
we present below. Roughly speaking, if we want to apply our results to the model
case of integration over manifolds, the assumption that T is boundary-free selects
manifolds without boundaries.

Definition 8.1 (Concepts of the Lebesgue differentiation theory). By the Lebesgue
decomposition theorem, each Radon measure µ on X can be decomposed as µa+µs
where µa is the absolutely continuous part and µs is the singular part, both with
respect to λ. Since λ is doubling, the Lebesgue differentiation theory is valid (see
e.g. [5, Theorem 5.2.6]) and λ-a.e. point is a Lebesgue point for the Radon-Nikodým

derivative h = dµa
dλ , this means that

lim
r→0+

−
∫
B(x,r)

|h− h(x)| dλ = 0.

Clearly, each Lebesgue point is a weak Lebesgue point, this means that

lim
r→0+

hx,r = h(x), where hx,r = −
∫
B(x,r)

h dλ = h(x).

Definition 8.2 (Approximate Lipschitz points). Let V be a Banach space. We
say that x ∈ X is an L1-approximate Lipschitz point for a function f : X → V if
there exist K ∈ R and a function h : X → R such that

|f(y)− f(x)| ≤ Kρ(y, x) + h(y), y ∈ X



NON-ABSOLUTELY CONVERGENT INTEGRALS IN METRIC SPACES 25

and

lim
r→0+

1

r
−
∫
B(x,r)

|h| dλ = 0.

Remark 8.3. Of course, this is weaker than the usual pointwise Lipschitz con-
tinuity. By the result of Calderón and Zygmund [13], see also [3, Theorem 3.83],
any BV -function on Rn has L1-approximate Lipschitz points a.e. However, we
conjecture that PBV -condition is not sufficient for this.

Theorem 8.4 (Integration by parts). Let f : X → Y ∗, g : X → R be bounded
PBV -functions on X, α ∈ PUG(f), β ∈ PUG(g). Suppose that βs and αs are mu-
tually singular, that f has weak Lebesgue points β-a.e., g has weak Lebesgue points
α-a.e. and f has L1-approximate Lipschitz points λ-a.e. Let T be a boundary-free
1-current on X dominated by λ. Then

(21) (T bdf)bg + (T bdg)bf = T bd(fg)

if at least one of these indefinite integrals makes sense.

Proof. Since T is boundary free, we can rewrite (21) as

(22) [∂(T bf)]bg + [∂(T bg)]bf = ∂(T bfg).

Assume that [∂(T bf)]bg makes sense, we want to show that ∂(T bfg)− [∂(T bf)]bg
is an indefinite UC-integral of f with respect to ∂(T bg). We have

‖∂(T bfg)− [∂(T bf)]bg − f(x)∂(T bg)‖x,r
≤ ‖∂(T bfg)− g(x)[∂(T bf)]− f(x)∂(T bg)‖x,r

+ ‖[∂(T bf)]bg − g(x)[∂(T bf)]‖x,r
= ‖∂[T b(f − f(x))(g − g(x))]‖x,r + ‖[∂(T bf)]bg − g(x)[∂(T bf)]‖x,r.

The second term is controlled and we need to control the first one. The same
situation occurs if we assume that [∂(T bg)]bf makes sense. Therefore, our aim is
to show that ∂[T b(f − f(x))(g − g(x))] is controlled.

By the singularity assumption, there exist Borel sets P , Q, R such that X =
P ∪Q ∪R and

α(Q) = β(P ) = αs(R) = βs(R) = λ(P ∪Q) = 0.

Further, there exist an α-null set S, a β-null set T and a λ-null set N ⊂ R such
that f has weak Lebesgue points everywhere on X \T , g has weak Lebesgue points
everywhere on X \ S, g has Lebesgue points everywhere on R \ N and f has L1-
approximate Lipschitz points everywhere on R \N .

By Lemma 6.10, there exist measures α∗, β∗ λ∗ and and lower semicontinuous
functions a, b, w such that a =∞ on Q ∪ T ∪N , b =∞ on P ∪ S ∪N , w =∞ on
N and

dα∗ = a dα, dβ∗ = b dβ, dλ∗ = w dλ.

Choose x ∈ X, r > 0 and ϕ ∈ D(x, r). We distinguish several cases according to
the position of x.

Case 1. If x ∈ Q, then

〈T b(f − f(x))(g − g(x)), dϕ〉 = 〈T b(f − fx,r))(g − g(x)), dϕ〉
+ 〈T b(fx,r − f(x)))(g − gx,r)), dϕ〉
+ 〈T b(fx,r − f(x)))(gx,r − g(x))), dϕ〉
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However, the last term vanishes as ∂T = 0. Using Proposition 7.8, for small r we
estimate∣∣〈T b(f − f(x))(g − g(x)), dϕ〉

∣∣
≤ 1

r

∫
B(x,r)

|(f − fx,r)(g − g(x))| dλ+
1

r

∫
B(x,r)

|(fx,r − f(x))(g − gx,r)| dλ

≤ C

r

∫
B(x,r)

|f − fx,r| dλ+ |fx,r − f(x)| C
r

∫
B(x,r)

|g − gx,r| dλ

≤ Cα(B(x, σr)) + |fx,r − f(x)| β(B(x, σr))

with some σ ≥ 1. Since x ∈ Q, we have

lim
r→0+

α(B(x, σr))

α∗(B(x, σr))
= 0.

For the second term, either x is a weak Lebesgue point for f of x ∈ S, but in any
case

lim
r→0+

|fx,r − f(x)| β(B(x, σr))

β∗(B(x, σr))
= 0

Case 2. The case x ∈ P is similar, we interchange the role of f and g.
Case 3. Let x ∈ N . We estimate as in Case 1 and obtain∣∣〈T b(f − f(x))(g − g(x)), dϕ〉

∣∣ ≤ Cα(B(x, σr)) + Cβ(B(x, σr)),

but

lim
r→0+

α(B(x, σr))

α∗(B(x, σr))
= 0, lim

r→0+

β(B(x, σr))

β∗(B(x, σr))
= 0

Case 4. Let x ∈ R\N . We estimate as in Case 1, but for the first term we have∣∣〈T b(f − f(x))(g − g(x)), dϕ〉
∣∣ ≤ CK ∫

B(x,r)

|g − g(x)| dλ+
C

r

∫
B(x,r)

h dλ

where K, h are as in Definition 8.2, and we know that

lim
r→0+

∫
B(x,r)

|g − g(x)| dλ
λ(B(x, r))

= 0, lim
r→0+

∫
B(x,r)

h dλ

rλ(B(x, r))
= 0.

Hence, in all cases we established a control for 〈T b(f −f(x))(g−g(x)), dϕ〉, which
concludes the proof. �

Corollary 8.5. Let f : X → Y ∗, g : X → R be bounded PBV -functions on X,
α ∈ PUG(f), β ∈ PUG(g). Suppose that fg ∈ L1(X,λ), βs and αs are mutually
singular, that f has weak Lebesgue points β-a.e., g has weak Lebesgue points α-
a.e. and f has L1-approximate Lipschitz points λ-a.e. Let T be a boundary-free
1-current on X dominated by λ. Then∫

T

g df +

∫
T

f dg = 0

if at least one of these integrals makes sense.

Proof. Since fg ∈ L1(X,λ), the current ∂(T bfg) is convergent and 〈∂(T bfg), 1〉 =
0. Hence the result follows from Theorem 8.4. �
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8.1. Gauss-Green-Stokes formula. A prevalent motivation for investigation of
nonabsolutely convergent integrals is an effort to find a general setting for formulae
of integral calculus like the Gauss-Green (divergence) theorem or Stokes theorem.

Within the framework absolutely convergent integration, the Gauss-Green for-
mula for BV -sets (or, sets of finite perimeter) is the ultimate version. see e.g. [3]
[17], [54] for exposition of BV -theory and historical comments.

However, only the non-absolutely convergent integrals can integrate all pointwise
derivatives. A version of Stokes formula with nonabsolutely convergent integration
over manifolds with boundaries is in [30].

The Pfeffer integral allows to prove Gauss-Green formula for sets of finite perime-
ter, where the “interior” integral of divergence is non-absolutely convergent [46],
[48], [15].

Our aim is to allow also the “boundary integral” be non-absolutely convergent.
Various abstract theories allow us to study the Stokes theorem beyond rectifiable
sets. For different approaches see [53], [19], [24], [25], [50]. The generalized integrals
can be defined by duality or by approximation. Our integrals are not as general,
but look more as genuine integrals.

A version of the Gauss-Green theorem for the UC integral in the Euclidean
setting is proposed in [40].

Theorem 8.6 (Stokes theorem). Let G ⊂ X be PBV set (this means, χG is
a PBV function). Let f : X → Y ∗ be a bounded PBV -functions on X, α ∈
PUG(f), β ∈ PUG(χG). Suppose that βs and αs are mutually singular, that f
has weak Lebesgue points β-a.e., χG has weak Lebesgue points α-a.e. and f has
L1-approximate Lipschitz points λ-a.e. Let T be a boundary-free 1-current on X
dominated by λ. Assume that

∫
G
|f | dλ converges. Then∫

T

χG df =

∫
∂(T bχG)

f

if at least one of these integrals makes sense.

Proof. It is enough to set g = χG in Corollary 8.5. �

Remark 8.7. As a special, “absolutely convergent” case we obtain the following
situation:

Let us consider that f ∈ W 1,1(Rn,Rn) is a bounded vector field and g is the
characteristic function of a set G ⊂ Rn of finite perimeter. Then we can take α to
be absolutely continuous with respect to the Lebesgue measure (say, with density
|Df |) and β to be the perimeter measure (=the total variation of DχG). By results
of Federer, Fleming and Ziemer, [19], [21], [20], see also [17, 4.8., 5.6.3], f has
Lebesgue points H n−1-a.e. and thus β-a.e. On the other hand, by the Lebesgue
density theorem, a.e. point of G is a density point for G and a.e. point of Rn \ G
is a density point for Rn \ G. Hence, g has Lebesgue points a.e. with respect to
the Lebesgue measure and thus α-a.e. Also, by Remark 8.3, both f and g have
L1-approximate Lipschitz points a.e.

This absolutely convergent case is not new, but in view of Examples 5.13 and
5.14, it is clear that our result covers much more situations.
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