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Abstract. In this work we study the asymptotics of the fractional Laplacian as s → 0+ on any
complete Riemannian manifold (M, g), both of finite and infinite volume. Surprisingly enough,
when M is not stochastically complete this asymptotics is related to the existence of bounded
harmonic functions on M .

As a corollary, we can find the asymptotics of the fractional s-perimeter on (essentially) every
complete manifold, generalizing both the existing results [10] for Rn and [7] for the Gaussian space.
In doing so, from many sets E ⊂ M we are able to produce a bounded harmonic function associated
to E, which in general can be non-constant.
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1. Introduction

In this work we deal with the fractional Laplacian on general complete Riemannian manifolds.
Given a set E ⊂M , our work is based on the study of the following quantity

θE(p) := lim
s→0+

∫
E\BR(p)

Ks(x, p)dµ(x) , (1)

where

Ks(x, y) :=
1

|Γ(−s/2)|

∫ ∞

0
HM (x, y, t)

dt

t1+s/2
(2)

and HM (x, y, t) :M×M×(0,∞) is the heat kernel ofM , that is the minimal fundamental solution
to the heat equation ∂tu −∆gu = 0 on M . The quantity analogous to (1) on Rn was previously
studied in [10], where the authors deal with the study of the fractional s-perimeter as s→ 0+. In
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this case of M = Rn, the limit in (1) does not depend on p (whenever it exists) and hence θE is a
constant function.

One of the main observations of this work is that θE is always an harmonic function on M ,
with values in [0, 1], and in general can be non-constant if M does not satisfy the L∞ − Liouville
property (see Definition 2.4). Moreover, for E ≡ M the function θM encodes the asymptotics of
the fractional Laplacian as s→ 0+ on every complete (M, g).

The following are the main results of our work.

Theorem 1.1. Let (M, g) be a complete Riemannian manifold with µ(M) = +∞, and let E ⊂M
be a measurable set. Then

(i) If for some R > 0, p ∈M , the following limit exists

θE(p) := lim
s→0+

∫
E\BR(p)

Ks(x, p)dµ(x) ∈ [0, 1] , (3)

then it is independent of the choice of R, and θE : M → [0, 1] is a bounded harmonic
function on M .

(ii) For R > 0 and p ∈M the limit

θM (p) := lim
s→0+

∫
M\BR(p)

Ks(x, p)dµ(x) ∈ [0, 1] (4)

always exists, does not depend on the choice of R and equals

θM (p) = lim
t→∞

∫
M
HM (p, x, t) dµ(x) . (5)

Moreover, θM :M → [0, 1] is a bounded harmonic function on M .

Next is the asymptotics of the fractional Laplacian. Note that, on well-behaved ambient spaces
one would expect (as it happens on Rn) that the fractional (s/2)-Laplacian tends to the identity as
s→ 0+. With the following result, we show that this is not true on general Riemannian manifolds
and that the harmonic function θM defined in (4) encodes how this limit differs from the identity.

Theorem 1.2. Let (M, g) be a complete Riemannian manifold with µ(M) = +∞, and let θM be

given by (4). Let also s◦ ∈ (0, 2) and u ∈ Hs◦/2(M) ∩ L∞(M) with bounded support. Then, as
s→ 0+ there holds

(−∆)
s/2
Si u −→ θMu a.e. on M, (6)

where (−∆)
s/2
Si is the singular integral fractional Laplacian (14).

With this result, we also make an interesting observation regarding a Riemannian manifold
constructed by Pinchover in [25]. This Riemmanian manifold satisfies the L∞−Liouville property
(see Definition 2.4) but it is not stochastically complete, and we show that it satisfies θM ≡ 0.
We describe the construction of this manifold in Example 5.5. Consequently, there exist complete
Riemannian manifolds where the mass of the heat kernel escapes so rapidly that the asymptotics
of the fractional Laplacian not only is different from the identity but becomes identically zero,
even for regular functions.

In the next result we address the equivalence (actually, equality) of different definitions of the
fractional Laplacian on stochastically complete manifolds. Moreover, we also find the asymptotics
of the fractional Laplacian on manifolds with finite volume.
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Theorem 1.3. Let (M, g) be a stochastically complete Riemannian manifold. Let also s◦ ∈ (0, 2)

and u ∈ Hs◦/2(M) (see Definition 1.9). Then, for all s < s◦ the three definitions of the fractional
Laplacian (14), (12), and (41) coincide a.e., that is

(−∆)
s/2
Si u = (−∆)

s/2
B u = (−∆)

s/2
Specu .

Moreover, as s→ 0+

(−∆)s/2u
L2

−−→ u− 1

µ(M)

∫
M
u dµ if µ(M) < +∞ , (7)

and

(−∆)s/2u
L2

−−→ u if µ(M) = +∞ , (8)

where (−∆)s/2 is any of the equivalent fractional Laplacians.

In proving the previous theorems, we also provide an equivalent characterization of being
stochastically complete (see Definition 2.1) in the case of infinite volume.

Proposition 1.4. Let (M, g) be a complete (possibly weighted) Riemannian manifold with µ(M) =
+∞, and let θM (p) be given by (4). If M is stochastically complete, then

θM = lim
s→0+

∫
M\B1(p)

Ks(x, p)dµ(x) = 1 ∀p ∈M . (9)

Conversely, if there exists p ∈M such that

θM (p) = lim
s→0+

∫
M\B1(p)

Ks(x, p)dµ(x) = 1 , (10)

then M is stochastically complete.

We will prove this result at the beginning of section 4.

Remark 1.5. We believe that Theorem 1.1 could be used to count the dimension of the space
of bounded harmonic function on M . Something in this direction has already been done by A.
Grigor’yan in [15], where he proves that this dimension equals the maximum number of disjoint
massive sets that can be put on M . We think that the sets E for which (3) is not (identically) zero
or one are related to the notion of massiveness and could be used to prove a similar statement.
We plan to explore this relationship in a future work.

As a corollary of the results above we are able to obtain the asymptotics of the fractional
perimeter as s→ 0+ in an extremely general setting, generalizing both the existing results [10] for
Rn and [7] for the Gaussian space. Although these outcomes currently stem from broader results
obtained in our investigation, we emphasize that the initial motivation behind this research was
to explore the asymptotic properties of the fractional perimeter on general Riemannian manifolds.

In particular, with Theorem 1.6 and 1.8 we show that these two known behaviours of the
asymptotics, the one of Rn and the one of the Gaussian space, are essentially the only two possible
also in this general setting.

Theorem 1.6 (Infinite volume asymptotics). Let (M, g) be a complete, stochastically complete
Riemannian manifold with µ(M) = +∞ and such that the L∞ − Liouville property holds (see
Definition 2.4). Let Ω ⊂M be an open, bounded, connected set with Lipschitz boundary. Let also
E ⊂M be a measurable set with Ps◦(E,Ω) < +∞, for some s◦ ∈ (0, 1), and such that the limit in
(3) exists. Then



4 M. CASELLI AND L. GENNAIOLI

(i) The limit lims→0+
1
2Ps(E,Ω) exists and1

lim
s→0+

1

2
Ps(E,Ω) = (1− θE)µ(E ∩ Ω) + θEµ(E

c ∩ Ω)

= θM\Eµ(E ∩ Ω) + θEµ(E
c ∩ Ω) .

(ii) Conversely, if µ(Ω ∩E) ̸= µ(Ω \E) and the limit lims→0+
1
2Ps(E,Ω) exists, then the limit

in (3) exists and there holds

θE =
lims→0+

1
2Ps(E,Ω)− µ(E ∩ Ω)

µ(Ω \ E)− µ(E ∩ Ω)
.

(iii) If µ(Ω ∩ E) = µ(Ω \ E) then the limit lims→0+
1
2Ps(E,Ω) always exists and

lim
s→0+

1

2
Ps(E,Ω) = µ(Ω ∩ E) = µ(Ω \ E) .

Remark 1.7. If one drops the assumption of M being stochastically complete the situation can be
different from the result above. We will describe in Example 5.5 a complete Riemannian manifold
N , with the L∞ − Liouville property but not stochastically complete such that lims→0+ Ps(E) = 0
for every subset E ⊂ N .

Theorem 1.8 (Finite volume asymptotics). Let (M, g) be a complete Riemannian manifold with
µ(M) < +∞, and let Ω ⊂ M be an open and connected set with Lipschitz boundary. If for some
set E ⊂ M there exists s◦ ∈ (0, 1) such that Ps◦(E,Ω) < +∞, then the limit lims→0+

1
2Ps(E,Ω)

exists and

lim
s→0+

1

2
Ps(E,Ω) =

1

µ(M)

(
µ(E)µ(Ec ∩ Ω) + µ(E ∩ Ω)µ(Ec ∩ Ωc)

)
.

1.1. The fractional perimeter on Riemannian manifolds. It was recently pointed out in [8]
a canonical definition of the fractional s-perimeter on every closed Riemannian manifold (M, g):

this boils down to giving a canonical definition of the fractional Sobolev seminorm Hs/2(M) for
s ∈ (0, 1). Consider a closed (even though we will deal with general complete ones), connected
Riemannian manifold (M, g) with n ≥ 2. In [8] the authors show that a canonical definition of

the fractional Sobolev seminorm Hs/2(M) can be given in at least four equivalent (up to absolute
constants) ways:

(i) By the singular integral

[u]2
Hs/2(M)

:=

∫∫
M×M

(u(x)− u(y))2Ks(x, y) dµ(x) dµ(y) , (11)

where Ks(x, y) is given by (2).
(ii) Following the Bochner definition of the fractional Laplacian

(−∆)
s/2
B u =

1

Γ(−s/2)

∫ ∞

0
(et∆u− u)

dt

t1+s/2
, (12)

via

[u]2
Hs/2(M)

= 2

∫
M
u(−∆)

s/2
B u dµ .

(iii) By spectral theory, one can set

[u]2
Hs/2(M)

=
∑
k≥1

λ
s/2
k ⟨u, ϕk⟩2L2(M) (13)

1Since θM\E = 1− θE in this case.
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where {ϕk}k is an orthonormal basis of eigenfunctions of the Laplace-Beltrami operator
(−∆g) and {λk}k are the corresponding eigenvalues. Note that for s = 2 this gives the
usual [u]2H1(M) seminorm.

(iv) Considering a Caffarelli-Silvestre type extension (cf. [2, 5, 9]), namely, a degenerate-
harmonic extension problem in one extra dimension. One can set

[u]2
Hs/2(M)

= inf

{∫
M×[0,∞)

z1−s|∇̃U(x, z)|2 dµ(x)dz s.t. U(x, 0) = u(x)

}
.

Here ∇̃ denotes the Riemannian gradient of the manifold M̃ = M × [0,∞), with respect
natural product metric, and the infimum is taken over all the extensions U ∈ X,

where X = H1(M̃ ; z1−sdµdz) is the classical weighted Sobolev space of the functions

U ∈ L2(M̃ ; dµ) with respect to the measure dµ = z1−sdµdz that admit a weak gradient

∇̃U ∈ L2(M̃ ; dµ).

The spectral definition (iii) can be extended to manifolds that are not closed, where the spectrum
of the Laplacian is not discrete. Nevertheless, the equivalence between (i) and (iv) also holds on
many (but not every) complete Riemannian manifolds, not necessarily compact. For example, a
lower Ricci curvature bound is sufficient. See [2] for general conditions for which the equivalence
of (i) ⇐⇒ (iv) holds. Moreover, under suitable assumptions on u, the equivalence between
(i) and (ii) holds if and only if M is stochastically complete, we will treat this equivalence in
subsection 7.2.

Since in the present work we aim to study the asymptotics of the fractional s-perimeter on
complete Riemannian manifolds (not necessarily closed or with curvature bounded below), we
work with the singular integral definition (11) since it extends naturally to the case of general
manifolds and weighted manifolds. Then, the fractional s-perimeter on a Riemannian manifold is
naturally defined by means of the fractional Sobolev seminorm.

Here and in the rest of the work (M, g) will denote a general complete, connected Riemannian
manifold, and hence also geodesically complete. We denote by dµ its Riemannian volume form
and by HM (x, y, t) the heat kernel of (M, g). To see how to build the heat kernel on a general
(weighted) manifold, see the classical reference [18]. Moreover, we denote by BR(p) ⊂ M the
geodesics ball on M and by BR(0) ⊂ Rn the one on Rn.

Definition 1.9. Let (M, g) be a complete Riemannian manifold and s ∈ (0, 2). Then, we set

Hs/2(M) :=
{
u ∈ L2(M) : [u]2

Hs/2(M)
<∞

}
,

where

[u]2Hs(M) :=

∫∫
M×M

(u(x)− u(y))2Ks(x, y) dµ(x)dµ(y) ,

and Ks is defined as in (2).

Moreover, we will use the singular integral

(−∆)
s/2
Si u(x) := P.V.

1

|Γ(−s/2)|

∫
M
(u(x)− u(y))Ks(x, y) dµ(y) (14)

as our main definition of ”the fractional Laplacian” on M . We stress that in a completely general
setting (such as the one of complete Riemannian manifolds) this integro-differential operator could
be far from being a fractional power of the Laplacian in any reasonable sense. In particular:

• If M is not stochastically complete (see Definition 2.1), then (i) and (ii) do not coincide.
In this case, since et∆1 ̸= 1, the Bochner fractional Laplacian (ii) of a constant is not equal



6 M. CASELLI AND L. GENNAIOLI

to zero. In particular, defining the fractional Sobolev seminorm with (ii) would imply that
the s-perimeter is not invariant under complementation Ps(E) ̸= Ps(E

c). Nevertheless,
with our definition via the singular integral (i), one has that the seminorm of a constant
is always zero and hence in this work the fractional perimeter is always invariant under
complementation.

• The semigroup property (−∆)α+β = (−∆)α ◦ (−∆)β also fails in general for our definition
(14). Indeed, one can see that the equivalence (i) ⇐⇒ (iv) above is sufficient for
the semigroup property to hold. For example, a Ricci curvature lower bound would be
sufficient. See [2] for many sufficient conditions for the equivalence (i) ⇐⇒ (iv).

Definition 1.10. For a measurable set E ⊂ M , we define the fractional s-perimeter of E on
(M, g) as

Ps(E) := [χE ]
2
Hs/2(M)

= 2

∫∫
E×Ec

Ks(x, y) dµ(x)dµ(y) ,

where [ · ]2
Hs/2(M)

is defined by (11) and χE is the characteristic function of E.

Apart from the above definition of the fractional perimeter of a set E on the entire M , we will
also consider its localized version. For A,B ⊂M disjoint and measurable sets, let

Js(A,B) :=

∫∫
A×B

Ks(x, y) dµ(x)dµ(y)

be the s-interaction functional between the sets A and B.

Definition 1.11. Let (M, g) be a complete Riemannian manifold, and let Ω ⊂M be an open and
connected set with Lipschitz boundary. We define the s-perimeter of E in Ω as

1

2
Ps(E,Ω) :=

∫∫
M×M\Ωc×Ωc

(χE(x)− χE(y))
2Ks(x, y) dµ(x)dµ(y)

= Js(E ∩ Ω, Ec ∩ Ω) + Js(E ∩ Ω, Ec ∩ Ωc) + Js(E ∩ Ωc, Ec ∩ Ω) .

For any measurable E ⊂M , it is clear by the definition above that Ps(E,Ω) = Ps(E
c,Ω), that

Ps(E,M) = Ps(E) = [χE ]
2
Hs/2(M)

and also that Ps(E,Ω) = Ps(E) if E ⊂ Ω or Ec ⊂ Ω.

Remark 1.12. The hypothesis Ps◦(E,Ω) < +∞ for some s◦ ∈ (0, 1) cannot be removed in neither
of these results. Indeed, in [10, Example 2.10] the authors exhibit a bounded set E ⊂ R such that
Ps(E) = +∞ for all s ∈ (0, 1).

Remark 1.13. Note that, taking M = Rn with its standard metric in Theorem 1.6 gives

Ks(x, p) =
βn,s

|x−p|n+s , where

βn,s =
s2s−1Γ

(
n+s
2

)
πn/2Γ(1− s/2)

.

Hence

θRn = lim
s→0+

∫
Rn∩Bc

R(p)

βn,s
|x− p|n+s

dx =
Γ(n2 )

2πn/2
lim
s→0+

s

∫
Rn∩Bc

1(0)

1

|x|n+s
dx =

Γ(n2 )

2πn/2
αn−1 = 1 ,

where αn−1 is the volume of the unit sphere Sn−1. Moreover, analogously for E ⊂ Rn (if the limit
exists)

θE = lim
s→0+

∫
E∩Bc

1(0)

βn,s
|x|n+s

dx =
1

αn−1
lim
s→0+

s

∫
E∩Bc

1(0)

1

|x|n+s
dx ∈ [0, 1] ,

which is (up to the absolute multiplicative constant α−1
n−1) what is denoted by α(E) in [10]. Hence,

we see that in the case of the Euclidean space our result Theorem 1.6 recovers the one in [10].
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Remark 1.14. Note that, as s→ 0+, the constant in (2) satisfies

1

|Γ(−s/2)|
=

s/2

Γ(1− s/2)
∼ s

2
.

We will use this fact many times in the computations of the asymptotics.

The paper is divided as follows. In section 2 we recall some facts and definitions that we will
need regarding the heat kernel and harmonic functions on general complete manifolds. In section 3
we prove the all the main results stated at the beginning of the introduction. Then, building on
our main results, in section 4 and section 5 we prove Theorem 1.6 and Theorem 1.8 regarding the
asymptotics of the fractional perimeter in infinite volume and finite volume respectively.

Lastly, in section 6 we explain why our results hold in a much more general setting than the
one of Riemannian manifolds, namely RCD spaces. We could have proved our theorem directly in
this generality, but we believe that a presentation for Riemannian manifolds is easier to follow and
already captures all the possible (two) behaviours of the limit of the asymptotics: this also allows
us to present different proofs. For these reasons we have moved everything regarding non-smooth
spaces to section 6.

2. The heat kernel on Riemannian manifolds

Let us start by recalling few classical definitions and results.

Definition 2.1 (Stochastical completeness). We call a Riemannian manifold (M, g) stochastically
complete if, for every t > 0 and for every p ∈M∫

M
HM (x, p, t) dµ(x) = 1 . (15)

For equivalent definitions of stochastical completeness one can refer to the manuscript [18] or
to the more recent [19] and [20].

Lemma 2.2. Let (M, g) be a complete Riemannian manifold, then for every p ∈M

M(t, p) =

∫
M
HM (x, p, t) dµ(x) is nonincreasing in t.

Proof. The proof is an easy consequence of the semigroup property. Indeed, for t > s we can write

HM (z, p, t) =

∫
M
HM (z, x, t− s)HM (x, p, s) dµ(x).

Integrating in dµ(z), using Fubini’s theorem and the fact that
∫
M HM (z, x, t− s)dµ(x) ≤ 1 we get∫

M
HM (z, p, t)dµ(z) ≤

∫
M
HM (x, p, s)dµ(x),

which is the thesis. □

Note that, because of Lemma 2.2, being stochastically complete is equivalent to the fact that
(15) holds for one single time t = t◦ > 0.

Theorem 2.3 (Yau). Let (M, g) be a complete Riemannian manifold. Then every L2(M)
harmonic function is constant.

Proof. Let u ∈ L2(M) be harmonic. It is a standard result by Yau (see for example [23, Lemma
7.1]) that, on every complete Riemannian manifold M , the Caccioppoli-type inequality∫

BR(p)
|∇u|2 dµ ≤ 4

R2

∫
B2R(p)

|u|2 dµ (16)
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holds. Since u ∈ L2(M), letting R→ ∞ gives that u is constant. □

Definition 2.4 (L∞ − Liouville property). We say that a Riemannian manifold (M, g) has the
L∞ − Liouville property if every bounded harmonic function on M is constant.

Since the validity of the L∞ − Liouville property will be a key feature in our result for infinite
volume, we shall recall few conditions that imply this property. See [16] for more general conditions
under which the L∞ − Liouville property holds.

Proposition 2.5. Let (M, g) be a complete Riemannian manifold. Then, each of the following
properties implies the L∞ − Liouville property for M :

(i) RicM ≥ 0.

(ii) µ(BR(p))/R
2 → 0 as R→ ∞ for some (and hence any) p ∈M .

(iii) There exists a metric g̃ on M and K ⊂M compact such that g̃ = g in M \K and (M, g̃)
has the L∞ − Liouville property.

Proof. To show (i) we just need to apply the L∞ − Lip regularization of (30), that we state in
general for RCD spaces in section 6 and we give a simple proof at the end of the Appendix.
Indeed let u ∈ L∞(M) be such a function: we can clearly assume ∥u∥L∞ = 1 so that we have
∥∇et∆u∥L∞ ≤ C/

√
t. The previous estimate tells us that ∥∇et∆u∥L∞ → 0 as t → ∞ so that

et∆u → const weakly star in L∞(M). However we also know that et∆u = u for every t ∈ (0,∞)
because of the uniqueness of the solution of the heat equation (due to stochastical completeness
which holds in the presence of a lower Ricci curvature bound) and this means that u has to be
constant.

Part (ii) follows from Yau’s estimate (16) letting R → ∞. Lastly, the proof of part (iii) is
contained in [16, Proposition 4.2] and [16, Theorem 5.1]. □

Notice that RicM ≥ −K for some K > 0 is not sufficient for the L∞ − Liouville property
to hold, since there exist non-costant bounded harmonic functions on the hyperbolic space Hn.
Since Hn is stochastically complete, this means that stochastical completeness does not imply
the L∞ − Liouville property. Moreover, quite surprisingly, stochastical completeness of M is not
implied by the L∞ − Liouville property. The first example of such a manifold was constructed
by Pinchover in [25], we briefly explain this construction in Example 5.5. We shall now prove a

convergence result for the heat kernel which in the case µ(M) = +∞, although being probably
known to experts, seems to be new. We stress that these results easily extend to the context of
weighted Riemannian manifolds.

Lemma 2.6. Let (M, g) be a complete, connected Riemannian manifold. Then

(i) If µ(M) < +∞, then for all x, y ∈M

lim
t→+∞

HM (x, y, t) =
1

µ(M)
,

and the convergence is uniform in every bounded Ω ⊂M , that is

lim
t→+∞

sup
x,y∈Ω

∣∣∣∣HM (x, y, t)− 1

µ(M)

∣∣∣∣ = 0 .

(ii) If µ(M) = +∞, then for all x, y ∈M

lim
t→+∞

HM (x, y, t) = 0 ,

and the convergence is uniform in every bounded Ω ⊂M , that is

lim
t→+∞

sup
x,y∈Ω

HM (x, y, t) = 0 .
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Moreover, for every fixed p ∈M there holds also

lim
t→+∞

sup
x∈M

HM (x, p, t) = 0 . (17)

Proof. To prove the result in the case µ(M) < +∞ we use standard spectral theory: indeed the
spectrum of the Laplacian σ(−∆) is contained in [0,∞) and 0 ∈ σ(−∆) lies in the point spectrum

with eigenfunction φ1(x) = µ(M)−1/2. Let {Eλ}λ≥0 be the spectral resolution of the Laplacian,
then for every f ∈ L2(M) (here ⟨ · , · ⟩ denotes the L2 scalar product):

⟨et∆f, f⟩ =
∫ ∞

0
e−tλd⟨Eλf, f⟩.

Since limt→∞ e−λt = χ{0}(λ) we can apply dominated convergence to deduce that

lim
t→+∞

⟨et∆f, f⟩ = ⟨E0f, f⟩

and since E0 projects onto the eigenspace of λ = 0 we get that for every f with unit norm we have

lim
t→∞

⟨et∆f, f⟩ = 1

µ(M)
⟨f, f⟩.

This proves that et∆f → f
µ(M) weakly for every f . Now note that

|⟨et∆f, f⟩| = |⟨et/2∆f, et/2∆f⟩|,

therefore the weak convergence is actually strong in L2(M). This concludes the first part of (i).
To show that the convergence is uniform in a bounded region, one can just apply the argument
below (that we show in a moment for the case µ(M) = +∞) with the local Harnack inequality to
the function HM (x, y, t) − 1/µ(M), which goes to 0 in L2(M) as t → ∞ and it is still a solution
of the heat equation.

If µ(M) = +∞, we have again

lim
t→∞

⟨et∆f, f⟩ = ⟨E0f, f⟩

but now via Theorem 2.3 we know that the eigenspace of λ = 0 contains no constant function
except for the function identically 0, meaning

lim
t→∞

⟨et∆f, f⟩ = 0.

By a local parabolic Harnack inequality we are able to turn this convergence into pointwise
convergence and actually locally uniform. Indeed for p ∈ M , R ≪ 1 to be chosen depending
on p, and t ≥ 10, taking f = χBR(p) above gives

⟨et∆χBR(p), χBR(p)⟩ =
∫
BR(p)

∫
BR(p)

HM (x, y, t) dµ(x)dµ(y) ≥ µ(BR(p))
2 inf
x,y∈BR(p)

HM (x, y, t) .

By the parabolic Harnack inequality (see Remark 2.8 after this proof) applied two times

inf
x,y∈BR(p)

HM (x, y, t) ≥ C−1 inf
x∈BR(p)

sup
y∈BR(p)

HM (x, y, t− 1/2)

≥ C−1 sup
x∈BR(p)

inf
y∈BR(p)

HM (x, y, t− 1/2)

≥ C−2 sup
x,y∈BR(p)

HM (x, y, t− 1) ,
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for some C > 0 depending on BR(p) ⊂M but independent of t. Hence

sup
x,y∈BR(p)

HM (x, y, t) ≤ C(BR(p))⟨e(t+1)∆χBR(p), χBR(p)⟩ → 0 ,

as t→ ∞. Covering any bounded set with small balls allows us to infer the desired local uniform
convergence.

We are left to prove (17). By the properties of the heat kernel we have

HM (p, p, t) =

∫
M
H2

M (p, z, t/2)dµ(z) = ∥HM (p, ·, t/2)∥2L2(M).

Moreover

HM (x, p, t) =

∫
M
HM (x, z, t/2)HM (p, z, t/2)dµ(z) ≤

√
HM (p, p, t)∥HM (x, ·, t/2)∥L2(M),

which concludes the proof if we are able to show that supx∈M ∥HM (x, ·, t/2)∥L2(M) is bounded as

t→ ∞. However since HM (x, y, t) = e(t−1)∆(HM (x, ·, 1))(y) and we have the contraction estimate
∥es∆(f)∥L2(M) ≤ ∥f∥L2(M) for every s ∈ (0,∞) and for every f ∈ L2(M) we can write

∥HM (x, ·, t)∥L2(M) = ∥e(t−1)∆(HM (x, ·, 1))∥L2 ≤ ∥HM (x, ·, 1)∥L2 ∀t > 1.

Therefore we reach the sought conclusion. □

Remark 2.7. Being the heat kernel equibounded in L1(M) and convergent to 0 in L∞(M) (one
point is fixed), it also converges to 0 in any Lp(M) with p ∈ (1,∞]. The convergence is clearly
prevented in L1(M) if M is stochastically complete.

Remark 2.8. We emphasize that we have used only a local (non-uniform) Harnack inequality in
BR(p) ⊂ M , that is where the constant is allowed to depend on the point p and radius R. This is
clear since, for fixed p ∈M one can take R≪ 1 such that, in normal coordinates at p, the metric
coefficients satisfy ∥gij − δij∥C2(BR(p)) ≤ 1/100. Then, any solution u : BR(p) → R to the heat
equation on M satisfies (in coordinates)

ut − Lu = 0 , in BR(0)× (0,+∞) ,

where −L is a uniformly elliptic operator with uniformly bounded coefficients. Hence, by the
standard Harnack inequality on Rn one can conclude the local estimate.

On the other hand, for general Riemannian manifolds, a uniform Harnack inequality (that is,
with the constant independent of R and the point p) fails, and strong assumptions are required for
it to hold. Actually, the validity of a volume doubling property and a uniform Poincarè inequality
is equivalent to the uniform Harnack inequality, this was first proved in [26].

Remark 2.9. One can turn the previous local uniform convergence in (17) into convergence
of solutions of the heat equation. Indeed, in the case µ(M) = +∞, since HM (·, p, t) converges
uniformly to zero we get (by dominated convergence)

et∆f(y) =

∫
M
HM (x, y, t)f(x)dµ(x) → 0 as t→ ∞ ,

for every y ∈M and f ∈ L1(M).
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3. Proof of the main results

First, we shall briefly comment on the following quantity

α(E) = lim
s→0+

s

∫
E\B1(0)

1

|y|n+s
dy,

introduced by Dipierro, Figalli, Palatucci and Valdinoci in [10] as a measure of the behaviour of
the set E near infinity, and which is (up to a dimensional constant) the limit in (4) in the case
M = Rn with its standard metric. This quantity is invariant by rescaling of E and at first can be
thought as a measure of ”how conical” is E near infinity. Indeed, if the blow-down E/λ converges
in L1

loc(Rn) to a regular cone E∞ as λ → ∞, then α(E) = Hn−1(E∞ ∩ Sn−1). Nevertheless,
the fact that this limit exists in not equivalent to having a conical blow-down. Indeed, one can
easy construct examples where the limit in α(E) exists but the blow downs of E converge to two
different cones along two different subsequences.

Finally the authors in [10] refer to α(E) as the weighted volume towards infinity of the set E,
however in light of our results and description it would be more appropriate to call this quantity
heat density over E. Indeed, α(E) represents the fraction of heat kernel which flows through the
set towards infinity (this explains why θM ≡ 1 on stochastically complete manifolds).

Because of this intuitive reason, the limit in the definition of α(E) needs not to exist in general if
E, for example, oscillates between two cones near infinity. See [10, Example 2.8] for the construction
of such an example.

On a Riemannian manifold, a similar quantity is needed but, since no canonical origin (as in Rn)
is present, the singular kernel 1/|y|n+s has to be replaced with Ks(y, p) and it has to be proved if
and when the limit (3) becomes independent of p ∈M . On Riemannian manifolds, this property of
the limit being independent of the base point p turns out to be quite delicate and, as a consequence
of Theorem 1.1, we will see that is implied by the L∞ − Liouville property of Definition 2.4.

Definition 3.1 (Heat density of a set). Let E ⊂ M be a measurable set with Ps◦(E,Ω) < +∞
for some s◦ ∈ (0, 1). We define, for every fixed p ∈ M and R > 0, the heat density of E as the
following limit

θE(p,R) := lim
s→0

∫
E\BR(p)

Ks(x, p)dµ(x) , (18)

when it exists. At this level this may depend on p and R.

Note that, at this point, it is not even clear whether the limit (4) of the heat density θM of the
whole M exists, or is different from zero. For example, as a consequence of the proof of Theorem
1.6, if there were complete Riemannian manifolds with µ(M) = +∞ and θM ̸= 1, then we would
see the asymptotic

lim
s→0+

1

2
Ps(E,Ω) = (θM − θE)µ(E ∩ Ω) + θEµ(E

c ∩ Ω)

holding (even when θM ̸= 1 ), and if θM = 0 this would mean that there are Riemannian manifolds
where the asymptotic of the fractional s-perimeter of any set E is zero. These type of Riemannian
manifolds actually do exist and, since θM ̸= 1 in this case, they are not stochastically complete.
We will describe such a manifold in Example 5.5.

Now, we show that this does not happen if M is stochastically complete: the limit (4) always
exists and it is equal to one. Actually more is true: if there is a point p ∈ M for which the limit
is 1 then the manifold is stochastically complete. Indeed, this is the statement of Proposition 1.4
that we now prove.
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Proof of Proposition 1.4. Note that since µ(M) = +∞ we have µ(M \ B1(p)) > 0. We want to
compute the following

lim
s→0+

s

2

∫
M\B1(p)

∫ ∞

0
HM (x, p, t)

dt

t1+s/2
dµ(x).

Claim 1. There holds

lim
s→0+

s

2

∫
M\B1(p)

∫ 1

0
HM (x, p, t)

dt

t1+s/2
dµ(x) = 0.

Indeed, this directly follows by writing

lim
s→0+

s

2

∫
M\B1(p)

∫ 1

0
HM (x, p, t)

dt

t1+s/2
dµ(x) = lim

s→0+

s

2

∫ 1

0
et∆(χM\Br(p))(p)

dt

t1+s/2

and exploiting the estimate of Lemma 7.2.

Claim 2. There holds

lim
s→0+

s

2

∫
B1(p)

∫ ∞

1
HM (x, p, t)

dt

t1+s/2
dµ(x) = 0. (19)

By the uniform convergence of the heat kernel to zero (in particular, by the result contained in
Remark 2.9) we get that et∆(χB1(p))(p) → 0 as t → ∞. Therefore, for all ε > 0 there exists

T = T (ε) such that et∆(χB1(p))(p) ≤ ε for all t ≥ T , whence

lim sup
s→0+

s

2

∫ ∞

1
et∆(χB1(p))(p)

dt

t1+s/2
dµ(x) ≤ lim

s→0

s

2

∫ T

1

dt

t1+s/2
+ ε lim sup

s→0

s

2

∫ ∞

T

dt

t1+s/2
≤ ε ,

for all ε > 0, proving the second claim.

Now, thanks to the first claim we can reduce ourselves to computing

lim
s→0+

s

2

∫
M\B1(p)

∫ ∞

1
HM (x, p, t)

dt

t1+s/2
dµ(x).

Then we can then add (19) to the previous limit, which gives zero contribution, and we end up
with

lim
s→0+

s

2

∫
M

∫ ∞

1
HM (x, p, t)

dt

t1+s/2
dµ(x).

Using Fubini and the stochastical completeness of M we get

lim
s→0+

s

2

∫
M

∫ ∞

1
HM (x, p, t)

dt

t1+s/2
dµ(x) = lim

s→0+

s

2

∫ ∞

1

dt

t1+s/2
dµ(x) = 1 ,

and this concludes the proof.

Conversely assume that (9) holds, then since both the previous claims hold on any connected
and geodesically complete Riemannian manifold we have

lim
s→0+

s

2

∫
M

∫ ∞

1
HM (x, p, t)

dt

t1+s/2
dµ(x) = 1.

Setting M(t, p) =
∫
M HM (x, p, t)dµ(x) ≤ 1 we can infer that, for every T > 0

1 = lim
s→0

s

2

∫ ∞

T

M(t, p)

t1+s/2
dt ≤ lim

s→0

s

2

∫ ∞

T

1

t1+s/2
dt = 1 .
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Now, assume by contradiction that M is not stochastically complete. Then since M(t, p) is
nonincreasing in time and nonnegative, there holds limt→∞M(t, p) ≤ 1 − δ for some δ > 0, and
we would have M(t, p) ≤ 1− δ/2 for every t ≥ T = T (δ). This gives

1 = lim
s→0

s

2

∫ ∞

T

M(t, p)

t1+s/2
dt ≤ lim

s→0

s

2

∫ ∞

T

1− δ/2

t1+s/2
dt = 1− δ/2 ,

reaching a contradiction, hence limt→∞M(t, p) = 1 and thanks to Lemma (2.2) we conclude. □

Remark 3.2. Following the proof of Proposition 1.4 one can see a clear picture of what happens
to the limit in θM (p) even when M is not stochastically complete. Indeed, for every Riemannian
manifold (not necessarily stochastically complete) and p ∈M the limit limt→∞M(t, p) exists. This
just follows from the fact that M(·, p) is nonincreasing and nonnegative, see Lemma 2.2. Since

M(t, p) =

∫
M
HM (p, x, t) dµ(x) = et∆1

is a solution to the heat equation starting from the function equal to one, it follows from the proof
above and from standard parabolic estimates that M(t, ·) → θM in C2

loc(M) as t → ∞, where
θM :M → R is a bounded, nonnegative harmonic function on M . Therefore:

(i) If M is stochastically complete we have θM ≡ 1 (in particular the value of θM does not
depend on the point) and the proof above shows θM = 1.

(ii) If M is not stochastically complete but satisfies the L∞−Liouville property (see Definition
2.4) we know that θM ≡ θ◦ ∈ [0, 1) and, following the proof of the proposition, one finds
that the limit in the definition of θM exists, does not depend on the point p and there
holds θM = θ◦. Note that such Riemannian manifolds actually exist and they were first
constructed in [25]. We provide a description in Example 5.5 of one with θ◦ = 0.

(iii) If M is not stochastically complete and does not satisfy the L∞−Liouville property, then in
general θM is a nonconstant harmonic function on M , and the value of θM (p) can depend
on the point p.

Now we are in the position to prove our first main result.

Proof of Theorem 1.1. With no loss of generality assume r < R. First, we show that the limit
does not depend on the radius, that is

θE(p,R) = θE(p, r) .

We have ∣∣∣∣ ∫
E\BR(p)

Ks(x, p)dµ(x)−
∫
E\Br(p)

Ks(x, p)dµ(x)

∣∣∣∣ ≤ ∫
BR(p)\Br(p)

Ks(x, p)dµ(x)

≤ Cs

∫
BR(p)\Br(p)

∫ 1

0
HM (x, p, t)

dt

t1+s/2
dµ(x)

+ Cs

∫
BR(p)\Br(p)

∫ ∞

1
HM (x, p, t)

dt

t1+s/2
dµ(x) =: I1 + I2 .

For the first integral, by Lemma 7.2 as s→ 0+

I1 ≤ Cs

∫ 1

0
et∆(χM\Br(p))(p)

dt

t1+s/2
≤ Cs

∫ 1

0

e−c/t

t1+s
dt→ 0 .
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Regarding the second integral, for all ε > 0 by Lemma 2.6 there is T = T (ε) > 0 such that
|HM (x, p, t)| ≤ ε for all x ∈ BR(p) and t ≥ T , hence

I2 ≤ Cs

∫ T

1

∫
BR(p)

HM (x, p, t)dµ(x)
dt

t1+s/2
+ Cs

∫ ∞

T

∫
BR(p)

HM (x, p, t)dµ(x)
dt

t1+s/2

≤ Cs

∫ T

1

dt

t1+s/2
+ Csεµ(BR(p))

∫ ∞

T

dt

t1+s/2

= C(1− T−s/2) + Cεµ(BR(p))T
−s/2 ,

letting s → 0+ (and then ε → 0) gives I2 → 0. Hence, taking s → 0+ shows θE(p,R) = θE(p, r),
showing that the limit never depends on the radius. Note that what we have just proved already
implies that if E is bounded then the limit exists and θE = 0, since one can just take R ≫ 1 so
that E \BR(p) = ∅.

Now fix q ∈M . For every p ∈ B1/2(q) we can write

θE(p) = lim
s→0+

∫
E\B1(q)

Ks(x, p)dµ(x).

This is possible because we always have independence on the radius. Indeed∣∣∣∣ ∫
E\B1/2(p)

Ks(x, p)dµ(x)−
∫
E\B1(q)

Ks(x, p)dµ(x)

∣∣∣∣ ≤ ∫
B1(q)\B1/2(p)

Ks(x, p) dµ(x) ,

hence

lim sup
s→0+

∣∣∣∣ ∫
E\B1/2(p)

Ks(x, p)dµ(x)−
∫
E\B1(q)

Ks(x, p)dµ(x)

∣∣∣∣ ≤ θB1(q) = 0 .

Now set

Θs(p) :=
s

2

∫ ∞

0
et∆(χE\B1(q))(p)

dt

t1+s/2
,

so that θE(p) = lims→0+ Θs(p). By Lemma 7.2 we have that that 0 ≤ Θs(p) ≤ C, for some
constant C independent of p and s. Now fix φ ∈ C∞

c (B1/2(q)), by dominated convergence∫
M
(∆θE)φdµ =

∫
M
θE(∆φ) dµ = lim

s→0+

∫
M

Θs(∆φ) dµ = lim
s→0+

∫
M
(∆Θs)φdµ .

Note however that we can explicitly compute

∆Θs(p) =
s

2

∫ ∞

0
∆et∆(χE\B1(q))(p)

dt

t1+s/2
=
s

2

∫ ∞

0
∂te

t∆(χE\B1(q))(p)
dt

t1+s/2
,

which, for every p ∈ B1/2(q), after an integration by parts becomes (note that the boundary term

at t = 0+ is zero due to Lemma 7.2) equal to

s

2

(
1 +

s

2

)∫ ∞

0
et∆(χE\B1(q))(p)

dt

t2+s/2
.

The latter quantity goes to 0 as s→ 0+ for every p ∈ B1/2(q) whence∫
M
(∆θE)φdµ = 0 .

This means that θE is harmonic in B1/2(q), and since this holds for every q ∈M this proves (i).

Lastly, (5) follows from the last part of the proof of Proposition 1.4, and the fact that p 7→ θM (p)
is harmonic is verbatim the proof we did for E ⊂M above. □
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Note that, according to Theorem 1.1, if M possesses the L∞ − Liouville property, then θE is
constant for every set E for which it exists. A natural question to ask would be whether some
type of converse is true. However, we have not been able to prove or disprove such a statement.
We leave this as an open question, and we would be happy to know the answer:

Question 3.3. Let (M, g) be a complete Riemannian manifold with µ(M) = +∞ and with
the following property: for every set E ⊂M for which θE exists (see (3)), θE is constant.

Is it true that then M has the L∞ − Liouville property?

Now we turn to the proof of Theorem 1.2. To prove this result we will need Lemma 3.4 (whose
proof is postponed to the Appendix) which essentialy says that for manifolds with µ(M) = +∞
the singular kernel Ks locally behaves like that of Rn as s → 0+. This is not the case for finite

volume manifolds2. Recall the notation of Remark 1.13, where we denote by
βn,s

|x−y|n+s the singular

kernel of Rn with its standard metric. Note also that cs(2 − s) ≤ βn,s ≤ Cs(2 − s) for some
dimensional c, C > 0.

Lemma 3.4. Let (M, g) be a complete n-dimensional Riemannian manifold with µ(M) = +∞,
and let p ∈ M . Assume that in normal coordinates at p there holds 99

100 |v|
2 ≤ gij(q)v

ivj ≤ 101
100 |v|

2

and |∇gij(q)| ≤ 1/100 for all v ∈ Rn and q ∈ B1(p). Then there exists K′
s : B1(p)×B1(p) → [0,∞)

such that

lim
s→0+

sup
x,y∈B1/8(p)

∣∣Ks(x, y)−K′
s(x, y)

∣∣ = 0 ,

and for all x, y ∈ B1/8(p)

c
βn,s

d(x, y)n+s
≤ K′

s(x, y) ≤ C
βn,s

d(x, y)n+s
, (20)

for some dimensional constants c, C > 0.

This lemma is a sharpening of [8, Lemma 2.11] for manifolds with infinite volume. Indeed, in [8]
the authors are not interested in characterizing the sharp dependence from s of Ks as s → 0+.
Moreover, in [8] the authors estimate Ks locally on every complete Riemannian manifold M (both
with finite and infinite volume), but the result stated in Lemma 3.4 is false for manifolds with
finite volume.

Proof of Theorem 1.2. As we can assume s < s◦/2, it follows from the proof of Proposition 7.5

that the integral in (−∆)
s/2
Si u is absolutely convergent3 for a.e. x ∈ M , and the principal value is

not needed. Moreover, since u ∈ Hs◦/2(M) we have∫
M
(u(x)− u(y))2Ks◦(x, y) dµ(y) < +∞

2Indeed, for finite volume manifolds the same conclusion (20) holds with constants depending on s, but as s → 0+

the constants do not behave like the ones of Rn.
3Here we are not assuming M being stochastically complete, but in Proposition 7.5 stochastical completeness is

only used to have that (−∆)
s/2
B u = (−∆)

s/2
Si u a.e., not to show the absolute convergence of the integrals.
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for a.e. x ∈ M . Fix x ∈ M in the intersection of these two sets of full measure, and take R such
that supp(u) ⊂ BR(x). Then

(−∆)
s/2
Si u(x) =

∫
M
(u(x)− u(y))Ks(x, y) dµ(y)

=

∫
BR(x)

(u(x)− u(y))Ks(x, y) dµ(y) + u(x)

∫
M\BR(x)

Ks(x, y) dµ(y) . (21)

Note that being µ(M) = +∞ we have∫
M\BR(x)

Ks(x, y) dµ(y) ̸= 0 .

Claim. As s→ 0+ there holds

lim
s→0+

∫
BR(x)

(u(x)− u(y))Ks(x, y) dµ(y) = 0 .

Indeed, let ρ ≪ 1 small that will be choosen later. We denote here by C a constant which does
not depend on s. Then∣∣∣∣ ∫

BR(x)
(u(x)− u(y))Ks(x, y) dµ(y)

∣∣∣∣
=

∣∣∣∣ ∫
Bρ(x)

(u(x)− u(y))Ks(x, y) dµ(y) +

∫
BR(x)\Bρ(x)

(u(x)− u(y))Ks(x, y) dµ(y)

∣∣∣∣
≤
∫
Bρ(x)

|u(x)− u(y)|Ks(x, y) dµ(y) + 2∥u∥L∞

∫
BR(x)\Bρ(x)

Ks(x, y) dµ(y) .

We estimate these two integrals separately. Let K′
s be the singular kernel given by Lemma 3.4,

applied with ρ sufficiently small and suitably rescaled. For the first integral, Lemma 3.4 gives

lim sup
s→0+

∫
Bρ(x)

|u(x)− u(y)|
(
Ks(x, y)−K′

s(x, y)
)
dµ(y) = 0 . (22)

Moreover, by the bounds of Lemma 3.4 and since u ∈ Hs◦/2(M), for a.e. x ∈M∫
Bρ(x)

(u(x)− u(y))2

d(x, y)n+s◦
dy ≤ C(s◦)

∫
Bρ(x)

(u(x)− u(y))2Ks◦(x, y) dy < +∞.

Hence, by Lemma 3.4 again and Holder’s inequality∫
Bρ(x)

|u(x)− u(y)|K′
s(x, y) dµ(y) ≤ Cs

∫
Bρ(x)

|u(x)− u(y)|
d(x, y)n+s

dµ(y)

≤ Cs

(∫
Bρ(x)

(u(x)− u(y))2

d(x, y)n+s◦
dy

)1/2(∫
Bρ(x)

1

d(x, y)n+2s−s◦dy

)1/2

≤ Cs

(
ρs◦−2s

s◦ − 2s

)1/2

→ 0 ,

as s → 0+, where in the second-last inequality we have used polar coordinates for ρ sufficiently
small (possibly depending on x). Thus, with (22) we have that the first integral tends to zero.
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Regarding the second integral, one can note that we have proved in part (i) of Theorem 1.1
that, for every x ∈M and r,R > 0

lim
s→0+

∫
BR(x)\Br(x)

Ks(x, y)dµ(y) = 0 ,

since BR(x) is a bounded set, and this concludes the proof of the claim.

Moreover, by the very definition of θM we have

lim
s→0+

∫
M\BR(x)

Ks(x, y) dµ(y) = θM (x) , (23)

hence letting s→ 0+ in (21) gives

lim
s→0+

(−∆)
s/2
Si u(x) = θM (x)u(x) ,

for a.e. x ∈M , and this concludes the proof. □

To prove our result Theorem 1.8 on the asymptotics for infinite volume, one needs also to know
the asymptotics as s → 0+ of the fractional s-perimeter on the entire M , that is when Ω ≡ M .
This is addressed by Theorem 3.5 below on the asymptotics of the fractional Sobolev seminorms.
This result is the counterpart of Theorem 4.1 in the case of infinite volume.

Theorem 3.5. Let (M, g) be a complete Riemannian manifold with µ(M) = +∞, and let

s◦ ∈ (0, 1). Then, for every u ∈ Hs◦/2(M) ∩ L∞(M) with bounded support there holds

lim
s→0+

1

2
[u]2

Hs/2(M)
=

∫
M
u2θM dµ .

Proof. Formally, one would like to infer that

1

2
[u]2

Hs/2(M)
:=

1

2

∫∫
M×M

(u(x)− u(y))2Ks(x, y) dµ(x)dµ(y)

=

∫
M
u(−∆)

s/2
Si u dµ

s→0+−−−−→
∫
M
u2θM dµ ,

where the first equality is the very definition of the seminorm. The second inequality is nontrivial,
since the integrals one would write in the few lines of a proof are not absolutely convergent in
general. Moreover, for the last step of taking the limit as s→ 0+ one needs to show that the a.e.

convergence (−∆)
s/2
Si u → θMu of Theorem 1.2 can be upgraded to weak convergence in L2(M).

Now we shall justify both steps.

Step 1. We have

1

2

∫∫
M×M

(u(x)− u(y))2Ks(x, y) dµ(x)dµ(y) =

∫
M
u(−∆)

s/2
Si u dµ . (24)

Fix ε > 0 and let

(−∆)s/2ε u(x) :=

∫
M\Bε(x)

(u(x)− u(y))Ks(x, y) dµ(y) .
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Let also D := {(z, z) : z ∈M} denote the diagonal of M ×M and Dδ a δ-neighborhood of D. We
have ∫∫

M×M\Dε/
√
2

(u(x)− u(y))2Ks(x, y) dµ(x)dµ(y)

=

∫∫
M×M\Dε/

√
2

u(x)(u(x)− u(y))Ks(x, y) dµ(x)dµ(y)

−
∫∫

M×M\Dε/
√
2

u(y)(u(x)− u(y))Ks(x, y) dµ(x)dµ(y)

= 2

∫∫
M×M\Dε/

√
2

u(x)(u(x)− u(y))Ks(x, y) dµ(x)dµ(y)

= 2

∫
M

∫
M\Bε(x)

u(x)(u(x)− u(y))Ks(x, y) dµ(y)dµ(x)

= 2

∫
M
u(−∆)s/2ε u dµ ,

where splitting the integral and Fubini are justified since the integrals are absolutely convergent.
Indeed∫

M

∫
M\Bε(x)

|u(x)(u(x)− u(y))|Ks(x, y) dµ(y)dµ(x)

≤
∫
M

|u(x)|2
∫
M\Bε(x)

Ks(x, y) dµ(y)dµ(x) +

∫
M

|u(x)|
∫
M\Bε(x)

|u(y)|Ks(x, y) dµ(y)dµ(x) ,

but by Lemma 7.2∫
M\Bε(x)

Ks(x, y) dµ(y) = C

∫ ∞

0

(∫
M\Bε(x)

HM (x, y, t) dµ(y)

)
dt

t1+s/2

≤ C

∫ ∞

0

e−c/t

t1+s/2
dt ≤ C ,

for some C depending on s and ε. Hence∫
M

∫
M\Bε(x)

|u(x)(u(x)− u(y))|Ks(x, y) dµ(y)dµ(x) ≤ C(∥u∥L∞ , µ(supp(u)), ε, s) < +∞ ,

and this shows the absolute convergence.

Moreover, by Proposition 7.5 for a.e. x ∈M the integral in (−∆)
s/2
Si u is absolutely convergent,

then ∫
M

∣∣(−∆)
s/2
Si u− (−∆)s/2ε u

∣∣2dµ ≤
∫
M

∣∣∣∣∣
∫
Bε(x)

|u(x)− u(y)|Ks(x, y)dµ(y)

∣∣∣∣∣
2

dµ(x) ,

and the right hand side ternds to 0 as ε→ 0. Indeed, as ε→ 0, by the very same argument at the
end of the proof of Theorem 1.2 there holds∫

Bε(x)
|u(x)− u(y)|Ks(x, y)dµ(y) → 0 ,
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for a.e. x ∈ M , and for x fixed the convergence is monotone (decreasing) since the integrand is

positive. Hence we have proved (−∆)
s/2
ε u→ (−∆)

s/2
Si u in L2(M) as ε→ 0. Now, letting ε→ 0 in

1

2

∫∫
M×M\Dε/

√
2

(u(x)− u(y))2Ks(x, y) dµ(x)dµ(y) =

∫
M
u(−∆)s/2ε u dµ ,

together with the monotone convergence theorem on the left-hand side, we get the equality of the
seminorms and this completes the proof of Step 1.

Step 2. There holds

(−∆)
s/2
Si u ⇀ θMu weakly in L2(M) .

The convergence a.e. is given by Theorem 1.2. To prove that the convergence holds weakly in

L2(M), we show that (−∆)
s/2
Si u is equibounded in L2(M). By (40) there is C depending only on

s◦ such that

∥(−∆)
s/2
Si u∥

2
L2(M) ≤ C∥u∥2L2(M) + Cs2∥u∥2Hs◦ (M) ,

and hence

lim sup
s→0+

∥(−∆)
s/2
Si u∥

2
L2(M) ≤ C∥u∥2L2(M) < +∞ .

This concludes Step 2 and, sending s→ 0+ in (24) concludes the proof. □

Remark 3.6. Note that the equivalence of the seminorms (24) always holds for characteristic
functions, without any assumption. Indeed for every measurable E ⊂M

2

∫
M
χE · (−∆)

s/2
Si χE dx = 2

∫
E

(
lim
ε→0

∫
M\Bε(x)

(1− χE(y))Ks(x, y)dy

)
dx

= 2

∫
E

(
lim
ε→0

∫
(M\Bε(x))∩Ec

Ks(x, y)dy

)
dx

= 2

∫
E

∫
Ec

Ks(x, y)dy = [χE ]
2
Hs/2(M)

,

where the second-last equality follows by the monotone convergence theorem.

Proof of Theorem 1.3. SinceM is stochastically complete, by Proposition 7.7 we have Hs◦/2(M) ⊂
Dom((−∆)

s/2
Spec). The equality a.e. of the fractional Laplacian then follows by Proposition 7.5 and

Proposition 7.8.

To prove (7), (8) one can argue similarly to the proof of Theorem 4.1. Indeed, as s → 0+ for
every v ∈ L2(M) we have

⟨(−∆)
s/2
Specu, v⟩ =

∫
σ(−∆)

λs/2d⟨Eλu, v⟩ →
∫
σ(−∆)\{0}

d⟨Eλu, v⟩ = ⟨u, v⟩ − ⟨E0u, v⟩ ,

where E0 is the projector onto the eigenspace of −∆ relative to the eigenvalue λ = 0. By Theorem
2.3 every L2(M) harmonic function is constant, hence we have two cases:

(i) If µ(M) < +∞ then the eigenspace of λ = 0 is the span of the eigenfunction µ(M)−1/2,
then E0u = 1

µ(M)

∫
M u dµ and this gives (7).

(ii) If µ(M) = +∞ then E0u = 0 and we have (8).

This conclusdes the proof. □
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Remark 3.7. When M is stochastically complete with µ(M) = +∞ the convergence in (8) also
follows by Theorem 1.2, since θM ≡ 1 in this case. Nevertheless, the argument carried on in
Theorem 1.2 is much more general and shows what happens in the limit on any manifold with

µ(M) = +∞, even when M is not stochastically complete (i.e. when (−∆)
s/2
Si and (−∆)

s/2
Spec do

not coincide).

4. Asymptotics: finite volume manifolds

We first give a simple proof of Theorem 1.8 in the case Ω = M , using our results from
subsection 7.2 on the equivalence of the spectral fractional Laplacian and ours defined by the
singular integral (14).

Theorem 4.1. Let (M, g) be a complete Riemannian manifold with µ(M) < +∞ and let

s◦ ∈ (0, 1). Then, for every u ∈ Hs◦/2(M) there holds

lim
s→0+

1

2
[u]2

Hs/2(M)
= ∥u∥2L2(M) −

1

µ(M)

(∫
M
u dµ

)2

.

Proof. Let {Eλ}λ≥0 be the spectral resolution of the Laplacian −∆ on L2(M), and let σ(−∆) ⊂
[0,∞) be the spectrum of −∆. In particular, for every u ∈ L2(M), d⟨Eλu, u⟩ is a regular Borel
(real valued) measure on [0,∞) concentrated on σ(−∆), and with

∥u∥2L2(M) =

∫
σ(−∆)

d⟨Eλu, u⟩ .

We refer to [18, Appendix A.5] for an introduction and properties of the spectral resolution.
Since µ(M) < +∞, we have that 0 ∈ σ(−∆) lies in the point spectrum with eigenfunction

ϕ0 = µ(M)−1/2. Then

−∆ =

∫
σ(−∆)

λdEλ ,

and

(−∆)
s/2
Spec =

∫
σ(−∆)

λs/2dEλ ,

on

Dom((−∆)
s/2
Spec) :=

{
u ∈ L2(M) :

∫
σ(−∆)

λs d⟨Eλu, u⟩ < +∞
}
.

Hence, for all s < s◦ by Corollary 7.9

1

2
[u]2

Hs/2(M)
=

∫
M
u(−∆)

s/2
Si u dµ =

∫
σ(−∆)\{0}

λs/2d⟨Eλu, u⟩ .

Taking the limit as s→ 0+ gives

lim
s→0+

1

2
[u]2

Hs/2(M)
=

∫
σ(−∆)\{0}

d⟨Eλu, u⟩ = ∥u∥2L2(M) − ⟨E0u, u⟩ = ∥u∥2L2(M) −
1

µ(M)

(∫
M
u dµ

)2

,

where in the last line we have used that E0 is the projector onto the eigenspace of −∆ relative
to the eigenvalue λ = 0, but by a result of Yau (see Theorem 2.3) on a complete manifold every

L2(M) harmonic function is constant and then ⟨E0u, u⟩ = ⟨ϕ0, u⟩2L2(M) =
1

µ(M)

(∫
M u dµ

)2
. □

Remark 4.2. This result allows to prove our main theorem in the case Ω =M . Indeed, if E ⊂M
is such that Ps◦(E) < +∞ for some s◦ ∈ (0, 1), then taking u = χE in Theorem 4.1 gives

lim
s→0+

1

2
Ps(E) = µ(E)− 1

µ(M)
µ(E)2 =

1

µ(M)
µ(E)µ(Ec) .
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Now we turn to the proof of the main result on the asymptotics for finite volume.

Proof of Theorem 1.8. First, we claim that for every A,B ⊂ M disjoint, measurable, and with
Js◦(A,B) < +∞ there holds

lim
s→0+

∣∣∣∣∣Js(A,B)− 1

|Γ(−s/2)|

∫∫
A×B

∫ ∞

1/s
HM (x, y, t)

dt

t1+s/2
dµ(x)dµ(y)

∣∣∣∣∣ = 0 . (25)

Indeed, since
∫
M HM (x, y, t) dµ(x) = 1 for all y ∈ M (this holds since every complete manifold

with finite volume is stochastically complete) and t ∈ (0,∞) we have∣∣∣∣Js(A,B)− 1

|Γ(−s/2)|

∫∫
A×B

∫ ∞

1/s
HM (x, y, t)

dt

t1+s/2
dµ(x)dµ(y)

∣∣∣∣
=

∫∫
A×B

(
Ks(x, y)−

1

|Γ(−s/2)|

∫ ∞

1/s
HM (x, y, t)

dt

t1+s/2

)
dµ(x)dµ(y)

=
1

|Γ(−s/2)|

∫∫
A×B

(∫ 1

0
HM (x, y, t)

dt

t1+s/2
+

∫ 1/s

1
HM (x, y, t)

dt

t1+s/2

)
dµ(x)dµ(y)

≤ Cs

∫∫
A×B

∫ ∞

0
HM (x, y, t)

dt

t1+s◦/2
+ Csµ(M)

∫ 1/s

1

dt

t1+s/2

= CsJs◦(A,B) + Cµ(M)(1− ss/2) ,

and taking s→ 0+ proves the claim.

Moreover

lim
s→0+

1

|Γ(−s/2)|

∫∫
A×B

∫ ∞

1/s
HM (x, y, t)

dt

t1+s/2
dµ(x)dµ(y) =

1

µ(M)
µ(A)µ(B) . (26)

Indeed

s

∫ ∞

1/s
HM (x, y, t)

dt

t1+s/2
= s1+s/2

∫ ∞

1
H(x, y, r/s)

dr

r1+s/2
,

and since by Lemma 2.6 as t → +∞ the heat kernel HM (x, y, t) coverges to 1/µ(M) for all
x, y ∈M , we get

lim
s→0+

s

2

∫∫
A×B

∫ ∞

1/s
HM (x, y, t)

dt

t1+s/2
dµ(x)dµ(y) =

1

µ(M)
µ(A)µ(B) lim

s→0+
(s/2) ss/2

∫ ∞

1

dr

r1+s/2

=
1

µ(M)
µ(A)µ(B) .

Then, putting together (25) and (26) readily implies

lim
s→0+

Js(A,B) =
1

µ(M)
µ(A)µ(B) .

Lastly, since Ps◦(E,Ω) < +∞ and

1

2
Ps(E,Ω) = Js(E ∩ Ω, Ec ∩ Ω) + Js(E ∩ Ω, Ec ∩ Ωc) + Js(E ∩ Ωc, Ec ∩ Ω) ,

the theorem follows letting s→ 0+.
□
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In [7] the authors prove the following result regarding the s-perimeter of the Gaussian space.
Since the total mass of the Gaussian space is one, we see that this is formally identical to our
Theorem 1.8 for finite volume.

Theorem 4.3 (Main Theorem in [7]). Let Ω ⊂ Rn be an open and connected set with Lipschitz
boundary. Then, for any E ⊂ Rn measurable set such that P γ

s◦(E,Ω) < +∞ for some s◦ ∈ (0, 1)
there holds

lim
s→0+

s

2
P γ
s (E; Ω) = γ(E)γ(Ec ∩ Ω) + γ(E ∩ Ω)γ(Ec ∩ Ωc) ,

where P γ
s (E,Ω) is the fractional Gaussian perimeter

P γ
s (E,Ω)

=

∫∫
E∩Ω×Ec∩Ω

Ks(x, y) dγxdγy +

∫∫
E∩Ω×Ec∩Ω

Ks(x, y) dγxdγy +

∫∫
E∩Ω×Ec∩Ω

Ks(x, y) dγxdγy ,

and Ks(x, y) is defined as in (2) with on the right-hand side the heat kernel Hγ of the Gaussian

space (Rn, γ), where dγ(x) = 1
(2π)n/2 e

−|x|2/2Ln(dx).

The proof in [7] follows the same lines as our proof of Theorem 1.8, but the authors heavily use
the fact that they know the explicit form of the heat kernel Hγ for the Gaussian space. In the
next subsection we briefly explain how our method, applied to weighted manifolds, implies their
result.

4.1. Weighted manifolds. Our result for finite volume manifolds extends, with proofs mutatis
mutandis, to the case of weighted manifolds with finite volume, implying the one in [7].

A weighted manifold is a Riemannian manifold (M, g) endowed with a measure µ that has a
smooth positive density with respect to the Riemannian volume form dVg. The space (M, g, µ)
features the so called weighted Laplace operator −∆µ, generalizing the Laplace-Beltrami operator,
which is symmetric with respect to measure µ. It is possible to extend −∆µ to a self-adjoint
operator in L2(M,µ), which allows to define the heat semigroup et∆µ as one would on a classical
Riemannian manifold. The heat semigroup has the integral kernel Hµ(x, y, t), which is called the
heat kernel of (M, g, µ), and has completely analogous properties as the classical one. For every
detail regarding the heat kernel on weighted manifolds, we refer to the survey [17].

In this case, we see that our proof applies since Lemma 2.6 also holds (with the same proof) on
geodesically complete weighted manifolds, and also Theorem 4.1 holds with the same proof, since
our results from subsection 7.2 are valid for weighted manifolds too.

Moreover, our method works also for manifolds with boundary and finite volume. Indeed, if
(M, g) is a complete manifold with (possibly empty) boundary and finite volume, and one defines
Ks(x, y) by (2) with the heat kernel with Neumann boundary conditions on the right-hand side,
then the same proof applies.

5. Asymptotics: infinite volume manifolds

We now show (among other things) that (18) is well-posed for manifolds with the L∞−Liouville
property, in the sense that it does not depend on the choice of p and R.

Lemma 5.1. Let (M, g) be a complete Riemannian manifold with µ(M) = +∞. If M has the
L∞ − Liouville property then θE(p) ≡ θE does not depend on the point p. In this case, for every
bounded F ⊂M and R > 0 there also holds

µ(F )θE = lim
s→0+

Js(F,E \BR(p)) = lim
s→0+

∫
F

∫
E\BR(p)

Ks(x, y) dµ(x)dµ(y).
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Proof. SinceM has the L∞−Liouville property, the fact that p 7→ θE(p) is harmonic and bounded
directly implies that is constant, and thus independent of the point p. Moreover, with the notation
of the proof of Theorem 1.1, since F is bounded by dominated convergence∣∣∣∣|F |∫

E\B1(p)
Ks(x, p) dµ(x)−

∫
F

∫
E\B1(p)

Ks(x, y) dµ(x)dµ(y)

∣∣∣∣
=

∣∣∣∣|F |Θs(p)−
∫
F
Θs(y) dµ(y)

∣∣∣∣ ≤ ∫
F
|Θs(p)−Θs(y)| dµ(y) → 0 ,

since both lims→0+ Θs(p) = θE and lims→0+ Θs(y) = θE (recall that θE is constant). The same
holds for any radius R instead of 1 since the limit of Θs does not depends on R. □

Lemma 5.2. Let (M, g) be complete with µ(M) = +∞, and let A,B ⊂ M be two disjoint
measurable sets one of which has finite measure and with Js◦(A,B) < +∞, for some s◦ ∈ (0, 1).
Then

lim
s→0+

Js(A,B) = 0 .

Proof. First, being Js◦(A,B) < +∞, arguing exactly as in the proof of (25) we have that

lim sup
s→0+

Js(A,B) ≤ lim sup
s→0+

s

2

∫
A×B

∫ ∞

1/s
HM (x, y, t)

dt

t1+s/2
dµ(x)dµ(y).

Now assume that A is the set with µ(A) < +∞, then we can write

s

2

∫
A×B

∫ ∞

1/s
HM (x, y, t)

dt

t1+s/2
dµ(x)dµ(y) = Cs1+s/2

∫
A

∫ ∞

1
e(ξ/s)∆(χB)(x)

dξ

ξ1+s/2
dµ(x)

≤ C

∫
A

(
s

∫ ∞

1
e(ξ/s)∆(χB)(x)

dξ

ξ1+s/2

)
dµ(x) .

From here, by the convergence to zero of the heat kernel of Lemma 2.6, the result follows by
dominated convergence.

□

The results above directly imply the following.

Corollary 5.3. Let (M, g) be complete with µ(M) = +∞ and with the L∞ − Liouville property,
and let Ω ⊂ M be bounded. Then, for every F ⊂ Ω with Ps◦(F,Ω) < +∞, for some s◦ ∈ (0, 1),
there holds

lim
s→0+

Js(F,E ∩ Ωc) = µ(F )θE .

Proof. Let p ∈M and R≫ 1 be such that Ω ⊂ BR(p), then

Js(F,E ∩ Ωc) = Js(F,E ∩ Ωc ∩BR(p)) + Js(F,E ∩ Ωc ∩Bc
R(p))

= Js(F,E ∩ Ωc ∩BR(p)) + Js(F,E ∩Bc
R(p)) .

Now, as s→ 0+ the first term tends to 0 by Lemma 5.2, and the second term tends to µ(F )θE by
Lemma 5.1. □

Corollary 5.4. Let (M, g) be stochastically complete and with µ(M) = +∞. Let E ⊂ M be
bounded and such that Ps◦(E) < +∞ for some s◦ ∈ (0, 1). Then

lim
s→0+

1

2
Ps(E) = µ(E) .

Proof. Since M is stochastically complete, by Proposition 1.4 we have θM ≡ 1. Then the result
follows taking u = χE in Corollary 3.5. □
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One can note that stochastical completeness in not really needed in Corollary 5.4. Even whenM
is not stochastically complete, by Theorem 1.1 we know that θM is a bounded harmonic function
with values in [0, 1]. Then, the same proof applies in this case and gives

lim
s→0+

1

2
Ps(E) = θMµ(E) .

Consequently, if in particular θM ≡ θ◦ ∈ [0, 1] we have

lim
s→0+

1

2
Ps(E) = θ◦µ(E) , (27)

for every E bounded with Ps◦(E) < +∞. This feature led us to note the following example, which
shows that, interestingly enough, there exists Riemannian manifolds with θ◦ = 0.

Example 5.5. There exists a complete Riemannian manifold N where the asymptotics of the
fractional s-perimeter as s → 0+ is zero for every set, that is: for every bounded E with
Ps◦(E) < +∞ for some s◦ ∈ (0, 1) there holds

lim
s→0+

Ps(E) = 0 .

By (27) above we see that it is enough to provide an example of a Riemannian manifold N
with θN (p) = θN = 0, meaning that the limit does not depend on the point p and is always zero.
Moreover, by part (ii) of Remark 3.2 this is satisfied if N has the L∞ − Liouville property, is not
stochastically complete and

N (t, p) =

∫
N
HN (x, p, t) dµ(x) → 0 , as t→ ∞ .

A Riemannian manifold N with these properties actually exists, and we now sketch how it is
constructed. We want N such that

(i) N has the L∞ − Liouville property.

(ii) N is not stochastically complete.

(iii) For every p ∈ N we have N (t, p) =
∫
N HN (x, p, t) dµ(x) → 0.

The construction of N that satisfies (i), (ii) is taken from [16, Section 13.5], which in turn builds
on the first such example found by Pinchover in [25]. Here, we note that it satisfies also (iii).

Figure 1. The two dimensional jungle-gym in R3. Picture taken from [16].
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Start from the two dimensional jungle-gym JG2 in R3 as in Figure 1. This is done by smoothly
connecting the lattice Z3 ⊂ R3 with necks. Let g be the standard metric on JG2 induced by
the embedding in R3. Fix o ∈ JG2 and let r := d(o, x). One can show that then JG2 has the
L∞ − Liouville property. Moreover, there holds µ(BR(o)) ≤ CR3, and the Green function grows
at most as G(o, x) ≤ C/r for large r. Let ρ : JG2 → [0,+∞) be a smooth positive function with
ρ = 1 in [0, 1] and ρ(r) ∼ 1

r log(r) for large r, and consider the conformal metric ĝ := ρ2(r)g on

JG2. We claim that N := (JG2, ĝ) has the desired properties. Since∫ ∞

1
ρ(r)dr = ∞ ,

then N is geodesically complete and hence complete. Moreover, as the Laplacian is conformally
invariant in dimension two, JG2 with its standard metric and N have the same harmonic functions,

and thus N also has the L∞−Liouville property and satisfies (i). Denote by Ĝ the Green’s function
of N . Then, by the choice of ρ, for R big∫

N\BR(o)
Ĝ(o, x) dµ̂(x) =

∫
JG2\BR(o)

G(o, x)ρ2(r) dµ(x) < +∞ ,

and by [16, Corollary 6.7] this implies (ii). Consequently, note that also∫ ∞

0
N (p, t) dt =

∫ ∞

0

∫
N
HN (x, p, t) dµ̂(x)dt =

∫
N

(∫ ∞

0
HN (x, p, t) dt

)
dµ̂(x)

=

∫
N
Ĝ(o, x) dµ̂(x) =

∫
N\BR(o)

Ĝ(o, x) dµ̂(x) +

∫
BR(o)

Ĝ(o, x) dµ̂(x) < +∞ ,

and since the function N (p, ·) is also nonincreasing this implies that N also satisfies (iii).

Now, the proof of our main theorem in the infinite volume case is just a simple application of
all the result that we have derived above.

Proof of Theorem 1.6. Write

1

2
Ps(E,Ω) = Js(E ∩ Ω, Ec ∩ Ω) + Js(E ∩ Ω, Ec ∩ Ωc) + Js(E ∩ Ωc, Ec ∩ Ω)

=
1

2
Ps(E ∩ Ω)− Js(E ∩ Ω, E ∩ Ωc) + Js(E

c ∩ Ω, E ∩ Ωc) .

By Corollary 5.4 and by Corollary 5.3, applied with F = E ∩ Ω and F = Ec ∩ Ω, taking the limit
as s→ 0+ we get

lim
s→0+

1

2
Ps(E,Ω) = µ(E ∩ Ω)− θEµ(E ∩ Ω) + θEµ(E

c ∩ Ω)

= (1− θE)µ(E ∩ Ω) + θEµ(E
c ∩ Ω) ,

and this shows (i).

To prove (ii) and (iii) we follow closely the proof of in [10, Theorem 2.7], which deals with the
analogous property in the case of the Euclidean space Rn. We just sketch the argument, since
in the reference [10] the proof is carried on in full details and in our case it is analogous. Let us
denote

Θs(E) :=

∫
E\BR(p)

Ks(x, p)dµ(x) , (28)
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and fix R≫ 1 such that Ω ⊂ BR(p). Note that∫
Ω\E

∫
E\BR(p)

Ks(x, y) dµ(x)dµ(y)−
∫
Ω∩E

∫
E\BR(p)

Ks(x, y) dµ(x)dµ(y)

=
1

2
Ps(E,Ω)−

1

2
Ps(E ∩ Ω,Ω)− Js(Ω \ E, (E \ Ω) ∩BR(p)) + Js(Ω ∩ E, (E \ Ω) ∩BR(p)) .

Now, arguing exactly as in the proof of Lemma 5.1 we have that for every bounded F ⊂M there
holds

lim
s→0+

∣∣∣∣∣µ(F )Θs(E)−
∫
F

∫
E\BR(p)

Ks(x, y) dµ(x)dµ(y)

∣∣∣∣∣ = 0 .

But also by Lemma 5.2 we have both

lim
s→0+

Js(Ω \ E, (E \ Ω) ∩BR(p)) = 0 ,

and
lim
s→0+

Js(Ω ∩ E, (E \ Ω) ∩BR(p)) = 0 .

Hence, taking the limit as s→ 0+ above gives

lim
s→0+

Θs(E)
(
µ(Ω \ E)− µ(Ω ∩ E)

)
= lim

s→0+

1

2

(
Ps(E,Ω)− Ps(E ∩ Ω,Ω)

)
.

But since E ∩ Ω ⊂ Ω is bounded, by Corollary 5.4 we have

lim
s→0+

1

2
Ps(E ∩ Ω,Ω) = lim

s→0+

1

2
Ps(E ∩ Ω) = µ(E ∩ Ω) ,

thus

lim
s→0+

Θs(E)
(
µ(Ω \ E)− µ(Ω ∩ E)

)
= lim

s→0+

1

2
Ps(E,Ω)− µ(E ∩ Ω) .

From here, the conclusion of the theorem easily follows. Indeed, if µ(Ω \ E) = µ(Ω ∩ E) then the
limit lims→0+

1
2Ps(E,Ω) always exists and is equal to µ(E ∩ Ω). On the other hand, if the limit

lims→0+
1
2Ps(E,Ω) exists then from above the limit in θE also exists and there holds

θE =
lims→0+

1
2Ps(E,Ω)− µ(E ∩ Ω)

µ(Ω \ E)− µ(E ∩ Ω)
,

and this concludes the proof. □

6. Extension to RCD spaces

In this section we briefly explain how our results extend to the case of RCD(K,N) spaces, which
are a generalization of Riemannian manifolds with upper bound on the dimension N and Ricci
curvature bounded from below by the real numberK (and they include weighted manifolds). While
assuming the reader familiar with the theory of RCD spaces we have to mention at least some
references: the introduction of a synthetic lower bound on the Ricci curvature (CD condition)
has been done in the work of Lott and Villani [24] and in the works of Sturm [27], [28]. In
a subsequent work Ambrosio, Gigli and Savarè introduced the RCD condition (see [1]) to rule
out Finsler structures and enforce some Riemannian-like structure at small scales of the space
(infinitesimal hilbertianity, see also [12]).

We stress that we won’t reprove every result of the smooth case but only the ones presenting
major changes which are needed to perform the asymptotic analysis. First of all, on any

RCD(K,N) space with K ∈ R and N ∈ N ∪ {∞} it is possible to define a heat kernel and to
do so we shall exploit the theory of gradient flows. We call the heat flow (et∆)t>0 the gradient
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flow (in the sense of Komura-Brezis theory) of the Cheeger energy which displays the following
properties: for an L2 function f the curve t ∈ (0,∞) → et∆f ∈ L2 is locally absolutely continuous,
it is such that et∆f ∈ D(∆), limt→0 e

t∆f = f in L2 and moreover satisfies the heat equation

det∆

dt
= ∆et∆f ∀t > 0.

We will now collect some other properties of the heat flow holding on infinitesimally hilbertian
metric measure spaces which we will exploit (see [13] for a reference):

Proposition 6.1. Let (X, d, µ) be an infinitesimally hilbertian metric measure space, then we have

(i) (Weak maximum principle): Given any f ∈ L2(µ) such that f ≤ C µ-almost everywhere
we have

et∆f ≤ C µ− a.e.

(ii) (et∆ is self-adjoint): For all f, g ∈ L2(µ) we have∫
X
et∆fgdµ =

∫
X
et∆gfdµ ∀t > 0.

(iii) (∆ and et∆ commute): For all f ∈ D(∆) we have

∆et∆f = et∆∆f µ− a.e., ∀t > 0.

Moreover if (X, d, µ) is an RCD(K,∞) space we have the following additional properties:

(iv) (Bakry-Émery estimate): For all f ∈W 1,2(X) and t > 0 we have

|∇et∆f |2 ≤ e−2Ktet∆
(
|∇f |2

)
µ− a.e. (29)

(v) (L∞ − Lip regularization): For all f ∈ L∞(µ) and t > 0 we have

∥∇et∆f∥L∞(µ) ≤
e−2Kt

√
t

∥f∥L∞(µ). (30)

It is then possible to define the heat flow for all probability measures with finite second moment
as the EV IK (again, we assume the reader to be familiar with the terminology) gradient flow of
the entropy functional. More precisely for every µ ∈ P2(X), et∆µ (with a little abuse of notation
here) is the unique measure such that∫

X
φdet∆µ =

∫
X
et∆φdµ ∀φ ∈ Lipbs(X),

where Lipbs(X) is the set of Lipschitz functions with bounded support and et∆φ is the Lipschitz
continuous representative of its equivalence class (which is well-posed thanks to the L∞ − Lip
regularization property).

On RCD(K,∞) it is possible to define the heat kernel HX(x, ·, t) := det∆δx
dµ and we have the

following (see [21] for a reference):

Proposition 6.2. Let (X, d, µ) be an RCD(K,N) space with N ∈ N, then for all ϵ > 0, for some
C1, C2, C3, C4 nonnegative constants (possibly depending on ϵ and N) we have

1

C1µ(B√
t(y))

exp

(
−d

2(x, y)

(4− ϵ)t
− C2t

)
≤ HX(x, y, t) ≤ C1

µ(B√
t(y))

exp

(
−d

2(x, y)

(4 + ϵ)t
+ C2t

)
(31)

for all x, y ∈ X, t > 0 and

|∇HX(x, ·, t)|(y) ≤ C3√
tµ(B√

t(y))
exp

(
−d2(x, y)
(4 + ϵ)t

− C4t

)
(32)
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µ× µ-a.e. (x, y) ∈ X ×X, for all t > 0.

Moreover, if K = 0 then estimate (31) holds with C2 = C4 = 0.

On any RCD(K,∞) space we have∫
X
HX(x, y, t)dµ(x) = 1

for all y ∈ X, t > 0. That is, X is stochastically complete.

In the setting of RCD(K,N) (actually infinitesimal hilbertianity is not required) we also have
Bishop-Gromov’s comparison theorem, holding both for the perimeter measure and the volume
measure (see [28]). Finally it is possible to prove that the following version of the Harnack
inequality holds (see [22] for the proof)

Proposition 6.3 (Harnack inequality). Let (X, d, µ) be an RCD(K,∞) space, p ∈ (1,∞) and
f ∈ L1(µ) ∩ L∞(µ), then

|(et∆f)(x)|p ≤ (et∆|f |p)(y) exp
(

pKd2(x, y)

2(p− 1)(e2Kt − 1)

)
for all x, y ∈ X ×X and t > 0.

From the previous Harnack inequality it is possible to prove the following Gaussian bound
(see [29, Theorem 4.1]) for RCD(K,∞) spaces (compare with (31) above for RCD(K,N) spaces).

Proposition 6.4. Let (X, d, µ) be an RCD(K,∞) space, then there exists CK > 0 and for all
ε > 0 there exists Cε > 0 such that

HX(x, y, t) ≤ 1√
µ(B√

t(x))
√
µ(B√

t(y))
exp

(
Cε(1 + CK)t− d2(x, y)

(4 + ε)t

)
. (33)

If K ≥ 0 one can take CK = 0.

The second ingredient we need is a generalization to RCD(K,∞) spaces of the L2 − Liouville
property of Yau (our Theorem 2.3).

Proposition 6.5. Let (X, d, µ) be an RCD(K,∞) space. Then, any L2(µ) harmonic function is
constant.

Proof. Denote w(t, x) := et∆u(x). Assume u ∈ L2(µ) is harmonic, then by applying the heat flow
to ∆u = 0 and using item (iii) of Proposition 6.1 we have

∆w = 0.

By gradient flow theory we have ∫
X
|∇w|2dµ ≤ 1

2t

∫
X
|u|2dµ,

whence

0 = −
∫
X
w∆w dµ =

∫
X
|∇w|2dµ.

This means |∇w| = 0 µ-a.e. and by the Sobolev to Lipschitz property this implies that w is
constant, therefore there exists C = C(t) such that w(t, ·) = C(t). Now if µ(X) <∞ by using the
stochastical completeness we can infer (u ∈ L2(µ) implies u ∈ L1(µ))∫

X
w dµ =

∫
X
u dµ = µ(X)C(t),
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hence C does not actually depend on t and by taking the limit as t → 0+ we infer that u is
constant. If µ(X) = ∞ then for every t we have w = 0 because the only constant in L2(µ) is zero
and we conclude. □

Remark 6.6. The previus proposition actually does not require a curvature condition: working in
a space in which having zero weak upper gradient implies being constant is enough.

We then have the following result, which is a non-smooth analogue of Proposition 2.6.

Proposition 6.7. Let (X, d, µ) be an RCD(K,∞) space, then we have the following dicotomy:

(i) If µ(X) < +∞ then

HX(t, x, y) → 1

µ(X)
as t→ ∞ ∀x, y ∈ X.

(ii) If µ(X) = +∞ we have

HX(·, ·, t) → 0 as t→ ∞ (34)

locally uniformly and HX(p, ·, t) → 0 uniformly as t→ ∞ for every p ∈M .

Proof. For the proof of (i) everything follows verbatim from the proof of Proposition 2.6. For
what concerns the second point we shall exploit the Harnack inequality of Proposition 6.3. We
repeat the first part of the proof for the sake of exposition: first let f = HX(p, ·, ε), then
max{∥et∆f∥L1 , ∥et∆f∥L∞} ≤ C due to the properties of the heat flow. Moreover by the semigroup
property of it is easy to see that weak convergence in L2(µ) of et∆f is equivalent to strong
convergence and we again have the inequality

|(et∆f, g)| ≤ |(et∆f, f)∥(et∆g.g)| ≤ ∥g∥2L2(µ)|(e
t∆f, f)|

for all t ∈ (0,∞) and for all f, g ∈ L2(µ). Now again using the spectral measure representation
and Proposition 6.5 we infer the desired L2 convergence. This convergence can be upgraded to
be locally uniform by the Harnack inequality (Proposition 6.3) with p = 2 and by the fact that
|f |2 ≤ ∥f∥L∞ |f |, together with the maximum principle to get

|et∆f(x)|2 ≤ ∥f∥L∞et∆(|f |)(y) exp
(

2KR2

2(e2Kt − 1)

)
for every y ∈ BR(x). Integrating over the latter set in dµ(y) and taking the supremum allows to
conclude. The global uniform convergence follows along the same lines of the smooth case. □

Remark 6.8. As in the smooth case if µ(x) = ∞ we have that for every f ∈ L1(µ)

lim
t→∞

et∆f(x) = 0

for every x ∈ X.

We refer to [3] for an introduction to Hs spaces on very general ambient space, like RCD spaces
and more. We have the analogue of Theorem 4.1.

Theorem 6.9. Let (X, d, µ) be an RCD(K,∞) space with K ∈ R and µ(X) < +∞. Let

u ∈ Hs◦/2(X) for some s◦ ∈ (0, 1) with bounded support. Then

lim
s→0+

1

2
[u]2

Hs/2(X)
= ∥u∥2L2(X) −

1

µ(M)

(∫
X
udµ

)2

.

Proof. The proof is exactly the same as in the smooth case exploiting the L2 − Liouville property
of Proposition 6.5. □
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To prove the convergence result for the case of infinite volume we need a convergence result for
the solution of the heat equation to the initial datum. We therefore recall the following (upper)
Large Deviation Principle on proper RCD(K,∞) spaces (see [14, Theorem 5.3])

Theorem 6.10. Let (X, d, µ) be a proper RCD(K,∞) space, then for every x ∈ X and closed set
C ⊆ X we have, setting µt[x] = HX(·, x, t)µ,

lim sup
t→0

t log(µt[x](C)) ≤ − inf
y∈C

d2(x, y)

4
. (35)

Remark 6.11. In (35) we can choose C = X \Br(p) and obtain the following estimate for small
times (depending on r > 0 and ε > 0)

|et∆(χX\Br(p))(p)| ≤ exp

(
− r2 − ε

4t

)
(36)

We are finally ready to prove the following proposition (analogue of Proposition 1.4)

Proposition 6.12. Let (X, d, µ) be a proper RCD(K,∞) space with µ(X) = +∞. Then for every
p ∈ X

θM (p) = lim
s→0

∫
X\B1(p)

Ks(x, p)dµ(x) = 1.

Proof. As for the smooth case we first show that

lim
s→0+

s

2

∫
X\B1(p)

∫ 1

0
HX(x, p, t)

dt

t1+s/2
dµ(x) = 0.

Indeed there exists δ > 0 such that for all t ≤ δ (36) holds, so that the previous integral can be
estimated with the following

s

2

∫ δ

0
e−r2/5t dt

t1+s/2
+
s

2

∫
X\B1(p)

∫ 1

δ
HX(x, p, t)

dt

t1+s/2
.

The first term clearly goes to zero as s → 0+ and to handle the second we use Fubini to deduce
that (here stochastical completeness is not necessary but RCD(K,∞) spaces enjoy this property
so we write the equality sign)

s

2

∫
X\B1(p)

∫ 1

δ
HX(x, p, t)

dt

t1+s/2
=
s

2

∫ 1

δ

dt

t1+s/2
− s

2

∫
B1(p)

∫ 1

δ
HX(x, p, t)

dt

t1+s/2
dµ(x).

Again the first term trivially goes to zero while for the second we apply (33) and exploit properness
of the space to infer that HX(·, ·, ·) is equibounded in B1(p)× [δ, 1] so that

lim sup
s→0

∣∣∣∣s2
∫
B1(p)

∫ 1

δ
HX(x, p, t)

dt

t1+s/2
dµ(x)

∣∣∣∣ ≤ lim sup
s→0+

C
s

2

∫ 1

δ

dt

t1+s/2
= 0 .

We now claim that

lim
s→0+

s

2

∫
B1(p)

∫ ∞

1
HX(x, p, t)

dt

t1+s/2
dµ(x) = 0.

Indeed, thanks to the local uniform convergence proved in (34) and reasoning as in the previous
step the latter result easily follows.

Finally we can perform the same steps and write

θM (p) = lim
s→0

s

2

∫
X

∫ ∞

1
HX(x, y, t)

dt

t1+s/2
dµ(x),

which equals 1 by using stochastical completeness. □
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In the following proposition we study the behaviour of the singular kernel Ks(x, y).

Proposition 6.13. Let (X, d, µ) be an RCD(K,N) space with µ(X) = +∞. Then, for every
x ∈ X which is a regular point we have

Cs

rn+s
≤ Ks(x, y) ≤

Cs

rn+s
+ os(1) + sup

t≥1/s
HM (x, y, t), (37)

for every y ∈ X, where r = d(x, y). In particular Ks(x, ·) → 0 as s → 0+ locally uniformly away
from x.

Proof. Let us define

Ks(x, y) =
s

2

∫ 1

0
HX(x, y, t)

dt

t1+s/2
+
s

2

∫ 1/s

1
HX(x, y, t)

dt

t1+s/2
+
s

2

∫ ∞

1/s
HX(x, y, t)

dt

t1+s/2

=: I1 + I2 + I3.

By the Gaussian estimates (31) amd using the fact that x is a regular point we have

I1 ≤ Cs

∫ 1

0
e−r2/5t dt

t1+s/2+n/2
≤ Cs

rn+s
.

Moreover, since µ(X) = +∞ by (34) the heat kernel converges locally uniformly to zero, and we
also get

I2 ≤ Cs

∫ 1/s

1

dt

t1+s/2
= C(1− ss/2) = os(1),

for some constant C which is bounded in a neighborhood of x. Finally we have

I3 ≤
s

2
sup
t≥1/s

HM (x, y, t)

∫ ∞

1/s

dt

t1+s/2
,

thus proving the upper bound in (6.13). For the lower bound it is enough to neglect I2 and I3 and
apply the Gaussian estimate from below to I1.

Finally, the local uniform convergence Ks(x, ·) → 0 is apparent due to the local uniform
convergence (34) of the heat kernel to zero and the other quantities involved. □

With the next proposition we show that the heat density of a set, whenever it exists, is
independent of the radius and also on the point if the L∞ − Liouville property holds, analogously
to the case of manifolds.

Proposition 6.14. Let (X, d, µ) be an RCD(K,∞) space with µ(X) = +∞ and let E ⊂ M such
that θE exists, then

θE(p) = lim
s→0+

∫
X\Br(p)

Ks(p, x)dµ(x)

for all r > 0. Moreover, if the L∞−Liouville property holds then the latter quantity is independent
also of the point p.

Proof. We first show the independence on the radius, therefore we fix any two 0 < r < R and we
show that

lim sup
s→0+

s

2

∫
BR(p)\Br(p)

∫ ∞

0
HX(x, p, t)

dt

t1+s/2
dµ(x) = 0.

We split the integral over the time in three pieces: one from 0 to ε, one from ε to T and the last one
from T to ∞. The first piece goes to zero since BR(p)\Br(p) is a closed set and we can apply (36),
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the second piece goes to zero for every T ≫ 1 thanks to the properness of the space, the Gaussian
upper bound (33) and easy calculations, while the last piece is such that, for all T ≥ T0(ε)

lim sup
s→0

s

2

∫ ∞

T
HX(x, p, t)

dt

t1+s/2
dµ(x) ≤ ε.

Since this holds for every ε we get the convergence to zero.

For what concerns the independence on the point we first take r so big that q ∈ Br/10(p) and
wlog we assume E to be closed. We have

lim sup
s→0+

∣∣∣∣∫
E\Br(p)

Ks(x, p)dµ(x)−
∫
E\B2r(q)

Ks(x, q)dµ(x)

∣∣∣∣
≤ lim sup

s→0+

∣∣∣∣∫
E\Br(p)

Ks(x, q)dµ(x)−
∫
E\B2r(q)

Ks(x, q)dµ(x)

∣∣∣∣
+ lim sup

s→0+

∣∣∣∣∫
E\Br(p)

Ks(x, p)−Ks(x, q)dµ(x)

∣∣∣∣ =: I1 + I2.

The first integral is zero since

I1 ≤ lim sup
s→0+

∫
B2r(q)\Br(p)

Ks(x, q)dµ(x) = θB2r(q)(q) = 0 ,

where we have used the independence on the radius. While for I2 we shall exploit the L
∞−Liouville

property. We can, as usual, expand the singular kernel and split the integral in time into three
pieces, one going from 0 to 1, another from 1 to T ≫ 1 and lastly from T to ∞. The first two are
handled thanks to the exponential convergence (36) and the boundedness of the heat kernel, while
for the last one we have

lim sup
s→0+

∣∣∣∣ ∫ ∞

T
et∆(χE\Br(p))(p)− et∆(χE\Br(p))(q)

dt

t1+s/2

∣∣∣∣ = 0

thanks to the L∞ − Liouville property. Indeed et∆(χE\Br(p)) converges up to subsequences to a
constant harmonic function, hence its (of the limit function) value at the points p and q is the same
so that, being this true for any subsequence, et∆(χE\Br(p))(p)− (χE\Br(p))(q) → 0 as t→ ∞. □

Finally we have the analogue of Theorem 3.5.

Theorem 6.15. Let (X, d, µ) be a proper RCD(K,N) space with µ(X) = +∞ and N < +∞, and

let s◦ ∈ (0, 1). Then for every u ∈ Hs◦/2(X) ∩ L∞(X) with bounded support there holds

lim
s→0+

1

2
[u]2

Hs/2(X)
= ∥u∥2L2(X).

Proof. The proof is similar to the smooth case, we just need to handle with a bit more care the
computations. We advise the reader to first see the proof in the smooth case of Theorem 3.5.

By Proposition 7.5 (which also holds for RCD spaces, see Remark 7.6) for µ-a.e. x ∈ X the

integral in (−∆)
s/2
Si u is absolutely convergent. Fix x ∈ X is this full-measure set and R > 0 such

that supp(u) ⊆ BR(x). Now we prove that, as s → 0+, (−∆)
s/2
Si u → u µ-a.e. with the same

strategy of the smooth case. Take also x ∈ X to be a regular point, we have

(−∆)
s/2
Si u(x) =

∫
BR(x)

(u(x)− u(y))Ks(x, y)dµ(y) + u(x)

∫
X\BR(x)

Ks(x, y)dµ(y)
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and we are left to prove that the first term goes to zero as s→ 0+, as the second one in the limit
is precisely u(x). Now fix ρ≪ 1 and let us split the first integral as follows∣∣∣∣ ∫

BR(x)
(u(x)− u(y))Ks(x, y) dµ(y)

∣∣∣∣ = ∫
Bρ(x)

|u(x)− u(y)|Ks(x, y) dµ(y)

+

∫
BR(x)\Bρ(x)

|u(x)− u(y)|Ks(x, y) dµ(y).

For the first integral we can apply Proposition 6.13 to obtain

∫
Bρ(x)

|u(x)− u(y)|Ks(x, y) dµ(y) ≤ Cs

∫
Bρ(x)

|u(x)− u(y)|
d(x, y)n+s

dµ(y) + os(1). (38)

Applying Hölder inequality as in the smooth case (take s small so that 2s < s0) we now get

∫
Bρ(x)

|u(x)− u(y)|
d(x, y)n+s

dµ(y) ≤

(∫
Bρ(x)

(u(x)− u(y))2

d(x, y)n+s◦
dy

)1/2(∫
Bρ(x)

1

d(x, y)n+2s−s◦dy

)1/2

and conclude in the same way that taking the limit as s → 0+ in (38) gives zero. For the second
term we just use the fact that Ks(x, ·) goes to zero locally uniformly away from x together with

dominated convergence. Therefore we have proved that (−∆)
s/2
Si u → u µ-a.e. as s → 0+. Now

to establish the convergence of the seminorms we exploit Corollary 7.9, which holds also in this

non-smooth setting with the same proof. To conclude we just need to prove that (−∆)
s/2
Si u ⇀ u

weakly in L2(µ): this is however apparent because of the equiboundedness of ∥(−∆)
s/2
Si u∥L2(µ)

given by the estimate (40). □

Thanks to the previous results we would be in the position of stating and proving (which we
won’t do, since the proofs are exactly the same as in the smooth case) the theorems regarding the
asymptotics of the fractional perimeter Theorem 1.8 and Theorem 1.6, also in this non-smooth
setting.

7. Appendix

7.1. Heat kernel estimates and Hs(M) spaces. Here (M, g) denotes a complete, connected

Riemannian manifold. First, we present a simple interpolation inequality for Hs/2(M) spaces.

This inequality is known in the case of M = Rn or M = Ω ⊂ Rn for fractional Sobolev spaces
W s,p, also when p ̸= 2. Here we carry on a structural proof using few properties of the heat kernel,
and this gives the interpolation inequality on general ambient spaces.

Lemma 7.1. Let u ∈ Hσ(M) for some σ ∈ (0, 1), and let 0 < s < σ < 1. Then u ∈ Hs(M) and
the following inequality holds

[u]Hs(M) ≤ C∥u∥1−s/σ
L2(M)

[u]
s/σ
Hσ(M).

for some absolute constant C > 0.
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Proof. We have

|Γ(−s)|[u]2Hs(M) =

∫∫
M×M

(u(x)− u(y))2
∫ ∞

0
HM (x, y, t)

dt

t1+s
dµ(x)dµ(y)

≤
∫∫

M×M
(u(x)− u(y))2

∫ ξ

0
HM (x, y, t)

dt

t1+s
dµ(x)dµ(y)

+

∫∫
M×M

(u(x)− u(y))2
∫ ∞

ξ
HM (x, y, t)

dt

t1+s
dµ(x)dµ(y)

where ξ ∈ (0,∞) will be chosen at the end. Note that for all t ∈ (0, ξ) we have (ξ/t)1+s ≤ (ξ/t)1+σ

so that we can estimate from above the first integral of the previous inequality with

ξσ−s

∫∫
M×M

(u(x)− u(y))2
∫ ξ

0
HM (x, y, t)

dt

t1+σ
dµ(x)dµ(y) ≤ ξσ−s|Γ(−σ)|[u]2Hσ(M).

The symmetry of the heat kernel and the fact that M(t, y) ≤ 1, for all y ∈M , together imply that
the second integral can be bounded by∫∫

M×M
(u(x)− u(y))2

∫ ∞

ξ
HM (x, y, t)

dt

t1+s
dµ(x)dµ(y) ≤ 4

sξs
∥u∥2L2(M).

This two inequalities lead to

|Γ(−s)|[u]2Hs(M) ≤ ξσ−s|Γ(−σ)|[u]2Hσ(M) +
4

sξs
∥u∥2L2(M).

Optimizing the right-hand side in ξ gives that the optimal value is

ξ =

( 4∥u∥2L2(M)

(σ − s)|Γ(−σ)|[u]2Hσ(M)

)1/σ

.

Putting everything together gives

|Γ(−s)|[u]2Hs(M) ≤
C

s
∥u∥2(1−s/σ)

L2(M)
[u]

2s/σ
Hσ(M) ,

and this implies

[u]Hs(M) ≤ C∥u∥1−s/σ
L2(M)

[u]
s/σ
Hσ(M) ,

as desired. □

Lemma 7.2 ([8]). Let (Mn, g) be a complete n-dimensional Riemannian manifold and let
BR(p) ⊂M . Then

et∆(χM\BR(p))(p) =

∫
M\BR(p)

HM (x, p, t) dµ(x) ≤ Ce−c/t ,

for some C, c > 0 depending on R and the geometry of M in BR(p).

Proof. This is essentially [8, Lemma 2.9]. Indeed, in [8, Lemma 2.9] the authors prove that if
(M, g) is a complete Riemannian manifold and Br(p) ⊂M is a ball diffeomorphic to Br(0) ⊂ TpM
with metric coefficients gij (say, in normal coordinates) uniformly close to δij , then∫

M\Br(p)
HM (x, p, t) dµ(x) ≤ Ce−c r2/t ,

for some C, c > 0 dimensional. Then, taking r ≪ 1 very small and writing∫
M\BR(p)

HM (x, p, t) dµ(x) ≤
∫
M\Br(p)

HM (x, p, t) dµ(x)
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allows to bound the desired integral. □

Now we present the proof of Lemma 3.4, that we needed to prove the asymptotics of the full
Hs/2(M) seminorm of Theorem 3.5.

Proof of Lemma 3.4. Let φ−1 : B1(p) → Rn be the inverse of the exponential map at p. Take
η ∈ C∞

c (B4/5(0)) with χB2/5(0) ≤ η ≤ χB4/5(0) and let g′ij := gijη + (1 − η)δij . This is a metric on

Rn with g′ij = gij in B2/5(0). Denote by Ks,K′
s the singular kernels of (M, g) and M ′ := (Rn, g′)

respectively. Let Λ := supx∈B1/5(p)
HM (x, x, 1) and Λ′ := supx∈B1/5(0)

HM ′(x, x, 1). Then, by [8,

Lemma 2.10] applied to the Riemannian manifolds (M, g) and (Rn, g′) we have, for x, y ∈ B1/5(0)∣∣Ks(φ(x), φ(y))−K′
s(x, y)

∣∣ ≤ s/2

Γ(1− s/2)

∫ ∞

0

∣∣HM (φ(x), φ(y), t)−HM ′(x, y, t)
∣∣ dt

t1+s/2

≤ Cs(2− s)

∫ 1

0

∣∣HM (φ(x), φ(y), t)−HM ′(x, y, t)
∣∣ dt

t1+s/2

+ Cs(2− s)

∫ 1/s

1

∣∣HM (φ(x), φ(y), t)−HM ′(x, y, t)
∣∣ dt

t1+s/2

+ Cs(2− s)

∫ ∞

1/s

∣∣HM (φ(x), φ(y), t)−HM ′(x, y, t)
∣∣ dt

t1+s/2

:= Cs(2− s)
[
I1 + I2 + I3

]
.

By [8, Lemma 2.10] there holds

I1 =

∫ 1

0

∣∣HM (φ(x), φ(y), t)−HM ′(x, y, t)
∣∣ dt

t1+s/2
≤ C

∫ 1

0
e−c/t dt

t1+s/2
≤ C ,

for some dimensional C = C(n) > 0. Regarding the second integral

I2 ≤
∫ 1/s

1
(Λ + Λ′)

dt

t1+s/2
= (Λ + Λ′)

1− ss/2

s/2
,

and lastly

I3 =

∫ ∞

1/s

∣∣HM (φ(x), φ(y), t)−HM ′(x, y, t)
∣∣ dt

t1+s/2

≤ ss/2
∫ ∞

1

[
HM (φ(x), φ(y), ξ/s) +HM ′(x, y, ξ/s)

]
dξ

ξ1+s/2
= os(1) → 0

as s→ 0+, since both M and M ′ have infinite volume and thus their heat kernel tends to zero as
t→ +∞ (see Lemma 2.6). Hence as s→ 0+∣∣Ks(φ(x), φ(y))−K′

s(x, y)
∣∣ ≤ Cs+ C(Λ + Λ′)(1− ss/2) + os(1) = os(1) ,

and note that this estimate is uniform in x, y ∈ B1/5(0). This follows, for example, from the
parabolic Harnack inequality since one can locally estimate the supremum of HM and HM ′ with
the L1 norm at later times; see the end of the proof of Lemma 2.6. Then

lim
s→0+

sup
x,y∈B1/8(p)

∣∣Ks(x, y)−K′
s(x, y)

∣∣ = 0 .

Lastly, by [8, Lemma 2.5] there exists dimensional constants c, C > 0 such that

c
βn,s

d(x, y)n+s
≤ K′

s(x, y) ≤ C
βn,s

d(x, y)n+s
,

and this concludes the proof. □
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7.2. On the equivalence and well-posedness of different fractional Laplacians. In this
subsection we shall prove some results concerning the equivalence between different definitions of
the fractional Laplacian, and the fractional Sobolev seminorms on (possibly weighted) Riemannian
manifolds.

Next we want to show that the fractional laplacian defined with the heat semigroup (−∆)
s/2
B

and the one defined via the singular integral (−∆)
s/2
Si coincide. Note that the two following

propositions do not hold whenM is not stochastically complete. Indeed, using definition (14) gives

(−∆)
s/2
Si (1) ≡ 0, while if M is not stochastically complete equation (12) gives (−∆)

s/2
B (1) ̸= 0.

Proposition 7.3. Let (M, g) be a complete Riemannian manifold, and let u ∈ C∞
c (M). Then:

(i) For s < 1 the integral in (−∆)
s/2
Si u is absolutely convergent and the principal value is not

needed.
(ii) The singular integral (−∆)

s/2
Si u (defined in (14)) and the Bochner (−∆)

s/2
B u (defined in

(12)) definition coincide.

Proof. For what concerns the absolute convergence for s ∈ (0, 1), we have∫
M
(u(x)− u(y))Ks(x, y)dµ(y) =

∫
Br(x)

(. . . ) dµ(y) +

∫
M\Br(x)

(. . . ) dµ(y) =: I1 + I2.

For r small, arguing exactly as in the proof of Theorem 3.5

I1 ≤ C

∫
Br(x)

1

d(x, y)n+s−1
dµ(y) ≤ C

∫ r

0

1

ρs
dρ < +∞ .

On the other hand, for the second integral

I2 ≤ 2∥u∥L∞

∫
M\Br(x)

Ks(x, y)dµ(y) ,

and thanks to Lemma 7.2 and Fubini∫
M\Br(x)

Ks(x, y)dµ(y) =

∫ ∞

0

1

t1+s/2

∫
M\Br(x)

HM (x, y, t)dµ(y)dt

≤ C

∫ 1

0
e−c/t dt

t1+s/2
+

∫ ∞

1

1

t1+s/2
dt < +∞.

This concludes the proof of (i).

Now, let us define

J(t) :=
et∆u(x)− u(x)

t1+s/2
=

1

t1+s/2

∫
M
HM (x, y, t)(u(y)− u(x))dµ(y),

where the second equality is due to the stochastical completeness. Note that J ∈ L1(0,+∞) since
|et∆u(x)− u(x)| ≤ Ct, where the constant C depends on ∥∆u∥L∞ . We can now define

Jk(t) :=
1

t1+s/2

∫
M\B1/k(x)

HM (x, y, t)(u(y)− u(x))dµ(y).
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and observe that Jk(t) → J(t) for all t ∈ (0,∞). Now if t ≥ 1 (estimating the mass of the heat

kernel by 1) we get Jk(t) ≤ 2∥u∥L∞/t1+s/2, while by [8, Lemma 2.11] we have∣∣J(t)− Jk(t)
∣∣ ≤ 1

t1+s/2

∫
B1/k(x)

HM (x, y, t)|u(y)− u(x)|dµ(y)

≤ C

t1+s/2+n/2

∫
B1/k(x)

e−d2(x,y)/5td(x, y)dµ(y) .

Applying Coarea formula and using the fact that Per(Br(x)) ≤ Crn−1 if k is big we get∣∣J(t)− Jk(t)
∣∣ ≤ C

t1+s/2+n/s

∫ 1/k

0
e−r2/5trndr =

C

ts/2

∫ 1/(5tk2)

0
e−zzn/2−1dz ≤ C

ts/2
.

Therefore if t ≥ 1 we have Jk(t) ≤ C/t1+s/2 ∈ L1(1,+∞) while if t ≤ 1 we have Jk(t) ≤
C/ts/2 + J(t) ∈ L1(0, 1). Hence by dominated convergence we can write

(−∆)
s/2
B u(x) =

∫ ∞

0
J(t) dt = lim

k→∞

∫ ∞

0

∫
M\B1/k(x)

(u(y)− u(x))HM (x, y, t)
dt

t1+s/2
dµ(y).

Now for any k ∈ N fixed, by Lemma (7.2) and the fact that u is bounded, we get∫ ∞

0

∫
M\B1/k(x)

|u(y)−u(x)|HM (x, y, t)
dt

t1+s/2
≤ 2∥u∥L∞

∫ 1

0
e−c/t dt

t1+s/2
+2∥u∥L∞

∫ ∞

1

dt

t1+s/2
< +∞.

Therefore we can apply Fubini and infer

(−∆)
s/2
B u(x) = lim

k→∞

∫
M\B1/k(x)

∫ ∞

0
(u(y)− u(x))HM (x, y, t)

dt

t1+s/2
dµ(y)

= P.V.

∫
M
(u(y)− u(x))Ks(x, y)dµ(y).

□

Remark 7.4. One can note that the proof above of the absolute convergence of (−∆)
s/2
Si u for

s ∈ (0, 1) actually shows that the integral is absolutely convergent if u ∈ Cα
loc(M) ∩ L∞(M) for

some α > s.

Regarding the following two results, we couldn’t find any proof in the case of an ambient
Riemannian manifold (M, g), even though they appear to be well-known in the community in the

case M = Rn or a domain M = Ω ⊂ Rn. For example, a proof that Dom((−∆Ω)
s/2
Spec) = Hs(Ω)

for the Dirichlet Laplacian on Ω ⊂ Rn can be found in [4, Section 3.1.3], but it heavily uses the
discreteness of the spectrum and interpolation theory.

Our results are not sharp, in particular, we believe that Proposition 7.5 and 7.7 hold also for
s = σ since this is the case for domains in Rn. Here we focus on providing structural (and short)
proofs that apply verbatim to the case of any weighted manifold, and we avoid using any local
Euclidean-like structure of M .

Proposition 7.5. Let (M, g) be a stochastically complete Riemannian manifold, σ ∈ (0, 1) and

u ∈ Hσ(M) (as defined in Definition 1.9). Then, for every s < σ the singular integral (−∆)
s/2
Si u

(defined in (14)) and the Bochner (−∆)
s/2
B u (defined in (12)) definition coincide a.e. Moreover

(−∆)
s/2
B u = (−∆)

s/2
Si u ∈ L2(M).
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Proof. Let u ∈ Hσ(M) and x ∈ M . Since M is stochastically complete, if we could exhange the
order of integration we would have

(−∆)
s/2
B u(x) =

1

Γ(−s/2)

∫ ∞

0
(et∆u(x)− u(x))

dt

t1+s/2

=
1

Γ(−s/2)

∫ ∞

0

(∫
M
HM (x, y, t)(u(y)− u(x))dµ(y)

)
dt

t1+s/2

=

∫
M
(u(y)− u(x))Ks(x, y)dµ(y) = (−∆)

s/2
Si u(x) .

Now we shall justify the steps above, showing that the integral is absolutely convergent. Note that

this will also justify the last equality, since we have defined (−∆)
s/2
Si with the Cauchy principal

value. In particular, we show that∫
M

(∫
M

|u(x)− u(y)|Ks(x, y)dµ(y)

)2

dµ(x) < +∞ .

This will prove at the same time that the integral above is absolutely convergent for a.e. x ∈ M

and that (−∆)
s/2
Si u ∈ L2(M). Let us call

I(t) :=

∫
M

|u(x)− u(y)|HM (x, y, t) dµ(y) ,

and denote by C a constant that depends at most on σ.

Note that, by Jensen’s inequality∫ ∞

0
I(t)2

dt

t1+σ
=

∫ ∞

0

(∫
M

|u(x)− u(y)|HM (x, y, t) dµ(y)

)2 dt

t1+σ

≤
∫ ∞

0

∫
M

|u(x)− u(y)|2HM (x, y, t) dµ(y)
dt

t1+σ

= C

∫
M

|u(x)− u(y)|2K2σ(x, y) dµ(y) . (39)

Write∫
M

(∫
M

|u(x)− u(y)|Ks(x, y)dµ(y)

)2

dµ(x)

= Cs2
∫
M

(∫ ∞

0
I(t)

dt

t1+s/2

)2

dµ

≤ Cs2
∫
M

(∫ 1

0
I(t)

dt

t1+s/2

)2

dµ+ Cs2
∫
M

(∫ ∞

1
I(t)

dt

t1+s/2

)2

dµ .

For the first integral, since s < σ, by Hölder’s inequality and (39) we have∫
M

(∫ 1

0
I(t)

dt

t1+s/2

)2

dµ ≤
∫
M

(∫ 1

0
I(t)2

dt

t1+σ

)(∫ 1

0

dt

t1−σ+s

)
dµ ≤ C[u]2Hσ(M) < +∞.

For the second integral, let us first renormalize the measure ν := Cdt/t1+s/2 in a way that it
becomes a probability measure on [1,∞). Then, by Jensen again (applied two times: to dν(t) and
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then HM (x, y, t)dµ(y))∫
M

(∫ ∞

1
I(t)

dt

t1+s/2

)2

dµ ≤ C

s2

∫∫
M×M

∫ ∞

1
|u(x)− u(y)|2HM (x, y, t) dν(t)dµ(y)dµ(x)

≤ 4C

s2

∫∫
M×M

∫ ∞

1
|u(x)|2HM (x, y, t) dν(t)dµ(y)dµ(x)

≤ 4C

s2
∥u∥2L2(M) < +∞ .

Hence, we have proved

∥(−∆)
s/2
Si u∥

2
L2(M) ≤

∫
M

(∫
M

|u(x)− u(y)|Ks(x, y)dµ(y)

)2

dµ(x)

≤ C∥u∥2L2(M) + Cs2∥u∥2Hσ(M), (40)

and this concludes the proof. □

Remark 7.6. Note that the proof of Proposition 7.5 applies verbatim to the case of RCD(K,N)
spaces, since every RCD(K,N) space is stochastically complete. We will use this fact in the proof
of Theorem 6.15.

Next, we address the equivalence of the spectral fractional Laplacian (−∆)
s/2
Spec with the other

definitions. We refer to [18] and [11, Section 2.6] and the references therein for an introduction of
the spectral theory of the fractional Laplacian on general spaces.

Let Eλ be the spectral resolvent of (minus) the Laplacian on (M, g). Then, for s ∈ (0, 2) in the
classical sense of spectral theory

Dom((−∆)
s/2
Spec) :=

{
u ∈ L2(M) :

∫
σ(−∆)

λs d⟨Eλu, u⟩ < +∞
}
,

and for u ∈ Dom((−∆)
s/2
Spec)

(−∆)
s/2
Specu :=

∫
σ(−∆)

λs/2d⟨Eλu, ·⟩ . (41)

Proposition 7.7. Let (M, g) be a stochastically complete Riemannian manifold, σ ∈ (0, 1) and

s < σ. Then Hσ(M) ⊆ Dom((−∆)
s/2
Spec).

Proof. Let u ∈ Hσ(M), and let

φ(λ) := λs/2 =
1

Γ(−s/2)

∫ ∞

0
(e−λt − 1)

dt

t1+s/2
.

Since u ∈ L2(M), by standard spectral theory (see [18] for example)∫ ∞

0
λsd⟨Eλu, u⟩ =

∫ ∞

0
|φ(λ)|2d⟨Eλu, u⟩ = ∥φ(−∆)u∥2L2(M)

=

∥∥∥∥∫ ∞

0
(et∆u− u)

dt

t1+s/2

∥∥∥∥2
L2(M)

= ∥(−∆)
s/2
B u∥2L2(M) = ∥(−∆)

s/2
Si u∥

2
L2(M) < +∞ ,

where we have used that by Proposition 7.5 (−∆)
s/2
B u = (−∆)

s/2
Si u ∈ L2(M). □
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Proposition 7.8. Let u ∈ Dom((−∆)
s/2
Spec). Then

(−∆)
s/2
B u :=

1

Γ(−s/2)

∫ ∞

0
(et∆u− u)

dt

t1+s/2
=

∫
σ(−∆)

λs/2d⟨Eλu, ·⟩ =: (−∆)
s/2
Specu ,

where the equality is in duality with Dom((−∆)
s/2
Spec).

Proof. We follow [6, Lemma 2.2] which deals with the analogous proposition in the case of discrete
spectrum in a domain Ω ⊂ Rn. Recall the numerical formula

λs/2 =
1

Γ(−s/2)

∫ ∞

0
(e−λt − 1)

dt

t1+s/2
,

valid for λ > 0, 0 < s < 2. Let ψ ∈ Dom((−∆)
s/2
Spec), and write ψ =

∫
σ(−∆) dEλ⟨ψ, ·⟩. Then∫

σ(−∆)
λs/2d⟨Eλu, ψ⟩ =

1

Γ(−s/2)

∫
σ(−∆)

∫ ∞

0
(e−λt − 1)

dt

t1+s/2
d⟨Eλu, ψ⟩

=
1

Γ(−s/2)

∫ ∞

0

(∫
σ(−∆)

(e−λt − 1)d⟨Eλu, ψ⟩

)
dt

t1+s/2

=
1

Γ(−s/2)

∫ ∞

0

(
⟨et∆u, ψ⟩ − ⟨u, ψ⟩

) dt

t1+s/2
,

where the second-last inequality follows by Fubini’s theorem since u, ψ ∈ Dom((−∆)
s/2
Spec). □

Corollary 7.9. Let (M, g) be a stochastically complete Riemannian manifold, σ ∈ (0, 1), s < σ
and u ∈ Hσ(M). Then

1

2
[u]2

Hs/2(M)
=

∫
M
u(−∆)

s/2
Si u dµ =

∫ ∞

0
λs/2d⟨Eλu, u⟩ .

Proof. The first equality is (24), and the second equality is a direct consequence of Proposition
7.5, Proposition 7.7 and Proposition 7.8. □

7.3. Manifolds with nonnegative Ricci curvature. We recall a theorem of Yau which gives a
lower bound on the growth of the volume of geodesic balls under the nonnegative Ricci curvature
assumption. Note that the same holds with the same proof on CD(K,N) spaces.

Theorem 7.10. Let (M, g) be a complete non-compact Riemannian manifold with RicM ≥ 0.
Then, there exists a constant C = C(n) > 0 such that for every x ∈M and λ > 0

Vx(rλ) ≥ CrVx(λ), ∀ r > 1 .

Proof. By scaling invariance of the hypothesis RicM ≥ 0 one can assume λ = 1. Then, the result
is [23, Theorem 2.5]. □

Next, we present here a result concerning the growth of the singular kernel Ks in the case
of nonnegative Ricci curvature. We will not use this result anywhere but we believe it can be
interesting per se. For example, it implies that on cylinders M = Sn−k × Rk (with their product
metric) the singular kernelKs(x, y) decays like 1/d(x, y)

k+s and not 1/d(x, y)n+s for large distances.

Lemma 7.11. Let (M, g) be an n-dimensional Riemannian manifold with RicM ≥ 0 and s ∈ (0, 2).
Then, there exists dimensional constants 0 < c < C such that

c
s(2− s)

rsµ(Br(x))
≤ Ks(x, y) ≤ C

s(2− s)

rsµ(Br(x))

with r = d(x, y) for all y ∈M .
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Proof. In the definition of the singular kernel Ks we first perform the change of variables r2t = k
with r = d(x, y) so that we obtain

Ks(x, y) =
r−s

|Γ(−s/2)|

∫ ∞

0
HM (x, y, r2k)

dk

k1+s/2
.

Now we employ the Gaussian estimates from above to get

Ks(x, y) ≤
Cs(2− s)

rs

[∫ 1

0

1

µ(Br
√
k(x))

e−1/5k dk

k1+s/2
+

∫ ∞

1

1

µ(Br
√
k(x))

e−1/5k dk

k1+s/2

]
=: I1 + I2.

Using Bishop-Gromov’s inequality we get

I1 ≤
Cs(2− s)

µ(Br(x))

∫ 1

0

e−1/5k

kn/2+1+s/2
dk ≤ Cs(2− s)

µ(Br(x))
,

while for k ∈ (1,∞) we can use Theorem 7.10 to write

I2 ≤
Cs(2− s)

µ(Br(x))

∫ ∞

1
e−1/5k dk

k3/2+s/2
≤ Cs(2− s)

µ(Br(x))

and this concludes the upper estimate. For the one from below we again use the Gaussian estimates
to infer

Ks(x, y) ≥
cs(2− s)

rs

[∫ 1

0

1

µ(Br
√
k(x))

e−1/3k dk

k1+s/2
+

∫ ∞

1

1

µ(Br
√
k(x))

e−1/3k dk

k1+s/2

]
=: I3 + I4.

We now get

I3 ≥
cs(2− s)

µ(Br(x))

∫ 1

0
e−1/3k dk

k1+s/2
=
cs(2− s)

µ(Br(x))
.

Since I4 ≥ 0 we infer the lower bound as well. □

Remark 7.12. If we assume AVR(M) = limr→∞
µ(Br(x))
ωnrn

= θ > 0 then we have the more
Euclidean-like bounds

cs(2− s)

θrn+s
≤ Ks(x, y) ≤

Cs(2− s)

θrn+s
.

Note moreover that the same proof works in the singular setting of RCD(0, N) spaces.
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