ASYMPTOTICS AS s — 0" OF THE FRACTIONAL PERIMETER ON
RIEMANNIAN MANIFOLDS

MICHELE CASELLI AND LUCA GENNAIOLI

ABSTRACT. In this work, we study the asymptotics of the fractional Laplacian as s — 0 on any
complete Riemannian manifold (M, g), both of finite and infinite volume. Surprisingly enough,
when M is not stochastically complete, this asymptotics is related to the existence of bounded
harmonic functions on M.

As a corollary, we can find the asymptotics of the fractional s-perimeter on (essentially) every
complete manifold, generalizing both the existing results [10] for R™ and [7] for the Gaussian
space. In doing so, from many sets £ C M, we are able to produce a bounded harmonic function
associated with F, which, in general, can be non-constant.
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1. INTRODUCTION

This work deals with the fractional Laplacian on general complete Riemannian manifolds. Given a set
E C M, our work is based on the study of the following quantity

s=0" JE\Br(p)
1
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where 1 o0 dt
Kg(l’7y) = MA HM(:E,ZJ?t) t1+s/2 (2)

and Hp(z,y,t) : M x M x (0,00) is the heat kernel of M, that is the minimal!, positive fundamental
solution to the heat equation d;u — Agu = 0 on M with u(t,-) — 0,y in the sense of distributions as
t — 07. The quantity analogous to (1) on R™ was previously studied in [10], where the authors deal with

the study of the fractional s-perimeter as s — 07. In this case of M = R"™, the limit in (1) does not depend
on p (whenever it exists); hence, 0 is a constant function.

1.1. Main results. One of the main observations of this work is that g is always an harmonic function
on M, with values in [0, 1], and in general can be non-constant if M does not satisfy the L — Liouville
property (see Definition 2.4). Moreover, for E = M, the function ), encodes the asymptotics of the
fractional Laplacian as s — 0% on every complete (M, g).

The following are the main results of our work.

Theorem 1.1. Let (M,g) be a complete Riemannian manifold with p(M) = +oo, and let E C M be a
measurable set. Then

(i) If for some R > 0 and every p € M, the following limit exists

Op(p) == lim Ks(x, p)du(x) € [0,1], (3)
s=0" JE\BR(p)

then it is independent of the choice of R, and 0 : M — [0,1] is a bounded harmonic function on
M.
(i) For R >0 and p € M the limit

HM(p) = lim /CS(I,p)d,LL(I) € [07 H (4)
s707 JM\Br(p)

always exists, does not depend on the choice of R, and equals
Ore(p) = i [ Has(p, 1) du(z). (5)
t—o0 M

Moreover, 0y : M — [0,1] is a bounded harmonic function on M.

Unless otherwise stated, when we will say “assume 0 exists” we intend that the limit in (3) exists for
some R > 0 and every p € M. We refer to subsection 7.1 for a brief discussion on the existence/nonexistence
of this limit for different points p.

Next is the asymptotics of the fractional Laplacian. Note that, on well-behaved ambient spaces, one
would expect (as it happens on R™) that the fractional (s/2)-Laplacian tends to the identity as s — 07.
With the following result, we show that this is not true on general Riemannian manifolds and that the
harmonic function 8, defined in (4) encodes how this limit differs from the identity.

Theorem 1.2. Let (M,g) be a complete Riemannian manifold with u(M) = 400, and let 6y be given by
(4). Let also s, € (0,2) and u € H*/2(M) N L>®(M) with bounded support. Then, as s — 0T there holds

(—A)gi/zu — Opu ace. on M, (6)
where (—A)g{Q is the singular integral fractional Laplacian (14).

With this result, we also make an interesting observation regarding a Riemannian manifold constructed
by Pinchover in [25]. This Riemannian manifold satisfies the L> — Liouville property (see Definition 2.4),
but it is not stochastically complete, and we show that it satisfies 63, = 0. We describe the construction of
this manifold in Example 5.2. Consequently, there exist complete Riemannian manifolds where the mass of
the heat kernel escapes so rapidly that the asymptotics of the fractional Laplacian not only differs from the
identity but becomes identically zero, even for regular functions.

'Here, minimal means the following: if v : (0,00) x M — R is another function with d;v — Ayv = 0 on M and
v(t,:) = dgyy as t — 0%, then Has(-,5,-) <v. See Section 9.1 in [18] for details on this property.
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In the following result, we address the equivalence (actually, equality) of different definitions of the
fractional Laplacian on stochastically complete manifolds. Moreover, we also find the asymptotics of the
fractional Laplacian on manifolds with finite volume.

Theorem 1.3. Let (M,g) be a stochastically complete Riemannian manifold. Let also s, € (0,2) and
u € H*/?(M) (see Definition 1.9). Then, for all s < s, the three definitions of the fractional Laplacian
(14), (12), and (44) coincide a.e., that is

() u = (—A)y u = (~A) u

Spec™ *

Moreover, as s — 0%

(~8)2u 5 - ﬁM) /M wdp i p(M) < +oo, @
and
(~A)2u L wif (M) = +o0, ®)

where (—A)*/? is any of the equivalent fractional Laplacians.

In proving the previous theorems, we also provide an equivalent characterization of being stochastically
complete (see Definition 2.1) in the case of infinite volume.

Proposition 1.4. Let (M,g) be a complete (possibly weighted) Riemannian manifold with u(M) = +oo,
and let Op7(p) be given by (4). If M is stochastically complete, then

Oy = lim Ks(z,p)du(z) =1 VYpe M. (9)
0 M\Bi (p)

Conversely, if there exists p € M such that

eM(p) = lim ICS(.%',p)d/l(-T) =1, (10)
s20% S\ By (p)

then M is stochastically complete.
We will prove this result at the beginning of section 4.

Remark 1.5. We believe that Theorem 1.1 could be used to count the dimension of the space of bounded
harmonic function on M. Something in this direction has already been done by A. Grigor’yan in [15],
where he proves that this dimension equals the mazximum number of disjoint massive sets that can be put
on M. We think that the sets E for which (3) is not (identically) zero or one are related to the notion of
massiveness and could be used to prove a similar statement. We plan to explore this relationship in future
work.

As a corollary of the results above we are able to obtain the asymptotics of the fractional perimeter as
s — 07 in an extremely general setting, generalizing both the existing results [10] for R™ and [7] for the
Gaussian space. Although these outcomes currently stem from broader results obtained in our investigation,
we emphasize that the initial motivation behind this research was to explore the asymptotic properties of
the fractional perimeter on general Riemannian manifolds.

In particular, with Theorem 1.6 and 1.8, we show that these two known behaviors of the asymptotics,
the one of R™ and the one of the Gaussian space, are essentially the only two possible also in this general
setting.

Theorem 1.6 (Infinite volume asymptotics). Let (M, g) be a complete, stochastically complete Riemannian
manifold with u(M) = 400 and such that the L> — Liouville property holds (see Definition 2.4). Let Q@ C M
be an open, bounded, connected set with Lipschitz boundary. Let also E C M be a measurable set with?
P (E,Q) < 400, for some so € (0,1), and such that 0 exists (see (3)). Then

o

2We refer to Definition 1.11 for the definition of the fractional perimeter Ps(-, ).
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(i) The limit lim, o+ 3 Ps(E,Q) exists and®

1
lim 5 Py(E,Q) = (1 0p)u(E N Q) + Opu(E° NQ)
s—

(ii) Conversely, if n(XN E) # w(Q\ E) and the limit lim,_,o+ 3 Ps(E, Q) exists, then the limit in (3)
exists and there holds
lim, o+ 3 P5(E,Q) — n(ENQ)
pQ\E) - u(ENQ)

(iti) If W(QN E) = u(Q\ E) then the limit lim,_,o+ 3 Ps(E,Q) always ezists and

Or =

lim P (E,Q)=u(QNE)=uQ\E).

s—0t
Remark 1.7. Without the assumption of stochastic completeness of M the situation can be different. We
will describe in Example 5.2 a complete Riemannian manifold N, with the L°° — Liouville property but not
stochastically complete such that lim,_,o+ Ps(E) =0 for every subset E C N.

Theorem 1.8 (Finite volume asymptotics). Let (M, g) be a complete Riemannian manifold with u(M) <
400, and let & C M be an open and connected set with Lipschitz boundary If for some set E C M there
exists so € (0,1) such that Py (E, Q) < +o00, then the limit lim, o+ 3 Ps(E,Q) exists and

lim L P,(E,Q)

asor 20 VYT ﬁ (“(E)”(EC NQ) + u(ENQ)u(EN QC))'

1.2. The fractional perimeter on Riemannian manifolds. It was recently pointed out in [8] a canonical
definition of the fractional s-perimeter on every closed Riemannian manifold (M, g): this boils down to giving
a canonical definition of the fractional Sobolev seminorm H*/2(M) for s € (0,1). Consider a closed (even
though we will deal with general complete ones), connected Riemannian manifold (M, g) with n > 2. In [§]
the authors show that a canonical definition of the fractional Sobolev seminorm H*/2(M) can be given in
at least four equivalent (up to absolute constants) ways:

(i) By the singular integral
W = [ (0l) ) Kol) dite) ) (1)

where Ks(z,y) is given by (2).
(ii) Following the Bochner definition of the fractional Laplacian

(—A) u= ﬁ /Ooo(emu - “)tpcrl%/z , (12)

via

iy =2 (=8 ud

(#ii) By spectral theory, one can set

Hb/2 (M) — Z)‘ (u ¢k L2(M) (13)

k>1

where {¢x}, is an orthonormal basis of eigenfunctions of the Laplace-Beltrami operator (—Ag)
and {A.}; are the corresponding eigenvalues. Note that for s = 2 this gives the usual [u]?, ()
seminorm.

3Since Or\e =1 — 0g in this case.
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(iv) Cousidering a Caffarelli-Silvestre type extension (cf. [2, 5, 9]), namely, a degenerate-harmonic
extension problem in one extra dimension. One can set

[u]?{b,/z(M) = inf {/ [ )zl_s|§U(x,z)|2 du(z)dz s.t. U(z,0) = u(;v)} .
M x[0,00

Here V denotes the Riemannian gradient of the manifold M = M x [0,00), with respect
to natural/vproduct metric, and the infimum is taken over all the extensions U € X, lvhere
X = HY(M ;2'~*dudz) is the classical weighted Sobolev space of the functions U € L?(M ;dpu)

with respect to the measure du = 2'~*dudz that admit a weak gradient VU € LQ(]TJ sdp).

The spectral definition (éi7) can be extended to manifolds that are not closed, where the spectrum of
the Laplacian is not discrete. Nevertheless, the equivalence between (i) and (iv) also holds on many (but
not every) complete Riemannian manifolds, which are not necessarily compact. For example, a lower Ricci
curvature bound is sufficient. See [2] for general conditions for which the equivalence of (i) <= (iv) holds.
Moreover, under suitable assumptions on u, the equivalence between (i) and (i) holds if and only if M is
stochastically complete; we will treat this equivalence in subsection 7.3.

Since in the present work, we aim to study the asymptotics of the fractional s-perimeter on complete
Riemannian manifolds (not necessarily closed or with curvature bounded below), we work with the singular
integral definition (11) since it extends naturally to the case of general manifolds and weighted manifolds.
Then, the fractional s-perimeter on a Riemannian manifold is naturally defined by means of the fractional
Sobolev seminorm.

Here and in the rest of the work, (M, g) will denote a general complete, connected Riemannian manifold,
and hence also geodesically complete. We denote by du its Riemannian volume form and by Hys(x,y,t)
the heat kernel of (M, g). To see how to build the heat kernel on a general (weighted) manifold, see the
classical reference [18]. Moreover, we denote by Bgr(p) C M the geodesics ball on M and by Br(0) C R"
the one on R™.

Definition 1.9. Let (M, g) be a complete Riemannian manifold and s € (0,2). Then, we set
HY2(M) = {u € L*(M) : [u]f. 25y < 00},
where
sy = [ (o) = ) K ) dp(e)dn(s).
and KCs is defined as in (2).

Moreover, we will use the singular integral

() u(w) = PV = | () = ()R ) dit) (149)

as our main definition of “the fractional Laplacian” on M. We stress that in the general setting of complete
Riemannian manifolds, this integro-differential operator cannot be regarded as a fractional power of the
Laplacian in any reasonable sense. In particular:

e If M is not stochastically complete (see Definition 2.1), then (¢) and (i7) do not coincide. In this
case, since e/®1 # 1, the Bochner fractional Laplacian (ii) of a constant does not equal zero. In
particular, defining the fractional Sobolev seminorm with (i7) would imply that the s-perimeter is
not invariant under complementation Ps(E) # Ps(E°). Nevertheless, with our definition via the
singular integral (i), one has that the seminorm of a constant is always zero, and hence, in this
work, the fractional perimeter is always invariant under complementation.

e The semigroup property (—A)*+# = (—=A)* o (—=A)? also fails in general for our definition (14).
Indeed, one can see that the equivalence (i) <= (iv) above is sufficient for the semigroup property
to hold. For example, a Ricci curvature lower bound would be sufficient. See [2] for many sufficient
conditions for the equivalence (i) < (iv).
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Definition 1.10. For a measurable set E C M, we define the fractional s-perimeter of E on (M, g) as
Py(B) i= [X6lgerary = 2 // Ko, ) du()du(y)
ExEc

where [ -] Ay 18 defined by (11) and xg is the characteristic function of E.

He/2(

Apart from the above definition of the fractional perimeter of a set E on the entire M, we will also
consider its localized version. For A, B C M disjoint and measurable sets, let

J.(A,B) = / [ Koy du@dn(y

be the s-interaction functional between the sets A and B.

Definition 1.11. Let (M, g) be a complete Riemannian manifold, and let Q@ C M be an open and connected
set with Lipschitz boundary. We define the s-perimeter of E in () as

1
o= [ ) e K ) i)

= T(ENQENQ) + J(ENQE NQ) + T (ENQS,ESNQ).

For any measurable E C M, it is clear by the definition above that Ps(E,Q) = Ps(E°Q), that
P.(E,M) = P,(E) = [XE]%,S/Q(M) and also that Ps(E,Q) = Ps(E)if EC Q or E€ C Q.

Remark 1.12. The hypothesis P, (E,) < +00 for some s, € (0,1) cannot be removed in neither of these
results. Indeed, in [10, Example 2.10] the authors exhibit a bounded set E C R such that Ps(E) = 400 for
all s € (0,1).

Remark 1.13. Note that, taking M = R™ with its standard metric in Theorem 1.6 gives Ks(x,p) = Iac—ﬁ;ﬁ’
where

323_11"("7"’5)

Brs = /20(1 — 5/2)

Hence

s rez . 1 INES

Or» = lim Bn, dx = (5) lim s T = (2)an,1:1,
0+ | _ ‘n+s 2rn/2 0+ | |n+ﬁ 2rn/2

s— R"ﬁB%(p) x P v s— R"I’TB{(O) x i

where ., _1 is the volume of the unit sphere S*~1. Moreover, analogously for E C R™ (if the limit exists)

n,s 1 . 1
0 = lim b, dr = —— lim s/ ——dz €[0,1],
B

s=0t JEnBeo) 2| Olp—1 s—0F ABs(0) |z"Te

which is (up to the absolute multiplicative constant a;il) what is denoted by o(FE) in [10]. Hence, we see
that in the case of the Euclidean space our result Theorem 1.6 recovers the one in [10].
Remark 1.14. Note that, as s — 0T, the constant in (2) satisfies

1 B s/2 s

ID(=s/2)] T(1-s/2) 2

We will use this fact many times in the computations of the asymptotics.

The paper is divided as follows. In section 2 we recall some facts and definitions that we will need
regarding the heat kernel and harmonic functions on general complete manifolds. In section 3 we prove
the all the main results stated at the beginning of the introduction. Then, building on our main results, in
section 4 and section 5 we prove Theorem 1.6 and Theorem 1.8 regarding the asymptotics of the fractional
perimeter in infinite volume and finite volume respectively.

Lastly, in section 6 we explain why our results hold in a much more general setting than the one of
Riemannian manifolds, namely RCD spaces. We could have proved our theorem directly in this generality,
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but we believe that a presentation for Riemannian manifolds is easier to follow and already captures all the
possible (two) behaviors of the limit of the asymptotics: this also allows us to present different proofs. For
these reasons, we have moved everything regarding non-smooth spaces to section 6.

Acknowledgements. We are very thankful to Diego Pallara and Nicola Gigli for useful discussions and
comments on a draft of this work and to Alexander Grigoryan for having shown us how to prove part (i)
of Proposition 2.6. We also thank the Fields Institute in Toronto, which is where the two authors first met,
for the kind hospitality during the thematic program ”Nonsmooth Riemannian and Lorentzian Geometry”
in the fall semester 2022 .

2. THE HEAT KERNEL ON RIEMANNIAN MANIFOLDS
Let us start by recalling a few classical definitions and results.

Definition 2.1 (Stochastical completeness). We call a Riemannian manifold (M, g) stochastically complete
if, for every t > 0 and for every p € M

/ Hy(z,p,t)du(x) = 1. (15)
M

For equivalent definitions of stochastical completeness, one can refer to the manuscript [18] or to the
more recent [19] and [20].

Lemma 2.2. Let (M, g) be a complete Riemannian manifold, then for every p € M
M(t,p) = / Hyy(z,p,t) du(x) is nonincreasing in t.
M
Proof. The proof is an easy consequence of the semigroup property. Indeed, for ¢t > s we can write
Hy(z,p,t) = /M Hy(z,2,t — 8)Hpyr(x, p, 8) du(z).

Integrating in du(z), using Fubini’s theorem and the fact that [,, Ha(z,x,t — s)du(x) < 1 we get

/‘hudmpiﬂu@)é ot (2 p, 8)du(z),
M M

which is the thesis. O

Note that, because of Lemma 2.2, being stochastically complete is equivalent to the fact that (15) holds
for one single time t = t, > 0.

Theorem 2.3 (Yau). Let (M, g) be a complete Riemannian manifold. Then every L?(M) harmonic function
18 constant.

Proof. Let u € L*(M) be harmonic. It is a standard result by Yau (see for example [23, Lemma 7.1]) that,
on every complete Riemannian manifold M, the Caccioppoli-type inequality

4
[ovuPdus g [ P (16)
Br(p) R JBor(p)
holds. Since u € L?(M), letting R — oo gives that u is constant. O

Definition 2.4 (L*°—Liouville property). We say that a Riemannian manifold (M, g) has the L° —Liouville
property if every bounded harmonic function on M is constant.

Since the validity of the L°>° — Liouville property will be a key feature in our result for infinite volume,
we shall recall few conditions that imply this property. See [16] for more general conditions under which
the L°° — Liouville property holds.

Proposition 2.5. Let (M, g) be a complete Riemannian manifold. Then, each of the following properties
implies the L>° — Liouville property for M :
(i) Ricpys > 0.
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(ii) u(Br(p))/R? — 0 as R — oo for some (and hence any) p € M.

(iii) There exists a metric ¢ on M and K C M compact such that g =g in M \ K and (M,q) has the
L*> — Liouville property.

Proof. To show (i) we just need to apply the L> — Lip regularization of (33), that we state in general for
RCD spaces in section 6 and we give a simple proof at the end of the Appendix. Indeed let u € L™ (M)
be such a function: we can clearly assume ||uz=~ = 1 so that we have |Ve!®ul|L~ < C/+/t. The previous
estimate tells us that | Ve!®ul|p~ — 0 as t — 0o so that e/“u — const weakly star in L°>°(M). However, we
also know that e*®u = u for every t € (0, 00) because of the uniqueness of the solution of the heat equation
(due to stochastical completeness which holds in the presence of a lower Ricci curvature bound) and this
means that v has to be constant.

Part (i7) follows from Yau’s estimate (16) letting R — oco. Lastly, the proof of part (iii) is contained
in [16, Proposition 4.2] and [16, Theorem 5.1]. O

Notice that Ricy; > —K for some K > 0 is not sufficient for the L>° — Liouville property to hold since
there exist non-constant bounded harmonic functions on the hyperbolic space H”. Since H" is stochastically
complete, this means that stochastical completeness does not imply the L°° — Liouville property. Moreover,
quite surprisingly, stochastical completeness of M is not implied by the L> — Liouville property. The first
example of such a manifold was constructed by Pinchover in [25], we briefly explain this construction in
Example 5.2.

In the next lemma, we give the proof of a result that, perhaps, is well-known to the experts, but we could
not find an appropriate reference. The case u(M) < +o0 is stated in [18] as Exercise 11.21.

We stress that these results easily extend to the context of weighted Riemannian manifolds.

Lemma 2.6. Let (M, g) be a complete, connected Riemannian manifold. Then
(i) If w(M) < +o0, then for all x,y € M

t_l}gloo Hy (2, y,t) = w(D)

and the convergence is uniform in every bounded 2 C M, that is
1
lim sup |Hy(z,y,t) — ——| =
S S, (e f) = Lo
(ii) If w(M) = +oo, then for all x,y € M
lim Hy(x,y,t) =0,

t——+oo

and the convergence is uniform in every bounded Q0 C M, that is

i, g .0 =0.

Moreover, for every fized p € M there holds also

tiggloo ;g}\% Hy(x,p,t) =0. (17)
Proof. To prove the result we use standard spectral theory. Let us first do the case u(M) = +o00. The
spectrum of the Laplacian o(—A) is contained in [0,00) and by Theorem 2.3 we know that the eigenspace
of A = 0 contains no constant function except for the function identically 0.
Let {E\}x>0 be the spectral resolution of the Laplacian, then for every f € L?(M) (here (-, -) denotes
the L?(M) scalar product)

@)= [ et
0
Since limy_, o0 e~ M = X{0}(A) we can apply dominated convergence to deduce that

lim <€tAf, f> = <E0fa f> ’

t—o00



ASYMPTOTICS AS s — 0t OF THE FRACTIONAL PERIMETER ON RIEMANNIAN MANIFOLDS. 9

and since Fj projects onto the eigenspace of A = 0, made only by the constant function identically zero, we
get

LA _
Jm (€2 f, f) = 0. (18)
Now note that for all f,g € L?(M) we have |(e!® f, g)| = [(e!/?A f,et/?A g)|. Thus by Cauchy-Schwartz
<€tAf, g> _ <€t/2Af, et/2A9> < ||et/2AfHL2 ||et/2Ag||L2
= ("2 f, N){eg.9).

Taking the supremum over g € L?(M) with ||gz> < 1 and sending t — oo gives that e*® f — 0 strongly in
L2(M). Since this holds for all f € L2(M), this implies Hp(+,y,t) — 0 in L?(M) as t — oo.

Now, by a local parabolic Harnack inequality, we are able to turn this convergence into pointwise
convergence that is actually locally uniform. Indeed for p € M, R < 1 to be chosen depending on p,
and t > 10, taking f = xp,(p) above gives

z,y€BR(p)

(X B (o) XBn() / / 2@,y ) du(e)du(y) > p(Br®)®  inf  Hu(e,y.t).
Br(p) Y Br(p)

By the parabolic Harnack inequality (see Remark 2.8 after this proof) applied two times

inf  Hy(z,y,t) >C™' inf sup Hpy(x,y,t—1/2)
z,y€Br(p) z€Br(p) yeBgr(p)

>C ' sup inf  Hpy(z,y,t—1/2)
z€BR(p) YEBr(P)

> 072 sup HM(Ivyatfl)a
z,y€BR(p)

for some C > 0 depending on Br(p) C M but independent of ¢. Hence

sup HM('I’ Y, t) < C(BR(p))<e(t+1)AXBR(P)? XBR(p)> =0 )
z,y€Br(p)

ast — oco. Covering any bounded set with small balls allows us to infer the desired local uniform convergence.

We are left to prove (17). By the properties of the heat kernel, we have

Moreover
Hpyr(,p,t) / Hyr(,2,t/2)Hpr (p, 2,t/2)dp(2) < v/ Har(p, s )| Haa (2,5 t/2) | 22 0),

which concludes the proof if we are able to show that sup,¢, [|[Has (2, -,t/2)| £2(ar) is bounded as ¢ — oo.
However since Hy(z,y,t) = et D2(Hy(z,-,1))(y) and we have the contraction estimate
le*2(F)lz2ary < I fllL2car for every s € (0,00) and for every f € L?(M) we can write

1 a2, Ol 2 any = [l ™D (Har (2, 1)) 2 < [ Haa (5, D)llze V> 1
Therefore, we reach the sought conclusion. This concludes the proof of (ii).

Now assume pu(M) < +oo. Since the proof in this case is almost identical to the one for infinite volume,
we just sketch the argument, highlighting the differences. The only essential difference is that in the case
(M) < 400, the eigenspace relative to A = 0 is made only by the constant function u(M)~/2. Hence

o =1,
S R

and in place of (18) we get
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From here, the proof proceeds exactly the same showing that Hp(-,y,t) — 1/u(M) — 0 strongly in
L?(M). Then, one can turn the convergence into pointwise and locally uniform by a similar argument with
the parabolic Harnack inequality.

Indeed, the function v := (Hpy(-,y,t) — 1/u(M)); (where (f)4 denotes the positive part of f) is a
nonnegative subsolution to the heat equation. Then, by the parabolic version of the Moser-Harnack
inequality (see, for example, [27, Theorem 5.1]) we have (here C' depends on R and the geometry of M

in Bagr(p))

t+R?
sup v? < C/ / lv[*du — 0. (19)
[t+R2/2,t+R?2) t Br(p)

Hence limsup,_,. Hy (-, y,t) < 1/u(M). Argiung similarly with the negative part gives also the liminf
inequality, and hence the pointwise convergence. The fact that the convergence is uniform follows from
(19).

|

Remark 2.7. Since ||[Hy(x,-,t)||pr )y < 1 and [|[Hy (2, -,t)|| oo (ar) — 0 as t — oo, we conclude that also
| Hae (-, t) | Leary = O for any p € (1,00]. The convergence to zero in L'(M) is clearly prevented if M is
stochastically complete.

Remark 2.8. We emphasize that we have used only a local (non-uniform) Harnack inequality in Br(p) C
M, that is where the constant is allowed to depend on the point p and radius R. This is clear since, for
fized p € M one can take R < 1 such that, in normal coordinates at p, the metric coefficients satisfy
llgij — dijllc2(Brep)) < 1/100. Then, any solution u : Br(p) — R to the heat equation on M satisfies (in
coordinates)
us — Lu=0, in Bgr(0)x (0,+00),

where —L is a uniformly elliptic operator with uniformly bounded coefficients. Hence, by the standard
Harnack inequality on R™ one can conclude the local estimate.

On the other hand, for general Riemannian manifolds, a uniform Harnack inequality (that is, with the
constant independent of R and the point p) fails, and strong assumptions are required for it to hold. Actually,
the validity of a volume doubling property and a uniform Poincare inequality is equivalent to the uniform
Harnack inequality, this was first proved in [20].

Remark 2.9. One can turn the previous local uniform convergence in (17) into the convergence of solutions
of the heat equation. Indeed, in the case u(M) = +oo, since Hpr (-, p,t) converges uniformly to zero we get
(by dominated convergence)

e fy) = / Hy(z,y,t) f(x)dpu(z) - 0 ast — oo,
M
for everyy € M and f € L*(M).

3. PROOF OF THE MAIN RESULTS

First, we shall briefly comment on the following quantity
1

FE)= 1 d
o(E) sigl"'s/E\Bl(O) |ly|"+s v

introduced by Dipierro, Figalli, Palatucci, and Valdinoci in [10] as a measure of the behavior of the set F
near infinity, and which is (up to a dimensional constant) the limit in (4) in the case M = R™ with its
standard metric. This quantity is invariant by rescaling of E' and, at first, can be thought as a measure of
“how conical” is F near infinity. Indeed, if the blow-down E /X converges in L .(R™) to a regular cone E,
as A — 00, then a(E) = H" 1 (E, NS"1). Nevertheless, the fact that this limit exists in not equivalent to
having a conical blow-down. Indeed, one can easily construct examples where the limit in a(FE) exists but
the blow-downs of E converge to two different cones along two different subsequences.

Finally, the authors in [10] refer to «(FE) as the weighted volume towards infinity of the set E; however in
light of our results and description, it would be more appropriate to call this quantity heat density over E.
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Indeed, a(E) represents the fraction of heat kernel that flows through the set towards infinity (this explains
why 63; = 1 on stochastically complete manifolds).

Because of this intuitive reason, the limit in the definition of a(FE) needs not to exist in general if F, for
example, oscillates between two cones near infinity. See [10, Example 2.8] for the construction of such an
example.

On a Riemannian manifold, a similar quantity is needed but, since no canonical origin (as in R™) is
present, the singular kernel 1/|y|"** has to be replaced with K4(y,p) and it has to be proved if and when
the limit (3) becomes independent of p € M. On Riemannian manifolds, this property of the limit being
independent of the base point p turns out to be quite delicate and, as a consequence of Theorem 1.1, we
will see that is implied by the L — Liouville property of Definition 2.4.

Definition 3.1 (Heat density of a set). Let E C M be a measurable set with Ps (E,Q) < +oo for some
so € (0,1). We define, for every p € M and R > 0, the heat density of E as the following limit

0r(p, R) := lim Ks(x,p)du(x),
70 E\Br(p)
when it exists. At this level, this may depend on p and R.
Note that, at this point, it is not even clear whether the limit (4) of the heat density 8, of the whole M

exists or is different from zero. For example, as a consequence of the proof of Theorem 1.6, if there were
complete Riemannian manifolds with (M) = 400 and 0y # 1, then we would see the asymptotic

1
li%1+ ips(Ev Q) = (6M - QE),U'(E n Q) =+ QEM(EC N Q)
s—

holding (even when 63 # 1), and if 6y, = 0 this would mean that there are Riemannian manifolds where
the asymptotic of the fractional s-perimeter of any set E is zero. These type of Riemannian manifolds
exist; since 07 # 1 in this case, they are not stochastically complete. We will describe such a manifold in
Example 5.2.

Now, we show that this does not happen if M is stochastically complete: the limit (4) always exists,
and it is equal to one. Actually, more is true: if there is a point p € M for which the limit is 1, then the
manifold is stochastically complete. Indeed, this is the statement of Proposition 1.4 that we now prove.

Proof of Proposition 1.4. Note that since u(M) = +oo we have u(M \ Bi(p)) > 0. We want to compute

the following
lim — H t)——=d .
30+ 2 /I\/I\B1(p)/0 m(@P, >t1+s/2 Hw)

Claim 1. There holds
s

1
dt
lim > Hoy (2, p, ) ——— dp(z) = 0.
0 Z/M\Bl(p)/o m(@:p )t1+5/2 ni@)

Indeed, this directly follows by writing

1 1
. dt . S tA
:;1—1{(1)14r 5 /M\Bl (p) /(; HM (x7p’ t)md'u(x) o sl—l>rél+ 5 /0 ¢ (XM\B’(p))(p)W
and exploiting the estimate of Lemma 7.2.
Claim 2. There holds

lim f/ /OOH (2.9~ du(z) = 0 (20)
oot 2 Bi(p) J1 M\Z, D, t1+s/2 14 = U.

By the uniform convergence of the heat kernel to zero (in particular, by the result contained in Remark
2.9) we get that e'®(xp,(p))(p) = 0 as t — co. Therefore, for all € > 0 there exists T = T(c) such that
e"® (X, (p))(p) < € for all t > T, whence

0o T e}
. s A dt .S dt . s dt
lim sup 5/1 e (XBI(zu))(P)itlJrs/2 dp(z) < lim 5/1 ez Telimsup o g2 S

s—0+ s—=0 s—0 T
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for all € > 0, proving the second claim.

Now, thanks to the first claim we can reduce ourselves to computing

dt
lim — H d
sl}’g‘* 2 /M\Bl(p)/ M TP )t1+5/2 ( )

Then we can then add (20) to the previous limit, which gives zero contribution, and we end up with

. dt
sli%ﬂ*/ / Ha(,p. ) i i),

Using Fubini and the stochastical completeness of M we get

dt . >
dm 5 [, e = i 3 [ e =1,

and this concludes the proof.

Conversely assume that (9) holds, then since both the previous claims hold on any connected and
geodesically complete Riemannian manifold we have

. dt
sli%hf/ / Har (@, p,t) g i) = 1

Setting M(t,p) = [,, Ham(z,p,t)dpu(z) < 1 we can infer that, for every T > 0

< M(t,p) s [ 1
= g < _
1= 31—>0 2 Jp  tits/2 dt i—m 2 / ti+s/2 et =1

Now, assume by contradiction that M is not stochastically complete. Then since M(¢, p) is nonincreasing
in time and nonnegative, there holds lim; oo M(¢t,p) < 1 — ¢ for some § > 0, and we would have
M(t,p) <1—6/2 for every t > T = T(5). This gives

© M(t,p) —9/2
= - -7 < —
1= 31_,0 2 )y tits2 dt 1_)0 9 / Hlt+s/2 e dt=1-0/2,
reaching a contradiction, hence lim;_,, M(¢,p) = 1 and thanks to Lemma (2.2) we conclude. O

Remark 3.2. Following the proof of Proposition 1.4, one can see a clear picture of what happens to the
limit in Oy (p) even when M is not stochastically complete. Indeed, for every Riemannian manifold (not
necessarily stochastically complete) and p € M, the limit lim;_, M(t,p) exists. This follows from the fact
that M(-,p) is nonincreasing and nonnegative; see Lemma 2.2. Since

M(t,p) = /M Hy(p, x,t) du(z) = ™1

is a solution to the heat equation starting from the function equal to one; it follows from the proof above
and from standard parabolic estimates that M(t,-) — Opr in CZ (M) as t — oo, where Oy : M — R is a
bounded, nonnegative harmonic function on M. Therefore:

(i) If M is stochastically complete, we have Oy = 1 (in particular, the value of Oy does not depend on
the point), and the proof above shows Oy = 1.

(ii) If M is not stochastically complete but satisfies the L>° — Liouville property (see Definition 2.4) we
know that Oy = 0, € [0,1) and, following the proof of the proposition, one finds that the limit in
the definition of Oy exists, does not depend on the point p and there holds 6y = 0,. Note that such
Riemannian manifolds exist and were first constructed in [25]. In Example 5.2, we describe one
with 8, = 0.

(iii) If M is not stochastically complete and does not satisfy the L* — Liouville property, then in general
O is a nonconstant harmonic function on M, and the value of 01 (p) can depend on the point p.

Now we are in the position to prove our first main result.
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Proof of Theorem 1.1. With no loss of generality assume r < R. First, we show that the limit does not
depend on the radius, that is

GE(pa R) = 0E(p; T’) .
We have

/ &umwmm—/ Ko, p)dp(a)| < / K. (2, p)du(z)
E\Br(p) E\B:(p) Br(p)\Br(p)
dt

sm/ /HMxn) ()
Br(»)\B-(p) thts/2

dt
—|—Cs/ / Hy(z,p, t) —F=dp(r) =1 + 1.
Br(p)\B.(v) threr?

For the first integral, by Lemma 7.2 as s — 07
—c/t

1
dt
L < Cs/o (XM\B (p))( )t1+ /2 = <Cs / s dt — 0.

Regarding the second integral, for all ¢ > 0 by Lemma 2.6 there is T = T(¢) > 0 such that
|Hpr(x,p,t)| < e for all x € Bg(p) and t > T, hence

I, < C’S/T/ Hys(x,p, t)du(x) dt —i—Cs/OO/ Hy(x,p, t)du(x) dt
2 > M\+Ly Py T1ts/2 M\T, P, T T1+s/2
1 ) tite/2 T JBa) tite/2

T o
dt dt
< Cs/1 ey + Csep(Br(p ))/T prEy

= C(1—T"*?) + Cep(Br(p)) T2,

letting s — 07 (and then ¢ — 0) gives Iy — 0. Hence, taking s — 0 shows 0g(p, R) = 0g(p,r), showing
that the limit never depends on the radius. Note that what we have just proved already implies that if E
is bounded then the limit exists and fg = 0, since one can just take R > 1 so that F \ Bg(p) = @.

Now fix ¢ € M. For every p € By/2(q) we can write

Op(p) = lim Ks(z,p)du(x).
5207 J B (g)

This is possible because we always have independence on the radius. Indeed

[ ki) - [ K| < | Ko, p) dia(z)
E\By2(p) E\B1(q) B1(q)\B1/2(p)

hence
limsup / ’Cg(ﬁb,p)dﬂ(fﬁ) _/ ICS(J?,p)d/.L(JT) < 931(‘1) =0.
50 E\Bi/2(p) E\B1(q)
Now set
C'-') L S ° A dt
Bs(p) = 2 ), € (XE\Bl(Q))(p)Wa (21)

so that Og(p) = lim, ,o+ O s(p). By Lemma 7.2 we have that that 0 < ©g s(p) < C, for some constant
C > 0 depending only on M. Now fix ¢ € C2°(By/2(q)), by dominated convergence

05 (Ap)dp = lim @EJAwym::nm (ABE )pdp. (22)
M s—0t s—0+ M

Note that, for fixed s and p € By/2(q), we can write

dt dt
A(9E s Ae (XE\B1(q))( ) 1+s/2 ate (XE\BI(Q))( ) 1+s/27
ti+s/ tits/
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which, after integration by parts, becomes (note that the boundary term at t = 0% is zero due to Lemma
7.2) equal to
s [ 1A (1+s/2)
5/0 e (xp\Bi(@)(P) sy At
The latter quantity goes to 0 as s — 0T, and is uniformly bounded for s € (0,1), for every p € Bi2(q)-
Hence, going back to (22) we get

/ Op(Ap)du=0.
M

That is, 0p € L (M) is a very weak solution of Afr = 0. We're left to prove that 6 is smooth and is a
classical solution of Afg = 0.

In a small chart, in coordinates, one can see that w is (locally) a very weak solution of
9i(v/|det(g)|g"90;0) = 0. Choosing the chart sufficiently small, we get that the coefficients /|det(g)|g"
are smooth and uniformly elliptic. Then, for example by [31, Theorem 1.3], we get that 0g € W22 (M) and

loc
bootstrapping classical elliptic regularity gives that 6 is smooth and harmonic.

Lastly, (5) follows from the last part of the proof of Proposition 1.4, and the fact that p — 6p/(p) is
harmonic is verbatim the proof we did for £ C M above. O

Note that, according to Theorem 1.1, if M possesses the L>° — Liouville property, then 0 is constant for
every set E for which it exists. A natural question to ask would be whether some type of converse is true.
However, we have not been able to prove or disprove such a statement. We leave this as an open question,
and we would be happy to know the answer:

Question 3.3. Let (M,g) be a complete Riemannian manifold with pu(M) = 400 and with the
following property: for every set E C M for which O exists (see (3)), O is constant.

Is it true that M satisfies the L>° — Liouville property?

Now we turn to the proof of Theorem 1.2. To prove this result, we will need Lemma 3.4, which essentially
says that for manifolds with (M) = +o0, the singular kernel K, locally behaves like that of R as s — 0%.
This is not the case for finite volume manifolds®. Recall the notation of Remark 1.13, where we denote by
Ix—ﬁzjﬁ the singular kernel of R™ with its standard metric. Note also that cs(2 —s) < 5, s < Cs(2—s) for
some dimensional ¢, C' > 0.

The following lemma is a sharpening of [8, Lemma 2.19] for manifolds with infinite volume. Indeed, in [8],
the authors are not interested in characterizing the sharp dependence from s of K, as s — 0*. Moreover,
in [8], the authors estimate Iy locally on every complete Riemannian manifold M (both with finite and
infinite volume), but the result stated in Lemma 3.4 is not true on manifolds with finite volume.

Lemma 3.4. Let (M,g) be a complete n-dimensional Riemannian manifold with u(M) = +oo, and
let p € M. Assume that in normal coordinates at p there holds <gx|v|> < g;;(q)v'vi 18 v[* and

<
IVgij(q)| < 1/100 for all v € R™ and q € Bi(p). Then there exists K : Bi(p) x Bi(p) — [0,00) such
that
lim sup IKs(z,y) — IC;(x,y)| =0,
s—0F x,y€B1/s(p)
and for all x,y € Bys(p)
Bn,s

Bn,s /
— < < AL S
c Ki(z,y) < Cd(x,y)"+5 ,

d(z,y)"+s —
for some dimensional constants c,C > 0.

We postpone the proof of Lemma 3.4 to subsection 7.2 in the Appendix.

4Indeed, for finite volume manifolds, the same conclusion (23) holds with constants depending on s, but as s — 0"
the constants do not behave like the ones of R".
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Proof of Theorem 1.2. As we can assume s < 8,/2, it follows from the proof of Proposition 7.5 that the

integral in (fA)gi/Qu is absolutely convergent® for a.e. x € M, and the principal value is not needed.

Moreover, since u € H%/%(M) we have

/ (u(@) — u())*Ka, (2, ) dp(y) < +o0
M

for a.e. z € M. Fix x € M in the intersection of these two sets of full measure, and take R such that
supp(u) C Bg(x). Then

(—A)u(z) = / (u(@) — u(y))Ks (2, y) duly)
M
- / (u() — u(y))Ks (2, ) duy) + u(z) / Ko, ) du(y) (24)
BR(ZL’)

M\Bg(z)
Note that being (M) = 400 we have

/ Ks(z,y) du(y) # 0.
M\Bg(z)
Claim. As s — 07 there holds

lim (u(r) — u(y))Ks(z,y) du(y) = 0.

s—0t Br(z)
Indeed, let p <« 1 small that will be chosen later. We denote here by C' a constant which does not depend
on s. Then

[ ) - ut)Ketew du(y)‘
Bpg(x)

- \ / (u() — u(y))Ks (e, y) duly) + / (u() — u(y))Ka(, y) du(y)
B, () Br(z)\B,(z)

< / () — u(y)|Ks (2, y) daly) + 2]ull / Ko, ) du(y).
B, (z) Br(2)\B,(x)

We estimate these two integrals separately. Let K be the singular kernel given by Lemma 3.4, applied with
p sufficiently small and suitably rescaled. For the first integral, Lemma 3.4 gives

timsup [ u(e) = uy)|(K.,) ~ Ki(w.0)) duly) = 0. (25)
By(z)

s—0t

Moreover, by the bounds of Lemma 3.4 and since u € H*°/2(M), for a.e. x € M

M § u(z) — u(y))? x 00
/Bp(a;) d(x,y)"'*‘so dy < C( o) Ap(w)( ( ) (y)) ]CSO( 7y) dy < +oo.

Hence, by Lemma 3.4 again and Holder’s inequality

[ @) -k duy < 0s [ D= gy
Bp(w)

B,(x) d(il?, y>n+s

1/2 1/2
(u(@) — u(y))® !
= (-/Bp(w) d(x7y)n+80 dy) </Bﬂ($) d(g;’y)"'*'%_‘%dy)

So—28 1/2
<C’s(p ) —0,

So — 28

as s — 0T, where in the second-last inequality we have used polar coordinates for p sufficiently small
(possibly depending on z). Thus, with (25) we have that the first integral tends to zero.

5Here we are not assuming M being stochastically complete, but in Proposition 7.5 stochastical completeness is

only used to have that (—A)]S_,)/Qu = (—A);{QU a.e., not to show the absolute convergence of the integrals.
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Regarding the second integral, one can note that we have proved in part (i) of Theorem 1.1 that, for
everyx € M and r, R >0

lim Ks(z,y)du(y) =0,
520" J Br(2)\ B (x)

since Bgr(z) is a bounded set, and this concludes the proof of the claim.

Moreover, by the very definition of 8; we have

lim Ks(z,y) duly) = 0m(z), (26)
5s=0% JM\Bg(z)

hence letting s — 07 in (24) gives

lim (—A) u(x) = O (2)u(),

s—0t

for a.e. x € M, and this concludes the proof. O

To prove our result Theorem 1.8 on the asymptotics for infinite volume, one needs also to know the
asymptotics as s — 0T of the fractional s-perimeter on the entire M, that is when = M. This is
addressed by Theorem 3.5 below on the asymptotics of the fractional Sobolev seminorms. This result is the
counterpart of Theorem 4.1 in the case of infinite volume.

Theorem 3.5. Let (M, g) be a complete Riemannian manifold with (M) = 400, and let s, € (0,1). Then,
for every u € H*/2(M) N L>(M) with bounded support there holds

.1
lim 7[uﬁ{s/2(M) :/MUQQMdu.

s—0t 2

Proof. Formally, one would like to infer that

1 1
SlBon =5 [ () = uw) Ko y) du(o)dnty)
M x M
:/ u(—A)é{Quduﬂ u?0n dp
M M

where the first equality is the very definition of the seminorm. The second inequality is nontrivial since the
integrals one would write in the few lines of a proof are not absolutely convergent in general. Moreover, for
the last step of taking the limit as s — 0% one needs to show that the a.e. convergence (—A)§{2u — Opu

of Theorem 1.2 can be upgraded to weak convergence in L?(M). Now we shall justify both steps.
Step 1. We have

%//MXM(U(JC) —u(y))*Ks(x, y) du(x)du(y) = /M U(—A)§{2u dp. @)

Fix ¢ > 0 and let

(—A) 2u(x) = / (u(a) — u(y))Ks( ) dpu(y) -

M\ Be(z)
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Let also D := {(z,2) : z € M} denote the diagonal of M x M and Ds a d-neighborhood of D. We have

/l (u(w) — u(y) K . ) dia(@) )
MxM\D,_, /5
-/ () (u(z) — uy)Ko(, ) i) diy)
MxM\D_, 53
-l u(y)(u(e) — (@)K ) du(z)du(y)
MxM\D,, /5
=2 u(z)(u(z) —u(y)) Cs(x,y) du(x)d
//MXM\D | ule)ute) — ) o) A
-2 [ o W)~ ) ) )t

:2/ u(—A)?udpy,
M

where splitting the integral and Fubini are justified since the integrals are absolutely convergent. Indeed

/ / () (u(z) — u(y))| Ko y) dia(y)dps(z)
M J M\B.
< /M () /N oy o) dintz) + /M ) [ K ) daty)dne),

but by Lemma 7.2

dt
Ks(x,y) du( C/ / z,y,t)du(y) | =——
/M\M (2,y) diy ( oo, Hale o) | 5
7c/t
o Shuce
for some C depending on s and €. Hence
[ ) - uw)K. o) duty)dinte) < CJul i, supp()..5) < +00.
M JM\B. (2)

and this shows the absolute convergence.

Moreover, by Proposition 7.5 for a.e. x € M the integral in (—A)g-/2

18— 8 <
M

and the right hand side ternds to 0 as € — 0. Indeed, as € — 0, by the very same argument at the end of
the proof of Theorem 1.2 there holds

[ @)~ wt)atedut) 0.
B (z)
for a.e. © € M, and for z fixed the convergence is monotone (decreasing) since the integrand is positive.

Hence we have proved (—A)z/zu — (—A);i/zu in L?(M) as € — 0. Now, letting ¢ — 0 in

1 D
2//MXM\D/f( (z) —u(y))"Ks(z,y) du(x)du(y) /M (—A) 2 dy,

u is absolutely convergent, then
2

/ )~ s )| i),

together with the monotone convergence theorem on the left-hand side, we get the equality of the seminorms
and this completes the proof of Step 1.
Step 2. There holds
(—A)gpu — Opu weakly in L2(M).

1
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The convergence a.e. is given by Theorem 1.2. To prove that the convergence holds weakly in L?(M),
we show that (fA)gi/Qu is equibounded in L?(M). By (43) there is C depending only on s, such that

2
(=) ull220r) < CllulZaar + Cslul3ree ary »

and hence
lim%up (=) ullZ2ar) < Cllul3aary < +oo.
S—
This concludes Step 2 and, sending s — 0" in (27) concludes the proof. O

Remark 3.6. Note that the equivalence of the seminorms (27) always holds for characteristic functions,
without any assumption. Indeed for every measurable E C M

2/ X (~A) xp dr = 2/ <lim/ (1 —XE(y))’Cs(w,y)dy> dz
M E \e0J M\ B.(2)

=2/ lim/ Ks(z,y)dy | dx
B \e70J(an\B.(z))nEe

=2 [ [ Koy = elrsan
E JEe
where the second-last equality follows by the monotone convergence theorem.

Proof of Theorem 1.3. Since M is stochastically complete, by Proposition 7.7 we have H*/2(M) C
Dom((—A)é{iC). The equality a.e. of the fractional Laplacian, then follows by Proposition 7.5 and
Proposition 7.8.

To prove (7), (8) one can argue similarly to the proof of Theorem 4.1. Indeed, as s — 07 for every
v € L?(M) we have

(~ D)2 u,v) = / N2d(Exu, v) — / d(Exu,v) = (u,0) — (Bow, v)
o(—A) o(—A))\{0}

where FEj is the projector onto the eigenspace of —A relative to the eigenvalue A = 0. By Theorem 2.3 every
L?(M) harmonic function is constant, hence we have two cases:
(i) If u(M) < 4oo then the eigenspace of A = 0 is the span of the eigenfunction pu(M)~'/2, then
Eou = ﬁ Jyy wdp and this gives (7).
(#3) If u(M) = +oo then Equ = 0 and we have (8).
This concludes the proof. (|

Remark 3.7. When M is stochastically complete with u(M) = 400 the convergence in (8) also follows by
Theorem 1.2, since Oy = 1 in this case. Nevertheless, the argument carried on in Theorem 1.2 is much
more general and shows what happens in the limit on any manifold with w(M) = +o0, even when M is not
stochastically complete (i.e. when (—A);i/2 and (—A);ﬁc do not coincide).

4. ASYMPTOTICS: FINITE VOLUME MANIFOLDS

4.1. Global asymptotics. We first give a simple proof of Theorem 1.8 in the case 2 = M, using our
results from subsection 7.3 on the equivalence of the spectral fractional Laplacian and ours defined by the
singular integral (14).

Theorem 4.1. Let (M, g) be a complete Riemannian manifold with u(M) < +oo and let s, € (0,1). Then,
for every u € H®*/?(M) there holds

2
.1 e 1
Sli%h §[U]HS/2(M) = llullz2ary — (M) </MUdM> :
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Proof. Let {E)} >0 be the spectral resolution of the Laplacian —A on L?(M), and let o(—A) C [0,00) be
the spectrum of —A. In particular, for every u € L?(M), d{E\u,u) is a regular Borel (real valued) measure
on [0, 00) concentrated on o(—A), and with

el ar, = / d(Exu,u)
(=4A)

We refer to [18, Appendix A.5] for an introduction and properties of the spectral resolution. Since
(M) < 400, we have that 0 € o(—A) lies in the point spectrum with eigenfunction ¢ = pu(M)~/2. Then

—A:/ MEy, and (—A)gﬁcz/ A/2dE,y
(-A) o(~A)

on Domn(~A)Y2,) = {u € LX(1) : [,

Spec A d(Eyu,u) < 400}

A)
Hence, for all s < s, by Corollary 7.9

1 s s
S = [ wA Pudu= [ aE).
M a(=2)\{0}

Taking the limit as s — 07 gives

2
1 1

lim —[u]?,. :/ d(Exu, u) = ||ul/?2 — (Eyu,u) = ||ul?. —(/ udu) ,

Jm s an = [ B = [l = B =l = oo (

where in the last line we have used that Ej is the projector onto the eigenspace of —A relative to the
eigenvalue A\ = 0, but by a result of Yau (see Theorem 2.3) on a complete manifold every L?(M) harmonic

L 2
function is constant and then (Egu,u) = <¢0,u>%2(M) = m ([ udp)”. O
Remark 4.2. This result allows us to prove our main theorem in the case QQ = M. Indeed, if E C M is
such that P, (E) < 400 for some s € (0,1), then taking u = xg in Theorem 4.1 gives

1 ,U(E)Q _ M(E)M(EC)
(M) (M)
4.2. Localized asymptotics and proof of Theorem 1.8. Now we turn to the proof of the main result
on the asymptotics for finite volume Theorem 1.8

lim 2 P,(E) = u(E) -

s—0+ 2

Lemma 4.3. Let (M, g) be a complete Riemannian manifold, and let A,B C M two disjoint measurable
sets with (say) p(A) < +oo. If Js, (A, B) < 400 for some s, € (0,1) then

1 o dt
24.8) = L e 0 dnteinto)

Proof. Since [,, Hy(x,y,t) du(xz) <1 for all y € M and t € (0,00) we have

200~ iy [, e v O o)
//AxB< 9~ a7 1:HM<x,y7t>tlfﬁ/2> u@)dp(y)
s ([ ozt [ ([ s sz

eS dt Vs gt
gcs//AXB/O HM(ac,y,t)tHfo/g+Csu(A>/1 2

= CsJ., (A, B) + Cu(A)(1 — s%/?),

=0.

lim
s—0t
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and taking s — 0 concludes the proof. O

Proof of Theorem 1.8. First, we claim that

. 1 oo dt p(A)pu(B)
lim 7// Hy(z,y,t) —— du(x)du(y) = ————. 28
s=0t [D(=5/2)| Jaxp J1/s m( )tHs/z (P)duty) u(M) >
Indeed
oo dt s o0 dr
S s HM(IE,:%t)m :S1Jr /2/1 H(xayar/s)ma

and since by Lemma 2.6 as t — +oo the heat kernel Hys(x,y,t) converges to 1/u(M) for all z,y € M, we
get

lim //AXB » HM(I'ayat)tlJrs/Q du(z)dp(y) = ) hm+(8/2) S e

s—0+ 2

Then, putting together Lemma 4.3 and (28) readily implies
: p(A)pu(B)
lim J.(A, B) = MAZ)
Jim T4 B) = =00
Lastly, since Ps_ (E, ) < 400 and

1
5PS(E,Q) =T (ENQLENQ+T(ENQLENQ)+ T(ENQS,ENQ),

the theorem follows by letting s — 0.
]

In [7] the authors prove the following result regarding the s-perimeter of the Gaussian space. Since the
total mass of the Gaussian space is one, we see that this is formally identical to our Theorem 1.8 for finite
volume.

Theorem 4.4 (Main Theorem in [7]). Let @ C R™ be an open and connected set with Lipschitz boundary.
Then, for any E C R"™ measurable set such that P] (E,) < +oo for some s, € (0,1) there holds

lim = PY(E;Q) = 1(E)Y(E° NQ) +7(ENQ)y(E°N ),

s—0t

where PY(E, Q) is the fractional Gaussian perimeter

PI(E, Q)

= // Ks(x,y) dyzdy, + // Ks(x,y) dyzdy, + // Ks(x,y) dyzdy,
ENQx E<NQ ENQx E<NQ ENQx E<NQ

and Ks(z,y) is defined as in (2) with on the right-hand side the heat kernel H. of the Gaussian space
2
(R™, ), where dvy(z) = W@‘m 2L (dx).
The proof in [7] follows the same lines as our proof of Theorem 1.8, but the authors heavily use the fact
that they know the explicit form of the heat kernel H, for the Gaussian space. In the next subsection, we
briefly explain how our method implies their result when applied to weighted manifolds.
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4.3. Weighted manifolds. Our result for finite volume manifolds extends, with proofs mutatis mutandis,
to the case of weighted manifolds with finite volume, implying the one in [7].

A weighted manifold is a Riemannian manifold (M, g) endowed with a measure p that has a smooth
positive density with respect to the Riemannian volume form dV,. The space (M,g, p) features the so-
called weighted Laplace operator —A,,, generalizing the Laplace-Beltrami operator, which is symmetric
with respect to measure u. It is possible to extend —A,, to a self-adjoint operator in L?(M, i), which allows
one to define the heat semigroup e!*# as one would on a classical Riemannian manifold. The heat semigroup
has the integral kernel H,,(z,y,t), which is called the heat kernel of (M, g, 1), and has completely analogous
properties as the classical one. For every detail regarding the heat kernel on weighted manifolds, we refer
to the survey [17].

In this case, we see that our proof applies since Lemma 2.6 also holds (with the same proof) on geodesically
complete weighted manifolds, and also Theorem 4.1 holds with the same proof, since our results from
subsection 7.3 are valid for weighted manifolds too.

Moreover, our method works also for manifolds with boundary and finite volume. Indeed, if (M, g) is a
complete manifold with (possibly empty) boundary and finite volume, and one defines Ks(z,y) by (2) with
the heat kernel with Neumann boundary conditions on the right-hand side, then the same proof applies.

5. ASYMPTOTICS: INFINITE VOLUME MANIFOLDS
5.1. Global asymptotics.

Corollary 5.1. Let (M, g) be stochastically complete and with u(M) = 4+o00. Let E C M be bounded and
such that P, (E) < 400 for some s, € (0,1). Then

1
lim —Ps(F) = u(E).
Jim = Py(E) = u(E)
Proof. Since M is stochastically complete, by Proposition 1.4 we have 0;; = 1. Then the result follows
taking v = xg in Theorem 3.5. (|

One can note that stochastical completeness is not really needed in Corollary 5.1. Even when M is not
stochastically complete, by Theorem 1.1, we know that 0,/ is a (possibly non-constant) bounded harmonic
function with values in [0, 1]. Then, by Theorem 3.5 with u = x g again

lim 1PS(E) :/ Orr dp
E

s—0+ 2

Consequently, if in particular 6y = 6, € [0, 1] we have

1
lim —Ps(E) =6,u(E), 2
Jim = Py(E) = fou(E) (29)
for every E bounded with P, (E) < 4o00. This feature led us to note the following example, which shows
that, interestingly enough, Riemannian manifolds with 6,; = 6, = 0 exists.

Example 5.2. There exists a complete Riemannian manifold N where the asymptotics of the fractional
s-perimeter as s — 07 is zero for every set, that is: for every bounded E with Ps (E) < +oo for some
so € (0,1) there holds

lim P(E)=0.

s—0t
By (29) above we see that it is enough to provide an example of a Riemannian manifold N with
On(p) = 0, = 0, meaning that the limit does not depend on the point p and is always zero. Moreover, by
part (it) of Remark 3.2 this is satisfied if N has the L°° — Liouville property, is not stochastically complete
and

N(t7p):/]‘VHN(x7pat)d/J<$)—>O, ast — 00.

A complete Riemannian manifold N with these properties actually exists, and we now sketch how it is
constructed. We want N such that
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(i) N has the L — Liouville property.
(i) N is not stochastically complete.
(i4i) For every p € N we have N(t,p) = [y Hn(x,p,t) du(x) — 0.

The construction of N that satisfies (1), (i) is taken from [16, Section 13.5], which in turn builds on the
first such example found by Pinchover in [25]. Here, we note that it satisfies also (iii).

FIGURE 1. The two dimensional jungle-gym in R3. Picture taken from [16].

@
@
]
- —
— -
< f—
—/
—/

Start from the two-dimensional jungle-gym JG? in R? as in Figure 1. This is done by smoothly connecting
the lattice 73 C R3 with necks. Let g be the standard metric on JG? induced by the embedding in R3. Fiz
o € JG? and let v := d(o,z). One can show that JG? has the L° — Liouville property. Moreover, there holds
w(Br(0)) < CR3, and the Green function grows at most as G(o,z) < C/r for larger. Let p : JG* — [0, +00)
be a smooth positive function with p =1 in [0,1] and p(r) ~ #g(r) for large r, and consider the conformal

metric § := p*(r)g on JG?. We claim that N := (JG?,3) has the desired properties. Since

[ otriar =0,

then N is geodesically complete and hence complete. Moreover, as the Laplacian is conformally invariant
in dimension two, JG? with its standard metric and N have the same harmonic functions, and thus N also
has the L — Liouville property and satisfies (i). Denote by G the Green’s function of N. Then, by the
choice of p, for R big

/ Glo, ) dfi(z) = / G(0,2)p*(r) du(z) < +oo,
N\Br(o) JG2\Br(o)

and by [16, Corollary 6.7] this implies (ii). Consequently, note that also

/OOON(p7t)dt:/ /Hpr,)d,u )dt = /(/ Hy(z,p,t) )

- /N G(o,x) dfi(z) = /N o, Gl )+ /B . Glo.a)dita) < +oe.

and since the function N (p,-) is also nonincreasing this implies that N also satisfies (iii).

5.2. Localized asymptotics and proof of Theorem 1.6. We now show (among other things) that (3)
is well-posed as in R™ for manifolds with the L°° — Liouville property, in the sense that it does not even
depend on the choice of p.
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Lemma 5.3. Let (M,g) be a complete Riemannian manifold with (M) = +o0o and E C M be a set for
which the limit (3) exists for some p € M. If M has the L* — Liouville property, then 0g(p) = 0g is
constant, meaning that the limit in 0g(q) exists for all ¢ # p and equals O (p).

Proof. We adopt the notation in the proof of Theorem 1.1. In particular, let ¢ — ©g s(q) be defined in
(21). Arguing exactly as in the proof of Theorem 1.1, every subsequential limit (say, in 01203( )) of Of 4
as s — 07 is a bounded harmonic function on M.

Since M has the L* — Liouville property, every such subsequential limit is constant. Then, since the
limit lim, ,o+ O s(p) = Op(p) exists by hypothesis, all the subsequential limits must coincide with 0g(p)
everywhere. O

Let us note that the conclusion of Lemma 5.3 is not completely trivial in general and is particular of
Riemannian manifolds that have the L* — Liouville property. Indeed, we believe that on a general complete
Riemannian manifold, it can happen that the limit in 0g(-) exists for some p € M but does not exist for
some other ¢ € M with g # p. See subsection 7.1 for a brief discussion on this feature.

Lemma 5.4. In the hypothesis of Lemma 5.5, for every bounded F C M and R > 0 with ' C Bpr/s(p)
there holds

s—0+

W(F)0p = lim J.(F, B\ Ba(p)) = hm//E\B - Kale) dp()dny)

Proof. Now since F' C Bpg/2(p), we have that Br/10(y) C Br(p) C Bior(y) for every y € F. Since the
kernel Cs is nonnegative we get

/ Ko, y) dulz) < / Ko, y) dulz) < / Ko, y) du(z)
E\Bior(v) E\Br(p) E\Br/10(v)

By the very definition of g (3) and the fact that the limit does not depend on the radius whenever
it exists (see part (i) of Theorem 1.1) both the left-hand side and right-hand side of the last inequality
converge to 0g(y) = g, since g is constant by Lemma 5.3, as s — 0%. Hence, integrating in y € F and
letting s — 07, by dominated convergence

Hm// Ks(z,y) du(x /9Edu w(F)0g,
s—=0t E\Bg(p

which is what we wanted to prove. O

Lemma 5.5. Let (M, g) be complete with u(M) = +oo, and let A, B C M be two disjoint measurable sets
with u(A), u(B) < +oo and with Js (A, B) < 400, for some s, € (0,1). Then

s—>1 0 \75( ’ )
PTOO’. FiI'St, by Lemma 4.3 we have

dt
lim sup J5(A, B) < limsup = // HM (z,y,t) n /2d w(x)du(y) .
AxB J1/s i

s—0t s—0t

Then
s ~ dt Cglts/2 €92y dg
- | H ) () () 5)(2) a7 @)

<c/ (/ e€/98 (xp) (x )€1+6/2>du()

Since xp € LY(M), for every x € A (see Remark 2.9) there holds by dominated convergence

(&/s)A s
8/1 € (XB)(x)€1+S/2 07

as s — 07. From here, the result follows by dominated convergence using that p(A) < +o0. O

The results above directly imply the following.
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Corollary 5.6. Let (M,g) be complete with u(M) = +oco and with the L — Liouville property, and let
Q C M be bounded. Then, for every F C Q with P (F,Q) < 400, for some s, € (0,1), there holds

lim Js(F,ENQ°) = u(F)og .

s—0t

Proof. Let p € M and R > 1 be such that Q C Br(p), then
Js(F,ENQ°) = T,(F,ENQ°NBr(p)) + Ts(F, ENQ°N Bx(p))
=Js(F,ENQ°N Bgr(p)) + Js(F, EN Bg(p)) -
From here, since Q°N Br(p) and F are disjoint and both with finite volume, the first term tends to zero as
Js(F,ENQ°N Bgr(p)) < J(F,Q°N Bgr(p)) — 0,

as s — 0F. Moreover, the second term tends to u(F)0g by Lemma 5.4. O

The proof of our main theorem in the infinite volume case is just a simple application of all the results
we have derived above.

Proof of Theorem 1.6. Write

1
5PS(E,Q) =T(ENQLENQ)+T(ENQENQY) + T(ENQ°,ETNQN)

1
= 5Ps(EmQ) —T(ENQENQY) + T(E°NQ,ENQY).

By Corollary 5.1 applied to the first term, and by Corollary 5.6 applied with FF = ENQ and F = E°NQ)
respectively on the second and third term, taking the limit as s — 07 we get

1
hr(r)l+ “P(E,Q)=pu(ENQ) = 0pu(ENQ) +0pu(E°NQ)
s—

=1 -0p)u(ENQ) +0pu(E°NQ),

and this shows (7).

To prove (it) and (i) we follow closely the proof of in [10, Theorem 2.7], which deals with the analogous
property in the case of the Euclidean space R™. We just sketch the argument since in the reference [10], the
proof is carried on in full detail, and in our case, it is analogous. Let us denote

O, = / Ka(z, p)dp(z) (30)
E\Br(p)

and fix R > 0 such that Q C Bg/s(p). Note that

/ / (,y) du(x)du(y / / (z,y) du(z)dp(y)
o\B E\BR(p) onEe E\BR<p>

Py (E,Q) — ; S(ENQQ)—Ts(Q\ E,(E\Q)NBr(p) +Ts(QNE,(E\Q)NBr(p)).

Now, arguing exactly as in the proof of Lemma 5.4 we have that for every F' C 2 there holds

lim
s—0t

j(F)Ops — /F /E o ) du@duty)| =0. (31)

Since O\ E and (E \ Q) N Bgr(p) are disjoint and both with finite volume (since they are bounded), by
Lemma 5.5 we have

Jim .(Q\ B (E\ 2) N Ba(p)) = 0.

and similarly
li%l+ J(QNE (E\Q)NBg(p)=0.
S—
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Hence, taking the limit as s — 0% above using (31) for the left-hand side with F = Q\ F and F = QNFE
respectively gives

. 1
Slir(lgl+ Op,s(LQ\ E) — n(QNE)) = Slg& —(Ps(E,Q) — P(ENQ,Q)).
Since £ NQ C Q is bounded, by Corollary 5.1 we have
1 o1 B
lim SP(ENQ.Q) = lim SP(ENQ) = u(ENQ),
thus

Slit[r)l+ Op,s(H(Q\E) — n(QNE)) = ( lim %PS(E, Q)> —u(ENQ).

s—0+
From here, the conclusion of the theorem easily follows. Indeed, if (2 \ E) = p(Q2 N E) then the limit
limg o+ 3 Ps(E, Q) always exists and is equal to (ENSQ). On the other hand, if the limit lim,_,+ 3 Ps(E, Q)
exists then from above the limit in §g also exists and there holds
(hInsHOJr %R@(E7 Q)) B ILL(E n Q)
n(Q\E) — w(ENQ) ’
and this concludes the proof. (|

Op =

6. EXTENSION TO RCD SPACES

In this section, we briefly explain how our results extend to the case of RCD(K, N) spaces, which are
a generalization of Riemannian manifolds with an upper bound on the dimension N and Ricci curvature
bounded from below by the real number K (and they include weighted manifolds). While assuming the
reader familiar with the theory of RCD spaces we have to mention at least some references: the introduction
of a synthetic lower bound on the Ricci curvature (CD condition) has been done in the work of Lott and
Villani [24] and in the works of Sturm [28], [29]. In a subsequent work, Ambrosio, Gigli, and Savare
introduced the RCD condition (see [1]) to rule out Finsler structures and enforce some Riemannian-like
structure at small scales of the space (infinitesimal hilbertianity, see also [12]).

We stress that we won’t reprove every result of the smooth case, but only the ones presenting significant
changes needed to perform the asymptotic analysis.

First of all, on any RCD(K, V) space with K € R and N € NU {00} it is possible to define a heat kernel
and to do so we shall exploit the theory of gradient flows.

We call the heat flow (e'®);~o the gradient flow (in the sense of Komura-Brezis theory) of the Cheeger
energy, which displays the following properties: for an L? function f the curve ¢t € (0,00) — e f € L?
is locally absolutely continuous, it is such that e!®f € D(A), lim;_oe!®f = f in L? and satisfies the
heat equation

detA
dt
We will now collect some other properties of the heat flow holding on infinitesimally Hilbertian metric
measure spaces which we will exploit (see [13] for a reference):

=Ae!®f Vt>0.

Proposition 6.1. Let (X,d, ) be an infinitesimally Hilbertian metric measure space, then we have

(i) (Weak maximum principle): Given any f € L?(u) such that f < C p-almost everywhere we have
A <C p—ae.
(i1) (et is self-adjoint): For all f,g € L*(u) we have

/emfgd,u:/ e!Bgfdu Yt > 0.
X X

(iii) (A and e commute): For all f € D(A) we have
Aet®f = e!®Af p—ae., Vt>0.
Moreover if (X,d, i) is an RCD(K, 00) space we have the following additional properties:
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(iv) (Bakry-Emery estimate): For all f € WY2(X) and t > 0 we have

|Vet2 f)? < e*QKtetA(|Vf\2) [—a.e. (32)
(v) (L — Lip regularization): For all f € L*>(p) and t > 0 we have
A o—2Kt
V(™= Loy < THJ”HLW(H)- (33)

It is then possible to define the heat flow for all probability measures with finite second moment as
the EV Ik (again, we assume the reader to be familiar with the terminology) gradient flow of the entropy
functional. More precisely for every u € Po(X), e!®u (with a little abuse of notation here) is the unique
measure such that

/ pde™ 1 = / e"Bpdp Vg € Lipy (X),
X X

where Lip,,(X) is the set of Lipschitz functions with bounded support and e*2¢ is the Lipschitz continuous
representative of its equivalence class (which is well-posed thanks to the L>° — Lip regularization property).

On RCD(K, o0) it is possible to define the heat kernel Hx (x,-,t) := % and we have the following
(see [21] for a reference):

Proposition 6.2. Let (X,d,u) be an RCD(K,N) space with N € N, then for all ¢ > 0, for some
C1,Cq, Cs3, Cy nonnegative constants (possibly depending on € and N ) we have
1 ( d*(z,y)
- = _exp|-—
Ciu(B 4(y)) (4d—e)t
forallz,y e X, t>0 and

Cs —d2($,y)
Vil < s exp( N —c4t) (35)

— T 701 ex _dz(x,y)
) < o) < e (G r o) o9

wXx p-a.e (x,y) € X x X, for all t > 0.
Moreover, if K =0 then estimate (34) holds with Cy = Cy = 0.

On any RCD(K, co) space we have

[ tx(ey tdn(@) =1
X

for all y € X, ¢ > 0. That is, X is stochastically complete.

In the setting of RCD(K, N) (actually infinitesimal hilbertianity is not required) we also have Bishop-
Gromov’s comparison theorem, holding both for the perimeter measure and the volume measure (see [29]).
Finally, it is possible to prove that the following version of the Harnack inequality holds (see [22] for the
proof)

Proposition 6.3 (Harnack inequality). Let (X,d,un) be an RCD(K,00) space, p € (1,00) and f €
LY (u) + L (), then

(@2 F)(@)P < (A7) () exp(
forallz,y e X x X and t > 0.

pKd®(z,y) >
2(p — 1)(e2Kt — 1)

From the previous Harnack inequality, it is possible to prove the following Gaussian bound (see [30,
Theorem 4.1]) for RCD(K, 00) spaces (compare with (34) above for RCD(K, N) spaces).

Proposition 6.4. Let (X, d, u) be an RCD(K, 00) space, then there exists Cx > 0 and for all € > 0 there
exists C. > 0 such that

HX($7yat) S

1 d*(z,y)
exp| C: C - .
(B (@) JulB () ) o

If K > 0 one can take Cx = 0.
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The second ingredient we need is a generalization to RCD(K, o0) spaces of the L? — Liouville property
of Yau (our Theorem 2.3).

Proposition 6.5. Let (X,d,u) be an RCD(K,00) space. Then, any L*(11) harmonic function is constant.

Proof. Denote w(t, z) := et®u(x). Assume u € L?(y) is harmonic, then by applying the heat flow to Au = 0
and using item (444) of Proposition 6.1 we have

Aw = 0.

1
/ Vuld < o / P,
X t Jx

0:—/ wAwd,u:/ |Vw|dp.
b'e X

This means |Vw| = 0 p-a.e. and by the Sobolev to Lipschitz property, this implies that w is constant.
Therefore there exists C = C(t) such that w(t,-) = C(¢).
Now if (X) < +00 we can infer (as u € L?(u) implies u € L*(p))

/deu=/xudu:u(X)C(t)7

hence C does not actually depend on t and by taking the limit as ¢ — 0T we infer that u is constant.
If u(X) = +oo, then for every ¢, we have w = 0 because the only constant in L?(u) is zero, and we
conclude. 0

By gradient flow theory we have

whence

Remark 6.6. The previous proposition actually does not require a curvature condition: working in a space
in which having zero weak upper gradient implies being constant suffices.

We then have the following result, which is a non-smooth analog of Proposition 2.6.

Proposition 6.7. Let (X,d, ) be an RCD(K, 00) space, then we have the following dicotomy:
(2) If u(X) < 400 then

w(X)

Hx(t,z,y) — ast — oo Va,y € X.
(1) If 1(X) = 400 we have
Hx(-,-,t) >0 ast— o0 (37)
locally uniformly and Hx (p,-,t) — 0 uniformly as t — oo for every p € M.

Proof. The proof follows along the same lines of Proposition 2.6. If 4(X) < +oolet f = Hx(p,-,1)—1/u(X),
otherwise let f = Hx(p,-, 1), then max{|[e’®f| 11, ||e!® f|lL=~} < C due to the properties of the heat flow.
Moreover by the semigroup property of it is easy to see that weak convergence in L?(y) of e!2 f is equivalent
to strong convergence and we again have the inequality

(2 F, )] < U, N2 9.9) < NlglZa (€2 . )]

for all t € (0,00) and for all f, g € L?(u1). Using the spectral measure representation and Proposition 6.5, we
infer the desired L? convergence. This convergence can be upgraded to be locally uniform by the Harnack
inequality (Proposition 6.3) with p = 2 and by the fact that |f|> < ||f||z=|f], together with the maximum
principle to get

2
@ < Iflme ) exv( 55

for every y € Bgr(x). Integrating over the latter set in du(y) and taking the supremum allows to conclude.
The global uniform convergence follows as in the smooth case. O
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Remark 6.8. As in the smooth case if u(X) = +oo we have that for every f € L*(u)
lim e f(x) =0

t—o00

for every x € X.

We refer to [3] for an introduction to H*® spaces on very general ambient space, like RCD spaces and
more. We have the analog of Theorem 4.1.

Theorem 6.9. Let (X,d, ;1) be an RCD(K, 00) space with K € R and u(X) < +o0o. Let u € H*/?(X) for
some so € (0,1) with bounded support. Then

2
. 1. .5 9 1
i gl = It~ vy ([ ve)

Proof. The proof is exactly the same as in the smooth case exploiting the L? — Liouville property of
Proposition 6.5. (|

To prove the convergence result for the case of infinite volume we need a convergence result for the
solution of the heat equation to the initial datum. We, therefore, recall the following (upper) Large Deviation
Principle on proper RCD(K, c0) spaces (see [14, Theorem 5.3])

Theorem 6.10. Let (X,d, u) be a proper RCD(K, 00) space, then for every x € X and closed set C C X
we have, setting pi[x] = Hx (-, x,t)u,

d2
lim sup ¢ log(ut[z](C)) < — inf M (38)
t—0 yeC 4
Remark 6.11. In (38) we can choose C = X \ B.(p) and obtain the following estimate for small times

(depending onr >0 and e > 0)

r?—
R sy (39)

We are finally ready to prove the following proposition (analog of Proposition 1.4)

Proposition 6.12. Let (X,d, u) be a proper RCD(K, 0c0) space with u(X) = +oo. Then for every p € X
O (p) = lim Ks(z,p)dp(z) = 1.
$70JX\B1(p)

Proof. As for the smooth case, we first show that

1

S dt

lim — H t)——~=d =0.
50+ 2 /x\Bl(p)/o x(@p, )t1+s/2 ui@)

Indeed there exists 6 > 0 such that for all ¢ < ¢ (39) holds, so that the previous integral can be estimated

with the following
5 1
2/0 ‘ R X\Bi(p) /6 x(@.p, )t1+5/2'

The first term clearly goes to zero as s — 07 and to handle the second we use Fubini to deduce that
(here stochastical completeness is not necessary but RCD (K, co) spaces enjoy this property so we write the
equality sign)

1 1 1
S dt s dt s dt
5 Hx (2,0, ) 5757 :7/ — _7/ / Hx(z,p,t) = du(z).
Q/X\Bl(p)/g tits/2 2 fs t+s/2 2 [p 0 )5 f1ts/2

Again the first term trivially goes to zero while for the second we apply (36) and exploit properness of the
space to infer that Hx (-, -, ) is equibounded in B;(p) x [J, 1] so that

! 1
9 Hx (z,p,t) 57 dp(r)| < limsupOf/ = 0.
2 /Bl(p) /5 t1+s/2 msup s [, e

lim sup
s—0
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We now claim that

Indeed, thanks to the local uniform convergence proved in (37) and reasoning as in the previous step the
latter result easily follows.

Finally, we can perform the same steps and write
00 (p) = lim > “n n-2t_g
Mp)—sl_f}(l)§ s x(z,y, /2 (),

which equals 1 by using stochastical completeness. O
In the following proposition, we study the behavior of the singular kernel KCs(z,y).

Proposition 6.13. Let (X, d,u) be an RCD(K, N) space with ;1(X) = +oo and essential dimension equal
to n. Then, for every x € X which is a reqular point we have

Cs Cs

Tn+s S ICS($7y) S

+Os(1)+ sup HM(xvyvt)v (40)

s t>1/s

for every y € X, where r = d(z,y). In particular Ks(z,-) — 0 as s — 07 locally uniformly away from x.

Proof. Let us define

1 1/s 0o
s dt s dt s dt
Ics(xvy) = 5/0 HX(xayat)tl_i_S/Q +§ . HX(xay7t)t1+s/2 +2[/5 HX(-ray?t)tl_i_s/g

=11 + 1+ Is.

By the Gaussian estimates (34) and using the fact that x is a regular point we have

1 -
Il S C,S/ efrz/St dt < CS
0

t1+s/2+n/2 — Tn+s'
Moreover, since p(X) = 400 by (37) the heat kernel converges locally uniformly to zero, and we also get
1/s dt
I2§CS/1' WZC(1—85/2)203(1)7
for some constant C' which is bounded in a neighborhood of x. Finally, we have
s < dt
Is < - sup Hy(z,y,t / —_—,
t>1/s ( ) 1/s tits/2
thus proving the upper bound in (6.13). For the lower bound it is enough to neglect Is and I3 and apply
the Gaussian estimate from below to I;.
Finally, the local uniform convergence K4(z,-) — 0 is apparent due to the local uniform convergence (37)

of the heat kernel to zero and the other quantities involved. O

With the next proposition, we show that the heat density of a set, whenever it exists, is independent of
the radius and also on the point if the L>° — Liouville property holds, analogously to the case of manifolds.

Proposition 6.14. Let (X,d, 1) be an RCD(K, 00) space with u(X) = +oo, let E C M be measurable and
set

Orupr) = [ Klpa)duo).
X\B,‘(p)
Then for all 0 < r < R one has
lim sup |®E7S(p, R) — Og s(p, r)’ =0.

s—0t

meaning that if lim, o+ O s(p,7) = 0p(p) exists for some p € M, then it does not depend on r. Moreover,
if the L™ — Liouville property holds on X and 0g(p) exists for some p € X, then 0 = 0g(p) is constant.
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Proof. We first show the independence on the radius; therefore we fix any two 0 < r < R, and we show that

limsupf/ /OOHX(xpt)id,u(x):O
— P 4148/2 :
s—0+ Br(p)\Br(p) /0

We split the integral over time in three pieces: one from 0 to €, one from € to 7', and the last one from T’
to oo. The first piece goes to zero since Bgr(p) \ Br(p) is a closed set and we can apply (39), the second
piece goes to zero for every T > 1 thanks to the properness of the space, the Gaussian upper bound (36)
and easy calculations, while the last piece is such that, for all T' > Ty(e)

. s [~ dt
hmsupi/T Hx(z,p, t)md,u(x) <e.

s—0t
Since this holds for every ¢ we get the convergence to zero.

For what concerns the independence on the point, we first take r big that ¢ € B, /19(p) and wlog, we
assume F to be closed. We have

lim sup / K. (z, p)dulz) — / K. (2, g)du(x)

s—0+ |JE\B,(p) E\Ba2,(q)
<timsup| [ K(wa)duta) = [ Ko a)duta)
s—0+ E\B.(p) E\B2r(q)

+ lim sup

s—0+

= Il + IQ.

/ Ks(z,p) — Ks(z, q)dp(x)
E\B:(p)

The first integral is zero since

Iy < limsup / Ka(z, q)du(z) < 0p,,(0)(@) = 0,
Ba.-(¢)\Br(p)

s—0t

where we have used the independence on the radius.

While for I we shall exploit the L> — Liouville property of X. We can, as usual, expand the singular
kernel and split the integral in time into three pieces in time, one going from 0 to 1, another from 1 to
T > 1, and lastly, from T to oo. The first two are handled thanks to the exponential convergence (39) and
the boundedness of the heat kernel, while for the last one, we have

> dt
| e 0 )0) = e e )0 7| =0

lim sup
s—0t

thanks to the L® — Liouville property.

Indeed e*®(x E\B,.(p)) converges up to subsequences to a constant harmonic function; hence its (of the
limit function) value at the points p and ¢ is the same so that, being this true for any subsequence,
e (X B, () (D) — € (X\B,(»)) (@) = 0 as ¢ = 0. O
Remark 6.15. In the previous proposition, we only care about spaces satisfying the L°° —Liouville property.

However, with a little work, it is possible to show that the function p — 0g(p), whenever it exists, is a bounded
harmonic function in a suitable weak sense.

Finally, we have the analog of Theorem 3.5.

Theorem 6.16. Let (X,d,u) be a proper RCD(K,N) space with u(X) = +oo, N < 400, essential
dimension equal to n and let s, € (0,1). Then for every u € H*/?(X) N L*(X) with bounded support
there holds

S S 2
sli%ﬂ g[u]HS/Q(X) = ||u||L2(X)'

Proof. The proof is similar to the smooth case; we just need to handle the computations more carefully.
We advise the reader to first see the proof in the smooth case of Theorem 3.5.

By Proposition 7.5 (which also holds for RCD spaces, see Remark 7.6) for p-a.e. z € X the integral in
(—A)§/2u is absolutely convergent. Fix x € X in this full-measure set and R > 0 such that supp(u) C Br(z).

i
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2
Now we prove that, as s — 07, (fA)gf

z € X to be a regular point, we have

(—A)u(z) = / (u(a) — u(y))Ks (2, 9)dply) + u(z) / Ko, )du(y)
Br(x) X\Br(z)

u — u p-a.e. with the same strategy of the smooth case. Take also

and we are left to prove that the first term goes to zero as s — 07, as the second one in the limit is precisely
u(z). Now fix p < 1 and let us split the first integral as follows

\ / (u(a:)—u(y))/csu,y)du(y)\= [ ute) —ul)Kste ) duty)
Br(z) B, (x)

+ / () — ()|l y) du(y).
Br(z)\B,(x)

For the first integral, we can apply Proposition 6.13 to obtain

/B,,(x) [u(x) — u(y)|Ks(z,y) duly) < CS~/Bp(x) Az g du(y) + os(1). (41)

Applying Hoélder inequality as in the smooth case (take s small so that 2s < s9) we now get

1/2 1/2
|u(z) — u(y)| (u(x) —u(y))? 1
/B,,(o;) W du(y) < </BP(I) W dﬂ(?/)) (/Bp(g;) W dﬂ(y))

and conclude in the same way that taking the limit as s — 0" in (41) gives zero. For the second term,
we just use the fact that Ks(x,-) goes to zero locally uniformly away from z together with dominated
convergence. Therefore we have proved that (—A)g{ “u—u p-a.e. as s — 0. To establish the seminorms’
convergence, we exploit Corollary 7.9, which also holds in this non-smooth setting with the same proof. To
conclude we just need to prove that (—A);{ u—u weakly in L?(u): this is however apparent because of

the equiboundedness of ||(—A)§{ | £2(u) given by the estimate (43). O

Thanks to the previous results we would be in the position of stating and proving (which we won’t do
since the proofs are exactly the same as in the smooth case) the theorems regarding the asymptotics of the
fractional perimeter Theorem 1.8 and Theorem 1.6, also in this non-smooth setting.

7. APPENDIX

7.1. On the existence/nonexistence of 0p(-) at different points. Let (M,g) be a complete
Riemannian manifold with infinite volume and £ C M. As we have proved in Lemma 5.3 if M has
the L — Liouville property and 0g(p) exists for some p € M then it exists for all p € M and the two
values coincide. Let us stress that, on manifolds with L°° — Liouville property, the limit does not need
to exist, but if it does not exist at some point, then it does not exist everywhere. For example, even on
R™ in [10, Example 2.8], the authors exhibit a set for which the limit 0z (x) does not exist at every point
x e R™

On the other hand, on a general M without the L> — Liouville property, we believe that 6(-) could exist
for some p € M and fail to exist for some ¢ # p. Let O s(-) defined as in (21) so that O (p) = lims o+ Op s,
if the limit exists. It can be proved with the Li-Yau Harnack inequality [23, Corollary 12.3] that if the limit
in Og(p) does not exist and

limsupOp s(p) — liminf O s(p) =35 >0,
s—0+t s—0F
then the limit still does not exist for every ¢ € Bes(p), where C' > 0 is a constant that depends on M. But
in this estimate the lower bound for limsup,_,o+ O s(q) — liminf, .o+ O s(¢) tends to 0 as ¢ approaches
0Bcs(p). Without further information in M, we do not see any reason why the limit should not exist at
some point outside Bes(p).
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7.2. Heat kernel estimates and H®(M) spaces. Here (M, g) denotes a complete, connected Riemannian
manifold. First, we present a simple interpolation inequality for H*/2(M) spaces.

This inequality is known in the case of M = R" or M = ) C R"™ for fractional Sobolev spaces W*P also
when p # 2. Here, we carry on a structural proof using a few properties of the heat kernel, which gives the
interpolation inequality on general ambient spaces.

Lemma 7.1. Let v € H°(M) for some o € (0,1), and let 0 < s < 0 < 1. Then u € H*(M) and the
following inequality holds

1-s/o s/o
[l iy < Clullzscip [l 5e ar-

for some absolute constant C' > 0.

Proof. We have
Ml = [ ) = um)? [ il itz datalauty)
3
<[ —u)? [ sl iz dnte)inty
e @ =) [ st it

where ¢ € (0,00) will be chosen at the end. Note that for all ¢ € (0,£) we have (£/t)1+s < (£/t)119 so that
we can estimate from above the first integral of the previous inequality with

¢ dt
)~ @ [ vt i) < €I i

The symmetry of the heat kernel and the fact that M(t,y) < 1, for all y € M, together imply that the
second integral can be bounded by

° dt 4
Il - a2 /5 Hs(,31,8) g i@)) < gzl o,

These two inequalities lead to

4
[T (=s)][u ]2 o S0 (—0o )|[uﬁ{a(M)‘*‘gHUHQL’Z(M)-

Optimizing the right-hand side in £ gives that the optimal value is
B ( AllullZ2 ar )1/0
(=) WProiary)

C 2(1—s/o 2s/o
(=) [l oy < <Ml 2o 7 W5

Putting everything together gives

and this implies

1—s/o s/o
[l ey < Cllull sz ca [l 3e ar »

as desired. O

Lemma 7.2 ([8]). Let (M™,g) be a complete n-dimensional Riemannian manifold and let Br(p) C M.
Then

e (xXanBa(p) (P) = / Hy(z,p,t) du(z) < Ce™e/t,
M\Bgr(p)

for some C,c > 0 depending on R and the geometry of M in Br(p).
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Proof. This is essentially [8, Lemma 2.9]. Indeed, in [8, Lemma 2.9] the authors prove that if (M,g) is
a complete Riemannian manifold and B,(p) C M is a ball diffeomorphic to B,(0) C T,M with metric
coefficients g¢;; (say, in normal coordinates) uniformly close to §;;, then

/ Hur(z,p,t) du(z) < Ce¢""/"
M\B, (p)

for some C, ¢ > 0 dimensional. Then, taking r < 1 very small and writing

/ Har(z,p, 1) dpu(z) < / Har(e, p, t) dula)
M\Br(p) M\ B, (p)

allows to bound the desired integral. O

Now we present the proof of Lemma 3.4, that we needed to prove the asymptotics of the full H*/2(M)
seminorm of Theorem 3.5.

Proof of Lemma 3.4. Let ¢~ : Bi(p) — R™ be the inverse of the exponential map at p. Take n €
C(Bays(0)) with xs,,,0) < 1 < X5,,50) and let gi; == giyn + (1 — n)d;;. This is a metric on R"™ with
9ij = gij in Byy5(0). Denote by K, K the singular kernels of (M, g) and M’ := (R", g’) respectively. Let
A:=sup,cp, o (p) Hru(z,2,1) and A= SUPyes, o (0) Har (z,z,1). Then, by [8, Lemma 2.17] applied to the
Riemannian manifolds (M, g) and (R", ¢') we have, for =,y € By /5(0)

.lila) o) = K] < Lo [ el o)) = Har o055

< 0s(2=9) [ Halele) o)1)~ Hp o)
1/s
+Cs2=3) [ [Hare(o) ¢, t) = o) 557

i dt
+os2=s) [ ot o) 6 = B9 i
= C8(2 - S) [Il + I2 + 13] .
By [8, Lemma 2.17] there holds
dt

dt v
L = /|HM )t)*HM’(xay,mWSC/O e /tt1+s/2§C’

for some dimensional C' = C(n) > 0. Regarding the second integral

/s dt L1 — /2
IQSA (A+A)t1+s/2*(A+A) 5/2 ’

and lastly
e dt
I3 = |Hu(p(x), o(y), t) — Har (x, yvt)|Ts/2
1/s t

<52 [ | Harol). o000, €19) + Hao o.6/5)| s = (1) 0

as s — 07, since both M and M’ have infinite volume, and thus, their heat kernel tends to zero as t — +o0
(see Lemma 2.6). Hence as s — 0"

|KCs(p(2), p(y)) = Ki(,y)| < Cs+ C(A+ N)(1 = 5%%) + 05(1) = 0,(1),,
and note that this estimate is uniform in x,y € B;/5(0). This follows, for example, from the parabolic
Harnack inequality since one can locally estimate the supremum of Hjy; and Hj; with the L' norm at later
times; see the end of the proof of Lemma 2.6. Then

lm  sup K@) — Kl y)] = 0.
s—0% z,y€B1/5(p)
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Lastly, by [8, Lemma 2.5] there exists dimensional constants ¢, C' > 0 such that

Bn,s

ﬁns !
> < <
c Ki(z,y) Cd(x,y)" =,

d(x,y)nts —

and this concludes the proof. O

7.3. On the equivalence and well-posedness of different fractional Laplacians. In this subsection
we shall prove some results concerning the equivalence between different definitions of the fractional
Laplacian, and the fractional Sobolev seminorms on (possibly weighted) Riemannian manifolds.

Next we want to show that the fractional laplacian defined with the heat semigroup ( fA)lsg/ % and the one

s/2

defined via the singular integral (—A)g” coincide. Note that the two following propositions do not hold

when M is not stochastically complete. Indeed, using definition (14) gives (—A)giz(l) = 0, while if M is
not stochastically complete equation (12) gives (—A)SB/ (1) £ 0.

Proposition 7.3. Let (M,g) be a complete, stochastically complete Riemannian manifold, and let u €
C(M). Then:

i) For s <1 the integral in (—A 2 s absolutely convergent and the principal value is not needed.
Si
(ii) The singular integral (—A)gi/2u (defined in (14)) and the Bochner (—A)SB/Qu (defined in (12))
definition coincide.

Proof. For what concerns the absolute convergence for s € (0, 1), we have

/M (u() — u(y))Ks (s y)dpu(y) = /

(ol [ C)duty) =D+ I
B, (x)

M\ B (z)
For r small, arguing exactly as in the proof of Theorem 3.5

1 "
L<C —— duy) < C | —dp< +oo.
L= /B,.m d(z,y)rts—t uy) < /0 p 7 e

On the other hand, for the second integral

I < 2|jufl g~ / Ka(z, y)duly)
M\ B ()

and thanks to Lemma 7.2 and Fubini

<1
[ ke = [ [ Hupdut)e
M\B,(z) 0 M\ B (x)

<lec/t dt °°1dt
= Oe t1+5/2+ ) s/ < +o00.

This concludes the proof of (7).

Now, let us define

etPu(z) — u(z
L e /MHMm,y,t)(u(y)—u(x))du(y»

where the second equality is due to the stochastical completeness. Note that J € L'(0,+o00) since
letAu(x) — u(x)| < Ct, where the constant C' depends on ||Au||p~. We can now define

0= e [ Hle () ~ )ty
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and observe that Ji(¢t) — J(t) for all t € (0,00). Now if t > 1 (estimating the mass of the heat kernel by 1)
we get Jp(t) < 2||ul|L~/t'+5/2, while by [8, Lemma 2.11] we have

N 1
30 -0l < s [, Hes ) - u)ldu)

¢ / —d? () /5t
Py e VI (z, y)du(y) -
tits/24n/2 By /i (z)

Applying Coarea formula and using the fact that Per(B,(z)) < Cr"~1 if k is big we get

C 1/k C Y
‘3(75) _3l~c(t)’ < m/ e/t gy — oy / o= /21 g, <
0 0

— ¢s/2°

Therefore if ¢ > 1 we have J;(t) < C/t'+5/2 € L'(1,+00) while if t < 1 we have J;(t) < C/t5/? +J(t) €
L(0,1). Hence by dominated convergence we can write

oo
5/2 B dt
(-8 ule) = [ a0 = pm [ Lo () = 0D o, 0:) 557 )
Now for any k € N fixed, by Lemma (7.2) and the fact that v is bounded, we get

) dt ' dt >t
- —c/t _at
/(; /M\Bl/k(m) |U(y) u($)|HM($, Y, t) tl—‘,—s/? S 2||u||L°Q A (& t1+5/2 + 2||U||Loc /; t1+s/2 < +OO

Therefore we can apply Fubini and infer

o0 dt
YNNE - I / - H t)——=d
(=A)p "u(z) e M\Bj(z) /0 (uly) = (@) Hu (=9 7) tits/2 Hy)

=PV [ (uly) ~ w0 o)),

O

Remark 7.4. One can note that the proof above of the absolute convergence of (—A)§{2u for s € (0,1)
actually shows that the integral is absolutely convergent if u € CZ (M) N L>®(M) for some a > s.

Regarding the following two results, we couldn’t find any proof in the case of an ambient Riemannian
manifold (M, g), even though they appear to be well-known in the community in the case M = R” or a

domain M = Q C R"™. For example, a proof that Dom((—AQ);{,QeC) = H*(Q) for the Dirichlet Laplacian
on Q C R™ can be found in [4, Section 3.1.3], but it heavily uses the discreteness of the spectrum and

interpolation theory.

Our results are not sharp, in particular, we believe that Proposition 7.5 and 7.7 hold also for s = ¢ since
this is the case for domains in R™. Here we focus on providing structural (and short) proofs that apply
verbatim to the case of any weighted manifold, and we avoid using any local Euclidean-like structure of M.

Proposition 7.5. Let (M, g) be a stochastically complete Riemannian manifold, o € (0,1) and u € H? (M)
(as defined in Definition 1.9). Then, for every s < o the singular integral (—A);i/2u (defined in (14)) and
the Bochner (—A)SB/2U (defined in (12)) definition coincide a.e. Moreover (—A)SB/2u = (—A)gpu € L?(M).

1

Proof. Let u € H°(M) and x € M. Since M is stochastically complete, if we could exchange the order of
integration we would have
dt

(A 0e) = oy [ € Bulo) a0 i

= 3/2/ (/ Hyr(w,y,t) (u(y) — u(a:))du(y)>t1fi/2

- /M<u<y> — u(e))Ka (e p)duy) = (~A) Y 2u(z)
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Now we shall justify the steps above, showing that the integral is absolutely convergent. Note that this will
also justify the last equality, since we have defined (—A)g{ % with the Cauchy principal value. In particular,

we show that 2
/M (/M lu(x) — u(y)UCs(x,y)du(y)) du(z) < +00.

This will prove at the same time that the integral above is absolutely convergent for a.e. x € M and that
(—A)g./Qu € L?>(M). Let us call

1

_ / () — u(y) | H (2, y, ) duy) ,
M

and denote by C' a constant that depends at most on o.

Note that, by Jensen’s inequality
> dt

/Ooo j(t)2t1d.f0 _ /O°° ( . |u(z) — uw(y)|Hpr(x, y,t) du(y)) T
< [T ] o) - ) HasCo ) o)

M
zc/\u _
M

/M (/M fu(z) - U(y)lics(w,y)du(y))zdu(x)
= Cs? /M (/OOO J(t)tlfzm)Qdu
o [ ([ 30t) e [ ([s0t) o

For the first integral, since s < o, by Holder’s inequality and (42) we have

L@\ Lo dt Lt
/M (/0 J(t)tl+8/2> dMS/M </0 () t1+a> (/0 t1_0+s>d,u<C’[ ]H"(M) < +oo.

For the second integral, let us first renormalize the measure v := C’dt/t“‘s/ 2 in a way that it becomes
a probability measure on [1,00). Then, by Jensen again (applied two times: to dv(t) and then

HM(x7y’ )dﬂ(

/ (/ J(t t1+8/2> dp < //MXM/ VP Hyr (x, y,t) dv(t)du(y)dp(z)
//MxM/ o) Ha (.9, t) dv(t)dp(y)dp(x)

S ||U’||L2(M) < 4+00.

w(y)|*Kao (2, y) du(y) - (42)

Write

| /\

Hence, we have proved

2
-85l < [ ([ oo = wlKsteauts)) dute)

< CllullZaar + Cs?lullFroany (43)

and this concludes the proof. |

Remark 7.6. Note that the proof of Proposition 7.5 applies verbatim to the case of RCD(K, N) spaces,
since every RCD(K, N) space is stochastically complete. We will use this fact in the proof of Theorem 6.16.
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Next, we address the equivalence of the spectral fractional Laplacian (*A)gﬁc with the other definitions.

We refer to [18] and [11, Section 2.6] and the references therein for an introduction of the spectral theory
of the fractional Laplacian on general spaces.

Let Ey be the spectral resolvent of (minus) the Laplacian on (M, g). Then, for s € (0,2) in the classical
sense of spectral theory

Dom((fA);/piC) = {u € L*(M) : / A d{E\u,u) < Jroo} ,
o(—A)

and for u € Dom((—A)g{ic)

(fA)giicu = / N2d(Byu, ) . (44)
o(—A)

Proposition 7.7. Let (M,g) be a stochastically complete Riemannian manifold, o € (0,1) and s < o.
Then H°(M) C Dom((~A)2%).
Proof. Let uw € H° (M), and let
1 ° dt
A== = N —
o) o L -V

Since u € L?*(M), by standard spectral theory (see [18] for example)

/0 Xod(Byu,u) = / o) Pd{Eru, u) = [o(—A)ulZ0ar,

o dt ? s/2 s/2
= /0 (emu - U)W e = ||(—A)B/ U||i2(M) = H(_A)Si/ U||%2(M) < to0,
where we have used that by Proposition 7.5 (—A)% %y = (—A);{QU € L*(M). O
Proposition 7.8. Letu € Dom((—A)gl/DiC). Then

s 1 e dt /2
(—A) /2y = 7/ (emu —U)——— = / )\s/2d<E,\u,- =1 (—A)gocll s
5T ) Jy T N 1= R

5/2 )

where the equality is in duality with Dom((—A)g} .

Proof. We follow [6, Lemma 2.2] which deals with the analogous proposition in the case of discrete spectrum
in a domain €2 C R™. Recall the numerical formula

1 00 dt
)\8/2 _ 7/ —At 1) —
=2 /), © eyl

valid for A > 0,0 < s < 2. Let ¢ € Dom((—A)s/2 ), and write ¢ = fg(_A) dEx\{(1,-). Then

Spec
1 o0 dt
N 2d(Eyu, ¢) = 7/ / e M —1)——d(Fxu, ¥
/U(—A) < ) [(=5/2) Jo—a)Jo ( )tHS/Q < >

I xe_ . dt
- F(—S/Z)/o (/U(A)( Dd(E 7¢>> tl+s/2

:m/() ((e U,¢>—<U,¢>)W,
where the second-last inequality follows by Fubini’s theorem since u, € Dom((—A)gézec). O

Corollary 7.9. Let (M,g) be a stochastically complete Riemannian manifold, o € (0,1), s < o and
u € H°(M). Then

1 s * e
5[“]?#/2(% :/ “(—A)S{QUdM:/ NP2 d(Exu, ).
M 0
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Proof. The first equality is (27), and the second equality is a direct consequence of Proposition 7.5,
Proposition 7.7 and Proposition 7.8. |

7.4. Manifolds with nonnegative Ricci curvature. We recall a theorem of Yau which gives a lower
bound on the growth of the volume of geodesic balls under the nonnegative Ricci curvature assumption.
Note that the same holds with the same proof on CD(K, N) spaces.

Theorem 7.10. Let (M, g) be a complete non-compact Riemannian manifold with Ricys > 0. Then, there
exists a constant C' = C(n) > 0 such that for every x € M and A >0

Ve(rA) > CrVy(N), Vr>1.

Proof. By scaling invariance of the hypothesis Ricy; > 0 one can assume A = 1. Then, the result is [23,
Theorem 2.5]. O

Next, we present here a result concerning the growth of the singular kernel /s in the case of nonnegative
Ricci curvature. We will not use this result anywhere but we believe it can be interesting per se. For
example, it implies that on cylinders M = S"~* x R¥ (with their product metric) the singular kernel
Ks(x,y) decays like 1/d(x,y)*+* and not 1/d(x,y)"** for large distances.

Lemma 7.11. Let (M, g) be an n-dimensional Riemannian manifold with Ricps > 0 and s € (0,2). Then,
there exists dimensional constants 0 < ¢ < C such that

@=9) @y <0

. s(2—s)
rop(By(x))

r (B (@)
with r = d(x,y) for all z,y € M.

Proof. In the definition of the singular kernel K, we first perform the change of variables r?t = k with
r = d(z,y) so that we obtain

Ko(z )_L/O@H (x ﬁ/@i
R EE) ) A e

Now we employ the Gaussian estimates from above to get

Cs(2—s)[ [* 1 —1/56 Ak > 1 —1/56 dk
’ < R — =11 + I».
IC.s(xvy) > s |:/o‘ N(B € kl+s/2 ""_‘/1 N(B € fl+s/2 1+ 12

Vi (Z)) Vi (2))
Using Bishop-Gromov’s inequality we get
_ 1 —1/5k —
I < Cs(2—s) / 62 k< Cs(2 s)7
u(Br(z)) Jo kn/2tits/ 1(Br(x))

while for £ € (1, 00) we can use Theorem 7.10 to write

M 00671/516 dk' 08(2—8)
b= B @) / K2R = (B,(@))

and this concludes the upper estimate. For the one from below we again use the Gaussian estimates to infer

es(2—s)[ 1 1 _1/3, Ak > 1 —1/36_ dk .
Ks(z,y) > - [/o o et/ L l+s/2 Jr/1 1( eV Llts/2| I3+ Iy

B, /5 (2)) B, /5(2))
We now get
cs(2—s) [* —1/3k dk cs(2—s)
32> ————= e e = )
(B (2)) Jo felts w(By(z))
Since Iy > 0 we infer the lower bound as well. O

Remark 7.12. If we assume AVR(M) = lim,_, B (@) — 9 = 0 then we have the more Buclidean-like

bounds @ ) o Cs(2 )
cs(2—s s(2—s
< < — 7
s < Kslz,y) < — 2

Note moreover that the same proof works in the singular setting of RCD(0, N) spaces.
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