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Abstract. The aim of this note is to study the spectrum of a linearized Liouville-type problem,
characterizing the case in which the first eigenvalue is zero. Interestingly enough, we obtain
also point-wise information on the associated first eigenfunction. To this end, we refine the
Alexandrov-Bol inequality suitable for our problem and characterize its equality case.
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1. Introduction

We are concerned with subsolutions of the Liouville equation, that is

−∆w ≤ ew in Ω, (1)

where w ∈ C2(Ω)∩C0(Ω) and we assume that Ω ⊂ R2 is an open, bounded domain. We consider
the eigenvalue problem associated to (1), that is,{

−∆ϕ− ewϕ = ν̂ewϕ in Ω,

ϕ = 0 on ∂Ω.
(2)

A lot of work has been done to obtain sufficient conditions to guarantee that the first eigenvalue
ν̂1 of (2) satisfies ν̂1 > 0, which is in turn related to non-degeneracy and uniqueness properties
of the associated Liouville problem, see for example [1, 4, 5, 7, 14]. In particular, it turns out
that for

�
Ω e

w dx ≤ 4π one has ν̂1 ≥ 0. However, at least to our knowledge, we do not have a
characterization of the case ν̂1 = 0. Our aim here is to fill this gap.

Here and in the rest of the paper a multiply connected domain is a connected but not simply
connected domain and Bδ = {x ∈ R2 : |x| < δ}, which we will sometime identify with {z ∈ C :
|z| < δ}. Moreover, let us set

Uτ (x) = ln

(
τ

1 + τ2

8 |x|2

)2

, τ > 0, (3)

which satisfies

∆Uτ + eUτ = 0 in R2,

�

R2

eUτ = 8π.

Then, we have the following.

Theorem 1.1. Let Ω ⊂ R2 be an open, bounded domain whose boundary is the union of finitely
many rectifiable Jordan curves and w ∈ C2(Ω) ∩ C0(Ω) be a solution of (1). Let ν̂1 be the first
eigenvalue of (2) and assume that

�
Ω e

w dx ≤ 4π.

(j) If Ω is simply connected then ν̂1 ≥ 0 and ν̂1 = 0 happens if and only if:
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(a)0
�
Ω e

w dx = 4π;
(a)1 the equality sign holds in (1) for any x ∈ Ω;
(a)2 there exists a conformal map Φ : B1 → Ω such that,

ew(Φ(z))|Φ′
(z)|2|dz|2 = eU

√
8(z)|dz|2, z ∈ B1;

(a)3 the first eigenfunction ϕ, relative to ν̂1 = 0, takes the form ϕ(x) = φ(Φ−1(x)), where

φ(z) = 1−|z|2
1+|z|2 .

(j) Assume that w satisfies, for c ∈ R,
w = c on ∂Ω,

then ν̂1 = 0 happens if and only if in addition to (a)0, (a)1, (a)2, (a)3 it holds:

(a)4 there exists δ > 0 and θ ∈ R such that, up to a translation, Φ(z) = δeiθz and then
Ω = Bδ and

ϕ(x) = φ(δ−1x).

(jj) If Ω is a multiply connected domain of class C1 and w ∈ C1(Ω) satisfies, for c ∈ R
w ≥ c in Ω,

w = c on ∂Ω,

then ν̂1 > 0.

Remark 1.1. From a geometric viewpoint, in the case ν̂1 = 0, (Ω, ew|dx|2) must be conformally
equivalent to a hemisphere of the sphere of radius

√
2, say S√

2. Actually, when w = c on ∂Ω
we further show that the conformal map is proportional to the identity. This in turn gives new
point-wise information on the associated first eigenfunction. We refer to Remark 2.1 for further
geometric interpretations.

The proof of Theorem 1.1 is based on a refined version of the Alexandrov-Bol inequality suitable
to be applied to subsolutions of the Liouville equation (1), possibly on multiply connected
domains, and a careful analysis of its equality case. Indeed, such isoperimetric inequality plays
a major role in the symmetrization argument needed to estimate the first eigenvalue.

We conclude the introduction with the following remark about the singular counterpart of (1).

Remark 1.2. We briefly address here what happens in case we consider the more general Li-
ouville problem

−∆w ≤ h(x) ew a.e. in Ω,

where h is a positive weight, possibly singular. Suppose for the moment Ω is simply connected.
Following the arguments in [4], it would turn out that if log(h) is subharmonic in Ω then we
always have ν̂1 > 0 for

�
Ω h(x)e

w dx ≤ 4π. On the other hand, if log(h) is superharmonic then
we would have a modified sharp threshold

�
Ω h(x)e

w dx = 4π(1− α), for some α > 0 depending
on h, and it should be possible to classify the first eigenfunction, relative to ν̂1 = 0, in terms of

φa(z) = 1−|z|2(1−α)

1+|z|2(1−α) . The case of Ω multiply connected is more subtle, as discussed in [5], and

has not been studied in full generality. We therefore postpone this discussion to a future work.

The paper is organized as follows. In section 2 we discuss the Alexandrov-Bol inequality on
simply connected domains, characterizing the equality case. The case of multiply connected
domains is treated in section 3. Finally, section 4 is devoted to the proof of Theorem 1.1. Part
of the proof of the Alexandrov-Bol inequality on multiply connected domains is postponed to
the appendix.
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2. The Alexandrov-Bol inequality on simply connected domains

In this section we introduce the Alexandrov-Bol inequality on simply connected domains, which
was first derived in the analytical framework in [1] and later generalized in [14]. We further
refine the argument of [14], giving a full characterization of the equality case.

Proposition 2.1. Let Ω ⊂ R2 be a open, bounded and simply connected domain whose boundary
is a rectifiable Jordan curve and w ∈ C2(Ω) ∩ C0(Ω) be a solution of (1) which satisfies,�

Ω
ew ≤ 8π.

Let ω ⊆ Ω be any open subset whose boundary is the union of finitely many rectifiable Jordan
curves. Then it holds:(�

∂ω
(ew)

1
2 dσ

)2

≥ 1

2

(�
ω
ew dx

)(
8π −

�
ω
ew dx

)
. (4)

Moreover, the equality holds in (4) if and only if:

(i)1 the equality sign holds in (1) for any x ∈ ω;
(i)2 ω is simply connected;
(i)3 there exists τ > 0 and a conformal map Φ : B1 → ω such that,

ew(Φ(z))|Φ′
(z)|2|dz|2 = eUτ (z)|dz|2, z ∈ B1. (5)

In particular, if either the inequality in (1) is not an equality on ω or ω is not simply connected,
then the inequality in (4) is always strict.

Assume that w satisfies, for c ∈ R,
w = c on ∂ω,

then the equality holds in (4) if and only if, in addition to (i)1-(i)2-(i)3, it holds,

(i)4 there exists δ > 0 and θ ∈ R such that, up to a translation, Φ(z) = δeiθz and then
in particular ω = Bδ and w(x) = Uτδ−1(x) .

Remark 2.1. There is a well known geometric meaning behind the result, see [2] and references
therein. In particular, in the equality case, (i)3 speaks that the abstract surface (ω, ew|dx|2)
is conformally equivalent to (B1, e

Uτ (z)|dz|2). Actually eUτ (z)|dz|2 is the local expression, after
stereographic projection, of the standard metric of S√

2. Whence, in particular the equality holds
if and only if (ω, ew|dx|2) is conformally equivalent to a geodesic disk on S√

2. Interestingly
enough, our result shows that if w = c on ∂ω, then the equality holds if and only if (ω, ew|dx|2)
coincides with the local coordinates expression of a geodesic disk, that is, the conformal map is
proportional to the identity in this case.

Proof of Proposition 2.1.
We first prove the proposition in case ω ⊆ Ω is simply connected, whence ∂ω will be a rectifiable
Jordan curve. Let

f := −∆w − ew ≤ 0 in ω,

and h− be the unique solution of −∆h− = f in ω, h− = 0 on ∂ω. Next, let h0 be the harmonic
lifting of w on ∂ω, that is ∆h0 = 0 in ω, h0 = w on ∂ω. Since w ∈ C2(Ω) ∩ C0(Ω), then,
by standard elliptic theory ([10]), h− and h are unique, h− is a subharmonic function of class
C2(ω) ∩ C0(ω) and h0 ∈ C2(ω) ∩ C0(ω). To simplify the notations let us set,

h = h0 + h− in ω.

At this point we define u = w − h, which satisfies,

−∆u = eheu in ω, u = 0 on ∂ω. (6)
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Clearly u ∈ C2(ω) ∩ C0(ω), u ≥ 0 in ω and we define,

ω(t) = {x ∈ ω : u > t}, γ(t) = {x ∈ ω : u = t}, t ∈ [0, t+],

where t+ = max
ω

u, and

m(t) =

�

ω(t)

eheudx, µ(t) =

�

ω(t)

ehdx.

Since |∆u| is bounded and in particular is bounded below away from zero in ω, then it is not
difficult to see that actually m(t) and µ(t) are continuous in [0, t+]. Moreover, we notice that,
by well-known arguments, the set {x ∈ ω|∇u(x) = 0} ∩ u−1([0, t+]) is of measure zero and we
can use the co-area formula in ([6]) to deduce that m(t) and µ(t) are absolutely continuous in
[0, t+]. In particular the level sets have vanishing two dimensional area |γ(t)| = 0 for any t, and
we will use the fact that,

m(0) =

�

ω

eheudx =

�

ω

ewdx ≤ 8π, m(t+) = 0, µ(t+) = 0.

By the co-area formula and the Sard Lemma we have,

−m′
(t) =

�

γ(t)

eheu

|∇u|
dσ = et

�

γ(t)

eh

|∇u|
dσ = et(−µ′

(t)), (7)

for a.a. t ∈ [0, t+], and, in view of (6),

m(t) = −
�

ω(t)

∆u =

�

γ(t)

|∇u|, (8)

for a.a. t ∈ [0, t+]. By the Schwarz inequality we find that,

−m′
(t)m(t) =

�

γ(t)

eheu

|∇u|
dσ

�

γ(t)

|∇u|dσ = et
�

γ(t)

eh

|∇u|
dσ

�

γ(t)

|∇u|dσ ≥

et

�

γ(t)

eh/2dσ


2

≥ 4πetµ(t), for a.a. t ∈ [0, t+], (9)

where in the last inequality, since h is subharmonic, we used a generalization of a classical
isoperimetric inequality due to Huber ([11]), which was proved in the case of open and simply
connected domains. If ω(t) is multiply connected the inequality is strict. For simplicity, let

assume ω(t) = ω1(t)\ω2(t), with ω2(t) ⊂ ω1(t) ⊂ ω open and simply connected domains and
also ∂ω(t) = ∂ω1(t) ∪ ∂ω2(t). We notice that h is well-defined and subharmonic in both ω1(t)
and ω2(t). Then we can apply Huber’s inequality to both domains: �

∂ω(t)

eh/2dσ


2

>

 �

∂ω1(t)

eh/2dσ


2

+

 �

∂ω2(t)

eh/2dσ


2

≥

≥ 4π

 �

ω1(t)

eh dx+

�

ω2(t)

eh dx

 >

�

ω(t)

eh dx dx

The general case follows by induction on the number of ”holes”. Finally, considering the case in
which ω(t) is not connected, we can assume for simplicity ω(t) = ω1(t)∪ω2(t) with ω1(t), ω2(t) ⊆
ω open and connected subsets, ω1(t) ∩ ω2(t) = ∅ and ∂ω(t) = ∂ω1(t) ∪ ∂ω2(t), and make the
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same calculations as done before.
Therefore we conclude that,

1

8π
(m2(t))

′
+ etµ(t) ≤ 0, for a.a. t ∈ [0, t+]. (10)

In particular, because of (7), we conclude that,(
1

8π
m2(t)−m(t) + etµ(t)

)′

=
1

8π
(m2(t))

′
+ etµ(t) ≤ 0, for a.a. t ∈ [0, t+].

However, as mentioned above, the quantity in the parentheses in the l.h.s. of this inequality is
continuous and absolute continuous in [0, t+], and then we also conclude that,

1

8π
m2(0)−m(0) + µ(0) ≥ 1

8π
m2(t+)−m(t+) + et+µ(t+) = 0,

that is, by using once more the Huber ([11]) inequality, �

∂ω

(ew)
1
2 dσ

2

=

�

∂ω

eh/2dσ

2

≡

 �

γ(0)

eh/2dσ


2

≥ 4π

 �

ω(0)

ehdx

 = (11)

4πµ(0) ≥ 1

2
(8πm(0)−m2(0)) =

1

2

8π −
�

ω

ewdx

 �

ω

ewdx,

which is (4). Therefore, (4) holds for ω simply connected and we now characterize the equality
sign. We first recall that the equality holds in the Huber ([11]) inequality used in (11) if and

only if there exists α ∈ R such that eh(η) = e−α|Ψ′
(η)|2, η ∈ ω, where Ψ : ω → B1 is univalent

and conformal. Since ∂ω is simple, then in particular by the Carathéodory Theorem ([13]) Ψ is
continuous on ω and maps one to one ∂ω onto ∂B1. Let Φ = Ψ−1 : B1 → ω and set,

ξ(z) = u(Φ(z))− α,

then we see that ξ(z) satisfies,

−∆ξ = eξ in B1, ξ = −α on ∂B1,

and therefore it is radial ([9]) and it is well known ([14]) that it takes the form ξ(z) = ξ(|z|) =
Uτ (z) for some τ > 0 which solves Uτ (1) = −α. Also, we deduce that,

ew(Φ(z)) = eh(Φ(z)) eu(Φ(z)) = |Φ′
(z)|−2eUτ (z), z ∈ B1, (12)

which is (5). Since log(|Φ′
(z)|2) is harmonic we also have,

−∆zw(Φ(z)) = −∆zUτ (z) = eUτ (z) = |Φ′
(z)|2 ew(Φ(z)), z ∈ B1,

which implies,

−∆w = ew x ∈ ω.

In view of the definition of f and since w ∈ C2(Ω), we deduce that necessarily f ≡ 0 and in
particular, that necessarily the equality sign in (1) holds in ω.

Remark 2.2. Since Φ maps ∂B1 one to one and onto ∂ω, if w = c, c ∈ R on ∂ω, then
w(Φ(z)) = c on ∂B1. As a consequence we see from (12) that |Φ′

(z)|2 is constant on ∂B1 and

in particular we conclude that log(|Φ′
(z)|2) is harmonic in B1 and constant on ∂B1. Therefore,

we have, up to a translation, Φ(z) = δeiθz, for some δ > 0 and θ ∈ R, ω = Bδ and in particular
we infer from (12) that,

w(x) = Uτ (δ
−1x)− 2 log(δ) = Uτδ−1(x).

It follows that in this case we have ω = Bδ and w(x) = Uτδ−1(x) for some δ > 0 and τ > 0.
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Therefore, we have shown that if ω is simply connected and the equality sign holds in (4), then
necessarily the equality sign holds in (1) in ω and (5) holds as well. On the other side if these
conditions are satisfied we have,�

∂ω

(
ew
) 1

2 dσ =

�

∂Bδ

(
|Φ′

(z)|−2eUτ (z)
) 1

2 |Φ′
(z)| dσ(z) =

�

∂Bδ

eUτ (z)/2dσ(z) =
2πδτ

1 + τ2

8 |δ|2
,

and similarly, �
ω
ew =

�

Bδ

eUτ =

�

Bδ

(
τ

1 + τ2

8 |z|2

)2

=
πδ2τ2

1 + τ2

8 δ
2
,

and so we readily conclude that,(�
∂ω

(ew)
1
2 dσ

)2

=

 �

∂Bδ

eUτ (z)/2dσ(z)


2

=
1

2

�

Bδ

eUτ


8π −

�

Bδ

eUτ

 =

1

2

(�
ω
ew dx

)(
8π −

�
ω
ew dx

)
.

Therefore those conditions are necessary and sufficient as far as Ω is simply connected and ω
is simply connected. If Ω is simply connected and ω is an open multiply connected subdomain
whose boundary is the union of finitely many Jordan curves, as observed in [7], one can use the
assumption

�
Ω e

w ≤ 8π and work out an induction on the number of ”holes” of ω , which starts
by writing ω as the difference of two simply connected domains, see also the proof of Lemma
3.3 below for further details. In particular, it turns out that the inequality (4) is always strict in
this case. Finally, we consider the case of ω not connected. Also in this case the proof works out
by induction on the numbers of connected components and by the same calculations of Lemma
3.3 we have the strict inequality in (4).

□

Remark 2.3. We notice that we do not need the assumption
�
Ω ew ≤ 8π in the case ω is simply

connected.

3. The Alexandrov-Bol inequality on multiply connected domains

In this section we discuss the Alexandrov-Bol inequality on multiply connected domains, which
was first derived for solutions w of the Liouville equation such that w = c on ∂Ω, with c ∈ R. We
refine here the argument by treating subsolutions of the Liouville equation and characterizing
the equality case.

Proposition 3.1. Let Ω ⊂ R2 be a open, bounded and multiply connected domain of class C1

and w ∈ C2(Ω) ∩ C1(Ω) be a solution of (1) which satisfies, for c ∈ R,
w ≥ c in Ω, (13)

w = c on ∂Ω, (14)�
Ω
ew ≤ 8π.

Let ω ⋐ Ω be any relatively compact open subset whose boundary is the union of finitely many
rectifiable Jordan curves. Then it holds:(�

∂ω
(ew)

1
2 dσ

)2

≥ 1

2

(�
ω
ew dx

)(
8π −

�
ω
ew dx

)
. (15)

Moreover, the equality holds in (15) if and only if (i)1-(i)2-(i)3 (and (i)4 in case w = c ∈ R on
∂ω) of Proposition 2.1 hold true.
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In particular, if either the inequality in (1) is not an equality on ω or ω is not simply connected,
then the inequality in (15) is always strict.

Remark 3.1. In the case w satisfies (1), (14) and it is also superharmonic, we can actually
recover the hypothesis (13) by applying the weak minimum principle.

Proof of Proposition 3.1.
If ω ⋐ Ω is relatively compact and simply connected, then we can apply Proposition 2.1, includ-
ing the characterization of the equality sign.
We will show now that if ω ⋐ Ω is relatively compact and multiply connected, then (15) holds
with the strict inequality.
We will denote by Ω∗ the closure of the union of the bounded components of R2 \ ∂Ω and with
Ω∗ = Ω∗ \ ∂(Ω∗). Clearly Ω ⊆ Ω∗ and Ω ≡ Ω∗ if and only if Ω is simply connected. Also, there
is no loss of generality in assuming c = 0. Indeed, if c ̸= 0, we could define,

wc(x) = w(e−
c
2x)− c, x ∈ e

c
2Ω,

which satisfies (1),(13) in e
c
2Ω and (14) on ∂

(
e

c
2Ω
)
with c = 0, while the integrals involved in

the inequality (15) are invariant. Therefore we assume in the rest of this proof that,

c = 0,

and define,

ŵ(x) =

{
w(x) x ∈ Ω
0 x ∈ Ω∗ \ Ω.

Lemma 3.2. The function ŵ is a solution of

−∆ŵ ≤ eŵ in Ω∗, (16)

in the sense of distributions.

Proof. Indeed, for any φ ∈ C2
0 (Ω

∗), φ ≥ 0 in Ω∗, we have,

−
�

Ω∗

(∆φ)ŵ = −
�

Ω

(∆φ)w = −
�

Ω

φ(∆w) +

�

∂Ω

φ(∂νw),

where ν is the exterior unit normal. Since w ≥ 0 in Ω, w = 0 on ∂Ω and Ω is of class C1, ∂νw
is well defined on ∂Ω and ∂νw ≤ 0 on ∂Ω. Therefore, since φ ≥ 0, we conclude that,

−
�

Ω∗

(
(∆φ)ŵ + φeŵ

)
= −

�

Ω

φ(∆w)−
�

Ω∗

φeŵ +

�

∂Ω

φ(∂νw) ≤

−
�

Ω

φ(∆w + ew) ≤ 0,

as claimed. □

Since ŵ is only Lipschitz we cannot apply directly Proposition 2.1. However in this situation

(15) still holds whenever ω ⊆ ω0 ⋐ Ω∗, ω0 is simply connected and
�
ω0

eŵ ≤ 8π. Let us define,

ℓ̂(ω) =

�

∂ω

(
eŵ
) 1

2
dσ, m̂(ω) =

�
ω
eŵdx,

then we have,
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Lemma 3.3. Let ŵ be a Lipschitz continuous solution of (16) in the sense of distributions and

let ω0 ⋐ Ω∗ be a simply connected and relatively compact subdomain such that
�
ω0

eŵ ≤ 8π. Let

ω ⊆ ω0 be any open and bounded subset whose boundary is the union of finitely many rectifiable
Jordan curves. Then,

ℓ̂2(ω) ≥ 1

2
m̂(ω) (8π − m̂(ω)) , (17)

holds and if ω is not simply connected, then the inequality is strict.

Proof. By a standard approximation argument, see Lemma 2 in [5], the fact that (17) holds
follows from the inequality (4) for C2(ω0) ∩ C0(ω0) functions. If ω is connected but not simply
connected we can follow the argument in [7] and conclude that the inequality in (17) is strict.
Indeed, assume for simplicity that ω = ω1 \ ω2, ∂ω = ∂ω1 ∪ ∂ω2 where ω1 and ω2 are open and
simply connected. Then, since ω1 = ω ∪ ω2, by (17) we have,

2ℓ̂2(ω) > 2(ℓ̂2(∂ω1) + ℓ̂2(∂ω2)) ≥ m̂(ω ∪ ω2)(8π − m̂(ω ∪ ω2)) + m̂(ω2)(8π − m̂(ω2)) =

(m̂(ω) + m̂(ω2))(8π − m̂(ω)− m̂(ω2)) + m̂(ω2)(8π − m̂(ω2)) =

m̂(ω)(8π − m̂(ω)) + 2m̂(ω2)(8π − m̂(ω)− m̂(ω2)) ≥ m̂(ω)(8π − m̂(ω)),

where we used m̂(ω) + m̂(ω2) = m̂(ω1) ≤ 8π.
Finally, we consider the case in which ω is not connected. For simplicity, we can assume ω =
ω1 ∪ ω2 with ω1, ω2 ⊆ ω0 open and connected subsets, ω1 ∩ ω2 = ∅ and ∂ω = ∂ω1 ∪ ∂ω2. Then
by (17) we have,

2ℓ̂2(ω) > 2(ℓ̂2(∂ω1) + ℓ̂2(∂ω2)) ≥ m̂(ω1)(8π − m̂(ω1)) + m̂(ω2)(8π − m̂(ω2)) =

8πm̂(ω1) + 8πm̂(ω2)− (m̂(ω1)
2 + m̂(ω2)

2) =

8πm̂(ω)− (m̂(ω1) + m̂(ω2))
2 + 2m̂(ω1)m̂(ω2) ≥

8πm̂(ω)− m̂(ω)2 = m̂(ω)(8π − m̂(ω)).

□

Now, by using Lemma 3.2 and Lemma 3.3, the validity of (15) with the strict inequality can
be worked out following the arguments of [5] with minor modifications. Since this argument is
not well known, to be self-contained and for reader’s convenience we carry it out in full details
in the appendix. Finally, we consider the case of ω ⋐ Ω relatively compact and not connected.
Also in this case the proof works out by induction on the numbers of connected components and
by the same calculations of Lemma 3.3 we have the strict inequality in (15).

4. On the first eigenvalue

In this section we prove the main result about the first eigenvalue of the Liouville-type problem
(2).

Proof of Theorem 1.1.
To avoid repetitions we work out the proof of (j) and (jj) at once. Clearly the first eigenvalue and
eigenfunction (ν̂1, ϕ) of (2) correspond to the first eigenvalue and eigenfunction (ν1 = ν̂1 + 1, ϕ)
of, {

−∆ϕ = ν1e
wϕ in Ω,

ϕ = 0 on ∂Ω.
(18)

We recall that a nodal domain for ϕ ∈ C0(Ω ) is the maximal connected component of a subdo-
main where ϕ has a definite sign. Since ϕ has only one nodal domain we assume w.l.o.g. that
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ϕ ≥ 0 in Ω. In particular, by the maximum principle we have ϕ > 0 in Ω. Recalling (3) we set
U(x) := U1(x), i.e.

U(x) = ln

(
1

1 + 1
8 |x|2

)2

, (19)

which satisfies,

∆U + eU = 0 in R2.

Next, let t+ = maxΩ ϕ and for t > 0 let us define Ωt = {x ∈ Ω : ϕ > t} and R(t) > 0 such that

�
BR(t)

eU dx =

�
Ωt

ew dx.

Since ϕ > 0 in Ω we put Ω0 = Ω and set R0 = limt→0+ R(t). Clearly limt→(t+)− R(t) = 0. Then
ϕ∗ : BR0 → R, which for y ∈ BR0 , |y| = r, is defined by,

ϕ∗(r) = sup{t ∈ (0, t+) : R(t) > r},

is a radial, decreasing, equimeasurable rearrangement of ϕ with respect to the measures ew dx
and eUdx, and hence, in particular,

BR(t) = {x ∈ R2 : ϕ∗(x) > t},�
{ϕ∗>t}

eU dx =

�
Ωt

ew dx t ∈ [0, t+),

�
BR0

eU |ϕ∗|2 dx =

�
Ω
ew|ϕ |2 dx. (20)

Well known arguments (see for example [3]) show that ϕ∗ is continuous and locally Lipschitz.
Then, by the Sard lemma, we can apply the Cauchy-Schwartz inequality and the co-area formula
to conclude that,

�
{ϕ=t}

|∇ϕ| dσ ≥

(�
{ϕ=t}

(ew)
1
2 dσ

)2(�
{ϕ=t}

ew

|∇ϕ|
dσ

)−1

(21)

=

(�
{ϕ=t}

(ew)
1
2 dσ

)2(
− d

dt

�
Ωt

ew dx

)−1

,

for a.e. t. Next, under the assumptions either of part (j) or of part (jj), we are allowed to apply
the Alexandrov-Bol inequality (4),

(�
{ϕ=t}

(ew)
1
2 dσ

)2(
− d

dt

�
Ωt

ew dx

)−1

≥ 1

2

(�
Ωt

ew dx

)(
8π −

�
Ωt

ew dx

)(
− d

dt

�
Ωt

ew dx

)−1

,
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for a.e. t. Since ϕ∗ is an equimeasurable rearrangement of ϕ with respect to the measures ew dx,
eU dx, and since eU realizes the equality in (4), we also conclude that,

1

2

(�
Ωt

ew dx

)(
8π −

�
Ωt

ew dx

)(
− d

dt

�
Ωt

ew dx

)−1

=
1

2

(�
{ϕ∗>t}

eU dx

)(
8π −

�
{ϕ∗>t}

eU dx

)(
− d

dt

�
{ϕ∗>t}

eU dx

)−1

=

(�
{ϕ∗=t}

(
eU
) 1

2 dσ

)2(
− d

dt

�
{ϕ∗>t}

eU dx

)−1

=

�
{ϕ∗=t}

|∇ϕ∗| dσ,

where in the last equality we used once more the co-area formula. Therefore, we have proved
that, �

{ϕ∗=t}
|∇ϕ∗| dσ ≤

�
{ϕ=t}

|∇ϕ| dσ,

for a.e. t, which in turn yields, �
BR0

|∇ϕ∗|2 dx ≤
�
Ω
|∇ϕ|2 dx. (22)

In deriving (22) we have used the co-area formula together with the fact that
�
BR(t)

|∇ϕ∗|2 dx and�
Ωt

|∇ϕ|2 dx are Lipschitz continuous. By using (20), (22) and the variational characterization
of ϕ we deduce that,�

BR0

|∇ϕ∗|2 dx−
�
BR0

eU |ϕ∗|2 dx ≤
�
Ω
|∇ϕ|2 dx−

�
Ω
ew|ϕ|2 dx = (ν1 − 1)

�
Ω
ew|ϕ|2 dx, (23)

Moreover, ϕ∗(R0) = 0. Now we argue by contradiction and suppose that ν̂1 < 0, so we have
that ϕ satisfies (18) with ν1 < 1 and we have that,

(ν1 − 1)

�
Ω
ew|ϕ|2 dx < 0

Therefore, we conclude that the first eigenvalue of (−∆−eU )(·) on BR0 with Dirichlet boundary

conditions is non-positive. Consider now ψ(x) = 8−|x|2
8+|x|2 which satisfies,

−∆ψ − eUψ = 0 in R2, ψ ∈ C2
0 (B

√
8(0)).

Since the first eigenvalue is non-positive one can deduce that R0 >
√
8. Moreover,

8π
R2

0

8 +R2
0

=

�
BR0

eU dx =

�
Ω
ew dx ≤ 4π, (24)

by assumption and hence R0 ≤
√
8, which yields a contradiction. So, ν1 ≥ 1, that is ν̂1 ≥ 0.

Now suppose ν̂1 = 0, that is ν1 = 1. From (23), we deduce that�
BR0

|∇ϕ∗|2 dx−
�
BR0

eU |ϕ∗|2 dx ≤ 0.

Therefore, we conclude that the first eigenvalue of (−∆−eU )(·) on BR0 with Dirichlet boundary

conditions is non-positive and, arguing as before, we conclude that R0 ≥
√
8. On the other

hand, as pointed out in (24), R0 ≤
√
8. Hence we deduce that R0 =

√
8 and, in particular,�

Ω
ew dx =

�
B√

8

eU dx = 4π
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Moreover, since R0 =
√
8, then the first eigenvalue of (−∆ − eU )(·) on BR0 with Dirichlet

boundary conditions is 0 and ψ is its eigenfunction. In particular, from (23), we derive that
�
B√

8

|∇ϕ∗|2 dx =

�
B√

8

eU |ϕ∗|2 dx =

�
Ω
ew|ϕ|2 dx =

�
Ω
|∇ϕ|2 dx

and that all the inequalities used to obtain (23) must be equalities. In particular, for a.e.
t ∈ [0, t+) we have:(�

{ϕ=t}
(ew)

1
2 dσ

)2

=
1

2

(�
Ωt

ew dx

)(
8π −

�
Ωt

ew dx

)
, (25)

Then we can choose a sequence tn → 0+, as n→ +∞, such that the equality (25) holds for any
n. In both situations (j) and (jj), we can apply Proposition 2.1 or Proposition 3.1 and use the
characterization of the equality sign in the Alexandrov-Bol inequality. In particular, we derive
that Ωtn are simply connected. This, together with the fact that Ωtn∆Ω → ∅, as n → +∞,
implies that Ω is simply connected and proves (jj). Now, taking the lim inf in (25) and using for
example Theorem 2.3 in [8], we deduce that(�

∂Ω
(ew)

1
2 dσ

)2

≤ 1

2

(�
Ω
ew dx

)(
8π −

�
Ω
ew dx

)
,

and the latter inequality turns out to be an equality by (4) in Proposition 2.1 with ω = Ω. Then,
applying again the equality case of Proposition 2.1, we see from (i)1 and (i)3 that the equality
holds in (1) in Ω and that,

ew(Φ(z))|Φ′
(z)|2|dz|2 = eUτ (z)|dz|2, z ∈ B1,

where Φ : B1 → Ω is conformal and univalent. Therefore we have
�
Ω

ew =
�
B1

eUτ and in particular,

4π =

�

Ω

ew =

�

BR0

eU =

�

B1

eUτ =

�

Bτ

eU1 ,

which immediately implies that τ =
√
8. Therefore, we have that φ(z) = ϕ(Φ(z)) satisfies{

−∆φ = ν1|Φ
′
(z)|2 ew(Φ(z))φ = eU

√
8(z)φ in B1,

φ = 0 on ∂B1,
(26)

The function φ(z) = 1−|z|2
1+|z|2 = ψ(

√
8z) is a positive solution of (26) and therefore it is the

first eigenfunction for (−∆− eU
√
8(z))B1 with Dirichlet boundary conditions. We conclude that

ϕ(x) = φ(Φ−1(x)) which is (a)3.
If now we assume that (a)0 − (a)3 are true, it can be easily proved that ν1 = 1, that means
ν̂1 = 0.
We conclude the (j) part, assuming that w = c on ∂Ω. Then we can apply what specified in
the Remark 2.2 which implies that, up to a translation, Φ(z) = δeiθz for some δ > 0 and θ ∈ R,
and we have Ω = Bδ and ϕ(x) = φ(δ−1x), that is (a)4. Moreover, this condition, together with
(a)0 − (a)3, is sufficient to have ν̂1 = 0.

□
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5. Appendix

In this section we complete the proof of the Alexandrov-Bol inequality on multiply connected
domains, i.e. Proposition 3.1, following the strategy in [5].

We recall that ω is assumed to be relatively compact and multiply connected and we aim to show
(15) holds with the strict inequality. We start with the case where each bounded component of
R2\ω contains at least one bounded component of R2\∂Ω.

Let Ω0 be the union of the bounded components of R2\∂Ω bounded by ∂ω. Moreover, let ω0 be
the union of all bounded simply connected components of R2\∂ω. Thus Ω0 ⊂ ω0 and we let

ω∗ = ω0\Ω0.

We have ω∗ ⊂ Ω. Moreover, ω∗ ∪Ω0 is a union of simply connected domains and ω ∪ ω∗ ∪ Ω0 is
a simply connected domain. Denote by ∂0ω the boundary of ω∗∪Ω0 and ∂1ω = ∂ω \∂ω∗. Then
∂1ω = ∂(ω ∪ ω∗ ∪ Ω0) and it holds

∂ω = ∂1ω ∪ ∂0ω.
To simplify the notations we define

ℓ(ω) =

�

∂ω

(
ew
) 1

2 dσ, m(ω) =

�
ω
ewdx,

whenever ω ⋐ Ω.

Case 1. m̂(ω∗ ∪ Ω0) ≥ 8π.
Since w ≥ 0 in Ω, by the isoperimetric inequality we have,

2ℓ(∂0ω)
2 = 2

 �

∂0ω

(
ew
) 1

2 dσ

2

≥ 2

 �

∂0ω

dσ

2

≥ 8π

�

ω∗∪Ω0

dx > 8πm̂(Ω0). (27)

Since m̂(ω∗ ∪ Ω0) ≥ 8π, we have

m̂(Ω0) ≥ 8π − m̂(ω∗) ≡ 8π −m(ω∗),

and then by using (27),

2ℓ2(∂0ω) > 8π(8π −m(ω∗)). (28)

Similarly, since m̂(ω ∪ ω∗ ∪ Ω0) > m̂(ω∗ ∪ Ω0) ≥ 8π, we deduce

2ℓ2(∂1ω) > 8π(8π −m(ω ∪ ω∗)). (29)

Recalling (28), (29) and the fact that since ω∗ ⊂ Ω, then m(ω∗) ≤ 8π, we have

2ℓ2(∂ω) = 2(l(∂1ω) + l(∂0ω))
2 > 2[l2(∂1ω) + l2(∂0ω)]

> m(ω∗)(8π −m(ω∗)) +m(ω ∪ ω∗)(8π −m(ω ∪ ω∗))

= m(ω∗)(8π −m(ω∗)) + (m(ω) +m(ω∗))(8π −m(ω)−m(ω∗))

= m(ω)(8π −m(ω)) +m(ω∗)(16π − 2m(ω)− 2m(ω∗)).

Finally, since

m(ω) +m(ω∗) ≤ m(Ω) ≤ 8π,

then we conclude that,

2ℓ2(∂ω) > m(ω)(8π −m(ω)),

which proves that (15) holds with the strict inequality.

Case 2. m̂(ω∗ ∪ Ω0) < 8π and m̂(ω ∪ ω∗ ∪ Ω0) ≥ 8π.
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Since m̂(ω∗ ∪ Ω0) < 8π and ω∗ ∪ Ω0 ⋐ Ω∗ is union of simply connected domains, (17) yields,

2ℓ2(∂0ω) ≥ m̂(ω∗ ∪ Ω0)(8π − m̂(ω∗ ∪ Ω0)) (30)

= (m(ω∗) + m̂(Ω0))(8π −m(ω∗)− m̂(Ω0)).

Observing that (27) holds, we infer that

ℓ(∂0ω) ≥
√

4πm̂(Ω0), ℓ(∂1ω) ≥
√
4πm̂(Ω0). (31)

Observe that (29) still holds in this case and therefore, by (30), (31) we have

2ℓ2(∂ω) = 2[ℓ2(∂1ω) + 2ℓ(∂1ω)ℓ(∂0ω) + ℓ2(∂0ω)]

≥ 8π(8π −m(ω)−m(ω∗))

+(m(ω∗) + m̂(Ω0))(8π −m(ω∗)− m̂(Ω0)) + 16πm̂(Ω0)

= 8π(8π −m(ω))−m2(ω∗) + m̂(Ω0)(24π − 2m(ω∗)− m̂(Ω0))

= m(ω)(8π −m(ω)) + [(8π −m(ω))2 −m2(ω∗)]

+m̂(Ω0)(24π − 2m(ω∗)− m̂(Ω0)).

Now, since m(ω) +m(ω∗) ≤ m(Ω) ≤ 8π,

m(ω∗) ≤ 8π −m(ω).

On the other hand, m̂(ω∗ ∪ Ω0) < 8π, hence

2m(ω∗) + 2m̂(Ω0) < 16π.

We have proved that 2ℓ2(∂ω) > m(ω)(8π −m(ω)), that is (15) holds with the strict inequality.

Case 3. m̂(ω ∪ ω∗ ∪ Ω0) < 8π.
Since ω ⋐ Ω by assumption, then ω∪ω∗ ∪ Ω0 ⋐ Ω∗. Moreover, ω∪ω∗ ∪ Ω0 is simply connected.
Therefore, Lemma 3.3 yields,

2ℓ(∂ω)2 ≥ m(ω)(8π −m(ω)),

that is, (15) holds and in particular, since ω is not simply connected by assumption, it holds
with the strict inequality sign.

To finish the proof, we are left with the case ∂ω bounds some simply connected subdomains
ω1, . . . , ωk of Ω. Clearly, ω ∪ ω1 ∪ . . . ωk is simply connected in Ω. Therefore, using in this case
the standard inequality (4) we infer

2ℓ2(∂(ω ∪ ω1 ∪ . . . ∪ ωk)) ≥ m(ω ∪ ω1 ∪ . . . ∪ ωk)[8π −m(ω ∪ ω1 ∪ . . . ∪ ωk)],

2ℓ2(∂ωj) ≥ m(ωj)(8π −m(ωj)), j ∈ {1, · · · , k}.

For k = 1 we readily have

2ℓ(∂ω)2 > 2ℓ(∂(ω ∪ ω1))
2 + 2ℓ(∂ω1)

2

≥ m(ω ∪ ω1)(8π −m(ω ∪ ω1)) +m(ω1)(8π −m(ω1))

= m(ω)(8π −m(ω)) +m(ω1)(16π − 2m(ω1)− 2m(ω))

≥ m(ω)(8π −m(ω)),

and we deduce that (15) holds with the strict inequality in this case as well. The case k > 1 is
similar.

□
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