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from their jump set.
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1. Introduction

In the proof of approximation or homogenisation results of free-discontinuity functionals one is

concerned with the construction of a sequence of functions, the so-called recovery sequence, along

which a certain functional upper-bound inequality shall be satisfied, the so-called Γ-limsup inequality

(see, e.g., [8]). The construction of a recovery sequence is often nontrivial and in most cases it is only

feasible after assuming some additional regularity of the target function. In a particular instance,

if the considered object belongs to the space of special functions of bounded variation, SBV, it is of

crucial importance to replace it with a function whose jump set is as simple as possible, typically

polyhedral, as well as to attain sufficient smoothness of the function away from its jump set. In this

respect the mathematical literature provides us with a number of approximation results for SBV

functions which are, moreover, tailor-made to deal with the aforementioned upper-bound inequalities;

see, e.g., [4, 9], as well as [6, 7, 11] for approximants with polyhedral jump set.

However, should the target SBV functions satisfy some geometric constraint arising in the prob-

lem under examination, the available approximation results may fail to preserve this additional

constraint. In the context of variational methods for fracture and image segmentation, in this paper

we establish a density result for SBV functions with prescribed jump direction, describing, e.g.,

deformations of materials with cracks appearing only along certain directions.

If Ω ⊂ Rn is open, bounded, with Lipschitz boundary and u ∈ SBV1(Ω;Rm), the prototypical

free-discontinuity functionals we consider are of the form

F(u) =

�
Ω

|∇u|dL n +

�
Su

γ(x, u+, u−, νu) dH n−1, (1.1)

where the surface integrand γ : Ω× Rm × Rm × Sn−1 → [0,+∞] encodes the relevant properties of

the (effective) model. We recall that an element of the space SBV1(Ω;Rm) is a BV(Ω;Rm) function
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whose Jacobi matrix is a measure satisfying

Du = ∇udL n Ω + (u+−u−)⊗ νu dH n−1 Su, (1.2)

where ∇u is the density of the absolutely continuous part and H n−1(Su) < +∞. In (1.2) the

vectorial functions u+ and u− represent the traces of u on both sides of the discontinuity set Su and

νu is the measure theoretical normal to Su [2].

If (1.1) allows only for a finite number of given jump directions, and ν1, . . . , νM ∈ Sn−1 is the list

of corresponding normals, we shall consider a surface energy density γ such that γ(·, ·, ·, ν) ≡ +∞
if ν /∈ N := {±ν1, . . . ,±νM}. Therefore in this case the domain of F is strictly smaller than

SBV(Ω;Rm) and the additional constraint of

νu(x) ∈ N for H n−1-a.e. x ∈ Su (1.3)

is to be satisfied. We denote by SBV1
N (Ω;Rm) the space of those SBV(Ω;Rm) functions satisfying

(1.3) as well as H n−1(Su) < +∞ and in this paper we are concerned with a strong approximation

scheme for functions therein. Namely, in the main result of this paper, Theorem 3.1, we prove

that any function u ∈ SBV1
N (Ω;Rm) ∩ L∞(Ω;Rm) can be approximated by a sequence (uk) ⊂

SBV1
N (Ω;Rm) ∩ L∞(Ω;Rm) with ∥uk∥L∞(Ω;Rm) ≤ ∥u∥L∞(Ω;Rm) satisfying the following properties:

• Suk
is essentially closed, i.e., H n−1(Suk

\Suk
) = 0;

• Suk
is the union of a finite number of (n−1)-dimensional pairwise disjoint closed cubes;

• uk ∈ C∞(Ω\Suk
;Rm) ∩W 1,∞(Ω\Suk

;Rm);

The density result is regarded in the following convergence:

uk → u in L1(Ω;Rm), ∇uk → ∇u in L1(Ω;Rm×n), H n−1(Suk
) → H n−1(Su). (1.4)

Moreover,

lim sup
k→+∞

�
Suk

∩A

γ
(
x, u+k , u

−
k , νuk

)
dH n−1 ≤

�
Su∩A

γ
(
x, u+, u−, νu

)
dH n−1,

for any open set A ⊂⊂ Ω and for any bounded upper semicontinuous function γ : Ω×Rm×Rm×N →
[0,+∞) such that γ(·, a, b, ν) = γ(·, b, a,−ν) for every a, b ∈ Rm and ν ∈ Sn−1.

The proof strategy of Theorem 3.1 mainly relies on the approximation techniques employed by

De Philippis, Fusco, and Pratelli in [9] and Cortesani and Toader in [7]. Yet in comparison with

those, the main disparity in methodology arises from the geometric constraint of prescribed orien-

tation of the discontinuity set, which is not preserved by the constructions implemented in [9]. For

instance, in the aforementioned literature a typical procedure is to remove singularities by setting

the approximants to zero in certain regions and introducing a small jump on the boundary of such

regions; however, this may violate the constraints on the jump direction, for example if the number

of admissible directions is strictly less than n. In the present paper the approximation result is

achieved by means of a fine cover lemma (cf. [7, Lemma 4.2]) which provides us with a finite number

of pairwise disjoint (n−1)-dimensional cubes covering the major part of the discontinuity set Su.

Then, the desired sequence (uk) is obtained by successive regularisation steps mainly relying on

convolution results with variable kernels (see, e.g., [9, Proposition 2.3]) and on extension results in

domains with cracks (see, e.g., [9, Lemma 4.1]).

We remark that rectifiable sets with the constraint that their measure-theoretic normal lies in

N may be irregular even in the simple case where N contains a single vector. An example can be



STRONG APPROXIMATION OF SBV FUNCTIONS WITH PRESCRIBED JUMP DIRECTION 3

constructed as follows. Let C ⊂ (0, 1) be a Smith-Volterra-Cantor set (that is, a Cantor set with

strictly positive one-dimensional measure). Let f(x) := dist(x,C) and F (x) :=
� x

0
f(t) dt. Then

the graph of F , G(F ), is a C1 curve and S := {(x, y) ∈ G(F ) : x ∈ C} is a H 1-rectifiable set in

R2 with normal e2 at every point. However, S is a totally disconnected set with uncountably many

connected components each lying on a different horizontal hyperplane.

We observe that our result also covers the case of infinitely many jump directions, including the

unconstrained case N = Sn−1.

Such case is treated by Cortesani and Toader in [7] for SBVp functions with p > 1, being the

assumption p > 1 crucial to exploit some classical regularity results for the local minimisers of the

Mumford-Shah functional [10]. In the last section of this note we prove the density in SBV1 of

local minimisers of the Mumford-Shah functional by resorting to a strong approximation of SBV1

functions by means of SBVp functions with p > 1, (cf. Proposition 4.1).

We conclude this introduction by mentioning that in [5] Conti, Diermeier, and Zwicknagl prove

a density result for SBV2 functions with given jump normal direction (see Section 4.2 therein). In

contrast to our results, we observe that Conti, Diermeier, and Zwicknagl’s proof provides the L2

convergence of the approximant’s gradients. On the other hand, it is valid exclusively in dimension

two, for one prescribed jump direction. However, the proof of a density result in SBV2 (and more in

general in SBVp with p > 1) appears to be way more delicate than the approximation result proven

in the present note. In fact, in the SBVp setting an additional issue one needs to face pertains to

combining the constraint in (1.3) with the strong convergence ∇uk → ∇u in Lp(Ω;Rm). Moreover

a density result in SBVp shall rely also on deeper results in the theory of SBV functions like, e.g.,

the regularity properties of local minimisers on the Mumford-Shah functionals [10], similarly as in

[6, 7, 11]. A density result in SBVp for functions with prescribed jump direction can be relevant in

a number of applications and will be the subject of a forthcoming paper.

2. Notation, functional setup, and preliminaries

We introduce the notation and conventions present in the paper. Let n ≥ 2,m ≥ 1 be integers;

the symbols L n and H n−1 indicate the usual n-dimensional Lebesgue measure and the (n−1)-

dimensional Hausdorff measure in Rn, respectively. By Br(x) ⊂ Rn we mean the open ball centred

at x with radius r > 0; moreover, Br := Br(0). By Qr(x) ⊂ Rn we mean the n-dimensional open

cube of side length r > 0, centred at x ∈ Rn, and with faces parallel to the coordinate hyperplanes.

Given a unit vector ν ∈ Sn−1 we set Πν
x to be the hyperplane orthogonal to ν and passing through

a point x ∈ Rn. Likewise Qν
r (x) ⊂ Rn is understood as an open cube of side-length r > 0, centred

at x ∈ Rn, and with a face orthogonal to ν.

Throughout, the real number c > 0 shall be thought of as absorbing constant with dependences

emphasised when being relevant.

Let Ω ⊂ Rn be an open and bounded set with Lipschitz boundary. We use the standard notation

SBV(Ω;Rm) for the space of Rm-valued special functions of bounded variation in Ω. We recall that

a function u : Ω → Rm belongs to SBV(Ω;Rm) if u is in BV(Ω;Rm) and its distributional derivative

satisfies

Du(B) =

�
B

∇udL n +

�
Su∩B

[u]⊗ νu dH n−1,
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for any Borel set B ⊂ Ω. By ∇u we mean the density of the diffuse part of Du; the latter turns out to

coincide with the approximate gradient of u. The symbol Su denotes the approximate discontinuity

set of u and is a H n−1-rectifiable set. The associated measure theoretic normal is νu (defined up to

the sign) whereas [u] := u+ − u− is the difference of the traces of u on both sides of Su. We notice

that (u+, u−) is to be replaced by (u−, u+) if the orientation of νu is reversed. Let us also recall

that the BV-norm of a function u ∈ BV(Ω;Rm) is given by

∥u∥BV(Ω;Rm) := ∥u∥L1(Ω;Rm) + |Du|(Ω)

where |Du| denotes the total variation of Du, i.e.,

|Du|(B) =

�
B

|∇u|dL n +

�
Su∩B

|[u]|dH n−1,

where B is any Borel subset of Rn.

For the general theory of BV and SBV functions we refer the readers to the comprehensive

monograph [2].

In this paper the following subspace of SBV is also taken into consideration:

SBV1(Ω;Rm) := {u ∈ SBV(Ω;Rm) : H n−1(Su) < +∞}.

Let now N be a Borel subset of Sn−1 and let us assume that

ν ∈ N ⇐⇒ −ν ∈ N . (2.1)

We introduce the following space of SBV1 functions with N -oriented discontinuity set

SBV1
N (Ω;Rm) := {u ∈ SBV1(Ω;Rm) : νu ∈ N H n−1-a.e. in Su}.

We notice that in view of (2.1) the definition of SBVN (Ω;Rm) is unambiguous.

A set F ⊂ Ω is called polyhedral (with respect to Ω) if it is the intersection of Ω with a finite

number of (n−1)-dimensional simplices in Rn. In the interest of our work we define a special case

of polyhedral sets whose normal belongs N .

Definition 2.1 (N -aligned regular set). We say that a set F ⊂ Ω is an N -aligned regular set if

there exists a finite collection of sets F1, . . . , FN such that each Fi is a (n−1)-dimensional closed

cube in Rn orthogonal to ν for some ν ∈ N and

F = Ω ∩
N⋃
i=1

Fi.

If the sets F1, . . . , FN are additionally pairwise disjoint, the set F is called an N -aligned regular

disconnected set.

We now introduce the space of approximating functions.

Definition 2.2 (The approximating space). We say that u belongs to the space WN (Ω;Rm) if:

(a) u ∈ SBV1(Ω;Rm);

(b) Su is essentially closed, i.e., H n−1(Su\Su) = 0;

(c) Su is a N -aligned regular disconnected set;

(d) u ∈ C∞(Ω\Su;Rm) ∩W1,∞(Ω\Su;Rm).
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In accordance with [7] we consider the following notion of convergence.

Definition 2.3 (S -convergence). We say that a sequence (uk) ⊂ SBV1(Ω;Rm) S -converges to

u ∈ SBV1(Ω;Rm) as k → +∞, written uk
S−→ u, if:

(a) uk → u in L1(Ω;Rm);

(b) ∇uk → ∇u in L1(Ω;Rm×n);

(c) H n−1(Suk
) → H n−1(Su).

For later purposes we also introduce the following stronger convergence.

Definition 2.4 (S -convergence). We say that a sequence (uk) ⊂ SBV1(Ω;Rm) S -converges to

u ∈ SBV1(Ω;Rm) as k → +∞, written uk
S−→ u, if:

(a) uk → u in L1(Ω;Rm);

(b) ∇uk → ∇u in L1(Ω;Rm×n);

(c) H n−1(Suk
△Su) → 0;

(d) there holds �
Suk

∪Su

(
|u+k − u+|+ |u−k − u−|

)
dH n−1 −→ 0, (2.2)

where in (2.2) we choose the orientation νuk
= νu Hn−1-a.e. on Suk

∩ Su.

We remark that S -convergence is evidently stronger than the convergence induced from the

BV(Ω;Rm)-norm.

Below we recall three technical lemmas which are used to prove our main result, Theorem 3.1.

These are based on the corresponding results in [9]. The first concerns a smooth approximation of

functions in SBV1(Ω;Rm) obtained by convolutions with variable kernels.

Lemma 2.5 (Approximation by convolution). Let u ∈ SBV1(Ω) and let F ⊂⊂ Ω be a compact and

H n−1-rectifiable set. For any ε > 0, there exists vε ∈ SBV1(Ω) ∩C∞(Ω\F ) such that the following

properties hold true:

(1) ∥vε − u∥L1(Ω) < ε;

(2) v±ε = u± in F , therefore Svε = Su ∩ F ;

(3) |Du−Dvε|(Ω) ≤ 3|Du (Su\F )|(Ω) + (2|Du|(Ω) + 1) ε;

(4) if u ∈ L∞(Ω), then ∥vε∥L∞(Ω) ≤ ∥u∥L∞(Ω).

Proof. The results can be retrieved by combining [9, Proposition 2.3, Corollary 2.4, Lemma 2.5]. □

Remark 2.6. We will often apply Lemma 2.5 in the following way. Let u ∈ SBV1(Ω) and εk → 0.

For every k, let Fk ⊂⊂ Ω be a compact and H n−1-rectifiable set such that

Fk ⊂ Su and H n−1(Su\Fk) < εk.

Applying Lemma 2.5 to u and to F = Fk, one finds uk ∈ SBV1(Ω)∩C∞(Ω\Fk) such that ∥uk∥L∞ ≤
∥u∥L∞ , Suk

= Fk,

∥u− uk∥L1(Ω) + |Du−Duk|(Ω) ≤ εk + 3|Du (Su\Fk)|(Ω) + εk (2|Du|(Ω) + 1)
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and �
Su

(
|u+k − u+|+ |u−k −u

−|
)
dH n−1 ≤ 4∥u∥L∞H n−1(Su\Fk).

Therefore, uk S -converges to u as k → +∞.

Moreover, we recall the following existence result of bounded Lipschitz extensions for C1-regular

interior and boundary traces.

Lemma 2.7 (Extension). Let U ⊂ Rn be an open and bounded set with C1 boundary. Let M ⊂⊂
U be either a compact and connected (n−1)-dimensional C1 manifold with (possibly empty) C1

boundary, or an (n−1)-dimensional closed cube. Then there exists a constant cU,M > 0 with the

following properties:

(a) Given three functions ϕ ∈ L1(∂U), ϕ+, ϕ− ∈ L1(M), there exists ψ ∈ W1,1(U\M) such that

ψ± = ϕ± in M , ψ = ϕ on ∂U (in the sense of traces) and

∥ψ∥W1,1(U\M) ≤ cU,M

(
∥ϕ∥L1(∂U) + ∥ϕ+∥L1(M) + ∥ϕ−∥L1(M)

)
.

(b) Given three functions ϕ ∈ C1(∂U), ϕ+, ϕ− ∈ C1(M) satisfying ϕ+ = ϕ− on ∂M , there exists

ψ ∈ W1,∞(U\M) such that ψ± = ϕ± in M , ψ = ϕ on ∂U and

∥ψ∥W1,∞(U\M) ≤ cU,M

(
∥ϕ∥C1(∂U) + ∥ϕ+∥C1(M) + ∥ϕ−∥C1(M)

)
.

Proof. In the case where M has C1 boundary, the result is stated in [9, Lemma 4.1]. When M is

an (n−1)-dimensional closed cube, the proof requires some minor adjustments, detailed below. Let

δ > 0 be such that

P := {x+ tν : x ∈M, t ∈ [−δ, δ]} ⊂⊂ U

where ν ∈ Sn−1 is the normal to M . Then ∂P \ ∂M =: D+ ∪ D− where D± are in bilipschitz

correspondence with M , D+ ∩ D− = ∅ and ∂∂PD
± = ∂M , where ∂∂PD

± denote the boundary

of D± in the relative topology of ∂P . Subsequently we may find a mapping Φ : U\M → U\P ,
bilipschitz with respect to the geodesic distance in U\M and extending to the boundary, such that

Φ is the identity in a neighbourhood of ∂U and Φ−1(D±) =M . Next, set φ := ϕ ◦ Φ−1 on ∂U and

let φ0 ∈ L1(∂P ) be defined on as φ0 := ϕ± ◦Φ−1 on D±. Then to establish (a) it is enough to apply

the standard extension result to the functions φ, φ0 in the Lipschitz domain U \ P , arguing as in

the proof of [9, Lemma 4.1] to which we refer the reader for more details.

To prove (b) we may argue as follows. We notice that φ and φ0 defined above are Lipschitz, since

ϕ+ = ϕ− on ∂M = ∂∂PD
±. Therefore the Kirszbraun Theorem ensures the existence of a Lipschitz

function φ ∈ W1,∞(U\P ) extending φ and φ0. Hence the claim follows setting ψ := φ ◦ Φ. □

To conclude this section we prove a vectorial truncation lemma to promote an L∞-bound of any

S -converging sequence to a bounded SBV1-function.

Lemma 2.8 (Vectorial truncation). Let u ∈ SBV1(Ω;Rm)∩L∞(Ω;Rm) and (uk)k∈N ⊂ SBV1(Ω;Rm)

be such that uk
S−→ u (resp., uk

S−→ u) as k → +∞. Then there exists a sequence (vk)k∈N ⊂
SBV1(Ω;Rm) ∩ L∞(Ω;Rm) such that vk

S−→ u (resp., vk
S−→ u) as k → +∞, Svk = Suk

, and

∥vk∥L∞(Ω;Rm) ≤ ∥u∥L∞(Ω;Rm). Moreover, if uk ∈ C∞(Ω\Suk
;Rm) ∩ W1,∞(Ω\Suk

;Rm) then the

same holds for vk.
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Finally, if ∥uk∥L∞(Ω;Rm) ≤ ∥u∥L∞(Ω;Rm)+ δk for some δk > 0 such that δk → 0 as k → +∞, then

also ∥uk − vk∥L∞(Ω;Rm) ≤ δk.

Proof. The proof relies on classical arguments and in the scalar case it follows as in [9, Lemma 3.2].

Let η > 0 be arbitrary and fixed; let 0 < ε ≤ η be fixed depending on u and η as specified later.

Set aη := ∥u∥L∞(Ω;Rm)+η; we start constructing a sequence (wη
k) such that ∥wη

k∥L∞(Ω;Rm) ≤ aη + η.

To this end let ψη : R+ → R+ be a C∞ function such that

0 < ψη < aη + η in R+, 0 < (ψη)′ ≤ 1 in R+, ψη(t) = t in (0, aη). (2.3)

For every y ∈ Rm set

φη(y) :=
y

|y|
ψη(|y|) for y ̸= 0, φη(0) = 0.

By the definition of ψη there holds

φη(y) = y if |y| < aη and ∥φη∥L∞(Rm;Rm) ≤ aη + η.

Hence φη belongs to C∞(Rm;Rm) and has Lipschitz constant less than or equal to one. Furthermore

we observe that φη is injective. Indeed, φη(y1) = φη(y2) implies that y1 and y2 differ by a strictly

positive multiplicative constant. Therefore y1/|y1| = y2/|y2| and in turn ψη(|y1|) = ψη(|y2|), thus
we get |y1| = |y2| and finally y1 = y2.

For every k ∈ N set wη
k := φη(uk); clearly wη

k ∈ SBV1(Ω;Rm) ∩ L∞(Ω;Rm), Swη
k
= Suk

by

the injectivity of φη, and wη
k ∈ C∞(Ω\Suk

;Rm) ∩W1,∞(Ω\Suk
;Rm) if the same holds true for uk.

Moreover, set Aη
k := {x ∈ Ω: |uk| ≥ aη}, we have

∥wη
k − u∥L1(Ω;Rm) ≤ ∥uk − u∥L1(Ω\Aη

k;Rm) + ∥φη(uk)− φη(u)∥L1(Aη
k;Rm)

≤ ∥uk − u∥L1(Ω;Rm),

where we have used the fact that φη has Lipschitz constant less than or equal to one. Now recall

that by assumption, for k ∈ N large enough there holds

∥uk − u∥L1(Ω;Rm) + ∥∇uk −∇u∥L1(Ω;Rm×n) < ε. (2.4)

We now estimate the L1 norm of ∇wη
k −∇u. We observe that by construction ∇wη

k = ∇uk in Ω\Aη
k

while |∇wη
k | ≤ |∇uk| in Aη

k. Moreover, since |uk − u| ≥ η in Aη
k, by (2.4) and also invoking the

Chebyshev Inequality we deduce that for k large enough ηL n(Aη
k) < ε, and therefore L n(Aη

k) < ε/η.

Hence, choosing ε so small that ∥∇u∥L1(Aη
k;Rm×n) < η for k large, we obtain

∥∇wη
k −∇u∥L1(Ω;Rm×n) ≤ ∥∇uk −∇u∥L1(Ω\Aη

k;Rm×n) + ∥∇wη
k −∇u∥L1(Aη

k;Rm×n)

≤ ε+ ∥∇wη
k∥L1(Aη

k;Rm×n) + ∥∇u∥L1(Aη
k;Rm×n)

≤ ε+ ∥∇uk∥L1(Aη
k;Rm×n) + ∥∇u∥L1(Aη

k;Rm×n)

≤ 2ε+ 2∥∇u∥L1(Aη
k;Rm×n) ≤ 2ε+ 2η, (2.5)

for every k large enough.

As a consequence, if uk
S−→ u we readily obtain that wη

k
S−→ u as k → +∞. Moreover, since

(wη
k)

± = φη(u±k ), arguing as above one can show that�
Sw

η
k
∪Su

|(wη
k)

± − u±|dH n−1 ≤
�
Suk

∪Su

|u±k − u±| dH n−1.
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Hence, wη
k

S−→ u if uk
S−→ u.

Then, to complete the proof, we only need to modify wη
k in order to obtain functions vηk with

∥vηk∥L∞(Ω;Rm) ≤ ∥u∥L∞(Ω;Rm). To this end, set

vηk :=
aη−η
aη+η

wη
k ;

by definition vηk ∈ SBV1(Ω;Rm) ∩ L∞(Ω;Rm), Svη
k
= Swη

k
= Suk

, and vηk ∈ C∞(Ω\Suk
;Rm) ∩

W1,∞(Ω\Suk
;Rm) if the same holds for uk (and hence for wη

k ). Furthermore we have

∥vηk∥L∞(Ω;Rm) ≤ aη − η = ∥u∥L∞(Ω;Rm).

In view of the convergence properties of wη
k , invoking a standard diagonal argument we can find

ηk → 0+ as k → +∞ such that setting vk := vηk

k we get vk
S−→ u (resp., vk

S−→ u) as k → +∞ and

thus the claim.

We finally prove that if ∥uk∥L∞(Ω;Rm) ≤ ∥u∥L∞(Ω;Rm) + δk for some δk > 0 such that δk → 0 as

k → +∞, then ∥uk−vk∥L∞(Ω;Rm) ≤ δk. Setting η = δk/5 by construction we have ∥uk∥L∞ ≤ aη+4η.

Now if x ∈ Ω is such that |uk(x)| < aη, then wk(x) = φη(uk(x)) = uk(x), cf. (2.3), and so

|uk(x)− vk(x)| =
∣∣∣uk(x)− aη−η

aη+η
uk(x)

∣∣∣ = ∣∣∣ 2η

aη+η
uk(x)

∣∣∣ ≤ 2η ≤ δk.

If on the other hand x ∈ Ω is such that |uk(x)| ≥ aη, then aη ≤ ψη < aη + η, thus it holds

(aη+η)|uk(x)| ≥ (aη−η)ψη(|uk(x)|), cf. (2.3) again. Hence, using the definition of vk we arrive at

|uk(x)− vk(x)| =
∣∣∣∣uk(x)− (aη−η)uk(x)ψη(|uk|)

(aη+η)|uk(x)|

∣∣∣∣ = (aη+η)|uk(x)| − (aη−η)ψη(|uk|)
aη+η

≤ (aη+η)(aη+4η)− aη(aη−η)
aη+η

≤ 5η = δk.

Altogether we have shown that ∥vk − uk∥L∞(Ω;Rm) ≤ δk and thus the claim. □

Remark 2.9. Lemma 2.8 can be generalised observing that, if u ∈ K a.e. in Ω, where K ⊂ Rm

is compact, Lipschitz, star-shaped with respect to the origin and containing a neighbourhood of

the origin, then the sequence (vk) can be chosen in such a way that for every k ∈ N there holds

vk ∈ K a.e. in Ω. Indeed, for y ∈ Rm set λK(y) := inf{ρ > 0: y ∈ ρK}. Notice that in view of the

compactness of K we have λK(y) > 0, for every y ∈ Rm\{0}. Then to find the desired sequence (vk)

it is enough to choose

φη(y) :=
y

λK(y)
ψη(λK(y)) for y ̸= 0, φη(0) = 0,

where ψη is as in the proof of Lemma 2.8. As for the regularity, one has vk ∈ W1,∞(Ω\Svk ;Rm) if

the same holds for uk; moreover, vk ∈ C∞(Ω\Svk ;Rm) if the same holds for uk and K is C∞.
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3. The main result

In this section we state and prove the main result of this paper.

Theorem 3.1 (S -approximation of SBV1
N (Ω;Rm) functions). Let N ⊂ Sn−1 be a Borel set of

directions satisfying (2.1). Then the space WN (Ω;Rm)∩L∞(Ω;Rm) is S -dense in SBV1
N (Ω;Rm)∩

L∞(Ω;Rm). Specifically, for any u ∈ SBV1
N (Ω;Rm) ∩ L∞(Ω;Rm) there exists a sequence (uk) ⊂

WN (Ω;Rm) ∩ L∞(Ω;Rm) with ∥uk∥L∞(Ω;Rm) ≤ ∥u∥L∞(Ω;Rm) such that uk
S−→ u as k → +∞.

Moreover one has

lim sup
k→+∞

�
Suk

∩A

γ
(
x, u+k , u

−
k , νuk

)
dH n−1 ≤

�
Su∩A

γ
(
x, u+, u−, νu

)
dH n−1, (3.1)

for any open set A ⊂⊂ Ω and for any bounded upper semicontinuous function γ : Ω×Rm×Rm×N →
[0,+∞) with γ(·, a, b, ν) = γ(·, b, a,−ν) for every a, b ∈ Rm and ν ∈ N .

Before embarking on the proof of Theorem 3.1 we give a preliminary covering lemma which can

be directly recovered from [7, Lemma 4.2].

Lemma 3.2 (Fine cover). Let N ⊂ Sn−1 be a Borel set, u ∈ SBV1
N (Ω;Rm) ∩ L∞(Ω;Rm), and

ε ∈ (0, 1/(6
√
n)). Assume that Su ⊂ K for some compact H n−1-rectifiable set K. Then there exist

a set K ′ ⊂ Su and a finite family of open cubes QN = {Qνi
ri (xi)}

N
i=1 with ri ≤ ε and a face orthogonal

to νi := νu(xi) ∈ N satisfying:

(1) H n−1(Su\K ′) < c ε;

(2) Qνi
ri (xi) is centred in Su, i.e., xi ∈ Su for every i = 1, . . . , N ;

(3) the family {Qνi
ri (xi)}Ni=1 is pairwise disjoint and Qνi

ri (xi) ⊂⊂ Ω for every i = 1, . . . , N ;

(4) K ′ ⊂
⋃N

i=1Q
νi
ri (xi) and

K ′ ∩Qνi
ri (xi) ⊂

{
x+ tνi : x ∈ Πνi

xi
∩Qνi

ri (xi), t ∈ (−
√
nεri,

√
nεri)

}
=: P νi

εri(xi)

for every i = 1, . . . , N ;

(5) rn−1
i ≤ 1

1−ε H n−1(K ′ ∩Qνi
ri (xi)) for every i = 1, . . . , N ;

(6)
∑N

i=1 r
n−1
i < 1

1−ε H n−1(Su);

(7) for H n−1-a.e. x ∈ K ′ ∩Qνi
ri (xi) there holds

|νu(x)− νi| < ε and |u±(x)− u±(xi)| < ε; (3.2)

(8) there exist two sets S+
i ⊂ (2

√
nεri, 6

√
nεri), S

−
i ⊂ (−6

√
nεri,−2

√
nεri) with L 1(S±

i ) > 0

such that

x+ tνi /∈ Su for every t ∈ S±
i and H n−1-a.e. x ∈ Πνi

xi
∩Qνi

ri (xi) (3.3)

and further for every t ∈ S±
i there exists a set T t

i satisfying H n−1(T t
i ) < c εrn−1

i such that

|u∗(x+ tνi)− u±(xi)| < ε for every x ∈ Πνi
xi

∩Qνi
ri (xi) \ T

t
i (3.4)

where u∗ is the precise representative of u.

We are now equipped with all the tools to prove Theorem 3.1. The proof is of constructive nature

and follows by successive approximations and regularisations.
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Proof of Theorem 3.1. Let u ∈ SBV1
N (Ω;Rm)∩ L∞(Ω;Rm) be chosen and arbitrary. We divide the

proof into a number of steps.

We preliminarily assume that Su ⊂ K for some compact H n−1-rectifiable set K in order to apply

the fine cover of Lemma 3.2 to u. We postpone the general case to the conclusion of the proof.

Step 1: Reflection argument. In this step we approximate u with a sequence of functions such

that most of their jump set is contained in a finite union of (n−1)-dimensional cubes.

Let ε = εk = 1/k. By Lemma 3.2, we obtain a setK ′ ⊂ Su along with a finite collection of pairwise

disjoint open cubes {Qνi
ri (xi)}

N
i=1 and sets {P νi

εri(xi)}
N
i=1 with νi := νu(xi), satisfying properties (1)-

(8). In particular, we may find t±i ∈ S±
i as well as two sets T±

i such that H n−1(T±
i ) < c ε rn−1

i

and

|u(x± t±i νi)− u±(xi)| < ε for every x ∈ Πνi
xi

∩Qνi
ri (xi) \ T

±
i , (3.5)

whereby we have identified u with its precise representative. For each i = 1, . . . , N define

R+
i :=

{
x ∈ Qνi

ri (xi) : x · νi ∈ (0, t+i )
}

and R−
i :=

{
x ∈ Qνi

ri (xi) : x · νi ∈ (t−i , 0)
}

and let ψ±
i be the respective reflection mappings in R±

i along Πνi

xi+
1
2 t

±
i νi

∩ Qνi
ri (xi). Consequently

let us define yk ∈ SBV1(Ω;Rm) ∩ L∞(Ω;Rm) by

yk(x) :=


u(ψ+

i (x)) if x ∈ R+
i and x · νi ∈ (0,

t+i
2 ) for each i,

u(ψ−
i (x)) if x ∈ R−

i and x · νi ∈ (
t−i
2 , 0) for each i,

u(x) otherwise in Ω.

Then

Syk
⊂
( N⋃

i=1

Πνi
xi

∩Qνi
ri (xi)

)
∪
( N⋃

i=1

Di
ε

)
∪
(
Su\K ′) ∪ K̂, (3.6)

where Di
ε := {x+ tνi : x ∈ ∂(Πνi

xi
∩Qνi

ri (xi)), t ∈ (t−i /2, t
+
i /2)} and K̂ is the reflected part of Su \K ′

by the mappings ψ±
i . By construction and by Lemma 3.2 (6)

H n−1
( N⋃

i=1

Di
ε

)
≤ c ε

N∑
i=1

rn−1
i ≤ c εH n−1(Su). (3.7)

Also, supk∈N ∥yk∥BV(Ω;Rm) < +∞, ∥yk∥L∞(Ω;Rm) ≤ ∥u∥L∞(Ω;Rm), and

∥∇u−∇yk∥L1(Ω;Rm×n) ≤ 2∥∇u∥L1(∪N
i=1Ri;Rm×n),

where Ri := R+
i ∪R−

i . In view of Lemma 3.2 (6) and recalling that ε = 1/k, we get L n(∪N
i=1Ri) ≤

c ε2
∑N

i=1 r
n−1
i → 0 as k → +∞, hence ∇yk → ∇u in L1(Ω;Rm×n). Similarly we find that yk → u

in L1(Ω;Rm).

Define the N -regular set

Fk :=

N⋃
i=1

F i
k :=

N⋃
i=1

Πνi
xi ∩Qνi

ri (xi).

Note that each F i
k is a closed (n−1)-dimensional cube compactly contained in Ω and the sets F i

k are

pairwise disjoint, cf. Lemma 3.2 (3). Moreover, observe that by (3.6), (3.7), and Lemma 3.2 (1)

H n−1(Syk
\Fk) ≤ c ε

(
1 + H n−1(Su)

)
. (3.8)
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Step 2: Convergence of surface integrals. Let A ⊂⊂ Ω open. This step is devoted to prove that

the sequence (yk) satisfies

lim sup
k→+∞

�
Fk∩Syk

∩A

γ(x, y+k , y
−
k , νyk

) dH n−1 ≤
�
Su∩A

γ(x, u+, u−, νu) dH n−1, (3.9)

for any function γ as in the statement of Theorem 3.1. We notice that (3.9) is an approximated

version of (3.1).

We recall that the function γ can be approximated by a decreasing sequence of uniformly contin-

uous functions, see for instance [3, Corollary 1.34]; therefore we now prove (3.9) in the case where γ

is uniformly continuous.

To this end fix three open sets A ⊂⊂ A′ ⊂⊂ A′′ ⊂⊂ Ω and consider the set of indices IA :=

{i ∈ {1, . . . N} : Qνi
ri (xi) ∩ A ̸= ∅}. Without loss of generality let us choose k large enough so that

F i
k ⊂ A′ for any i ∈ IA. In addition for δ > 0 let us consider the modulus of uniform continuity of

γ:

ωγ(δ) := sup
{
|γ(x, a, b, ν)− γ(x′, a′, b′, ν′)| : (x, a, b, ν), (x′, a′, b′, ν′) ∈ A′ ×B∥u∥∞ ×B∥u∥∞ ×N ,

|x− x′| < δ , |a− a′| < δ , |b− b′| < δ , |ν − ν′| < δ
}
.

Let us also recall that Lemma 3.2 (7) ensures

|u±(x)− u±(xi)| < ε and |νu(x)− νi| < ε for H n−1-a.e. x ∈ K ′ ∩Qνi
ri (xi).

Therefore using the above inequalities along with Lemma 3.2 (4)-(5) and the fact that K ′ ⊂ Su we

obtain ∑
i∈IA

rn−1
i γ(xi, u

+(xi), u
−(xi), νi)

≤ 1

1− ε

∑
i∈IA

H n−1(K ′ ∩Qνi
ri (xi)) γ(xi, u

+(xi), u
−(xi), νi)

≤ 1

1− ε

∑
i∈IA

�
K′∩Q

νi
ri

(xi)∩A′

(
γ(x, u+, u−, νu) + ωγ(

√
n ε)

)
dH n−1

≤ 1

1− ε

(�
Su∩A′

γ(x, u+, u−, νu) dH n−1 +
∑
i∈IA

c rn−1
i ωγ(

√
n ε)

)
.

(3.10)

On the other hand we know from Lemma 3.2 (8) as well as from the very construction of yk that

|y±k (x)− u±(xi)| < ε for every x ∈ F i
k \ (T+

i ∪ T−
i ).

Consequently,�
Fk∩Syk

∩A

γ(x, y+k , y
−
k , νyk

) dH n−1 ≤
∑
i∈IA

�
F i

k

γ(x, y+k , y
−
k , νyk

) dH n−1

≤
∑
i∈IA

�
F i

k\(T
+
i ∪T−

i )

γ(x, y+k , y
−
k , νyk

) dH n−1 + ∥γ∥∞,A′′

N∑
i=1

H n−1(T+
i ∪ T−

i )

≤
∑
i∈IA

rn−1
i

(
γ(xi, u

+(xi), u
−(xi), νu(xi)) + ωγ(

√
n ε)

)
+ c∥γ∥∞,A′′ ε

N∑
i=1

rn−1
i

≤
∑
i∈IA

rn−1
i

(
γ(xi, u

+(xi), u
−(xi), νu(xi)) + ωγ(

√
n ε)

)
+ c∥γ∥∞,A′′

ε

1− ε
H n−1(Su),
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where ∥γ∥∞,A′′ := ∥γ∥L∞(A′′×B∥u∥∞×B∥u∥∞×N ) and we used Lemma 3.2 (6) and (8) in the last two

inequalities. Altogether using the above estimate in conjunction with (3.10) followed by taking the

limit superior and A′ ↘ A yields (3.9) as desired.

In the following steps we perform a modification of each component of yk. For brevity, abusing

notation we suppress the indication of the component, regarding u and yk as scalar functions. Also

note that the approximants we are going to introduce are close to yk in the BV(Ω)-norm, as we shall

detail below.

Step 3: First regularisation. In this step we replace yk ∈ SBV1
N (Ω) with a sequence of functions

whose jump sets are N -aligned and contained in the finite union of (n−1)-dimensional closed cubes.

Let k ∈ N be fixed, recall that ε = εk = 1/k, and let vεk ∈ SBV1
N (Ω)∩L∞(Ω)∩C∞(Ω\Fk) be the

functions obtained by applying Lemma 2.5 and Remark 2.6 to u = yk and F = Fk. Then Lemma 2.5

(1) implies ∥vεk −yk∥L1(Ω) < εk while (2) yields Svεk
= Syk

∩Fk, and therefore Syk
\Svεk

= Syk
\Fk.

Moreover by Lemma 2.5 (3) and (3.8) we have

|Dyk −Dvεk |(Ω) ≤ 3|Dyk (Syk
\Fk)|(Ω) + (2|Dyk|(Ω) + 1) εk

≤ 3∥u∥L∞(Ω) H n−1(Syk
\Fk) + (2|Dyk|(Ω) + 1) εk

≤ cεk∥u∥L∞(Ω)

(
1 + H n−1(Su)

)
+ (2|Dyk|(Ω) + 1) εk.

Since supk∈N |Dyk|(Ω) < +∞, as k→+∞ the convergence |Dyk − Dvεk |(Ω) → 0 holds and in

particular

∥∇yk −∇vεk∥L1(Ω;Rn) → 0. (3.11)

On the other hand we have�
Fk∩A

γ(x, v+εk , v
−
εk
, νvεk ) dH n−1 =

�
Fk∩Syk

∩A

γ(x, y+k , y
−
k , νyk

) dH n−1, (3.12)

since v±εk = y±k in Fk by Lemma 2.5 (2).

Note that as a consequence of the construction carried out in this step we know that vεk is smooth

outside Fk. However, in the next step we may lose this property, hence we will need to perform

again the regularisation by convolution with variable kernels provided by Lemma 2.5.

Step 4: Closing the discontinuity gap. At this stage we only know Svεk
⊂ Fk, so we modify the

approximating sequence in such a way that (the closure of) its discontinuity set coincides with Fk.

For every i = 1, . . . , Nk we may find open sets Ωi
k, pairwise disjoint, with smooth boundary, such

that F i
k ⊂⊂ Ωi

k ⊂⊂ Ω. Let φi
k : F i

k → R be a C1 function such that φi
k > 0 in F i

k \ ∂Πνi

xk
i

F i
k, φ

i
k = 0

on ∂Πνi

xk
i

F i
k (where ∂Πνi

xk
i

F i
k denotes the boundary of F i

k in the relative topology induced by Πνi

xk
i

) and

∥φi
k∥C1(F i

k)
≤ min

{
1,

1

Nk ci,k

}
, (3.13)

where ci,k > 0 is the constant from Lemma 2.7, applied to U = Ωi
k and M = F i

k. Choosing ϕ ≡ 0,

ϕ+ = φi
k, and ϕ− ≡ 0, Lemma 2.7 (b) provides us with a function ψi

k ∈ W1,∞(Ωi
k\F i

k) such that

ψi
k = 0 on ∂Ωi

k, (ψ
i
k)

+ = φi
k and (ψi

k)
− = 0 in F i

k. Note that ∥ψi
k∥W1,∞(Ωi

k\F
i
k)

≤ 1
Nk

.
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Now we define

wk :=

vεk + δkψ
i
k in Ωi

k for every i ∈ {1, . . . , Nk},

vεk otherwise in Ω,

where δk > 0 is to be determined in forthcoming manner. Inspecting the jump points of wk in

Fk we readily deduce that Swk
⊂ Fk for all k ∈ N and the inequality H n−1(Fk\Swk

) > 0 is

only true for at most countably many δk ∈ R. This follows from a standard argument (see, e.g.,

[6, Step 4 of the proof of Theorem 3.9]): consider the pairwise disjoint sets defined for t ∈ R by

Σi
t := {x ∈ F i

k : [vεk ](x) + tψi
k(x) = 0} for every i; since H n−1(F i

k) < +∞ and {Σi
t}t∈R partitions

F i
k, there exist at most countably many t ∈ R such that H n−1(Σi

t) > 0. In other words there exists

an infinitesimal positive sequence (δk) such that H n−1(Fk\Swk
) = 0 for all k ∈ N and this shall be

our choice in the definition of wk.

For k large enough Lemma 2.7 (b) and (3.13) imply

∥wk − vεk∥BV(Ω) +

�
Svεk

∪Swk

(
|w+

k − (vεk)
+|+ |w−

k − (vεk)
−|
)
dH n−1

≤ δk

Nk∑
i=1

∥ψi
k∥BV(Ωi

k)
+ δk

Nk∑
i=1

∥φi
k∥L1(F i

k)

≤ δk

Nk∑
i=1

∥ψi
k∥W1,∞(Ωi

k\F
i
k)

+ 2δk

Nk∑
i=1

∥φi
k∥L1(F i

k)
≤ 3δk.

Also note that ∥wk∥L∞(Ω) ≤ ∥u∥L∞(Ω) + δk; hence, recalling that by construction νwk
= νvεk and

|w±
k − v±εk | ≤ δk on Fk, we have

�
Fk∩A

(
γ(x,w+

k , w
−
k , νwk

)− γ(x, v+εk , v
−
εk
, νvεk

)
)
dH n−1 ≤ ωγ(δk)H n−1(Fk ∩A), (3.14)

where ωγ is modulus of uniform continuity of γ as in Step 2.

In addition we claim Fk = Swk
which then shows that Swk

is an N -aligned regular disconnected

set in the sense of Definition 2.1. Indeed suppose there exists x ∈ Fk\Swk
⊂ Ω\Swk

, then we can

find a radius r > 0 such that Br(x) ⊂ Ω and Br(x) ∩ Swk
= ∅. Therefore we may deduce

H n−1(Fk ∩Br(x)) = H n−1(Swk
∩Br(x)) = 0,

which leads to a contradiction since by definition of Fk we clearly have H n−1(Fk∩Br(x)) > 0. Hence

Swk
is an N -aligned regular disconnected set. Finally since H n−1(Fk\Swk

) = 0 and Fk = Swk
, we

observe that Swk
is essentially closed for all k ∈ N.

Step 5: Final regularisation. In order to conclude that the constructed approximants are in the

admissible set, it remains to regularise every function wk outside Fk. Applying Lemma 2.5, cf. parts

(2) and (4), with u = wk, F = Fk, and ε = 1/k, we obtain (uk) ⊂ C∞(Ω\Fk) such that Suk
= Swk

,

(uk)
± = (wk)

± in Suk
, uk → u in L1(Ω), and ∇uk → ∇u in L1(Ω) (see also Remark 2.6). Arguing

as in Step 3, in conjunction with Step 4 we conclude that (uk) ⊂ WN (Ω) ∩ L∞(Ω) and Suk
= Fk.

Moreover, by (3.9), (3.12), and (3.14), we obtain (3.1). Therefore, in particular, choosing γ ≡ 1 we

get

lim sup
k→+∞

H n−1(Suk
∩A) ≤ H n−1(Su ∩A).
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The latter, in combination with the Compactness Theorem in SBV, see e.g. [1, p. 128], gives

H n−1(Suk
) → H n−1(Su), and hence uk S -converges to u as k → +∞.

Returning to the vectorial setup, now writing u = (u1, . . . , um) with a slight abuse of notation,

for every l ∈ {1, . . . ,m} we have found a sequence ulk so that the equality Sul
k
= Fk is true for all

l, cf. Step 4. Hence, setting uk := (u1k, . . . , u
m
k ), there holds uk ∈ WN (Ω;Rm) ∩ L∞(Ω;Rm) and uk

S -converges to u as k → +∞ and (3.1) holds. By now we have ∥uk∥L∞(Ω) ≤ ∥u∥L∞(Ω) + δk, cf.

Step 4.

Finally, appealing to the truncation of Lemma 2.8 we find a sequence (ûk) enjoying all previous

properties, as well as ∥ûk∥L∞ ≤ ∥u∥L∞ and ∥ûk − uk∥L∞ < δk. Moreover we have

�
Fk∩A

(
γ(x, û+k , û

−
k , νûk

)− γ(x, u+k , u
−
k , νuk

)
)
dH n−1 ≤ ωγ(δk)H n−1(Fk ∩A).

Thus without loss of generality we may assume that ∥wk∥L∞(Ω;Rm) ≤ ∥u∥L∞(Ω;Rm).

Step 6: Conclusion. In this final step we remove the assumption that Su ⊂ K for some compact

H n−1-rectifiable set K. In fact, if this is not the case, we may reduce to the aforementioned

scenario by appealing to a convolution argument as in Lemma 2.5. Namely, given η > 0, from the

properties of Radon measures, we may find a compact, H n−1-rectifiable set Kη ⊂ Su such that

H n−1(Su\Kη) < η. Arguing as in Remark 2.6 for each component of u, we obtain functions uη

whose jump set is contained in a compact H n−1-rectifiable set. Given ε = 1/k, we apply the above

construction to uη, by suitably choosing η = η(ε) > 0 in such a way the properties of Lemma 3.2

hold. We conclude by recalling that uη S -converges to u as η → 0 and arguing as in Step 3 to

obtain (3.1). □

Remark 3.3. Theorem 3.1 provides us with a sequence uk := (u1k, . . . , u
m
k ) such that uk

S→ u as

k → +∞. However, it does not guarantee the componentwise convergence ulk
S→ ul since by

construction Su1
k
= · · · = Sum

k
= Fk. We notice that the same happens in [6].

On the other hand, Theorem 3.1 applied to each component of u provides us with m sequences

(ulk)k, l = 1, . . . ,m, such that ulk
S→ ul. However, the jump sets Sul

k
may overlap; hence, Suk

is an

N -aligned regular set, but in general not disconnected.

4. Approximation results in the unconstrained case

For the specific choice ofN = Sn−1 Theorem 3.1 corresponds to the SBV1-variant of the celebrated

approximation result of Cortesani and Toader [7]. In this section we establish a link between the

two aforementioned results by showing that it is possible to construct approximations of elements in

SBV1(Ω;Rm) by local minimisers of the Mumford-Shah functional. Such approximation is the core

of the proof strategy in [6, 7].

We first prove that SBV1 can be approximated by SBVp functions with respect to the S -

convergence. For simplicity, we consider here only the scalar case. In the vectorial case, the result

may be applied componentwise, thus the jump set will be the union of C1 manifolds.
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Proposition 4.1 (SBVp(Ω)-approximation). Let u ∈ SBV1(Ω) ∩ L∞(Ω) and p ∈ (1,+∞). Then

there exists a sequence (vk) ⊂ SBVp(Ω) ∩ L∞(Ω) such that Mk := Svk is a compact (n−1)-

dimensional C1 manifold in Ω with C1 boundary ∂Mk, the traces of vk on both sides of Mk are

C1 and coincide on ∂Mk, and vk
S−→ u as k → +∞.

Proof. The proof follows arguments in the spirit of [9, Lemma 4.5] and is divided into three steps.

Step 1: Preliminary regularisations. Fix ε > 0. By the rectifiability of Su, we can find a compact

(n−1)-dimensional C1 manifold Mε ⊂⊂ Ω with C1 boundary and a finite number of connected

components, such that

H n−1(Su△Mε) < ε. (4.1)

Moreover, by the properties of Radon measures there exists a compact set Kε ⊂ Su ∩Mε with

H n−1(Su△Kε) = H n−1(Su\Kε) < ε. (4.2)

Therefore appealing to Lemma 2.5 with F = Kε we get a function uε ∈ SBV1(Ω)∩L∞(Ω) satisfying

the following properties:

uε ∈ C∞(Ω\Kε), ∥u− uε∥L1(Ω) < ε, u±ε = u± in Kε, Suε = Su ∩Kε. (4.3)

Moreover, gathering (4.2) and the last equality in (4.3) gives

H n−1(Su△Suε
) < ε,

whereas (4.2) combined with Lemma 2.5 yields

∥∇u−∇uε∥L1(Ω;Rn) < c ε.

We now show the smallness of the traces of u− uε. To this end we observe that in view of Lemma

2.5 (2) and (4) we have�
Suε∪Su

(
|u+ε − u+|+ |u−ε − u−|

)
dH n−1 =

�
Su\Kε

(
|u+ε − u+|+ |u−ε − u−|

)
dH n−1

≤ 4∥u∥L∞(Ω)H
n−1(Su\Kε),

hence the claim again follows by (4.2).

Step 2: C1-modification of inner traces. Let {M i
ε}

Nε
i=1 be the connected components of Mε and

let {U i}Nε
i=1 be pairwise disjoint open sets with smooth boundary such that M i

ε ⊂⊂ U i ⊂⊂ Ω. Let

i ∈ {1, . . . , Nε} be fixed and and let ϕ+i , ϕ
−
i ∈ C1

c(M
i
ε) be such that

∥ϕ+i − u+ε ∥L1(Mi
ε)
+ ∥ϕ−i − u−ε ∥L1(Mi

ε)
≤ ε

(1 + ciε)Nε
,

where ciε := c(U i,M i
ε) > 0 is the constant from Lemma 2.7 applied with U = U i and M = M i

ε.

Subsequently by Lemma 2.7 (a) we find ψε,i ∈ W1,1(U i\M i
ε) ∩ L∞(Ω) such that ψε,i = 0 on ∂U i,

ψ±
ε,i = ϕ±i − u±ε on M i

ε and

∥ψε,i∥W1,1(Ui\Mi
ε)

≤ ciε ε

(1 + ciε)Nε
.

Define

wε :=

ψε,i + uε in U i,

uε otherwise in Ω,
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in which case

∥uε − wε∥BV(Ω) +

�
Suε∪Swε

(
|w+

ε − u+ε |+ |w−
ε − u−ε |

)
dH n−1

≤
Nε∑
i=1

∥ψε,i∥BV(Ui) +

Nε∑
i=1

(
∥ϕ+i − u+ε ∥L1(Mi

ε)
+ ∥ϕ−i − u−ε ∥L1(Mi

ε)

)

≤
Nε∑
i=1

∥ψε,i∥W1,1(Ui\Mi
ε)
+ 2

Nε∑
i=1

(
∥ϕ+i − u+ε ∥L1(Mi

ε)
+ ∥ϕ−i − u−ε ∥L1(Mi

ε)

)
≤ 3ε.

We observe that the traces w±
ε coincide on ∂Mε since ϕ

±
i are compactly supported and thus coincide

on ∂Mε. Arguing as in the proof of Step 4, Theorem 3.1 (see also [9, Lemma 4.3]), we can construct

ŵε ∈ SBV1(Ω) ∩ L∞(Ω) ∩ W1,1(Ω\Mε) such that H n−1(Mε\Sŵε
) = 0, ŵ±

ε are C1-regular, they

coincide on ∂Mε, and

∥ŵε − wε∥BV(Ω) +

�
Sŵε∪Swε

(
|ŵ+

ε − w+
ε |+ |ŵ−

ε − w−
ε |
)
dH n−1 < c ε.

Therefore ŵε S -converges to u as ε→ 0.

Step 3: Final regularisation. In this step we apply successive modifications of ŵε to obtain higher

integrability of the approximate gradients. The goal is to first obtain a sequence which is locally

Lipschitz outside of Mε and then apply Meyers-Serrin type regularisation.

Since the traces ŵε are C1 we may employ Lemma 2.7 (b), for every i ∈ {1, . . . , Nε} to find

zε,i ∈ W1,∞(U i\M i
ε) such that zε,i = 0 on ∂U i and z±ε,i = ŵ±

ε in M i
ε for every i ∈ {1, . . . , Nε}. Set

zε := zε,i in U
i, zε := 0 otherwise. Since ŵε − zε ∈ W1,1(Ω)∩L∞(Ω) we find ηε ∈ W1,1(Ω)∩C∞(Ω)

such that ∥ŵε − zε − ηε∥W1,1(Ω) ≤ ε. Consequently define ẑε ∈ SBV1(Ω) by

ẑε := zε + ηε.

Then by construction ẑε ∈ W1,∞(Ω′\Mε) ∩ L∞(Ω) for every Ω′ ⊂⊂ Ω, Sẑε = Sŵε , [ẑε] = [ŵε] and

∥ŵε − ẑε∥BV(Ω) = ∥ŵε − zε − ηε∥W1,1(Ω) < ε.

Now let φ ∈ C∞
c (Ω; [0, 1]) be such that φ = 1 in a neighbourhood ofMε. Since (1−φ)ẑε ∈ W1,1(Ω)∩

W1,∞
loc (Ω), for any 1 < p < ∞ there exists a function ζε ∈ W1,p(Ω) ∩ L∞(Ω) ∩ C∞(Ω) such that

∥(1−φ)ẑε − ζε∥W1,1(Ω) < ε. Eventually, define

vε := φẑε + ζε;

from the construction above we have φẑε ∈ W1,∞(Ω\Mε) which ultimately implies the inclusion

φẑε ∈ SBVp(Ω) ∩ L∞(Ω) and thus vε ∈ SBVp(Ω) ∩ L∞(Ω). Furthermore Svε = Sẑε , [vε] = [ẑε] and

∥vε − ẑε∥BV(Ω) = ∥(1− φ)ẑε − ζε∥W1,1(Ω) < ε.

Altogether this concludes the proof. □

Remark 4.2. For later reference we observe the following variant of the previous proposition, adapted

to the constrained case where u ∈ SBV1
N (Ω), as in Theorem 3.1.

Let N ⊂ Sn−1 be a Borel set of directions satisfying (2.1). Let u ∈ SBV1
N (Ω) ∩ L∞(Ω) and

p ∈ (1,+∞). Then there exists a sequence (vk) ⊂ SBVp(Ω) ∩ L∞(Ω) such that Mk := Svk is a

compact (n−1)-dimensional C1 manifold in Ω with C1 boundary ∂Mk and normal in N , the traces

of vk on both sides of Mk are C1 and coincide on ∂Mk, and vk
S−→ u as k → +∞.
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In order to prove this statement, we first apply Theorem 3.1 and find an approximating sequence

(uk) ⊂ WN (Ω;Rm) such that uk
S−→ u. Since Suk

is a N -aligned regular disconnected set, it is

possible to repeat the proof of Proposition 4.1 applied to uk, now choosing Mε ⊂ Suk
in (4.1). A

diagonal argument yields the desired statement.

We conclude this section observing that Proposition 4.1 combined with [4, Lemma 5.2], readily

gives an approximation of SBV1(Ω;Rm)-functions by means of local minimisers of the Mumford-Shah

functional:

MS(u, U) :=

�
U

|∇u|2 dx+ H n−1(Su ∩ U),

with U ⊂ Ω open and bounded.

We recall that v ∈ SBV2(Ω) ∩ L∞(Ω) is a local minimiser for MS(·,Ω) if MS(v, U) ≤ MS(w,U)

for every open set U ⊂⊂ Ω, whenever w ∈ SBV2(Ω) ∩ L∞(Ω) and {w ̸= v} ⊂⊂ U ⊂⊂ Ω.

Then, the following approximation result holds.

Corollary 4.3. Let u ∈ SBV1(Ω;Rm)∩L∞(Ω;Rm). Then there exists a sequence (uk) ⊂ SBV2(Ω)∩
L∞(Ω;Rm) such that each uk is a local minimiser for MS(·,Ω) and uk

S−→ u as k → +∞.

Proof. By Proposition 4.1 applied to (each component of) u with p = 2 there exists a sequence

(vk) ⊂ SBV2(Ω) ∩ L∞(Ω;Rm) such that vk S -converges to u as k → +∞. Now invoking [4,

Lemma 5.2], for each vk there exists a sequence (ujk) ⊂ SBV2(Ω) ∩ L∞(Ω;Rm) of local minimisers

for MS(·,Ω) such that ujk S -converges to vk as j → +∞. A standard diagonal argument yields the

desired sequence and therefore the result. □
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