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Abstract. In this note we show that SBV functions with jump normal lying in a prescribed set

of directions N can be approximated by sequences of SBV functions whose jump set is essentially

closed, polyhedral, and preserves the orthogonality to N , moreover the functions are smooth away

from their jump set. This approximation result is proven with respect to a strong convergence for

which a large class of free-discontinuity functionals is continuous.
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1. Introduction

In the proof of approximation or homogenisation results of free-discontinuity functionals one is

concerned with the construction of a sequence of functions, the so-called recovery sequence, along

which a certain functional upper-bound inequality shall be satisfied, the so-called Γ-limsup inequality

(see, e.g., [6]). The construction of a recovery sequence is often nontrivial and in most cases it is only

feasible after assuming some additional regularity of the target function. In a particular instance,

if the considered object belongs to the space of special functions of bounded variation, SBV, it is of

crucial importance to replace it with a function whose jump set is as simple as possible, typically

polyhedral, as well as to attain sufficient smoothness of the function away from its jump set. In this

respect the mathematical literature provides us with a number of approximation results for SBV

functions which are, moreover, tailor-made to deal with the aforementioned upper-bound inequalities;

see, e.g., [2, 7], as well as [4, 5, 9] for approximants with polyhedral jump set.

However, should the target SBV functions satisfy some geometric constraint arising in the prob-

lem under examination, the available approximation results may fail to preserve this additional

constraint. In the context of variational methods for fracture and image segmentation, in this paper

we establish a density result for SBV functions with prescribed jump direction, describing, e.g.,

deformations of materials with cracks appearing only along certain directions.

If Ω ⊂ Rn is open, bounded, with Lipschitz boundary and u ∈ SBV1(Ω;Rm), the prototypical

free-discontinuity functionals we consider are of the form

F(u) =

�
Ω

|∇u|dL n +

�
Su

γ(x, u+, u−, νu) dH n−1, (1.1)

where the surface integrand γ : Ω× Rm × Rm × Sn−1 → [0,+∞] encodes the relevant properties of

the (effective) model. We recall that an element of the space SBV1(Ω;Rm) is a BV(Ω;Rm) function
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whose Jacobi matrix is a measure satisfying

Du = ∇udL n Ω + (u+−u−)⊗ νu dH n−1 Su, (1.2)

where ∇u is the density of the absolutely continuous part and H n−1(Su) < +∞. In (1.2) the

vectorial functions u+ and u− represent the traces of u on both sides of the discontinuity set Su and

νu is the measure theoretical normal to Su [1].

If (1.1) allows only for a finite number of given jump directions, and ν1, . . . , νM ∈ Sn−1 is the list

of corresponding normals, we shall consider a surface energy density γ such that γ(·, ·, ·, ν) ≡ +∞
if ν /∈ N := {±ν1, . . . ,±νM}. Therefore in this case the domain of F is strictly smaller than

SBV(Ω;Rm) and the additional constraint of

νu(x) ∈ N for H n−1-a.e. x ∈ Su (1.3)

is to be satisfied. We denote by SBV1
N (Ω;Rm) the space of those SBV(Ω;Rm) functions satisfying

(1.3) as well as H n−1(Su) < +∞ and in this paper we are concerned with a strong approximation

scheme for functions therein. Namely, in the main result of this paper, Theorem 3.1, we prove

that any function u ∈ SBV1
N (Ω;Rm) ∩ L∞(Ω;Rm) can be approximated by a sequence (uk) ⊂

SBV1
N (Ω;Rm) ∩ L∞(Ω;Rm) with ∥uk∥L∞(Ω;Rm) ≤ ∥u∥L∞(Ω;Rm) satisfying the following properties:

• Suk
is essentially closed, i.e., H n−1(Suk

\Suk
) = 0;

• Suk
is the union of a finite number of (n−1)-dimensional pairwise disjoint closed cubes;

• uk ∈ C∞(Ω\Suk
;Rm) ∩W 1,∞(Ω\Suk

;Rm);

The density result is regarded in the following strong convergence:

uk → u in L1(Ω;Rm), ∇uk → ∇u in L1(Ω;Rm×n), H n−1(Suk
△Su) → 0, (1.4)

and

lim
k→+∞

�
Suk

∪Su

(
|u+k − u+|+ |u−k − u−|

)
dH n−1 = 0, (1.5)

where in (1.5) we choose the orientation νuk
= νu Hn−1-a.e. on Suk

∩ Su. As an easy consequence

of (1.4) and (1.5) we also have

lim sup
k→+∞

�
Suk

∩A

γ
(
x, u+k , u

−
k , νuk

)
dH n−1 ≤

�
Su∩A

γ
(
x, u+, u−, νu

)
dH n−1,

for any open set A ⊂⊂ Ω and for any upper semicontinuous function γ : Ω × Rm × Rm × Sn−1 →
[0,+∞] such that γ(·, ·, ·, ν) ≡ +∞ whenever ν /∈ N and γ(·, a, b, ν) = γ(·, b, a,−ν) for every

a, b ∈ Rm and ν ∈ Sn−1.

The proof strategy of Theorem 3.1 mainly relies on the approximation techniques employed by De

Philippis, Fusco, and Pratelli in [7]. Yet in comparison with those, the main disparity in methodology

arises from the geometric constraint of prescribed orientation of the discontinuity set, which is not

preserved by the constructions implemented in [7]. This is done in the present paper by means

of a fine cover lemma (cf. Lemma 3.2) which provides us with a finite number of pairwise disjoint

(n−1)-dimensional cubes covering the major part of the discontinuity set Su. Then, the desired

sequence (uk) is obtained by successive regularisation steps mainly relying on convolution results

with variable kernels (see, e.g., [7, Proposition 2.3]) and on extension results in domains with cracks

(see, e.g., [7, Lemma 4.1]).
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We observe that our result also covers case of infinitely many jump directions under the sole

additional assumption that N is totally disconnected.

The unconstrained case N = Sn−1 is treated by Cortesani and Toader in [5] for SBVp functions

with p > 1, being the assumption p > 1 crucial to exploit some classical regularity results for the

local minimisers of the Mumford-Shah functional [8]. In the last section of this note we also prove

an approximation theorem for SBV1 without any constraints on the jump directions (Theorem 4.3).

This is obtained as a corollary of the result by Cortesani and Toader [5, Theorem 3.1 and Remark

3.5], by resorting to a strong approximation of SBV1 functions by means of SBVp functions with

p > 1, which is proven in Proposition 4.1 (see Section 4 below).

We conclude this introduction by mentioning that in [3] Conti, Diermeier, and Zwicknagl prove

a density result for SBV2 functions with given jump normal direction (see Section 4.2 therein). In

contrast to our results, we observe that Conti, Diermeier, and Zwicknagl’s proof provides the L2

convergence of the approximant’s gradients. On the other hand, it is valid exclusively in dimension

two, for one prescribed jump direction, and it does not ensure the strong convergence of the traces,

which may turn out crucial in a number of applications. However, the proof of a density result with

respect to the “strong” convergence in SBV2 (and more in general in SBVp with p > 1) appears to

be way more delicate than the approximation result proven in the present note. In fact, in the SBVp

setting an additional issue one needs to face pertains to combining the constraint in (1.3) with the

strong convergence ∇uk → ∇u in Lp(Ω;Rm). Moreover a density result in SBVp shall rely also on

deeper results in the theory of SBV functions like, e.g., the regularity properties of local minimisers

on the Mumford-Shah functionals [8], similarly as in [9, 4, 5]. A density result in SBVp for functions

with prescribed jump direction can be relevant in a number of applications and will be the subject

of a forthcoming paper.

2. Notation, functional setup, and preliminaries

We introduce the notation and conventions present in the paper. Let n,m ≥ 1 be integers;

the symbols L n and H n−1 indicate the usual n-dimensional Lebesgue measure and the (n−1)-

dimensional Hausdorff measure in Rn, respectively. By Qr(x) ⊂ Rn we mean the n-dimensional

open cube of side length r > 0, centred at x ∈ Rn, and with faces parallel to the coordinate

hyperplanes. Given a unit vector ν ∈ Sn−1 we set Πν
x to be the hyperplane orthogonal to ν and

passing through a point x ∈ Rn. Likewise Qν
r (x) ⊂ Rn is understood as an open cube of side-length

r > 0, centred at x ∈ Rn, and with a face orthogonal to ν.

Throughout, the real number c > 0 shall be thought of as absorbing constant with dependences

emphasised when being relevant.

Let Ω ⊂ Rn be an open and bounded set with Lipschitz boundary. We use the standard notation

SBV(Ω;Rm) for the space of Rm-valued special functions of bounded variation in Ω. We recall that

a function u : Ω → Rm belongs to SBV(Ω;Rm) if u is in BV(Ω;Rm) and its distributional derivative

satisfies

Du(B) =

�
B

∇udL n +

�
Su∩B

[u]⊗ νu dH n−1,

for any Borel set B ⊂ Ω. By ∇u we mean the density of the diffuse part of Du; the latter turns out to

coincide with the approximate gradient of u. The symbol Su denotes the approximate discontinuity

set of u and is a H n−1-rectifiable set. The associated measure theoretic normal is νu (defined up to
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the sign) whereas [u] := u+ − u− is the difference of the traces of u on both sides of Su. We notice

that (u+, u−) is to be replaced by (u−, u+) if the orientation of νu is reversed. Let us also recall

that the BV-norm of a function u ∈ BV(Ω;Rm) is given by

∥u∥BV(Ω;Rm) := ∥u∥L1(Ω;Rm) + |Du|(Ω)

where |Du| denotes the total variation of Du, i.e.,

|Du|(B) =

�
B

|∇u|dL n +

�
Su∩B

|[u]|dH n−1,

where B is any Borel subset of Rn.

For the general theory of BV and SBV functions we refer the readers to the comprehensive

monograph [1].

In this paper the following subspace of SBV is also taken into consideration:

SBV1(Ω;Rm) := {u ∈ SBV(Ω;Rm) : H n−1(Su) < +∞}.

Let now N be a totally disconnected subspace of Sn−1 and let us assume that

ν ∈ N ⇐⇒ −ν ∈ N . (2.1)

We introduce the following space of SBV1 functions with N -oriented discontinuity set

SBV1
N (Ω;Rm) := {u ∈ SBV1(Ω;Rm) : νu ∈ N H n−1-a.e. in Su}.

We notice that in view of (2.1) the definition of SBVN (Ω;Rm) is unambiguous.

A set F ⊂ Ω is called polyhedral (with respect to Ω) if it is the intersection of Ω with a finite

number of (n−1)-dimensional simplices in Rn. In the interest of our work we define a special case

of polyhedral sets whose normal belongs N .

Definition 2.1 (N -aligned regular set). We say that a set F ⊂ Ω is an N -aligned regular set if

there exists a finite collection of sets F1, . . . , FN such that each Fi is a (n−1)-dimensional closed

cube in Rn orthogonal to ν for some ν ∈ N and

F = Ω ∩
N⋃
i=1

Fi.

If the sets F1, . . . , FN are additionally pairwise disjoint, the set F is called an N -aligned regular

disconnected set.

We now introduce the space of approximating functions.

Definition 2.2 (The approximating space). We say that u belongs to the space WN (Ω;Rm) if:

(a) u ∈ SBV1(Ω;Rm);

(b) Su is essentially closed, i.e., H n−1(Su\Su) = 0;

(c) Su is a N -aligned regular disconnected set;

(d) u ∈ C∞(Ω\Su;Rm) ∩W1,∞(Ω\Su;Rm).

In accordance with [5] we consider the following notion of “strong” convergence for which a large

class of free-discontinuity functionals is continuous.

Definition 2.3 (S -convergence). We say that a sequence (uk) ⊂ SBV1(Ω;Rm) S -converges to

u ∈ SBV1(Ω;Rm) as k → +∞, written uk
S−→ u, if:



STRONG APPROXIMATION OF SBV FUNCTIONS WITH PRESCRIBED JUMP DIRECTION 5

(a) uk → u in L1(Ω;Rm);

(b) ∇uk → ∇u in L1(Ω;Rm×n);

(c) H n−1(Suk
△Su) → 0;

(d) there holds �
Suk

∪Su

(
|u+k − u+|+ |u−k − u−|

)
dH n−1 −→ 0, (2.2)

where in (2.2) we choose the orientation νuk
= νu Hn−1-a.e. on Suk

∩ Su.

We remark that S -convergence is evidently stronger than the convergence induced from the

BV(Ω;Rm)-norm.

Below we recall three technical lemmas which are used to prove our main result, Theorem 3.1.

These are based on the corresponding results in [7]. The first concerns a smooth approximation of

functions in SBV1(Ω;Rm) obtained by convolutions with variable kernels.

Lemma 2.4 (Approximation by convolution). Let u ∈ SBV1(Ω) and let F ⊂⊂ Ω be a compact set.

For any ε > 0, there exist vε ∈ SBV1(Ω) ∩ C∞(Ω\F ) and ξε ∈ L1(Ω;Rn) ∩ C∞(Ω\F ;Rn) such that

the following properties hold true:

(1) ∥vε − u∥L1(Ω) + ∥ξε −∇u∥L1(Ω;Rn) < ε;

(2) v±ε = u± in F , therefore Svε = Su ∩ F ;

(3) there exists an Rn-valued Radon measure µε on Ω such that |µε|(Ω) ≤ 2|Du|(Ω) and

|Du−Dvε|(Ω) ≤ ∥∇u− ξε∥L1(Ω;Rn) + 3|Du (Su\F )|(Ω) + ε|µε|(Ω);

(4) if u ∈ L∞(Ω), then ∥vε∥L∞(Ω) ≤ ∥u∥L∞(Ω).

Proof. The results can be retrieved by combining [7, Proposition 2.3, Corollary 2.4, and Lemma

2.5]. □

Moreover, we recall the following existence result of bounded Lipschitz extensions for C1-regular

interior and boundary traces.

Lemma 2.5 (Extension). Let U ⊂ Rn be an open and bounded set with C1 boundary. Let M ⊂⊂
U be either a compact and connected (n−1)-dimensional C1 manifold with (possibly empty) C1

boundary, or an (n−1)-dimensional closed cube. Then there exists a constant cU,M > 0 with the

following properties:

(a) Given three functions ϕ ∈ L1(∂U), ϕ+, ϕ− ∈ L1(M), there exists ψ ∈ W1,1(U\M) such that

ψ± = ϕ± in M , ψ = ϕ on ∂U (in the sense of traces) and

∥ψ∥W1,1(U\M) ≤ cU,M

(
∥ϕ∥L1(∂U) + ∥ϕ+∥L1(M) + ∥ϕ−∥L1(M)

)
.

(b) Given three functions ϕ ∈ C1(∂U), ϕ+, ϕ− ∈ C1(M) satisfying ϕ+ = ϕ− on ∂M , there exists

ψ ∈ W1,∞(U\M) such that ψ± = ϕ± in M , ψ = ϕ on ∂M and

∥ψ∥W1,∞(U\M) ≤ cU,M

(
∥ϕ∥C1(∂U) + ∥ϕ+∥C1(M) + ∥ϕ−∥C1(M)

)
.
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Proof. In the case where M has C1 boundary, the result is stated in [7, Lemma 4.1]. When M is

an (n−1)-dimensional closed cube, the proof requires some minor adjustments, detailed below. Let

δ > 0 be such that

P := {x+ tν(x) : x ∈M, t ∈ (−δ, δ)} ⊂⊂ U

where ν(x) is the normal to M at x. Then ∂P \ ∂M =: D+ ∪ D− where D± are in bilipschitz

correspondence with M , D+ ∩D− = ∅ and ∂∂PD
± = ∂M , where ∂∂PD

± denote the boundary of

D± in the relative topology of ∂P . Subsequently we may find a bilipschitz mapping Φ : U\M → U\P
such that Φ is the identity in a neighbourhood of ∂U and Φ−1(D±) = M . Then to establish (a) it

is enough to apply the standard extension result to the functions ϕ ◦Φ−1, ϕ± ◦Φ−1 in the Lipschitz

domain U \ D, arguing as in the proof of [7, Lemma 4.1] to which we refer the reader for more

details. To prove (b) one may argue in a similar way, now resorting to the McShane Theorem. □

To conclude this section we prove a vectorial truncation lemma to promote an L∞-bound of any

S -converging sequence to a bounded SBV1-function.

Lemma 2.6 (Vectorial truncation). Let u ∈ SBV1(Ω;Rm)∩L∞(Ω;Rm) and (uk)k∈N ⊂ SBV1(Ω;Rm)

be such that uk
S−→ u as k → +∞. Then there exists a sequence (vk)k∈N ⊂ SBV1(Ω;Rm) ∩

L∞(Ω;Rm) such that vk
S−→ u as k → +∞, Svk = Suk

, and ∥vk∥L∞(Ω;Rm) ≤ ∥u∥L∞(Ω;Rm). More-

over, if uk ∈ C∞(Ω\Suk
;Rm) ∩W1,∞(Ω\Suk

;Rm) then the same holds for vk.

Proof. The proof relies on classical arguments and in the scalar case it follows as in [7, Lemma 3.2].

Let η > 0 be arbitrary and fixed; let 0 < ε ≤ η be fixed depending on u and η as specified later.

By assumption, for k ∈ N large enough there holds

∥uk − u∥L1(Ω;Rm) + ∥∇uk −∇u∥L1(Ω;Rm×n) + H n−1(Suk
△Su)

+

�
Suk

∪Su

|u+k − u+|dH n−1

�
Suk

∪Su

|u−k − u−|dH n−1 < ε . (2.3)

Now, set aη := ∥u∥L∞(Ω;Rm) + η; let moreover ψη : R+ → (0, aη+η) be a C∞ function such that

0 < (ψη)′ ≤ 1 in R+, ψη(t) = t in (0, aη).

For every y ∈ Rm set

φη(y) :=
y

|y|
ψη(|y|) for y ̸= 0, φη(0) = 0.

By the definition of ψη there holds

φη(y) = y if |y| < aη and ∥φη∥L∞(Rm;Rm) ≤ aη + η .

Hence φη belongs to C∞(Rm;Rm) and has Lipschitz constant less than or equal to one. Furthermore

we observe that φη is injective. Indeed, φη(y1) = φη(y2) implies that y1 and y2 differ by a strictly

positive multiplicative constant. Therefore y1/|y1| = y2/|y2| and in turn ψη(|y1|) = ψη(|y2|), thus
we get |y1| = |y2| and finally y1 = y2.

For every k ∈ N set wη
k := φη(uk); clearly wη

k ∈ SBV1(Ω;Rm) ∩ L∞(Ω;Rm), Swη
k
= Suk

by

the injectivity of φη, and wη
k ∈ C∞(Ω\Suk

;Rm) ∩W1,∞(Ω\Suk
;Rm) if the same holds true for uk.

Moreover we notice that for k large enough we have

∥wη
k − u∥L1(Ω;Rm) +

�
Sw

η
k
∪Su

|(wη
k)

+ − u+|dH n−1 +

�
Sw

η
k
∪Su

|(wη
k)

− − u−|dH n−1 < ε. (2.4)
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Indeed, define Aη
k := {x ∈ Ω: |uk| ≥ aη}, we then have

∥wη
k − u∥L1(Ω;Rm) ≤ ∥uk − u∥L1(Ω\Aη

k;Rm) + ∥φη(uk)− φη(u)∥L1(Aη
k;Rm)

≤ ∥uk − u∥L1(Ω;Rm),

where we have used the fact that φη has Lipschitz constant less than or equal to one. Furthermore,

since (wη
k)

± = φη(u±), a similar argument shows that

�
Sw

η
k
∪Su

|(wη
k)

± − u±|dH n−1 ≤
�
Suk

∪Su

|u±k − u±| dH n−1,

hence (2.4) follows by (2.3).

We now estimate the L1 norm of ∇wη
k − ∇u. To this end, we preliminarily observe that by

construction ∇wη
k = ∇uk in Ω \Aη

k while |∇wη
k | ≤ |∇uk| in Aη

k. Moreover, since |uk − u| ≥ η in Aη
k,

by (2.3) and also invoking the Chebyshev Inequality we deduce that for k large enough ηL n(Aη
k) < ε,

and therefore L n(Aη
k) < ε/η. Hence, choosing ε so small that ∥∇u∥L1(Aη

k;Rm×n) < η for k large, we

obtain

∥∇wη
k −∇u∥L1(Ω;Rm×n) ≤ ∥∇uk −∇u∥L1(Ω\Aη

k;Rm×n) + ∥∇wη
k −∇u∥L1(Aη

k;Rm×n)

≤ ε+ ∥∇wη
k∥L1(Aη

k;Rm×n) + ∥∇u∥L1(Aη
k;Rm×n)

≤ ε+ ∥∇uk∥L1(Aη
k;Rm×n) + ∥∇u∥L1(Aη

k;Rm×n)

≤ 2ε+ 2∥∇u∥L1(Aη
k;Rm×n) ≤ 2ε+ 2η, (2.5)

for every k large enough.

Eventually, set

vηk :=
aη − η

aη + η
wη

k ;

by definition vηk ∈ SBV1(Ω;Rm) ∩ L∞(Ω;Rm), Svη
k
= Swη

k
= Suk

, and vηk ∈ C∞(Ω\Suk
;Rm) ∩

W1,∞(Ω\Suk
;Rm) if the same holds for uk (and hence for wη

k ). Furthermore we have

∥vηk∥L∞(Ω;Rm) ≤ aη − η = ∥u∥L∞(Ω;Rm).

Finally, by combining (2.4), (2.5) and invoking a standard diagonal argument we can find ηk → 0+

as k → +∞ such that setting vk := vηk

k we get vk
S−→ u as k → +∞ and thus the claim. □

Remark 2.7. Lemma 2.6 can be generalised observing that, if u ∈ K a.e. in Ω, where K ⊂ Rm

is compact, Lipschitz, and star-shaped with respect to the origin, then the sequence (vk) can be

chosen in such a way that for every k ∈ N there holds vk ∈ K a.e. in Ω. Indeed, for y ∈ Rm set

λK(y) := inf{ρ > 0: y ∈ ρK}. Notice that in view of the compactness of K we have λK(y) > 0, for

every y ∈ Rm \ {0}. Then to find the desired sequence (vk) it is enough to choose

φη(y) :=
y

λK(y)
ψη(λK(y)) for y ̸= 0, φη(0) = 0,

where ψη is as in the proof of Lemma 2.6. As for the regularity, one has vk ∈ W1,∞(Ω\Svk ;Rm) if

the same holds for uk; moreover, vk ∈ C∞(Ω\Svk ;Rm) if the same holds for uk and K is C∞.
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3. The main result

In this section we state and prove the main result of this paper.

Theorem 3.1 (S -approximation of SBV1
N (Ω;Rm) functions). Let N ⊂ Sn−1 be a totally discon-

nected set of directions satisfying (2.1). Then the space WN (Ω;Rm) ∩ L∞(Ω;Rm) is S -dense in

SBV1
N (Ω;Rm) ∩ L∞(Ω;Rm). Specifically, for any u ∈ SBV1

N (Ω;Rm) ∩ L∞(Ω;Rm) there exists a

sequence (uk) ⊂ WN (Ω;Rm)∩L∞(Ω;Rm) with ∥uk∥L∞(Ω;Rm) ≤ ∥u∥L∞(Ω;Rm) such that uk
S−→ u as

k → +∞. Moreover one has

lim sup
k→+∞

�
Suk

∩A

γ
(
x, u+k , u

−
k , νuk

)
dH n−1 ≤

�
Su∩A

γ
(
x, u+, u−, νu

)
dH n−1, (3.1)

for any open set A ⊂⊂ Ω and for any upper semicontinuous function γ : Ω × Rm × Rm × Sn−1 →
[0,+∞] such that γ(·, ·, ·, ν) ≡ +∞ whenever ν /∈ N and γ(·, a, b, ν) = γ(·, b, a,−ν) for every a, b ∈
Rm and ν ∈ Sn−1.

Before embarking on the proof of Theorem 3.1 we give a preliminary covering lemma forN -aligned

sets.

Lemma 3.2 (Fine cover). Let ε > 0 be arbitrary. Let N ⊂ Sn−1 be a set of directions satisfying (2.1)

and let K ⊂ Ω be a H n−1-rectifiable set with H n−1(K) < +∞ and measure theoretic normal νK ∈
N H n−1-a.e. Then there exist a set K ′ ⊂ K and a finite family of open cubes QN = {Qνi

ri (xi)}
N
i=1

with a face orthogonal to νi := νK(xi) ∈ N satisfying:

(1) H n−1(K\K ′) < ε;

(2) Qνi
ri (xi) is centred in K, i.e., xi ∈ K for every i = 1, . . . , N ;

(3) the family {Qνi
ri (xi)}Ni=1 is pairwise disjoint and Qνi

ri (xi) ⊂⊂ Ω for every i = 1, . . . , N ;

(4) K ′ ⊂
⋃N

i=1Q
νi
ri (xi) and K

′ ∩Qνi
ri (xi) ⊂ Πνi

xi
for every i = 1, . . . , N ;

(5) rn−1
i ≤ 1

1−ε H n−1(K ′ ∩Qνi
ri (xi)) for every i = 1, . . . , N ;

(6)
∑N

i=1 r
n−1
i < 1

1−ε H n−1(K).

Proof. Up to a set of zero H n−1-measure we may rewrite K as
⋃

j∈NKj with each Kj being a

C1-image of the closed unit ball in Rn−1. Using the properties of Radon measures we can find a

compact set Kε ⊂ K such that Kε ⊂
⋃Nε

j=1Kj for some Nε ∈ N and H n−1(K\Kε) < ε/3. Since

each Kj is smooth and N is totally disconnected we have νK ≡ nj H n−1-a.e. in Kj , for some

nj ∈ N ; thus Kj ⊂ Π
nj
yj for some yj ∈ Kj , for every j ∈ {1, . . . Nε}.

If the set N contains more than one direction, the hyperplanes Π
nj
yj shall have a finite number

of intersections, which we are going to remove. Namely, we choose an open set Cε ⊂ Ω such that⋃hε

j=1 Π
nj
yj \ Cε has no self-intersections in Ω and H n−1

(⋃hε

j=1 Π
nj
yj \ Cε

)
< ε/3.

Next, the regularity of rectifiable sets [11, Theorem 3.3] allows us to further select K0
ε ⊂ Kε \Cε

with H n−1((Kε\Cε)\K0
ε ) = 0 such that for any x ∈ K0

ε and any closed cube Q
νK(x)
r (x) there holds

lim
r→0+

H n−1
(
Q

νK(x)
r (x) ∩K0

ε

)
rn−1

= 1.

Thus there exists a number r(x, ε) > 0 such that for any r ∈ (0, r(x, ε))

H n−1
(
Q

νK(x)
r (x) ∩K0

ε

)
≥ (1− ε) rn−1 = (1− ε)H n−1

(
Q

νK(x)
r (x) ∩ΠνK(x)

x

)
. (3.2)



STRONG APPROXIMATION OF SBV FUNCTIONS WITH PRESCRIBED JUMP DIRECTION 9

We are now in a position to define a family of suitable cubes covering K0
ε , from which we are going

to extract the desired finite cover. To this end we set

d := min
k,l∈{1,...,hε}

{dist(Πnk
yk
\Cε,Π

nl
yl
\Cε) : Π

nk
yk

̸= Πnl
yl
} > 0

and consider the family of cubes

F :=

{
Q

νK(x)
r (x) : x ∈ K0

ε , 0 < r ≤ min
{
r(x, ε),

d

2
√
n(1 + ε)

,
1

4
√
n
dist(Kε, ∂Ω)

}}
.

Clearly, the elements of F are properly contained in Ω and each of them intersects only one of the

hyperplanes Πnk
yk
, k = 1, . . . , hε. Moreover, F is a Vitali cover for K0

ε . Therefore employing a variant

of the Vitali covering Theorem, cf. [10, Theorem 1.10], one can find a countable and pairwise disjoint

collection of cubes {Qνi

r̃i
(xi)}i∈N ⊂ F with νi := νK(xi) ∈ N such that

H n−1

(
K0

ε \
⋃
i∈N

Qνi

r̃i
(xi)

)
= 0.

We then select an integer N = N(ε) ∈ N such that

H n−1

(
K0

ε \
N⋃
i=1

Qνi

r̃i
(xi)

)
<
ε

3
(3.3)

and consequently declare the set K ′ to be

K ′ := K0
ε ∩

N⋃
i=1

Qνi

r̃i
(xi).

By (3.3) and by the choice of K0
ε we deduce

H n−1(K\K ′) = H n−1(Kε ∩ Cε) + H n−1((Kε\Cε)\K0
ε ) + H n−1(K0

ε\K ′) < ε

and thus (1) follows. As Qνi

r̃i
(xi) are pairwise disjoint there exist positive numbers ri ∈ (r̃i, r̃i + ε)

such that the cubes {Qνi
ri (xi)}Ni=1 remain pairwise disjoint and

K ′ ⊂
N⋃
i=1

Qνi
ri (xi). (3.4)

This provides us with a finite family of open cubes satisfying (2)-(3) by construction and (4) by

(3.4). Moreover, (5) follows by (3.2) and the definitions of d and F . Eventually, (6) is an immediate

consequence of (3) and (5). □

We are now equipped with all the tools to prove Theorem 3.1. The proof is of constructive nature

and follows by successive approximations and regularisations.

Proof of Theorem 3.1. We notice that thanks to Lemma 2.6 it is enough to prove the existence

of an approximating sequence (uk) satisfying all the desired properties but the uniform bound

∥uk∥L∞(Ω;Rm) ≤ ∥u∥L∞(Ω;Rm). Without loss of generality we may assume that m = 1; then the

proof for m > 1 follows arguing componentwise.

Let u ∈ SBV1
N (Ω) ∩ L∞(Ω) be chosen and arbitrary. We divide the proof into four steps.

Step 1: Modification of the discontinuity set. In this first step we approximate u with a sequence

of functions whose jump sets are N -aligned and contained in the finite union of (n−1)-dimensional

closed cubes.
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Let (εk) ↘ 0 be an arbitrary infinitesimal sequence. For every k ∈ N applying Lemma 3.2 to Su

with ε = εk we obtain a set K ′ ⊂ Su along with a finite collection of pairwise disjoint open cubes

{Qνi

rki
(xki )}

Nk
i=1 with νi := νu(xi), satisfying properties (1)-(6). We define the compact sets

Fk :=

Nk⋃
i=1

F i
k :=

Nk⋃
i=1

Πνi

xk
i

∩Qνi

rki
(xki ).

We notice that the sets F i
k are pairwise disjoint by construction, hence Fk is an N -aligned regular

disconnected set in the sense of Definition 2.1. From property (4) of Lemma 3.2 we deduce the

inclusion K ′ ⊂ Fk ∩ Su. Moreover from property (1), (5), and (6) of Lemma 3.2 we infer

H n−1(Fk△Su) ≤ H n−1(Fk\K ′) + H n−1(Su\K ′) ≤
Nk∑
i=1

(rki )
n−1 − H n−1(K ′) + εk

≤ εk

Nk∑
i=1

(rki )
n−1 + εk ≤ εk

1− εk
H n−1(Su) + εk,

thus

H n−1(Fk△Su) → 0 (3.5)

as k → +∞.

Let k ∈ N be fixed and let vεk ∈ SBV1
N (Ω) ∩ L∞(Ω) ∩ C∞(Ω\Fk) and ξεk ∈ L1(Ω;Rn) ∩

C∞(Ω\Fk;Rn) be the functions obtained by applying Lemma 2.4 to u and Fk. By Lemma 2.4 (2)

there holds Svεk
= Fk ∩ Su, hence

Su△Svεk
= Su \ Svεk

= Su \ Fk. (3.6)

Further ∥vεk∥L∞(Ω) ≤ ∥u∥L∞(Ω) in which case Lemma 2.4 (3)-(4) along with (3.5) yield
�
Svεk

∪Su

(
|v+εk − u+|+ |v−εk − u−|

)
dH n−1 =

�
Su\Fk

(
|v+εk − u+|+ |v−εk − u−|

)
dH n−1

≤ 4∥u∥L∞(Ω)H
n−1(Fk△Su) → 0

(3.7)

as k → +∞. Moreover, by Lemma 2.4 (3) the function ξεk ∈ L1(Ω;Rn) satisfies

|Du−Dvεk |(Ω) ≤ ∥∇u− ξεk∥L1(Ω) + 3|Du (Su\Fk)|(Ω) + 2εk|Du|(Ω)

≤ ∥∇u− ξεk∥L1(Ω) + 3∥u∥L∞(Ω)H
n−1(Su\Fk) + 2εk|Du|(Ω).

Using Lemma 2.4 (1) in conjunction with (3.5) amounts in the convergence |Du − Dvεk |(Ω) → 0

and thus

∥∇u−∇vεk∥L1(Ω;Rn) → 0 (3.8)

as k → +∞. Since by Lemma 2.4 (1) vεk → u in L1(Ω), combining (3.6), (3.7) and (3.8) we conclude

vεk
S−→ u as k → +∞.

Note that as a consequence of the construction carried out in this step we get that vεk is smooth

outside Fk. However, in the next step we may lose this property, hence we will need to perform

again the regularisation by convolution with variable kernels provided by Lemma 2.4.

Step 2: Closing the discontinuity gap. At this stage we only know Svεk
⊂ Fk, so we modify the

approximating sequence in such a way that its discontinuity set coincides with Fk.
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Let us recall that Fk =
⋃Nk

i=1 F
i
k where each F i

k is a closed (n−1)-dimensional cube compactly

contained in Ω; moreover, the sets F i
k are pairwise disjoint, cf. Lemma 3.2 (3). For every i ∈ 1, . . . , Nk

we may find open sets Ωi
k, pairwise disjoint, with smooth boundary, such that F i

k ⊂⊂ Ωi
k ⊂⊂ Ω. Let

φi
k : F i

k → R be a C1 function such that φi
k > 0 in F i

k \ ∂Πνi

xk
i

F i
k, φ

i
k = 0 on ∂Πνi

xk
i

F i
k (where ∂Πνi

xk
i

F i
k

denotes the boundary of F i
k in the relative topology induced by Πνi

xk
i

) and

∥φi
k∥C1(F i

k)
≤ min

{
1,

1

Nk ci,k

}
, (3.9)

where ci,k > 0 is the constant from Lemma 2.5, applied to U = Ωi
k and M = F i

k. Choosing ϕ ≡ 0,

ϕ+ = φi
k, and ϕ− ≡ 0, Lemma 2.5 (b) provides us with a function ψi

k ∈ W1,∞(Ωi
k\F i

k) such that

ψi
k = 0 on ∂Ωi

k, (ψ
i
k)

+ = φi
k and (ψi

k)
− = 0 in F i

k.

Now we define

wk :=

vεk + δkψ
i
k in Ωi

k for every i ∈ {1, . . . , Nk},

vεk otherwise in Ω,

where δk > 0 is to be determined in forthcoming manner. Inspecting the jump points of wk in

Fk we readily deduce that Swk
⊂ Fk for all k ∈ N and the inequality H n−1(Fk\Swk

) > 0 is

only true for at most countably many δk ∈ R. This follows from a standard argument (see e.g.,

[4, Step 4 of the proof of Theorem 3.9]): consider the pairwise disjoint sets defined for t ∈ R by

Σt := {x ∈ Fk : [vεk ](x)+ tφ(x) = 0}; since H n−1(Fk) < +∞ and {Σt}t∈R partitions Fk, there exist

at most countably many t ∈ R such that H n−1(Σt) > 0. In other words there exists an infinitesimal

positive sequence (δk) such that H n−1(Fk\Swk
) = 0 for all k ∈ N and this shall be our choice in

the definition of wk.

For k large enough Lemma 2.5 (b) and (3.9) imply

∥uεk − wk∥BV(Ω) +

�
Suεk

∪Swk

(
|w+

k − (uεk)
+|+ |w−

k − (uεk)
−|
)
dH n−1

≤ δk

Nk∑
i=1

∥ψi
k∥BV(Ωi

k)
+ δk

Nk∑
i=1

∥φi
k∥L1(F i

k)

≤ δk

Nk∑
i=1

∥ψi
k∥W1,∞(Ωi

k\F
i
k)

+ 2δk

Nk∑
i=1

∥φi
k∥L1(F i

k)
≤ 3δk.

Therefore wk
S−→ u as k → +∞. In addition we claim Fk = Swk

which then shows that Swk
is

an N -aligned regular disconnected set in the sense of Definition 2.1. Indeed suppose there exists

x ∈ Fk \ Swk
⊂ Ω \ Swk

, then we can find a radius r > 0 such that Br(x) ⊂ Ω and Br(x)∩ Swk
= ∅.

Therefore we may deduce

H n−1(Fk ∩Br(x)) = H n−1(Swk
∩Br(x)) = 0,

which leads to a contradiction since by definition of Fk we clearly have H n−1(Fk∩Br(x)) > 0. Hence

Swk
is an N -aligned regular disconnected set. Finally since H n−1(Fk\Swk

) = 0 and Fk = Swk
, we

observe that Swk
is essentially closed for all k ∈ N.

Step 3: Final regularisation. In order to conclude that the constructed approximants are in the

admissible set, it remains to regularise every function wk outside Fk. Applying Lemma 2.4, cf. parts

(2) and (4), with u = wk, F = Fk, and ε = εk, we obtain (uk) ⊂ C∞(Ω\Fk) such that Suk
= Swk

,
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u±k = w±
k in Suk

, and uk → u in BV(Ω). Arguing as in Step 1, in conjunction with Step 2 we

conclude that (uk) ⊂ WN (Ω) ∩ L∞(Ω), Swk
= Fk, and uk

S→ u as k → +∞.

Step 4: Convergence of surface integrals. This final step is devoted to the proof of (3.1). To

this end let γ̂ : Ω× Rm × Rm ×N → [0,+∞) be the function defined as γ̂(x, a, b, ν) := γ(x, a, b, ν),

for every x ∈ Ω, a, b ∈ Rm, and ν ∈ N . Since both Suk
and Su are N -aligned, proving (3.1) is

equivalent to proving that

lim sup
k→+∞

�
Suk

∩A

γ̂(x, u+k , u
−
k , νuk

) dH n−1 ≤
�
Su∩A

γ̂(x, u+, u−, νu) dH n−1, (3.10)

for every open set A ⊂⊂ Ω.

By assumption γ̂ is upper semicontinuous in which case we may find a decreasing sequence of

continuous functions (γj)j∈N with γj : Ω×Rm ×Rm ×N → [0,+∞) and γj ≥ γ̂ for any j ∈ N, such
that γj → γ̂ pointwisely in Ω× Rm × Rm ×N as j → +∞.

Let A ⊂⊂ Ω be a fixed open set; without loss of generality we can assume that the limsup in

the left hand side of (3.10) is actually a limit. By the S -convergence of uk to u we can find a

subsequence (not relabelled) such that u+k → u+ and u−k → u− H n−1-a.e. on Su as k → +∞. Then

since by construction νuk
= νu Hn−1-a.e. in Fk, we get

lim
k→+∞

�
Suk

∩A

γj(x, u
+
k , u

−
k , νuk

) dH n−1 = lim
k→+∞

�
Fk∩A

γj(x, u
+
k , u

−
k , νu) dH n−1

≤ lim sup
k→+∞

�
Su∩A

γj(x, u
+
k , u

−
k , νu) dH n−1 + ∥γj∥L∞ lim

k→+∞
H n−1(Su△Fk).

Therefore appealing to the Dominated Convergence Theorem and recalling (3.5) we get

lim sup
k→+∞

�
Suk

∩A

γ̂(x, u+k , u
−
k , νuk

) dH n−1 ≤ lim
k→+∞

�
Suk

∩A

γj(x, u
+
k , u

−
k , νuk

) dH n−1

≤
�
Su∩A

γj(x, u
+, u−, νu) dH n−1,

for every j ∈ N. Eventually (3.10) follows by the Monotone Convergence Theorem taking the limit

as j → +∞ and this concludes the proof. □

4. Approximation results in the unconstrained case

In this section we prove the analogue of the SBVp density result of Cortesani and Toader [5,

Theorem 3.1] for p = 1. Namely, we show that every element of SBV1(Ω;Rm) can be approximated

by a sequence of functions which are regular outside their jump set, the latter being a finite union

of pairwise disjoint (n−1)-dimensional simplices. This result is obtained as an immediate corollary

of the following approximation statement, which is interesting in its own right.

Proposition 4.1 (SBVp(Ω;Rm)-approximation). Let u ∈ SBV1(Ω;Rm) ∩ L∞(Ω;Rm). Then there

exists a sequence (uk) ⊂ SBVp(Ω;Rm) ∩ L∞(Ω;Rm) such that Svk =: Mk is a compact (n−1)-

dimensional C1 manifold in Ω with C1 boundary ∂Mk, the traces of vk on both sides of Mk are C1

and coincide on ∂Mk, and uk
S−→ u as k → +∞.

Proof. As above we may consider the scalar casem = 1; in the general case we argue componentwise,

observing that Svk is the union of the jump sets of the components, each of them being a compact

(n−1)-dimensional C1 manifold.
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The proof follows arguments in the spirit of [7, Lemma 4.5] and is divided into three steps.

Step 1: Preliminary regularisations. Fix ε > 0. By the rectifiability of Su, we can find a compact

(n−1)-dimensional C1 manifold Mε ⊂⊂ Ω with C1 boundary and a finite number of connected

components, such that

H n−1(Su△Mε) = H n−1(Su\Mε) < ε.

Moreover, by the properties of Radon measures there exists a compact set Kε ⊂ Su ∩Mε with

H n−1(Su△Kε) = H n−1(Su\Kε) < ε. (4.1)

Therefore appealing to Lemma 2.4 with F = Kε we get a function uε ∈ SBV1(Ω)∩L∞(Ω) satisfying

the following properties:

uε ∈ C∞(Ω\Kε), ∥u− uε∥L1(Ω) < ε, u±ε = u± in Kε, Suε
= Su ∩Kε. (4.2)

Moreover, gathering (4.1) and the last equality in (4.2) gives

H n−1(Su△Suε
) < ε,

whereas (4.1) combined with Lemma 2.4 yields

∥∇u−∇uε∥L1(Ω;Rn) < c ε.

We now show the smallness of the traces of u− uε. To this end we observe that in view of Lemma

2.4 (2) and (4) we have

�
Suε∪Su

(
|u+ε − u+|+ |u−ε − u−|

)
dH n−1 =

�
Su\Kε

(
|u+ε − u+|+ |u−ε − u−|

)
dH n−1

≤ 4∥u∥L∞(Ω)H
n−1(Su\Kε),

hence the claim again follows by (4.1).

Step 2: C1-modification of inner traces. Let {M i
ε}

Nε
i=1 be the connected components of Mε and

let {U i}Nε
i=1 be pairwise disjoint open sets with smooth boundary such that M i

ε ⊂⊂ U i ⊂⊂ Ω. Let

i ∈ {1, . . . , Nε} be fixed and and let ϕ+i , ϕ
−
i ∈ C1

c(M
i
ε) be such that

∥ϕ+i − u+ε ∥L1(Mi
ε)
+ ∥ϕ−i − u−ε ∥L1(Mi

ε)
≤ ε

(1 + ciε)Nε
,

where ciε := c(U i,M i
ε) > 0 is the constant from Lemma 2.5 applied with U = U i and M = M i

ε.

Subsequently by Lemma 2.5 (a) we find ψε,i ∈ W1,1(U i\M i
ε) ∩ L∞(Ω) such that ψε,i = 0 on ∂U i,

ψ±
ε,i = ϕ±i − u±ε on M i

ε and

∥ψε,i∥W1,1(Ui\Mi
ε)

≤ ciε ε

(1 + ciε)Nε
.

Define

wε :=

ψε,i + uε in U i,

uε otherwise in Ω,
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in which case

∥uε − wε∥BV(Ω) +

�
Suε∪Swε

(
|w+

ε − u+ε |+ |w−
ε − u−ε |

)
dH n−1

≤
Nε∑
i=1

∥ψε,i∥BV(Ui) +

Nε∑
i=1

(
∥ϕ+i − u+ε ∥L1(Mi

ε)
+ ∥ϕ−i − u−ε ∥L1(Mi

ε)

)

≤
Nε∑
i=1

∥ψε,i∥W1,1(Ui\Mi
ε)
+ 2

Nε∑
i=1

(
∥ϕ+i − u+ε ∥L1(Mi

ε)
+ ∥ϕ−i − u−ε ∥L1(Mi

ε)

)
≤ 3ε.

We observe that the traces w±
ε coincide on ∂Mε. Arguing as in the proof of Step 2, Theorem

3.1 (see also [7, Lemma 4.3]), we can construct ŵε ∈ SBV1(Ω) ∩ L∞(Ω) ∩ W1,1(Ω\Mε) such that

H n−1(Mε\Sŵε
) = 0, ŵ±

ε are C1-regular, they coincide on ∂Mε, and

∥ŵε − wε∥BV(Ω) +

�
Sŵε∪Swε

(
|ŵ+

ε − w+
ε |+ |ŵ−

ε − w−
ε |
)
dH n−1 < c ε.

Step 3: Final regularisation. Since the traces ŵε are C
1 we may employ Lemma 2.5 (b), for every

i ∈ {1, . . . , Nε} to find zε,i ∈ W1,∞(U i\M i
ε) such that zε,i = 0 on ∂U i and z±ε,i = ŵ±

ε inM i
ε for every

i ∈ {1, . . . , Nε}. Set zε := zε,i in U
i, zε := 0 otherwise. Since ŵε − zε ∈ W1,1(Ω) ∩ L∞(Ω) we find

ηε ∈ W1,∞(Ω)∩C∞(Ω) such that ∥ŵε − zε − ηε∥W1,1(Ω) ≤ ε. Consequently define ẑε ∈ SBV1(Ω) by

ẑε := zε + ηε.

Then by construction ẑε ∈ W1,∞(Ω′\Mε)∩L∞(Ω) for every Ω′ ⊂⊂ Ω, ẑ±ε = ŵ±
ε inMε and Sẑε = Sŵε

.

Thus

∥ŵε − ẑε∥BV(Ω) = ∥ŵε − zε − ηε∥W1,1(Ω) < ε.

Let φ ∈ C∞
c (Ω; [0, 1]) be such that φ = 1 in a neighbourhood of Mε. Since (1−φ)ẑε ∈ W1,1(Ω) ∩

W1,∞
loc (Ω), for any 1 < p < ∞ there exists a function ζε ∈ W1,p(Ω) ∩ L∞(Ω) ∩ C∞(Ω) such that

∥(1−φ)ẑε − ζε∥W1,1(Ω) < ε. Eventually, define

vε := φẑε + ζε;

from the construction above we have φẑε ∈ W1,∞(Ω\Mε) which ultimately implies the inclusion

φẑε ∈ SBVp(Ω)∩L∞(Ω) and thus vε ∈ SBVp(Ω)∩L∞(Ω). Furthermore v±ε = ẑ±ε in Mε, Svε = Sẑε ,

and

∥vε − ẑε∥BV(Ω) = ∥(1− φ)ẑε − ζε∥W1,1(Ω) < ε.

Altogether this concludes the proof. □

Remark 4.2. For later reference we observe that, if u ∈ SBV1
N (Ω)∩L∞(Ω), then the approximating

functions vε given by Proposition 4.1 can be chosen in a way so that νvε ∈ N , H n−1-a.e. in Svε .

Theorem 4.3 (Approximation of SBV1(Ω;Rm) functions). Let u ∈ SBV1(Ω;Rm) ∩ L∞(Ω;Rm).

Then there is a sequence (uk) ⊂ SBV1(Ω;Rm) ∩ L∞(Ω;Rm) satisfying the following properties:

(i) ∥uk∥L∞(Ω;Rm) ≤ ∥u∥L∞(Ω;Rm);

(ii) H n−1(Suk
\Suk

) = 0;

(iii) Suk
is the intersection of Ω with a finite number of pairwise disjoint (n−1)-dimensional

simplices;

(iv) (uk) ⊂ Wℓ,∞(Ω\Suk
;Rm), for any ℓ ∈ N;
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(v) ∥uk − u∥L1(Ω;Rm) → 0;

(vi) ∥∇uk −∇u∥L1(Ω;Rm) → 0;

(vii) H n−1(Suk
) → H n−1(Su);

(viii) for any open set A ⊂⊂ Ω there holds

lim sup
k→+∞

�
Suk

∩A

γ
(
x, u+k , u

−
k , νuk

)
dH n−1 ≤

�
Su∩A

γ
(
x, u+, u−, νu

)
dH n−1,

for any upper semicontinuous function γ : Ω × Rm × Rm × Sn−1 → [0,+∞) such that

γ(·, a, b, ν) = γ(·, b, a,−ν) for every a, b ∈ Rm and ν ∈ Sn−1.

Proof. Let u ∈ SBV1(Ω;Rm) ∩ L∞(Ω;Rm) and p ∈ (1, 2] be fixed. In view of Proposition 4.1 and

Lemma 2.6, for every ε > 0 we can find vε ∈ SBVp(Ω;Rm) ∩ L∞(Ω;Rm) such that

∥vε − u∥L1(Ω;Rm) < ε, ∥∇vε −∇u∥L1(Ω;Rm×n) < ε, H n−1(Svε△Su) < ε,
�
Svε∪Su

(
|v+ε − u+|+ |v−ε − u−|

)
dH n−1 < ε,

and

∥vε∥L∞(Ω;Rm) ≤ ∥u∥L∞(Ω;Rm).

Applying [5, Theorem 3.1 and Remark 3.5] to vε we find a sequence (vε,k)k ⊂ SBVp(Ω) ∩ L∞(Ω)

satisfying (i)-(viii) with u replaced by vε. Finally, a standard diagonal argument readily yields the

desired sequence and thus the claim. □

Acknowledgements

The work of G. Lazzaroni was funded by the Italian Ministry of University and Research through

the PRIN project 2017BTM7SN “Variational Methods for stationary and evolution problems with

singularities and interfaces”, as well as by INdAM-GNAMPA. The work of P. Wozniak and C. I.

Zeppieri was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-

tion) through the SPP 2256, project ID 3160417300 and under the Germany Excellence Strategy

EXC 2044 -390685587, Mathematics Münster: Dynamics–Geometry–Structure.

References

[1] L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford

University Press, 434 (2000).
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