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Abstract. In this paper we introduce a notion of ruled hypersurface in the Heisenberg
group Hn, which generalizes the corresponding one in H1. We show two rigidity re-
sults in the classes of non-characteristic C1-hypersurfaces and conical C2-hypersurfaces,
highlighting the main differences between H1 and higher dimensional Heisenberg groups.

1. Introduction

The aim of this paper is to make some progresses in the understanding of an intriguing
topic in Geometric Measure Theory, and particularly in the study of minimal surfaces,
that is the so-called Bernstein problem in the setting of the sub-Riemannian Heisenberg
group Hn. The classical Euclidean Bernstein problem consists in the characterization of
those sets which globally minimize De Giorgi’s perimeter. Thanks to decades of research
in this direction ([B, Fl, A, S, DG, BDGG], we know that any non-empty perimeter
minimizer in Rn is an hyperplane provided that n ≤ 8. Moreover, the bound on the
dimension is sharp. We refer to [G] for a wonderful survey of this problem. More recently,
an increasing interest in Geometric Measure Theory in the setting of the sub-Riemannian
Heisenberg group Hn has developed (cf. [FSSC, GN] and references therein). To introduce
this framework, we recall that the n-th Heisenberg group is R2n+1 endowed with the group
law

p · p′ = (x̄, ȳ, t) · (x̄′, ȳ′, t′) = (x̄+ x̄′, ȳ + ȳ′, t+ t′ +Q((x̄, ȳ), (x̄′, ȳ′)),
where

Q((x̄, ȳ), (x̄′, ȳ′)) =
n∑

j=1
(x′

jyj − xjy
′
j)

and where we denoted points p ∈ R2n+1 by p = (z, t) = (x̄, ȳ, t) = (x1, . . . , xn, y1, . . . , yn, t).
With this operation, Hn is a Carnot group, whose associated horizontal distribution, which
we denote by H, is generated by the left-invariant vector fields

Xj = ∂

∂xj

+ yj
∂

∂t
and Yj = ∂

∂xj

− xj
∂

∂t

for j = 1, . . . , n. In the following we denote by T the left-invariant vector field ∂
∂t

. In this
way X = (X1, . . . , Xn, Y1, . . . , Yn, T ) is a basis of left-invariant vector fields. Moreover,
the only nontrivial commutation relationships are

[Xj, Yj] = −[Yj, Xj] = −2T
for any j = 1, . . . , n. As customary in this framework, for given q ∈ Hn and λ > 0, we
define the left-translation τq : Hn −→ Hn and the intrinsic dilation δλ : Hn −→ Hn by

τq(p) := q · p and δλ(p) := (λz, λ2t)
for any p = (z, t) ∈ Hn. It is well known that both τq and δλ are global diffeomorphisms,
and that δλ is a Lie group isomorphism. If THn is endowed with the only Riemannian
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metric ⟨·, ·⟩ which makes X an orthonormal basis, and whose associated norm we denote
by | · |, Hn is equipped with a sub-Riemannian structure. Notice that, as soon as a
suitable notion of horizontal perimeter is defined, it is meaningful to transpose many
classical problems of Geometric Measure Theory to this anisotropic setting, such as for
instance the study of minimal hypersurfaces. To this aim, if Ω ⊆ Hn is open and E ⊆ Hn

is measurable with χE ∈ L1
loc(Ω), we recall (cf. e.g. [FSSC, GN]) that the H-perimeter of

E in Ω is defined by

PH(E,Ω) := sup
{∫

E
divH(φ̄) dL2n+1 : φ̄ ∈ C1

c (Ω, H), |φ̄|p ≤ 1 for any p ∈ Ω
}
,

where C1
c (Ω, H) is the class of C1 sections of the horizontal distribution H, and divH is

the so called horizontal divergence, which is defined by

divH

 n∑
j=1

(φjXj + φn+jYj)
 :=

n∑
j=1

(Xjφj + Yjφn+j)

for any ∑n
j=1(φjXj + φn+jYj) ∈ C1(Ω, H). Moreover, we say that a set E as above is an

H-Cacioppoli set whenever PH(E,Ω) < +∞ for any bounded open set Ω ⊆ Hn. Finally,
we recall (cf. e.g. [SC]) that an H-Cacioppoli set E is an H-perimeter minimizer whenever

PH(E,Ω) ≤ PH(F,Ω)

for any Ω ⋐ Hn and for any H-Cacioppoli set F such that E∆F ⋐ Ω. Following this
definition, according for instance to [NGR], we say that an hypersurface of class C1 is
minimal whenever it coincides with the boundary of an H-perimeter minimizer. One of
the key differences between the Euclidean and the Heisenberg setting is that, as pointed
out in [AK], the classical Federer’s notion of rectifiability in metric spaces (cf. [Fe]) is not
suitable for the Heisenberg group, since the latter turns out to be purely unrectifiable. To
solve this issue, B. Franchi, R. Serapioni and F. Serra Cassano introduced in [FSSC] the
intrinsic notion of H-regular hypersurface, and showed that these objects are the right ones
to deal with a more suitable notion of intrinsic rectifiability. We recall that an H-regular
hypersurface is a subset of Hn which can be described locally as the zero locus of a C1

H-
function, i.e. a continuous function whose horizontal gradient is continuous and locally
non-vanishing (cf. [FSSC] for more precise definitions). When an H-regular hypersurface
is of class C1, more can be said about its structure. To clarify this point, let us fix some
notation. In the following, we call a Ck-hypersurface, with k ≥ 1, an hypersurface of class
Ck which is closed and without boundary. If S is a C1-hypersurface, we define

S0 := {p ∈ S : Hp = TpS}

and we call it the characteristic set of S. Notice that, since S is closed and of class C1

and H is a smooth distribution, then S0 is closed. Moreover, let us define

HTpS := Hp ∩ TpS.

When p ∈ S0, then dim(HTpS) = 2n. On the contrary, when p ∈ S \ S0, we have
dim(HTpS) = 2n− 1. In this case, we define the horizontal normal to S at p by

νH(p) := NH(p)
|NH(p)|p

for any p ∈ S \ S0, where NH(p) is the a section of the horizontal bundle defined by

NH(p) :=
n∑

j=1
(⟨N(p), Xj|p⟩R2n+1Xj|p +

∑
j=1n

⟨N(p), Yj|p⟩R2n+1Yj|p,
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being N(p) the Euclidean unit normal to S at p. It is clear that a C1-hypersurface
which has empty characteristic set is H-regular. In this case, we will also refer to it as
non-characteristic C1-hypersurface. After [FSSC], it was clear that the importance of
H-regular hypersurfaces went beyond rectifiability. In particular, the study of minimal
hypersurfaces in this and related settings (cf. for instance [CDPT, CHMY1, CHMY2,
CHY, DGN1, DLPT, GPPV, GaR2, NGR, PSTV, R, SCVi] and references therein) has
highlighted many interesting differences between the behavior of characteristic and non-
characteristic hypersurfaces, as it will be clearer in a while. In the effort to understand
minimal hypersurfaces in the Heisenberg group, it is natural to wonder weather an analo-
gous of Bernstein Theorem holds. In particular it is important to understand which is the
right class of hypersurfaces to consider and which are the candidate counterparts of hyper-
planes. A first study of the Bernstein problem was carried out by [CHMY1, DGN2, RR] in
the class of t-graphs of class C2. We recall that a Ck-hypersurface S is a t-graph whenever
there exists u ∈ Ck(R2n) such that

graph(u) := S = {(x̄, ȳ, u(x̄, ȳ) : (x̄, ȳ) ∈ R2n}.

In the previous set of papers, the authors classified minimal t-graphs of class C2 in the
first Heisenberg group H1, finding examples of minimal smooth t-graphs which are not
planes. These results were generalized in [HRR], where the authors classified minimal
complete C2-hypersurfaces in H1. Moreover, as pointed out in [MSCV, R], if one consider
hypersurfaces with low regularity, the examples of minimal hypersurfaces which are not
hyperplanes increase considerably. It was evident from these works that, unlike in the
Euclidean setting, it is impossible to have rigidity for general minimal hypersurfaces.
However, the situation is different when considering non-characteristic hypersurfaces. In
this context, a meaningful counterpart of hyperplanes in the Euclidean setting is the class
of vertical hyperplanes. Let us recall that a vertical hyperplane is a set S of the form

S = {p ∈ Hn : ⟨(x̄, ȳ), (ā, b̄)⟩ = c},

for some 0 ̸= (ā, b̄) ∈ R2n and c ∈ R. An easy computation (cf. Section 2) shows that S is
non-characteristic. Moreover, every hyperplane which is not vertical is characteristic (cf.
again Section 2). A first result in this direction was achieved in [BASCV] in the class of
intrinsic graphs (cf. [BASCV] for a proper definition). Indeed, the authors showed that
the only minimal intrinsic graphs of class C2 in H1 are vertical hyperplanes. This result
was generalized in [GaR1] to the class of non-characteristic minimal C1-hypersurfaces of
H1, in [NGSC] to the class of minimal intrinsic graphs with Euclidean Lipschitz regularity
in H1, and in [GiR] to the class of (X, Y )-Lipschitz surfaces in the sub-Finsler Heisenberg
group H1. While the Bernstein problem is well understood in H1, very few results are
known in higher dimensions, and they are all negative answers. On one hand, as in
H1, there is no rigidity in the class of smooth t-graphs ([SCVe]). On the other hand,
when n ≥ 5, there are counterexamples even in the class of smooth intrinsic graphs
(cf. [BASCV]). Finally, the Bernstein problem for non-characteristic hypersurfaces is still
open when n = 2, 3, 4. In the first Heisenberg group H1, a key step in the study of minimal
surfaces which is common to all the aforementioned works consists in understanding that
the non-characteristic part S \S0 of an area-stationary surface S is foliated by horizontal
line segments in the following sense.

Ruling Property. [CHMY2, GaR1] Let S be an area-stationary C1-surface in H1. Then,
S is foliated by horizontal line segments with endpoints in S0.
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Here, by horizontal line, we mean an Euclidean line γ such that

γ̇(t) =
n∑

j=1
ajXj(γ(t)) +

n∑
j=1

bjYj(γ(t)),

for some a1, . . . , an, b1, . . . , bn ∈ R. The importance of this ruling property, which was
already clear in the previous set of papers, became even more evident in [Y], where the
author showed a Bernstein Theorem in the class of those minimal intrinsic graphs which
present the aforementioned ruling property, thus without assuming any regularity on the
surfaces.

Motivated by these considerations, in the effort to reach a better comprehension of the
remaining open problems in Hn, in this paper we propose a possible generalization of the
notion of ruled surface arisen in H1 to higher dimensional Heisenberg groups. The core
definition of this work is the following.

Definition 1.1 (Ruled Hypersurface). Let S be a C1-hypersurface in Hn. We say that S
is ruled if for any p ∈ S \S0, for any v ∈ HTpS and for any s > 0, the following property
holds. If s is maximal with the property that

p · δτ (v) ∈ S

for any τ ∈ [0, s], it holds that
p · δs(v) ∈ S0.

It is clear that this definition reduces to the aforementioned ruling property in H1.
Moreover, as we will show in Section 2, it behaves well with respect many other intrinsic
notions. For instance, we will prove that the class of ruled C1-hypersurfaces is closed
under the action of intrinsic dilations (cf. Proposition 2.7). and the action of the so-
called pseudohermitian transformations (cf. Theorem 2.11). In addition, we will discuss
this definition in connection with the nature of the characteristic set (cf. Proposition 2.2).
Nevertheless, an heuristic interpretation of this property suggests that it could be more
rigid in higher dimensional Heisenberg groups. To explain this consideration, consider a
non-characteristic C1-surface S in H1 and let p ∈ S. Then it is easy to see that

HTqS = HTpS

for any q ∈ p · HTpS. This means, roughly speaking, that one cannot exploit the ruling
property to escape from an horizontal line in S. This fact is a priori no longer true in
higher dimensional Heisenberg groups. The aim of Section 3 and Section 4 is to provide
some relevant examples of classes of hypersurfaces in which this rigidity emerges. More
specifically, in Section 3 we focus on the class of non-characteristic ruled C1-hypersurfaces.
In H1, this class is large enough to contain surfaces which are not vertical planes (cf.
Section 2). On the contrary, this is no longer true when n ≥ 2, as we will show with the
following result.

Theorem 1.2. Let n ≥ 2 and let S be a non-characteristic ruled C1-hypersurface. Then
S is a vertical hyperplane.

In light of this result, inspired by the H1 case, it could be natural to wonder if it is the
case that every minimal C1-hypersurface is ruled. We already know that this fact is true
in H1. Moreover, combining [BASCV] and Theorem 1.2, we see that when n ≥ 5 this
claim is false even in the class of non-characteristic C2-hypersurfaces. It is clear that a
positive answer to this claim when n = 2, 3, 4, together with Theorem 1.2, would solve the
Bernstein problem in the non-characteristic setting. However, it is not clear whether this
hope could be reasonable or not. This perplexity is motivated by the results of Section



RULED HYPERSURFACES IN HIGHER DIMENSIONAL HEISENBERG GROUPS 5

4. Indeed, in Section 4, we study the ruling property among the class of intrinsic conical
C1-hypersurfaces (cf. Section 4 for a proper definition), and we prove, among the other
things, another rigidity result a soon as we restrict to the C2 case.
Theorem 1.3. Let n ≥ 2 and let S be a ruled conical C2-hypersurface. If S0 = ∅, then S
is a vertical hyperplane. If S0 ̸= ∅, then S is the horizontal hyperplane H0.

As a corollary of the previous characterization, it is easy to provide counterexamples to
the validity of the Ruling Property for minimal hypersurfaces in the characteristic setting
when n ≥ 2.
Theorem 1.4. Let n ≥ 2 and let S := graph(u), where u(x̄, ȳ) = 1

2x
2
1 − 1

2y
2
1. Then S is a

minimal smooth hypersurface which is not ruled.
These sets of results highlights once more some interesting differences between H1 and

higher dimensional Heisenberg groups and, according to the author’s hope, could give a
little burst in the grasp of such an interesting open problem as the Bernstein problem in
this anisotropic setting.

Plan of the paper. The paper is organized as follows. In section 2 we begin the study of
ruled hypersurfaces, introducing some first properties and examples. In Section 3 we focus
on non-characteristic ruled C1-hypersurfaces, and we prove Theorem 1.2. In Section 4 we
move our attention on ruled conical hypersurfaces, first introducing some basic materials
about intrinsic cones, and then proving Theorem 1.3 and Theorem 1.4.

Acknowledgements. The author would like to thank Davide Vittone, Gianmarco Gio-
vannardi, Andrea Pinamonti, Francesco Serra Cassano and Robert Young for stimulating
conversations and discussions about these topics.

2. Ruled Hypersurfaces

This section is devoted to the discussion of some first properties of ruled hypersurfaces.
First we study the relationship between the ruling property and the characteristic set.
Then we provide some examples and show that the class of ruled hypersurfaces is closed
under the action of many reasonable maps.
Proposition 2.1. Let S be a ruled C1-hypersurface. Then, for any p ∈ S \ S0, there
exists an open neighborhood U of p such that

p ·HTpS ∩ U ⊆ S.

Proof. Assume by contradiction that there exists p ∈ S \ S0 and a sequence (ph)h ⊆
p · HTpS \ S converging to p as h → +∞. Then, for any h ∈ N, there exists λh > 0 and
vh ∈ HTpS such that ph = p · δλh

(vh). Since ph /∈ S and S is closed, there exists sh > 0
maximal such that p · δτ (vh) ∈ S for any τ ∈ [0, sh]. Clearly sh ≤ λh. Therefore, being
S ruled, then qh := p · δsh

(vh) ∈ S0. But then, by construction, (qh)h converges to p as
h → +∞, and so, being S0 closed, we conclude that p ∈ S0, a contradiction. □

Proposition 2.2. Let S be a ruled C1-hypersurface. Let p ∈ S \ S0 be such that
p ·HTpS ∩ S0 = ∅.

Then it holds that
p ·HTpS ⊆ S.

Proof. Let p ∈ S \ S0 satisfy p · HTpS ∩ S0 = ∅, and assume by contradiction that there
exists q ∈ p · HTpS \ S. Then q = p · δλ(v) for some λ > 0 and v ∈ HTpS. Then we can
argue as in the proof of Proposition 2.1 to find s > 0 such that p · δs(v) ∈ S0, which is a
contradiction. □
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Proposition 2.3. Let S be a C1-hypersurface. Assume that
p ·HTpS ⊆ S (2.1)

for any p ∈ S. Then S is ruled.

Proof. It suffices to observe that it is impossible to find p ∈ S \ S0, v ∈ HTpS and s ∈ R
as in Definition 1.1, as this would contradict (2.1). Hence S is trivially ruled. □

Notice that, in view of Proposition 2.2, the notion of ruled hypersurface becomes
much more simpler in the case of non-characteristic hypersurfaces. Indeed, if S is a
non-characteristic ruled C1 hypersurface and p ∈ S, then clearly p · HTpS ∩ S0 = ∅.
Therefore a non-characteristic C1-hypersurface is ruled if and only if it satisfies (2.1).
Now let us discuss some instances of ruled hypersurfaces. We begin with the simplest
non-characteristic smooth hypersurface.

Example 2.4 (Vertical Hyperplanes). Let S be a vertical hyperplane of the form
S = {p ∈ Hn : ⟨(x̄, ȳ), (ā, b̄)⟩ = c}

for some 0 ̸= (ā, b̄) ∈ R2n and c ∈ R. Without loss of generality, we assume that a1 ̸= 0.
It is easy to see that

TpS = span{(a2,−a1, 0, . . . , 0), (a3, 0,−a1, 0, . . . , 0), . . . , (bn, 0, . . . , 0,−a1), T}
for any p ∈ S. Notice that S0 = ∅. We show that S is ruled. Indeed, noticing that
T ∈ TpS for any p ∈ S, it follows that

HTpS = span{Z2|p, . . . , Zn|p,W1|p, . . . ,Wn|p}
for any p ∈ S, where

Zi = aiX1 − a1Xi and Wj = bjX1 − a1Yj (2.2)
for any i = 2, . . . , n and j = 1, . . . , n. Let now p = (x̄, ȳ, t) ∈ S, and let w = (x̄′, ȳ′, 0) ∈
HTpS. Then there exists αj, βj ∈ R such that

w =
 n∑

j=2
αjaj +

n∑
j=1

βjbj,−α2a1, . . . ,−βna1, 0
 .

We conclude noticing that

⟨(x̄′, ȳ′), (ā, b̄)⟩ = a1

n∑
j=2

αjaj + a1

n∑
j=1

βjbj −
n∑

j=2
αja1aj −

n∑
j=1

βja1bj = 0.

Next we consider an instance in the characteristic case.

Example 2.5 (Horizontal Hyperplane). Let S be the horizontal hyperplane H0. In view
of Proposition 2.3, it suffices to show (2.1). Notice that

TpS = span
{
∂

∂x1
, . . . ,

∂

∂yn

}
= span{X1 − y1T, . . . , Xn − ynT, Y1 + x1T, . . . , Yn + xnT}

for any p ∈ S. This in particular implies that S0 = {0}. Therefore, let p = (x̄, ȳ, t) ̸= 0,
and assume without loss of generality that y1 ̸= 0. This implies that

HTpS = span{y2X1 − y1X2, . . . , ynX1 − y1Xn, x1X1 + y1Y1, . . . , xnX1 + y1Yn}.
Therefore, let w = (z, 0) ∈ HTpS, and let αj, βj ∈ R be such that

z =
 n∑

j=2
αjyj +

n∑
j=1

βjxj,−α2y1, . . . ,−αny1, β1y1, . . . , βny1

 .
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Hence it follows that

Q((x̄, ȳ), z) = y1

n∑
j=2

αjyj + y1

n∑
j=1

βjxj −
n∑

j=2
αjy1yj −

n∑
j=1

βjy1xj = 0.

With the next couple of propositions we show that the class of ruled C1-hypersurfaces
is closed under the action of left translations and intrinsic dilations.

Proposition 2.6. Let S be a ruled C1-hypersurface. Then τq(S) is a ruled C1-hypersurface
for any q ∈ Hn.

Proof. Fix q = (x̄q, ȳq, t) ∈ Hn, define S̃ := τq(S) and, given a point p̃ ∈ S̃ \ S̃0, let p ∈ S
be such that p̃ = τq(p). Being τq : S −→ S̃ a diffeomorphism, then dτq|p : TpS −→ Tp̃S̃ is
an isomorphism. Therefore we have that

dτq|p(TpS) = Tp̃S̃.

Moreover, by definition of H, it is also the case that
dτq|p(Hp) = Hp̃.

Hence we infer that
dτq|p(HTpS) = dτq|p(Hp ∩ TpS) = dτq|p(Hp) ∩ dτq|p(TpS) = Hp̃ ∩ Tp̃S̃ = HTp̃S̃.

In particular, notice that p ∈ S \ S0. Let w ∈ p̃ · HTp̃S and assume that there exists
s > 0 maximal with the property that p̃ · δτ (w) ∈ S̃ for any τ ∈ [0, s]. We claim that
p̃ · δs(w) ∈ S̃0. Let v = (ā, b̄, 0) ∈ HTpS be such that dτq|p(v) = w. By the left-invariance
of the horizontal distribution, it follows that w = (ā, b̄, 0). Therefore s is maximal with
the property that p · δτ (v) ∈ S for any τ ∈ [0, s]. Hence p · δs(v) ∈ S0, and so, since

p̃ · δs(w) = p̃ · (sā, sb̄, 0) = q · p · (sā, b̄, 0) = q · (p · δs(v))
and observing that τq(S0) = S̃0, we conclude that p̃ · δs(w) ∈ S̃0.

□

Proposition 2.7. Let S be a ruled C1-hypersurface. Then δλ(S) is a ruled C1-hypersurface
for any λ > 0.

Proof. Fix λ > 0, define S̃ := δλ(S) and, given a point p̃ ∈ S̃ \ S̃0, let p = (x̄, ȳ, t) ∈ S be
such that p̃ = δλ(p). Arguing as in the proof of Proposition 2.6, we get that

dδλ|p(HTpS) = HTp̃S̃. (2.3)
Therefore, again, p ∈ S\S0. Let w ∈ p̃·HTp̃S and assume that there exists s > 0 maximal
with the property that p̃ · δτ (w) ∈ S̃ for any τ ∈ [0, s]. We claim that p̃ · δs(w) ∈ S̃0. Let
v = (ā, b̄, 0) ∈ HTpS be such that dδλ|p(v) = w. We claim that that w = δλ(v). Indeed,
recalling that the Jacobian matrix of δλ is a diagonal matrix with diagonal (λ, . . . , λ, λ2),
then

w(f)(q) =
n∑

j=1
aj
∂(f ◦ δλ)
∂xj

(p) +
n∑

j=1
bj
∂(f ◦ δλ)
∂xj

(p) +
n∑

j=1
(ajyj − bjxj)T (f ◦ δλ)(p)

=
n∑

j=1
λaj

∂f

∂xj

(p̃) +
n∑

j=1
λbj

∂f

∂xj

(p̃) +
n∑

j=1
((λaj)(λyj) − (λbj)(λxj))Tf(p̃).

(2.4)

The conclusion then follows as in the previous proof, just noticing that
δλ(p · δτ (v)) = δλ(p) · δλ(δτ (v)) = p̃ · δλτ (v) = p̃ · δτ (δλ(v)) = p̃ · δτ (w)

for any τ ∈ R, and that δλ(S0) = S̃0. □

In view of Proposition 2.6, we can enlarge the class of examples of ruled hypersurfces.
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Example 2.8 (Non-Vertical Hyperplanes). We already know that H0 is a characteristic
ruled smooth hypersurface. For any fixed q = (x̄q, ȳq, tq) ∈ Hn, we know from Propo-
sition 2.6 that τq(H0) is a characteristic ruled smooth hypersurface. Moreover, an easy
computation shows that

τq(H0) = {(x̄, ȳ, t) ∈ Hn : ⟨(ā, b̄), (x̄, ȳ)⟩ + t+ d = 0},

where (ā, b̄) = (−ȳq, x̄q) and d = −tq. Finally, notice that any hyperplane which is not
vertical can be obtained as left-translation of the horizontal hyperplane H0. Hence we
conclude that every hyperplane of Hn is ruled, and it is non-characteristic if and only if
it is vertical. Finally, notice that we cannot exploit Proposition 2.7 to obtain more ruled
hypersurfaces, since dilations of hyperplanes are hyperplanes.

To conclude this section, we show that the class of ruled hypersurfaces is closed under
the action of the so-called pseudohermitian transformations of Hn. To introduce this
notion, we define the map J : Hn −→ Hn by

J(x̄, ȳ, t) := (−ȳ, x̄, t)
for any p = (x̄, ȳ, t) ∈ Hn. The map J is a global diffeomorphism which preserves the
horizontal distribution, and it is usually known as CR structure. A global diffeomorphism
φ : Hn −→ Hn is said to be a pseudohermitian transformation of Hn if it preserves the
horizontal distribution and it commutes with the CR structure J , that is

dφ(H) ⊆ H and φ ◦ J = J ◦ φ.
Let us begin by considering a special subclass of pseudohermitian transformations. To
this aim, let us define the map φR : Hn −→ Hn by

φR(x̄, ȳ, t) := (R(x̄, ȳ), t), (2.5)
where R is an orthogonal matrix of the form

R =
[

A B
−B A

]
,

where A and B are real-valued n× n matrices.

Proposition 2.9. Let φR be as in (2.5). Then φR is a pseudohermitian transformation.
Moreover, it holds that

dφR|p(ā, b̄, 0) = (R(ā, b̄), 0)
for any p ∈ Hn and any (ā, b̄, 0) ∈ Hp.

Proof. Let p = (x̄, ȳ, t) and (ā, b̄, 0) as in the statement, and let p̃ := φR(p) = (¯̃x, ¯̃y, t).
We first claim that

dφR|p(Xj|p) =
n∑

k=1

(
RkjXk|p̃ +R(n+k)jYk|p̃

)
and

dφR|p(Yj|p) =
n∑

k=1

(
Rk(n+j)Xk|p̃ +Rn+k)(n+j)Yk|p̃

)
for any j = 1, . . . , n. Indeed, let ψ be a C1 function defined in a neighborhood of p̃. Let
us recall that, since (¯̃x, ¯̃y) = R(x̄, ȳ) and R is orthogonal, then (x̄, ȳ) = RT (¯̃x, ¯̃y), which
means, recalling also the special block shape of R, that

−xj =
n∑

k=1

(
−Rkjx̃k −R(n+k)j ỹk

)
=

n∑
k=1

(
−R(n+k)(n+j)x̃k +Rk(n+j)ỹk

)
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and
yj =

n∑
k=1

(
Rk(n+j)x̃k +R(n+k)(n+j)ỹk

)
=

n∑
k=1

(
−R(n+k)jx̃k +Rkj ỹk

)
.

for any j = 1, . . . , n. Then it holds that
dφR|p(Xj|p)(ψ)(p̃) = Xj|p(ψ ◦ φR)(p)

= ∂

∂xj

(ψ ◦ φR)(p) + yjT (ψ ◦ φR)(p)

=
n∑

k=1

(
Rkj

∂ψ

∂xk

(p̃) +R(n+k)j
∂ψ

∂yk

(p̃)
)

+ yjT (ψ)(p̃)

=
n∑

k=1

(
Rkj

(
∂ψ

∂xk

(p̃) + ỹkT (ψ(p̃)
)

+R(n+k)j

(
∂ψ

∂yk

(p̃) − x̃kT (ψ)(p̃)
))

=
n∑

k=1

(
RkjXk|p̃(ψ)(p̃) +R(n+k)jYk|p̃(ψ)(p̃)

)
and, similarly,

dφR|p(Yj|p)(ψ)(p̃) =
n∑

k=1

(
Rk(n+j)Xk|p̃(ψ)(p̃) +R(n+k)(n+j)Yk|p̃(ψ)(p̃)

)
for any j = 1, . . . , n. Hence we conclude that

dφR|p(ā, b̄, 0) =
n∑

j=1
(ajdφR|p(Xj|p) + bjdφR|p(Yj|p))

=
n∑

j,k=1

(
aj

(
RkjXk|p̃ +R(n+k)jYk|p̃

)
+ bj

(
Rk(n+j)Xk|p̃ +Rn+k)(n+j)Yk|p̃

))

=
n∑

k=1

 n∑
j=1

(
Rkjaj +Rk(n+j)bj

)
Xk|p̃ +

n∑
j=1

(
R(n+k)jaj +R(n+k)(n+j)bj

)
Yk|p̃


= (R(ā, b̄), 0).

□

As a consequence of the previous result, it is easy to see that the class of ruled hyper-
surfaces is closed under the action of maps of the form (2.5).

Proposition 2.10. Let S be a ruled C1-hypersurface. Then φR(S) is a ruled C1-hypersurface
for any φR as in (2.5).

Proof. The proof of this result, with the help of Proposition 2.9, follows as the proof of
Proposition 2.6 and Proposition 2.7, noticing that φR(S0) = (φR(S))0 and that, for a
given p = (z, t) ∈ S \ S0, (v, 0) ∈ HTpS and s ∈ R, it holds that

φR(p · δs(v, 0)) = φR(z + sv, t+Q(z, sv))
= (R(z + sv), t+ sQ(z, v))
= (Rz + sRv, t+ sQ(Rz,Rv))
= (Rz, t) · (sRv, 0))
= φR(p) · δs(Rv, 0).

□

As a corollary of Proposition 2.9, we can conclude our initial statement.
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Theorem 2.11. Let S be a ruled C1-hypersurface. Then φ(S) is a ruled C1-hypersurface
for any pseudohermitian transformation φ.

Proof. It follows combining Proposition 2.6, Proposition 2.10 and [CL, Theorem 4.1] □

3. Non-Characteristic Ruled Hypersurfaces

The aim of this section is to characterise non-characteristic ruled C1-hypersurfaces of
Hn, when n ≥ 2. In the first Heisenberg group H1 there are examples of ruled, non-
characteristic, smooth surfaces which are not vertical planes. As an instance, let us
consider the surface S parametrized by the map φ : R2 −→ H1 defined by

φ(t, θ) := (t cos θ, t sin θ, θ).
Notice that φ is smooth and injective. Moreover,

∂φ

∂t
(t, θ) = cos θ ∂

∂x
+ sin θ ∂

∂y
= cos θX|φ(t,θ) + sin θY |φ(t,θ)

and
∂φ

∂θ
(t, θ) = −t sin θ ∂

∂x
+ t cos θ ∂

∂y
+ T = −t sin θX|φ(t,θ) + t cos θY |φ(t,θ) + (1 + t2)T.

These computation implies that S is a smooth, non-characteristic surface, and moreover

HTφ(t,θ)S = span
{
∂φ

∂t
(t, θ)

}
for any (t, θ) ∈ R2. Finally, for given t, θ, s ∈ R, it holds that

(t cos θ, t sin θ, θ) · (s cos θ, s sin θ, 0) = ((t+ s) cos θ, (t+ s) sin θ, θ) ∈ S,

and so S is ruled. However, the situation in higher dimensional Heisenberg groups is quite
different, and the ruling condition turns out to be more restrictive. Indeed, we are going
to prove that the only ruled, non-characteristic, C1-hypersurfaces in Hn, with n ≥ 2, are
vertical hyperplanes.

Proposition 3.1. Assume that n ≥ 2. Let S be a non-characteristic ruled C1-hypersurface
such that 0 ∈ S. Then it holds that

HT0S = H0 ∩ S.

Proof. Since S0 = ∅ and S is ruled, then HT0S ⊆ S ∩ H0. Assume by contradiction
that there exists q = (zq, 0) ∈ (S ∩ H0) \ HT0S. Again, being S ruled, it holds that
q ·HTqS ⊆ S, and so q ·HTqS∩H0 ⊆ S∩H0. Note that both HT0S and q ·HTqS∩H0 are
affine subspaces of H0. Moreover, dim(HT0S) = 2n− 1 and dim(q ·HTqS ∩H0) ≥ 2n− 2.
Therefore we conclude that
dim(HT0S ∩ (q ·HTqS ∩H0)) ≥ dim(HT0S) + dim(q ·HTqS ∩H0) − 2n = 2n− 3 ≥ 1,

since n ≥ 2. Therefore (HT0S)∩(q·HTqS∩H0) contains a one-dimensional affine subspace
of H0. In particular, let p = (zp, 0) ∈ HT0S ∩ (q · HTqS ∩ H0). Let v ∈ HTpS be such
that p · tv = q for some t ∈ R, and let γp(t) := (tzp, 0). Notice that, as p ∈ HT0S, S is
ruled and S0 = ∅, then γp(t) ∈ S for any t ∈ R. Moreover, γ̇p(1) = (zp, 0) ∈ Hp, and so
w := (zp, 0) ∈ HTpS. Again, being S ruled and S0 = ∅, then p ·HTpS ⊆ S. Therefore, in
particular, it holds that

p · (αv + βw) ∈ S

for any α, β ∈ R. Hence, if we let γq(t) := (tzq, 0), we conclude that γ(t) ∈ S ∩H0 for any
t ∈ R, and so γ̇q(0) = (zq, 0) ∈ T0S. Since clearly (zq, 0) ∈ H0, then q ∈ HT0S, which is a
contradiction. □
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Proposition 3.2. Assume that n ≥ 2. Let S be a non-characteristic ruled C1-hypersurface
such that 0 ∈ S. Assume in addition that T ∈ T0S. Then S is a vertical hyperplane.

Proof. We divide the proof into some steps.
Step 1. Thanks to Proposition 3.1, we know that there exists 0 ̸= (ā, b̄) ∈ R2n such that

HT0S = H0 ∩ S = {(x̄, ȳ, 0) ∈ Hn : ⟨(ā, b̄), (x̄, ȳ)⟩ = 0}.

We assume without loss of generality that a1 ̸= 0, and we let f(x̄, ȳ) := ⟨(ā, b̄), (x̄, ȳ)⟩.
We claim that

π(p ·HTpS) ⊆ π(HT0S)
for any p ∈ HT0S, where here and in the following the map π : Hn −→ R2n is defined by

π(x̄, ȳ, t) := (x̄, ȳ).

Assume by contradiction that there exists p = (zp, 0) ∈ HT0S and v = (v, 0) ∈ HTpS
such that zp + v /∈ π(HT0S). This is equivalent to say that f(zp + v) ̸= 0. Let us define
q := p · v = (zp + v,Q(zp, v)). Being S ruled, then q ∈ S. Moreover, Q(zp, v) ̸= 0, since
otherwise q ∈ HT0S and consequently f(zp + v) = 0. Moreover, since zp ∈ HT0S, then,
letting γ(t) := (tzp, 0), it holds that γ(t) ∈ S for any t ∈ R, and so (zp, 0) ∈ HTpS. Hence,
since p ·HTpS ⊆ S, we conclude in particular that

P := {(zp, 0) + α(zp, 0) + β(v,Q(zp, v)) : α, β ∈ R} ⊆ S.

Notice that P is a vector subspace of R2n+1. Then in particular 0 ∈ P and (v,Q(zp, v)) ∈
T0S. Therefore, as T ∈ T0S, then (v, 0) ∈ T0S, and so, since (v, 0) ∈ H0, we conclude
that (v, 0) ∈ HT0S. Then f(v) = 0, and so, as p ∈ HT0S, f(zp + v) = f(zp) + f(v) = 0,
a contradiction.
Step 2. Let p = (zp, 0) ∈ HT0S. Thanks to Step 1, we know that π(p·HTpS) ⊆ π(HT0S).
Therefore, if v ∈ HTpS, then f(zp + v) = 0. Since f(zp) = 0, we conclude that f(v) = 0,
which implies that

HTpS = HT0S (3.1)
for any p ∈ HT0S. Moreover, an easy computation shows that

HT0S = span{Z2|0, . . . , Zn|0,W1|0, . . . ,Wn|0},

where Z2, . . . , Zn,W1, . . . ,Wn are as in (2.2). Then (3.1) allows to conclude that

HTpS = span{Z2|p, . . . , Zn|p,W1|p, . . . ,Wn|p}. (3.2)

Step 3. Let us define

Z := {z ∈ π(HT0S) : Q(z, w) = 0 for any w ∈ π(HT0S)}.

Notice that, being Q a bilinear map, then Z is a vector subspace of π(HT0S). We claim
that dim(Z) ≤ 2n−2. Indeed, assume by contradiction that dim(Z) ≥ 2n−1. Then, since
Z ⊆ π(HT0S) and dim(π(HT0S)) = 2n − 1, we conclude that Z = π(HT0S). We show
that this leads to a contradiction. Assume first that a2 = . . . = an = b2 = . . . = bn = 0,
and set z1 = (0,−1, 0 . . . , 0) and z2 = (0̄, 0, 1, 0, . . . , 0). Then f(z1) = f(z2) = 0 and
Q(z1, z2) = 1 ̸= 0, which implies that z1, z2 /∈ Z. If it is not the case that a2 = . . . =
an = b2 = . . . = bn = 0, then assume without loss of generality that a2 ̸= 0. Let
z1 = (−a2, a1, 0, . . . , 0) and z2 = (−b1, 0, . . . , 0, a1, 0, . . . , 0). Then f(z1) = f(z2) = 0 and
Q(z1, z2) = a1a2 ̸= 0, which implies again that z1, z2 /∈ Z. Therefore we conclude that
dim(Z) ≤ 2n− 2, and so in particular

π(HT0S) \ K = π(HT0S). (3.3)
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Step 4. We claim that for any q = (zq, tq) = (xq
1, . . . , x

q
n, y

q
1, . . . , y

q
n, tq) such that zq ∈

π(HT0S) \ Z there exists p = (zp, 0) = (xp
1, . . . , x

p
n, y

p
1, . . . , y

p
n, 0) ∈ HT0S and v ∈ HTpS

such that
q = p · v. (3.4)

Indeed, let q as above, and let p ∈ HT0S and v ∈ HTpS to be chosen later. In view of
(3.2), we can express v as

v =
n∑

j=2
αjZj|p +

n∑
j=1

βjWj|p =
 n∑

j=2
αjaj +

n∑
j=1

βjbj

X1|p −
n∑

j=2
αja1Xj|p −

n∑
j=1

βja1Yj|p.

for some α2, . . . , αn, β1, . . . , βn ∈ R. Therefore, we infer that

p · v =
xp

1 +
n∑

j=2
αjaj +

n∑
j=1

βjbj, x
p
2 − α2a1, . . . , y

p
n − βna1, Q(zp, v)

 .
Let us choose

αi = xp
i − xq

i

a1
and βj =

yp
j − yq

j

a1
for any i = 2, . . . , n and any j = 1, . . . , n. This choice implies that (p · v)i = xq

i and
(p · v)j = yq

j−n for any i = 2, . . . , n and any j = n + 1, . . . , 2n. Moreover, since f(zp) =
f(zq) = 0, it holds that

(p · v)1 = xp
1 +

n∑
j=2

αjaj +
n∑

j=1
βjbj = 1

a1

 n∑
j=1

(ajx
p
j + bjy

p
j ) −

m∑
j=2

ajx
q
j +

n∑
j=1

bjy
q
j

 = xq
1.

Finally, notice that

Q(zp, v) =
 n∑

j=2
αjaj +

n∑
j=1

βjbj

 yp
1 −

n∑
j=2

αja1y
p
j +

n∑
j=1

βja1x
p
j

= 1
a1

( n∑
j=2

ajx
p
jy

p
1 −

n∑
j=2

ajx
q
jy

p
1 +

n∑
j=1

bjy
p
j y

p
1 −

n∑
j=1

bjy
q
jy

p
1

−
n∑

j=2
a1x

p
jy

p
j +

n∑
j=2

a1x
q
jy

p
j + a1x

p
1y

p
1 +

n∑
j=2

a1x
p
jy

p
j −

n∑
J=1

a1x
p
jy

q
j

)

= 1
a1

(
−

n∑
j=1

ajx
q
jy

p
1 −

n∑
j=1

bjy
q
jy

p
1 +

n∑
j=1

a1x
q
jy

p
j −

n∑
j=1

a1x
p
jy

q
j

)
= Q(zp, zq),

where in the third equality we exploited the fact that f(zp) = 0, while the fourth equality
follows from f(zq) = 0. Since we assumed zq /∈ Z, then there exists w ∈ π(HT0S) such
that Q(w, zq) ̸= 0. Therefore, if we choose

zp = tq
Q(w, zq)

w,

we conclude that p ∈ HT0S and that Q(zp, zq) = tq.
Step 5. We are now able to conclude. Indeed, thanks to (3.4) we infer that

π(HT0S \ K) × R ⊆ S.

But then, being S closed and recalling (3.3), we conclude that
π(HT0S) × R = π(HT0S) \ K × R = π(HT0S) × R ⊆ S = S.

Therefore S contains the vertical hyperplane π(HT0S) × R. The thesis then follows in
view of the topological assumptions on S. □
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Proposition 3.3. Assume that n ≥ 2. Let S be a non-characteristic ruled C1-hypersurface.
Then there exists q ∈ S such that T ∈ T0τq−1(S).

Proof. Let S be as in the statement. We first claim that there exists q ∈ S such that
T ∈ TqS. Indeed, in this case the left-invariance of T would imply that

dτq−1|q(T |q) = T |0.

We split the proof of the claim into some steps.
Step 1. Assume by contradiction that

T |q /∈ TqS (3.5)
for any q ∈ S. By the left-invariance of T and Proposition 2.6, we can preserve (3.5)
assuming in addition that 0 ∈ S. Therefore, thanks to Proposition 3.1, we infer that

HT0S = H0 ∩ S = {(x̄, ȳ, 0) ∈ Hn : ⟨(x̄, ȳ), (ā, b̄)⟩ = 0}

for some 0 ̸= (ā, b̄) ∈ R2n. As usual, we assume that a1 ̸= 0. Moreover, (3.5) implies
that S is an entire t-graph. Since T |0 /∈ T0S and S is non-characteristic, there exists
v = (zv, tv) ∈ T0S such that f(zv) ̸= 0 and tv ̸= 0. Let us set c := −f(zv)

tv
. We claim that

S = {(z, t) ∈ Hn : f(z) + ct = 0} =: Sc.

Indeed, let p = (zp, tp) ∈ S. If tp = 0, then f(zp) = 0, and so p ∈ Sc. Assume then tp ̸= 0.
Then, being S a t-graph, we infer that f(zp) ̸= 0.
Step 2. Let v1, . . . , v2n−1 be a basis of HTpS. Since S is ruled, then p · HTpS ⊆ S.
We claim that there exists j = 1, . . . , 2n − 1 such that Q(zp, vj) ̸= 0. Indeed, assume
by contradiction that Q(zp, v1) = . . . = Q(zp, v2n−1) = 0. In this case, recalling that S is
ruled, it holds that

p ·HTpS =


zp +

2n−1∑
j=1

αjvj, tp

 : α1, . . . , α2n−1 ∈ R

 ⊆ S. (3.6)

We claim that
span{(v1, 0), . . . , (v2n−1, 0)} = span{Z2|0, . . . , Zn|0,W1|0, . . . ,Wn|0}, (3.7)

where Z2, . . . , Zn,W1, . . . ,Wn are defined as (2.2). Indeed, if it was not the case, then
(3.6) would imply the existence of q = (zq, tp) ∈ S such that zq ∈ π(HT0S). But since
tp ̸= 0 and since (zq, 0) ∈ S, we would contradict the fact that S is a t-graph. Notice that
(3.7) implies that

Z2|0, . . . , Zn|0,W1|0, . . . ,Wn|0 ∈ Hp

and so, observing that

Zj|0 = aj
∂

∂x1
− a1

∂

∂xj

= ajX1|p − a1Xj|p + (a1yj − ajy1)T

for any j = 2, . . . , n and

Wj|0 = bj
∂

∂x1
− a1

∂

∂yj

= bjX1|p − a1Yj|p + (−a1xj − bjy1)T

for any j = 1, . . . , n, we conclude that

zp = y1

a1
(−b1, . . . ,−bn, a1, . . . , an),

which implies in particular that f(zp) = 0, a contradiction.
Step 3. Thanks to the previous step, we assume that there exists j = 1, . . . , 2n− 1 such
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that Q(zp, vj) ̸= 0. In this case, it holds that p ·HTpS ∩H0 ∩ S = p ·HTpS ∩HT0S ̸= 0.
Therefore, let q = (zq, 0) ∈ p ·HTpS ∩HT0S, and let λ ∈ R be such that

(zq, 0) = (zp + λvj, tp + λQ(zp, vj)), (3.8)
or equivalently λ = − tp

Q(zp,vj) . Arguing as in the proof of Proposition 3.2, we see that

P := {(zq, 0) + α(zq, 0) + β(vj, Q(zq, vj)) : α, β ∈ R} ⊆ S,

and so we conclude as above that (vj.Q(zq, vj)) ∈ T0S. This means that there exists
w ∈ π(HT0S) and α ∈ R such that

(vj.Q(zq, vj)) = (w + αzv, αtv).
Therefore, recalling (3.8), we get that

(zp, tp) = (zq, 0) − λ(vj, Q(zp, vj)) = (zq − λw − αλzv,−αλtv) .
Therefore, since zq, w ∈ π(HT0S) we can conclude that

f(zp) + ctp = −αλ(f(zv) + ctv) = 0,
which implies that p ∈ Sc. Therefore we proved that S ⊆ Sc, and so, arguing as at the
end of the proof of Proposition 3.2, we conclude that S = Sc.
Step 4. We conclude noticing that Sc is a non-vertical hyperplane, in such a case we
already know that S0 ̸= ∅. A contradiction then follows. □

Proof of Theorem 1.2. By Proposition 3.3, there exists q ∈ S such that T ∈ T0τq−1(S).
Moreover, by Proposition 2.6, S̃ := τq−1(S) is a non-characteristic ruled C1-hypersurface.
Notice that, by construction, 0 ∈ S̃ and T |0 ∈ T0S̃. Therefore, thanks to Proposition 3.2,
S̃ is a vertical hyperplane. To conclude, it suffices to notice that S = τq(S̃) and that any
left translation of a vertical hyperplane is itself a vertical hyperplane. □

4. Ruled Intrinsic Cones

In this section we study ruled hypersurfaces among the class of hypersurfaces which are
invariant under intrinsic dilations, that is the class of intrinsic cones. A set C ⊆ Hn is a
cone if

δλ(C) ⊆ C

for any λ > 0. It is easy to see that, if C is a cone, then 0 ∈ C, δλ(C) = C and
δλ(∂C) = ∂C for any λ > 0. We say that S is a conical Ck-hypersurface, for a given k ≥ 1,
if S is both a cone and a Ck-hypersurface. Notice that, in view of the aforementioned
properties, if C is a cone with boundary of class Ck, then ∂C is a conical Ck-hypersurface.
The simplest instance of non-characteristic conical C1-hypersurfaces is given by vertical
hyperplanes passing through the origin. Another simple instance is given by the horizontal
plane H0. In this case we already know that (H0)0 = {0}. Finally, if u is an homogeneous
quadratic polynomial, then graph(u) is a conical smooth hypersurface. Moreover, in this
last case, S0 may be an infinite set. As an instance, let us consider the graph associated
to u(x̄, ȳ) = ∑n

j=1 xjyj. It is easy to see that
TpS = span{X1, . . . , Xn, Y1 + 2x1T, . . . , Yn + 2xnT}

for any p = (x̄, ȳ, u(x̄, ȳ)) ∈ graph(u). Therefore in this case we have that
S0 = {(x̄, ȳ, u(x̄, ȳ)) ∈ graph(u) : x1 = . . . = xn = 0}.

When a C1-hyersurface is a cone, we can say more about the structure of S0.

Proposition 4.1. Let S be a conical C1-hypersurface. Then S0 is a cone.
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Proof. Let p ∈ S0 and λ > 0. We prove that q := δλ(p) ∈ S0. If p = 0 the thesis is trivial.
Assume that p ̸= 0. We prove that Hq = TqS. Since S is a cone, then δλ : S −→ S
is a diffeomorphism, and consequently, recalling (2.3), dδλ|p : HTpS −→ HTqS is an
isomorphism. we conclude that dim(HTpS) = dim(HTqS), which means that q ∈ S0.

□

Proposition 4.2. Let S be a conical C1-hypersurface. Then S0 ⊆ H0. Moreover, for any
p ∈ S0 there is a horizontal half line γ : [0,+∞) −→ S0 such that γ(0) = 0 and γ(1) = p.
Proof. Let p = (x̄, ȳ, t) ∈ S0 \ {0}, and set γ(0) = 0 and γ(λ) := δλ(p). Then γ is a
smooth curve with

γ̇(λ) = (x̄, ȳ, 2λt) =
n∑

j=1
xjXj +

n∑
j=1

yjYj + 2λtT.

Moreover, thanks to Proposition 4.1, then γ([0,+∞)) ⊆ S0. Finally, since γ(1) = p, S is
a cone and p ∈ S0, then γ̇(1) ∈ TpS = Hp, and so t = 0. □

The shape of conical C1-hypersurfaces strongly depends on the shape of the associ-
ated characteristic set. We begin recalling the following simple rigidity result for non-
characteristic conical hypersurfaces, which can be obtained as an easy consequence of
[FSSC, Theorem 4.1].
Theorem 4.3. Let S be a conical C1-hypersurface. Then S0 = ∅ if and only if S is a
vertical hyperplane. Moreover, it holds that

S = {(v, t) : (v, 0) ∈ HT0S, t ∈ R}.

Thanks to Theorem 4.3, we know how to characterize non-characteristic conical C1-
hypersurfaces. Hence, in the rest of this section we assume that S0 ̸= 0. In this case, as
the next proposition shows, it suffices to reduce to the analysis of t-graphs.
Proposition 4.4. Let S be a conical C1-hypersurface. If S0 ̸= ∅, then S is a t-graph.
Proof. Since S0 ̸= ∅, then Proposition 4.1 implies that 0 ∈ S0. Therefore

H0 = T0S =
{
∂

∂x1
, . . . ,

∂

∂yn

}
.

Hence there exists r > 0 and a function ũ ∈ C1(B2n
2r (0)) such that

S ∩B2n+1
2r (0) = {(x̄, ȳ, ũ(x̄, ȳ) : (x̄, ȳ) ∈ B2n

2r (0)},
where here and throughout the paper we denote by Bk

r (p) the Euclidean ball in Rk of
radius r centered at p. Notice that, being S a cone, then

ũ(λx̄, λȳ) = λ2u(x̄, ȳ)
for any (x̄, ȳ) ∈ B2n

2r (0) and for any λ > 0 such that (λx̄, λȳ) ∈ B2n
2r (0). Let us define

u : R2n −→ R by

u(x̄, ȳ) :=
(

|(x̄, ȳ)|
r

)2

ũ

(
r

(x̄, ȳ)
|(x̄, ȳ)|

)
.

Then clearly u ∈ C1(R2n) and u ≡ ũ on B2n
2r (0). Moreover, by definition,

G := {(x̄, ȳ, u(x̄, ȳ) : (x̄, ȳ) ∈ R2n}.
Let now p = (x̄, ȳ, t) ∈ S. Then there exists λ > 0 such that δλ(p) ∈ B2n+1

2r (0) ∩S. Hence
λ2t = ũ(λx̄, λȳ) = u(λx̄, λȳ) = λ2u(x̄, ȳ),

which allows to conclude that t = u(x̄, ȳ) and p ∈ G. Therefore, being both S and G
conical C1-hypersurfaces, we conclude that S = G. □
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In Section 2 we exhibited two examples of ruled conical smooth hypersurfaces, namely
the horizontal hyperplane H0 and the vertical hyperplanes passing through the origin. The
aim of the rest of this section is to show that, in the class of conical C2-hypersurfaces,
these are the only possible examples. We begin with the following characterization, whose
proof is inspired by the proof of [NGR, Lemma 4.4].

Theorem 4.5. Let S be a conical C1-hypersurface. Assume that S0 = {0}. Then S is
ruled if and only if S is the horizontal plane H0.

Proof. For sake of notational simplicity, we prove the statement when n = 2, being the
other cases completely analogous. We already know that H0 is ruled. Conversely, let S
be ruled, and assume by contradiction that there exists p = (z, t) ∈ S with t ̸= 0. Then,
thanks to Proposition 4.2, p ∈ S \ S0. Moreover, p ·HTpS ∩ S0 = ∅, since otherwise there
would be an horizontal line joining p and 0, which contradicts the fact that horizontal
lines passing through 0 lie in H0. Therefore, being S ruled and thanks to Proposition 2.2,
we infer that p · HTpS ⊆ S. It is well known (cf. for instance [CL]) that there exists an
orthonormal basis u, v, w of HTpS such that

J(u) = w and J(v) = νS(p). (4.1)

Let us set
M :=

[
u v J(u) J(v)

]T
.

Then, defining φR as in (2.5) and thanks to Proposition 2.9, we can assume that u = X1,
v = X2 and w = Y1. Let us define φ : (0,+∞) × R3 −→ S by

φ(λ, α, β, γ) := δλ

(
p ·
(
α

λ
u+ β

λ
v + γ

λ
w

))
.

Being S a ruled cone, the map φ is well-defined. Moreover, notice that

φ(λ, α, β, γ) = δλ

(
z + αu+ βv + γw

λ
, t+ αQ(z, u) + βQ(z, v) + γQ(z, w)

λ

)
= (λz + αu+ βv + γw, λ2t+ λαQ(z, u) + λβQ(z, v) + λγQ(z, w))
= (λx1 + α, λx2 + β, λy1 + γ, λy2, λ

2t+ λαy1 + λβy2 − λγx1).

Therefore, an easy computation shows that

Dφ(λ, α, β, γ) =


x1 1 0 0
x2 0 1 0
y1 0 0 1
y2 0 0 0

2λt+ αy1 + βy2 − γx1 λy1 λy2 −λx1


We claim that y2 ̸= 0. Otherwise, recalling that p ·HTpS ⊆ S, we would have that

(x1, x2, y1, 0, t) · (α, β, γ, 0, 0) = (x1 + α, x2 + β, y1 + γ, 0, t+ αy1 − γx1) ∈ S

for any α, β, γ ∈ R. Therefore, choosing α = −x1, β = −x2 and γ = −y1, we conclude
that (0, 0, 0, 0, t) ∈ S, which is a contradiction, since 0 ∈ S and S, thanks to Proposition
4.4, is a t-graph. Hence y2 ̸= 0, and so, since φ(0, 0, 0, 0) = p, there exists r > 0 such that
Dφ has maximum rank in B4

r (0). In particular,

Tφ(q)S = span
{
∂φ

∂λ
(q), ∂φ

∂α
(q), ∂φ

∂β
(q), ∂φ

∂γ
(q)
}
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for any q ∈ B4
r (0). Notice that, if we define the 1-form ω by

ω = dt−
n∑

j=1
yjdxj +

n∑
j=1

xjdyj,

then v ∈ H if and only if ω(v) = 0 for any v ∈ THn. Fix q = (λ, α, β, γ) ∈ B4
r (0). Then

ω|φ(q)

(
∂φ

∂λ
(q)
)

= 2(λt+ αy1 + βy2 − γx1),

and moreover

ω|φ(q)

(
∂φ

∂α
(q)
)

= −γ, ω|φ(q)

(
∂φ

∂β
(q)
)

= 0, ω|φ(q)

(
∂φ

∂γ
(q)
)

= α.

Therefore, if we choose α = γ = 0, we conclude that

span
{
∂φ

∂α
(q), ∂φ

∂β
(q), ∂φ

∂γ
(q)
}

⊆ HTφ(q)(S).

Moreover, since y2 ̸= 0 we can choose β = −λt
y2

to conclude that

∂φ

∂λ
(q) ∈ HTφ(q)S.

Since rank(Dφ(q)) = 4, we proved that

φ

(
λ, 0,−λt

y2
, 0
)

=
(
λx1, λx2 − λt

y2
, λy1, λy2, 0

)
∈ S0

for any λ > 0 small enough. Since y2 ̸= 0, we proved that there exists p̃ ̸= 0 such that
p̃ ∈ S0. This is a contradiction with the assumption S0 = {0}. □

We are left with the analysis of ruled conical hypersurfaces S with infinite characteristic
set. In this case we limit ourselves to consider conical C2-hypersurfaces. Indeed, in
this simpler situation, the next proposition shows that it suffices to consider graphs of
quadratic polynomials.

Proposition 4.6. Let S be a conical C2-hypersurfaces. Assume that S0 ̸= ∅. Then
S = graph(u) for some homogeneous quadratic polynomial u.

Proof. We already know from Proposition 4.4 that S = graph(u), where u ∈ C1(R2n).
Moreover, since S is a C2-hypersurface, then u ∈ C2(R2n). Finally, since 0 ∈ S0, then
∇u(0) = 0. Therefore, the second-order Taylor expansion of u in 0 reads as

u(p) = P2(p) + o(|p|2),
where P2 is an homogeneous quadratic polynomial. We show that u = P2. Let p ∈ R2n,
and let α > 0. Then it holds that

|u(p) − P2(p)| = |u(αp) − P2(αp)|
α2 = |p|2 o(α

2|p|2)
α2|p|2

as α → +∞. The thesis then follows letting α → +∞. □

Proof of Theorem 1.3. For sake of notational simplicity, we assume again that n = 2,
being the other cases completely analogous. If S0 = {0} we already know from Proposition
4.5 that S = H0. Let us assume that S0 is infinite. We divide the proof into some steps.
Step 1. Thanks to Proposition 4.6, we assume that S = graph(u), where

u(x̄, ȳ) = ax2
1 + bx2

2 + cy2
1 + dy2

2 + ex1x2 + fx1y1 + gx1y2 + hx2y1 +mx2y2 + py1y2,
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for some a, b, . . . ,m, p ∈ R. Let us define φ : R4 −→ graph(u) by
φ(x̄, ȳ) = (x̄, ȳ, u(x̄, ȳ)).

Then φ is a global C2 parametrization of S. Therefore, for any p = (x̄, ȳ) ∈ R4, Tφ(p)S is
generated by

∂φ

∂x1
(p) = X1 + (2ax1 + ex2 + (f − 1)y1 + gy2)T,

∂φ

∂x2
(p) = X2 + (ex1 + 2bx2 + hy1 + (m− 1)y2)T,

∂φ

∂x2
(p) = Y1 + ((f + 1)x1 + hx2 + 2cy1 + py2)T

and
∂φ

∂x2
(p) = Y2 + (gx1 + (m+ 1)x2 + py1 + 2dy2)T.

Let us define the 4 × 4 real-valued matrix M by

M =


2a e f − 1 g
e 2b h m− 1

f + 1 h 2c p
g m+ 1 p 2d

 ,
and, for any j = 1, . . . , 4, we let vj be the j-th row of M . Notice that p = (z, t) ∈ S is a
characteristic point of S if and only if M · z = 0.
Step 2. We prove that rank(M) ∈ {2, 3}. Since we are assuming that S0 is infinite,
then rank(M) ≤ 3, and so in particular S0 is a linear subspace of R4 with dim(S0) ≥ 1.
Moreover, rank(M) ̸= 0, since otherwise we would have that S = S0 ⊆ H0, and so
S = S0 = H0, which is impossible since 0 is the only characteristic point of H0. Moreover,
we claim that rank(M) ≥ 2. Otherwise, if rank(M) = 1, then we can assume without
loss of generality that v1 ̸= 0 and that there exist A,B,C ∈ R such that v2 = Av1,
v3 = Bv1 and v4 = Cv1. Therefore, in particular, we have that e = 2Aa, f = 2Ba− 1 and
g = 2Ca. Moreover, since h = Be and h = A(f − 1), we infer that 0 = Be− A(f − 1) =
2ABa − 2ABa + 2A = 2A, and so A = 0. Moreover, since p = Bg and p = C(f − 1),
we conclude as above that C = 0. But this is impossible, since it would imply that
m− 1 = m+ 1 = 0. Therefore we conclude that rank(M) ∈ {2, 3}.
Step 3. Let now p = (z, p) ∈ S \ S0. Since then M · z ̸= 0, we can assume that
⟨v1, z⟩ ̸= 0. Hence, there exists an open neighborhood Ũ of p such that ⟨v1, zq⟩ ̸= 0 for
any q = (zq, tq) ∈ Ũ . This implies in particular that M · zq ̸= 0 for any q ∈ Ũ , and so
Ũ ∩S ⊆ S \S0. Let now U be an open neighborhood of p such that U ⋐ Ũ . We are going
to show that there exists an open neighborhood W of 0 such that

HTpS ∩W ⊆ {(x̄, ȳ) ∈ R4 : u(x̄, ȳ) = 0} =: G. (4.2)
Let us define

A = ⟨v2, z⟩
⟨v1, z⟩

, B = ⟨v3, z⟩
⟨v1, z⟩

, C = ⟨v4, z⟩
⟨v1, z⟩

.

Recalling the computations of the first step, it is clear that
HTpS = span{X2 − AX1, Y1 −BX1, Y2 − CX1}.

Therefore, being S ruled and p ∈ S \ S0, it follows that
(x1, x2, y1, y2, u(x̄, ȳ)) · (−αA,−βB,−γC, α, β, γ, 0)

= (x1 − αA− βB − γC, x2 + α, y1 + β, y2 + γ,

u(x̄, ȳ) − αAy1 − βBy1 − γCy1 + αy2 − βx1 − γx2) ∈ S
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for any α, β, γ ∈ R small enough. Hence, noticing that
u(x1 − αA− βB − γC, x2 + α, y1 + β, y2 + γ) =

ax2
1 + aα2A2 + aβ2B2 + aγ2C2 − 2aαAx1 − 2aβBx1 − 2aγCx1 + 2aαβAB

+ 2AαγAC + 2aβγBC + bx2
2 + 2bαx2 + bα2 + cy2

1 + 2cβy1 + cβ2 + dy2
2 + 2dγy2

+ dγ2 + ex1x2 + eαx1 − eαAx2 − eα2A− eβBx2 − eαβB − eγCx2 − eαγC

+ fx1y1 + fβx1 − fαAy1 − fαβA− fβBy1 − fβ2B − fγCy1 − fβγC

+ gx2y2 + gγx1 − gαAy2 − gαγA− gβBy2 − gβγB − gγCy2 − gγ2C

+ hx2y1 + hβx2 + hαy1 + hαβ +mx2y2 +mγx2

+mαy2 +mαβ + py1y2 + pγy1 + pβy2 + pβγ,

we infer that
aα2A2 + aβ2B2 + aγ2C2 − 2aαAx1 − 2aβBx1 − 2aγCx1 + 2aαβAB
+ 2AαγAC + 2aβγBC + 2bαx2 + bα2 + 2cβy1 + cβ2 + 2dγy2

+ dγ2 + eαx1 − eαAx2 − eα2A− eβBx2 − eαβB − eγCx2 − eαγC

+ (f + 1)βx1 − (f − 1)αAy1 − fαβA− (f − 1)βBy1 − fβ2B − (f − 1)γCy1 − fβγC

+ gγx1 − gαAy2 − gαγA− gβBy2 − gβγB − gγCy2 − gγ2C

+ hβx2 + hαy1 + hαβ + (m+ 1)γx2

+ (m− 1)αy2 +mαβ + pγy1 + pβy2 + pβγ = 0

for any α, β, γ ∈ R small enough. Hence, recalling the definition of A,B and C, we
conclude that

+ aα2A2 + aβ2B2 + aγ2C2 + 2aαβAB + 2AαγAC + 2aβγBC + bα2

+ cβ2 + dγ2 − eα2A− eαβB − eαγC − fαβA− fβ2B − fβγC

− gαγA− gβγB − gγ2C + hαβ +mαβ + pβγ = 0

for any α, β, γ ∈ R small enough, which is equivalent to (4.2).
Step 4. Let us define

Pp := span{(−A, 1, 0, 0), (−B, 0, 1, 0), (−C, 0, 0, 1)}.

Then (4.2) implies that Pp ∩π(W ) ⊆ G. Moreover, it is easy to see that N := (1, A,B,C)
is the Euclidean normal to Pp in R4. Let us define V = π(U). Since π is open, then
V is an open neighborhood of z. Moreover, being S a t-graph, then π|S is invertible,
V = π(U ∩ S) = π(U ∩ (S \ S0)) and U ∩ S = π−1(V ). Therefore, if z̃ ∈ V , we let z̃ = zq,
where q is the unique point in U ∩ S such that π(q) = zq. For any zq ∈ V , we define

Aq = ⟨v2, zq⟩
⟨v1, zq⟩

, Bq = ⟨v3, zq⟩
⟨v1, zQ⟩

, Cq = ⟨v4, zq⟩
⟨v1, zQ⟩

,

and we let
Pq := span{(−Aq, 1, 0, 0), (−Bq, 0, 1, 0), (−Cq, 0, 0, 1)}.

Again, Nq := (1, Aq, Bq, Cq) is the Euclidean normal to Pq in R4. Notice in particular
that Ap = A, Bp = B, Cp = C and Pp = P , and that, since U ⋐ Ũ ⊆ S \ S0, W can be
chosen in such a way that Pq ∩π(W ) ⊆ G for any zq ∈ V . Moreover, thanks to the choice
of U , Aq, Bq and Cq are smooth functions on V .
Step 5. We claim that one between Aq, Bq, Cq is not constant in any neighborhood
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of z. Indeed, let Z be a neighborhood of z, let a1, . . . , a4, b1, . . . , b4 ∈ R be such that
b1x

′
1 + b2x

′
2 + b3y

′
1 + b4y

′
2 ̸= 0 for any (x̄′, ȳ′) ∈ Z, and define

f(x̄′, ȳ′) := a1x
′
1 + a2x

′
2 + a3y

′
1 + a4y

′
2

b1x′
1 + b2x′

2 + b3y′
1 + b4y′

2
.

If f is constant on Z, then ∇f ≡ 0 on Z. A simple computation shows that this is
equivalent to
a1b2 − a2b1 = a1b3 − a3b1 = a1b4 − a4b2 = a2b3 − a3b2 = a2b4 − a4b2 = a3b4 − a4b3 = 0.

This implies that the matrix

M =
[
a1 a2 a3 a4
b1 b2 b3 b4

]
has rank one. Therefore, if Aq, Bq and Cq were all constant functions on Z, then we would
have that rank(M) ≤ 1, which contradicts the fact that rank(M) > 1. Therefore without
loss of generality, we assume that Aq is not constant in any neighborhood of z.
Step 6. Since Aq is not constant in any neighborhood of z, there exists s1, s2 ∈ R with
s1 < s2 such that A ∈ (s1, s2) and for any s ∈ (s1, s2) there exists qs ∈ U such that
Nqs = (1, s, Bqs , Cqs). This implies that ⋃s∈(s1,s2) Pqs ∩ π(W ) has non-empty interior. But
then, since Pq∩π(W ) ⊆ G for any q ∈ U , G has non-empty interior. Being u a polynomial,
the only possibility is that u ≡ 0, and thus S = H0. □

Proof of Theorem 1.4. S is clearly a conical smooth hypersurface. Let p ∈ S \ S0. It is
well-known that

N(p) = 1√
1 + |∇u(z)|2R2n

(∇u(z),−1) = 1√
1 + x2

1 + y2
1

(x1, 0, . . . , 0,−y1, 0, . . . , 0),

and so
νH(p) = νH(z) = 1√

2(x1 − y1)2
(x1 − y1, 0, . . . , 0, x1 − y1, 0, . . . , 0).

Since in this case νH does not depend on t, an easy computation shows that
divH νH(p) = divR2n νH(z) = 0 (4.3)

for any p ∈ S \S0. Since n ≥ 2, (4.3) allows us to apply [CHY, Corollary F] and [BASCV,
Theorem 5.15], which, together with [SC, Example 5.29], imply that S is minimal. We
conclude noticing that, in view of Theorem 1.3, S is not ruled. □
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