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Abstract. In this paper we review some recent results on nonlocal interaction problems. The
focus is on interaction kernels that are anisotropic variants of the classical Coulomb kernel.

In other words, while preserving the same singularity at zero of the Coulomb kernel, they

present preferred directions of interaction. For kernels of this kind and general confinement we
will prove existence and uniqueness of minimisers of the corresponding energy. In the case of

a quadratic confinement we will review a recent result by Carrillo & Shu about the explicit
characterisation of minimisers, and present a new proof, which has the advantage of being

extendable to higher dimension. In light of this result, we will re-examine some previous works

motivated by applications to dislocation theory in materials science. Finally, we will discuss
some related results and open questions.
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1. Introduction

The general goal of this review paper is the study of the minimisation problem for an energy
of the form

I(µ) =

∫∫
RN×RN

W (x− y) dµ(y)dµ(x) +

∫
RN

V (x) dµ(x) (1.1)

defined for µ ∈ P(RN ). Here P(RN ) stands for the space of probability measures in RN . In this
formulation a measure µ ∈ P(RN ) represents the distribution of a family of particles in RN , the
first integral in I(µ) is called the interaction energy, whereas the last integral usually plays the
role of a confinement energy.

Energies as I arise as mean-field limits of discrete energies. More precisely, let us consider n
particles in RN located at points x1, x2, . . . , xn in RN and let us define as their interaction energy
the quantity

1

n2

n∑
j=1

∑
k 6=j

W (xj − xk).

Since the order in which particles are considered is irrelevant, it is natural to assume the interaction
kernel W to be an even function. This discrete energy describes nonlocal interactions in the sense
that each particle interacts with any other particle in the system and not only with those in its
immediate neighbourhood. If one identifies the distribution of particles with the so-called empirical
measure

1

n

n∑
j=1

δxj ,

one can show, under suitable assumptions of W and V , that the discrete energies

1

n2

n∑
j=1

∑
k 6=j

W (xj − xk) +
1

n

n∑
j=1

V (xj)

Γ-converge to I, as n → ∞, with respect to the narrow convergence in P(RN ) (see, e.g., [21]).
In other words, minimisers of I describe the asymptotic behaviour of optimal distributions at the
discrete level in the many-particle limit.

In many applications the typical interaction among particles is short-range repulsive and long-
range attractive. This behaviour can be reproduced in the energy I by assuming:
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• W (x) → +∞, as x → 0, so that the interaction energy blows up when particles get too
close to one another;

• V (x) → +∞ fast enough, as |x| → +∞, so that the confinement energy blows up when
particles escape at infinity.

As a model example, we can consider as W the Coulomb kernel

W (x) =

− log |x| if N = 2,

1

|x|N−2
if N ≥ 3,

and, as confinement potential, a power law V (x) = |x|p with p > 0 or the indicator of a given
compact set K ⊂ RN

V (x) =

{
0 if x ∈ K,
+∞ if x 6∈ K.

In this last case (which we call physical confinement) minimising I is equivalent to minimising the
sole interaction energy on the class of probability measures supported in K.

Continuum energies as I, as well as their discrete counterparts, are relevant in a variety of
applications, ranging from physics (electrostatics, Coulomb gases, Ginzburg-Landau theory) to
biology (population dynamics) and materials science. In particular, the Coulomb kernel is probably
the most studied interaction kernel in physics and in mathematics.

Besides existence and uniqueness, one of the main questions in minimising I is whether min-
imisers can be identified or at least some of their qualitative properties can be established. For
instance, can we determine the dimension of their supports and their shape? Is the distribution
“regular” on the support? One of the key difficulties in addressing these questions is the nonlocal
nature of the problem: given a distribution µ, any local perturbation of µ, however small, will have
a global impact on the interaction energy. Moreover, numerical simulations show that, according
to the different choice of W and V , minimisers may present a rich variety of geometries and shapes
(see, e.g, [12]).

In this paper we will focus on the two-dimensional case N = 2 and on interaction kernels of the
form

W (x) = − log |x|+ κ(x), (1.2)

where κ is an even 0-homogeneous function, smooth enough outside 0. The kernel W can be seen
as a perturbation (not small though) of the 2d Coulomb kernel. Since κ is 0-homogeneous, κ(x)
depends only on the angle that x forms with respect to a given reference axis. In this sense we
call κ an anisotropic kernel, meaning that it introduces some preferred directions of interaction.

The goal of this paper is to review the most recent results about existence, uniqueness, and
characterisation of minimisers for kernels W of the form (1.2) and general confinements V . The
common thread of these results is the following key idea. A clever way to look at this class of

problems is via Fourier analysis. In fact, if we denote by f̂ the Fourier transform of f given by

f̂(ξ) =
1

2π

∫
R2

f(x)e−iξ·x dx for ξ ∈ R2,

formally we have

Ŵ ∗ µ = 2π Ŵ µ̂

and by Plancherel Theorem∫∫
R2×R2

W (x− y) dµ(y)dµ(x) =

∫
R2

(W ∗ µ) dµ =

∫
R2

Ŵ ∗ µ(ξ)µ̂(ξ) dξ = 2π

∫
R2

Ŵ |µ̂|2 dξ. (1.3)

In other words, the nonlocal interaction can be expressed in a local form in the Fourier space. Note,

however, that (1.3) holds true only under specific assumptions for Ŵ and µ (see Proposition 3.2).

Using (1.3) we will show that a sign condition on Ŵ guarantees strict convexity of the energy
and, therefore, uniqueness of minimisers (see Section 3). Moreover, the inversion formula for the
Fourier transform will be a crucial ingredient in the characterisation results of Section 4.
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Figure 1. A cubic crystal with a dislocation.

b

Figure 2. The Burgers circuit and the Burgers vector b.

1.1. Motivation. The study of interaction kernels of the form (1.2) is motivated by materials
science, more precisely, by dislocation theory. Dislocations are defects in the crystalline lattice
of a metal, whose presence and concerted movement favour plastic slips, that is, relative slips of
atomic layers, that macroscopically result into a shearing plastic deformation.

Let us consider an idealised three-dimensional cubic lattice, where all two-dimensional sections
along a certain direction are assumed to be identical. In this simplified two-dimensional setting a
dislocation of edge type looks as in Fig. 1.

The presence of a dislocation can be detected as follows. One draws a so-called Burgers circuit,
that is, a closed circuit enclosing the defect. If we draw the same circuit in a perfect reference
crystal, the circuit does not close up, see Fig. 2. The vector that needs to be added to close the
circuit is defined as the Burgers vector. The Burgers vector is thus a measure of the discrepancy
between the distorted lattice and a perfect lattice.

Assume now that every dislocation has the same Burgers vector (which for simplicity we set
to be e1). We would like to compute the interaction force between two dislocations, the so-called
Peach-Köhler force. To make this computation we consider a semi-discrete setting, where the
crystal is described as a continuum medium (as if the discrete lattice structure were averaged
out), but dislocations are still modelled as point singularities. In the framework of linear elasticity
the fundamental strain generated by a dislocation of Burgers vector e1 located at 0 is a solution
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β : R2 →M2×2 of the problem {
divCβ = 0 in R2,

curlβ = δ0e1 in R2,

where C is the tensor of linear elasticity and δ0 denotes the Dirac delta at 0. The Peach-Köhler
force can then be computed by the formula

F = Cβe1 × e3,

where Cβ is the stress associated with the fundamental strain, e1 is the Burgers vector, and e3

represents the dislocation line (in our simplified 2d setting the dislocation line is orthogonal to the
plane of the 2d section). For x ∈ R2 the Peach-Köhler force F (x) is the configurational force that
a dislocation at x experiences because of the dislocation at 0. It turns out (see [10, Chapter 13-4])
that

F = −(c∇W, 0)

for some positive material constant c > 0, where W is of the form (1.2) with

κ(x) = −1

4

a+ b

a
log
(x2

1 + (a+ b)2x2
2

|x|2
)

+
1

4

b− a
a

log
(x2

1 + (b− a)2x2
2

|x|2
)

(1.4)

for x = (x1, x2) ∈ R2. Here b > a > 0 are material constants. If the medium is isotropic (which
corresponds to a→ 0+, b = 1), the above expression reduces, up to additive constants, to

κ(x) =
x2

1

|x|2
. (1.5)

We would like to predict the optimal distribution of dislocations at equilibrium in this setting.
For simplicity, let us focus on the isotropic case (1.5) and assume to have exactly two dislocations
located at x and y. Their interaction energy is given by

− log |x− y|+ (x1 − y1)2

|x− y|2
.

The Coulomb term forces x and y to be as far as possible (this repulsive behaviour is counter-
balanced by the presence of some confinement), whereas the anisotropic term is minimised when
x1 = y1, that is, when the two dislocations are aligned vertically. Does the same phenomenon
occur in the mesoscopic description (1.1)? In other words, let I be the energy defined by

I(µ) =

∫∫
R2×R2

(
− log |x− y|+ (x1 − y1)2

|x− y|2
)
dµ(y)dµ(x) +

∫
R2

V (x) dµ(x), (1.6)

where µ ∈ P(R2) represents now the distribution of a family of dislocations of Burgers vector e1.
Is it true that minimisers of I have a 1d vertical support? And if so, what is their distribution?
This last question is actually not difficult to answer. In fact, let µ ∈ P(R2) be a measure of the
form µ = δx̄1

⊗ ν with x̄1 ∈ R and ν ∈ P(R). When restricted to measures of this form the energy
I reduces to

J(x̄1, ν) := −
∫∫

R×R
log |s− t| dν(t)dν(s) +

∫
R
V (x̄1, t) dν(t).

Thus, if the minimiser of I has a vertical support, its vertical projection minimises the 1d functional
J(x̄1, ·) among all measures in P(R). The functional J is known in the literature as the log-gas
energy and its minimisers can be explicitly computed for several confinements. For instance, for
V (x) = |x|2 the unique minimiser of J(x̄1, ·) is the so-called semicircle law, that is, the measure

1

π

√
2− t2L1 [−

√
2,
√

2](t)

(and the optimal choice for x̄1 is clearly x̄1 = 0). Therefore, in the case V (x) = |x|2, if the energy
I in (1.6) has a minimiser µ with a vertical support, then necessarily µ is given by the semicircle
law on the vertical axis

1

π
δ0(x1)⊗

√
2− x2

2H1 [−
√

2,
√

2](x2). (1.7)
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1.2. Overview of the results. We now briefly review the main results about explicit character-
isation of minimisers for kernels of the form (1.2). We consider an energy of the form (1.6) with
confinement V (x) = |x|2 and we introduce a parameter α ∈ R in front of the anisotropic term.
The role of α is that of tuning the strength of the anisotropic interaction. The energy

Iα(µ) =

∫∫
R2×R2

(
− log |x− y|+ α

(x1 − y1)2

|x− y|2
)
dµ(y)dµ(x) +

∫
R2

|x|2 dµ(x) (1.8)

has a unique minimiser, which can be characterised as follows:

• if α = 0 (purely Coulomb case), the minimiser is the so-called circle law

1

π
χB1(0);

the derivation of this classical result is attributed to Ginibre [8], Mehta [17], and Girko [9];
• if α = 1 (dislocation case), the minimiser is the semicircle law on the vertical axis, that

is, the measure (1.7); this was proved in [18];
• if α ∈ (0, 1), the minimiser is given by the ellipse law

1

|Eα|
χEα , (1.9)

where

Eα =
{
x ∈ R2 :

x2
1

1− α
+

x2
2

1 + α
≤ 1
}

;

this result is contained in [2].

We mention that the minimiser of Iα can be actually identified for any value of α ∈ R, see
Theorem 5.1.

The above results show that at α = 1 the anisotropy has a dramatic effect on the structure
of the minimiser and, in particular, on its dimensionality. For any α ∈ [0, 1) the minimiser is
given by a uniform distribution on a two-dimensional set and it is only at α = 1 that an abrupt
loss of dimensionality occurs. A natural question is whether this phenomenon can be explained in
mathematical terms and how much of this analysis is bound to the specific choice of the anisotropy.

In [15] we conjectured that the loss of dimensionality could be related to a change of sign of
the Fourier transform of the interaction kernel. Indeed, we have that

Ŵα(ξ) = cαδ0 +
(1− α)ξ2

1 + (1 + α)ξ2
2

|ξ|4
,

see (5.2) below. Thus, for α ∈ [0, 1) the Fourier transform of Wα is strictly positive outside 0,
whereas it is only non-negative for α = 1.

Let us consider now an interaction kernel of the form (1.2) with a general even and 0-homoge-
neous anisotropy κ, and confinement V (x) = |x|2. In [14] it was proved that, if κ is small enough
in C3(S1), then the minimiser is unique and given by the normalised characteristic function of the
domain enclosed by an ellipse centered at the origin. Note that the smallness assumption on κ
implies in particular that the Fourier transform of W outside 0 is strictly positive.

Recently, Carrillo & Shu proved that the smallness assumption in [14] can be lifted, as long as
the condition on the non-negativity of the Fourier transform of W outside 0 is preserved. More
precisely, in [3] the following remarkable result was proved: let W be an interaction kernel of the
form (1.2) with κ even, 0-homogeneous, and smooth enough on S1, and let the confinement be
V (x) = |x|2; then,

• if Ŵ > 0 outside 0, the unique minimiser is the normalised characteristic function of the
domain enclosed by an ellipse centered at the origin;

• if Ŵ ≥ 0 outside 0, the unique minimiser is either as above or is a semicircle law on a line
passing through the origin.

This result sheds some light on the relation between loss of dimensionality and change of sign
of the Fourier transform: for this class of kernels loss of dimensionality cannot occur as long as
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the Fourier transform is ‘not degenerate’. However, explicit examples show that for a degenerate
Fourier transform both cases (ellipse or semicircle law) can indeed occur, see Remark 5.2.

In this article we will first review the existence and uniqueness results for interaction kernels of
the form (1.2) and general confinements. In the case of the quadratic confinement V (x) = |x|2 we
will present a new proof of the result [3] by Carrillo & Shu, which follows the approach proposed
in [16] for the analogous problem in 3d. This different approach has the advantage of being
extendable to higher dimension. We will then deduce the characterisation of minimisers in the
dislocation case (1.5) from this general result. Finally, we will examine an example with physical
confinement given by the domain enclosed by an ellipse and discuss some open questions.

2. The existence result and first properties of minimisers

Throughout the paper we will consider an interaction kernel of the form

W (x) = − log |x|+ κ(x) for x 6= 0, W (0) = +∞, (2.1)

where κ is an even 0-homogeneous function of class Hs on S1 with s > 3/2 . We will denote the
2d Coulomb kernel by W0, that is,

W0(x) = − log |x| for x 6= 0, W0(0) = +∞.
Since κ is bounded on R2 \ {0}, there exist two constants C1, C2 ∈ R such that

W0(x) + C1 ≤W (x) ≤W0(x) + C2 for every x ∈ R2. (2.2)

2.1. Logarithmic capacity. For any compact set K ⊂ R2 we define the logarithmic capacity of
K as

cap(K) = Φ
(

inf
µ∈P(K)

∫∫
K×K

W0(x− y) dµ(x)dµ(y)
)
,

where Φ(t) = e−t for t ∈ R and Φ(+∞) = 0. Note that the integral above is well defined (possibly
equal to +∞), since the integrand is bounded from below on K ×K.

If B ⊂ R2 is a Borel set, we define its capacity as

cap(B) = sup
{

cap(K) : K compact, K ⊂ B
}
.

We will say that a property holds quasi everywhere (q.e.) if it holds up to sets of zero capacity.
The key property of the capacity is the following: if µ ∈ P(R2) has compact support and

satisfies ∫∫
R2×R2

W (x− y) dµ(x)dµ(y) < +∞, (2.3)

then µ(B) = 0 for every Borel set B with cap(B) = 0. In other words, if a property holds q.e.,
then it holds µ-a.e. for any µ ∈ P(R2) with compact support and satisfying (2.3) (as we will see,
these are the relevant measures for the minimisation problem under study). This can be shown
as follows: assume by contradiction that µ(B) > 0, where B ⊂ R2 is a Borel set with cap(B) = 0.
Then there exists a compact set K ⊂ B such that µ(K) > 0. Since µ is compactly supported,
there exists C0 > 0 such that

W (x− y) ≥ −C0 for every (x, y) ∈ (suppµ)2.

Therefore, setting

ν :=
1

µ(K)
µ K,

by (2.3) we have∫∫
K×K

W (x− y) dν(x)dν(y) ≤ 1

µ(K)2

∫∫
R2×R2

W (x− y) dµ(x)dµ(y) +
C0

µ(K)2
− C0 < +∞.

On the other hand, from (2.2) it follows that∫∫
K×K

W (x− y) dν(x)dν(y) ≥
∫∫

K×K
W0(x− y) dν(x)dν(y) + C1.

This would imply that cap(K) > 0, contradicting the assumption cap(B) = 0.
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In a similar way one can show that a countable union of sets with zero capacity has zero
capacity.

2.2. The confinement potential. In this section we assume the confinement potential V : R2 →
R ∪ {+∞} to be a lower semicontinuous function, which is bounded from below and satisfies the
following conditions:

lim
|x|→+∞

(1

2
V (x)− log |x|

)
= +∞ (2.4)

and

cap
(
{x ∈ R2 : V (x) < +∞}

)
> 0. (2.5)

Examples of admissible confinements are the power laws V (x) = |x|p with p > 0 or the indicator
function of a compact set of positive capacity.

2.3. Main results. For every µ ∈ P(R2) we define

I(µ) =

∫∫
R2×R2

(
W (x− y) +

1

2
V (x) +

1

2
V (y)

)
dµ(y)dµ(x), (2.6)

where the interaction kernel W is as in (2.1) and the confinement potential V as in Section 2.2.

Theorem 2.1 ([7, 20]). The energy I is well defined and has a minimiser in P(R2). If µ is a
minimiser of I, then I(µ) < +∞, the support of µ is a compact set, and µ satisfies the following
Euler-Lagrange conditions: there exists a constant c = c(µ) such that

(W ∗ µ)(x) +
1

2
V (x) = c for µ-a.e. x ∈ suppµ, (2.7)

and

(W ∗ µ)(x) +
1

2
V (x) ≥ c for q.e. x ∈ R2. (2.8)

Proof. The function (x, y) 7→W (x− y) + 1
2V (x) + 1

2V (y) is lower semicontinuous and blows up at
infinity by (2.4), hence it is bounded from below by a constant −c1 with c1 > 0. Therefore, the
energy I in (2.6) is well defined (possibly equal to +∞) and inf I > −∞. Note also that the two
representations (1.1) and (2.4) coincide whenever the interaction energy is well defined and not
equal to −∞.

Assumption (2.5) guarantees that inf I < +∞. Indeed, writing {V < +∞} as the union over
n ∈ N of the compact sets {V ≤ n}, we must have cap

(
{V ≤ n0}

)
> 0 for some n0 ∈ N, that is,

there exists a probability measure µ0 with support in {V ≤ n0} such that∫∫
R2×R2

W0(x− y) dµ0(x)dµ0(y) < +∞.

By (2.2) this implies that ∫∫
R2×R2

W (x− y) dµ0(x)dµ0(y) < +∞.

On the other hand, ∫
R2

V (x) dµ0(x) ≤ n0,

hence I(µ0) < +∞.
Existence of a minimiser follows by the Direct Method of the Calculus of Variations. Let (µn)n

be a minimising sequence. Since inf I < +∞, there exists a constant C > 0 such that I(µn) ≤ C
for every n ∈ N. By (2.4) for every M > 0 there exists a compact set K ⊂ R2 such that

W (x− y) +
1

2
V (x) +

1

2
V (y) ≥M for (x, y) 6∈ K ×K.
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Therefore, for every n ∈ N

C ≥ I(µn) ≥ M(µn ⊗ µn)
(
(K ×K)c

)
− c1

(
µn(K)

)2
≥ M

(
1−

(
µn(K)

)2)− c1
≥ Mµn(Kc)− c1.

This inequality implies that the sequence (µn)n is tight, hence, up to subsequences, (µn)n converges
narrowly to some µ ∈ P(R2) (we refer to [1, Chapter 5] for the definition of tightness, narrow
convergence, and their properties). Since the integrand in I is lower semicontinuous and bounded
from below, we have

I(µ) ≤ lim inf
n→∞

I(µn),

hence µ is a minimiser.
Let now µ be a minimiser. In particular, I(µ) < +∞. By (2.4) there exists a compact set

K ⊂ R2 such that

W (x− y) +
1

2
V (x) +

1

2
V (y) ≥ I(µ) + 1 for (x, y) 6∈ K ×K. (2.9)

By taking K larger if needed, we can assume that µ(K) > 0. We claim that suppµ ⊂ K. Assume
by contradiction that µ(K) < 1 and define

µ̃ :=
1

µ(K)
µ K ∈ P(R2).

By (2.9) we deduce that

I(µ̃) =
1(

µ(K)
)2
(
I(µ)−

∫∫
(K×K)c

(
W (x− y) +

1

2
V (x) +

1

2
V (y)

)
dµ(y)dµ(x)

)

≤ 1(
µ(K)

)2(I(µ)− (I(µ) + 1)(1−
(
µ(K)

)2
)
)

= I(µ) + 1− 1(
µ(K)

)2 < I(µ),

where the last inequality follows from the fact that µ(K) < 1. This contradicts the minimality
of µ.

We conclude by showing that µ satisfies (2.7)–(2.8). Let ν ∈ P(R2) be a competitor such that
its support is compact and I(ν) < +∞. For ε ∈ (0, 1) we have that (1 − ε)µ + εν ∈ P(R2).
Therefore, by minimality

I(µ) ≤ I((1− ε)µ+ εν).

Expanding the energy at the right-hand side yields

0 ≤ −2ε

∫
R2

W ∗ µdµ+ 2ε

∫
R2

W ∗ µdν + ε

∫
R2

V d(ν − µ) +O(ε2).

Dividing by 2ε and sending ε→ 0+ lead to the following inequality:∫
R2

(
W ∗ µ+

1

2
V
)
dν ≥

∫
R2

(
W ∗ µ+

1

2
V
)
dµ =: c (2.10)

for every ν ∈ P(R2) with compact support and I(ν) < +∞.
Set P := W ∗ µ+ 1

2V and assume by contradiction that

cap
({
x ∈ R2 : P (x) < c

})
> 0.

Note that by Fatou’s lemma P is lower semicontinuous, thus {P < c} is a Borel set. By definition
of capacity there exists a compact set K ⊂ R2 of positive capacity such that P (x) < c for every
x ∈ K. Therefore, there exists ν ∈ P(K) such that∫∫

R2×R2

W (x− y) dν(x)dν(y) < +∞.
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Moreover, the confinement energy of ν is also finite, since∫
R2

1

2
V dν =

∫
K

1

2
V dν <

∫
K

(c−W ∗ µ) dν = c−
∫
K

W ∗ µdν (2.11)

and the right-hand side is finite by the bound from below of W on compact sets. Having finite
energy and compact support, the measure ν has to satisfy condition (2.10). However, (2.11)
contradicts (2.10). This proves (2.8).

To prove (2.7) we note that by (2.8) we have W ∗ µ+ 1
2V ≥ c q.e., hence µ-a.e.. On the other

hand, c is by definition the integral of W ∗ µ + 1
2V with respect to µ, so necessarily (2.7) holds

true. �

Remark 2.2. The previous result applies to much more general interaction kernels. Note in
particular that the only properties of κ we used are boundedness and lower semicontinuity.

3. The uniqueness result

As mentioned in the introduction, the key assumption to guarantee uniqueness of the minimiser

is the sign condition Ŵ ≥ 0 outside 0. In fact, this assumption implies the strict convexity of
the energy (when restricted to a suitable class). This result bears some similarities to Bochner
Theorem, which characterises functions of positive type as those whose Fourier transform is a
positive finite measure, see, e.g., [23]. Functions of positive type provide in fact interaction kernels
whose corresponding energies are convex on discrete measures. However, the regularity of W and

Ŵ does not allow for a direct application of this theorem in our context.
Once strict convexity is established, not only the minimiser is unique, but the two Euler-

Lagrange conditions (2.7)–(2.8) are equivalent to minimality. Thus, identifying the unique min-
imiser reduces to finding a measure satisfying (2.7)–(2.8). In order to do so it is essential to have
an expression for W ∗ µ, in particular inside the support of µ where we need to verify (2.7). As
we will see, the main idea is to rely again on Fourier analysis applying the inversion formula for
the Fourier transform.

3.1. The Fourier transform. We denote the Schwartz space of rapidly decreasing functions by
S and its dual space by S ′, the so-called space of tempered distributions. We recall that for every
ϕ ∈ S its Fourier transform ϕ̂ ∈ S is defined as

ϕ̂(ξ) =
1

2π

∫
R2

ϕ(x)e−iξ·x dx for ξ ∈ R2.

The map ϕ 7→ ϕ̂ is a continuous linear isomorphism (with continuous inverse) of S into itself. This
allows one to extend the definition of Fourier transform to elements of S ′ simply by duality, that
is, the Fourier transform û of an element u ∈ S ′ is defined as

〈 û, ϕ〉 = 〈u, ϕ̂ 〉 for every ϕ ∈ S.

We recall that the Fourier transform of the tempered distribution δ0 (the Dirac delta at 0) is the
constant 1/(2π). Moreover, for every ϕ ∈ S and j = 1, 2 we have

∂̂xjϕ(ξ) = iξjϕ̂(ξ) for ξ ∈ R2.

3.2. The Fourier transform of the kernel W . Both W and W0 are locally integrable functions
with sublinear growth at infinity, hence they are tempered distributions. Thus, their Fourier trans-
forms are well defined as tempered distributions. We start by computing the Fourier transform of
the Coulomb kernel W0. Since ∆W0 = −2πδ0, formally we have

−|ξ|2Ŵ0(ξ) = ∆̂W0(ξ) = −2πδ̂0(ξ) = −1.

Hence, we would expect Ŵ0(ξ) = 1/|ξ|2. However, this function is not integrable at 0 and so, it

does not define a tempered distribution. In fact, the correct expression of Ŵ0 is the following:

〈Ŵ0, ϕ〉 = c0ϕ(0) +

∫
|ξ|≤1

1

|ξ|2
(ϕ(ξ)− ϕ(0)) dξ +

∫
|ξ|>1

1

|ξ|2
ϕ(ξ) dξ (3.1)
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for every ϕ ∈ S. Here c0 = 1
2π (γ + log π), where γ is the Euler constant. For the proof of this

formula we refer to [6] or [18].
To compute the Fourier transform of the anisotropic kernel κ, it is convenient to pass to complex

variables to simplify notation. We replace x by z ∈ C and write z = |z|eiθ with θ ∈ [0, 2π]. Since
κ is 0-homogeneous, we have that κ(z) = κ(eiθ) and thus, it can be written as a Fourier series for
θ ∈ [0, 2π]. Moreover, since κ is even, its Fourier series contains only the even terms, that is,

κ(eiθ) = a0 +

∞∑
n=1

(
a2n cos(2nθ) + b2n sin(2nθ)

)
with (a2n)n∈N, (b2n)n∈N ∈ `2. Note that for n ∈ N

cos(nθ) = Re
zn

|z|n
=:

φn(z)

|z|n
and sin(nθ) = Im

zn

|z|n
=:

ψn(z)

|z|n
.

The functions φn, ψn are harmonic homogeneous polynomials of order n (in fact, they correspond
to the so-called spherical harmonics in dimension 2). We can thus rewrite

κ(z) = a0 +

∞∑
n=1

(
a2n

φ2n(z)

|z|2n
+ b2n

ψ2n(z)

|z|2n
)
. (3.2)

Without loss of generality we can assume that a0 = 0. In fact, adding a constant to κ does
not affect the minimisation problem under study. The expression (3.2) is particularly convenient
to compute the Fourier transform of κ, owing to the following result, whose proof can be found
in [22].

Lemma 3.1. Let φ be a harmonic homogeneous polynomial of degree m ≥ 1 in R2. Then the
Fourier transform of φ(x)/|x|m is given by

γm
φ(ξ)

|ξ|m+2
(3.3)

for a suitable constant γm. For m even, m = 2n, one has γ2n = (−1)n2n.

Note that φ(ξ)/|ξ|m+2 behaves as 1/|ξ|2 for ξ close to zero, therefore it is not integrable at 0.
Formula (3.3) has to be interpreted as in (3.1), that is,

〈γm
φ

| · |m+2
, ϕ〉 = γm

∫
|ξ|≤1

φ(ξ)

|ξ|m+2
(ϕ(ξ)− ϕ(0)) dξ + γm

∫
|ξ|>1

φ(ξ)

|ξ|m+2
ϕ(ξ) dξ

for every ϕ ∈ S.
By Lemma 3.1 and (3.2) with a0 = 0 we deduce that

κ̂(ξ) =

∞∑
n=1

(
(−1)n2na2n

φ2n(ξ)

|ξ|2n+2
+ (−1)n2nb2n

ψ2n(ξ)

|ξ|2n+2

)
. (3.4)

The argument can be made rigorous if (2na2n)n∈N, (2nb2n)n∈N ∈ `2, that is, if κ ∈ H1(S1).
By (3.1) and (3.4) we can write

Ŵ (ξ) = c0δ0 +
1

|ξ|2
+
κ̂(ξ/|ξ|)
|ξ|2

=: c0δ0 +
Ψ̂(ξ)

|ξ|2
, (3.5)

where, with an abuse of notation, Ψ̂ denotes the “angular part” of Ŵ . Note that Ψ̂ is even and
0-homogeneous, and that the above formula has to be interpreted as in (3.1). In the following we

will need Ψ̂ ∈ C0(S1). By Sobolev embedding this is true if κ̂ ∈ Hp(S1) with p > 1/2. This is
guaranteed by our assumption κ ∈ Hs(S1) with s > 3/2, owing to (3.4).

In the following we will refer to Ψ̂ as the even and 0-homogeneous function given by formula

(3.5). Note that the purely Coulomb case corresponds to Ψ̂ ≡ 1. Moreover, by (3.4) and (3.5) we
have

1

2π

∫
S1

Ψ̂(ξ) dH1(ξ) =
1

2π

∫
S1

(
1 + κ̂(ξ)

)
dH1(ξ) = 1. (3.6)
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Proposition 3.2. Assume Ψ̂ ≥ 0 on S1. Let µ0, µ1 ∈ P(R2) be two measures with compact
support and finite interaction energy. Let ν := µ0 − µ1. Then∫

R2

W ∗ ν dν = 2π

∫
R2

Ψ̂(ξ)

|ξ|2
|ν̂(ξ)|2 dξ. (3.7)

In particular, the left-hand side is non-negative and is equal to zero if and only if ν = 0, that is,
if µ0 = µ1.

An immediate consequence of Proposition 3.2 is the following: if Ψ̂ ≥ 0 on S1, then I is strictly
convex on the class of measures with compact support and finite interaction energy. Indeed, let
µ0, µ1 ∈ P(R2) be two such measures with µ0 6= µ1. By Proposition 3.2 we have that∫

R2

W ∗ (µ0 − µ1) d(µ0 − µ1) > 0,

hence ∫
R2

W ∗ µ0 dµ0 +

∫
R2

W ∗ µ1 dµ1 > 2

∫
R2

W ∗ µ0 dµ1.

Let now µt := (1− t)µ0 + tµ1 with t ∈ (0, 1). From the above inequality we conclude that∫
R2

W ∗ µt dµt < (1− t)2

∫
R2

W ∗ µ0 dµ0 + t2
∫
R2

W ∗ µ1 dµ1

+ t(1− t)
(∫

R2

W ∗ µ0 dµ0 +

∫
R2

W ∗ µ1 dµ1

)
= (1− t)

∫
R2

W ∗ µ0 dµ0 + t

∫
R2

W ∗ µ1 dµ1.

Since minimisers have compact support and finite interaction energy by Theorem 2.1, this
convexity property is enough to guarantee uniqueness and the equivalence of (2.7)–(2.8) with
minimality.

Proof of Proposition 3.2. The heuristic idea to prove (3.7) is to apply Plancherel Theorem, as we
did formally in (1.3), and write∫

R2

W ∗ ν dν = 2π

∫
R2

Ŵ (ξ)|ν̂(ξ)|2 dξ.

Taking into account (3.5) and the fact that

ν̂(0) =
1

2π

∫
R2

dν = 0,

the right-hand side reduces to

2π

∫
R2

Ŵ (ξ)|ν̂(ξ)|2 dξ = 2π

∫
R2

Ψ̂(ξ)

|ξ|2
|ν̂(ξ)|2 dξ.

However, this argument is only formal, since we do not have enough regularity to apply Plancherel
Theorem. Our strategy is to prove (3.7) by approximation. This is a rather delicate argument,
since both sides of (3.7) may a priori be not finite and neither W nor ν have a sign.

For ε > 0 let ϕε be a radial mollifier supported on Bε(0). Let νε := ν ∗ ϕε ∈ C∞c (R2) ⊂ S.
Thus, ν̂ε belongs to S and, in particular, to L∞(R2). We note that W ∗ νε ∈ C∞(R2) and, since
ν̂ε is smooth and ν̂ε(0) = 0, we have that

Ŵ ∗ νε = 2πŴ ν̂ε ∈ L1(R2).

Using these properties one can show that Plancherel Theorem holds for W ∗ νε and νε, that is,∫
R2

(W ∗ νε)(x)νε(x) dx = 2π

∫
R2

Ŵ (ξ)|ν̂ε(ξ)|2 dξ = 2π

∫
R2

Ψ̂(ξ)

|ξ|2
|ν̂ε(ξ)|2 dξ (3.8)

for every ε > 0.
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We now want to pass to the limit in (3.8), as ε→ 0+. For every ξ ∈ R2 we have

ν̂ε(ξ) = 2πν̂(ξ)ϕ̂(εξ) → 2πν̂(ξ)ϕ̂(0) = ν̂(ξ),

as ε → 0+. Therefore, Ψ̂(ξ)|ν̂ε(ξ)|2/|ξ|2 converges to Ψ̂(ξ)|ν̂(ξ)|2/|ξ|2 for a.e. ξ ∈ R2, as ε → 0+.
Moreover, |ϕ̂(ε·)| ≤ C‖ϕ‖L1 . Either by dominated convergence or by Fatou’s lemma we can thus
pass to the limit in the last integral in (3.8).

To pass to the limit in the left-hand side of (3.8), we observe that∫
R2

(W ∗ νε)(x)νε(x) dx =

∫
R2

(W ∗ ϕε ∗ ϕε) ∗ ν dν,

where we used that ϕε is a radial, hence even, function. Set ψε := ϕε ∗ ϕε and note that ψε has
the same properties as ϕε (it is radial, compactly supported, non-negative, and integrates to one).
Since W is continuous as a function with values in R∪{+∞}, we have that (W ∗ψε)(x)→W (x),
as ε→ 0+, for every x ∈ R2. Moreover, by (2.2)

(W ∗ ψε)(x) ≤ (W0 ∗ ψε)(x) + C2 for every x ∈ R2. (3.9)

Since W0 is superharmonic and ψε is radial, we have

(W0 ∗ ψε)(x) ≤W0(x) ≤W (x)− C1 for every x ∈ R2, (3.10)

where the last inequality follows again from (2.2).
Let M > 0 be such that supp ν ⊂ BM (0) and let cM be the minimum of W on B4M (0).

Combining (3.9) and (3.10), we deduce that

0 ≤ (W ∗ ψε)(x)− cM ≤W (x) + C2 − C1 − cM for every x ∈ B2M (0) (3.11)

and for every ε > 0 small enough.
We now write∫

R2

(W ∗ ψε) ∗ ν dν =

∫∫
R2×R2

(W ∗ ψε)(x− y) dµ0(x)dµ0(y)

+

∫∫
R2×R2

(W ∗ ψε)(x− y) dµ1(x)dµ1(y)

−2

∫∫
R2×R2

(W ∗ ψε)(x− y) dµ0(x)dµ1(y).

Since µ0 and µ1 have finite interaction energy, we can pass to the limit in the first two integrals on
the right-hand side by (3.11) and dominated convergence. As for the last integral, it goes to the
limit either by dominated convergence or by Fatou’s lemma. This completes the proof of (3.7).

To conclude, assume that

0 =

∫
R2

W ∗ ν dν = 2π

∫
R2

Ψ̂(ξ)

|ξ|2
|ν̂(ξ)|2 dξ. (3.12)

Since Ψ̂ cannot be identically zero (otherwise, W would be constant) and is continuous outside 0,

there exist δ > 0, η > 0, and ξ0 6= 0 such that Ψ̂(ξ) > η for all ξ ∈ Bδ(ξ0). Thus, (3.12) implies
that ν̂ = 0 on Bδ(ξ0). On the other hand, ν is a distribution with compact support, so by Paley-
Wiener Theorem ν̂ is the restriction to R2 of an entire function. Therefore, ν̂ has to be identically
zero on R2, that is, ν = 0. �

4. Characterisation of minimisers

Throughout this section we consider the confinement V (x) = |x|2 and we focus on the charac-
terisation of the minimiser of I for this specific choice of the confinement.
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4.1. The Coulomb case. In the purely Coulomb case with confinement V (x) = |x|2 the energy

I0(µ) = −
∫∫

R2×R2

log |x− y| dµ(y)dµ(x) +

∫
R2

|x|2 dµ(x), µ ∈ P(R2), (4.1)

is invariant by rotations. Therefore, by uniqueness the minimiser µ0 has to be invariant by
rotations, too. If we formally take the Laplacian of both sides of (2.7) (with W0 in place of W ),
we obtain

0 = ∆W0 ∗ µ0 + 2 = −2πµ0 + 2 on suppµ0,

where the last equality follows from the relation ∆W0 = −2πδ0. Hence, µ0 = 1/π on its support.
Since µ0 is a probability measure, one can conjecture that µ0 has to be the normalised characteristic
function of B1(0). This is indeed the case, as shown in the next theorem.

Theorem 4.1 ([8, 17, 9]). The unique minimiser of the energy I0 in (4.1) is the so-called circle
law, that is, the measure

µ0 =
1

π
χB1(0).

The proof of this result is based on the Gauss averaging principle: for any r > 0

− 1

2π

∫ π

−π
log |z − reiθ| dθ =

{
− log r if |z| < r,

− log |z| if |z| ≥ r,
(4.2)

where z is a complex variable. A notable consequence of this principle is the well-known fact that
the Coulomb potential due to a homogeneous spherical body is the same, outside the body, as if
all the mass were at its center.

Proving (4.2) is straightforward: if |z| > r, the map w 7→ − log |z − w| is harmonic for |w| ≤ r,
so (4.2) follows by the mean value property. If |z| < r, one can write

− log |z − reiθ| = − log |ze−iθ − r| = − log |z̄eiθ − r|.

The map w 7→ − log |w − r| is harmonic for |w| ≤ |z|, so one can conclude again by applying the
mean value property. Finally, for |z| = r one can argue by approximation with radii ρ→ r− and
dominated convergence.

Proof of Theorem 4.1. By applying the Gauss averaging principle we can explicitely compute the
Coulomb potential of µ0: indeed, using polar coordinates we have

(W0 ∗ µ0)(x) = − 1

π

∫
B1(0)

log |x− y| dy = − 1

π

∫ 1

0

∫ π

−π
log |x− reiθ| dθ r dr.

By (4.2) we deduce that

(W0 ∗ µ0)(x) =

{
1
2 −

1
2 |x|

2 for |x| ≤ 1,

− log |x| for |x| > 1.

Using this formula, one can immediately check that (W0 ∗ µ0)(x) + 1
2 |x|

2 = 1
2 for x ∈ B1(0) and

(W0 ∗µ0)(x) + 1
2 |x|

2 ≥ 1
2 for x 6∈ B1(0), that is, µ0 satisfies the Euler-Lagrange conditions. By the

results of the previous section this is enough to conclude that µ0 is the unique minimiser of I0. �

4.2. The anisotropic case. In this section we discuss the characterisation of the minimiser for
the energy

I(µ) =

∫∫
R2×R2

(
− log |x− y|+ κ(x− y)

)
dµ(y)dµ(x) +

∫
R2

|x|2 dµ(x), (4.3)

where κ is even, 0-homogeneous, and of regularity Hs(S1) with s > 3/2. We start by considering
the case where the Fourier transform of the interaction kernel (computed in (3.5)) is strictly
positive outside 0.
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Theorem 4.2. Assume Ψ̂ > 0 on S1, where Ψ̂ is the function introduced in (3.5). Then the
unique minimiser of the energy I in (4.3) is given by the normalised characteristic function of the
domain enclosed by an ellipse centered at the origin, whose semi-axes a1, a2 satisfy the relation
a2

1 + a2
2 = 2.

Theorem 4.2 was originally proved by Carrillo and Shu in [3]. Here we present an alternative
proof inspired by [16].

Proof of Theorem 4.2. We write a general domain enclosed by an ellipse as E = RE0, where
R ∈ SO(2) and

E0 =
{
x ∈ R2 :

x2
1

a2
1

+
x2

2

a2
2

≤ 1
}

and we set χ := χE/|E|. The theorem is proved if we show that there exist a1, a2 > 0 and
R ∈ SO(2) such that

(W ∗ χ)(x) +
1

2
|x|2 = c for every x ∈ E, (4.4)

and

(W ∗ χ)(x) +
1

2
|x|2 ≥ c for every x ∈ R2 \ E (4.5)

for some constant c ∈ R.
Note that W ∗ χ is a C1 function in R2. To compute its expression we would like to make use

of the inversion formula, that is, write W ∗ χ as an integral of its Fourier transform. However, Ŵ
is not a function, it is only a tempered distribution. To circumvent this difficulty we apply this
strategy to the gradient of W ∗ χ. In fact, the Fourier transform of ∇(W ∗ χ) is given by

iξŴ ∗ χ(ξ) = 2πiξŴ (ξ)χ̂(ξ),

so the presence of the factor ξ annihilates the singular part of Ŵ . Note that ∇(W ∗ χ) is a
continuous function that behaves as 1/|x| at infinity, so it is a tempered distribution.

Step 1: The inversion formula for ∇(W ∗ χ). We recall that

χ̂B1(0)(ξ) =
J1(|ξ|)
|ξ|

,

where J1 denotes the Bessel function of the first kind of order 1. There is no explicit formula for
J1; however, it is well known that J1 has the following behaviour:

J1(|ξ|) ' 1

2
|ξ| as ξ → 0, (4.6)

|J1(|ξ|)| ≤ C

|ξ|1/2
as |ξ| → ∞, (4.7)

see, e.g., [13, Section 5.16].
For a = (a1, a2) ∈ R2 we denote the diagonal matrix diag(a1, a2) by D(a). By writing x ∈ E

as x = RD(a)y with y ∈ B1(0), we obtain

χ̂(ξ) =
1

π
χ̂B1(0)

(
D(a)RT ξ

)
=

1

π

J1(|D(a)RT ξ|)
|D(a)RT ξ|

.

By the bounds (4.6)–(4.7) we deduce that the function 2πiξŴ χ̂ belongs to L1(R2). Therefore,
since ∇(W ∗ χ) is a continuous function, the inversion formula holds, that is,

∇(W ∗ χ)(x) =

∫
R2

iξ
Ψ̂(ξ)

|ξ|2
χ̂(ξ)eix·ξ dξ = −

∫
R2

ξ
Ψ̂(ξ)

|ξ|2
χ̂(ξ) sin(x · ξ) dξ
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for every x ∈ R2, where we used that Ψ̂ and χ̂ are even functions. Passing to polar coordinates
we obtain

∇(W ∗ χ)(x) = −
∫
S1

∫ ∞
0

yΨ̂(y)χ̂(ρy) sin(ρx · y) dρ dH1(y)

= − 1

π

∫
S1

∫ ∞
0

yΨ̂(y)
J1(ρ|D(a)RT y|)
ρ|D(a)RT y|

sin(ρx · y) dρ dH1(y).

Setting r := ρ|D(a)RT y|, we deduce that

∇(W ∗ χ)(x) = − 1

π

∫
S1

yΨ̂(y)

|D(a)RT y|

∫ ∞
0

J1(r)

r
sin(rα(x, y)) dr dH1(y) (4.8)

for every x ∈ R2, where we set

α(x, y) :=
x · y

|D(a)RT y|
. (4.9)

Using formula (5), page 99, in [5], one can compute the improper integral∫ ∞
0

J1(r)

r
sin(rα) dr =

α if 0 ≤ α ≤ 1,
1

α+
√
α2 − 1

if α > 1.
(4.10)

Moreover, we have that, if x ∈ E, then

|x · y| = |D(a)−1RTx ·D(a)RT y| ≤ |D(a)RT y|,

that is, |α(x, y)| ≤ 1 for every x ∈ E. We conclude that

∇(W ∗ χ)(x) = − 1

π

∫
S1

Ψ̂(y)

|D(a)RT y|
α(x, y)y dH1(y) = − 1

π

∫
S1

Ψ̂(y)

|D(a)RT y|2
(x · y)y dH1(y) (4.11)

for every x ∈ E. Formula (4.11) shows that ∇(W ∗ χ) is a homogeneous polynomial of degree 1
inside E. In other words, up to an additive constant, W ∗ χ is a homogeneous polynomial of
degree 2 inside E.

Step 2: Solving the first Euler-Lagrange condition. Solving (4.4) corresponds to finding a1, a2 > 0
and R ∈ SO(2) such that

∇(W ∗ χ)(x) + x = 0 for every x ∈ E.

By formula (4.11) this translates into the following system of three equations:

1

π

∫
S1

Ψ̂(y)

|D(a)RT y|2
yjyk dH1(y) = δjk for every j, k = 1, 2, (4.12)

where δjk is the Kronecker delta.

Let us denote by M2×2
sym,+ the set of positive definite 2 × 2 symmetric matrices. Note that

M := RD(a)2RT ∈ M2×2
sym,+ and |D(a)RT y|2 = My · y. Solving the system (4.12) is therefore

equivalent to finding M ∈M2×2
sym,+ such that

1

π

∫
S1

Ψ̂(y)

My · y
yjyk dH1(y) = δjk for every j, k = 1, 2. (4.13)

Let us denote the entries of M by Mjk for j, k = 1, 2. Note that, if we multiply by Mjk the jk
equation in (4.13) and we sum over j, k, we obtain

tr(M) = M11 +M22 =
1

π

∫
S1

Ψ̂(y) dH1(y) = 2,

where we used (3.6). Since tr(M) = a2
1 +a2

2, where a1, a2 are the semi-axes of the candidate ellipse,
we deduce that, if a minimising ellipse exists, then necessarily its semi-axes satisfy the relation

a2
1 + a2

2 = 2.
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To solve (4.13) it is convenient to introduce the function

f(M) := − 1

π

∫
S1

Ψ̂(y) log(My · y) dH1(y) + tr(M)

defined for every M ∈M2×2
sym,+. It is immediate to see that conditions (4.13) are satisfied if we find

M0 ∈ M2×2
sym,+ such that ∇Mf(M0) = 0, where with a slight abuse of notation we denoted by ∇M

the operator

∇M =
( ∂

∂M11
,

∂

∂M22
,

∂

∂M12

)
.

We claim that f has a minimiser in M2×2
sym,+. Since M2×2

sym,+ is an open set, the claim will imply
the existence of a critical point of f in this set and thus, of a solution to (4.13).

Given M ∈M2×2
sym,+, we first look at the behaviour of the function f along the line tM for t > 0,

that is, we consider the function

g(t) := f(tM) = − 1

π

∫
S1

Ψ̂(y) log(My · y) dH1(y)− 2 log t+ t tr(M)

for t > 0, where the last equality follows from (3.6). It is immediate to see that g is minimised at
t∗ = 2/ tr(M). Therefore, minimising f over M2×2

sym,+ is equivalent to minimising f on the set

M :=
{
M ∈M2×2

sym,+ : tr(M) = 2
}
.

By diagonalization any M ∈ M can be written as M = QD(b)QT with Q ∈ SO(2) and b =
(β, 2− β), β ∈ (0, 2). Using this representation and a change of variables we have that

f(M) = f(QD(b)QT ) = − 1

π

∫
S1

Ψ̂(Qy) log(βy2
1 + (2− β)y2

2) dH1(y) + 2.

Therefore, setting

γ(β,Q) := − 1

π

∫
S1

Ψ̂(Qy) log(βy2
1 + (2− β)y2

2) dH1(y)

for every β ∈ [0, 2] and Q ∈ SO(2), it is enough to show that γ has a minimiser in (0, 2)× SO(2)
to conclude that f has a minimiser in M and thus in M2×2

sym,+.
The function γ is finite and continuous on the compact set [0, 2] × SO(2). Therefore, it has a

minimiser (β0, Q0) in this set. It remains to prove that β0 is neither 0 nor 2.
By assumption there esists a constant C0 > 0 such that

Ψ̂(ξ) ≥ C0 for every ξ ∈ S1.

Using this inequality and (3.6), we obtain that

∂

∂β
γ(β,Q0) =

1

π

∫
S1

Ψ̂(Q0y)
2y2

2 − 1

βy2
1 + (2− β)y2

2

dH1(y)

≤ 4

2− β
− 1

π

∫
S1

C0

βy2
1 + (2− β)y2

2

dH1(y)

for every β ∈ (0, 2). Since the right-hand side goes to −∞ as β → 0+, we deduce that there exists
some δ > 0 such that

∂

∂β
γ(β,Q0) < 0

for every β ∈ (0, δ). Hence, β0 cannot be equal to zero. One can show in a similar way that β0

cannot be 2 either. This concludes the proof of the step.

Step 3: The first Euler-Lagrange condition implies the second one. To complete the proof, we
show that, if χ = χE/|E| satisfies (4.4), then it satisfies (4.5), as well. Assume χ satisfies (4.4).
By (4.4) it is enough to prove that the potential (W ∗ χ)(x) + 1

2 |x|
2 grows in the radial direction,

that is,

∇(W ∗ χ)(x) · x+ |x|2 ≥ 0 for every x ∈ R2 \ E.
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Let x ∈ R2 \ E. We can write x = tx0 with x0 ∈ E. By (4.4) we have that

∇(W ∗ χ)(x0) · x0 + |x0|2 = 0,

which can be written by (4.11) as

− 1

π

∫
S1

Ψ̂(y)α2(x0, y) dH1(y) + |x0|2 = 0,

where α is defined in (4.9). Multiplying this equation by t2 yields

− 1

π

∫
S1

Ψ̂(y)α2(x, y) dH1(y) + |x|2 = 0. (4.14)

By the inversion formula (4.8) and (4.10) we can write

∇(W ∗ χ)(x) · x+ |x|2 = |x|2 − 1

π

∫
S1

Ψ̂(y)α2(x, y)χ[−1,1](α(x, y)) dH1(y)

− 1

π

∫
S1

Ψ̂(y)
|α(x, y)|

|α(x, y)|+
√
α2(x, y)− 1

χR\[−1,1](α(x, y)) dH1(y).

Owing to (4.14), the expression above reduces to

∇(W ∗ χ)(x) · x+ |x|2 =
1

π

∫
S1

Ψ̂(y)|α(x, y)|
√
α2(x, y)− 1χR\[−1,1](α(x, y)) dH1(y) ≥ 0.

This concludes the proof. �

The next result shows how to combine the previous theorem and an approximation argument to
characterise the minimiser in the ‘degenerate’ case where the Fourier transform of the interaction
kernel is only non-negative outside 0. In particular, we prove that loss of dimensionality may
occur and in this case the support of the minimiser is contained in a straight line orthogonal to a

direction ξ ∈ S1 such that Ψ̂(ξ) = 0.

Corollary 4.3. Assume Ψ̂ ≥ 0 on S1, where Ψ̂ is the function introduced in (3.5). Then the
unique minimiser of the energy I in (4.3) is either the normalised characteristic function of the
domain enclosed by an ellipse centered at the origin and with semiaxes a1, a2 satisfying a2

1+a2
2 = 2,

or is the push-forward of the semicircle law (1.7) through a rotation map g(x) = Rx for x ∈ R2

with R ∈ SO(2) satisfying Ψ̂(Re1) = 0.

Proof. For ε > 0 we consider the kernels

Wε(x) = −(1 + ε) log |x|+ κ(x)

and we denote by Iε the corresponding energies with confinement |x|2. Arguing as in (3.4), it is
immediate to see that

Ŵε(ξ) = cεδ0 +
Ψ̂(ξ) + ε

|ξ|2

with Ψ̂ + ε > 0 on S1. By Theorem 4.2 for every ε > 0 the unique minimiser µε of Iε is the
normalised characteristic function of a set Eε of the form

RTε Eε =
{
x ∈ R2 :

x2
1

(a1,ε)2
+

x2
2

(a2,ε)2
≤ 1
}

with Rε ∈ SO(2) and (a1,ε)
2 + (a2,ε)

2 = 2. The sequence (µε)ε is tight, since the support of

µε is contained in the closed ball of center 0 and radius
√

2 for every ε > 0. Therefore, up
to subsequences, (µε)ε converges narrowly to a measure µ0 ∈ P(R2). We claim that µ0 is the
minimiser of I. Indeed, since the supports of µε and µ0 are uniformly bounded, on these sets W0

is bounded from below by some constant −c0, with c0 > 0. Therefore,

Iε(µε) ≥ I(µε)− c0ε
and by lower semicontinuity

lim inf
ε→0+

Iε(µε) ≥ lim inf
ε→0+

I(µε) ≥ I(µ0).
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On the other hand, if µ is any measure in P(R2) with compact support and such that∫∫
R2×R2

(
− log |x− y|+ κ(x− y)

)
dµ(y)dµ(x) < +∞, (4.15)

then by minimality

lim sup
ε→0+

Iε(µε) ≤ lim
ε→0+

Iε(µ) = I(µ).

Therefore, µ0 minimises I over all measures with compact support and satisfying (4.15). By
Theorem 2.1 and Proposition 3.2 we conclude that µ0 is the minimiser of I on the whole P(R2).

Up to subsequences, we can assume that the rotations and the semi-axes converge, that is,
Rε → R, a1,ε → a1, and a2,ε → a2, as ε → 0+, with R ∈ SO(2), a1, a2 ≥ 0, and a2

1 + a2
2 = 2.

Therefore, we have two cases: either both a1 and a2 are strictly positive, or one of them is 0 and
the other one is

√
2. In the first case µ0 is the normalised characteristic function of the set E

given by

RTE =
{
x ∈ R2 :

x2
1

a2
1

+
x2

2

a2
2

≤ 1
}
.

In the second case µ0 is the push-forward of the measure (1.7) through the rotation map g(x) = Rx
for x ∈ R2 if a1 = 0, or g(x) = RJx for x ∈ R2 if a2 = 0. Here J denotes a π/2-rotation.

To conclude the proof assume that a1 = 0 and a2 =
√

2. We want to prove that Ψ̂(Re1) = 0.
By (4.12) and the change of variable z = RTε y we have that

1

π

∫
S1

Ψ̂(Rεz) + ε

(a1,ε)2z2
1 + (a2,ε)2z2

2

(Rεz · ej)2 dH1(z) = 1 for j = 1, 2

for every ε > 0. Summing over j and applying Fatou Lemma yield

1

2π

∫
S1

Ψ̂(Rz)

z2
2

dH1(z) ≤ lim inf
ε→0

1

π

∫
S1

Ψ̂(Rεz) + ε

(a1,ε)2z2
1 + (a2,ε)2z2

2

dH1(z) = 2.

This implies that the function z 7→ z−2
2 Ψ̂(Rz) is integrable on S1, hence Ψ̂(Re1) = 0.

The case a1 =
√

2 and a2 = 0 can be treated analogously. �

Remark 4.4. If the quadratic confinement V (x) = |x|2 is replaced by a positive definite quadratic
form Q(x), Theorem 4.2 and Corollary 4.3 remain true, up to a scaling of the semiaxes of the ellipse
and of the semicircle law. Indeed, by rotating the whole system if needed, one can always assume
that Q(x) = D(λ)x ·x, where λ = (λ1, λ2) and λ1, λ2 > 0. Arguing as in the proof of Theorem 4.2,
one can show that solving the first Euler-Lagrange condition for the normalised characteristic
function of the domain enclosed by an ellipse is equivalent to finding M ∈M2×2

sym,+ such that

1

π

∫
S1

Ψ̂(y)

My · y
yjyk dH1(y) = λjδjk for every j, k = 1, 2. (4.16)

The existence of a solution to this system can be proved by showing that the function

f̃(M) := − 1

π

∫
S1

Ψ̂(y) log(D(λ)−1My · y) dH1(y) + tr(M) for M ∈M2×2
sym,+

has a minimiser M0 in M2×2
sym,+. Indeed, it is immediate to see that D(λ)−1M0 satisfies (4.16).

The existence of a minimiser of f̃ in M2×2
sym,+ follows by the same argument in Step 2 of the proof

of Theorem 4.2. The proofs of Step 3 and of Corollary 4.3 can then be easily adapted.

Remark 4.5. The results of Theorem 4.2 and Corollary 4.3 extend to R3, see [16], where the
kernel W is given by the following anisotropic variant of the three-dimensional Coulomb kernel:

W (x) =
Ψ(x)

|x|
for x ∈ R3, x 6= 0, W (0) = +∞,
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with Ψ strictly positive, even, 0-homogeneous, and smooth enough on S2. More precisely, we

proved that, if Ŵ > 0, then the unique minimiser of the energy

I3d(µ) =

∫∫
R3×R3

W (x− y) dµ(y)dµ(x) +

∫
R3

|x|2 dµ(x), µ ∈ P(R3),

is the normalised characteristic function of the domain enclosed by an ellipsoid centered at the

origin. If Ŵ ≥ 0, the minimiser is either of this form or it may collapse on a two-dimensional
measure, whose support is given by the domain enclosed by an ellipse.

Remark 4.6. The original proof by Carrillo & Shu in [3] is based on a different technique. Their
starting point is a formula expressing the interaction kernel as an integral of one-dimensional
logarithmic kernels on projections. More precisely, they show that

− log |x|+ κ(x) = − 1

2π

∫ π

−π
Ψ̂(eiθ) log |x · eiθ| dθ + constant,

where Ψ̂ is the same function as in (3.5). They observe that the projection of χE/|E| (with E the
domain enclosed by an ellipse centered at the origin) on any line passing through the origin is a
semicircle law. Using this remark and the representation formula above, they argue by projection
and conclude by applying the minimality of the semicircle law for the one-dimensional logarithmic
kernel. The same approach can be used to treat two-dimensional anisotropic Riesz kernels of the
form

Ψ(x)

|x|s
, 0 < s < 2,

with Ψ strictly positive, even, 0-homogeneous, and smooth enough on S1. However, their strategy
of proof extends to R3 only under some rather strong symmetry assumptions on the anisotropy,
that essentially reduce the problem to a two-dimensional setting (see [4]).

5. Related results and open questions

In this last section we show how to explicitely determine the optimal distributions in some
concrete cases and we discuss some open problems.

5.1. The dislocation case. As a first result, we show how to deduce the characterisation of the
minimiser of Iα in (1.8) from the results of the previous sections. The original proofs in [2, 18] are
based on completely different arguments.

Theorem 5.1. Let Iα be the functional defined in (1.8). Then for |α| < 1 the unique minimiser
of Iα is given by the measure (1.9). For α ≥ 1 the unique minimiser of Iα is the semicircle law
(1.7), whereas for α ≤ −1 it is the semicircle law on the horizontal axis

1

π

√
2− x2

1H1 [−
√

2,
√

2](x1)⊗ δ0(x2). (5.1)

Proof. We set Wα(x) = − log |x|+ κα(x), where

κα(x) := α
x2

1

|x|2
.

Since we can write

κα(x) =
α

2

x2
1 − x2

2

|x|2
+
α

2
,

Lemma 3.1 ensures that

Ŵα(ξ) = cαδ0 +
Ψ̂α(ξ)

|ξ|2
(5.2)

with

Ψ̂α(ξ) = (1− α)
ξ2
1

|ξ|2
+ (1 + α)

ξ2
2

|ξ|2
, ξ 6= 0.
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Assume |α| < 1. Since Ψ̂α > 0 on S1 in this case, by Theorem 4.2 the unique minimiser is the
normalised characteristic function of the domain enclosed by an ellipse of semiaxes a1,α, a2,α. We
note that Wα is symmetric with respect to the coordinate axes, that is,

Wα(−x1, x2) = Wα(x1,−x2) = Wα(x) for every x ∈ R2.

By uniqueness the minimiser must have the same symmetry, that is, the ellipse is symmetric
with respect to the coordinate axes. Therefore, in system (4.12) the rotation R is necessarily the
identity matrix and the equation for j = 1, k = 2 is trivially satisfied by symmetry. In other

words, using the expression of Ψ̂α, the semiaxes a1,α, a2,α satisfy

1

π

∫
S1

(1− α)y2
1 + (1 + α)y2

2

(a1,α)2y2
1 + (a2,α)2y2

2

y2
j dH1(y) = 1 for every j = 1, 2.

It is immediate to see that a1,α =
√

1− α, a2,α =
√

1 + α is a solution of this system. It is indeed
the unique solution, since we proved in Step 3 of the proof of Theorem 4.2 that any solution of
(4.12) is automatically a minimiser and the minimiser is unique. We conclude that for |α| < 1 the
minimiser is given by the measure (1.9).

Let now α = 1. Arguing as in the proof of Corollary 4.3, one can show that the minimiser of I1
has to be the limit of the minimiser of Iα, as α → 1−. Therefore, the minimiser is the semicircle
law (1.7). The same argument applies to α = −1.

If α > 1, let us denote by µsc the semicircle law in (1.7) and let µ be any other measure in
P(R2). Then

Iα(µ) ≥ I1(µ) > I1(µsc) = Iα(µsc),

where the last equality follows from the fact that the anisotropic interaction is 0 on the semicircle
law. A similar argument shows that (5.1) is the unique minimiser of Iα for α < −1. �

Remark 5.2. For the anisotropy (1.4) and quadratic confinement one can prove that the unique
minimiser is the normalised characteristic function of the domain enclosed by an ellipse (with
explicit semi-axes) if b2 < 1 + a2, whereas is the semicircle law (1.7) if b2 ≥ 1 + a2, see [11]. Since
the Fourier transform of the kernel W in this case is ‘degenerate’ outside 0 for any b > a > 0, this
example shows that both options predicted by Corollary 4.3 can indeed occur. From a mechanical
viewpoint the quantity H = b2 − a2 − 1 is the so-called anisotropy factor, which measures the
degree of anisotropy in a cubic crystal, see [10, eq. (13-27)].

5.2. Elliptic physical confinement. In this section we provide a full characterisation of min-
imisers for a general anisotropy in the case of the physical confinement

V (x) =

{
0 if x ∈ E,
+∞ if x 6∈ E,

where E is the domain enclosed by an ellipse centered at the origin. More precisely, we have the
following result.

Theorem 5.3. Let E = RE0 with R ∈ SO(2) and

E0 =
{
x ∈ R2 :

x2
1

a2
1

+
x2

2

a2
2

≤ 1
}
.

Let J be the functional defined by

J(µ) =

∫∫
E×E

(
− log |x− y|+ κ(x− y)

)
dµ(y)dµ(x)

for every µ ∈ P(E), where the anisotropy κ is even, 0-homogeneous, and of class Hs on S1 with

s > 3/2. Assume Ψ̂ ≥ 0 on S1, where Ψ̂ is the function introduced in (3.5). Then the unique
minimiser of J is given by the push-forward g#µE0

of the measure

µ∂E0
:=

1

2πa1a2

(x2
1

a4
1

+
x2

2

a4
2

)− 1
2H1 ∂E0

through the rotation map g(x) = Rx for x ∈ R2.
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Remark 5.4. This result was proved in [19] for a special class of anisotropies. Note that when E
is the closed ball Br of radius r > 0 and center 0 the minimiser is given by the uniform distribution
on the boundary of the ball, that is, by the measure

µ∂Br :=
1

2πr
H1 ∂Br.

Proof of Theorem 5.3. Up to rotating the axes and replacing κ(x) by κ(Rx), we can assume with-
out loss of generality that R is the identity matrix and E = E0.

Theorem 2.1 and Proposition 3.2 guarantee that the minimiser exists and is unique. Moreover,
it is characterised by the Euler-Lagrange conditions (2.7)–(2.8), which take the following form:

(W ∗ µ)(x) = c for µ-a.e. x ∈ suppµ, (5.3)

(W ∗ µ)(x) ≥ c for q.e. x ∈ E0. (5.4)

To prove the theorem it is enough to show that the measure µ∂E0
satisfies (5.3)–(5.4).

For t > 0 we consider the set

Et =
{
x ∈ R2 :

x2
1

a2
1

+
x2

2

a2
2

≤ 1 + t
}
.

By the formula (4.11) for the potential of a general ellipse we have that

∇(W ∗ χEt)(x) = −a1a2

∫
S1

Ψ̂(y)

|D(a)y|2
(x · y)y dH1(y) (5.5)

for every x ∈ Et and every t ≥ 0.
Let now x be in the interior of E0. Since x ∈ Et for every t ≥ 0, equation (5.5) holds for every

t ≥ 0. Differentiating both sides of (5.5) with respect to t and applying the coarea formula yield

0 =
d

dt

(∫
Et

∇W (x− y) dy
)

=
1

2

∫
∂Et

∇W (x− y)
(y2

1

a4
1

+
y2

2

a4
2

)− 1
2

dH1(y)

for a.e. t ≥ 0. For x in the interior of E0 the right-hand side is a continuous function of t, therefore
we deduce that

0 =
1

2

∫
∂E0

∇W (x− y)
(y2

1

a4
1

+
y2

2

a4
2

)− 1
2

dH1(y) = πa1a2∇(W ∗ µ∂E0
)(x)

for every x in the interior of E0. Since W ∗ µ∂E0
is a continuous function in R2, this implies that

W ∗ µ∂E0 is constant in E0, that is, (5.3)–(5.4) are satisfied for µ = µ∂E0 . �

5.3. Some open questions and further comments. As a consequence of Theorem 4.2 and
Corollary 4.3, energies of the form (4.3) may have minimisers of non-full dimensionality only if
the Fourier transform of their kernel is degenerate. However, degeneracy of the Fourier transform
is not a sufficient condition for loss of dimensionality, see Remark 5.2. The arguments of proof in
Theorem 4.2 show that, in the convexity range, loss of dimensionality occurs if and only if system
(4.13) does not have a solution M in M2×2

sym,+. Yet it would be desirable to devise a criterion for the
occurrence of a lower dimensional optimal distribution, without resorting to explicit computations.
Similarly, in the case of fully dimensional minimisers, there is no characterisation available for the
rotation of the optimal ellipse with respect to the coordinate axes.

However, some simple considerations can be made in some specific cases. Indeed, if µ is a
measure with no atoms and support on a straight line passing through the origin, then by 0-
homogeneity ∫∫

R2×R2

κ(x− y) dµ(x)dµ(y) = κ(v)

where v ∈ S1 is a vector parallel to the support of µ. Since the logarithmic interaction and
the confinement are radially symmetric, this implies that, among all measures with support on
a straight line through the origin, the minimal energy is attained in the directions where κ is
minimal. Therefore, if κ has more than one minimiser in the set {x ∈ S1 : x1 ∈ (−1, 1]}, then
loss of dimensionality cannot occur, as long as the Fourier transform of the kernel is non-negative,
otherwise uniqueness would be violated.
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Theorem 5.3 shows that the choice of confinement may also have a strong impact on the shape of
minimisers and on their dimensionality. Preliminary computations indicate that strict positivity of
the Fourier transform should guarantee full dimensionality of minimisers for smooth confinements,
such as, e.g., V (x) = |x|p with p ≥ 2.

Another interesting question is the analysis of optimal distributions outside the convexity range,
that is, for kernels whose Fourier transform is negative along some directions. Numerical simula-
tions seem to suggest the occurrence of rather complex patterns, see [3].
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E-mail address: mariagiovanna.mora@unipv.it


	1. Introduction
	1.1. Motivation
	1.2. Overview of the results

	2. The existence result and first properties of minimisers
	2.1. Logarithmic capacity
	2.2. The confinement potential
	2.3. Main results

	3. The uniqueness result
	3.1. The Fourier transform
	3.2. The Fourier transform of the kernel W

	4. Characterisation of minimisers
	4.1. The Coulomb case
	4.2. The anisotropic case

	5. Related results and open questions
	5.1. The dislocation case
	5.2. Elliptic physical confinement
	5.3. Some open questions and further comments

	References

