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Abstract. We study the regularity of minimizers for a variant of the soap bubble cluster problem:

min

N∑
ℓ=0

cℓP (Sℓ) ,

where cℓ > 0, among partitions {S0, . . . , SN , G} of R2 satisfying |G| ≤ δ and an area constraint
on each Sℓ for 1 ≤ ℓ ≤ N . If δ > 0, we prove that for any minimizer, each ∂Sℓ is C1,1 and
consists of finitely many curves of constant curvature. Any such curve contained in ∂Sℓ ∩ ∂Sm or
∂Sℓ ∩ ∂G can only terminate at a point in ∂G∩ ∂Sℓ ∩ ∂Sm at which G has a cusp. We also analyze
a similar problem on the unit ball B with a trace constraint instead of an area constraint and
obtain analogous regularity up to ∂B. Finally, in the case of equal coefficients cℓ, we completely
characterize minimizers on the ball for small δ: they are perturbations of minimizers for δ = 0 in
which the triple junction singularities, including those possibly on ∂B, are “wetted” by G.

1. Introduction

1.1. Overview. A classical problem in the calculus of variations is the soap bubble cluster problem,
which entails finding the configuration, or cluster, of least area separating N regions with prescribed
volumes, known as chambers. Various generalizations have been studied extensively as well and
may involve different coefficients penalizing the interfaces between pairs of regions (the immiscible
fluids problem) or anisotropic energies. The existence of minimal clusters and almost everywhere
regularity for a wide class of problems of this type were obtained by Almgren in the foundational
work [Alm76]. The types of singularities present in minimizers in the physical dimensions are
described by Plateau’s laws, which were verified in R3 by Taylor [Tay76]. In the plane, regions in a
minimizing cluster are bounded by finitely many arcs of constant curvature meeting at 120◦ angles
[Mor94]. We refer to the book [Mor09] for further discussion on the literature for soap bubble
clusters.

In this article we study the interaction of the regularity/singularities of 2D soap bubbles with
other physical properties such as thickness. Soap bubbles are generally modeled as surfaces, or
“dry” soap bubbles. This framework is quite natural for certain questions, e.g. singularity analysis
as observed above, but it does not capture features related to thickness or volume of the soap. Issues
such as which other types of singularities can be stabilized by “wetting” the film [Hut97, WP96]
require the addition of a small volume parameter to the model corresponding to the enclosed
liquid; see for example [BM98, Bra05]. In the context of least-area surfaces with fixed boundary
(Plateau problem), the authors in [MSS19, KMS22a, KMS21, KMS22b] have formulated a soap
film capillarity model that selects surface tension energy minimizers enclosing a small volume and
spanning a given wire frame. The analysis of minimizers is challenging, for example due to the
higher multiplicity surfaces that arise if the thin film “collapses.”

Here we approach these issues through the regularity analysis of minimizers of a version of
the planar minimal cluster problem. In the model, there are N chambers of fixed area (the soap
bubbles) and an exterior chamber whose perimeters are penalized, and there is also an un-penalized
region G of small area at most δ > 0. This region may be thought of as the “wet” part of the soap
film where soap accumulates (see Remarks 1.2-1.3 and 1.9). Our first main result, Theorem 1.1, is
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Figure 1.1. On the left is a minimizing cluster S0 for the δ = 0 problem on the
ball with chambers S0

ℓ . On the right is a minimizer Sδ for small δ, with |Gδ| = δ.

Near the triple junctions of S0, ∂Gδ consists of three circular arcs meeting in cusps;
see Theorem 1.8.

a sharp regularity result for minimizers: each of the N chambers as well as the exterior chamber
have C1,1 boundary, while ∂G is regular away from finitely many cusps. In particular, each bubble
is regular despite the fact that the bubbles in the δ → 0 limit may exhibit singularities. We also
study a related problem on the ball in which the area constraints on the chambers are replaced
by boundary conditions on the circle and prove a similar theorem up to the boundary (Theorem
1.4). As a consequence, in Theorem 1.8, we completely resolve minimizers on the ball for small
δ in terms of minimizers for the limiting “dry” problem: near each triple junction singularity of
the limiting minimizer, there is a component of G “wetting” the singularity and bounded by three
circular arcs meeting in cusps inside the ball and corners or cusps at the boundary; see Figure 1.1.

1.2. Statement of the problem. For an (N +2)-tuple S = (S0, S1, . . . , SN , G) of disjoint sets of
finite perimeter partitioning R2 (N ≥ 2), called a cluster, we study minimizers of the energy

F(S) :=
N∑
ℓ=0

cℓP (Sℓ) , cℓ > 0 ∀0 ≤ ℓ ≤ N ,

among two admissible classes. First, we consider the problem on all of space

inf
S∈Am

δ

F(S) , (1.1)

where the admissible class Am
δ consists of all clusters satisfying

|G| = |R2 \ ∪N
ℓ=0Sℓ| ≤ δ (1.2)

and, for some fixed m ∈ (0,∞)N , (|S1|, . . . , |SN |) = m. We also consider a related problem on the
unit ball B = {(x, y) : x2 + y2 < 1}. We study the minimizers of

inf
S∈Ah

δ

F(S) , (1.3)

where Ah
δ consists of all clusters such that, for fixed h ∈ BV (∂B; {1, . . . , N}),

Sℓ ∩ ∂B = {x ∈ ∂B : h(x) = ℓ} for 1 ≤ ℓ ≤ N in the sense of traces , (1.4)

S0 = R2 \ B is the exterior chamber, and G satisfies (1.2). We remark that since Am
δ ⊂ Am

δ′ and

Ah
δ ⊂ Ah

δ′ if δ < δ′, the minimum energy decreases in δ for both (1.1) and (1.3).
The main energetic mechanism at work in (1.1) that distinguishes it from the classical minimal

cluster problem is that the set G prohibits the creation of corners in the chambers Sℓ. If r ≪ 1, the
amount of perimeter saved by smoothing out a corner of Sℓ in Br(x) using the set G scales like r,
and this can be accomplished while simultaneously preserving the area constraint by fixing areas
elsewhere with cost ≈ r2 [Alm76, VI.10-12]. On the other hand, the regularizing effect of G only
extends to the other chambers and not to its own boundary since its perimeter is not penalized.
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Figure 1.2. On the left is a double bubble-type configuration Sδ with singularities
wetted by Gδ. Sδ can be approximated by S̃δ, where G̃δ wets the entire interface.

1.3. Main results. We obtain optimal regularity results for minimizers of (1.1) and (1.3). In
addition, for the problem with equal weights cℓ, we completely resolve minimizers of (1.3) for small
δ > 0 in terms of minimizers for δ = 0. In the following theorems and throughout the paper, the
term “arc of constant curvature” may refer to either a single circle arc or a straight line segment.

Theorem 1.1 (Regularity on R2 for δ > 0). If Sδ is a minimizer for F among Am
δ for δ > 0, then

∂Sδ
ℓ is C1,1 for each ℓ, and there exists κδℓm such that each ∂Sδ

ℓ ∩ ∂Sδ
m is a finite union of arcs of

constant curvature κδℓm that can only terminate at a point in ∂Sδ
ℓ ∩ ∂Sδ

m ∩ ∂Gδ. Referring to those

points in ∂Sδ
ℓ ∩ ∂Sδ

m ∩ ∂Gδ as cusp points, there exist κδℓ for 0 ≤ ℓ ≤ N such that ∂Sδ
ℓ ∩ ∂Gδ is

a finite union of arcs of constant curvature κδℓ , each of which can only terminate at a cusp point

where ∂Sδ
ℓ ∩ ∂Gδ and ∂Sδ

m ∩ ∂Gδ meet a component of ∂Sδ
ℓ ∩ ∂Sδ

m tangentially.

Remark 1.2 (Interpretation of Gδ). For the case cℓ = 1, a possible reformulation of (1.1) that
views the interfaces as thin regions of liquid rather than surfaces is

inf{F(S) : S ∈ Am
δ , Sℓ open ∀ℓ, clSℓ ∩ clSm = ∅ ∀ℓ ̸= m} . (1.5)

This is because if S belongs to this class, then each bubble Sℓ for 1 ≤ ℓ ≤ N must be separated from
the others and the exterior chamber S0 by the soap G, and F(S) = P (G), which is the energy of the
soap coming from surface tension. Theorem 1.1 allows for a straightforward construction showing
that in fact, (1.1) and (1.5) are equivalent, in that a minimizer for (1.1) can be approximated in
energy by clusters in the smaller class (1.5). Therefore, for a minimizer Sδ of (1.1), Gδ can be
understood as the “wet” part of the interfaces between bubbles where soap accumulates in the
limit of a minimizing sequence for (1.5), as opposed to ∂Sδ

ℓ ∩ ∂Sδ
m which is the “dry” part; see

Figure 1.2.

Remark 1.3 (Constraint on Gδ). We have incorporated Gδ with a soft constraint |Gδ| ≤ δ rather
than a hard constraint |Gδ| = δ to allow the minimizers to “select” the area of Gδ. A consequence of
Theorem 1.1 is that if some minimizer S0 of (1.1) for δ = 0 has a singularity, then every minimizer
Sδ for given δ > 0 satisfies |Gδ| > 0. Indeed, if |Gδ| = 0, then F(S0) ≤ F(Sδ) = infAm

δ
F , so that

S0 is minimal among Am
δ and the regularity in Theorem 1.1 for S0 yields a contradiction. As we

prove in Theorem 1.8, the minimizer on the ball for small δ and equal coefficients saturates the
inequality |Gδ| ≤ δ, and we suspect this should hold in generality for (1.1) and (1.3) with small δ.

We turn now to our results regarding the problem (1.3) on the ball. Here regularity holds up to
the boundary ∂B, at which Gδ may have corners, rather than cusps, at jump points of h.

Theorem 1.4 (Regularity on the Ball for δ > 0). If Sδ is a minimizer for F among Ah
δ for

δ > 0, then for ℓ,m > 0, ∂Sδ
ℓ is C1,1 except at jump points of h, and ∂Sδ

ℓ ∩ ∂Sδ
m ∩ B is a finite

union of line segments terminating on ∂B at a jump point of h between ℓ and m or at a point in
∂Sδ

ℓ ∩∂Sδ
m∩∂Gδ ∩B. Referring to those points in ∂Sδ

ℓ ∩∂Sδ
m∩∂Gδ ∩B and ∂Sδ

ℓ ∩∂Sδ
m∩∂Gδ ∩∂B

as cusp and corner points, respectively, there exist κδℓ for 1 ≤ ℓ ≤ N such that

c1κ
δ
1 = c2κ

δ
2 = · · · = cNκδN (1.6)
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and ∂Sδ
ℓ ∩ ∂Gδ consists of a finite union of arcs of constant curvature κδℓ , each of whose two

endpoints are either a cusp point in B or a corner point in ∂B at a jump point of h. Furthermore,
at cusp points, ∂Sδ

ℓ ∩ ∂Gδ and ∂Sδ
m ∩ ∂Gδ meet a segment of ∂Sδ

ℓ ∩ ∂Sδ
m tangentially. Finally, any

connected component of Sδ
ℓ for 1 ≤ ℓ ≤ N is convex.

Remark 1.5. In the case of equal weights cℓ = 1, Theorems 1.1 and 1.4 can be found in [BM98];
see also the paper [HM96] for methods of existence and regularity.

To state our asymptotic resolution theorem on the ball, we require some knowledge of the regu-
larity for minimizers of the δ = 0 problem. In the general immiscible fluids problem, there may be
singular points where more than three chambers meet; see [Cha95, Figure 1.1], [FGM+00, Figure
7]. Since we are interested in triple junction singularities, below is a description of the behavior of
minimizers on the ball in some cases where all singularities are triple junctions.

Theorem 1.6 (Regularity on the Ball for δ = 0). If N = 3 or cℓ = 1 for 0 ≤ ℓ ≤ N and S0 is a
minimizer for F among Ah

0 , then every connected component of ∂S0
ℓ ∩ ∂S0

m ∩B for non-zero ℓ and
m is a line segment terminating at an interior triple junction x ∈ ∂S0

ℓ ∩ ∂S0
m ∩ ∂S0

n ∩ B, at x ∈
∂S0

ℓ ∩∂S0
m∩∂B which is a jump point of h, or at a boundary triple junction x ∈ ∂S0

ℓ ∩∂S0
m∩∂S0

n∩∂B
which is a jump point of h. Moreover, for each triple {ℓ,m, n} of distinct non-zero indices there
exists angles θℓ, θm, θn satisfying

sin θℓ
cm + cn

=
sin θm
cℓ + cn

=
sin θn
cℓ + cm

(1.7)

such that if x ∈ B is an interior triple junction between S0
ℓ , S

0
m, and S0

m, then there exists rx > 0
such that S0

ℓ ∩ Brx(x) is a circular sector determined by θℓ, and similarly for m, n. Finally, any
connected component of S0

ℓ for 1 ≤ ℓ ≤ N is convex.

Remark 1.7. The proof of Theorem 1.6 also applies when N > 3 or cℓ are merely positive to
show that the interfaces of a minimizer are finitely many segments meeting at isolated points. For
the immiscible fluids problem on the ball, this has been observed in [Mor98, Corollary 4.6]; see
also [Whi86]. Therefore, one may prove Theorem 1.6 by classifying the possible tangent cones if
N = 3 or cℓ = 1 (Theorem 4.15). Since the proof of Theorem 1.4, which is in the language of sets
of finite perimeter, can be easily modified to include a full proof of Theorem 1.6, we provide these
arguments for completeness and as an alternative to the approach in [Mor98] via rectifiable chains.

Our last main result is a complete resolution of minimizers on the ball for small δ and equal weights.

Theorem 1.8 (Resolution for Small δ on the Ball). Suppose that cℓ = 1 for 0 ≤ ℓ ≤ N and
h ∈ BV (∂B; {1, . . . , N}). Then there exists δ0 > 0, a function f(δ) → 0 as δ → 0, and r > 0, all
depending on h, such that if 0 < δ < δ0 and Sδ is a minimizer in (1.3), then |Gδ| = δ and there
exists a minimizer S0 among Ah

0 such that

max
{
sup{dist(x, S0

ℓ ) : x ∈ Sδ
ℓ } , sup{dist(x, Sδ

ℓ ) : x ∈ S0
ℓ }
}
≤ f(δ) for 1 ≤ ℓ ≤ N (1.8)

and, denoting by Σ the set of interior and boundary triple junctions of S0,

max
{
sup{dist(x,Σ) : x ∈ S0

ℓ } , sup dist{(x,Gδ) : x ∈ Σ}
}
≤ f(δ) (1.9)

and for each x ∈ Σ, Br(x) ∩ ∂Gδ consists of three circle arcs of curvature κ = κ(Sδ).

Remark 1.9 (Wetting of Singularities). For the soap bubble capillarity analogue of (1.5) on B,

inf{F(S) : S ∈ Ah
δ , Sℓ open, clSℓ ∩ clSm ⊂ {x ∈ ∂B : h jumps between ℓ,m}} , (1.10)

we may also use Theorem 1.4 to approximate a minimizer in (1.3) by a sequence satisfying the
restrictions in (1.10). Therefore, if δ > 0 is small, a minimizing sequence for (1.10) converges to a
minimizer Sδ of (1.3), which in turn is close to a minimizer S0 for the δ = 0 problem. Furthermore,
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by Theorem 1.8, if δ < δ0 and the weights cℓ are equal, each singularity of S0 is “wetted” by
a component of Gδ bounded by three circular arcs; see Figure 1.1. Also, (1.9) shows that Σ
coincides with the set of accumulation points of the “wet” regions Gδ as δ → 0. In the context
of the Plateau problem in R2, this equivalence has been conjectured in [KMS22b, Remark 1.7]. If
dist(Σ, ∂B) > f(δ), then Sδ coincides with the “wetting” of a dry minimizer; see Remark 7.1.

Remark 1.10 (Triple Junctions for Vector Allen-Cahn). Theorem 1.4 is used in a construction by

É. Sandier and P. Sternberg of an entire solution U : R2 → R2 to the system ∆U = ∇uW (U) for a
triple-well potential W without symmetry assumptions on the potential [ESS23].

1.4. Idea of proof. The outline to prove Theorems 1.1 and 1.4 can be summarized in two main
steps: first, classifying the possible blow-ups at any interfacial point of a minimizer Sδ, and; second,
using one of the (a priori non-unique) blow-ups at x to resolve Sδ in a small neighborhood of x.
To demonstrate the ideas, we describe these steps for a minimizer Sδ for the problem (1.1) on R2

at x = 0. For the classification of blow-ups, we use a blow-up version of the observation below
(1.4) to show that no blow-up of any chamber Sδ

ℓ can be anything other than a halfspace. This of
course differs from the usual blow-ups in two-dimensional cluster problems, in which three or more
chambers can meet at a point.

Armed now with a list of the possible blow-ups at 0, which we do not yet know are unique, we
must use them to resolve the minimizer in a small neighborhood of 0. In the case that there exists
a blow-up coming from Gδ and a single chamber Sδ

ℓ , lower area density estimates on the remaining

chambers imply that in a small ball Br(0), S
δ
ℓ′ ∩Br(0) = ∅ for ℓ ̸= ℓ′, so that ∂Sδ

ℓ ∩Br(0) is regular
by the classical theory for volume-constrained perimeter minimizers. The main hurdle is when
the blow-up at 0 is two halfspaces coming from Sδ

ℓi
for i = 1, 2. In the classical regularity theory

for planar clusters (see [Whi96, Section 11] or [Leo01, Corollary 4.8]), this would imply that on
Br(0), the interface must be an arc of constant curvature separating each Sδ

ℓi
∩Br(0). Here, there

is the possibility that 0 ∈ ∂Gδ but Gδ has density 0 at 0. This behavior cannot be detected at
the blow-up level, although one suspects the interfaces near 0 should be two ordered graphs over a
common line which coincide at 0 and possible elsewhere also. To prove this and thus complete the
local resolution, we use the convergence along a sequence of blow-ups to a pair of halfspaces and
the density estimates on the other chambers to locate a small rectangle Q = [−r, r] × [r, r] such
that Q ⊂ Sδ

ℓ1
∪ Sδ

ℓ2
∪ Gδ and ∂Q ∩ ∂Sδ

ℓi
= {(−r, ai), (r, bi)} for some a1 ≤ a2 and b1 ≤ b2. At this

point, since we have the desired graphicality on ∂Q, we can combine a symmetrization inequality
for sets which are graphical on the boundary of a cube (Lemma 2.3), the minimality of Sδ, and the
necessary conditions for equality in Lemma 2.3 to conclude that ∂Sδ

ℓi
∩Q are two ordered graphs.

1.5. Organization of the paper. In Section 2, we recall some preliminary facts. Next, we
prove the existence of minimizers in Section 3. Section 4 contains the proof of the existence and
classification of blow-up cones at any interfacial point. In Sections 5 and 6, we prove Theorems 1.1
and 1.4 and Theorem 1.6, respectively. Finally, in Section 7, we prove Theorem 1.8.

1.6. Acknowledgments. This work was supported by the NSF grant RTG-DMS 1840314. I am
grateful to Étienne Sandier and Peter Sternberg for several discussions during the completion of
this work and to Frank Morgan for valuable comments on the literature for such problems.

2. Notation and Preliminaries

2.1. Notation. Throughout the paper, Br(x) = {y ∈ R2 : |y − x| < r}. When x = 0, we set
BR := BR(0) and B = B1(0). Also, for any Borel measurable U , we set

F(S;U) =

N∑
ℓ=0

cℓP (Sℓ;U) .
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We will use the notation E(t) for the points of Lebesgue density t ∈ [0, 1].
We remark that since h ∈ BV (∂B; {1, . . . , N}), there exists a partition of ∂B into N pairwise

disjoint sets {A1, . . . , AN} such that h =
∑N

ℓ=1 ℓ 1Aℓ
, and each Aℓ is a finite union of pairwise

disjoint arcs:

Aℓ := ∪Iℓ
i=1a

ℓ
i . (2.1)

For each 1 ≤ ℓ ≤ N and 1 ≤ i ≤ Iℓ, we let

cℓi (2.2)

be the chord that shares endpoints with aℓi . Finally, we call

Cℓ
i (2.3)

the open circular segments (regions bounded by an arc and its corresponding chord) corresponding
to the pair (aℓi , c

ℓ
i).

2.2. Preliminaries. Regarding the functional F , we observe that when δ = 0,

F(S) =
∑

0≤ℓ<m≤N

cℓmH1(∂∗Sℓ ∩ ∂∗Sm) ,

where cℓm := cℓ + cm, and the positivity of cℓ for 1 ≤ ℓ ≤ N is equivalent to the strict triangle
inequalities

cℓm < cℓi + cim ∀ℓ ̸= m ̸= i ̸= ℓ . (2.4)

We also note that for any h ∈ BV (∂B; {1, . . . , N}), the energy of any cluster S satisfying the
boundary condition (1.4) can be decomposed as

F(S) = 2πc0 +

N∑
ℓ=1

cℓH1(Aℓ) +

N∑
ℓ=1

cℓP (Sℓ;B) =: C(h) + F(S;B) , (2.5)

where C(h) is a constant independent of S. Therefore, minimizing F among Ah
δ for any δ > 0 is

equivalent to minimizing F(·;B), so we will often ignore the boundary term for the problem on the
ball.

We now recall some facts regarding sets of finite perimeter. Unless otherwise stated, we will
always adhere to the convention that among the Lebesgue representatives of a given set of finite
perimeter E, we are considering one that satisfies [Mag12, Proposition 12.19]

sptH1 ∂∗E = ∂E (2.6)

and

∂E = {x : 0 < |E ∩Br(x)| < πr2 ∀r > 0} . (2.7)

We will need some facts regarding slicing sets of finite perimeter by lines or circles.

Lemma 2.1 (Slicing sets of finite perimeter). Let u(x) = x · ν for some ν ∈ S1 or u(x) = |x − y|
for some y ∈ R2, and, for any set A, let At denote A ∩ {u = t}. Suppose that E ⊂ R2 is a set of
finite perimeter.

(i) For every t ∈ R, there exist traces E+
t , E

−
t ⊂ {u = t} such thatˆ

{u=t}
|1E+

t
− 1E−

t
| dH1 = P (E; {u = t}) . (2.8)

(ii) Letting S = {x : x ·ν⊥ ∈ [a, b]} for compact [a, b] when u = x ·ν or S = R2 when u = |x−y|,

lim
s↓t

ˆ
{u=s}∩S

1E−
t
dH1 =

ˆ
{u=t}∩S

1E+
t
dH1 . (2.9)
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(iii) For almost every t ∈ R, E+
t = E−

t = Et up to an H1-null set, Et is a set of finite perimeter
in {u = t}, and

H0((∂∗E)t∆∂∗
{u=t}Et) = 0 . (2.10)

Proof. The first item can be found in [Giu84, (2.15)]. We prove the second item when u = e⃗1 · x;
the proof with any other ν or when u = |x − y| is similar. By the divergence theorem [Giu84,
Theorem 2.10],

0 =

ˆ
(t,s)×(a,b)∩E

div e⃗1

=

ˆ
{u=s}∩S

1E−
t
dH1 −

ˆ
{u=t}∩S

1E+
t
dH1 +

ˆ
∂∗E∩(t,s)×(a,b)

e⃗1 · νE dH1

+

ˆ
∂∗(E∩(t,s)×(a,b))∩(t,s)×{a,b}

e⃗1 · νE∩(t,s)×(a,b) dH1 .

Now the last term on the right hand side is bounded by 2(s − t) and vanishes as s → t. Also,
the third term on the right hand side is bounded by P (E; (t, s) × (a, b)), which vanishes as s → t
since (t, s) × (a, b) is a decreasing family of bounded open sets whose intersection is empty and
B → P (E;B) is a Radon measure. The limit (2.9) follows from letting s decrease to t.

Moving on to (iii), we recall that for H1-a.e. x ∈ {u = t} ∩ E+
t ,

1 = lim
r→0

|Br(x) ∩ E ∩ {u > t}|
πr2/2

(2.11)

and similarly for E−
t [Giu84, 2.13]. Next, by (2.8),

H1(E+
t ∆E−

t ) = 0 if P (E; {u = t}) = 0 , (2.12)

which is all but at most countably many t. Now, for any x ∈ {u = t} that is also a Lebesgue point
of E,

1 = lim
r→0

|Br(x) ∩ E|
πr2

= lim
r→0

|Br(x) ∩ E ∩ {u > t}|
πr2/2

= lim
r→0

|Br(x) ∩ E ∩ {u < t}|
πr2/2

. (2.13)

Since L2-a.e. x ∈ E is a Lebesgue point, we conclude from (2.11), (2.12), and (2.13) that
H1(Et∆E±

t ) = 0 for H1-a.e. t. Lastly, (2.10) when slicing by lines can be found in [Mag12,
Theorem 18.11] for example. The case of slicing by circles follows from the case of lines and the
fact that smooth diffeomorphisms preserve reduced boundaries [KMS22a, Lemma A.1]. □

We will use the following fact regarding the intersection of a set of finite perimeter with a convex
set.

Lemma 2.2. If E is a bounded set of finite perimeter and K is a convex set, then

P (E ∩K) ≤ P (E) ,

with equality if and only if |E \K| = 0.

Proof. The argument is based on the facts that the intersection of such E with a halfspace H
decreases perimeter (with equality if and only |H \E| = 0) and any convex set is an intersection of
halfspaces. We omit the details. □

Our last preliminary regarding sets of finite perimeter is a symmetrization inequality, which for
convenience, we state in the setting it will be employed later.
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E Eh

Q′ Q′

Figure 2.1. Both the sets E and Eh have the same trace on ∂Q′, and
P (Eh; intQ′) < P (E; intQ′) because E has vertical slices which are not intervals.

Lemma 2.3. Let Q′ = [t1, t2]× [−1, 1]. Suppose that E ⊂ Q′ is a set of finite perimeter such that

(t1, t2)× (−1,−1/4) ⊂ E(1) ⊂ (t1, t2)× (−1, 1/4) and, for some a1, a2 ∈ [−1/4, 1/4],

E+
t1
= [−1, a1] , E−

t2
= [−1, a2] up to H1-null sets , (2.14)

where E+
t1
, E−

t2
, viewed as subsets of R, are the traces from the right and left, respectively, slicing

by u(x) = x · e1. Then the set Eh = {(x1, x2) : −1 ≤ x2 ≤ H1(Ex1)− 1} satisfies |Eh| = |E|,
(Eh)+t1 = [−1, a1] , (Eh)−t2 = [−1, a2] up to H1-null sets (2.15)

and

P (Eh; intQ′) ≤ P (E; intQ′) . (2.16)

Moreover, if equality holds in (2.16), then for every t ∈ (t1, t2), (E
(1))t is an interval.

Remark 2.4. The superscript h is for “hypograph.”

Proof. The preservation of area |Eh| = |E| is immediate by Fubini’s theorem, so we begin with
the first equality in (2.15), and the second is analogous. We recall from (2.11) that for H1-a.e.
x ∈ {t1} × [−1, 1] ∩ (Eh)+t1 ,

1 = lim
r→0

|Br(x) ∩ Eh ∩Q′|
πr2/2

. (2.17)

From this property and the fact that the vertical slices of Eh are intervals of height at least 3/4, it
follows that (Eh)+t1 is H1-equivalent to an interval [−1, a] for some a ≥ −1/4. Furthermore, a = a1
is a consequence of (2.9) and the fact that the rearrangement Eh preserves the H1-measure of each
vertical slice:

a1 =

ˆ
{t1}×[−1,1]

1E+
t1

dH1 = lim
s↓t1

ˆ
{s}×[−1,1]

1E−
s
dH1

= lim
s↓t1

ˆ
{s}×[−1,1]

1(Eh)−s
dH1 =

ˆ
{t1}×[−1,1]

1(Eh)+t1
dH1 = a .

Moving on to (2.16), let consider the sets Er which is the reflection of E over {x2 = −1}, and
G = E ∪ Er. We denote by the superscript s the Steiner symmetrization of a set over {x2 = −1}.
We note that

Gs ∩Q′ = Eh .

Since (t1, t2)× (−1,−1/4) ⊂ E(1) ⊂ (t1, t2)× (−1, 1/4) and Steiner symmetrizing decreases perime-
ter, we therefore have

P (E; intQ′) =
P (G; {x1 ∈ (t1, t2)})

2
≥ P (Gs; {x1 ∈ (t1, t2)})

2
= P (Gs; intQ′) = P (Eh; intQ′) ,

8



a11

x1 x2

x3
x5

x4

a12

c11

c12

Figure 3.1. Here h jumps at xi, 1 ≤ i ≤ 5, and {h = 1} on the arcs a11 and a12.

Equation (3.1) states that for any minimizer S with this boundary data, S
(1)
1 must

contain the regions bounded by a1j and the chords c1j for j = 1, 2.

which is (2.16). Furthermore, equality can only hold if every almost every vertical slice of G is
an interval, which in turn implies that Et is an interval for almost every t ∈ (t1, t2). By [Fus04,

Lemma 4.12], every slice (E(1))t is an interval. □

We conclude the preliminaries with a lemma regarding of the convergence of convex sets.

Lemma 2.5. If {Cn} is a sequence of equibounded, compact, and convex sets in Rn, then there
exists compact and convex C ⊂ Rn such that 1Cn → 1C almost everywhere and

max
{
sup
x∈Cn

dist(x,C) , sup
x∈C

dist(x,Cn)
}
→ 0 . (2.18)

Proof. By the Arzelá-Ascoli Theorem, there exists a compact set C ⊂ Rn such that dist(·, Cn) →
dist(·, C) uniformly. Therefore, Cn → C in the Kuratowski sense [FFLM22, Section 2], C is convex,
and 1Cn → 1C almost everywhere [FFLM22, Remark 2.1]. Since Cn are equibounded and C is
compact, the Kuratowski convergence is equivalent to Hausdorff convergence, which is (2.18). □

3. Existence of Minimizers

First we establish the existence of minimizers for the problem (1.3) on the ball. A byproduct of
the proof is a description of minimizers on each of the circular segments from (2.3); see Fig. 3.1.

Theorem 3.1 (Existence on the ball). For any δ ≥ 0 and h ∈ BV (∂B; {1, . . . , N}), there exists a
minimizer of F among the class Ah

δ . Moreover, any minimizer Sδ for δ ≥ 0 satisfies

∪Iℓ
i=1C

ℓ
i ⊂ S

(1)
ℓ for each 1 ≤ ℓ ≤ N . (3.1)

Proof. The proof is divided into two steps. The closed convex sets

Kℓ := cl (B \ (∪Iℓ
i=1C

ℓ
i )) , 1 ≤ ℓ ≤ N

will be used throughout.

Step one: First we show that given any S ∈ Ah
δ , the cluster S̃ defined via

S̃ℓ :=
(
Sℓ ∩

⋂
j ̸=ℓ

Kj

)
∪

Iℓ⋃
i=1

Cℓ
i 1 ≤ ℓ ≤ N , S̃0 = Bc , G̃ = (S̃0 ∪ · · · ∪ S̃N )c

satisfies S̃ ∈ Ah
δ and

F(S̃) ≤ F(S) , (3.2)

with equality if only if

∪Iℓ
i=1C

ℓ
i ⊂ S

(1)
ℓ ∀1 ≤ ℓ ≤ N . (3.3)

9



The proof relies on Lemma 2.2, which states that if E is a set of finite perimeter, |E| < ∞, and K
is a closed convex set, then E ∩K is a set of finite perimeter and

P (E ∩K) ≤ P (E) , (3.4)

with equality if and only if |E \K| = 0. For given S ∈ Ah
δ , let us first consider the cluster S ′, where

S′
1 := S1 ∪

I1⋃
i=1

C1
i , S′

ℓ := Sℓ ∩K1 , 2 ≤ ℓ ≤ N S′
0 = Bc , G′ = (S′

0 ∪ · · · ∪ S′
N )c .

By the trace condition (1.4) and the definition of S′
ℓ,

S′
ℓ ∩ ∂B = {x ∈ ∂B : h(x) = ℓ} for 1 ≤ ℓ ≤ N in the sense of traces . (3.5)

Also, since G′ = B \ ∪ℓS
′
ℓ satisfies

|G′| = |(B ∩K1) \ ∪ℓSℓ| ≤ |B \ ∪ℓSℓ| ≤ δ ,

we have
S ′ ∈ Ah

δ . (3.6)

Now for 2 ≤ ℓ ≤ N , we use (3.4) to estimate

cℓP (Sℓ) ≥ cℓP (Sℓ ∩K1) = cℓP (S′
ℓ) . (3.7)

For ℓ = 1, we first recall the fact for any set of finite perimeter E,

P (E;B) = P (Ec;B) . (3.8)

Applying (3.8) with S1, then (1.4), (3.4), and (3.5), and finally (3.8) with S′
1, we find that

P (S1;B) = P ((∪N
ℓ=2Sℓ ∪G);B)

= P (∪N
ℓ=2Sℓ ∪G)−H1(∪N

ℓ=2Aℓ)

≥ P ((∪N
ℓ=2Sℓ ∪G) ∩K1)−H1(∪N

ℓ=2Aℓ)

= P (∪N
ℓ=2S

′
ℓ ∪G′;B)

= P (S′
1;B) . (3.9)

Adding H1(Aℓ) to (3.9), multiplying by c1, and combining with (3.7) gives

F(S) =
N∑
ℓ=0

cℓP (Sℓ) ≥
N∑
ℓ=0

cℓP (S′
ℓ) = F(S ′) , (3.10)

and so we have a new cluster S ′, belonging to Ah
δ by (3.6), that satisfies

∪I1
i=1C

1
i ⊂ (S′

1)
(1) . (3.11)

Repeating this argument for 2 ≤ ℓ ≤ N yields S̃ ∈ Ah
δ satisfying (3.2) as desired. Turning now

towards the proof that equality in (3.2) implies (3.3), we prove that the containment for ℓ = 1
in (3.3) is entailed by equality; the other N − 1 implications are analogous. If (3.2) holds as an
equality, then (3.7) and (3.9) must hold as equalities as well. But by the characterization of equality
in (3.4), this can only hold if (∪N

ℓ=2Sℓ ∪G) ∩K1 = ∪N
ℓ=2Sℓ ∪G, which yields the first containment

in (3.3).
Finally, let us also remark that an immediate consequence of this step is that if a minimizer of

F exists among Ah
δ , then (3.1) must hold. It remains then to prove the existence of a minimizer.

Step two: Let {Sm}m be a minimizing sequence of clusters for F among Ah
δ (the infimum is finite).

Due to the results of step one, we can modify our minimizing sequence so that

∪Iℓ
i=1C

ℓ
i ⊂ (Sm

ℓ )(1) ∀m, ∀1 ≤ ℓ ≤ N (3.12)
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while also preserving the asymptotic minimality of the sequence. By compactness in BV and (3.12),
after taking a subsequence, we obtain a limiting cluster S that satisfies the trace condition (1.4),
and, by lower-semicontinuity in BV , minimizes F among Ah

δ . □

Remark 3.2 (Existence of minimizer for a functional with boundary energy). One might also
consider the minimizing the energy

F(S;B) +
N∑

m=1

∑
ℓ̸=m

(cℓ + cm)H1(∂∗Sℓ ∩ {h = m}) ,

which penalizes deviations from h rather than enforcing a strict trace condition, among the class

{(S0, . . . , SN , G) : |Sℓ ∩ Sm| = 0 if ℓ ̸= m, |G| ≤ δ, Bc = S0} .

For this problem, the same convexity-based argument as in step one of the proof of Theorem 3.1
shows that in fact, minimizers exists and attain the boundary values h H1-a.e. on ∂B. When δ = 0,
this problem arises as the Γ-limit of a Modica-Mortola problem with Dirichlet condition [ESS23].

Next, we prove existence for the problem on all of space. Since we are in the plane, the proof
utilizes the observation that perimeter and diameter scale the same in R2. Existence should also
hold in Rn for n ≥ 3 using the techniques of [Alm76].

Theorem 3.3 (Existence on R2). For any m ∈ (0,∞)N , there exists R = R(m) such that for all
δ ≥ 0, there exists a minimizer of F among the class Am

δ satisfying R2 \BR ⊂ S0.

Proof. Let {Sj}j ⊂ Am
δ be a minimizing sequence with remnants Gj . The existence of a minimizer

is straightforward if we can find R > 0 such that, up to modifications preserving the asymptotic

minimality, Bc
R ⊂ Sj

0 for each j. We introduce the sets of finite perimeter Ej = ∪N
ℓ=1S

j
ℓ ∪Gj , which

satisfy P (Ej) ≤ max{c−1
ℓ }F(Sj) and ∂∗Ej ⊂ ∪N

ℓ=1∂
∗Sj

ℓ . Decomposing Ej into its indecomposable

components {Ej
k}

∞
k=1 [ACMM01, Theorem 1], we have H1(∂∗Ej

k∩∂∗Ej
k′) = 0 for k ̸= k′. Therefore,

for the clusters Sj
k = ((Ej

k)
c, Sj

1 ∩ Ej
k, . . . , S

j
N ∩ Ej

k, G
j ∩ Ej

k),

F(Sj) =
∞∑
k=1

F(Sj
k) .

Furthermore, by the indecomposability of any Ej
k, there exists xjk ∈ R2 such that

(Gj ∩ Ej
k) ∪ ∪N

ℓ=1S
j
ℓ ∩ Ej

k ⊂ Ej
k ⊂ B

P (Ej
k)
(xjk) .

By the uniform energy bound along the minimizing sequence and this containment, for any j, we

may translate each Sj
k so that the resulting sequence of clusters satisfies Bc

R ⊂ Sj
0. Finally, we note

that R ≤ 2max{c−1
ℓ } infAm

δ
F , and since that infimum is bounded independently of δ, it depends

only on m. □

4. Existence and Classification of Blow-up Cones

In this section, we prove the existence of blow-up cones for minimizers and classify the possibili-
ties. Since the proofs are mostly modified versions of standard arguments, we will often be brief in
this section and describe the main ideas and adjustments. Also, we do not include any arguments
for the case Am

0 as that regularity is known in R2 [Whi86, Mor98].
11



4.1. Perimeter-almost minimizing clusters. Lemma 4.1 allows us to test minimality of Sδ

against competitors that do not satisfy the constraint required for membership in Ah
δ or Am

δ .

Lemma 4.1. If Sδ is a minimizer for F , then there exist r0 > 0 and 0 ≤ Λ < ∞, both depending
on Sδ, with the following property:

(i) if δ > 0, Sδ minimizes F among Ah
δ , S ′ satisfies the trace condition (1.4), and Sδ

ℓ∆S′
ℓ ⊂

Br(x) for r < r0 and 1 ≤ ℓ ≤ N , then, setting Gδ = B \ ∪ℓSℓ and G′ = B \ ∪ℓS
′
ℓ,

F(Sδ) ≤ F(S ′) + Λ
∣∣|Gδ| − |G′|

∣∣ ; (4.1)

(ii) if δ > 0, Sδ minimizes F among Am
δ and S ′ satisfies Sδ

ℓ∆S′
ℓ ⊂ Br(x) for r < r0 and

1 ≤ ℓ ≤ N , then

F(Sδ) ≤ F(S ′) + Λ
N∑
ℓ=1

∣∣|Sδ
ℓ | − |S′

ℓ|
∣∣ . (4.2)

Proof. For (i), since we do not have to fix the areas of each chamber but only the remnant set,
the proof is an application of the standard volume-fixing variations construction for sets of finite
perimeter along the lines of [Mag12, Lemma 17.21 and Example 21.3]. For (ii), we use volume-
fixing variations idea for clusters originating in [Alm76, VI.10-12]. More specifically, by considering
the (N + 1)-cluster (Sδ

0 , . . . , S
δ
N , Gδ), (4.2) follows directly from using [Mag12, Equations (29.80)-

(29.82)] on this (N + 1)-cluster to modify S ′ so that its energy may be tested against Sδ. □

4.2. Preliminary regularity when δ > 0. Density estimates and regularity along (Gδ)1/2 ∩
(Sδ

ℓ )
1/2 can be derived from Lemma 4.1.

Lemma 4.2 (Infiltration Lemma for δ > 0). If Sδ is a minimizer for F among Ah
δ or Am

δ for
δ > 0, then there exist constants ε0 = ε0 > 0 and r∗ > 0 with the following property:

if x ∈ clB when Sδ ∈ Ah
δ or x ∈ R2 when Sδ ∈ Am

δ , r < r∗, 0 ≤ ℓ ≤ N , and

|Sδ
ℓ ∩Br(x)| ≤ ε0r

2 , (4.3)

then

|Sδ
ℓ ∩Br/4(x)| = 0 . (4.4)

Proof. We prove the lemma for Ah
δ case in steps one and two. The case for Am

δ is the the same
except that one uses (4.2) instead of (4.1) when testing minimality in (4.14) below.

Step one: In the first step, we show that there exists ε(h) > 0 such that if x ∈ clB, r < 1, and

|Sδ
ℓ ∩Br(x)| ≤ εr2 for some 1 ≤ ℓ ≤ N , (4.5)

for a minimizer among Ah
δ , then

Br/2(x) ∩ {h = ℓ} = ∅ . (4.6)

If Br(x) ∩ ∂B = ∅, (4.6) is immediate, so we may as well assume in addition that

Br(x) ∩ ∂B ̸= ∅ . (4.7)

In order to choose ε, we recall the inclusion (3.1) from Theorem 3.1, which allows us to pick ε small
enough (independent of δ or the particular minimizer) so that if y ∈ {h = ℓ}, then

inf
0<r<1

|Sδ
ℓ ∩Br(y)|

r2
> 4ε . (4.8)

Now if Br(x) satisfies (4.5)-(4.7), we claim that

Br/2(x) ∩ {h = ℓ} = ∅ , (4.9)
12



which is (4.6). Indeed, if (4.9) did not hold, then we could find y ∈ Br/2(x) such that h(y) = ℓ, in
which case by (4.8),

|Sδ
ℓ ∩Br/2(y)|

r2/4
> 4ε . (4.10)

But Br/2(y) ⊂ Br(x), so that (4.10) implies |Sδ
ℓ ∩ Br(x)| > εr2, which contradicts our assumption

(4.5).

Step two: Let ε0 < ε and r∗ < 1 to be positive constants to be specified later, and suppose that
(4.3) holds for some 1 ≤ ℓ ≤ N and x ∈ clB with r < r∗. We set m(r) = |Sδ

ℓ ∩ Br(x)|, so that for
almost every r, the coarea formula gives

m′(r) = H1((Sδ
ℓ )

(1) ∩ ∂Br(x)) = H1((Sδ
ℓ )

(1) ∩ ∂Br(x) ∩B) . (4.11)

By the conclusion (4.6) of step one,

Br/2(x) ∩ {h = ℓ} = ∅ . (4.12)

Therefore, for s < r/2,

(Sδ
ℓ \Bs(x)) ∩ ∂B = {x ∈ ∂B : h(x) = ℓ} in the sense of traces . (4.13)

In particular, removing Bs(x) from Sδ
ℓ does not disturb the trace condition (1.4). Then we may

apply (4.1) from Lemma 4.1, yielding for almost every s < r/2

F(Sδ) ≤ F(Bc, Sδ
1 , . . . , S

δ
ℓ \Bs(x), . . . , S

δ
N , Gδ ∪ (Sδ

ℓ ∩Bs(x))) + Λ|Sδ
ℓ ∩Bs(x)|

= F(Sδ)− cℓP (Sδ
ℓ ;Bs(x)) + cℓH1((Sδ

ℓ )
(1) ∩ ∂Bs(x)) + Λ|Sδ

ℓ ∩Bs(x)| ; (4.14)

in the second line we have used the formula

P (Sδ
ℓ \Bs(x);B) = P (Sδ

ℓ ;B \ clBs(x)) +H1((Sδ
ℓ )

(1) ∩ ∂Bs(x)) ,

which holds for all but those countably many s with H1(∂∗Sδ
ℓ ∩ ∂Bs(x)) > 0. After rearranging

(4.14) and using the isoperimetric inequality to obtain

2cℓπ
1/2m(s)1/2 ≤ 2cℓm

′(s) + Λm(s) ,

we may reabsorb the term Λm(s) onto the left hand side and integrate to obtain the requisite decay
on m. □

Corollary 4.3 (Regularity along (Gδ)1/2 ∩ (Sδ
ℓ )

1/2). If δ > 0 and, for a minimizer S ∈ Ah
δ or

S ∈ Am
δ and point x ∈ B or x ∈ R2, respectively, there exists rj → 0 and ℓ such that

1 = lim
j→∞

|(Gδ ∪ Sδ
ℓ ) ∩Brj (x)|
πr2j

, (4.15)

then for large j, ∂Gδ ∩∂Sδ
ℓ ∩Brj (x) is an arc of constant curvature and Sℓ′ ∩Brj (x) = ∅ for ℓ′ ̸= ℓ.

Proof. By our assumption (4.15) and the infiltration lemma, for some j large enough, Brj (x) ⊂
Sδ
ℓ ∪Gδ, in which case the classical regularity theory for volume-constrained minimizers of perimeter

gives the conclusion. □

Corollary 4.4 (Density Estimates). If Sδ minimizes F among Ah
δ or Am

δ for some δ > 0, then

there exists 0 < α1, α2 < 1 and r∗∗ > 0 such that if x ∈ ∂Sδ
ℓ , then for all r < r∗∗,

α1πr
2 ≤ |Sδ

ℓ ∩Br(x)| ≤ (1− α1)πr
2 (4.16)

P (Sδ
ℓ ;Br(x)) ≤ α2r . (4.17)

Also, H1(∂Sδ
ℓ \ ∂∗Sδ

ℓ ) = 0 and each (Sδ
ℓ )

(1) and (Gδ)(1) is open and satisfies (2.6)-(2.7).
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Proof. We consider the case Sδ ∈ Ah
δ and 1 ≤ ℓ ≤ N , and the other cases are similar. First we prove

the lower bound in (4.16). Let x ∈ ∂Sδ
ℓ . Then by our convention (2.6)-(2.7) regarding topological

boundaries,

|Sδ
ℓ ∩Br(x)| > 0 for all r > 0 .

By the infiltration lemma, the lower area density bound follows with α1 = ε0 and r∗∗ = r∗.
For the upper area bound, let us choose r∗∗ ≤ r∗ such that

Λr∗∗ ≤ 1 . (4.18)

We claim that for any x ∈ ∂Sδ
ℓ and r < r∗∗,

|Sδ
ℓ ∩Br(x)| ≤ max {π − ε0, c∗} r2 (4.19)

for a dimensional constant c∗ to be specified shortly. Suppose that this were not the case. Then
by the smoothness of ∂B and the containment of Sδ

ℓ in B,

dist(x, ∂B) ≥ c(B)r (4.20)

for some constant c(B) < 1/2 depending B, so that Bc(B)r/2(x) ⊂ B. Also, by the infiltration

lemma, Sδ
ℓ′ ∩Br/4(x) = ∅ for ℓ′ ̸= ℓ. These two facts combined imply that Bc(B)r/2(x) ⊂⊂ Sδ

ℓ ∪Gδ.

By Lemma 4.1, Sδ
ℓ is a (Λ, r∗∗)-minimizer of perimeter in Bc(B)r/2(x) with Λr∗∗ ≤ 1 by (4.18).

Then the density estimates [Mag12, Theorem 21.11] for these minimizers give

|Sδ
ℓ ∩Bc(B)r/2(x)| ≤

15π

64
(c(B)r)2 . (4.21)

By choosing c∗∗ close enough to π, we have a contradiction.The upper area bound follows from
a construction which we omit, and the mild regularity on ∂Sδ

ℓ follows from our normalization
(2.6)-(2.7), the area bounds, and Federer’s theorem [Fed69, 4.5.11]. □

Remark 4.5 (Lebesgue representatives). For the rest of the paper, we will always assume that we

are considering the open set (Sδ
ℓ )

(1) or (Gδ)(1) as the Lebesgue representative of Sδ
ℓ or Gδ.

4.3. Preliminary regularity when δ = 0. The following infiltration (or “elimination”) lemma
for a minimizer among Am

0 is due to [Leo01, Theorem 3.1] and can be adapted easily to the problem
on the ball; the reader may also consult [Whi96, Section 11] for a similar statement.

Lemma 4.6 (Infiltration Lemma for δ = 0). If S0 is a minimizer for F among Ah
0 , then there

exist constants ε0 = ε0 > 0 and r∗ > 0 with the following property:

if x ∈ R2, r < r∗, and 0 ≤ ℓ0 < ℓ1 ≤ N are such that

|Br(x) \ (S0
ℓ0 ∪ S0

ℓ1)| ≤ ε0r
2 , (4.22)

then

|Br/4(x) \ (S0
ℓ0 ∪ S0

ℓ1)| = 0 . (4.23)

Proof. Repeating the argument from step one of Lemma 4.2, there exists ε(h) > 0 such that if
x ∈ clB, r < 1, and

|Sδ
ℓ ∩Br(x)| ≤ εr2 for some ℓ ∈ {0, . . . , N} \ {ℓ0, ℓ1} , (4.24)

for a minimizer among Ah
δ , then

Br/2(x) ∩ {h = ℓ} = ∅ . (4.25)

In particular, by using Lemma 4.1, we may compare the minimality of S0 against competitors
constructed by donating Bs(x) \ (S0

ℓ0
∪ S0

ℓ1
) to Sℓ0 or Sℓ1 . The remainder of the argument is the

same as in [Leo01]. □

The next two results may be proved as in Corollary 4.3 and Corollary 4.4.
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Corollary 4.7 (Regularity along (S0
ℓ )

1/2 ∩ (S0
ℓ′)

1/2). If S0 is a minimizer among Ah
0 and x ∈

(S0
ℓ )

1/2 ∩ (S0
ℓ′)

1/2 for ℓ, ℓ′ ∈ {1, . . . , N}, then in a neighborhood of x, every other chamber is empty
and ∂S0

ℓ ∩ ∂S0
ℓ′ is a segment.

Lemma 4.8 (Upper Area and Perimeter Bounds). If S0 minimizes F among Ah
0 , then there exists

α3 > 0, α4 < 1, and r3 > 0, such that

F(S0;Br(x)) ≤ α3r ∀ r > 0 , x ∈ R2 , (4.26)

and

|Br(x) ∩ S0
ℓ | ≤ α4πr

2 ∀x ∈ ∂S0
ℓ , r < r3 . (4.27)

4.4. Monotonicity formula. This is the last technical tool necessary for obtaining blow-up cones.

Theorem 4.9 (Monotonicity Formula). If Sδ minimizes F among Ah
δ for δ ≥ 0 or Am

δ for δ > 0,
then there exists Λ0 ≥ 0 such that if x ∈ R2,

N∑
ℓ=0

cℓ
2

ˆ
∂∗Sδ

ℓ∩(Br(x)\Bs(x))

((y − x) · νSδ
ℓ
)2

|y − x|3
dH1(y) ≤ F(Sδ;Br(x))

r
− F(Sδ;Bs(x))

s
+ Λ0(r − s)

(4.28)

for any 0 < s < r < rx.

Proof. We consider the case Sδ is minimal among Ah
δ and x ∈ ∂B is a jump point of h; the

other cases are simpler since the trace constraint may be avoided. First, we observe that by the
smoothness of the circle, there exists Λ′ > 0 such that

N∑
ℓ=0

cℓ
2

ˆ
∂∗Sδ

ℓ∩(Br(x)\Bs(x)∩∂B)

((y − x) · νSδ
ℓ
)2

|y − x|3
dH1(y) ≤ F(Sδ;Br(x) ∩ ∂B)

r
− F(Sδ;Bs(x) ∩ ∂B)

s

+ Λ′π(r − s) ∀0 < s < r < rx

for some rx; that is, we have the desired monotonicity for energy along ∂B. For the remainder of
the proof, we therefore focus on the energy inside B. We define the increasing function

p(r) :=

N∑
ℓ=1

cℓP (Sδ
ℓ ;Br(x) ∩B) = F(S;Br(x) ∩B) (4.29)

where, since it will be clear by context, we have suppressed the dependence of p on x. The proof
requires two steps: first, deriving a differential inequality for p using comparison with cones (see
(4.30)), and second, integrating and employing a slicing argument. The computations in the second
step are the same as those in the proof of the monotonicity formula for almost minimizing integer
rectifiable currents [DLSS17, Proposition 2.1], so we omit them.

We prove that given x ∈ ∂B which is a jump point of h, there exists rx > 0 such that

p(r)

r2
≤ 1

r

N∑
ℓ=1

cℓH0(∂∗Sδ
ℓ ∩ ∂Br(x) ∩B) + Λπ for a.e. r < rx , (4.30)

where Λ is from Lemma 4.1. As mentioned above, the monotonicity formula can then be derived
from (4.30). For concreteness, suppose that h jumps between 1 and 2 at x. Then, recalling (2.2)
there are chords c1i and c2j connecting x to the nearest jump points on either side and corresponding

circular segments C1
i and C2

j . Let 0 < rx < r0 be small enough such that clBrx(x) intersects no

other circular segments from (2.3) other than those two. By the inclusion (3.1) for the minimizer
and our choice of rx, for every r < rx,

C1
i ∩ clBr(x) ⊂ Sδ

1 , C2
j ∩ clBr(x) ⊂ Sδ

2 , and ∂Br(x) ∩ ∂B ⊂ ∂C1
i ∪ ∂C2

j . (4.31)
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For r < rx to be specified momentarily, we consider the cluster S̃ defined by

S̃1 = (Sδ
1 \ clBr(x)) ∪ {y ∈ Br(x) \ C1

i : x+ r(y − x)/|y − x| ∈ Sδ
1} ∪ C1

i ,

S̃2 = (Sδ
2 \ clBr(x)) ∪ {y ∈ Br(x) \ C2

j : x+ r(y − x)/|y − x| ∈ Sδ
2} ∪ C2

j ,

S̃ℓ = (Sδ
ℓ \ clBr(x)) ∪ {y ∈ Br(x) : x+ r(y − x)/|y − x| ∈ Sδ

ℓ } , 3 ≤ ℓ ≤ N .

Note that by (4.31), each ∂S̃ℓ ∩ Br(x) consists of radii of Br(x) contained in Br(x) \ (C1
i ∪ C2

j ).

Then by Lemma 2.1, for almost every r < rx, each S̃ℓ is a set of finite perimeter and

N∑
ℓ=1

cℓP (S̃ℓ;B) =
N∑
ℓ=1

cℓP (S̃ℓ;Br(x) ∩B) +
N∑
ℓ=1

cℓP (S̃ℓ;B \ clBr(x))

= r
N∑
ℓ=1

cℓH0(∂∗Sδ
ℓ ∩ ∂Br(x) ∩B) +

N∑
ℓ=1

cℓP (Sδ
ℓ ;B \ clBr(x)) . (4.32)

Also, by (4.31) and our definition of the S̃, S̃ satisfies the trace condition (1.4). If we set G̃ =

B\(∪ℓS̃ℓ), then we can plug (4.32) into the comparison inequality (4.1) from Lemma 4.1 and cancel
like terms, yielding

p(r) =
N∑
ℓ=1

cℓP (Sδ
ℓ ;B ∩Br(x)) ≤ r

N∑
ℓ=1

cℓH0(∂∗Sδ
ℓ ∩ ∂Br(x) ∩B) + Λπr2 for a.e. r < rx .

This is precisely (4.30) multiplied by r2. □

4.5. Existence of blow-up cones. The monotonicity formula allows us to identify blow-up min-
imal cones at interfacial points of a minimizer. It will be convenient to identify interfacial points
for minimizers among Am

δ with interfacial points in B for minimizers among Ah
δ , since, at the level

of blow-ups, the behavior is the same.

Definition 4.10 (Interior and boundary interface points). If Sδ is minimal among Ah
δ and x ∈

B ∩ ∂Sδ
ℓ or Sδ is minimal among Am

δ and x ∈ ∂Sδ
ℓ for some ℓ, we say x is an interior interface

point. If Sδ is minimal among Ah
δ and x ∈ ∂B, we call x a boundary interface point.

The blow-ups at a boundary interface point will be minimal in a halfspace among competitors
satisfying a constraint coming from the trace condition (1.4) and the inclusion (3.1) from Theorem
3.1.

Definition 4.11 (Admissible blow-ups at jump points of h). Let x ∈ ∂B be a jump point of h,

and let Cℓ0
i and Cℓ1

j be the circular segments from (2.3) meeting at x. Let

Cℓ0
∞ =

⋃
λ>0

λ(Cℓ0
i − x) , Cℓ1

∞ =
⋃
λ>0

λ(Cℓ1
j − x) (4.33)

be the blow-ups of the convex sets Cℓ0
i and Cℓ1

j at their common boundary point x. We define

Ax := {S : ∀ℓ ̸= 0, Sℓ ⊂ {y · x < 0} = Sc
0 , Sℓ ∩ Sℓ′ = ∅ if ℓ ̸= ℓ′ , Cℓk

∞ ⊂ Sℓk for k = 0, 1} . (4.34)

Theorem 4.12 (Existence of Blow-up Cones). If Sδ minimizes F among Ah
δ for some δ ≥ 0 or

among Am
δ for δ > 0, then for any sequence rj → 0, there exists a subsequence rjk → 0 and cluster

S = (S0, . . . , SN , G) partitioning R2, satisfying the following properties:

(i) (Sδ
ℓ − x)/rjk

L1
loc→ Sℓ for each 0 ≤ ℓ ≤ N ;

(ii) H1 (∂Sδ
ℓ − x)/rjk

∗
⇀ H1 ∂Sℓ for each 0 ≤ ℓ ≤ N ;

(iii) Sℓ is an open cone for each 0 ≤ ℓ ≤ N ;
16



(iv) if x is an interior interface point and S̃ is such that for 0 ≤ ℓ ≤ N , S̃ℓ∆Sℓ ⊂⊂ BR and, for
the problem on the ball, S0 = ∅, then

F(S;BR) ≤ F(S̃;BR); (4.35)

(v) if x ∈ ∂Sδ
ℓ0
∩∂B is not a jump point of h, then Sℓ0 = {y : y ·x < 0} and S0 = {y : y ·x > 0};

(vi) if x ∈ ∂Sδ
ℓ0
∩∂B is a jump point of h, then S ∈ Ax and if S̃ ∈ Ax is such that for 0 ≤ ℓ ≤ N ,

S̃ℓ∆Sℓ ⊂⊂ BR, then

F(S;BR) ≤ F(S̃;BR) . (4.36)

Proof. When x is a boundary interface point and is not a jump point of h, then Sδ
ℓ0
∩B ∩Brx(x) =

B ∩ Brx(x) for some rx > 0 by (3.1) from Theorem 3.1. In this case, items (i)-(iii) and (v) are
trivial. Also, the case of interior interface points is essentially a simpler version of the argument
when x ∈ ∂Sδ

ℓ0
∩ ∂B is a jump point of h. Therefore, for the rest of the proof, we focus on items

(i)-(iii) and (vi) when x ∈ ∂B ∩ ∂Sδ
ℓ0

is a jump point of h.
The upper perimeter bounds from Corollary 4.4 or Lemma 4.8 and compactness in BV give the

existence of rjk → 0 and S such that the convergence in (i) holds. In addition, this compactness
gives

µℓ
k := (νSδ

ℓ
H1 ∂Sδ

ℓ − x)/rjk
∗
⇀ νSℓ

H1 ∂∗Sℓ =: µℓ ∀0 ≤ ℓ ≤ N . (4.37)

It is easy to check from the inclusion (3.1) that S ∈ Ax. We now discuss in order (4.36), (ii), and
(iii). The proofs of (4.36) and (ii) are standard compactness arguments that proceed mutatis mu-
tandis as the proof of the compactness theorem for (Λ, r0)-perimeter minimizers [Mag12, Theorem
21.14]. Finally, (iii) follows from the monotonicity formula (4.28), which implies that F(S;Br)/r
is constant in r, and the characterization of cones [Mag12, Proposition 28.8]. □

4.6. Classification of blow-up cones. We classify the possible blow-up cones for a minimizer
using the terminology set forth in Definition 4.10.

Theorem 4.13 (Classification of Blow-up Cones for δ > 0). If Sδ minimizes F among Ah
δ or Am

δ

for some δ > 0, and S is a blow-up cluster for x ∈ ∂Sδ
ℓ0

and some rj → 0, then exactly one of the
following is true:

(i) x ∈ ∂Sδ
ℓ0

is an interior interface point and Sℓ0 = {y · νSδ
ℓ0

(x) < 0}, G = R2 \ Sℓ0;

(ii) x ∈ ∂Sδ
ℓ0

is an interior interface point, Sℓ0 = {y ·ν < 0} for some ν ∈ S1, and Sℓ1 = R2 \Sℓ0

for some ℓ1 ̸= ℓ0;
(iii) x ∈ ∂Sδ

ℓ0
∩∂B is a boundary interface point and jump point of h, Sℓ0 = {y ·ν < 0, y ·x < 0},

and Sℓ1 = {y · ν > 0, y · x < 0} for some ν ∈ S1 and ℓ1 ̸= ℓ0;
(iv) x ∈ ∂Sδ

ℓ0
∩∂B is a boundary interface point and jump point of h, Sℓ0 = {y ·ν0 < 0, y ·x < 0},

Sℓ1 = {y ·ν1 > 0, y ·x < 0}, S0 = {y ·x > 0}, and G = (S0∪Sℓ0 ∪Sℓ1)
c for some ν0, ν1 ∈ S1

and ℓ1 ̸= ℓ0;
(v) x ∈ ∂Sδ

ℓ0
∩ ∂B is a boundary interface point, not a jump point of h, Sℓ0 = {y · x < 0} = Sc

0.

Proof of Theorem 4.13. Step one: In this step we consider an interior interface point x and show
that either (i) or (ii) holds. First, we note that since x ∈ ∂Sδ

ℓ0
and the density estimates (4.16)

pass to the blow-up limit, Sℓ0 ̸= ∅ and Sℓ0 ̸= R2, so S is non-trivial. We claim that no non-empty
connected component Sℓ of S for 0 ≤ ℓ ≤ N can be anything other than a halfspace; from this
claim it follows that (i) or (ii) holds. Indeed, suppose that there was such a component C, say of
S1, defined by an angle θ ̸= π with ∂C ∩ ∂B = {c1, c2}. Let K be the convex hull of c1, c2, and 0.
If θ < π, then the triangle inequality implies that the cluster S ′ = (S0, S1 \K,S2, . . . , SN , G ∪K)
satisfies F(S ′;B2) < F(S;B2), contradicting the minimality property (4.35). On the other hand,
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if θ > π, then the cluster S ′ = (S0 \K,S1 ∪K,S2 \K, . . . , SN \K,G \K) also contradicts (4.35)
due to the triangle inequality.

Step two: Moving on to the case of a boundary interface point, we begin by observing that (v) is
trivial by (3.1) when x is not a jump point of h. If x is a jump point of h, say between h = 1 and
h = 2, then S0 = {y · x > 0}, and {S1, . . . , SN , G} partition Sc

0. Now the same argument as in the
previous step using the triangle inequality shows that Sℓ = ∅ for 3 ≤ ℓ ≤ N and S1 and S2 each
only have one connected component bordering S0. It follows that either (iii) or (iv) holds. □

Corollary 4.14 (Regularity for ∂Gδ away from (Gδ)(0)). If Sδ minimizes F among Ah
δ or Am

δ for
some δ > 0 and x is an interior interface point such that

lim sup
r→0

|Gδ ∩Br(x)|
πr2

> 0 , (4.38)

then there exists rx > 0 such that ∂Gδ ∩Brx(x) is an arc of constant curvature dividing Brx(x) into
Gδ ∩Brx(x) and Sδ

ℓ ∩Brx(x).

Proof. If rj → 0 is a sequence achieving the limit superior in (4.38), then any subsequential blow-up
at x must be characterized by case (i) of Theorem 4.13. The desired conclusion now follows from
Corollary 4.3. □

Lastly, we classify blow-up cones for δ = 0 when either N = 3 or the weights are equal.

Theorem 4.15 (Classification of Blow-up Cones for δ = 0 on the Ball). If N = 3 or cℓ = 1 for
0 ≤ ℓ ≤ N , S0 minimizes F among Ah

0 , and S is a blow-up cluster at an interface point x, then
exactly one of the following is true:

(i) x ∈ ∂∗S0
ℓ0
∩∂∗S0

ℓ1
is an interior interface point and Sℓ0 = {y : y ·νSδ

ℓ0

(x) < 0}, Sℓ1 = R2\Sℓ0;

(ii) x is an interior interface point, and the non-empty chambers of S are three connected cones
Sℓi, i = 0, 1, 2, with vertex at the origin satisfying

sin θℓ0
cℓ1 + cℓ2

=
sin θℓ1
cℓ0 + cℓ2

=
sin θℓ2
cℓ0 + cℓ1

(4.39)

where θℓi = H1(Sℓi ∩ ∂B);
(iii) x ∈ ∂Sδ

ℓ0
∩ ∂B is not a jump point of h, and Sℓ0 = {y : y · x < 0} = Sc

0;

(iv) x ∈ ∂Sδ
ℓ0
∩ ∂B is a jump point of h, Sℓ0 = {y : y · ν < 0, y · x < 0}, and Sℓ1 = {y : y · ν >

0, y · x < 0} for some ν ∈ S1 and ℓ1 ̸= ℓ0, and S0 = {y : y · x > 0};
(v) x ∈ ∂Sδ

ℓ0
∩ ∂B is a jump point of h, and the non-empty chambers of S ∈ Ax are S0 = {y :

y · x > 0} and three connected cones Sℓi, i = 0, 1, 2, partitioning Sc
0.

Proof. We begin with the observation that no blow-up at x can consist of a single chamber. To see
this, since x is an interface point, it belongs to ∂S0

ℓ for some ℓ. By our normalization (2.6)-(2.7) for
reduced and topological boundaries, x ∈ sptH1 ∂∗S0

ℓ . Therefore, due to the upper area bound
(4.27), no blow-up limit at x can consist of a single chamber Sℓ′ ; if so, the L1 convergence and the
infiltration lemma would imply that x ∈ intS0

ℓ′ , contradicting x ∈ sptH1 ∂∗S0
ℓ . Therefore, there

are at least two chambers in the blow-up cluster at x.
Next, we claim that when N = 3 or cℓ = 1 for all ℓ, there cannot be four or more non-empty

connected components of chambers of S comprising R2 if the blow-up is at an interior interface
point or comprising {y : y · x < 0} at a boundary interface point. If N = 3 and this were the case,
then there must be some Sℓ, say S1, which has two connected components C1 and C2 separated
by a circular sector C3 with ∂C3 ∩ ∂B = {c, c′} and dist(c, c′) < 2. We set K to be the convex
hull of 0, c, and c′ and define the cluster S ′ = (S0, S1 ∪K,S2 \K,S3 \K, ∅). Note S ′ ∈ Ax when
x is a boundary interface point. Then the triangle inequality implies that F(S ′;B2) < F(S;B2),
which contradicts the minimality condition (4.35) or (4.36). For the case when cℓ = 1 for all ℓ, if
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there was more than three connected components, there must be some component C ⊂ Sℓ with
H1(C ∩ B1) < 2π/3, and when x is a boundary interface point, ∂C ∩ {y · x = 0} = {0}. Then the
construction in [Mag12, Proposition 30.9], in which triangular portions of C near 0 are allotted to
the neighboring chambers allows us to construct a competitor (belonging to Ax if required) that
contradicts the minimality (4.35) or (4.36).

We may now conclude the proof. If x is an interior interface point, then there are either two
or three distinct connected chambers in the blow-up at x. Similar to the previous theorem, the
triangle inequality implies that if there are two, they are both halfspaces. If there are three, the
angle conditions (4.39) follow from a first variation argument. If x is a boundary interface point,
then (iii) holds by (3.1) if x is not a jump point of h. If x is a jump point of h, then {y · x < 0} is
partitioned into either two or three connected cones. The former is case (iv), and the latter is case
(v). □

5. Proof of Theorem 1.4

To streamline the statement below, the terminology “arc of constant curvature” includes seg-
ments in addition to circle arcs.

Theorem 5.1 (Interior Resolution for δ > 0). If Sδ minimizes F among Ah
δ or Am

δ for some δ > 0

and x ∈ ∂Sδ
ℓ0

is an interior interface point, then there exists rx > 0 such that exactly one of the
following is true:

(i) Sδ
ℓ′ ∩ Brx(x) = ∅ for ℓ′ ̸= ℓ0 and ∂Sδ

ℓ0
∩ Brx(x) is an arc of constant curvature separating

Sδ
ℓ0
∩Brx(x) and Gδ ∩Brx(x);

(ii) ∂Sδ
ℓ0

∩ Brx(x) is an arc of constant curvature separating Brx(x) into Sδ
ℓ0

∩ Brx(x) and

Sδ
ℓ′ ∩Brx(x) for some ℓ′ ̸= ℓ0;

(iii) there exist circle arcs a1 and a2 meeting tangentially at x such that

∂Sδ
ℓ0 ∩ ∂Gδ ∩Brx(x) = a1 , ∂Sδ

ℓ′ ∩ ∂Gδ ∩Brx(x) = a2 , ∂Sδ
ℓ0 ∩ ∂Sδ

ℓ′ ∩Brx(x) = {x} ;
(iv) there exists circle arcs a1 and a2 meeting in a cusp at x and an arc a3 of constant curvature

reaching the cusp tangentially at x, and

∂Sδ
ℓ0 ∩ ∂Gδ ∩Brx(x) = a1 , ∂Sδ

ℓ′ ∩ ∂Gδ ∩Brx(x) = a2 , ∂Sδ
ℓ0 ∩ ∂Sδ

ℓ′ ∩Brx(x) = a3 .

Proof. Let us assume for simplicity that x is the origin; the proof at any other point is similar.

Step zero: If 0 /∈ ∂Sδ
ℓ′ for all ℓ′ ̸= ℓ0, then by the density estimates (4.16), Br0 ∩ Sδ

ℓ′ = ∅ for some
r0 and all ℓ′ ̸= ℓ0. From the classification of blowups in Theorem 4.13, (i) must hold at 0.

Step one: For the rest of the proof, we assume instead that for some ℓ′ ̸= ℓ0, 0 ∈ ∂Sδ
ℓ′ . By Theorem

4.13 and the fact that the density estimates (4.16) pass to all blow-up limits, we are in case (ii) of
that theorem: any possible blow-up limit at 0 is a pair of halfspaces coming from Sδ

ℓ0
and Sδ

ℓ′ . In

this step we identify a rectangle Q′ small enough such that Sδ
ℓ0
∩Q′ and Sδ

ℓ′ ∩Q′ are a hypograph
and epigraph, respectively, over a common axis.

Let us fix rj → 0 such that applying Theorem 4.13 and rotating if necessary, we obtain

Sδ
ℓ0/rj

L1
loc→ H− := {y : y · e2 < 0} , Sδ

ℓ′/rj
L1
loc→ H+ := {y : y · e2 > 0} , (5.1)

H1 ∂Sℓ0/rj , H1 ∂Sℓ′/rj
∗
⇀ H1 ∂H+ . (5.2)

Set

Q = [−1, 1]× [−1, 1] .

We note that for all r < r∗∗/rj ,

α1πr
2 ≤ |Sδ

ℓ /rj ∩Br(y)| ≤ (1− α1)πr
2 if y ∈ ∂Sδ

ℓ for ℓ = ℓ0 or ℓ′ (5.3)
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due to (4.16). Also due to (4.16) and (5.1),

Sδ
ℓ ∩Brj = ∅ ∀ℓ /∈ {ℓ′, ℓ0} , for large j; (5.4)

we may assume by restricting to the tail that (5.4) holds for all j. Next, a standard argument
utilizing (5.1) and (5.3) implies that there exists J ∈ N such that for all j ≥ J ,

(∂Sδ
ℓ0/rj ∪ ∂Sδ

ℓ′/rj) ∩Q ⊂ [−1, 1]× [−1/4, 1/4] . (5.5)

Now for almost every t ∈ [−1, 1], by Lemma 2.1, the vertical slices (viewed as subsets of R)

(Sδ
ℓ0/rj)t = Sδ

ℓ0/rj ∩Q ∩ {y : y · e1 = t} , (Sδ
ℓ′/rj)t := (Sδ

ℓ′)t ∩Q ∩ {y : y · e1 = t}

are one-dimensional sets of finite perimeter and, by (5.5) and [Mag12, Proposition 14.5],

2cℓ0 + 2cℓ′ ≤
ˆ 1

−1
cℓ0P ((Sδ

ℓ0/rj)t; (−1, 1)) + cℓ′P ((Sδ
ℓ′/rj)t; (−1, 1)) dt

≤ cℓ0P (Sδ
ℓ0/rj ; intQ) + cℓ′P (Sδ

ℓ′/rj ; intQ) . (5.6)

Since H1(∂H+ ∩ ∂Q) = 0, (5.2) implies that

lim
j→∞

cℓ0P (Sδ
ℓ0/rj ; intQ) + cℓ′P (Sδ

ℓ′/rj ; intQ) = 2cℓ0 + 2cℓ′ . (5.7)

Together, (5.5)-(5.7) and Lemma 2.1 allow us to identify j as large as we like (to be specified further
shortly) and 1 < t1 < t2 < 1 such that for i = 1, 2,

P ((Sδ
ℓ0/rj)ti ; (−1, 1)) = 1 = P ((Sδ

ℓ′/rj)ti ; (−1, 1)) , (5.8)

0 =

ˆ
(−1,1)

|1(Sδ
ℓ0
/rj)

+
ti

− 1(Sδ
ℓ0
/rj)

−
ti

|+ |1(Sδ
ℓ0
/rj)

+
ti

− 1(Sδ
ℓ0
/rj)ti

| dH1

=

ˆ
(−1,1)

|1(Sδ
ℓ′/rj)

+
ti

− 1(Sδ
ℓ′/rj)

−
ti

|+ |1(Sδ
ℓ′/rj)

+
ti

− 1(Sδ
ℓ′/rj)ti

| dH1 , (5.9)

where here and in the rest of the argument, the minus and plus superscripts denote left and right
traces along {y ·e1 = ti} (again viewed as subsets of R). From (5.5) and (5.8)-(5.9), we deduce that
there exist −1/4 ≤ a1 ≤ b1 ≤ 1/4 and −1/4 ≤ a2 ≤ b2 ≤ 1/4 such that

H1((Sδ
ℓ0/rj)

±
ti
∆[−1, ai]) =0 = H1((Sδ

ℓ′/rj)
±
ti
∆[bi, 1]) for i = 1, 2 . (5.10)

Let us call Q′ = [t1, t2]× [−1, 1]. Since it will be useful later, we record the equality

F(Sδ) = F(Sδ;R2 \ rjQ′) + cℓ0P (Sδ
ℓ0 ; int rjQ

′) + cℓ′P (Sδ
ℓ′ ; int rjQ

′) , (5.11)

which follows from (5.4), (5.9), and Lemma 2.1.
Using the explicit description given by (5.5) and (5.10), we now identify a variational problem

on Q′ for which our minimal partition must be optimal. We consider the minimization problem

inf
AQ′

cℓ0P (A; intQ′) + cℓ′P (B; intQ′) ,

where

AQ′ := {(A,B) : A,B ⊂ Q′, A|∂Q′ = Sδ
ℓ0/rj , B|∂Q′ = Sδ

ℓ′/rj in the trace sense,

|A ∩B| = 0, |A ∩Q′| = |(Sδ
ℓ0/rj) ∩Q′|, |B ∩Q′| = |(Sδ

ℓ′/rj) ∩Q′|} .

By the area constraint on elements in the class AQ′ and Sδ ∈ Ah
δ or Sδ ∈ Am

δ , any S given by

Sℓ0 = (Sℓ0 \ rjQ′) ∪ rj(A ∩Q′) , Sℓ′ = (Sℓ′ \ rjQ′) ∪ rj(B ∩Q′) , Sℓ = Sδ
ℓ ℓ /∈ {ℓ0, ℓ′} ,
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satisfies |R2 \ ∪ℓSℓ| ≤ δ in the former case and |R2 \ ∪ℓSℓ| ≤ δ and (|S1|, . . . , |SN |) = m in the
latter. Also, once rj is small enough, if Sδ ∈ Ah

δ , then S satisfies the trace condition (1.4) also.

Therefore, S ∈ Ah
δ or S ∈ Am

δ , so we can compare

F(Sδ)
(5.11)
= F(Sδ;R2 \ rjQ′) + cℓ0P (Sδ

ℓ0 ; int rjQ
′) + cℓ′P (Sδ

ℓ′ ; int rjQ
′)

≤ F(S) = F(Sδ;R2 \ rjQ′) + rjcℓ0P (A; intQ′) + rjcℓ′P (B; intQ′) ,

where in the last equality we have used the trace condition on AQ′ and the formula (2.8) for
computing F(·; ∂Q′). Discarding identical terms and rescaling, this inequality yields

cℓ0P (Sδ
ℓ0/rj ; intQ

′) + cℓ′P (Sδ
ℓ′/rj ; intQ

′) ≤ cℓ0P (A; intQ′) + cℓ′P (B; intQ′) , (5.12)

where (A,B) ∈ AQ′ is arbitrary. Simply put, our minimal partition must be minimal on rjQ
′

among competitors with the same traces and equal areas of all chambers.
We now test (5.12) with a well-chosen competitor based on symmetrization. Let

A = {(x1, x2) : −1 ≤ x2 ≤ H1((Sδ
ℓ0/rj)x1)− 1} , B = {(x1, x2) : 1 ≥ x2 ≥ 1−H1((Sδ

ℓ′)x1)} .
In the notation set forth in Lemma 2.3,

A = (Sδ
ℓ0/rj)

h , B = −(−Sδ
ℓ′/rj)

h .

By (5.10) and (5.5), the assumptions of Lemma 2.3 are satisfied by Sδ
ℓ0
/rj and −Sδ

ℓ′/rj . Then the
conclusions of that lemma imply that (A,B) ∈ AQ′ , so (5.12) holds. However, (2.16) also gives

cℓ0P (Sδ
ℓ0/rj ; intQ

′) + cℓ′P (−Sδ
ℓ′/rj ; intQ

′) ≥ cℓ0P (A; intQ′) + cℓ′P (−B; intQ′) , (5.13)

so that in fact there is equality. But according to Lemma 2.3, every vertical slice of (Sδ
ℓ0
/rj) ∩Q′

and (−Sδ
ℓ′/rj) ∩Q′ must therefore be an interval with one endpoint at −1. This is precisely what

we set out to prove in this step.

Step two: Here we prove that for the open set Gδ (see Remark 4.5), the set

I := {t ∈ [rjt1/2, rjt2/2] : (G
δ ∩ rjQ

′)t = ∅}

is a closed interval. I is closed since the projection of the open set Gδ ∩ rjQ
′ onto the x1 axis

is open, so we only need to prove it is an interval. First, we claim that for any rectangle R′ =
(T1, T2)× [−rj , rj ] with (T1, T2) ⊂ Ic,

∂Sδ
ℓ0
∩R and ∂Sδ

ℓ′ ∩R are graphs of functions F0 and F ′ (5.14)

with F0 < F ′, over the x1-axis of constant curvature with no vertical tangent lines in R′. To see
this, first note that for any (a, b) ⊂⊂ (T1, T2), ∂S

δ
ℓ0
∩ ((a, b)× [−rj , rj ]) and ∂Sδ

ℓ′ ∩ ((a, b)× [−rj , rj ])
must be at positive distance from each other by the definition of Ic. Then a first variation argument
implies that each has constant mean curvature in the distributional sense, and a graph over (a, b)
with constant distributional mean curvature must be a single arc of constant curvature with no
vertical tangent lines in the interior. Letting (a, b) exhaust (T1, T2), we have proven the claim.

Suppose for contradiction that there exist Ti ∈ I, i = 1, 2, such that (T1, T2) ∩ Ic ̸= ∅. Set
(T1, T2) × [−rj , rj ] = R. Now F0 and F1 extend continuously to T1 and T2 with F0(Ti) ≤ F ′(Ti)

for each i. In fact F0(Ti) = F ′(Ti). If instead we had for example F0(T1) < F ′(T1), then Gδ

would contain a rectangle (t, T1) × (c, d) for some t < T1 and c < d, which would imply that Gδ

has positive density at (T1, F0(T1)) and (T1, F
′(T1)). By Corollary 4.14, ∂Gδ ∩ ∂Sδ

ℓ0
is single arc of

constant curvature in neighborhood N of (T1, F0(T1)), which, by T1 ∈ I, has vertical tangent line at
(T1, F0(T1)). Therefore, ∂S

δ
ℓ0
∩N∩R is either a vertical segment or a circle arc with vertical tangent

line at (T1, F0(T1)), and both of these scenarios contradict (5.14). So we have F0(Ti) = F ′(Ti), and
thus (Ti, F0(Ti)) ∈ ∂Sδ

ℓ0
∩ ∂Sδ

ℓ′ ∩ ∂Gδ. As a consequence, by Corollary 4.14, Gδ must have density

0 at (Ti, F0(Ti)), which means that the graphs of F0 and F ′ meet tangentially at Ti. But the only
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way for two circle arcs to meet tangentially at two common points is if they are the same arc, that
is F0 = F ′, which is a contradiction of F0 < F ′. We have thus shown that I is a closed interval.

Step three: Finally we may finish the proof. We note that by our assumption 0 ∈ ∂Sδ
ℓ′ ∩ ∂Sδ

ℓ0
(see

the beginning of step one), 0 ∈ I. Now if 0 ∈ int I, then |Gδ ∩ Br(0)| = 0 for some small r, and
we have (ii). If {0} = I, then by the same argument as at the beginning of the previous step, we
know that ∂Sδ

ℓ0
/rj ∩ (Q′ \ {0}) and ∂Sδ

ℓ′/rj ∩ (Q′ \ {0}) are each two circle arcs of equal curvature

meeting at the origin. Furthermore, since the blow-up of Gδ is empty at 0, we see that all four of
these arcs must meet tangentially at the origin, so that (iii) holds. Lastly, if int I ̸= ∅ and 0 ∈ ∂I,
the combined arguments of the previous two cases imply that (iv) holds. □

Theorem 5.2 (Boundary Resolution for δ > 0). If Sδ minimizes F among Ah
δ for some δ > 0 and

x ∈ ∂Sδ
ℓ0
∩ ∂B, then there exists rx > 0 such that exactly one of the following is true:

(i) x is not a jump point of h and Brx(x) ∩B = Brx(x) ∩ Sδ
ℓ0
;

(ii) x is a jump point of h and ∂Sδ
ℓ0

∩ Brx(x) is a line segment separating Brx(x) ∩ B into

Sδ
ℓ0
∩Brx(x) ∩B and Sδ

ℓ′ ∩Brx(x) ∩B for some ℓ′ ̸= ℓ0;
(iii) x is a jump point of h, and there exists circle arcs a1 and a2 meeting at x such that

∂Sδ
ℓ0 ∩ ∂Gδ ∩Brx(x) = a1 , ∂Sδ

ℓ′ ∩ ∂Gδ ∩Brx(x) = a2 , ∂Sδ
ℓ0 ∩ ∂Sδ

ℓ′ ∩Brx(x) = {x} .

Proof. Let us assume for simplicity that x = e⃗1. The proof at any other point in ∂B is the same.

Step zero: If e⃗1 ∈ ∂B is not a jump point of h, then by the inclusion (3.1) from Theorem 3.1, (i)
holds.

Step one: For the rest of the proof, we assume that e⃗1 is a jump point of h. By Theorem 4.13, there
exists ℓ′ ̸= ℓ0 such that any blow-up at e⃗1 consists of the blow-up chambers Sℓ0 , Sℓ′ , each of which is
the intersection of a halfspace with {y : y · e⃗1 < 0}, S0 = {y : y · e⃗1 > 0}, and G = R2\(S0∪Sℓ0∪Sℓ′)
is a possibly empty connected cone contained in {y : y · e⃗1 < 0}. In this step we argue that on a
small rectangle Q′ with 0 ∈ ∂Q′, (Sℓ0 − e⃗1)/rj ∩Q′ and (Sδ

ℓ′ − e⃗1)/rj ∩Q′ are the hypograph and
epigraph, respectively of two functions over {y · e⃗1 = 0}.

Let us choose rj → 0 such that by Theorem 4.13, we have a blow-up limit belonging to Ae⃗1 . By

the density estimates (4.16), Brj (x) ⊂ Sδ
ℓ0
∪ Sδ

ℓ′ ∪Gδ ∪ S0 for all large enough j, so we can ignore

the other chambers. Also, for convenience, by the containment (3.1) of the circular segments in Sδ
ℓ0

and Sδ
ℓ′ from Theorem 3.1, we extend Sδ

ℓ0
and Sδ

ℓ′ on {y : y · e⃗1 < 1} so that for all large j,

{y : y · e⃗1 = 1} ∩Brj (e⃗1) ⊂ ∂Sδ
ℓ0 ∪ ∂Sδ

ℓ′

rather than
∂B ∩Brj (e⃗1) ⊂ ∂Sδ

ℓ0 ∪ ∂Sδ
ℓ′ ;

this allows us to work on a rectangle along the sequence of blow-ups rather than (B− e⃗1)/rj . Now
due to the inclusion (3.1) from Theorem 3.1, there exists a rectangle

Q = [T, 0]× [−1, 1]

such that for all large j, up to interchanging the labels ℓ0 and ℓ′, in the trace sense,

({T} × [−1,−1/2]) ∪ ([T, 0]× {−1}) ∪ ({0} × [−1, 0]) ⊂ (Sδ
ℓ0 − e⃗1)/rj ,

({T} × [1/2, 1]) ∪ ([T, 0]× {1}) ∪ ({0} × [0, 1]) ⊂ (Sδ
ℓ′ − e⃗1)/rj .

Then a similar slicing argument as leading to (5.10) implies that for some large j, there exist
−1/2 ≤ a1 ≤ a2 ≤ 1/2 and t ∈ [T, 0) such that, in the trace sense,

({t} × [−1, a1]) ∪ ([t, 0]× {−1}) ∪ ({0} × [−1, 0]) = (Sδ
ℓ0 − e⃗1)/rj

({t} × [a2, 1]) ∪ ([t, 0]× {1}) ∪ ({0} × [0, 1]) = (Sδ
ℓ′ − e⃗1)/rj .
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Given this explicit description on the boundary of Q′ := [t, 0] × [−1, 1], the same argument as in
the proof of Theorem 5.1 gives claim of this step.

Step two: We may finally finish the proof of Theorem 5.2. By the same argument as in the previous
theorem, the set

I := {s ∈ [rjt, 1] : (G
δ ∩ (rjQ

′ + e⃗1))s = ∅}

is a closed interval. Furthermore, since e⃗1 is a jump point of h, I contains 0. If int I ̸= ∅, we
immediately see that (ii) holds. On the other hand, if I = {0}, then the vertical slices of Gδ are
non-empty for all s ∈ (rjt, 1). Again the same argument as in the previous theorem shows that
(iii) holds. □

Proof of Theorem 1.4. At any x ∈ clB, Theorems 5.1 and 5.2 yield the existence of rx > 0 such
that either x is an interior point of Sδ

ℓ or Gδ or on Brx(x), the minimizer is described by one of
the options listed in those theorems. By the enumeration of possible local resolutions in those
theorems, we see that ∂Sδ

ℓ ∩ B is C1,1 as desired, since it is analytic except where two arcs of

constant curvature intersect tangentially. Now if x and y are both in ∂Gδ ∩ ∂Sδ
ℓ for some ℓ ≥ 1,

then one of Theorem 5.1.(i), (iii), or (iv) or Theorem 5.2.(iii) holds on Brx(x) and Bry(y); in

particular, each ∂Gδ ∩∂Sδ
ℓ ∩Brx(x) and ∂Gδ ∩∂Sδ

ℓ ∩Bry(y) is an arc of constant curvature. A first

variation argument then gives (1.6) if Gδ ̸= ∅. Also, by the compactness of clB and the interior
resolution theorem, there are only finitely many arcs in ∂Gδ ∩ ∂Sδ

ℓ . We note that HSδ
ℓ
cannot be

negative along ∂∗Sδ
ℓ ∩ ∂∗Gδ, since local variations which decrease the area of Gδ are admissible. A

similar argument based on the interior local resolution result implies that if H1(∂Sℓ ∩ ∂Sm) > 0
for ℓ,m ≥ 1, then ∂Sδ

ℓ ∩ ∂Sδ
m is composed of finitely many straight line segments. We have thus

decomposed each such ∂Sδ
ℓ ∩ ∂Sδ

m and ∂Gδ ∩ ∂Sδ
ℓ into finitely many line segments and arcs of

constant curvature, respectively.
Moving on to showing that each connected component, say C, of Sδ

ℓ for 1 ≤ ℓ ≤ N is convex,
consider any x ∈ ∂C. C ∩ Brx(x) must be convex by Theorems 5.1 and 5.2 and HSδ

ℓ
≥ 0 along

∂∗Sδ
ℓ ∩∂∗Gδ. Since ∂C consists of a finite number of segments and circular arcs and C is connected,

the convexity of C follows from this local convexity. To finish proving the theorem, it remains
to determine the ways in which these line segments and arcs may terminate. We note that each
component of ∂Gδ must terminate. If one did not, then by Corollary 4.14, it forms a circle contained
in ∂Sδ

ℓ ∩ ∂Gδ. This configuration cannot be minimal however, since that component of Gδ may be

added to Sδ
ℓ to decrease the energy. Suppose that one of these components terminates at x. Next,

by applying the local resolution at x, either Theorem 5.1.(iv) holds if x ∈ B or item (ii) or (iii)
from Theorem 5.2 holds, where x ∈ ∂B is a jump point of h. This yields the desired conclusion. □

Proof of Theorem 1.1. The proof is similar to the proof of Theorem 1.4. Since every interface point
is an interior interface point, determining the ways in which arcs may terminate proceeds as in the
case x ∈ B in that theorem. □

6. Proof of Theorem 1.6

Proof of Theorem 1.6. Step one: First, we show that the set Σ of interior triple junctions, or more
precisely the set

Σ := {x ∈ B : ∃ a blow-up at x given by (ii) from Theorem 4.15}

does not have any accumulation points in clB. Suppose for contradiction that {xk} is a sequence of
such points accumulating at x ∈ clB. By restricting to a subsequence and relabeling the chambers,
we can assume that the three chambers in the blow-ups at each xk are S0

ℓ for 1 ≤ ℓ ≤ 3. In both
cases x ∈ B and x ∈ ∂B, the argument is similar (and follows classical arguments, e.g. [Mag12,
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Theorem 30.7]), so we consider only the case where x ∈ ∂B. If {xk} ⊂ Σ and xk → x ∈ ∂B, then
by (3.1), x ∈ ∂B is a jump point of h. We claim that up to a subsequence which we do not notate,

S0
ℓ − x

|x− xk|
→ Sℓ locally in L1 for ℓ = 1, 2, 3 (6.1)

for a blow-up cluster S of the form from item (v) in Theorem 4.15. To see this, we first note that
by our assumption on xk,

x ∈ ∂S0
1 ∩ ∂S0

2 ∩ ∂S0
3 . (6.2)

This inclusion rules out item (iv) from Theorem 4.15, and so the blow-up cluster is three connected
cones partitioning {y : y · x < 0}. Up to a further subsequence, we may assume that

xk − x

|xk − x|
→ ν ∈ {y : y · x < 0} ,

where we have used (3.1) to preclude the possibility that xk approaches x tangentially. Now for
some r > 0, Br(ν), and ℓ0 ∈ {1, 2, 3}, say ℓ0 = 1, the description of the blow-up cluster implies that
Br(ν) ⊂ S2 ∪S3. Combined with the L1 convergence (6.1) and the infiltration lemma, we conclude
that B|xk−x|r/4 ⊂ S0

2 ∪S0
3 for large enough k, which is in direct conflict with xk ∈ Σ. We have thus

proven that Σ has no accumulation points in clB; in particular, it is finite.

Step two: We finally conclude the proof of Theorem 1.6. For any x ∈ (B \ Σ) ∩ ∂S0
ℓ0
, Theorem

4.15 and the infiltration lemma imply that x ∈ ∂∗S0
ℓ0

∩ ∂∗S0
ℓ1
. In turn, by Corollary 4.7, there

exists rx > 0 such that Brx(x) ∩ ∂S0
ℓ0

is a diameter of Brx(x). Recalling from Corollary 4.4 that

H1(∂S0
ℓ0
\∂∗S0

ℓ0
) = 0, we may thus decompose ∂Sℓ0 as a countable number of line segments, each of

which must terminate at a point in the finite set Σ or a jump point of h. Therefore, ∂Sδ
ℓ0

is a finite
number of line segments. The remainder of Theorem 1.6 now follows directly from this fact and
the classification of blow-ups in Theorem 4.15, items (ii), (iv), and (v). Indeed, since the interfaces
are a finite number of line segments, at x ∈ Σ or x ∈ ∂B which is a jump point of h, the blow-up
is unique, and the minimal partition S0 must coincide with the blow-up on a neighborhood of x.
The convexity of connected components of S0

ℓ for 1 ≤ ℓ ≤ N follows as in the δ > 0 case. □

7. Resolution for small δ on the ball

Proof of Theorem 1.8. Step zero: We begin by reducing the statement of the theorem to one
phrased in terms of a sequence of minimizers {Sδj}. More precisely, to prove Theorem 1.8, we
claim it is enough to consider a sequence {Sδj} of minimizers for δj → 0 and show that up to a

subsequence, there exists a minimizer S0 among Ah
0 with singular set Σ such that

max
{

sup

x∈S
δj
ℓ

dist(x, S0
ℓ ) , sup

x∈S0
ℓ

dist(x, S
δj
ℓ )

}
→ 0 for 1 ≤ ℓ ≤ N (7.1)

max
{

sup
x∈Gδj

dist(x,Σ) , sup
x∈Σ

dist(x,Gδj )
}
→ 0 , (7.2)

and, for large enough j and each x ∈ Σ, Br(x) ∩ ∂Gδj consists of three circle arcs of curvature
κj , with total area |Gδj | = δj . To see why this is sufficient, if Theorem 1.8 were false, then there

would be some sequence δj → 0 with minimizers Sδj among Ah
δj

such that for any subsequence

and choice of minimizer S0 among Ah
0 , at least one of (1.8)-(1.9) or the asymptotic resolution near

singularities of S0 did not hold. But this would contradict the subsequential claim above.
We point out that if we knew that ∂Gδ is described near singularities by three circle arcs for small

δ, the saturation of the area inequality |Gδ| ≤ δ follows from the facts that ∂Gδ has negative mean
curvature away from its cusps and increasing the area of Gδ is admissible if |Gδ| < δ. Therefore,
the rest of the proof is divided into steps proving (7.1)-(7.2) and the asymptotic resolution near
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singular points. First we prove that due to cℓ = 1 for 1 ≤ ℓ ≤ N , there are no “islands” inside B.
Second, we extract a minimizer S0 for Ah

0 from a minimizing (sub-)sequence Sδj with δj → 0 and
prove (7.1). There are then two cases. In the first, we suppose that the set of triple junctions Σ is
empty and show that Gδj = ∅ for large j, so that (7.2) is trivial. In the other case, we assume that
Σ ̸= ∅ and prove (7.2) and the final resolution near singularities of the limiting cluster.

Step one: Let Sδ be a minimizer for δ > 0. We claim that for any connected component C of
any chamber Sδ

ℓ with 1 ≤ ℓ ≤ N , ∂C ∩ {h = ℓ} ̸= ∅. Suppose that this were not the case for
some C ⊂ Sℓ. Then in fact, clC ⊂ B, since by Theorem 5.2 and (3.1), the only components that
can intersect ∂B are those bordering ∂B along an arc where h = ℓ. By Theorem 5.1, ∂C is C1,1

since its boundary is contained in B. If H1(∂C ∩ ∂Sδ
ℓ′) > 0 for some ℓ′, then since all cℓ are equal,

removing C from Sδ
ℓ and adding it to Sδ

ℓ′ contradicts the minimality of Sδ. So it must be the

case that ∂C ⊂ ∂Gδ except for possibly finitely many points. We translate C if necessary until
it intersects ∂Gδ ∩ ∂C ′ for a connected component C ′ ̸= C of some Sδ

ℓ′ at y ∈ B, which does not

increase the energy. Creating a new minimal cluster S̃ by adding C to Sδ
ℓ′ and removing it from

Sδ
ℓ gives a contradiction. This is because by Corollary 4.4, y ∈ (S̃δ

ℓ′)
(1) implies that y ∈ int (S̃δ

ℓ′)
(1),

and so F(S̃;Br(y)) = 0 for some r > 0, against the minimality of Sδ.
We note that as a consequence, the total number of connected components in Sδ is bounded

in terms of the number of jumps of h, and in addition the area of any connected component is
bounded from below by the area of the smallest circular segment from (2.3).

Step two: Here we identify our subsequence, limiting minimizer among Ah
0 , and prove (7.1). Let

us decompose each S
δj
ℓ into its open connected components

S
δj
ℓ = ∪Nj

ℓ
i=1C

ℓ,j
i , (7.3)

where by the previous step, N j
ℓ ≤ Nℓ(h) for all j and |Cℓ,j

i | ≥ C(h) for all j and i. Up to a
subsequence which we do not notate, we may assume therefore that for each 1 ≤ ℓ ≤ N ,

N j
ℓ = Mℓ ≤ Nℓ(h) and |Cℓ,j

i | ≥ C(h) ∀j and i ∈ {1, . . . ,Mℓ} . (7.4)

Since

min
Ah

δj

F ≤ min
Ah

0

F ∀j , (7.5)

up to a further subsequence, the compactness for sets of finite perimeter and (7.4) yield a partition
{Cℓ

i }ℓ,i of B, with no trivial elements thanks to (7.4), such that

1
Cℓ,j

i
→ 1Cℓ

i
a.e. and (7.6)

lim inf
j→∞

F(Sδj ;B) = lim inf
j→∞

N∑
ℓ=1

Mℓ∑
i=1

P (Cℓ,j
i ;B) ≥

N∑
ℓ=1

Mℓ∑
i=1

P (Cℓ
i ;B) ∀1 ≤ ℓ ≤ N. (7.7)

Actually, by Lemma 2.5, we may assume that each cl Cℓ
i is compact and convex, Cℓ

i is open, and,
for each 1 ≤ ℓ ≤ N ,

max
{
sup
x∈Cℓ

i

dist(x,Cℓ,j
i ) , sup

x∈Cℓ,j
i

dist(x,Cℓ
i )
}
→ 0 ∀1 ≤ i ≤ Mℓ . (7.8)

We claim that the cluster

S0 = (R2 \B,S0
1 , . . . , S

0
N , ∅) =

(
R2 \B,

M1⋃
i=1

C1
i , . . . ,

MN⋃
i=1

CN
i , ∅

)
25



of B is minimal for F on Ah
0 . It belongs to Ah

0 by the inclusion (3.1) for each j and by δj → 0. For
minimality, we use (7.5) and (7.7) to write

min
S∈Ah

0

F(S;B) ≥
N∑
ℓ=1

lim inf
j→∞

Mℓ∑
i=1

P (Cℓ,j
i ;B) ≥

N∑
ℓ=1

Mℓ∑
i=1

P (Cℓ
i ;B) ≥

N∑
ℓ=1

P (S0
ℓ ;B) . (7.9)

This proves S0 is minimal. The Hausdorff convergence (7.1) follows from (7.8).
We note that by the minimality of S0, (7.9) must be an equality, so that in turn

Mℓ∑
i=1

P (Cℓ
i ;B) = P (S0

ℓ ;B) ∀1 ≤ ℓ ≤ N . (7.10)

Now each Cℓ
i is open and convex; in particular, they are all indecomposable sets of finite perimeter.

This indecomposability and (7.10) allow us to conclude from [ACMM01, Theorem 1] that {Cℓ
i }i is

the unique decomposition of S0
ℓ into pairwise disjoint indecomposable sets such that (7.10) holds.

Also, by Theorem 1.6, each (S0
ℓ )

(1) is an open set whose boundary is smooth away from finitely many
points. By [ACMM01, Theorem 2], which states that for an open set with H1-equivalent topological

and measure theoretic boundaries (e.g. (S0
ℓ )

(1)) the decompositions into open connected components
and maximal indecomposable components coincide, we conclude that the connected components of

(S0
ℓ )

(1) are {Cℓ
i }

Mℓ
i=1, and S0

ℓ = (S0
ℓ )

(1). We have in fact shown in (7.8) that the individual connected

components of S
δj
ℓ converge in the Hausdorff sense to the connected components of S0

ℓ for each ℓ.

Step three: In this step, we suppose that Σ = ∅ and show that Gδj = ∅ for large j, which finishes the
proof in this case. If Σ = ∅, then every component of ∂S0

ℓ ∩ ∂S0
ℓ′ is a segment which, by Theorem

1.6, can only terminate at a pair of jump points of h which are not boundary triple junctions.
Therefore, every connected component of a chamber S0

ℓ is the convex hull of some finite number
of arcs on ∂B contained in {h = ℓ}. Now for large j, by the Hausdorff convergence in step two
and the containment (3.1), given any connected component C of a chamber of Sδj there exists
connected component C ′ of a chamber of S0 such that ∂C ∩∂B = ∂C ′∩∂B. Since every connected
component of every chamber is convex for δ ≥ 0, we see that in fact it must be C = C ′. So the
minimal partition Sδj coincides with S0 for all large j when there are no triple junctions of S0.

Step four : For the rest of the proof, we assume that Σ ̸= ∅. In this step, we show that

Gδj ̸= ∅ for all j and κj → ∞ . (7.11)

Assume for contradiction that Gδj = ∅ for some j. Then Sδj is minimal for F among Ah
0 , so

F(Sδj ) = F(S0) and S0 is minimal among Aδj
h , too. But this is impossible, since Σ ̸= ∅ and

Theorem 1.4 precludes the presence of interior or boundary triple junctions for minimizers when
δ > 0. Moving on to showing that κj → ∞, we fix y ∈ Σ. Let us assume that y ∈ ∂B is a jump
point of h between h = 1 and h = 2 with S0

3 being the third chamber in the triple junction, since
the case when y ∈ B is easier. For all j, by the containment (3.1) of the neighboring circular

segments in S
δj
1 and S

δj
2 , there exists r > 0 such that for all j and 3 ≤ ℓ ≤ N , ∂S

δj
ℓ ∩Br(y) ⊂ B for

some small r. In particular, ∂S
δj
3 ∩Br(y) is C

1,1 by Theorem 1.4. Furthermore, since S
δj
3 converges

as j → ∞ to a set with a corner in Br(y), the C1,1 norms of ∂S
δj
3 must be blowing up on that ball.

These norms are controlled in terms of κj , and so κj → ∞.

Step five: In the next two steps, we prove (7.2). Here we show that

sup
x∈Gδj

dist(x,Σ) → 0 . (7.12)
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Suppose for contradiction that (7.12) did not hold. Then, up to a subsequence, we could choose
r > 0 and yj ∈ cl Gδj such that

yj → y ∈ clB \ ∪z∈ΣBr(z) .

Let us assume that y = e⃗1 ∈ ∂B; we will point out the difference in the y ∈ B argument when the
moment arises. We note that y must be a jump point of h, say between h = 1 and h = 2, due to
(3.1). Furthermore, by Theorem 1.6 and y /∈ Σ, there exists r′ > 0 such that

Br′(y) ∩B ⊂ cl S0
1 ∪ cl S0

2 .

In particular, dist(y, S0
ℓ ) > r′/2 for 3 ≤ ℓ ≤ N . Therefore, due to (7.1), dist(y, S

δj
ℓ ) ≥ r′/2 for large

enough j. Also by (3.1) applied to S
δj
1 and S

δj
2 and the convexity of connected components of those

sets, we may choose small ε1 and ε2 such that on the rectangle

R = [1− ε1, 1]× [−ε2, ε2] ⊂ Br′/2(y) ,

∂S
δj
1 ∩R∩B and ∂S

δj
2 ∩R∩B are graphs of functions f j

1 and f j
2 over the e⃗1-axis for all j. Relabeling

if necessary, we may take

−ε2 ≤ f j
1 ≤ f j

2 ≤ ε2 and (f j
1 )

′′ ≤ 0 , (f j
2 )

′′ ≥ 0 .

It is at this point that in the case y ∈ B, we instead appeal to the Hausdorff convergence (7.1) and

the convexity of the components of S
δj
ℓ to conclude that graphicality holds. Now the set

Ij = {t ∈ [1− ε1, 1] : f
j
1 = f j

2}
is a non-empty interval by the convexity of connected components of the chambers and the fact

that f j
1 (1) = 0 = f j

2 (1). In addition, for each i = 1, 2 and large j,

f j
i ([1− ε1, 1] \ Ij) is a graph of constant curvature κj

since f j
1 < f j

2 implies that (t, f j
i (t)) ∈ ∂Gδj . Since a graph of constant curvature κj can be defined

over an interval of length at most 2κ−1
j and κj → ∞, we deduce that H1(Ij) → ε1. Since 1 ∈ Ij for

all j and Gj ∩ int Ij × [−ε2, ε2] = ∅, we conclude that Gδj stays at positive distance from y = e⃗1,
which is a contradiction. We have thus proved (7.12).

Step six : In this step, we prove the other half of (7.2), namely

sup
x∈Σ

dist(x,Gδj ) → 0 . (7.13)

For such an x, say which is a triple junction between S0
1 , S

0
2 , and S0

3 , by (7.1) and the definition of
Σ, there exists r0 > 0 such that given r < r0, there exists J(r) such that

Br(x) ∩ S
δj
ℓ ̸= ∅ for ℓ = 1, 2, 3 and j ≥ J(r) . (7.14)

Furthermore, by decreasing r0 if necessary when x ∈ ∂B ∩ Σ is a jump point of h, the boundary
condition (1.4) and absence of triple junctions for δ > 0 allow us to choose 1 ≤ ℓ ≤ 3 such that

∂Sδ
ℓ ∩ ∂B ∩Br0(x) = ∅ for all j . (7.15)

Now (7.14) and (7.15) imply that ∂S
δj
ℓ ∩ Br(x) ⊂ B and is also non-empty for j ≥ J(r). Since

Theorem 1.4 implies that line segments in ∂S
δj
ℓ can only terminate inside B at interior cusp points in

∂Gδ and S
δj
ℓ ∩Br(x) converges to a sector with angle strictly less than π, we find thatGδj∩Br(x) ̸= ∅

for all j ≥ J(r). Letting r → 0 gives (7.13).

Step seven: Finally, under the assumption that Σ = {x1, . . . , xP } ̸= ∅, we show that for large
enough j, Gδj consists of P connected components, each of which is determined by three circle arcs

contained in ∂S
δj
ℓi

∩ ∂Gδj for the three indices ℓi, i = 1, 2, 3, in the triple junction at x. We fix
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x ∈ Σ which is a triple junction between the first three chambers, so there is some B2r(x) such that
for each ℓ, B2r(x) ∩ S0

ℓ consists of exactly one connected component Cℓ of S0
ℓ for 1 ≤ ℓ ≤ 3 (also

S0
ℓ ∩B2r(x) = ∅ for ℓ ≥ 4). Up to decreasing r, we may also assume that

(Σ \ {x}) ∩ clB2r(x) = ∅ . (7.16)

Recalling from step two (see (7.8) and the last paragraph) that the connected components of S
δj
ℓ

converge in the Hausdorff sense to those of S0
ℓ , for j large enough, we must have

Br(x) ∩ S
δj
ℓ = Br(x) ∩ Cj

ℓ ̸= ∅ 1 ≤ ℓ ≤ 3 (7.17)

for a single connected component Cj
ℓ , and, due to (7.2) and (7.16),

clGδj ∩ clBr(x) ⊂ Br/4(x) . (7.18)

Now ∂Gδj ∩ Br(x) consists of finitely many circle arcs and has negative mean curvature (with
respect to the outward normal ν

Gδj ) along these arcs away from cusps. We claim that for j large,

there are precisely three such arcs, one bordering each S
δj
ℓ for 1 ≤ ℓ ≤ 3 and together bounding

one connected component of Gδj . There must be at least three arcs, since an open set bounded
by two circle arcs has corners rather than cusps. To finish the proof, it suffices to show that there

cannot be more than two distinct arcs belonging to ∂Gδj ∩ ∂S
δj
ℓ ∩Br/4(x) for a single ℓ ∈ {1, 2, 3}.

If there were, then ∂S
δj
ℓ ∩ Br(x) would contain at least three distinct segments, because with

only two, each of which has one endpoint outside of Br(x) according to (7.17)-(7.18), one cannot
resolve three cusp points as dictated by Theorem 1.4. As a consequence, there exists ℓ′ ̸= ℓ such
that up to a subsequence, for large j, there are two distinct segments, L1 and L2, both belonging

∂S
δj
ℓ ∩ ∂S

δj
ℓ′ ∩ Br(x) and separated by at least one circle arc. It is therefore the case that L1 and

L2 are not collinear. Also by (7.17), there is only a single convex component Cj
ℓ′ of S

δj
ℓ′ containing

S
δj
ℓ′ ∩Br(x). Therefore, L1 ∪L2 ⊂ ∂Cj

ℓ ∩∂Cj
ℓ′ . But this is impossible: since a planar convex set lies

on one side of any tangent line, ∂Cj
ℓ and ∂Cj

ℓ′ cannot share two non-collinear segments. □

Remark 7.1 (Explicit description of Sδ). If in the conclusion of Theorem 1.8, it is also the
case that dist(Σ, ∂B) > f(δ), so that Gδ ⊂⊂ B, then Sδ = (Bc, S′

1 \ Gδ, . . . , S′
N \ Gδ, Gδ) for

some S ′ = (Bc, S′
1, . . . , S

′
N , ∅) minimizing F among Ah

0 . To see this, we “excise” the wet region

Gδ from Sδ. For each x ∈ Σ, divide Gδ ∩ Bf(δ)(x) into three pieces, each bounded by an arc

Aℓ
x ⊂ ∂Gδ ∩ ∂Sδ

ℓ for some ℓ and the two segments Bℓ
x, C

ℓ
x connecting the endpoints of Aℓ

x to the

centroid of Gδ∩Bf(δ)(x). Since all A
ℓ
x have equal lengths/curvatures (by Gδ ⊂⊂ B and the fact that

there is only one configuration up to isometries of three mutually tangent circles with radius r), all
the pieces of Gδ are congruent, with area Aδ = δ/(3H0(Σ)) such thatH1(Aℓ

x)−H1(Bℓ
x∪Cℓ

x) = c
√
Aδ

for a constant c < 0. For each ℓ, define Gδ
ℓ as the union of all pieces of Gδ with a boundary arc in

∂Sδ
ℓ ∩ ∂Gδ. Let S ′ = (Bc, Sδ

1 ∪Gδ
1, . . . , S

δ
N ∪Gδ

N , ∅). By the definition of S ′ and minimality of S0,

F(Sδ;B)− 3H0(Σ)c
√

Aδ = F(S ′;B) ≥ F(S0;B).

Since this lower bound for the minimum of F on Ah
δ is achieved by the construction wetting the

singularities of S0 as in Figure 1.1, it follows that F(S ′;B) = F(S0;B) and S ′ is minimizing for F .

Data Availability: Data sharing not applicable to this article as no datasets were generated or
analyzed during the current study.
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