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Abstract. The existence and the regularity results obtained in [37] for the variational model
introduced in [36] to study the optimal shape of crystalline materials in the setting of stress-
driven rearrangement instabilities (SDRI) are extended from two dimensions to any dimen-
sions n ≥ 2. The energy is the sum of the elastic and the surface energy contributions, which
cannot be decoupled, and depend on configurational pairs consisting of a set and a function
that model the region occupied by the crystal and the bulk displacement field, respectively.
By following the physical literature, the “driving stress” due to the mismatch between the
ideal free-standing equilibrium lattice of the crystal with respect to adjacent materials is
included in the model by considering a discontinuous mismatch strain in the elastic en-
ergy. Since two-dimensional methods and the methods used in the previous literature where
Dirichlet boundary conditions instead of the mismatch strain and only the wetting regime
were considered, cannot be employed in this setting, we proceed differently, by including
in the analysis the dewetting regime and carefully analyzing the fine properties of energy-
equibounded sequences. This analysis allows to establish both a compactness property in the
family of admissible configurations and the lower-semicontinuity of the energy with respect
to the topology induced by the L1-convergence of sets and a.e. convergence of displacement
fields, so that the direct method can be applied. We also prove that our arguments work as
well in the setting with Dirichlet boundary conditions.

1. Introduction

Elastic effects can strongly affect the structure of crystalline materials by inducing morpho-
logical destabilizations from the optimal free-standing crystalline equilibrium, that are often
referred to as the family of stress-driven rearrangement instabilities (SDRI) [4, 19, 30, 34, 48].
In order to relieve the strain, atoms move from their crystalline order possibly inducing both
bulk deformations and interface irregularities. The latter can be originated in various forms,
such as the roughness of the exposed crystalline boundaries, the formation of internal cracks in
the bulk, the nucleation of dislocations in the crystalline lattice, and the delamination at con-
tact edges with adjacent materials. However, such corrugations and extra boundary interfaces
are not favorable with respect to the surface energy, which would instead prescribe regular
specific Wulff/Winterbottom-type shapes [44, 45, 50, 51]. Therefore, the surface energy com-
petes against the destabilizing effect of the elastic energy with a regularizing effect: a delicate
microscopical compromise between such opposite mechanisms must then be reached strongly
affecting in a variety of ways the original crystalline-material macroscopical properties.

In the strive of capturing such interplay between elastic and (anisotropic) surface energy
described by the physical literature [25, 35, 39, 46, 47, 49, 52], various mathematical models
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with a variational nature have been introduced in relation to the different settings relevant
for the applications. A non-exhaustive list includes [6, 9, 20, 21, 27, 33, 38] for epitaxially-
strained thin films deposited on supporting materials, [10, 11, 29] for fractures, [5, 40] for
delamination, and, e.g., [28] for crystalline cavities. Establishing the existence of minimizers
for such models even in dimension n = 2 is a challenging task especially due to compactness
issues. Such issues were first solved in simplified settings, by working under the antiplane-shear
assumption [8, 16], or by distinguishing the applications with adhoc geometric assumptions on
the morphology of the crystalline materials, such as adopting graph-type and star-shapedness
constraints on film profiles and crystal cavities, respectively. More recently, the development
of several techniques related to GSBD-functions, a specific subclass of functions of bounded
deformation [18], have been sucessfully applied to models related to the Griffith energy [11,
12, 13, 14, 18, 29]. Following this progress, there has been a growing effort [15, 17, 36,
37] to develop mathematical frameworks enabling the simultaneous treatment of the various
mechanisms of mass rearrangement and boundary instabilities, which is of crucial importance,
as often such phenomena concomitantly occur in applications.

The aim of this paper is to extend to dimension n ≥ 2, and hence including the physical
relevant case of n = 3, the existence and the regularity results obtained in [37] for n = 2
for the SDRI model introduced in [36]. In regard of the existence, such an extension was
previously achieved in [17] for the wetting regime, i.e., the case for which it is more convenient
for the crystal material to always cover the surface of a (supporting) adjacent material rather
than letting it exposed, and the setting in which the stress driving effect characterizing SDRI
is mathematically prescribed by introducing boundary Dirichlet conditions. Here we address
also the dewetting regime and, as previously done by the authors in [36, 37] for n = 2, by
following the physical literature [4, 19, 30, 34, 47, 48, 52] we avoid the use of any Dirichlet
boundary conditions and we directly introduce a mismatch strain in the elastic energy. As
suggested by its name, such strain is induced in the free crystal, i.e., the crystal of which
we are studying the morphology, by the mismatch between its ideal free-standing equilibrium
lattice and the lattice of adjacent materials. Since the approach used in [17] cannot be applied
to this setting without boundary conditions as it is described below (see also [37]), we have
developed an alternative strategy that allows us to tackle both the case with mismatch strain
and the one with Dirichlet conditions (see Remark 2.10 for more details). Finally, the method
of this paper extends (also to both the settings with and without Dirichlet conditions) the
regularity results for the bulk displacements and the morphologies of the energy minimizing
configurations obtained by the authors in [37] for n = 2 (besides extending the existence
results of [37] to the presence of different adjacent materials and to Griffith-type models with
mismatch strain and delamination).

To facilitate this generalization, we adopt the terminology introduced in [36, 37], by refer-
ring to the bounded region Ω in the space Rn where the free crystal is located as the container
in analogy to capillarity problems, and to the region S occupied by adjacent materials outside
the container, i.e., S ⊂ Rn \ Ω, as the substrate in analogy to the thin-film setting where S
is the supporting material on which the film is being deposited. We notice that the contact
region between the container and the substrate Σ := ∂Ω ∩ ∂S is assumed to be a Lipschitz
(n − 1)-manifold and that S can be given by a finite number of different connected compo-
nents possibly modeling different adjacent materials. The free crystals are then represented
by configurational pairs of set-function type (A, u), where A ⊂ Ω is a set of finite perimeter
denoting the region occupied by the free crystal and subject to the volume constraint |A| = v

with v ∈ (0, |Ω|], and u is a vector valued faction in GSBD2(Int(A∪Σ∪S))∩H1
loc(S) denoting
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the displacement field of the free-crystal and substrate bulk materials with respect to their
optimal equilibrium arrangements. The family of all such admissible configurational pairs
(A, u) is denoted by C.

The configurational energy of any free-crystal pair (A, u) ∈ C is defined by

F(A, u) =W(A, u) + S(A, u), (1.1)

where S and W represent the elastic and the surface energy, respectively. The elastic energy
W in (1.1) is defined as in [27] by

W(A, u) =

∫
A∪S

C(x)[Eu−M0] : [Eu−M0] dx,

where C is a bounded measurable tensor-valued map C in Ω ∪ S satisfying the coercivity
assumption C ≥ c I > 0 (in the sense of linear operators), where I is the identity tensor, Eu is
the approximate symmetric gradient of u (see (2.2)) and M0 is the (discontinuous) mismatch
strain defined as

M0 =

{
Eu0 in Ω,

0 in S
(1.2)

for some fixed u0 ∈ H1(Rn). In the special case in which the equilibrium lattice of the free
crystal and of the substrate matches at Σ, we take u0 ≡ 0. The surface energy S in (1.1) is
defined as

S(A, u) :=

∫
∂∗A∪Ju

ψ(x, ν(x))dHn−1,

where ∂∗A is the reduced boundary of A, Ju is the jump set of u, and the surface energy
density ψ(·, ν(·)) is given by

ψ(x, ν(x)) :=


ϕ(x, νA(x)) if x ∈ Ω ∩ ∂∗A,
2ϕ(x, νJu(x)) if x ∈ A(1) ∩ Ju,
β(x) if x ∈ [Σ ∩ ∂∗A] \ Ju,
ϕ(x, νΣ(x)) if x ∈ Σ ∩ ∂∗A ∩ Ju,

(1.3)

where νU (x) denotes the outward-pointing normal vector to U at x ∈ ∂∗U for any set of finte

perimeter U ⊂ Rn, νΣ := νS , νJu is the normal on Ju, A(1) is the set of points of density
1 for A, ϕ ∈ C(Ω × Rn) is a a Finsler norm denoting the anisotropic surface tension of the
free-crystal material, and β ∈ L∞(Σ) represents the relative adhesion coefficient of Σ for
which we assumed, as in capillarity theory (see, e.g., [24]), that

|β(x)| ≤ ϕ(x, νΣ) for a.e. x ∈ Σ. (1.4)

We notice that the weights in (1.3), which forbid to decouple the surface energy from
the elastic energy making the energy F highly nonlocal, are consistent with the ones chosen
in [17, 27, 28, 36, 37], where they were crucial to prove energy lower-semicontinuity-type

properties. In particular, the anisotropy on internal cracks A(1) ∩ Ju is weighted twice as
much as the free boundary Ω ∩ ∂∗A of the exposed boundary of the free crystal, because
cracks can be approximated by “closing voids” as in [17, 27, 36]. The presence of the surface
energy over Σ∩∂∗A∩Ju allows to consider a more general framework for thin films depositing
on a substrate, in which cracks are allowed to appear not only inside the film material, but also
along the surface of the substrate characterizing the delamination region, where debonding
between the atoms of the two materials occurs, and as such, the corresponding surface tension
in (1.3) is regarded as the same of the one on the free-crystal exposed boundary. Finally, on



4 SH. KHOLMATOV AND P. PIOVANO

the complementary region to the delamination in Σ ∩ ∂∗A where the bulk displacement is
continuous, the relative adhesion coefficient β is considered.

We observe that in the case of total wetting case, i.e., if β(x) = −ϕ(x, νΣ(x)) for a.e.
x ∈ Σ, we reduce to the setting of material voids considered in [17] (with the mismatch strain
M0 replaced by a Dirichlet boundary condition). On the contrary, in the total dewetting
case, i.e., if β(x) = ϕ(x, νΣ(x)) for a.e. x ∈ Σ, then one can readily check that the energy
F is minimized by configurational pairs with displacement u ≡ u0 in Ω and null otherwise,
and so characterized by having a zero elastic energy: the model reduces to the dewetted
capillarity setting, or in other words, to the anisotropic isoperimetric problem in a container.
Finally, in the case with v = |Ω|, we reduces to the Griffith model with the inclusion of
possible delamination at the substrate boundary, which generalize also for n = 2 the setting
considered by the authors in [36, 37] together with S 6= ∅.

We now present the two main results of the paper (see Section 2.2 for more detailed state-
ments) and comment their proofs. We begin by observing that, since the values of the ad-
missible displacement fields u in the void regions Ω \ A do not play any role in the energy
of (A, u), as only a formal difference with respect to the previous presentation of the SDRI
models introduced in [36, 37], for every (A, u) ∈ C we can redefine u in Ω \A with a properly
chosen constant such that Ω∩∂∗A ⊂ Ju (see Remark 2.1), and so without changing the value
of F(A, u). We make use of this observation in the following.

Theorem 1.1 (Existence of minimizing configurations). The minimum problem

min
(A,u)∈C, |A|=v

F(A, u) (1.5)

admits a solution.

We refer the Reader to Theorem 2.4 for a more detailed and comprehensive statement of the
existence result of Theorem 1.1.

Theorem 1.1 is established by means of the direct method of the calculus of variations with
respect to a properly chosen topology τC with which we equip C, and that is characterized by
the convergence:

(Ak, uk)
τC−→ (A, u) ⇐⇒

{
Ak → A in L1(Rn),

uk → u a.e. in Ω ∪ S.

In order to establish the τC-lower semicontinuity of F in Theorem 2.5 we consider the pos-
itive Radon measures µk and µ in Rn associated to the localized energy versions of F(Ak, uk)
and F(A, u), respectively, for which it holds that

lim inf
k→+∞

F(Ak, uk) ≥ F(A, u) ⇐⇒ lim inf
k→+∞

µk(Rn) ≥ µ(Rn). (1.6)

Then, we observe that, up to a subsequence, µk weakly* converges to some positive Radon
measure µ0, and that µ is absolutely continuous with respect to Hn−1 (∂∗A ∪ Ju ∪ Σ) +
Ln (Ω ∪ S), and we establish the following estimates for the Radon-Nikodym derivatives:

dµ0

dHn−1 (∂∗A ∪ Ju ∪ Σ)
≥ dµ

dHn−1 (∂∗A ∪ Ju ∪ Σ)
Hn−1 -a.e. on ∂∗A ∪ Ju ∪ Σ, (1.7)

dµ0

dLn (Ω ∪ S)
≥ dµ

dLn (Ω ∪ S)
Ln-a.e. in Ω ∪ S, (1.8)

which imply that limµk(Rn) = µ0(Rn) ≥ µ(Rn) and, in view of (1.6), conclude the proof of
the lower-semicontinuity. For the estimate (1.7) we need to distinguish between the estimate
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at the reduced boundary of A and at Σ\Ju, where we can implement techniques developed in
capillarity theory [1, 24], from the estimate at the (approximate) jump points of u, where we
employ arguments based on the slicing properties of GSBD-functions as in the Griffith model
[13, 14, 15], for which though extra care is needed: unless v = |Ω|, we cannot directly apply
those arguments because at jump points we need to obtain different weights with respect to
the ones at the reduced boundary of A. Rather, we replace Juk in small “holes” up to some
error by means of Corollaries 3.3 and 3.5 in such a way that each slice intersects the boundary
of those holes at least in two points (see the proof of Proposition 4.1), which in turns yields the
desired estimate with weight 2 at such jump points (see Corollary 4.2). Finally, we prove (1.8)
by using the convexity of W(A, ·) and by observing that the condition uk → u a.e. in Ω ∪ S,
together with the compactness result [14, Theorem 1.1], allows us to conclude that Euk ⇀ Eu
in L2(Ω∪S). We recall that in [17] the authors prove the lower semicontinuity of an energy for
crystalline voids via relaxation arguments. Namely, the authors start in the regular family of
pair configurations given by voids with a Lipschitz boundary and Sobolev displacement fields,
and then in the relaxation, the jump set appears as the void boundaries collapse, resulting in
a coefficient 2 in front of the jump energy of S. We are here actually arguing in the reverse
direction: first we start in C with admissible pairs allowing displacements with jump sets, and
then we carefully create an at most countable family of voids around them.

The τC-compactness of an energy-equibounded sequence {(Ak, uk)} ⊂ C is established in
Theorem 2.6. We easily get the uniform bounds on the perimeters of Ak, theHn−1- measure of
the jumps Juk , and the L2-norm of Euk by the assumptions on the anisotropic surface tensions
and the elasticity tensor (see Remark 2.3). Thus, we can directly deduce the convergence in
L1(Rn) up to a non-relabelled subsequence of Ak to some set A ⊂ Ω of finite perimeter.
However, establishing the Ln a.e. convergence of the displacements uk is delicate: by [14,
Theorem 1.1] there could be an exceptional set E with Ln positive measure, in which |uk| →
+∞. The presence of such an exceptional set has been previously treated by prescribing
Dirichlet boundary conditions [13, 14, 17]. For instance, in [17] the compactness issue is solved
by considering in the proof an auxiliary more general class GSBDp

∞, p > 1, of displacements
(which are allowed to attain the infinite value on a subset of their domain of also Ln positive
measure) and then, by using the Dirichlet condition imposed on the displacements at the
boundary, the authors are able to prove that the minimizing displacements belong to the
original space GSBDp. However, as in the setting with the mismatch strain (1.2), we cannot
rely on any fixed boundary condition, one cannot even exclude the situation with E = Ω ∪ S
and hence, this issue unfortunately forbids the implementation of the strategy of [17] to our
SDRI setting. The other option of excluding the presence of the exceptional set is based on
the employment of Poincaré-Korn inequality for GSBD-functions citeCCF:2016 with small
jump: the set Ω is partitioned into a Caccioppoli family {Pj} of sets Pj in which a sequence

{ajk} of rigid displacements are defined in such a way that uk−ajk is convergent pointwise a.e.
in Pj , so that one can conclude that the sequence

vk := uk −
∑
j

ajkχPj (1.9)

converges to some u ∈ GSBDp(Ω) a.e. in Ω, Evk ⇀ Eu in Lp(Ω), and

lim
k→+∞

Hn−1(Juk) ≥ Hn−1
(
Ju ∪ (Ω ∩

⋃
j

∂∗Pj)
)

(see [15, Theorem 1.1]). However, also this approach seems not implementable in our SDRI
setting, since the functions vk defined in (1.9) may admit extra jumps along the boundary
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of the partition phases Pj that should be counted with different weights in our setting with
different surface tensions.

In view of these issues, in order to prove compactness we use a different strategy in this paper
by directly partitioning the sets A and Ak (not only A!) into Caccioppoli families (that need
to be created by starting from the connected components of the substrate) up to a controllable
error (see Figures 3 and 5). Such strategy is a reminiscence of the ideas already used by the
authors in [36, Theorem 2.7], of partitioning Ak by means of introducing extra circles closing
the shrinking “necks”, which though works only for n = 2 and under the constraint assumed
in [36] on the number of boundary components for the admissible free-crystal regions. More
precisely, we proceed here arguing as follows: First, by the classical Poincaré-Korn inequality
we partition S in a family {Si}i≥1 of sets Si such that for each i ≥ 1 the set Si is a union of
connected components of S and there exists a sequence of rigid displacements {aik} such that,

up to a subsequence, uk − aik converges a.e. in Si and |aik − a
j
k| → +∞ a.e. in Rn for every

j 6= i. Second, by applying [14, Theorem 1.1] with uk − aik we construct a family {F i}i≥0 of
pairwise disjoint Caccioppoli subsets of A, such that for i ≥ 1 the sequence uk − aik converges
a.e. in F i ∪ Si and diverges to infinity otherwise, and F 0 := A \⋃i≥1 F

i. Furthermore, since

F 0 is the portion of the free crystal, so-called in the following “hanging phase” (see Figure
1), that does not “interact” with any substrate component, we can redefine the displacements
in F 0 as u0 (see (1.2)), which corresponds to providing a zero contribution to the overall
elastic energy. Third, by using the Hn−1-rectifiability of ∂∗F i and Propositions 4.1 and 5.2,
we construct for any δ > 0 a union Gδk ⊂ Ω of open sets covering

⋃
∂∗F i up to some error of

order O(
√
δ) and whose perimeter and volume are controlled, and we set

Bδ
k := Ak \Gδk and vδk := u0χF 0 +

∑
i≥1

(uk − aik)χSi∪(F i\Gδk) + u0χF 0 . (1.10)

We notice that actually the definition of the vδk in (1.10) is more involved (see (5.3)), as
we need also to control the possible large jumps created along Σ, that though in the limit
disappear (becoming wetting layer), by creating artificial small jumps in Aδk \A and redefining

vδk in that set near Σ. The obtained configurations satisfy

F(Ak, uk) ≥ F(Bδ
k, v

δ
k)− c

√
δ
(
Hn−1(∂∗Ak) +Hn−1(Juk) +

m∑
h=0

P (F h)
)

(1.11)

for some constant c > 0 (see Proposition 5.1), from which Theorem 2.6 follows by a diagonal
argument.

We also notice that in the case with Dirichlet boundary conditions, one see at most 2
elements in the partition, the hanging phase F 0 and a phase F 1 interacting with the substrate,
since in this case we do not need to add any rigid displacements. Apart from this simplification,
the methods used in the proof of Theorems 2.5 and 2.6 still work, even by relaxing the
assumptions on the convex elastic energy densities, i.e., by allowing for a p-growth with
respect to the strains (see Section 2.3). This allows us in particular to recover in Remark
2.10 the existence results for the model representing material voids in the framework with
Dirichlet boundary conditions of [17] and the existence and regularity results for the Griffith
fracture model with Dirichlet boundary conditions of [13].

The second main result of the paper relates to properties of partial regularity satisfied by
the minimizers (A, u) of F , such as the essential closedness of Ju and ∂∗A.
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F 0
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F 2
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S4

F 3

F 4

Figure 1. The partitions of the substrate and the free crystal into, respectively,
the families {Si}i≥1 and {F i}i≥0 of Caccioppoli sets, which are used to prove the τC-
compactness result, are depicted by representing the various phases of the free crystal
that are interacting with the substrate with different line patterns and the remaining
“hanging phase” F 0 with a point pattern.

Theorem 1.2 (Regularity results for minimizing configurations). Let (Ã, ũ) be a
solution of (1.5). Then the pair (A, u) defined by

A := Int(A(1)) and u := ũχA∪S + ξχΩ\A,

where ξ ∈ Rn is chosen such that Ω∩∂∗A ⊂ Ju (see Remark 2.1), is also a solution of (1.5).
Furthermore, we have that

Hn−1(Ã(1) \A) < +∞, Hn−1(Ju \ J∗u) = 0, and Hn−1(J∗u \ J∗u) = 0,

where

J∗u := {x ∈ Ju : θ(Ju, x) = 1}
with θ(Ju, x) denoting the (n − 1)-dimensional density of Ju at x. Finally, there exists a
constant c > 0 such that if E ⊂ A is a “hanging” component of A, i.e., if Hn−1([∂∗E∩Σ]\Ju) =
0, then |E| ≥ c.

We refer the Reader to Theorem 2.7 for a more detailed statement of Theorem 1.2.

The proof of Theorem 1.2 is carried out by implementing in the SDRI setting the methods
for the partial regularity of the minimizers of the Griffith model by means of the ideas already
employed by the authors in [37] for n = 2: we introduce a localized version of F and establish
uniform lower and upper Hn−1 density estimates for the jump sets (see Section 6). by paying
extra care to treat the presence of voids and of the different weights for the surface tension in
the surface energy, which is a crucial difference from the Griffith model. We overcome such
difficulties by means of the strategy employed in [43] and based on the relative isoperimetric
inequality [3] to distinguish in the Decay Lemma the blows up “inside the free crystal” from
the ones “in the voids”, and by applying the approximation result of [12, Theorem 3].

The paper is organized as follows: In Section 2 we introduce the SDRI model, some pre-
liminary results related to sets of finite perimeter and GSBD-functions, and state the main
results. In Section 3 we provide some technical results which allows to replace a part of jump
set with an open set without modifying too much the corresponding SDRI energy. Section 4
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is devoted to the proof of the lower semicontinuity of F . Section 5 contains the proof of the
compactness for energy-equibounded sequences. In Section 6 we prove the decay estimates
for F and the regularity results of Theorem 2.7. Finally, we conclude the paper with the Ap-
pendix containing the results related to the equivalence of the volume-constrained minimum
problem with the volume-uncontrained penalized minimum problem, and to some properties
of GSBD-functions.

2. Mathematical setting and formulation of the main results

Notation. Unless otherwise stated, all sets we consider are subsets of Rn, in which the
coordinates (x1, . . . , xn) of x ∈ Rn are given with respect to the standard basis {e1, . . . , en}.
The symbol Br(x) stands for the open ball in Rn centered at x and of radius r > 0. The
symbol Qr(x) := x + [− r

2 ,
r
2 ]n stands for the standard n-dimensional (hyper) cube in Rn of

sidelength r centered at x. We write Qr := [− r
2 ,

r
2 ]n. Given r > 0, ν ∈ Sn−1 and x ∈ Rn we

denote by Qr,ν(x) the cube of sidelength r centered at x whose sides are either parallel or
perpendicular to ν. The characteristic function of a Lebesgue measurable set F is denoted
by χF and its Lebesgue measure by |F |; we set also ωn := |B1(0)|. We denote by Ec the
complement of E in Rn. By Hn−1 we denote by (n− 1)-dimensional Hausdorff measure in Rn
and we write K =Hn−1 L and K ⊂Hn−1 L to mean Hn−1(K∆L) = 0 and Hn−1(K \ L) = 0.

Given an open set U ⊂ Rn, the set of L1(U)-functions having bounded total variation in U
is denoted by BV (U) and the elements of

BV (U ; {0, 1}) := {E ⊆ U : χE ∈ BV (U)}
are called sets of finite perimeter in U . The standard references for BV -functions and sets of
finite perimeter are for instance [3, 32, 41].

Given E ∈ BV (U, {0, 1}) we denote

– by P (E,U) :=
∫
U |DχE | the perimeter of E in U ;

– by ∂E the measure-theoretic boundary of E, i.e.,

∂E := {x ∈ Rn : 0 < |Bρ ∩ E| < |Bρ| ∀ρ > 0};
– by ∂∗E the reduced boundary of E, i.e.,

∂∗E :=
{
x ∈ Rn : ∃νE(x) := − lim

r→0

DχE(Br(x))

|DχE |(Br(x))
and |νE(x)| = 1

}
.

– by νE the outer measure-theoretic unit normal to ∂∗E.

Given a Lebesgue measurable set E ⊆ Rn and α ∈ [0, 1] we define

E(α) :=

{
x ∈ Rn : lim

ρ→0+

|Bρ(x) ∩ E|
|Bρ(x)| = α

}
.

Given a set K ⊂ Rn and a point x0 ∈ Rn, we denote by

θ∗(K,x0) := lim inf
r→0

Hn−1(Br(x0) ∩K)

ωn−1rn−1

and

θ∗(K,x0) := lim sup
r→0

Hn−1(Br(x0) ∩K)

ωn−1rn−1
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the (n − 1)-dimensional lower and upper density of K at x0, respectively (see e.g., [3, page
78]). When these densities coincide, we denote their common value by θ(K,x0). Recall that
by [3, Theorem 2.63], K is Hn−1-rectifiable if and only if θ(K,x) = 1 for Hn−1-a.e. x ∈ K.

Given x ∈ Rn and r > 0, the blow-up map σx,r is defined as

σx,r(y) =
y − x
r

. (2.1)

Given an open set U ⊂ Rn and a metric space X we denote by Lip(U ;X) the family of all
Lipschitz functions ψ : U → X. We denote by Lip(ψ) the Lipschitz constant of ψ ∈ Lip(U ;X).

By GSBD(U ;Rn) we denote the collection of all generalized special functions of bounded
deformation (see [14, 18] for their definition and properties). Given u ∈ GSBD(U ;Rn) we
denote by Eu ∈ Mn×n

sym the approximate symmetric gradient and by Ju the jump set of u; we
recall that by [18, Theorem 9.1]

ap lim
y→x

[u(y)− u(x)− Eu(x)(y − x)] · (y − x)

|y − x|2 = 0 for a.e. x ∈ U (2.2)

and by [18, Theorem 6.2] Ju is Hn−1-rectifiable. Let us also define

GSBD2(U) := {u ∈ GSBD(U ;Rn) : Eu ∈ L2(U ;Mn×n
sym )}.

Given a Hn−1-rectifiable set K ⊂ U, we consider a normal vector νK to its approximate
tangent space and we denote by u+

K and u−K the approximate limits of u ∈ GSBD(U ;Rn)
with respect to νK , i.e.,

u+
K(x) := ap lim

(y−x)·νK>0,
y∈U

u(y) and u−K(x) := ap lim
(y−x)·νK<0

y∈U

u(y)

for every x ∈ K whenever they exist [18, Definition 2.4]. We refer to u+
K and u−K as the two-

sided traces of u at K and we notice that they are uniquely determined up to a permutation
when changing the sign of νK .

Let us recall some notation from [14] related to GSBD-functions. For ξ ∈ Sn−1, y ∈ Rn,
B ⊂ Rn and v : B → Rn let

Πξ := {x ∈ Rn : x · ξ = 0}, Bξ
y := {t ∈ R : y + tξ ∈ B},

and
vξy(t) := v(y + tξ), v̂ξy(t) := vξy(t) · ξ.

We denote by πξ the projection of Rn onto Πξ, i.e.,

πξ := x− (x · ξ)ξ.
Recall that if v ∈ GSBD2(U) for an open set U ⊂ Rn, then v̂ξy ∈ SBV 2

loc(U
ξ
y ) for every

ξ ∈ Sn−1 and Hn−1-a.e. y ∈ Πξ. We denote by u̇ξy the the absolutely continuous part of Duξy
w.r.t. L1. Let us introduce

IUy,ξ(v) :=

∫
Uξy

|v̇ξy|2dt

and
IIUy,ξ(v) := |D[τ(v · ξ)]ξy|(U ξy ),

where τ ∈ C1(R, (−1
2 ,

1
2)) and satisfies 0 ≤ τ ′ ≤ 1. By [14, Eq. 3.8]∫

Πξ

IUy,ξ(v)dHn−1(y) =

∫
U
|Ev(x)ξ · ξ|2dx ≤

∫
U
|Ev|2dx (2.3)
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and by [14, Eq. 3.9] and obvious estimate a ≤ 1 + a2∫
Πξ

IIUy,ξ(v)dHn−1(y) = |Dξ[τ(v · ξ)]|(U) ≤
∫
U
|Ev|dx+Hn−1(U ∩ Jv)

≤|U |+
∫
U
|Ev|2dx+Hn−1(U ∩ Jv). (2.4)

By the Fubini Theorem and the equality∫
Sn−1

|ν · ξ|dHn−1(ξ) = 2ωn−1, ν ∈ Sn−1,

for any Hn−1-rectifiable Borel set L ⊂ Rn and an open set U ⊂ Rn we have

Hn−1(U ∩ L) =
1

2ωn−1

∫
Sn−1

dHn−1(ξ)

∫
U∩L
|νL · ξ| dHn−1(y)

=
1

2ωn−1

∫
Sn−1

dHn−1(ξ)

∫
Πξ

H0(U ξy ∩ Lξy) dHn−1(y), (2.5)

where we applied the area formula with πξ in the second equality.

A linear function a : Rn → Rn satisfying ∇a = −(∇a)T is called an (infinitesimal) rigid
displacement.

2.1. The SDRI model. Given nonempty open sets Ω ⊂ Rn and S ⊂ Rn \ Ω, we define the
space of admissible configurations by

C :=
{

(A, u) : A ∈ BV (Ω; {0, 1}), u ∈ GSBD2(Int(Ω ∪ S ∪ Σ)) ∩H1
loc(S)

}
where Σ := ∂S ∩ ∂Ω.

The energy of admissible configurations is given by

F : C → [−∞,+∞], F := S +W,

where S and W are the surface and elastic energies of the configuration, respectively. The
surface energy of (A, u) ∈ C is defined as

S(A, u) :=

∫
Ω∩∂∗A

ϕ(x, νA(x)) dHn−1(x)

+

∫
A(1)∩Ju

[
ϕ(x, νJu(x)) + ϕ(x,−νJu(x))

]
dHn−1(x)

+

∫
Σ∩∂∗A\Ju

β(x) dHn−1(x) +

∫
Σ∩∂∗A∩Ju

ϕ(x,−νΣ(x)) dHn−1(x),

where ϕ : Ω × Sn−1 → (0,+∞) and β : Σ → R are Borel functions denoting the anisotropy
of crystal and the relative adhesion coefficient of the substrate boundary, respectively, and
νΣ := νS . In applications instead of ϕ(x, ·) it is more convenient to use its positively one-
homogeneous extension |ξ|ϕ(x, ξ/|ξ|). With an abuse of notation we denote this extension also
by ϕ.

The elastic energy of (A, u) ∈ C is defined as

W(A, u) :=

∫
A∪S

W (x, Eu−M0)dx,

where the elastic energy density W is a quadratic form

W (x,M) := C(x)M : M,
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determined by a tensor-valued measurable map x ∈ Ω∪S → C(x), the so-called stress-tensor,
in the Hilbert space Mn×n

sym of all n× n-symmetric matrices with the natural inner product

M : N =
n∑

i,j=1

MijNij .

The mismatch strain x ∈ Ω ∪ S 7→M0(x) ∈Mn×n
sym is given by

M0 :=

{
Eu0 in Ω,

0 in S,

for a fixed u0 ∈ H1(Rn).

Remark 2.1 (Values of displacements outside a set).

(i) The functional F(A, u) does not “see” the values of u in Ω \A, i.e.,

F(A, u) = F(A, uχA∪S + vχΩ\A) for any v ∈ GSBD2(Ω).

Thus, we can redefine u in Ω \ A arbitrarily without changing the energy of the
configuration (A, u).

(ii) For any (A, u) ∈ C there exists an at most countable set Ξ(A,u) ⊂ Rn such that for

any ξ ∈ Rn \ Ξ(A,u) the function

uξ := uχA∪S + ξχΩ\A (2.6)

satisfies

Juξ =Hn−1 (Ω ∩ ∂∗A) ∪ (Σ ∩ Ju) ∪ (A(1) ∩ Ju) ∪ (Σ \ ∂∗A). (2.7)

Indeed, for ξ ∈ Rn let E
(A,u)
ξ := {x ∈ ∂∗A ∪ Σ : trA∪Su(x) = ξ} ⊂ Σ ∪ ∂∗A and let

Ξ(A,u) := {ξ ∈ Rn : Hn−1(E
(A,u)
ξ ) > 0}.

Since Hn−1(∂∗A ∪ Σ) < +∞ and E
(A,u)
ξ ∩ E(A,u)

η = ∅ for ξ 6= η, by slicing arguments

(see e.g. [37, Proposition A.2]) the set Ξ(A,u) is at most countable. By the definition

of jump, for any ξ ∈ Rn \ Ξ(A,u) the function uξ satisfies (2.7).
(iii) For any countable set U ⊂ C there exists an at most countable set ΞU ⊂ (0, 1)n such

that for any ξ ∈ (0, 1)n\ΞU and (A, u) ∈ U the function ũξ, defined as in (2.6), satisfies
(2.7). Indeed, it is enough to define

ΞU :=
⋃

(A,u)∈U
Ξ(A,u).

We introduce a topology in C as follows.

Definition 2.2. We say that a sequence {(Ak, uk)} converges to (A, u) ∈ C in the τC-topology

(or shortly τC-converges) and denote as (Ak, uk)
τC→ (A, u) if

• Ak → A in L1(Rn),
• uk → u a.e. in Ω ∪ S.
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2.2. Main results. Unless otherwise stated, throughout the paper the parameters Ω, S, ϕ,
β, C of SDRI energy and volume constant v are assumed to satisfy the following:

(H0) Ω and S are bounded Lipschitz open sets, S has finitely many connected components,
Σ := ∂Ω ∩ ∂S is a Lipschitz (n− 1)-manifold;

(H1) ϕ ∈ C0(Ω×Rn) and is a Finsler norm, i.e., there exist b2 ≥ b1 > 0 such that for every
x ∈ Ω, ϕ(x, ·) is a norm in Rn satisfying

b1|ξ| ≤ ϕ(x, ξ) ≤ b2|ξ|, x ∈ Ω, ξ ∈ Rn; (2.8)

(H2) β ∈ L∞(Σ) and satisfies

− ϕ(x, νΣ(x)) ≤ β(x) ≤ ϕ(x, νΣ(x)) Hn−1-a.e. x ∈ Σ; (2.9)

(H3) C ∈ L∞(Ω ∪ S) ∩ C0(Ω) and there exists b4 ≥ b3 > 0 such that

2b3 M : M ≤ C(x)M : M ≤ 2b4 M : M, x ∈ Ω ∪ S, M ∈Mn×n
sym ; (2.10)

(H4) v ∈ (0, |Ω|].
Remark 2.3 (A priori bounds). Hypotheses (H1)-(H3) are important to get a priori esti-
mates for energy-equibounded countable families. Indeed, let U ⊂ C be any at most countable
family of C such that

M := sup
(A,u)∈U

F(A, u) < +∞.

Then by (2.8) and (2.9)

S(A, u) ≤M and W(A, u) ≤M +

∫
Σ
|β|dHn−1 ≤M + b2Hn−1(Σ).

Moreover:

(i) for any (A, u) ∈ U

P (A) +Hn−1(A(1) ∩ Ju) ≤ M + b2Hn−1(Σ)

b1
+ P (Ω)

and ∫
A∪S
|Eu|2dx ≤ 2M + 2b2Hn−1(Σ)

b3
+ 3

∫
Ω
|Eu0|2dx;

(ii) if U 3 (Ak, uk)
τC→ (A, u) for some (A, u) ∈ C, then1

χAk∪SEuk ⇀ χA∪SEu in L2(Int(Ω ∪ S ∪ Σ)). (2.11)

Now we formulate main results of the paper. First we deal with the existence of admissible
configurations with minimal energy.

Theorem 2.4 (Existence of minimizing configurations). The minimum problem

inf
(A,u)∈C, |A|=v

F(A, u) (2.12)

has a solution. Moreover, there exists λ0 > 0 such that (A, u) ∈ C is a solution of (2.12) if
and only if it solves

inf
(A,u)∈C

Fλ(A, u) (2.13)

1Indeed, let ΞU ⊂ Rn be the countable set, given by Remark 2.1 (c), and let ξ ∈ (0, 1)n \ΞU . Since the values of
uk are not important in Ω\Ak, we may assume u = uξ, where uξ is given as (2.6). Then uk → uχA∪S + ξχΩ\A
a.e. and hence, (2.11) follows from [14, Theorem 1.1].
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for any λ ≥ λ0, where
Fλ(A, u) := F(A, u) + λ

∣∣|A| − v
∣∣.

To prove Theorem 2.4 we will apply direct methods of Calculus of Variations. To this aim
we establish the τC-lower semicontinuity of F and the τ -compactness of energy-equibounded
sequences in C.
Theorem 2.5 (Lower semicontinuity). Assume that the sequence {(Ak, uk)} ⊂ C τC-
converges to (A, u) ∈ C. Then

lim inf
k→+∞

F(Ak, uk) ≥ F(A, u). (2.14)

Theorem 2.6 (Compactness). Let {(Ak, uk)} ∈ C be such that

M := sup
k
F(Ak, uk) < +∞.

Then there exists a subsequence {(Akl , ukl)}, a sequence {(Bl, vl)} ⊂ C and (A, u) ∈ C such

that (Bl, vl)
τC→ (A, u), |Akl∆Bl| → 0 and

lim inf
l→+∞

F(Akl , ukl) ≥ lim inf
l→+∞

F(Bl, vl) ≥ F(A, u).

Notice that our compactness result is analogous to those in [27, 36]. According to the proof,
in general we have |Bl| ≤ |Akl |, i.e., the volume constraint may not be preserved. Rather,
Theorems 2.5 and 2.6 allow to solve the unconstrained minimum problem (2.13), and then,
as in [26, Theorem 1], using the equivalence of the minimum problems (2.12) and (2.13) (see
Proposition A.1), we establish the existence of a volume-constraint minimizer.

It is worth to remark that in both Theorems 2.5 and 2.6 (and hence, in the existence) the
assumption C ∈ C(Ω) can be relaxed to C ∈ L∞(Ω). The continuity of C is important in the
(partial) regularity of minimizers of F .

Theorem 2.7 (Properties of minimizing configurations)). Let (Ã, ũ) ∈ C be a solution
of (2.12) and let

A = Int(Ã(1)) and u = ũχA∪S + ξχΩ\A,

where ξ ∈ (0, 1)n is chosen such that Ω ∩ ∂∗A ⊂Hn−1 Ju (see Remark 2.1), and let

J∗u = {x ∈ Ju : θ(Ju, x) = 1}.
Then:

(i) (A, u) is a minimizer of F and

Hn−1(Ã(1) \A) < +∞, Hn−1(Ju \ J∗u) = 0, Hn−1(J∗u \ J∗u) = 0;

(ii) for any x ∈ Ω and r ∈ (0,min{1,dist(x, ∂Ω)})
Hn−1(Qr(x) ∩ Ju

rn−1)
≤ 4nb2 + λ0

b1
,

where λ0 is given by Theorem 2.4;
(iii) there exist ς0 = ς0(b1, b2, b3, b4) ∈ (0, 1) and R0 = R0(b1, b2, b3, b4) > 0 such that

Hn−1(Qr(x) ∩ Ju)

rn−1
≥ ς0

for all cubes Qr(x) ⊂ Ω centered at x ∈ Ω ∩ J∗u with sidelength r ∈ (0, R0);
(iv) if E ⊂ A is any connected component of A with Hn−1([∂∗E ∩ Σ] \ Ju) = 0, then

|E| ≥ ωn
(
b1n
λ0

)n
and u = u0 + a in E for some rigid displacement a.
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2.3. Generalization and extra results related to Literature models. In this section
we discuss some models related to the SDRI model for which the proofs of the main results
above can be adapted, by also recovering as a byproduct of our analysis some results already
available in the Literature.

First we consider more general elastic energy densities.

Theorem 2.8 (Elastic density with p-growth). For p > 1 let a measurable function
Wp : Int(Ω ∪ S ∪ Σ)×Mn×n

sym → R be such that

(a1) for any x ∈ Int(Ω ∪ S ∪ Σ), Wp(x, ·) is convex and there exist c > 0 and f ∈
L1(Int(Ω ∪ S ∪ Σ)) such that

Wp(x,M) ≥ c|M|p + f(x) for a.e. x ∈ Int(Ω ∪ S ∪ Σ) and for all M ∈Mn×n
sym ; (2.15)

(a2) for any u ∈ GSBDp(Int(Ω ∪ S ∪ Σ)) the map x 7→ Wp(x, Eu(x)) belongs to
L1(Int(Ω ∪ S ∪ Σ)).

Let
Cp := {(A, u) : A ∈ BV (Ω; {0, 1}), u ∈ GSBDp(Int(Ω ∪ S ∪ Σ))}

be a class of admissible configurations and let

Fp = S +Wp in Cp,
where

Wp(A, u) =

∫
A∪S

Wp(x, Eu−M0) dx.

Then for any v ∈ (0, |Ω|] the minimum problem

min
(A,u)∈Cp, |A|=v

Fp(A, u) (2.16)

admits a solution. Moreover, there exists λ0 > 0 such that for any λ > λ0 a configuration
(A, u) is a solution to (2.16) if and only if it is a minimizer of

Fλp (A, u) = F(A, u) + λ
∣∣|A| − v

∣∣.
A standard example of Wp is

Wp(x,M) = f(x)|M|p + g(x)

for some f ∈ L∞(Int(Ω ∪ S ∪ Σ)) with f ≥ c > 0 a.e. and g ∈ L1(Int(Ω ∪ S ∪ Σ)).

Now we study the existence of minimizers in models related to the SDRI setting, but with
Dirichlet boundary conditions.

Theorem 2.9 (Dirichlet case with a p-growth elastic density). For p > 1 let

CDir := {(A, u) : A ∈ BV (Ω; {0, 1}), u ∈ GSBDp(Int(Ω ∪ S ∪ Σ)), u = u0 in S},
where u0 ∈ H1(Rn) is fixed, and let

FDir := S +WDir in CDir,

where

WDir(A, u) :=

∫
A
Wp(x, Eu) dx

and the elastic energy density Wp satisfies all assumptions of Theorem 2.8. Then for any
v ∈ (0, |Ω|] the minimum problem

min
(A,u)∈CDir, |A|=v

FDir(A, u) (2.17)
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admits a solution. Moreover, there exists λ0 > 0 such that for any λ > λ0 a configuration
(A, u) is a solution to (2.17) and only if it is a minimizer of

FλDir(A, u) = FDir(A, u) + λ
∣∣|A| − v

∣∣.
Remark 2.10 (Relation to some Literature results). As a consequence of Theorem 2.9
we have:

(i) Let β(x) = −ϕ(x, νΣ(x)) for Hn−1-a.e. x ∈ Σ and let Wp : Mn×n
sym → R satisfy

c′|M|p − c′′ ≤Wp(M) ≤ c′′(|M|p + 1)

for some c′′, c′ > 0. Then Theorem 2.9 coincides with the existence result [17, Propo-
sition 5.8] in the setting of material voids.

(ii) Let β = 0 and Wp be as in (i). Then the minimizers of FDir in CDir with volume
constraint |v| = |Ω| (i.e., free-crystal regions have full Ln-measure) coincide with the
(strong) Griffith minimizers in [13] under Dirichlet boundary condition.

(iii) In the proof of Theorem 2.7 we work only in Ω, i.e., we study the regularity of ∂∗A
and Ju only in the points of Ω. Therefore, the assertion on the essential closedness
of Ju and ∂∗A holds also for minimizers of FDir with Wp(x,M) = C(x)M : M. In
particular, this covers a partial regularity part of results in [13].

We anticipate here that we equip both Cp and CDir with the same type of convergence
introduced in C, i.e.

(Ak, uk)
τ→ (A, u) ⇐⇒ Ak

L1(Rn)−→ A and uk → u a.e. in Ω ∪ S. (2.18)

3. Replacing cracks with voids

In this section we provide some technical results that allow to replace a portion of the jump
set of the displacement fields with an open set without modifying too much the corresponding
SDRI energy. These results will be used in both the lower-semicontinuity and the compactness
results. We start with the following main ingredient of all crack-opening results.

Lemma 3.1. Let δ ∈ (0, 1/4), Q := Qr,ν(x0) be a cube, Γ ⊂ Q is an (n − 1)-dimensional
Lipschitz graph and K ⊂ Q be an Hn−1-rectifiable set. Assume that

(a1) x0 ∈ Γ, ν is the unit normal to Γ at x0 and |(x− x0) · ν| ≤ r/2 for all x ∈ Γ;
(a2) Γ separates Q into two open connected components G1 and G2;
(a3) θ(K,x0) = θ(K ∩ Γ, x0) = 1, ν is the generalized unit normal to K at x0, and

(1− δ)rn−1 ≤ Hn−1(K ∩ Γ) ≤ Hn−1(Γ) ≤ (1 + δ)rn−1;

(a4) Hn−1(K \ Γ) < δrn−1.

Then there exist open sets C,D ⊂⊂ Q of finite perimeter such that

(i) C ⊂ G1, and Hn−1(∂C \ ∂∗C) = Hn−1(∂D \ ∂∗D) = 0;
(ii) Hn−1(K \ C) < 2δrn−1 and Hn−1(K \D) < 2δrn−1;
(iii) |C| < δrn and |D| < δrn;
(iv) (1− 2δ)rn−1 ≤ Hn−1(K ∩ ∂C ∩ Γ) ≤ Hn−1(∂C ∩ Γ) < (1 + δ)rn−1;
(v) for any norm φ in Rn satisfying (4.1) one has∫

∂D
φ(νD)dHn−1 ≤ 2

∫
K
φ(νK)dHn−1 + 5b2δr

n−1. (3.1)
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∂C
φ(νC)dHn−1 ≤ 2

∫
K
φ(νK)dHn−1 + 5b2δr

n−1 (3.2)

and ∫
G1∩∂C

φ(νC)dHn−1 ≤
∫
K
φ(νK)dHn−1 + 3b2δr

n−1, (3.3)

Proof. Without loss of generality we assume that ν = en, x0 = 0 and G1 lies above Γ. Since
Γ is a Lipschitz graph, f ∈ Lip(V ) such that Γ = graph(f), where V = [− r

2 ,
r
2 ]n−1 ⊂ Rn−1.

By (a1), ‖f‖∞ ≤ r/2, hence, Γ intersects only lateral sides of Q. Let

ε :=
δ

4(1 + Lip(f))
.

Let V ′′ ⊂⊂ V ′ ⊂⊂ V be any (n− 1)-dimensional cubes in Rn−1 such that

Hn−1(V \ V ′′) < εrn−1. (3.4)

For γ ∈ (0, εr) let g ∈ Lipc(V ; [0, γ]) be such that g ≡ γ in V ′′, supp (g) = V ′ and ‖g‖∞ ≤ 1.
Let C be the open set bounded between the graphs of f and f + g and let D be the open
set bounded between the graphs of f + g and f − g. Since both ∂C and ∂D consists of two
Lipschitz graphs, it is a set of finite perimeter.

We claim that C and D satisfy the assertion of the lemma.

(i) Since ‖f ± g‖∞ < 3r/4 (by (a1) and choice of γ) and g = 0 on V \ V ′, C ⊂ G1 and
C,D ⊂⊂ Qr. Moreover, since V ′ is an (n− 1)-dimensional hypercube, by the area formula

Hn−1(∂C \ ∂∗C) = Hn−1(∂D \ ∂∗D) ≤ (1 + Lip(f))Hn−1(V ′ \ V ′) = 0.

(i) By (a4)

Hn−1(K \ C) ≤Hn−1(Γ ∩K \ C) +Hn−1(K \ Γ) < Hn−1(Γ \ C) + δrn−1.

Moreover, by contruction

Γ \ C = Γ \ ∂C = Γ \D = f(V \ V ′),
and hence, by the area formula and (3.4)

Hn−1(Γ \ C) ≤
∫
V \V ′

√
1 + |∇f |2dx′ ≤ (1 + Lip(f))Hn−1(V \ V ′) < δ

4
rn−1. (3.5)

Thus, Hn−1(K \ C) < 5
4 δr

n−1. Similarly, Hn−1(Γ \D) = Hn−1(Γ \D) < 1
4δr

n−1.

(iii) By the Fubini’s theorem, the choice of γ and also the area formula

|C| =
∫
V ′

(f + g − f)dx ≤ γHn−1(V ′) < εr

∫
V

√
1 + |∇f |2dx′ = εrHn−1(Γ)

and

|D| =
∫
V ′

(f + g − (f − g))dx ≤ 2γHn−1(V ′) < 2εr

∫
V

√
1 + |∇f |2dx′ = 2εrHn−1(Γ)

Hence, by (a3) |C| < δ(1+δ)
4 rn and |C| < δ(1+δ)

2 rn.

(iv) By (a3)

Hn−1(∂C ∩ Γ) < Hn−1(Γ) ≤ (1 + δ)rn−1.

Moreover, by (3.5)

Hn−1(K∩Γ)−Hn−1(K∩∂C∩Γ) = Hn−1(K∩Γ\∂C) ≤ Hn−1(Γ\∂C) = Hn−1(Γ\C) <
δ

4
rn−1.
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Hence, by (a3)

Hn−1(K ∩ ∂C ∩ Γ) ≥ Hn−1(K ∩ Γ)− δ

4
rn−1 > (1− 5

4δ)r
n−1.

(v) By the definition of C, the area formula, the convexity of φ, the definition of g, (4.1)
and (3.4)∫

G1∩∂C
φ(νC)dHn−1 =

∫
G1∩graph(f+g)

φ(νC)dHn−1 =

∫
V ′
φ(−∇(f + g), 1)dHn−1

≤
∫
V ′
φ(−∇f, 1)dHn−1 +

∫
V ′
φ(−∇g, 0)dHn−1

≤
∫
V
φ(−∇f, 1)dHn−1 +

∫
V ′\V ′′

φ(−∇g, 0)dHn−1

≤
∫

Γ
φ(νΓ)dHn−1 + b2‖g‖∞Hn−1(V ′ \ V ′′)

≤
∫

Γ
φ(νΓ)dHn−1 +

b2δ

4
rn−1.

Moreover, by (a3)

Hn−1(Γ \K) = Hn−1(Γ)−Hn−1(Γ ∩K) ≤ 2δrn−1,

and hence, by (4.1)∫
Γ
φ(νΓ)dHn−1 ≤

∫
K∩Γ

φ(νK)dHn−1 + b2Hn−1(Γ \K) ≤
∫
K
φ(νK)dHn−1 +

9b2
4
δrn−1. (3.6)

Thus, (3.3) follows. Since ∂C ∩ ∂G1 = Γ, the proof of 3.2 follows from (3.6) and (3.3).
Similarly,∫

∂D
φ(νD)dHn−1 =

∫
V ′

[
φ(−∇(f + g), 1)dHn−1 + φ(−∇(f − g), 1)

]
dHn−1

≤2

∫
V ′
φ(−∇f, 1)dHn−1 + 2

∫
V ′
φ(−∇g, 0)dHn−1

≤2

∫
Γ
φ(νΓ)dHn−1 +

b2
2
δrn−1

≤2

∫
K
φ(νK)dHn−1 +

9b2
2
δrn−1.

�

The following result will be used in the proof of Proposition 4.1 with K = A
(1)
k ∩ Juk and

allows to replace uk with vk, whose jump set is a reduced boundary of an open set of finite
perimeter (see Corollary 3.3 below). Recall that this property is important to obtain the
surface tension 2ϕ in the “interior” jump energy in the functional S.
Lemma 3.2. Let U ⊂ Rn be an open set, K ⊂ U be a Hn−1-rectifiable set and δ > 0. There
exists an at most countable family {Ci}i≥1 of open sets of finite perimeter such that

(i) Ci ⊂⊂ U and Hn−1(∂Ci \ ∂∗Ci) = 0;
(ii) Hn−1(K \⋃iCi) < δ and |⋃iCi| < δ;
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(iii) for any norm φ in Rn satisfying (4.1)∑
i≥1

∫
∂Ci

φ(νCi) dHn−1 < 2

∫
K
φ(νK) dHn−1 + δ.

Proof. First we consider a special case.

Claim. Let K = graph(f) for some f ∈ Lip(V ), where V ⊂ Rn−1 is a bounded open set.
Let V ′′ ⊂⊂ V ′ ⊂⊂ V be smooth open sets such that(

1 +
1

b1

) ∫
V \V ′′

φ(−∇f, 1)dx′ +Hn−1(V \ V ′′) < δ

2 + 2b2
. (3.7)

For γ ∈
(
0, δ

4[1+Hn−1(V ′)]

)
let g ∈ Lip(V ; [0, γ]) be such that supp (g) = V ′, g ≡ γ in V ′′

and ‖∇g‖L∞(V ) ≤ 1. Then g = 0 on ∂V ′. Moreover, taking γ small enough we assume that

the graphs of f ± g
∣∣
V ′

are compactly contained in U. Let C be the bounded open set whose

boundary consists of the graphs of f − g : V ′ → R and f + g : V ′ → R. Then C ⊂⊂ U and by
the area formula, triangle inequality for φ, (4.1), (3.7) and the inequality ‖∇g‖∞ ≤ 1∫

∂C
φ(νC)dHn−1 =

∫
V ′

(
φ(−∇(f + g), 1) + φ(−∇(f − g), 1)

)
dx′

≤2

∫
V ′
φ(−∇f, 1)dx′ + 2

∫
V ′
φ(−∇g, 0)dx′

≤2

∫
V ′′
φ(−∇f, 1)dx′ + 2

∫
V ′\V ′′

φ(−∇f, 1)dx′ + 2

∫
V ′\V ′′

φ(∇g, 0)dx′

≤2

∫
V ′
φ(−∇f, 1)dx′ + δ = 2

∫
K
φ(νK)dHn−1 + δ.

Moreover, by (4.1) and (3.7)

Hn−1(K \ C) =

∫
V \V ′

√
1 + |∇f |2dx′ ≤ 1

b1

∫
V \V ′′

φ(−∇f, 1)dx′ < δ.

Finally since 0 ≤ |g| ≤ δ
4[1+Hn−1(V ′)] it follows that

|C| =
∫
W ′

[f + g − (f − g)]dx′ ≤ 2‖g‖∞Hn−1(W ′) < δ.

The equality Hn−1(∂C \ ∂∗C) = 0 follows from the smoothness of V ′.

Now we prove the lemma. By the countable Hn−1-rectifiability of K there exists an at
most countable family {Γi} of Lipschitz graphs such that Γi ⊂ U, Γi ∩ Γj = ∅ for i 6= j, and
Hn−1(K \⋃i Γi) = 0. Since Hn−1 Γi is Radon, by the regularity of Radon measures for each
i there exists a relatively open subset Γ′i of Γi such that Γ′i ∩K ⊂ Γi ∩K and

Hn−1(Γ′i \K) <
δ

2i+2(1 + b2)
, i ≥ 1. (3.8)

For shortness, we assume Γi = Γ′i. Then applying the claim above with δ := δ
2i+1(1+b2)

and

Γ = Γi we find an open set Ci ⊂⊂ U such that

|Ci| <
δ

2i+1(1 + b2)
, Hn−1(Γi \ Ci) <

δ

2i+1(1 + b2)
(3.9)
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and ∫
∂Ci

φ(νCi)dHn−1 ≤ 2

∫
Γi

φ(νΓi)dHn−1 +
δ

2i+1(1 + b2)
. (3.10)

Thus, by the pairwise disjointness of {Γi}

Hn−1
(
K \

⋃
j

Cj

)
≤Hn−1

(⋃
i

(
Γi \

⋃
j

Cj

))
=
∑
i

Hn−1
(

Γi \
⋃
j

Cj

)
≤
∑
i

Hn−1(Γi \ Ci) < δ

and by (3.8) and (3.10),∑
i

∫
∂Ci

φ(νCi)dHn−1 ≤2
∑
i

∫
Γi

φ(νΓi)dHn−1 +
δ

2

≤2
∑
i

∫
Γi∩K

φ(νK)dHn−1 + 2
∑
i

∫
Γi\K

φ(νΓi)dHn−1 +
δ

2

≤2

∫
∪iΓi∩K

φ(νK)dHn−1 +
∑
i

2b2δ

2i+2(1 + b2)
+
δ

2

=2

∫
K
φ(νK)dHn−1 + δ.

Finally, by the estimate for |Ci| in (3.9)∣∣∣⋃
i

Ci

∣∣∣ ≤∑
i

|Ci| < δ.

�

Corollary 3.3. Let U ⊂⊂ Ω be an open set, (A, u) ∈ C and δ > 0. Then there exists an open
set G ⊂⊂ U of finite perimeter such that

(i) the configuration (B, v) with B := A \G and v := uχB∪S belongs to C;
(ii) |G| < δ;

(iii) Hn−1(U ∩B(1) ∩ Jv) < δ;
(iv) for any norm φ in Rn satisfying (4.1)∫

U∩∂∗A
φ(νA)dHn−1 + 2

∫
U∩A(1)∩Ju

φ(νJu)dHn−1 ≥
∫
U∩∂∗B

φ(νB)dHn−1 − δ.

Proof. Let ε := δ
8 . Since Hn−1(U ∩ A(1) ∩ Ju) < +∞, there exists an open set U ′ ⊂⊂ U such

that

Hn−1((U \ U ′) ∩A(1) ∩ Ju) < ε. (3.11)

By Lemma 3.2 applied with U ′, K := U ′∩A(1)∩Ju and ε we find an at most countable family
{Ci}i≥1 of open sets of finite perimeter such that

(a1) Ci ⊂⊂ U ′ and Hn−1(∂Ci \ ∂∗Ci) = 0;
(a2) Hn−1([U ′ ∩K] \⋃iCi) < ε and |⋃iCi| < ε;
(a3) ∑

i≥1

∫
∂Ci

φ(νCi) dHn−1 < 2

∫
U ′∩K

φ(νK) dHn−1 + ε.
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Define

G :=
⋃
i≥1

Ci.

We claim that G satisfies the assertion of the lemma. Indeed, (i) is obvious and (ii) follows

from (a2). By construction, B(1) ∩ Jv =Hn−1 B(1) ∩ Ju and hence, by (3.11) and (a2) we have

Hn−1(U ∩B(1) ∩ Jv) ≤ Hn−1((U \ U ′) ∩A(1) ∩ Ju) +Hn−1(U ′ ∩A(1) ∩ Ju \G) < 2ε.

Finally, since ∂∗B \ ∂∗A ⊂ ∂∗G, by (a3)∫
U∩∂∗B

φ(νB)dHn−1 =

∫
U∩∂∗B∩∂∗A

φ(νB)dHn−1 +

∫
U∩∂∗B\∂∗A

φ(νB)dHn−1

≤
∫
U∩∂∗A

φ(νA)dHn−1 +
∑
i≥1

∫
∂Ci

φ(νCi) dHn−1

≤
∫
U∩∂∗A

φ(νA)dHn−1 + 2

∫
U ′∩K

φ(νJu) dHn−1 + ε.

�

The next lemma is a counterpart of Lemma 3.2 and relates to the “opening” of cracks along
Σ. Notice that in this case the opening should not get out from Ω. Thus, we are replacing
the jump of u only from one side (Corollary 3.5) and this is the reason for having ϕ (without
factor 2) in the jump energy along Σ in the functional S.
Lemma 3.4. Let U ⊂⊂ Int(Ω ∪ S ∪ Σ) be an open set, δ ∈ (0, 1) and K ⊂ U ∩ Σ be any
Hn−1-measurable set. Then there exist an open set C ⊂ U ∩ Ω of finite perimeter such that

(i) C ⊂⊂ U and Hn−1(∂C \ ∂∗C) = 0;
(ii) Hn−1(K \ ∂C) = Hn−1(K \ C) < δ and |C| < δ;
(iii) Hn−1(U ∩ Σ ∩ ∂C \K) < δ;
(iv) for any norm φ in Rn satisfying (4.1)∫

Ω∩∂C
φ(νC)dHn−1 ≤

∫
K
φ(νΣ)dHn−1 + δ,

and ∫
∂C
φ(νC)dHn−1 ≤ 2

∫
K
φ(νΣ)dHn−1 + δ.

Proof. Let

ε :=
δ

8(1 + b2)(1 +Hn−1(Σ))
.

We divide the proof into two steps.

Step 1. Let Qr(x0) ⊂ U be a cube centered at x ∈ Σ such that Σ ∩Qr(x0) = graph(f) for
some Lipschitz function f : V → R and a cube V ⊂ Rn−1, and assume that S ∩ Qr(x0) is a
subgraph of f. Let V ′′ ⊂⊂ V ′ ⊂⊂ V be open sets such that

Hn−1(V \ V ′′) < H
n−1(Qr(x0) ∩ Σ)

1 + Lip(f)
ε

and for γ ∈ (0, H
n−1(Qr(x0)∩Σ)
1+Hn−1(V )

ε) let g ∈ Lipc(V ; [0, γ]) be such that g ≡ 1 in V ′′, supp (g) = V ′

and Lip(g) < 1. We may assume that γ is so small that the set open set C, whose boundary
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lies on the graphs of f and f + g, is compactly contained in Qr(x0) and C ∩ S = ∅. Then∫
Ω∩∂C

φ(νC)dHn−1 =

∫
V ′
φ(−∇(f + g), 1)dHn−1 ≤

∫
V ′

(
φ(−∇f, 1) + φ(−∇g, 0)

)
dHn−1

≤
∫
V
φ(−∇f, 1)dHn−1 + b2Lip(f)Hn−1(V ′ \ V ′′)

<

∫
Qr(x0)∩Σ

φ(νΣ)dHn−1 + b2Hn−1(Qr(x0) ∩ Σ)ε.

Similarly, ∫
∂C
φ(νC)dHn−1 =

∫
V ′

[φ(−∇(f + g), 1) + φ(−∇f, 1)]dHn−1

≤
∫
V ′

(
2φ(−∇f, 1) + φ(−∇g, 0)

)
dHn−1

<2

∫
Qr(x0)∩Σ

φ(νΣ)dHn−1 + b2Hn−1(Qr(x0) ∩ Σ)ε.

Also by the Fubini’s theorem

|C| =
∫
V ′
gdx′ ≤ γHn−1(V ′) < Hn−1(Qr(x0) ∩ Σ) ε.

Finally,

Hn−1(Qr(x0) ∩ Σ \ ∂C) =Hn−1(Qr(x0) ∩ Σ \ C) =

∫
V \V ′

√
1 + |∇f |2dHn−1

≤(1 + Lip(f))Hn−1(V \ V ′) < Hn−1(Qr(x0) ∩ Σ) ε.

Step 2. Since Σ is Lipschitz and K is Hn−1-rectifiable, we can find a finite family
Qr1,ν1(x1), . . . , Qrm,νm(xm) ⊂ U of pairwise disjoint cubes centered at K such that

(a1) for each j, Σ ∩Qrj ,νj (xj) is a graph of a Lipschitz function in νj direction;
(a2) θ(K,xj) = θ(Σ, xj) = 1, and the unit normals νK(xj) and νΣ(xj) exist and coincide

with νj ;

(a3) (1− ε)rn−1
j < Hn−1(Qrj ,νj (xj) ∩ Σ ∩K) ≤ Hn−1(Qrj ,νj (xj) ∩ Σ) < (1 + ε)rn−1

j ;

(a4) Hn−1
(
K \⋃m

j=1Qrj ,νj (xj)
)
< ε.

Note that by (a3)

Hn−1(Qrj ,νj (xj) ∩ Σ \K) < 2εrn−1
j <

2ε

1− εH
n−1(Qrj ,νj (xj) ∩ Σ). (3.12)

By Step 1 for each j we can contruct an open set Cj ⊂⊂ Qrj ,νj (xj) with Cj ∩ S = ∅ and∫
Ω∩∂Cj

φ(νCj )dHn−1 <

∫
Qrj ,νj (xj)∩Σ

φ(νΣ)dHn−1 + b2Hn−1(Qrj ,νj (xj) ∩ Σ)ε (3.13)

and ∫
∂Cj

φ(νCj )dHn−1 < 2

∫
Qrj ,νj (xj)∩Σ

φ(νΣ)dHn−1 + b2Hn−1(Qrj ,νj (xj) ∩ Σ)ε.

Moreover,

|Cj | < Hn−1(Qrj ,νj (xj) ∩ Σ)ε (3.14)
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and

Hn−1(Qrj ,νj (xj) ∩ Σ \ ∂Cj) < Hn−1(Qrj ,νj (xj) ∩ Σ) ε. (3.15)

We claim that C =
⋃m
i=1Cj satisfies all assertions of the lemma.

(i) By construction C ⊂⊂ U and since each Cj is almost Lipschitz, Hn−1(∂Cj \ ∂∗Cj) = 0.

Hence, by the pairwise disjointness of Cj , Hn−1(∂C \ ∂∗C) = 0 and (i) follows.

(ii) By (a4) and (3.15)

Hn−1(K \ ∂C) ≤Hn−1
(
K \

m⋃
j=1

Qrj ,νj (xj)
)

+

m∑
j=1

Hn−1(Qrj ,νj (xj) ∩ Σ \ ∂Cj)

<ε+

m∑
j=1

Hn−1(Qrj ,νj (xj) ∩ Σ) ε ≤ (1 +Hn−1(Σ))ε < δ.

Moreover, by (3.14)

|C| ≤
n∑
j=1

|Cj | ≤ Hn−1(Σ)ε < δ.

(iii) By (3.12)

Hn−1(U ∩ Σ ∩ ∂C \K) =
m∑
j=1

Hn−1(Qrj ,νj (xj) ∩ Σ ∩ ∂Cj \K)

≤
m∑
j=1

Hn−1(Qrj ,νj (xj) ∩ Σ \K) <
2ε

1− εH
n−1(Σ) < δ.

(iv) Since ∂∗C ⊂ ∪j∂∗Cj , by (3.13) we get∫
Ω∩∂C

φ(νC)dHn−1 ≤
m∑
j=1

∫
Qrj ,νj (xj)∩Σ

φ(νΣ)dHn−1 + b2Hn−1(Σ)ε

Moreover, by (4.1)∫
Qrj ,νj (xj)∩Σ

φ(νΣ)dHn−1 ≤
∫
Qrj ,νj (xj)∩K

φ(νΣ)dHn−1 + b2Hn−1(Qrj ,νj (xj) ∩ Σ \K),

and thus, by (3.12)∫
Ω∩∂C

φ(νC)dHn−1 ≤
∫
K
φ(νΣ)dHn−1 +

(
b2

1−ε + b2)Hn−1(Σ)ε <

∫
K
φ(νΣ)dHn−1 + δ.

Finally, since Σ ∩ ∂C ⊂ K ∪ (Σ ∩ ∂C \K),∫
∂C
φ(νC)dHn−1 =

∫
Ω∩∂C

φ(νC)dHn−1 +

∫
Σ∩∂C

φ(νΣ)dHn−1

≤2

∫
K
φ(νΣ)dHn−1 + 3b2Hn−1(Σ)ε+ b2Hn−1(Σ ∩ ∂C \K)

<2

∫
K
φ(νΣ)dHn−1 + 7b2Hn−1(Σ)ε < 2

∫
K
φ(νΣ)dHn−1 + δ.

�
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Corollary 3.5. Let U ⊂⊂ Int(Ω ∪ S ∪ Σ) be an open set, (A, u) ∈ C and δ > 0. Then there
exists an open set G ⊂ Ω of finite perimeter such that

(i) G ⊂⊂ U and |G| < δ;;
(ii) the configuration (B, v) with B := A \G and v := uχB∪S belongs to C;
(iii)

Hn−1(Σ ∩ ∂∗G \ (∂∗A ∩ Ju)) +Hn−1(U ∩ Σ ∩ Ju ∩ ∂∗A \ ∂∗G) < δ

and

Hn−1(U ∩B(1) ∩ Jv) < δ +Hn−1(U ∩ Σ ∩ Jv ∩ ∂∗B) < δ;

(iv) for any norm φ in Rn satisfying (4.1)∫
U∩Ω∩∂∗A

φ(νA)dHn−1 + 2

∫
U∩A(1)∩Ju

φ(νΣ)dHn−1 +

∫
U∩Σ∩∂∗A∩Ju

φ(νΣ)dHn−1

≥
∫
U∩Ω∩∂∗B

φ(νB)dHn−1 − δ ≥
∫
U∩∂∗G

φ(νG)dHn−1 − δ (3.16)

and∫
U∩Ω∩∂∗A

φ(νA)dHn−1 + 2

∫
U∩A(1)∩Ju

φ(νΣ)dHn−1 + 2

∫
U∩Σ∩∂∗A∩Ju

φ(νΣ)dHn−1

≥
∫
U∩Ω∩∂∗B

φ(νB)dHn−1 +

∫
Σ∩∂∗G

φ(νΣ)dHn−1 − δ ≥
∫
∂∗G

φ(νG)dHn−1 (3.17)

Proof. The last inequalities in (3.16) and (3.17) follow from the definition of B.

Let ε := δ
16(1+b2) . Let U ′ ⊂⊂ Ω ∩ U be any open set such that

Hn−1(Ω ∩ U ∩ Ju \ U ′) < ε.

By Corollary 3.3 applied with U ′, (A, u) ∈ C and ε we find an open set D′ ⊂⊂ U ′ of finte
perimeter such that

(a1) the configuration (B′, v′) with B′ := A \D′ and v′ := uχS∪B′ belongs to C;
(a2) |D′| < ε;

(a3) Hn−1(U ′ ∩ [B′](1) ∩ Jv′) < ε;
(a4) ∫

U ′∩∂∗A
φ(νA)dHn−1 + 2

∫
U ′∩A(1)∩Ju

φ(νJu)dHn−1 ≥
∫
U ′∩∂∗B′

φ(νB′)dHn−1 − ε.

Now choose another open set U ′′ ⊂⊂ U such that U ′ ∩ U ′′ = ∅ and

Hn−1((U \ U ′′) ∩ Σ ∩ ∂∗A ∩ Ju) < ε.

By Lemma 3.4 applied with U ′′, ε and K := U ′′∩Σ∩∂∗A∩Ju we find an open set C ′ ⊂ U ′′∩Ω
of finite perimeter such that

(b1) C ′ ⊂⊂ U ′ and Hn−1(∂C ′ \ ∂∗C ′) = 0;
(b2) Hn−1(K \ ∂C ′) = Hn−1(K \ C ′) < ε and |C ′| < ε;
(b3) Hn−1(Σ ∩ ∂C ′ \K) < ε;
(b4) ∫

Ω∩∂C′
φ(νC′)dHn−1 ≤

∫
K
φ(νΣ)dHn−1 + ε,
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and ∫
∂C′

φ(νC′)dHn−1 ≤ 2

∫
K
φ(νΣ)dHn−1 + ε.

Define
G := C ′ ∪D′.

We claim that G satisfies the assertion of the lemma. Indeed, assertions (i)-(iii) follow from
(a1)-(a3) and (b1)-(b3), whereas (iv) follows from the inclusion ∂∗B \ ∂∗A ⊂ Ω ∩ ∂C ′ ∪ ∂D′
and conditions (a4) and (b4). �

4. τC-lower semicontinuity

In this section we prove Theorem 2.5 by following the arguments of [36, Proposition 4.1],
and in particular by using density estimates for some Radon measures associated to F . We
start with the following lower bound for the localized surface energy.

Proposition 4.1. Let δ ∈ (0, 1), Qr,ν(x0) ⊂⊂ Int(Ω∪Σ∪ S), r > 0, ν ∈ Sn−1, be a cube and
Γ ⊂ Qr,ν(x0) be an (n−1)-dimensional Lipschitz graph separating Qr,ν(x0) into two connected
components such that

(a1) x0 ∈ Γ, νΓ(x0) = ν and

|νΓ(x)− ν| < δ and |(x− x0) · ν| < δr
2 for all x ∈ Γ;

(a2) Hn−1(Qr,ν(x0) ∩ Γ) < (1 + δ)rn−1.

Assume that a sequence {(Ak, uk)} ⊂ C and a configuration (A, u) ∈ C satisfy

(a3) uk = ξ for some ξ ∈ (0, 1)n \ Ξ{(Ak,uk)} (see Remark 2.1) and

M := sup
k≥1
F(Ak, uk) < +∞;

(a4) Ak → A in L1(Rn);
(a5) Hn−1(Qr,ν(x0) ∩ ∂∗(A ∪ S)) < δrn−1 and |(A ∪ S) ∩Qr,ν(x0)| > (1− δ)rn;
(a6) either

uk → u a.e. in Qr,ν(x0)

and
K := Qr,ν(x0) ∩ Ju

or there exists a set of finite perimeter E ⊂ Qr,ν(x0) such that

uk → u a.e. in Qr,ν(x0) \ E and |uk| → +∞ a.e. in Qr,ν(x0) ∩ E,
and

K := Qr,ν(x0) ∩ ∂∗E
(see Figure 2).

(a7) the set K satisfies
(a7.1) νK(x0) = ν and θ(K,x0) = θ(Γ ∩K,x0) = 1;
(a7.2) Hn−1(K ∩ Γ) > (1− δ)rn−1;
(a7.3) Hn−1(K \ Γ) < δrn−1.

We also denote by φ a norm in Rn satisfying

b1 ≤ φ(ν) ≤ b2, ν ∈ Sn−1. (4.1)

Let C,D ⊂⊂ Qr,ν(x0) be given by Lemma 3.1 applied with δ, Γ and K. Then there exist
c′ = c′b2 > 0 and k′δ := k′δ(b2) > 0 such that for any k > k′δ :
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x0

ν

Γ

K = Qr,ν(x0) ∩ Ju

A

E
x0

ν

Γ

K = Qr,ν(x0) ∩ ∂∗E

A

S
x0

ν

Γ

S

x0

ν

Γ

A
E ⊂ A

K = Qr,ν(x0) ∩ ∂∗EK = Qr,ν(x0) ∩ Ju

Figure 2. Set K in Proposition 4.1.

(i) if Qr,ν(x0) ⊂⊂ Ω, then∫
D∩∂∗Ak

φ(νAk)dHn−1 + 2

∫
D∩A(1)

k ∩Juk
φ(νJuk )dHn−1

≥2

∫
K
φ(νK)dHn−1 − c′δrn−1

≥
∫
∂D

φ(νD)dHn−1 − (c′ + 5b2)δrn−1; (4.2)

(ii) if x0 ∈ Σ and Γ = Qr,ν(x0) ∩ Σ, then∫
C∩∂∗Ak

φ(νAk)dHn−1 + 2

∫
C∩A(1)

k ∩Juk
φ(νJuk )dHn−1 + 2

∫
Σ∩∂C∩∂∗Ak∩Juk

φ(νΓ)dHn−1

≥2

∫
K
φ(νK)dHn−1 − c′δrn−1

≥
∫
∂C
φ(νC)dHn−1 − (c′ + 5b2)δrn−1. (4.3)

The proof of this proposition is left after the proof of Theorem 2.5. In the proof of lower
semicontinuity we only use the following corollary of Proposition 4.1; the assertions including
sets C, D and E will used in the proof of compactness.

Corollary 4.2. Under assumptions of Proposition 4.1, together with

(a6) uk → u a.e. in Qr,ν(x0) and

K := Qr,ν(x0) ∩ Ju,
there exist c′ = c′b2 > 0 and k′δ := k′δ(b2) > 0 such that for any k > k′δ :

(i) if Qr,ν(x0) ⊂⊂ Ω, then∫
Qr,ν(x0)∩∂∗Ak

φ(νAk)dHn−1 + 2

∫
Qr,ν(x0)∩A(1)

k ∩Juk
φ(νJuk )dHn−1

≥ 2

∫
K
φ(νK)dHn−1 − c′δrn−1;

(ii) if x0 ∈ Σ and Γ = Qr,ν(x0) ∩ Σ, then∫
Qr,ν(x0)∩∂∗Ak

φ(νAk)dHn−1 + 2

∫
Qr,ν(x0)∩A(1)

k ∩Juk
φ(νJuk )dHn−1
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+ 2

∫
Qr,ν(x0)∩Σ∩∂∗Ak∩Juk

φ(νΓ)dHn−1 ≥ 2

∫
K
φ(νK)dHn−1 − c′δrn−1.

Proof of Theorem 2.5. In view of Remark 2.1 we may assume that uk = ξ for some ξ ∈
(0, 1)n \ Ξ{(Ak,uk)}. Moreover, there is no loss of generality in assuming liminf in (2.14) is a
finite limit. Thus,

M := sup
k≥1
F(Ak, uk) < +∞.

In particular, {(Ak, uk)} satisfies the assumptions (a3) and (a4) of Proposition 4.1.

Let

µk(B) :=

∫
B∩Ω∩∂∗Ak

ϕ(x, νAk) dHn−1 + 2

∫
B∩A(1)

k ∩Juk
ϕ(x, νJuk ) dHn−1

+

∫
B∩Σ∩∂∗Ak\Juk

[β + ϕ(x, νΣ)] dHn−1 + 2

∫
B∩Σ∩∂∗Ak∩Juk

ϕ(x, νΣ) dHn−1

+

∫
B∩Σ\∂∗Ak

ϕ(x, νΣ) dHn−1 +

∫
B∩(A∪S)

W (x, Euk −M0)dx

and

µ(B) :=

∫
B∩Ω∩∂∗A

ϕ(x, νA) dHn−1 + 2

∫
B∩A(1)∩Ju

ϕ(x, νJu) dHn−1

+

∫
B∩Σ∩∂∗A\Ju

[β + ϕ(x, νΣ)] dHn−1 + 2

∫
B∩Σ∩∂∗A∩Ju

ϕ(x, νΣ) dHn−1

+

∫
B∩Σ\∂∗A

ϕ(x, νΣ) dHn−1 +

∫
B∩(A∪S)

W (x, Eu−M0)dx

be positive Radon measures in Rn. Notice that

µk(Rn) = F(Ak, uk) +

∫
Σ
ϕ(x, νΣ) dHn−1 (4.4)

and

µ(Rn) = F(A, u) +

∫
Σ
ϕ(x, νΣ) dHn−1. (4.5)

In particular,

sup
k≥1

µk(Rn) ≤M +

∫
Σ
ϕ(x, νΣ) dHn−1,

and thus, there exist a positive Radon measure µ0 in Rn and a not relabelled subsequence
{µk} such that µk ⇀

∗ µ0. Let us show

µ0 ≥ µ. (4.6)

Note that (2.14) directly follows from (4.6), (4.4), (4.5). By the nonnegativity of µ and µ0,
and the explicit form of the support of µ, to establish (4.6) it suffices to prove the following
density estimates:

dµ0

dHn−1 [Ω ∩ ∂∗A]
(x) ≥ ϕ(x, νA(x)) Hn−1-a.e. x ∈ (Ω ∩ ∂∗A) ∪ (Σ \ ∂∗A), (4.7a)

dµ0

dHn−1 [A(1) ∩ Ju]
(x) ≥ 2ϕ(x, νJu(x)) Hn−1-a.e. x ∈ A(1) ∩ Ju, (4.7b)
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dµ0

dHn−1 [Σ ∩ ∂∗A ∩ Ju]
(x) ≥ 2ϕ(x, νΣ(x)) Hn−1-a.e. x ∈ Σ ∩ ∂∗A ∩ Ju, (4.7c)

dµ0

dHn−1 [Σ ∩ ∂∗A]
(x) ≥ β(x) + ϕ(x, νΣ(x)) Hn−1-a.e. x ∈ Σ ∩ ∂∗A, (4.7d)

dµ0

dHn−1 [Σ \ ∂∗A]
(x) ≥ ϕ(x, νΣ(x)) Hn−1-a.e. x ∈ Σ \ ∂∗A, (4.7e)

dµ0

dLn [A ∪ S]
(x) ≥W (x, Eu(x)−M0(x)) Ln-a.e. x ∈ A ∪ S. (4.7f)

Proofs of (4.7a), (4.7d) and (4.7e). By assumptions (H1)-(H3), the capillary functional

C(E;U) =

∫
U∩∂∗E

ϕ(x, νE)dHn−1 +

∫
U∩Σ∩∂∗E

[β+ϕ(x, νΣ)] dHn−1 +

∫
U∩Σ\∂∗E

ϕ(x, νΣ) dHn−1

is L1(U)-lowersemicontinuous in any open set U ⊂ Rn (see e.g., [1, Theorem 3.4]). As Ak → A
and µk ⇀

∗ µ0, for any ball Br(x0) with µ0(∂Br(x0)) = 0 we have

µ0(Br(x0)) = lim
k→+∞

µk(Br(x0)) ≥ lim inf
k→+∞

C(Ak, Br(x0)) ≥ C(A,Br(x0)).

This inequality and the Besicovitch differentiation theorem imply (4.7a), (4.7d) and (4.7e).

Proof of (4.7b). Fix ε ∈ (0, 2−10) and let K := A(1) ∩ Ju. By the Hn−1-rectifiability of K,
there exists an at most countable family {Γl} of (n− 1)-dimensional C1-graphs such that

Hn−1
(
K \

⋃
l≥1

Γl

)
= 0.

Let x0 ∈ L be such that

(a1) x0 ∈ Γl for some l ≥ 1 so that the generalized unit normal ν0 := νK(x0) to L at x0

exists and equals to νΓl(x0);
(a2) θ(K,x0) = θ(Γl ∩K,x0) = 1;

(a3) dµ0

dHn−1 K
(x0) exists;

(a4) lim
r→0

1
rn−1

∫
Qr,ν0 (x0)∩K ϕ(x0, νK)dHn−1 = ϕ(x0, ν0).

By the Hn−1-rectifiability of K, [3, Theorem 2.63] and Lebesgue-Besicovitch differentiation
theorem, the set of x0 ∈ K for which at least one of these conditions fails is Hn−1-negligible.
Since ϕ is uniformly continuous in Ω, there exists r1,ε > 0 such that

|ϕ(x, ν)− ϕ(y, ν)| < ε whenever |x− y| < r1,ε and ν ∈ Sn−1. (4.8)

Decreasing r1,ε if necessary, we assume that Qr1,ε,ν0(x0) ⊂⊂ Ω. Then for any r ∈ (0, r1,ε)

µk(Qr,ν0(x0)) ≥ αk(Qr,ν0(x0))

− ε
(
Hn−1(Qr,ν0(x0) ∩ ∂∗Ak) + 2Hn−1(Qr,ν0(x0) ∩A(1)

k ∩ Juk)
)
, (4.9)

where

αk(U) :=

∫
U∩∂∗Ak

φ(νAk)dHn−1 + 2

∫
U∩A(1)

k ∩Juk
φ(νJuk )dHn−1
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and φ(ν) := ϕ(x0, ν). By assumption (2.8) and the nonnegativity of the summands of µk we
have an a priori bound

Hn−1(Qr,ν0(x0) ∩ ∂∗Ak) + 2Hn−1(Qr,ν0(x0) ∩A(1)
k ∩ Juk) ≤ µ(Qr,ν0(x0))

b1
,

and thus, inserting this in (4.9) we get(
1 +

ε

b1

)
µk(Qr,ν0(x0)) ≥ αk(Qr,ν0(x0)). (4.10)

Now we estimate αk from below using Corollary 4.2 (a). Since Γl is a C1-graph, by (a1)
there exists r2,ε ∈ (0, r1,ε) such that

• Γl divides the cube Qr2,ε,ν0(x0) into two connected components;
• |νΓl(x)− ν0| < ε for any x ∈ Qr2,ε,ν0(x0) ∩ Γl;
• |(x− x0) · ν0| < εr/2 for any r ∈ (0, r2,ε) and x ∈ Qr,ν0(x0) ∩ Γl;
• Hn−1(Qr,ν0(x0) ∩ Γl) < (1 + ε)rn−1 for all r ∈ (0, r2,ε).

In particular, for any r ∈ (0, r2,ε) the cube Qr,ν0(x0) and the C1-graph Γ := Qr,ν0(x0) ∩ Γl
satisfy the assumptions (a1)-(a2) of Proposition 4.1. As we mentioned in the beginning of the

proof, {(Ak, uk)} satisfies (a3)-(a4) of Proposition 4.1. Moreover, by assumptions x0 ∈ A(1)

and (a2) there exists r3,ε ∈ (0, r2,ε) such that

• P (A,Qr,ν0(x0)) < εrn−1 and |A ∩Qr,ν0(x0)| > (1− ε)rn−1 for all r ∈ (0, r3,ε);
• Hn−1(Qr,ν0(x0) ∩K ∩ Γl) > (1− ε)rn−1 for any r ∈ (0, r3,ε);
• Hn−1(Qr,ν0(x0) ∩K \ Γl) < δrn−1 for any r ∈ (0, r3,ε).

Thus, assumptions (a5)-(a7) of Proposition 4.1 also hold. Therefore, by Corollary 4.2 (i) there
exists kε > 0 and c′ > 0 such that

αk(Qr,ν0(x0)) ≥ 2

∫
Qr,ν0 (x0)∩K

φ(νK)dHn−1 − c′εrn−1

for all k > kε. This and (4.10) yield(
1 +

ε

b1

)
µk(Qr,ν0(x0)) ≥ 2

∫
Qr,ν0 (x0)∩K

φ(νK)dHn−1 − c′εrn−1.

Now letting k → +∞ for a.e. r ∈ (0, r3,ε) we get(
1 +

ε

b1

)
µ0(Qr,ν0(x0)) ≥ 2

∫
Qr,ν0 (x0)∩K

φ(νK)dHn−1 − c′εrn−1.

Therefore, by (a3) and (a4)(
1 +

ε

b1

) dµ0

dHn−1 K
(x0) =

(
1 +

ε

b1

)
lim
r→0+

µ0(Qr,ν(x0))

rn−1
≥ 2ϕ(x0, ν0)− c′ε.

Now letting ε→ 0 we obtain (4.7b).

Proof of (4.7c). Let ε ∈ (0, 2−10) and let L := Σ ∩ ∂∗A ∩ Ju. Since Σ is Lipschitz, L is
Hn−1-rectifiable.

Let x0 ∈ L be such that

(b1) ν0 := νΣ(x0) exist and equals to νL(x0);
(b2) θ(L, x0) = θ(Σ, x0) = θ(∂∗A, x0) = 1;

(b3) dµ0

dHn−1 L
(x0) exists.
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(b4) lim
r→0

1
rn−1

∫
Qr,ν0 (x0)∩L ϕ(x0, νJu)dHn−1 = ϕ(x0, ν0).

By the lipschitzianity of Σ, Hn−1-rectifiablity of ∂∗A, [3, Theorem 2.63] and Besicovitch
differentiation theorem, the set of x0 ∈ L for which at least one of these conditions fails is
Hn−1-negligible.

Let r1,ε > 0 be such that (4.8) holds and Qr1,ε,ν0(x0) ⊂⊂ Int(Ω ∪ S ∪ Σ). Then as in (4.10)(
1 +

ε

b1

)
µk(Qr,ν0(x0)) ≥ γk(Qr,ν0(x0))

for any r ∈ (0, r1,ε), where

γk(U) :=

∫
U∩Ω∩∂∗Ak

φ(νAk)dHn−1+2

∫
U∩A(1)

k ∩Juk
φ(νJuk )dHn−1+2

∫
U∩Σ∩∂∗Ak∩Juk

φ(νΣ)dHn−1.

Since Σ is Lipschitz continuous, by (b1) and (b2) there exists r2,ε ∈ (0, r1,ε) such that

• Σ divides the cube Qr2,ε,ν0(x0) into two connected components;
• |νΣ(x)− νΣ(x0)| < ε for any x ∈ Qr2,ε,ν0(x0) ∩ Σ;
• |(x− x0) · ν0| < εr/2 for any r ∈ (0, r2,ε) and x ∈ Qr,ν0(x0) ∩ Σ;
• Hn−1(Qr,ν0(x0) ∩ Σ) < (1 + ε)rn−1 for all r ∈ (0, r2,ε).

Moreover, since x0 ∈ Σ ∩ ∂∗A and θ(L, x0) = θ(∂∗A, x0) = 1, there exists r3,ε ∈ (0, r2,ε) such
that

• Hn−1(Qr,ν0(x0) ∩ Σ ∩ ∂∗A) > (1− ε)rn−1 and Hn−1(Qr,ν0(x0) ∩ ∂∗A \ Σ) < δrn−1.

Thus, applying Corollary 4.2 (b) we find k′′ε > 0 and c′′ > 0 such that

γk(Qr,ν0(x0)) ≥ 2

∫
Qr,ν0 (x0)∩L

φ(νΣ)dHn−1 − c′′δrn−1

for all k > k′′ε . Therefore,(
1 +

ε

b1

)
µk(Qr,ν0(x0)) ≥ 2

∫
Qr,ν0 (x0)∩L

φ(νΣ)dHn−1 − c′′δrn−1

and hence, by (b3) and (b4)

dµ0

dHn−1 L
(x0) ≥ 2ϕ(x0, ν0).

Proof of (4.7f). By the nonnegativity of µk and our assumption uk = ξ on Ω \Ak

µk(Br(x)) ≥
∫
Br(x)∩(Ak∪S)

W (y, Euk −M0)dy

=

∫
Br(x)∩(Ω∪S)

W (y, Euk −M0)dy −
∫
Br(x)∩(Ω\Ak)

W (y,−M0)dy. (4.11)

Since µk ⇀
∗ µ0, Euk ⇀ Eu in L2(Ω∪S) (see (2.11)) and Ak → A in L1(Rn), letting k → +∞

in (4.11) for any ball Br(x) with µ0(∂Br(x)) = 0, we get

µ0(Br(x)) = lim
k→+∞

µk(Br(x))

≥
∫
Br(x)∩(Ω∪S)

W (y, Eu−M0)dy −
∫
Br(x)∩(Ω\A)

W (y,−M0)dy

=

∫
Br(x)∩(A∪S)

W (y, Eu−M0)dy,
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where in the equality we used u = ξ in Ω \ A. Now (4.7f) follows from the Besicovitch
differentiation theorem. �

Remark 4.3. According to the proof of Theorem 2.5 both S and W are τC-lower semicon-
tinuous in C.

Now we prove bounds (4.2)-(4.3).

Proof of Proposition 4.1. We only prove (i). The last inequality in (4.2) directly follows
from (3.1)-(3.3). Therefore, we establish only the first estimate. Without loss of generality,
we assume x0 = 0, r = 1 and ν = en. By (a1) Γ ⊂ (−1

2 ,
1
2)n−1 × (− δ

2 ,
δ
2), by (a3) and a priori

estimates in Remark 2.3

M1 := sup
k≥1

(∫
Ω∪S
|Euk|2dx+Hn−1(Juk)

)
< +∞. (4.12)

We prove (4.2) for K = Q1 ∩ ∂∗E (i.e., in the case |uk| → +∞ a.e. in Q1 ∩E); the other case
being similar. For any open set G ⊂ Q1 define

αk(G) :=

∫
G∩∂∗Ak

φ(νAk)dHn−1 + 2

∫
G∩A(1)

k ∩Juk
φ(νJuk )dHn−1.

Step 1. Let
Υ := {ξ ∈ Sn−1 : |ξ · en| ≥ 2δ}.

Then by (a1) for any ξ ∈ Υ and x ∈ Q1 ∩ Γ

|ξ · νΓ(x)| ≥ |ξ · en| − |ξ · (νΓ(x)− en)| > δ,

and hence, Q1 ∩Γ is a graph also in ξ-direction, i.e., for any y ∈ Πξ the line π−1
ξ (y) intersects

Q1 ∩ Γ at most at one point.

Step 2. Let D be given by Lemma 3.1 and let U ⊂⊂ D be any open set such that

U ∩ Γ ∩ K 6= ∅. Let also (BU
k , v

U
k ) be given by Corollary 3.3 applied with U, δ = |U |

k and
(Ak, uk). Then for all k :

(a1) BU
k ⊂ Ak, Ak \BU

k ⊂⊂ U and |Ak \BU
k | < 1/k;

(a2) vUk = uk in BU
k ∪ S;

(a3) Hn−1(U ∩ [BU
k ](1) ∩ JvUk ) < 1/k;

(a4) αk(U) + |U |/k ≥ Λk(U), where

Λk(U) :=

∫
U∩∂∗BUk

φ(νBUk
)dHn−1.

By (a1) BU
k → A in L1(Rn), and by (a1), (a2) and also (a6)

vUk → u a.e. in U \ E and |vUk | → +∞ a.e. in U ∩ E. (4.13)

Moreover, by (4.12) and (a2)

sup
k≥1

(∫
U
|EvUk |2dx+Hn−1(U ∩ JvUk )

)
< +∞.

We claim that

lim inf
k→+∞

Λk(U) ≥ 2

φo(ξ)

∫
U∩Γ
|νΓ · ξ|dHn−1 − 2b2P (A,U)− 2b2Hn−1(U ∩ [Γ \ ∂∗E]). (4.14)

for Hn−1-a.e. ξ ∈ Υ.
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To prove (4.14) we study some properties of one-dimensional slices [v̂Uk ]ξy of vUk . We closely

follow the arguments of [14, pp. 11-13]; see also [15]. Let kj := kUj be such that

lim inf
k→+∞

∫
U∩J

vU
k

φ(νJ
vU
k

)dHn−1 = lim
j→+∞

∫
U∩J

vU
kj

φ(νJ
vU
kj

)dHn−1.

Applying (2.3) and (2.4) with v = vUkj , (2.5) with L = JvUkj
, and using (4.12) we find

lim inf
j→+∞

∫
Πξ

[
H0(J

[v̂Ukj
]ξy

) + κIUy,ξ(v
U
kj

) + κIIUy,ξ(v
U
kj

)
]
dHn−1(y) < +∞ (4.15)

for any κ > 0 and Hn−1-a.e. ξ ∈ Υ. Moreover, by [14, Lemma 2.7] and (4.13)

|vUk · ξ| → +∞ a.e. in U ∩ E (4.16)

for Hn−1-a.e. ξ ∈ Υ. Fix any ξ ∈ Υ satisfying (4.15) and (4.16) and consider the one-

dimensional slices [v̂Ukj ]
ξ
y and ûξy. In view of (4.15) and Fatou’s lemma, for Hn−1-a.e. y ∈ πξ(U)

lim inf
k→+∞

[
H0(J

[v̂Ukj
]ξy

) + κIUy,ξ(v
U
kj

) + κIIUy,ξ(v
U
kj

)
]
< +∞.

Thus, for Hn−1-a.e. y ∈ πξ(U) there exists a subsequence {kyj } ⊂ {kj} (depending also on

κ > 0) such that

lim inf
j→+∞

[
H0(J

[v̂Ukj
]ξy

) + κIUy,ξ(v
U
kj

) + κIIUy,ξ(v
U
kj

)
]

= lim
j→+∞

[
H0(J

[v̂U
k
y
j

]ξy
) + κIUy,ξ(v

U
kyj

) + κIIUy,ξ(v
U
kyj

)
]
, (4.17)

and by (4.13) and (4.16)

[v̂Ukyj
]ξy → ûξy L1-a.e. in [U \ E]ξy and

∣∣∣[v̂Ukyj ]ξy

∣∣∣→ +∞ L1-a.e. in [U ∩ E]ξy. (4.18)

For τ(t) = arctan(t), set fj := τ ◦ [v̂U
kyj

]ξy. Then fj ∈ SBV 2
loc(U

ξ
y ) and J

[v̂U
k
y
j

]ξy
= Jfj . By (4.17),

(4.18) and [2, Proposition 4.2] we find a not relabelled subsequence {vU
kyj
} such that

fj → f0 L1-a.e. in U ξy as j → +∞.
By (4.18) {

f0 = τ ◦ ûUy in [U \ E]ξy,

|f0| = π/2 in [U ∩ E]ξy.

By [2, Proposition 4.2]

lim inf
j→+∞

H0
(
J

[v̂U
k
y
j

]ξy

)
= lim inf

j→+∞
H0(Jfj ) ≥ H0(Jf0). (4.19)

Thus, H0(U ξy ∩ Jf0) < +∞ and hence, [U ∩ E]ξy consists of finitely many segments in each of
which either f0 ≡ π/2 or f0 ≡ −π/2.

By (4.17) H0(Jfj ) is uniformly bounded and hence, there exists a further not relabelled
subsequence and Ny ∈ N0 such that

H0(Jfj ) = Ny and Jfj = {t1j , . . . , t
Ny
j } ⊂ U ξy for all j.
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Then points of Jfj converges to My ≤ Ny points t1 < . . . < tMy . Since IIUy,ξ(v
U
kyj

) is uniformly

bounded, the precise representatives of fj uniformly bounded in W 1,1
loc (tl, tl+1) so that fj → f0

locally uniformly in (tl, tl+1) and Jf0 ⊂ {t1, . . . , tMy}. Repeating the arguments of [14, Section

1] we can show that t1 := U ξy ∩ [∂∗E]ξy ∈ Jf0 .

Let us estimate the Hn−1-measures of the sets

Y0 :={y ∈ Πξ ∩ πξ(U ∩K) : Ny = 0},
Y1 :={y ∈ Πξ ∩ πξ(U ∩K) : Ny = 1},
Y2 :={y ∈ Πξ ∩ πξ(U ∩K) : Ny ≥ 2}.

By (4.19) H0(Jf0) = 0 for any y ∈ Y0. Hence, U ∩ π−1
ξ (y) ∩ (∂∗E ∪ Ju) = ∅, and therefore

Y0 ⊂ πξ(U ∩ Γ \ ∂∗E). Then by the 1-Lipschitz continuity of the projection πξ

Hn−1(Y0) ≤ Hn−1(πξ(U ∩ [Γ \ ∂∗E])) ≤ Hn−1(U ∩ [Γ \ ∂∗E]). (4.20)

Now consider any y ∈ Y1. By definition π−1
ξ (y) intersects U ∩ JvU

k
y
j

just once and therefore,

by the construction of (BU
k , v

U
k ) (see the proof of Corollary 3.3) either y ∈ πξ

(
U ∩ [BU

kyj
](1) ∩

Ju
k
y
j

∩ JvU
k
y
j

)
or y ∈ πξ(U \ BU

kyj
). If y ∈ πξ(U \ BU

kyj
), then t1j divides the line U ∩ π−1

ξ (y) into

two parts one is a subset of U ∩ BU
kyj

and the other is that of U \ BU
kyj
. Since BU

kyj
→ A and

t1 = U ξy ∩ [∂∗E]ξy ∈ Jf0 , it follows that t1 ∈ ∂∗A and divides U ∩ π−1
ξ (y) into two parts one

belonging to U ∩A other to U \A. In particular, y ∈ πξ(U ∩ ∂∗A). Hence,

y ∈
[
U ∩ [BU

kyj
](1) ∩ Ju

k
y
j

∩ JvU
k
y
j

)
]ξ
y
∪
[
U ∩ ∂∗A

]ξ
y

for all j. Thus,

Hn−1(Y1) =

∫
Y1

H0

⋂
j

([
U ∩ [BU

kyj
](1) ∩ Ju

k
y
j

∩ JvU
k
y
j

)
]ξ
y
∪
[
U \BU

kyj

]ξ
y

) dHn−1(y)

≤
∫
Y1

lim
j→+∞

H0
([
U ∩ [BU

kyj
](1) ∩ Ju

k
y
j

∩ JvU
k
y
j

)
]ξ
y

)
dHn−1(y)

+

∫
Y1

H0
([
U ∩ ∂∗A

]ξ
y

)
dHn−1(y).

By the choice of {kyj }, the Fatou’s lemma, the second equality in (2.5) and (a3)∫
Y1

lim
j→+∞

H0
([
U ∩ [BU

kyj
](1) ∩ Ju

k
y
j

∩ JvU
k
y
j

)
]ξ
y

)
dHn−1(y)

≤ lim inf
k→+∞

Hn−1
(
U ∩ [BU

k ](1) ∩ Juk ∩ JvUk )
)

= 0.

Similarly, ∫
Y1

H0
([
U ∩ ∂∗A

]ξ
y

)
dHn−1(y) ≤P (A,U).

Thus,

Hn−1(Y1) ≤ P (A,U). (4.21)
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Now using Πξ ∩ πξ(U) = Y0 ∪ Y1 ∪ Y2, from (4.20) and (4.21) we obtain

Hn−1([Πξ ∩ πξ(U)] \ Y2) ≤ P (A,U) +Hn−1(U ∩ [Γ \ ∂∗E]).

Moreover, let

X := {y ∈ Πξ ∩ πξ(U) : π−1
ξ (y) ∩ Γ ∩ ∂∗E is a singleton}.

Then as above

Hn−1(Y2 \X) ≤Hn−1([Πξ ∩ πξ(U)] \X) ≤ Hn−1([U ∩ (Γ ∪ ∂∗A)] \ ∂∗E)

≤Hn−1(U ∩ [Γ \ ∂∗E]) + P (A,U),

and therefore,

Hn−1([Πξ ∩ πξ(U)] \ [Y2 ∩X]) ≤ 2P (A,U) + 2Hn−1(U ∩ [Γ \ ∂∗E]). (4.22)

By the definition of X and Y2 for any y ∈ Y2 ∩X we have H0(Jf0) = 1 and Ny ≥ 2, therefore,
we can improve (4.19) as

lim
j→+∞

H0
(
J

[v̂U
k
y
j

]ξy

)
≥ 2 = 2H0([U ∩ Γ]ξy).

For such y from (4.17) we get

lim inf
j→+∞

[
H0(J

[v̂Ukj
]ξy

) + κIUy,ξ(v
U
kj

) + κIIUy,ξ(v
U
kj

)
]
≥ 2H0([U ∩ Γ]ξy)

Now integrating over X ∩ Y2 and using (4.15) and the Fatou’s lemma we get

lim inf
k→+∞

∫
Πξ

[
H0(J

[v̂Uk ]ξy
) + κIUy,ξ(v

U
k ) + κIIUy,ξ(v

U
k )
]
dHn−1(y) ≥ 2

∫
X∩Y2

H0([U ∩ Γ]ξy)dHn−1(y).

By the definition of Υ, H0([U ∩ Γ]ξy) = 1 for all y ∈ Πξ ∩ πξ(U) and therefore by (4.22)∫
X∩Y2

H0([U ∩ Γ]ξy)dHn−1(y) ≥
∫

Πξ∩πξ(U)
H0([U ∩ Γ]ξy)dHn−1(y)

− P (A,U)−Hn−1(U ∩ [Γ \ ∂∗E]).

Hence,

lim inf
k→+∞

∫
Πξ

[
H0(J

[v̂Uk ]ξy
) + κIUy,ξ(v

U
k ) + κIIUy,ξ(v

U
k )
]
dHn−1(y)

≥ 2

∫
Πξ∩πξ(U)

H0([U ∩ Γ]ξy)dHn−1(y)− 2P (A,U)− 2Hn−1(U ∩ [Γ \ ∂∗E]).

This, (2.5), (2.3), (2.4) as well as (4.12) yield

lim inf
k→+∞

∫
U∩J

vU
k

|νJ
vU
k

· ξ|dHn−1 + (M1 + |U |)κ ≥ 2

∫
U∩Γ
|νΓ · ξ|dHn−1

− 2P (A,U)− 2Hn−1(U ∩ [Γ \ ∂∗E]) (4.23)

Let φo be the dual norm to φ, i.e.,

φo(ξ) = sup
φ(ν)=1

|ξ · ν|.



34 SH. KHOLMATOV AND P. PIOVANO

Then |ξ · ν| ≤ φo(ξ)φ(ν) and hence, by (4.23) and the arbitrariness of κ we get

φo(ξ) lim inf
k→+∞

∫
U∩J

vU
k

φ(νJ
vU
k

)dHn−1 ≥ 2

∫
U∩Γ
|νΓ · ξ|dHn−1

− 2P (A,U)− 2Hn−1(U ∩ [Γ \ ∂∗E]). (4.24)

Now using φo(ξ) ≥ 1/b2 from (4.24) we get (4.14).

Step 3. Now we prove (4.2).

Substep 3.1. Let

Sn−1
φo := {ξ ∈ Rn : φo(ξ) = 1}.

Since Sn−1
φo is compact,

φ(η) = max
i≥1

η · ξi

for any countable set {ξj}j ⊂ Sn−1
φo dense in Sn−1

φo .

Fix any such dense set {ξj}j ⊂ Sn−1
φo that if ξ = ξj/|ξj | ∈ Υ, then (4.15) and (4.16) hold

with ξ. By [23, Lemma 6] there exists a finite family U1, . . . , Um of disjoint open set compactly
contained in D such that

2

∫
D∩Γ

φ(νΓ)dHn−1 ≤
m∑
j=1

2

∫
Uj∩Γ

|νΓ · ξj |dHn−1 + δ. (4.25)

Recalling the definition of (BU
k , u

U
k ) from Step 2, let us define

Bk =
m⋂
j=1

B
Uj
k and vk := ukχBk∪S .

Then by (a2) Bk ⊂ Ak, Ak \Bk ⊂⊂ D and

|Ak \Bk| ≤
m∑
j=1

|Uj ∩ (Ak \BUj
k )| ≤

m∑
j=1

|Uj |
k
≤ |D|

k
.

Let Λk(D) be defined as in (a4) of Step 2 with (Bk, vk) in place of (BU
k , v

U
k ). Then by the

definition of (Bk, vk), αk(D) and (a4)

αk(D)− Λk(D) =
m∑
j=1

(
αk(Uj)− Λk(Uj)

)
≥ −

m∑
j=1

|Uj |
k
≥ −|D|

k
.

Thus,

αk(D) ≥ Λk(D)− |D|
k
. (4.26)

Substep 3.2. Now we estimate Λk(D) from below. Note that if ξj/|ξj | ∈ Υ, then since
φo(ξj) = 1, by (4.14)

2

∫
Uj∩Γ

|νΓ · ξj |dHn−1 ≤ lim inf
k→+∞

Λk(Uj) + 2b2P (A,Uj) + 2b2Hn−1(Uj ∩ [Γ \ ∂∗E]). (4.27)

Now assume that ξ := ξj/|ξj | /∈ Υ. Then by the definition of Υ and (a3)

|νΓ(x) · ξ| ≤ |(νΓ(x)− en) · ξ|+ |en · ξ| < 3δ
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for any x ∈ Uj ∩ Γ. Thus,

2

∫
Uj∩Γ

|νΓ · ξj |dHn−1 ≤ 6δHn−1(Uj ∩ Γ). (4.28)

Now by (4.25), (4.27) and (4.28)

2

∫
D∩Γ

φ(νΓ)dHn−1 ≤ δ +

m∑
j=1, j∈Υ

lim inf
k→+∞

Λk(Uj) + 6δ

m∑
j=1, j /∈Υ

Hn−1(Uj ∩ Γ)

+ 2b2

n∑
j=1

[
P (A,Uj) + 2Hn−1(Uj ∩ [Γ \ ∂∗E])

]
.

Since set function Q 7→ Λk(Q) is additive and non-increasing and the family {Uj} is pairwise
disjoint,

m∑
j=1, j∈Υ

lim inf
k→+∞

Λk(Uj) ≤ lim inf
k→+∞

Λk(∪jUj) ≤ lim inf
k→+∞

Λk(D).

Moreover, by (a2)
m∑

j=1, j /∈Υ

Hn−1(Uj ∩ Γ) ≤ Hn−1(Q1 ∩ Γ) < 1 + δ,

and by (a2), (a5), (a7.2) and (a7.3)

n∑
j=1

[
P (A,Uj) +Hn−1(Q1 ∩ [Γ \ ∂∗E])

]
≤ P (A,Q1) +Hn−1(Q1 ∩ Γ)−Hn−1(Q1 ∩ Γ ∩ ∂∗E) ≤ 6δ.

Then

2

∫
D∩Γ

φ(νΓ)dHn−1 ≤δ + lim inf
k→+∞

Λk(D) + 6δ(1 + δ) + 6b2δ,

and hence,

lim inf
k→+∞

Λk(D) ≥ 2

∫
D∩Γ

φ(νΓ)dHn−1 − c0δ, (4.29)

where

c0 := 13 + 6b2

depends only on b2.

Substep 3.3. From (4.26) and (4.29) there exist k0 := k0(δ, b2) > 0 such that

Λk(D) ≥ 2

∫
D∩Γ

φ(νΓ)dHn−1 − 2c0δ (4.30)

for all k > k0. Since |D| < |Q| = 1, one has |D|/k < c0δ provided k > 1
c0δ
. Let

k′δ := max
{
k0,

1

c0δ

}
.

Observe that ∫
D∩Γ

φ(νΓ)dHn−1 ≥
∫
D∩Γ∩∂∗E

φ(νΓ)dHn−1.
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Moreover, by (a7.3) ∫
D∩∂∗E\Γ

φ(νE)dHn−1 ≤ b2δ

and by Lemma 3.1 (ii)

Hn−1(Q1 ∩ ∂∗E \D) < 2δ,

and therefore,∫
D∩Γ

φ(νΓ)dHn−1 ≥
∫
Q1∩∂∗E

φ(νE)dHn−1 − 3b2δ for all k > k′δ.

Combining these estimates with (4.26) and (4.30) we deduce

αk(D) ≥ 2

∫
K
φ(νK)dHn−1 − (2c0 + 6b2)δ.

Hence, c′ := c′b2 = (2c0 + 6b2) satisfies the assertion. �

4.1. Lower semicontinuity of Fp and FDir. We conclude this section by showing that the
functionals Fp and FDir in Theorems 2.8 and 2.9, respectively, are lower semicontinuous with
respect to the τ -convergence defined in (2.18). Indeed, the proof of the τ -lower semicontinuity
of S in Cp and CDir is exactly the same as the τC-lower semicontinuity of S in C (see the proof of
Theorem 2.5). To prove the τ -lower semicontinuity of Wp and WDir we notice that according
to the proof of the density estimate (4.7f), we only need the convexity of Wp(x, ·) and the
weak convergence of Euk to Eu in Lp(Int(Ω ∪ S ∪ Σ)); the first condition is already stated in
the assumption (a1) of Wp and the second condition follows from the lower bound in (a2) and
the compactness result [14, Theorem 1.1].

5. Compactness in C

In this section we prove Theorem 2.6. Note that if {(Ak, uk)} is an energy-equibounded
sequence, then by a priori estimates (see Remark 2.3) we can find a set of finite perimeter
A ⊂ Ω such that, up to a subsequence, Ak → A in L1(Rn). Moreover, since each connected
component Si of S is Lipschitz, the convergence of uk in Si can be obtained by adding rigid
displacements in Si. However, since the rigid displacements for Si may differ from those for
Sj , j 6= i, we need to create extra jumps for the resulting displacement field. Hence, as in [36]
we need to partition Ak to compensate those jumps. The following proposition provides such
a partition up to some error.

Proposition 5.1. Let (Ak, uk), (A, u) ∈ C be admissible configurations, Si for i ∈
{1, . . . ,m} be a nonempty union of some connected components of S such that Si ∩ Sj =
∅ and S =

⋃m
i=1 S

i, {a1
k}, . . . , {amk } be sequences of rigid displacements, u1, . . . , um ∈

GSBD2(Int(Ω ∪ S ∪ Σ)) and F 1, . . . , Fm ⊂ A be pairwise disjoint sets of finite perimeter.
Assume that

• supk F(Ak, uk) < +∞ and Ak → A in L1(Rn);
• for any i ∈ {1, . . . ,m} one has uk − aik → ui a.e. in Si ∪F i and |uk − aik| → +∞ a.e.

(S \ Si) ∪ (A \ F i).
Then for any δ ∈ (0, 1

8 mini 6=j{1,dist(Si, Sj)}) there exist a (not relabelled) subsequence

{(Ak, uk)}, kδ > 0, sδ ∈ (0, δ) and a sequence {Gδk} ⊂ BV (Ω; {0, 1}) such that

Hn−1([Ak \A](1) ∩ {dist(·, S) = sδ}) < c∗δ, (5.1a)
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Hn−1({dist(·, S) < sδ} ∩ ∂∗A) < c∗δ, (5.1b)

|Gδk| < c∗
√
δ
∑

0≤i≤m
P (F i), (5.1c)

P (Gδk) ≤ c∗
∑

0≤i≤m
P (F i), (5.1d)

and the sequence {(Bδ
k, v

δ
k)}, defined as

Bδ
k := Ak \Gδk (5.2)

and

vδk :=


uk − aik in Si ∪ [F i \Gδk] ∪ [Riδ ∩ (Bδ

k \A)] for i = 1, . . . ,m,

u0 in Bδ
k ∩ F 0,

ξ in (Ω \Bδ
k) ∪ (Bδ

k \ [A ∪⋃m
i=1R

i
δ]),

(5.3)

where ξ ∈ (0, 1)n,

Riδ := {x ∈ Ω : dist(x, Si) < sδ}, F 0 := A \
m⋃
i=1

F i,

satisfies

S(Ak, uk) ≥ S(Bδ
k, v

δ
k)− c∗

√
δ
[
1 + P (Ak) +Hn−1(Juk) +

m∑
i=0

Hn−1(∂∗F i)
]

(5.4)

for all k > kδ. Here constant c∗ > 0 depends only on n, b1 and b2.

S1

S2 S2

S3

S4

F 1

F 2

F 3

F 4

F 0

sδ Ak

GδkS1

S2 S2

S3

S4

F 1

F 2

F 3

F 4

F 0

v
δ k
=
u
k
−
a
1 k

Figure 3. The partition of A =
⋃
i≥0 F

i and the construction of Bδk := Ak \ Gδk
in Proposition 5.1. The set Gδ,k is a finite union of holes along the boundaries F i ∪⋃
j 6=i S

j in which uk − aik converges. Note that the sets {F i \ Gδk}mi=0 partition Bδk.

Since F 0 is a “hanging” component of A, i.e., not linked to the substrate, and hence,
it is reasonable to assume that the elastic energy in F 0 is 0. Then we define the
displacement fields vδk as follows: in Si∪(F i\Gδk) for i = 1, . . . ,m we set vδk := uk−aik
and in F 0\Gδk we write vδk := u0. Finally, since Ak\A may present large trace portions
along ∂S on which vδk forms a jump, we need to change the values of vδk in Riδ \A near

Si.

We postpone the proof of Proposition 5.1 after the proof of Theorem 2.6.
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Proof of Theorem 2.6. Since S is Lipschitz open set with finitely many connected compo-
nents, applying the Poincaré-Korn inequality and the Rellich-Kondrachov compactness theo-
rem we find a not relabelled subsequence {(Ak, uk)}, a partition {Si}mi=1 of S and m sequences
{a1

k}, . . . , {amk } of rigid displacements such that

(a1) each Si is the union of some connected components of S and S =
⋃m
i=1 S

i;
(a2) for each i ∈ {1, . . . ,m} there exists wi ∈ H1(Si) such that uk − aik converges to wi

weakly in H1(Si) and a.e. in Si;

(a3) if i 6= j, then |aik − a
j
k| → +∞ a.e. in Rn.

We may also assume Ak → A in L1(Rn) for some A ∈ BV (Ω; {0, 1}). Since Ev = E(v+ a) for
any rigid displacement a, by Remark 2.3 we have

sup
k≥1

(
P (Ak) +Hn−1(J(uk−aik)χAk∪S

) +

∫
Ak∪S

|E(uk − aik)|2dx
)
< +∞

for any i. Hence, by [14, Theorem 1.1] there exist a not relabelled subsequence {(Ak, uk)}
such that for each i the set

Fi := {x ∈ Ω : lim sup
k→+∞

|(uk(x)− aik(x))χAk(x)| = +∞}

has finite perimeter and there exists a function ui ∈ GSBD2(Int(Ω ∪ S ∪ Σ)) such that

uk − aik → ui a.e. in Si ∪ F i,
where

F i := A \ Fi.
By assumption (a3) the sets F 1, . . . , Fm are pairwise disjoint (see Figure 3).

Let δ0 := 2−10 mini 6=j{1, dist(Si, Sj)} and consider any sequence δl ↘ 0 with δ1 < δ0. By
Proposition 5.1 for any l ≥ 1 there exists a subsequence {(Ak,l, uk,l)}k ⊂ {(Ak,l−1, uk,l−1)}k,
kδl > 0, sδl ∈ (0, δl) and a sequence {Gδlk }k of sets of finite perimeter satisfying (5.1a)-(5.1d)

with δ = δl such that the sequence {(Bδl
k , v

δl
k )}k, defined as (5.2)-(5.3), satisfies

S(Ak,l, uk,l) ≥ S(Bδl
k , v

δl
k )− c∗

√
δl

[
1 + P (Ak,l) +Hn−1(Juk,l) +

m∑
i=0

Hn−1(∂∗F i)
]

(5.5)

for all k > kδl . Here we set (Ak,0, uk,0) = (Ak, uk). By (5.1d) we may also assume that

Gδlk → Gδl in L1(Rn) as k → +∞, and therefore, Bδl
k → A \Gδl . Moreover, setting vδlk = ξ in

Ω \Bδl
k and Bδl

k \ [∪iRiδl ∪A] for some ξ ∈ (0, 1)n \Ξ{Bδlk ,u
δl
k }k,l

(see Remark 2.1), by the choice

of aik we get vδlk → vδl a.e. in Ω ∪ S, where

vδl :=
m∑
i=1

uiχSi∪(F i\Gδl ) + u0χF 0\G1/l + ξχ(Ω\A)∪G1/l .

By (5.1c)-(5.1d)

|Gδl | ≤ c∗
√
δl

m∑
i=0

P (F i), P (Gδl) ≤ c∗
m∑
i=0

P (F i),

and hence, Gδl → ∅ in L1(Rn) as l→ +∞. Therefore, vδl → u a.e. in Ω∪S as l→ +∞, where

u :=

m∑
i=1

uiχSi∪F i + u0χF 0 + ξχΩ\A.
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By the nonnegativity and invariance w.r.t. rigid displacements of the elastic energy we have
also

W(Ak,l, uk,l) ≥ W(Bδl
k , v

δl
k ). (5.6)

For each l ≥ 1 let us choose kl > kδl and consider the sequences {(Akl,l, ukl,l)}l and let

(Bl, vl) := (Bl
kl
, ulkl). We may also assume that l 7→ kl is strictly increasing. By construction

and the definition of u, one readily check that (Bl, vl)
τC−→ (A, u). Moreover, by construction

and (5.1c) |Akl,l∆Bl| = |Gδlkl | → 0. Finally, from (5.5) and (5.6) we immediately get

lim inf
l→+∞

F(Akl,l, ukl,l) ≥ lim inf
l→+∞

F(Bl, ul).

Thus, the subsequence {(Akl,l, ukl,l)}l, the sequence {(Bl, ul)} and the configuration (A, u)
satisfy the assertions of Theorem 2.6. �

Note that by construction |Bl| ≤ |Akl | and hence, in general our technique does not imply
the compactness of energy-equibounded sequences {(Ak, uk)} satisfying a volume constraint.

5.1. Proof of Proposition 5.1. We start with the following estimates near the points of
reduced boundary of A (in Proposition 5.1).

Proposition 5.2. Let δ ∈ (0, 1/8), U ⊂ Rn be an open set, Ek, E ∈ BV (U ; {0, 1}), and
Qr,ν(x0) ⊂⊂ U, r > 0, ν ∈ Sn−1, be a cube such that

(a1) x0 ∈ ∂∗E, νE(x0) = ν and

1− δ < 1

φ(ν)rn−1

∫
Qr,ν(x0)∩∂∗E

φ(νE)dHn−1 < 1 + δ;

(a2) (1

2
− δ
)
rn < |E ∩Q−r,ν(x0)|, |E ∩Q+

r,ν(x0)| <
(1

2
+ δ
)
rn,

where Q±r,ν(x0) = {x ∈ Qr,ν(x0) : (x− x0) · ν ≷ 0};
(a3) Ek → E in L1(U).

We also denote by φ a norm in Rn satisfying (4.1). Then there exists kδ > 0 such that for

any k > kδ there is tδk ∈ (
√
δ, 2
√
δ) such that Hn−1(Ttδkr

∩ ∂∗Ek) = 0 and

Hn−1(Ttδkr
∩ E(1)

k ) +Hn−1(T−tδkr ∩ (Q−1 \ E(1))) +Hn−1(T−tδkr ∩ (E
(1)
k ∆E(1))) < 4

√
δrn−1,

where

Tt := {x ∈ Qr,ν(x0) : (x− x0) · ν = t}, t ∈ (−r, r),
and the set

Dδ
k := Qr,ν(x0) ∩ {|(x− x0) · ν| < tδkr}

satisfies ∫
Dδk∩∂∗Ek

φ(νEk)dHn−1 ≥φ(ν)Hn−1(T−tδkr)− (4n+ 12)b2
√
δrn−1.

(see Figure 4).

In the proof of Proposition 5.1 we apply this proposition with U = Ω, Ek := Ak and E = A.
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E

Q1

en
tδk

−tδk

Ek

x0

Figure 4. The sets Ek and E in Proposition 5.2.

Proof. Without loss of generality we assume that x0 = 0, ν = en and r = 1. By (a2)

|Q+
1 ∩ E| ≤ |E| − |E ∩Q−1 | < 2δ,

and hence, by (a3) there exists kδ > 0 such that

|Q+
1 ∩ Ek| < 2δ and |Ek∆E| < δ for all k > kδ. (5.7)

Also by (a2)
|Q−1 \ E| ≤ |Q−1 | − |Q−1 ∩ E| < δ,

thus, by (5.7) and the coarea formula

4δ > |Q+
1 ∩ Ek|+ |Q−1 \ E|+ |Ek∆E| =

∫ 1/2

0

[
Hn−1(Tt ∩ E(1)

k ) +Hn−1(T−t ∩ [Q−1 \ E(1)])

+Hn−1(Tt ∩ [E
(1)
k ∆E(1)]) +Hn−1(T−t ∩ [E

(1)
k ∆E(1)])

]
dt.

In particular there exists tδk ∈ (
√
δ, 2
√
δ) such that

Hn−1(Ttδk
∩ E(1)

k ) +Hn−1(T−tδk ∩ (Q−1 \ E(1))) +Hn−1(T−tδk ∩ (E
(1)
k ∆E(1))) < 4

√
δ. (5.8)

Define
Dδ
k :=

(
− 1/2, 1/2

)n−1 × (−tδk, tδk)
(see Figure 4). Note that∫

Dδk∩∂∗Ek
φ(νEk)dHn−1 =

∫
{x·en>−tδk}∩∂∗(Dδk∩Ek)

φ(νDδk∩Ek)dHn−1

−
∫
∂∗Ek∩Dδk∩∂Q1

φ(νQ1)Hn−1 −
∫
E

(1)
k ∩Ttδ

k

φ(en)Hn−1.

By the choice (5.8) of tδk∫
E

(1)
k ∩Ttδ

k

φ(en)Hn−1 ≤ b2Hn−1(E
(1)
k ∩ Ttδk) < 4b2

√
δ

and ∫
∂∗Ek∩Dδk∩∂Q1

φ(νQ1)Hn−1 ≤ b2Hn−1(∂Dδ
k ∩ ∂Q1) < 4(n− 1)b2

√
δ,
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where 2(n− 1) is the perimeter of (−1/2, 1/2)n−1. Moreover, by the anisotropic (local) mini-
mality of half-spaces (see e.g. [7, Example 2.4])∫

{x·en>−tδk}∩∂∗(Dk∩Ek)
φ(νDk∩Ek)dHn−1 ≥ φ(en)Hn−1(E

(1)
k ∩ T−tδk),

and hence, by (5.8) (we can replace Ek with E)∫
{x·en>−tδk}∩∂∗(Dk∩Ek)

φ(νDk∩Ek)dHn−1 ≥ φ(en)Hn−1(E(1) ∩ T−tδk)− 4b2
√
δ.

Again by (5.8)

Hn−1(E(1) ∩ T−tδk) = Hn−1(T−tδk)−Hn−1((Q−1 \ E(1)) ∩ T−tδk) > Hn−1(T−tδk)− 4
√
δ

and therefore, ∫
Dδk∩∂∗Ek

φ(νEk)dHn−1 ≥ φ(en)Hn−1(T−tδk)− 4(n+ 3)b2
√
δ.

�

Now applying Proposition 4.1 and 5.2 we construct the set Gδk in Proposition 5.1.

Proof of Proposition 5.1. Without loss of generality we assume uk = ξ in Ω \Ak for some
ξ ∈ (0, 1)n \ Ξ{(Ak,uk)}} (see Remark 2.1).

By the uniform continuity of ϕ, there exists rδ ∈ (0, 1) such that

|ϕ(x, ν)− ϕ(y, ν)| < δ for all x, y ∈ Ω with |x− y| < rδ. (5.9)

Let

K̃1 :=Σ ∩ ∂∗A ∩
m⋃
i=1

(
∂Si ∩

⋃
j 6=i

∂∗F j
)
,

K̃2 :=Ω ∩A(1) ∩
m⋃
i=0

∂∗F i,

K̃3 :=Ω ∩ ∂∗A ∩
m⋃
i=0

∂∗F i.

Since these sets are Hn−1-rectifiable and pairwise disjoint, (by a simple covering argument)
we can find open sets U1 ⊂⊂ Int(Ω ∪ S ∪ Σ) and U2, U3 ⊂⊂ Ω with disjoint closures such that

3∑
i=1

Hn−1
(
K̃i \ Ui

)
+

3∑
i=1

Hn−1
(
K̃i ∩

⋃
j 6=i

Uj

)
< δ. (5.10)

Set

Ki := Ui ∩ K̃i, i = 1, 2, 3.

Note that around Hn−1-a.e. point of ∪iKi there exist j ∈ {1, . . . ,m} and a cube Q such that

∪iKi “roughly divides” Q into two parts in one uk − ajk converges and in the other either uk
is constant or |uk − ajk| → +∞. For convenience of the reader we divide the construction of

Gδk into smaller steps.
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Step 1. Using the Hn−1-rectifiability of Ki, ∂
∗A, ∂∗F i, the lipschitzianity of Σ and the

Borel regularity of corresponding unit normals we construct a fine cover of ∪iKi as follows.

Substep 1.1: fine cover for K1. For Hn−1-a.e. x ∈ K1 there exist ix, jx ∈ {1, . . . ,m} with
ix 6= jx and rx > 0 such that x ∈ (∂Six \ ∂∗F ix) ∩ ∂∗F jx and:

(a1.1) rx <
1
4 min{rδ,dist(x, ∂U1)}, where rδ is defined in (5.9);

(a1.2) θ(Σ, x) = θ(K1, x) = θ(∂∗F jx , x) = θ(∂∗A, x) = 1 and νΣ(x), νK1(x), νF jx (x) and
νA(x) exist and are parallel each other. For shortness, we set νx := νΣ(x);

(a1.3) Γx := Qrx,νx(x) ∩ Σ separates Qrx,νx(x) into two connected components;
(a1.4) for any r ∈ (0, rx)

|νΓx(y)− νx| < δ and |(y − x) · νx| < δr
2 for all y ∈ Γx, (5.11a)

(1− δ)rn−1 < Hn−1(Qr ∩ Γx ∩ ∂∗F jx) ≤ Hn−1(Qr ∩ Γx) < (1 + δ)rn−1, (5.11b)

Hn−1
([
Qr ∩

m⋃
j=0

∂∗F j
]
\ Γx

)
+Hn−1(Qr ∩ [∂∗F jx∆Γx]) < δrn−1, (5.11c)

|(F jx ∪ S) ∩Qr| ≥ (1− δ)rn, (5.11d)

where Qr := Qr,νx(x).

Removing an Hn−1-negligible set from K1 if necessary we assume that for all points x ∈ K1

there exist rx and ix, jx satisfying (a1.1)-(a1.4).

Let us show that for any x ∈ K1 and r ∈ (0, rx), the cube Qr,νx(x), the sequence {(Ak, uk−
ajxk )}, the configuration (A, ujx), conditions (a1.1)-(a1.4), the sets E := Qrx,νx(x) \ F jx and

K := Qrx,νx(x) ∩ ∂∗F jx satisfy all assumptions of Proposition 4.1. Indeed, conditions for Γ
follow from (a1.3), (5.11a) and (5.11b), while conditions (a3)-(a4) for {(Ak, uk)} follows from
our assumption in the beginning of the proof and the assumption of Proposition 5.1. The
definition of F jx implies condition (a6) with E := Qrx,νx(x)\F jx and K := Qrx,νx(x)∩∂∗F jx .
Finally, the estimates (5.11b) and (5.11c) together with (a1.2) yield that A∪ S and K satisfy
conditions (a5) and (a7), respectively.

Substep 1.2: fine cover for K2. For Hn−1-a.e. x ∈ K3 there exist rx > 0, ix, jx ∈ {0, . . . ,m}
with ix 6= jx and an (n− 1)-dimensional C1-graph Γx containing x such that

(a2.1) rx <
1
4 min{rδ,dist(x, ∂U2)}.

(a2.2) θ(K2, x) = θ(∂∗F ix , x) = θ(∂∗F jx , x) = θ(K2 ∩ ∂∗F ix ∩ ∂∗F jx ∩ Γx, x) = 1 and unit
normals νK2 , νF ix (x) and νF jx (x) exist and is parallel to νx := νΓx(x);

(a2.3) Γx separates Qrx,νx(x) into two connected components;
(a2.4) for any r ∈ (0, rx)

|νΓx(y)− νx| < δ and |(y − x) · νx| < δr
2 for all y ∈ Γx ∩Qr, (5.12a)

(1− δ)rn−1 < Hn−1(Qr ∩ Γx ∩K2 ∩ ∂∗F ix ∩ ∂∗F jx)

≤ Hn−1(Qr ∩ Γx) < (1 + δ)rn−1, (5.12b)

Hn−1(Qr ∩ [Γx∆(∂∗F ix ∩ ∂∗F jx)]) +Hn−1
([
Qr ∩

N2⋃
j=0

∂∗F j
]
\ Γx

)
< δrn−1, (5.12c)

(
1
2 − δ

)
rn ≤ |F ix ∩Q−r |, |F jx ∩Q+

r | ≤
(

1
2 + δ

)
rn, (5.12d)
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where Qr := Qr,νx(x) and Q±r := {y ∈ Qr : (y−x) · νx ≷ 0}. Here the volume density
estimates follows from the definition of reduced boundary.

Removing an Hn−1-negligible set from K2 if necessary we assume that for all points x ∈ K2

there exist rx and ix, jx satisfying (a2.1)-(a2.4). Then using A = ∪N2
j=0F

j and ∂∗A ⊂ ∪N2
j=0∂

∗F j

as in Substep 1.1. one can check that for any x ∈ K2 and r ∈ (0, rx), the cube Qr,νx(x), the

sequence {(Ak, uk − aixk )}, the configuration (A, uix) and the sets E := Qrx,νx(x) \ F ix and

K = Qrx,νx(x) ∩ ∂∗F ix satisfy all conditions of Proposition 4.1.

Substep 1.3: fine cover for K3. For Hn−1-a.e. x ∈ K3 there exist rx > 0, ix ∈ {0, . . . ,m}
and an (n− 1)-dimensional C1-graph Γx containing x such that

(a3.1) rx <
1
4 min{rδ,dist(x, ∂U4)};

(a3.2) θ(K3, x) = θ(∂∗F ix , x) = θ(∂∗A, x) = θ(K3 ∩ Γx ∩ ∂∗A ∩ ∂∗F ix , x) = 1 and the unit
normals νK3(x), νA(x) and νF ix (x) exist and coincide with νx := νΓx(x);

(a3.3) Γx separates Qrx,νx(x) into two connected components;
(a3.4) for any r ∈ (0, rx)

|νΓx(y)− νx| < δ and |(y − x) · νx| < δr
2 for all y ∈ Γx ∩Qr, (5.13a)

(1− δ)rn−1 < Hn−1(Qr ∩ Γx ∩K3 ∩ ∂∗F ix ∩ ∂∗A)

≤ Hn−1(Qr ∩ Γx) < (1 + δ)rn−1, (5.13b)

Hn−1(Qr ∩ [Γx∆(∂∗F ix ∩ ∂∗A)]) +Hn−1
([
Qr ∩

N3⋃
j=0

∂∗F ix
]
\ Γx

)
< δrn−1, (5.13c)

(1− δ)rn−1 <
1

ϕ(x, νx)

∫
Qr∩∂∗F ix

ϕ(x, νF ix (y))dHn−1(y) (5.13d)

≤ 1

ϕ(x, νx)

∫
Qr∩∂∗A

ϕ(x, νA(y))dHn−1(y) < (1 + δ)rn−1, (5.13e)(
1
2 − δ

)
rn < |Q−r ∩ F ix | ≤ |Q−r ∩A| <

(
1
2 + δ

)
rn, (5.13f)

|Q+
r ∩A| < δrn, (5.13g)

where Qr := Qr,νx(x).

Removing an Hn−1-negligible set from K3 if necessary we assume that for all points x ∈ K3

there exists rx > 0 and ix satisfying (a3.1)-(a3.4). Then for any x ∈ K3 and r ∈ (0, rx) the set
U = U3, the cube Qr,νx(x), the sequence Ek := Qr,νx(x) ∩ Ak, the set E := Qr,νx(x) ∩ A and
conditions (a3.1)-(a3.4) satisfy all assumptions of Proposition 5.2. Indeed, conditions (a1)-(a2)
are given in (5.13e) and (5.13f), whereas (a3) follows from the assumption AK → A in L1(Rn)
as k → +∞.

Step 2. Now we extract finitely many covering cubes still covering ∪iKi up to some error

of order O(
√
δ), and create “holes” inside those cubes (i.e., the sets Cj1 , C

j
2 and Dj

k in Figure

5). By Step 1, for each i ∈ {1, 2, 3} the collection {Qr,νx(x) : x ∈ Ki, r ∈ (0, rx)} of cubes
provides a fine cover for Ki and hence, by the Vitali covering lemma we can extract an at
most countable pairwise disjoint family {Qrij ,νxi

j

(xij), x
i
j ∈ Ki} such that

Hn−1
(
Ki \

⋃
j

Qrij ,νxi
j

(xij)
)

= 0.
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S1

S2 S2

S3

S4

F 1

F 2

F 3

F 4

F 0

K̃1

K̃1

K̃3

Cj
1

Cj
2

Dj
k

Figure 5. Construction of holes Cj1 , C
j
2 and Dj

k.

Since Hn−1(Ki) < +∞, there exists Ni ≥ 1 such that

Hn−1
(
Ki \

⋃
j>Ni

Qrij ,νxi
j

(xij)
)
< δ. (5.14)

Moreover, decreasing rj a bit necessary, we assume that Qrij ,νxi
j

(xij) ∩ Qri
j′ ,νxi

j′
(xij′) = ∅ for

all 1 ≤ j < j′ ≤ Ni. Since Ui ∩ Uj = ∅ for i 6= j, cubes belonging to the union of Gi :=

{Qrij ,νxi
j

(xij)}Nij=1, i = 1, 2, 3, have disjoint closures. When no confusion arises, we drop the

dependence of xij and rij on i.

Substep 2.1: definition of Cj1 . Let Qrj ,xj (xj) ∈ G1 for some j ∈ {1, . . . , N1}. By Substep

1.1 xj ∈ K1 ∩ ∂Slj ∩ ∂∗F hj for some lj , hj ∈ {1, . . . ,m} with lj 6= hj . Applying Proposition

4.1 (ii) with Qrj ,νxj (xj) ⊂⊂ Int(Ω ∪ S ∪ Σ), Γxj := Qrj ,νxj (xj)∩Σ, {(Ak, uk− ahjk )}, (A, uhj ),

E := Qrj ,νxj (xj) \ F
hj , K := Qrj ,νxj (xj) ∩ ∂

∗F hj and φ(·) = ϕ(xj , ·) we find an open set

Cj1 ⊂ Ω ∩Qrj ,νxj (xj) of finite perimeter (given by Lemma 3.1) and k1,j
δ > 0 such that∫

Cj1∩∂∗Ak
φ(νAk)dHn−1 + 2

∫
Cj1∩A

(1)
k ∩Juk

φ(νJuk )dHn−1 + 2

∫
Σ∩∂∗Cj1∩∂∗Ak∩Juk

φ(νJuk )dHn−1

≥2

∫
Qrj ,νj (xj)∩∂∗Fhj

φ(ν
Fhj

)dHn−1 − c′δrn−1
j

≥
∫
∂∗Cj1

φ(ν
Cj1

)dHn−1 − (c′ + 5b2)δrn−1
j (5.15)

for all k > k1,j
δ and for some c′ > 0 (depending only on b2).

Let us estimate the perimeter and the volume of ∪jCj1 . By (5.11b)

rn−1
j ≤ 1

1− δH
n−1(Qrj ,νj ∩ Σ ∩ ∂∗F hj ) (5.16)
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and hence, by (2.8) and (3.2)

b1Hn−1(∂∗Cj1) ≤
∫
∂∗Cj1

φ(ν
Cj1

)dHn−1 ≤ 2

∫
Qrj ,νj (xj)∩∂∗Fhj

φ(ν
Fhj

)dHn−1 + 5b2δr
n−1
j

≤2b2Hn−1(Qrj ,νj (xj) ∩ ∂∗F hj ) + 5b2δr
n−1
j

so that

Hn−1(∂∗Cj1) ≤ 3b2
b1
Hn−1(Qrj ,νj (xj) ∩ ∂∗F hj ). (5.17)

Moreover,

|Cj1 | ≤ δrnj < δrn−1
j ≤ 2δHn−1(Qrj ,νj (xj) ∩ Σ ∩ ∂∗F hj )

and therefore, ∣∣∣ Ni⋃
j=1

Cj1

∣∣∣ ≤ 2δ

m∑
h=1

Hn−1(∂∗F h). (5.18)

Let us estimate the error in covering K1 by {Cj1}. Fix some j ∈ {1, . . . , N1}. Then by the
definition of K1, the error estimate (5.11c) and Lemma 3.1 (ii)

Hn−1((Qrj ,νxj (xj)∩K1) \Cj1) ≤ Hn−1
([
Qrj ,νxj (xj)∩

N1⋃
j=0

∂∗F j
]
\Γxj

)
+Hn−1(Γxj \ ∂∗F hj )

+Hn−1([Qrj ,νxj (xj) ∩ ∂
∗F hj ] \ Cj1) < 3δrn−1

j

and thus, by (5.16) and the choice δ < 1/8

Hn−1((Qrj ,νxj (xj) ∩K1) \ Cj1) < 4δHn−1(Qrj ,νxj (xj) ∩ Σ ∩ ∂∗F hj ). (5.19)

From (5.14) and (5.19) it follows that

Hn−1
(
K1 \

N1⋃
j=1

Cj1

)
=Hn−1

(
K1 \

⋃
j>N1

Qrj ,νj (xj)
)

+

N1∑
j=1

Hn−1([Qrj ,νxj (xj) ∩K1] \ Cj1)

<δ + 4δ

N1∑
j=1

Hn−1(Qrj ,νxj (xj) ∩ Σ ∩ ∂∗F hj )

so that by the disjointness of {F h}

Hn−1
(
K1 \

N1⋃
j=1

Cj1

)
< δ + 4δ

m∑
h=1

Hn−1(∂∗F h). (5.20)

Substep 2.2: construction of Cj2. Let Qrj ,νj (xj) ∈ G2 for some j ∈ {1, . . . , N2} so that

there exist lj , hj ∈ {0, . . . ,m} with lj 6= hj 6= 0 such that xj ∈ ∂∗F lj ∩ ∂∗F hj . As in Substep

2.1 applying Proposition 4.1 with Qrj ,νxj (xj) ⊂⊂ Ω, Γxj , {(Ak, uk − a
hj
k )}, (A, uhj ), E :=

Qrj ,νj (xj) \ F hj , K := Qrj ,νj (xj) ∩ ∂∗F hj and φ(·) = ϕ(xj , ·) we find an open set Cj2 ⊂⊂
Qrj ,νxj (xj) of finite perimeter (given by Lemma 3.1) and k2,j

δ > 0 such that∫
Cj2∩∂∗Ak

φ(νAk)dHn−1 + 2

∫
Cj2∩A

(1)
k ∩Juk

φ(νJuk )dHn−1 ≥
∫
∂Cj2

φ(ν
Cj2

)dHn−1 − c′δrn−1
j

(5.21)
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for all k > k2,j
δ , where c′ depends only on b2. As in Substep 2.1, by (5.12b)

rn−1
j ≤ 1

1− δH
n−1(Qrj ,νj (xj) ∩ ∂∗F lj ∩ ∂∗F hj ) (5.22)

by (2.8) and (3.1)

Hn−1(∂∗Cj2) ≤ 2b2
b1
Hn−1(Qrj ,νj (xj) ∩ ∂∗F hj ) +

5b2
b1

δrn−1
j ≤ 3b2

b1
Hn−1(Qrj ,νj (xj) ∩ ∂∗F hj )

(5.23)
and ∣∣∣ N2⋃

j=1

Cj2

∣∣∣ ≤ 2δ

m∑
h=0

Hn−1(∂∗F h). (5.24)

Moreover,

Hn−1
(
K2 \

N2⋃
j=1

Cj2

)
< δ + 4δ

m∑
h=0

Hn−1(∂∗F h) (5.25)

Substep 2.3: construction of Dj
k. Let Qrj ,νj (xj) ∈ G3 for some j ∈ {1, . . . , N3} and let xj ∈

∂∗F hj ∩ ∂∗A for some hj ∈ {0, . . . ,m}. Using Proposition 5.2 applied with U := Qrj ,νxj (xj),

Ek := Qrj ,νxj (xj)∩Ak, E := Qrj ,νxj (xj)∩A and φ(·) = ϕ(xj , ·) we find k3,j
δ > 0 such that for

any k > k3,j
δ there exists tδk,j ∈ (

√
δ, 2
√
δ) such that Hn−1(∂∗Ak ∩ T jtδk,j ,rj ) = 0 and

Hn−1(T j
tδk,jrj

∩A(1)
k ) +Hn−1(T j−tδk,jrj

∩[Q−rj ,νj (xj) \A(1)])

+Hn−1(T j−tδk,jrj
∩ [A

(1)
k ∆A(1)]) < 4

√
δrn−1
j , (5.26)

where
T jt := {x ∈ Qrj ,νj (xj) : (x− xj) · νj = t}, t ∈ (−rj , rj),

and the set
Dj
k := {x ∈ Qrj ,νxj (xj) : |(x− xj) · νxj | < tδk,jrj}

satisfy ∫
Djk∩∂∗Ak

φ(νAk)dHn−1 ≥ φ(νj)Hn−1(T j−tδk,jrj
)− c′

√
δrn−1
j (5.27)

for some c′ > 0 depending only on b2 and n. Note that by (5.13b)

rn−1
j ≤ 1

1− δH
n−1(Qrj ,νj (xj) ∩ ∂∗F hj ∩ ∂∗A) (5.28)

and hence by the choice of tδk,j and (5.28)

|Dj
k| = 2tδk,jr

n ≤ 4
√
δ

1− δH
n−1(Qrj ,νj (xj) ∩ ∂∗F hj )

so that ∣∣∣ N3⋃
j=1

Dj
k

∣∣∣ ≤ 5
√
δ

m∑
h=1

Hn−1(∂∗F h). (5.29)

Moreover, by the definition of Dj
k, (5.26), (5.28) and the equality Hn−1(T j±tδk,jrj

) = rn−1
j we

have
Hn−1(∂∗Dj

k) ≤ (2 + 4
√
δ)rn−1

j ≤ 4Hn−1(Qrj ,νj (xj) ∩ ∂∗F hj ). (5.30)



EXISTENCE FOR THE SDRI MODEL IN Rn 47

Let us estimate the error in covering K3 with {Dj
k}. Fox some j ∈ {1, . . . , N3}. Recalling

the definition of Γxj in Substep 1.3 in view of (5.13a) we have Qrj ,νj (xj) ∩ Γxj ⊂ Dj
k and

hence, by (5.13c) and (5.28)

Hn−1([K3∩Qrj ,νj (xj)] \Dj
k)

≤Hn−1
([
Qrj ,νj (xj) ∩

N3⋃
j=1

]
\ Γxj

)
+Hn−1([Qrj ,νj (xj) ∩ Γxj ] \ [∂∗A ∩ ∂∗F hj ])

≤δrn−1
j ≤ 2δHn−1(Qrj ,νj (xj) ∩ ∂∗F hj )

and hence, by (5.14)

Hn−1
(
K3 \

N3⋃
j=1

Dj
k

)
=Hn−1

(
K3 \

⋃
j>N3

Qrj ,νj (xj)
)

+

N3∑
j=1

Hn−1
(

[K3 ∩Qrj ,νj (xj)] \Dj
k

)
so that

Hn−1
(
K3 \

N3⋃
j=1

Dj
k

)
< δ + 2δ

m∑
h=1

Hn−1(∂∗F h). (5.31)

Step 3: Definition of Gδk. Let kiδ := maxj=1,...,Ni k
i,j
δ , i = 1, 2, 3, and for each k > kδ :=

max{k1
δ , k

2
δ , k

3
δ} let us define

Gδk :=

N1⋃
j=1

Cj1 ∪
N2⋃
j=1

Cj2 ∪
N3⋃
j=1

Dj
k,

obviously, Gδk is open. By (5.18), (5.24) and (5.29) as well as the inclusion ∂∗A ⊂ ∪j∂∗F j we
get

|Gδk| ≤
∣∣∣ N1⋃
j=1

Cj1

∣∣∣+
∣∣∣ N2⋃
j=1

Cj2

∣∣∣+
∣∣∣ N3⋃
j=1

Dj
k

∣∣∣ ≤ 8
√
δ

m∑
h=0

Hn−1(∂∗F h).

Moreover, summing the estimates (5.17), (5.23) and (5.30) and using the disjointness of the

closures of Cj1 , C
j
2 and Dj

k (because so are the containing cubes) we get

P (Gδk) ≤
N1∑
j=1

P (Cj1) +

N2∑
j=1

P (Cj2) +

N3∑
j=1

P (Dj
k) ≤

(
4 +

3b2
b1

) m∑
h=0

Hn−1(∂∗F h).

Step 4: Definition of sδ. Since Ak → A in L1(Rn), by the coarea formula applied with the
1-Lipschitz function f(x) = dist(x, S)

0 = lim
k→+∞

|Ak∆A| =
∫ ∞

0
Hn−1({x ∈ Ak∆A : dist(x, S) = s})ds

and thus, passing to a not relabelled subsequence if necessary,

lim
k→+∞

Hn−1({x ∈ Ak∆A : dist(x, S) = s}) = 0

for a.e. s > 0. In particular, there exists sδ ∈ (0, δ) such that

Hn−1([Ak∆A] ∩ {dist(·, S) = sδ}}) < δ and Hn−1({0 < dist(·, S) < sδ}} ∩ ∂∗A) < δ,
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Step 5: Proof of (5.4). Let Bδ
k and vδk be given by (5.2) and (5.3). As in the proof of lower

semicontinuity, given (B, v) ∈ C and a Borel set D ⊂ Rn, let us introduce

µB,v(D) :=

∫
D∩∂∗B

ϕ(x, νB)dHn−1 + 2

∫
D∩B(1)∩Jv

ϕ(x, νJv)dHn−1

+ 2

∫
D∩Σ∩∂∗B∩Jv

ϕ(x, νΣ)dHn−1 +

∫
D∩Σ∩∂∗B\Jv

[β + ϕ(x, νΣ)]dHn−1

+

∫
D∩Σ\∂∗B

ϕ(x, νΣ)dHn−1.

Since µB,v(Rn) = S(B, v) +
∫

Σ ϕ(x, νΣ)dHn−1, we have

S(Ak, uk)− S(Bδ
k, v

δ
k) = µAk,uk(Rn)− µBδk,uδk(Rn).

By construction

[Ω ∩ ∂∗Ak] \Gδk = [Ω ∩ (∂∗Bδ
k] \Gδk, [Σ ∩ ∂∗Ak] \Gδk = Σ ∩ ∂∗Bδ

k,

[Σ ∩ ∂∗Ak ∩ Juk ] \Gδk = Σ ∩ ∂∗Bδ
k ∩ Jvδk , Σ \

(
∂∗Ak ∪

N1⋃
j=1

∂∗Cj1) = Σ \ ∂∗Bδ
k,

[A(1) ∩A(1)
k ∩ Juk ] \Gδk = A(1) ∩B(1)

k ∩ Jvδk ,

[A(1) ∩ Jvδk ] \ Juk =
m⋃
j=1

∂∗F j \Gδk, Jvδk
∩ ∂∗A ⊂

m⋃
j=0

∂∗F j \Gδk,

[A
(1)
k \A(1)] ∩ Jvδk ⊆ ([Rδ \A](1) ∩ Juk) ∪ ([Ak \A](1) ∩ ∂Rδ) ∪ (Rδ ∩ ∂∗A),

and hence,

S(Ak, uk)− S(Bδ
k, u

δ
k) ≥ µAk,uk(Gδk)− µBδk,uδk(Gδk)− 2

∫
Rδ∩∂∗A

ϕ(x, νA)dHn−1

− 2

∫
J
vδ
k
∩[Bδk](1)∩⋃mi=0 ∂

∗F j
ϕ(x, νJ

vδ
k

)dHn−1 − 2

∫
[Ak\A](1)∩∂Rδ

ϕ(x, νRδ)dHn−1. (5.32)

By (2.8), the definition of K̃j and Uj , the construction of Cj1 , C
j
2 , D

j
k, the choice of sδ and the

error estimates (5.20), (5.25), (5.31) and (5.10) we have∫
Rδ∩∂∗A

ϕ(x, νA)dHn−1 +

∫
J
vδ
k
∩[Bδk](1)∩⋃mi=0 ∂

∗F j
ϕ(x, νJ

vδ
k

)dHn−1

+

∫
[Ak\A](1)∩∂Rδ

ϕ(x, νRδ)dHn−1 ≤ c∗4δ
(

1 +

m∑
h=0

Hn−1(∂∗F h)
)
. (5.33)

Furthermore, from the additivity of the set-function αB,v and disjointness of the closures of

Cj1 , C
j
2 and Dj

k we obtain

µAk,uk(Gδk)− µBδk,uδk(Gδk) =

N1∑
j=1

[
µAk,uk(Cj1)− µBδk,uδk(C1

j )
]

+

N2∑
j=1

[
µAk,uk(Cj2)− µBδk,uδk(C1

2 )
]

+

N3∑
j=1

[
µAk,uk(Dj

k)− µBδk,uδk(D1
k)
]

:= I1 + I2 + I3. (5.34)
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Substep 5.1: A lower estimate for I1. Let

α1,j
k :=

∫
Cj1∩∂∗Ak

ϕ(x, νAk)dHn−1 + 2

∫
Cj1∩A

(1)
k ∩Juk

ϕ(x, νJuk )dHn−1

+ 2

∫
Σ∩∂∗Cj1∩∂∗Ak∩Juk

ϕ(x, νJuk )dHn−1.

By (5.9) and (5.15) we have

α1,j
k ≥

∫
∂∗Cj1

ϕ(x, ν
Cj1

)dHn−1 − δHn−1(Cj1 ∩ [Juk ∪ ∂∗Ak])− δHn−1(∂∗Cj1)− c′δrn−1
j . (5.35)

Since |β(x)| ≤ φ(x, νΣ) (see (2.9)), by the definition of µAk,uk , (Bδ
k, v

δ
k) and µBδk,v

δ
k

we have

µAk,uk(C1
j ) ≥ α1,j

k and

∫
∂∗Cj1

ϕ(x, ν
Cj1

)dHn−1 = µBδk
(Cj1).

Therefore, from (5.35) and (5.16) we get

µAk,uk(C1
j )− µBδk(Cj1) ≥ −δHn−1(Qrj ,νj (xj) ∩ [Juk ∪ ∂∗Ak])

− δHn−1(∂∗Cj1)− c′δ
1− δH

n−1(Qrj ,νj ∩ Σ ∩ ∂∗F hj ).

Summing these estimates in j and using the disjointness of {Qrj ,νj (xj)} and the perimeter

estimate (5.17) of Cj1 we deduce

I1 ≥ −c∗1δ
(
Hn−1(Juk) +Hn−1(∂∗Ak) +

m∑
h=0

Hn−1(∂∗F h)
)

(5.36)

for all k > k1
δ = maxj k

1,j
δ and for some c∗1 depending only on b1 and b2.

Substep 5.2: A lower estimate for I2. Let

α2,j
k :=

∫
Cj2∩∂∗Ak

ϕ(x, νAk)dHn−1 + 2

∫
Cj2∩A

(1)
k ∩Juk

ϕ(x, νJuk )dHn−1.

By (5.9) and (5.21)

α2,j
k ≥

∫
∂∗Cj2

ϕ(x, ν
Cj2

)dHn−1 − δHn−1(Qrj ,νxj (xj) ∩ [∂∗Ak ∪ Juk ]− δHn−1(∂∗Cj2)− c′δrn−1
j

(5.37)

for all k > k2,j
δ Since Cj2 ∩ Σ = ∅, from the definition of µAk,uk , (Bδ

k, v
δ
k) and µBδk,v

δ
k

we have

µAk,uk(Cj2) = α2,j
k and

∫
∂∗Cj2

ϕ(x, ν
Cj2

)dHn−1 = µBδk,v
δ
k
(Cj2)

and thus, using (5.22) and (5.23) in (5.37) we obtain

µAk,uk(Cj2)− µBδk,vδk(Cj2)

≥ −c∗2δ
(
Hn−1(Qrj ,νxj (xj) ∩ [∂∗Ak ∪ Juk ] +Hn−1(Qrj ,νxj (xj) ∩ ∂

∗F lj ∩ ∂∗F hj )
)
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for some constant c∗2 > 0 depending only on b1, b2. Summing these estimates we get

I2 ≥ −c∗2δ
(
Hn−1(Juk) +Hn−1(∂∗Ak) +

m∑
h=0

Hn−1(∂∗F h)
)

(5.38)

for all k > k2
δ = maxj k

2,j
δ .

Substep 5.3: A lower estimate for I3. Let

α3,j
k :=

∫
Djk∩∂∗Ak

ϕ(x, νAk)dHn−1.

Since Hn−1(T−tδk,jrj )r
n−1
j , using (5.9) and (5.27) we get

α3,j
k ≥

∫
Qrj ,νxj (xj)∩T−tδ

k,j
r

ϕ(x, νxj )dHn−1 − (δ + c′
√
δ)rn−1

j (5.39)

for all k > k3,j
δ . Moreover, by the choice of tδk,j , (5.26) and (2.8)

µBδk,u
δ
k
(Dj

k) ≤
∫
Qrj ,νxj (xj)∩T−tδ

k,j
rj

ϕ(x, νxj )dHn−1 +

∫
Qrj ,νxj (xj)∩A(1)

k ∩Ttδ
k,j

rj

ϕ(x, νxj )dHn−1

+

∫
∂∗Djk\[T−tδ

k,j
rj
∪T

tδ
k,j

rj
]
ϕ(x, ν

Djk
)dHn−1

≤
∫
Qrj ,νxj (xj)∩T−tδ

k,j
rj

ϕ(x, νxj )dHn−1 + 4b2
√
δrn−1
j + 2b2t

δ
k,jr

n−1
j ..

Now using tδk,j ≤ 2
√
δ and (5.28) in this estimate and combining with (5.39) and obvious

inequality µAk,uk(Dj
k) ≥ α

3,j
k (recall that Dj

k ∩ Σ = ∅) we get

µAk,uk(Dj
k)− µBδk,uδk(Dj

k) ≥ −c∗3
√
δHn−1(Qrj ,νj (xj) ∩ ∂∗F hj )

for some c∗3 depending only on n and b1, b2. Summing these inequalities in j we get

I3 ≥ c∗3
√
δ

m∑
h=0

Hn−1(∂∗F h) (5.40)

for all k > k3
δ = maxj k

3,j
δ .

Including (5.36), (5.38) and (5.40) in (5.34) and using (5.33) in (5.32) we deduce

S(Ak, uk)− S(Bδ
k, u

δ
k) ≥ −c∗

√
δ
(

1 +Hn−1(Juk) +Hn−1(∂∗Ak) +

m∑
i=0

Hn−1(∂∗F i)
)

for all k > kδ = max{k1
δ , k

2
δ , k

3
δ}. Finally, since the elastic energy density is nonnegative, and

invariant w.r.t. to additive piecewise rigid displacements

W(Ak, uk) ≥ W(Bδ
k, v

δ
k)

and hence, (5.4) follows. �

From Theorems 2.5 and 2.6 together with Proposition A.1 implies that the minimum prob-
lem (2.12) is solvable.
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Proof of Theorem 2.4. Fix any λ > 0 and let {(Ak, uk)} ⊂ C be a minimizing sequence
for Fλ. Then supk F(Ak, uk) > +∞, and hence, by Theorem 2.6 there exists a not relabelled

subsequence {(Ak, uk)}, a sequence {(Bk, vk)} ⊂ C and (A, u) ∈ C such that (Bk, vk)
τC→ (A, u),

|Ak∆Bk| → 0 and

lim inf
k→+∞

F(Ak, uk) ≥ lim inf
k→+∞

F(Bk, vk) ≥ F(A, u). (5.41)

Since the map E 7→ ||E| − v| is L1(Rn)-continuous, from (5.41) it follows that

lim inf
k→+∞

Fλ(Ak, uk) ≥ lim inf
k→+∞

Fλ(Bk, vk) ≥ Fλ(B, v).

Hence, (B, v) is a minimizer of Fλ. By Proposition A.1 there exists λ0 > 0 such that for
λ > λ0 every minimizer (A, u) of Fλ satisfies the volume constraint |A| = v. Thus, (A, u)
solves also the problem (2.12). Conversely, if (A, u) solves (2.12), then for λ > λ0,

min
(B,v)∈C, |B|=v

F(B, v) =F(A, u) = Fλ(A, u) ≥ min
(B,v)∈C

Fλ(B, v)

= min
(B,v)∈C, |B|=v

Fλ(B, v) = min
(B,v)∈C, |B|=v

F(B, v)

and hence, (A, u) is a minimizer of Fλ. �

5.2. Compactness in Cp and CDir. In this section we comment on the τ -compactness of
energy-equibounded sequences in Cp and CDir; for the definition of τ -convergence see (2.18).
Using (2.15) and the compactness result [14, Theorem 1.1] we have:

– if {(Ak, uk)} ⊂ Cp is arbitrary sequence with supk Fp(Ak, uk) < +∞, then repeating
the same arguments in the proof of Proposition 5.1 we construct a not relabelled
subsequence, the set Gδk, numbers sδ and kδ satisfying (5.1a)-(5.1d) such that the

configuration (Bδ
k, v

δ
k) ∈ Cp, given by (5.2) and (5.3), satisfies

S(Ak, uk)− S(Bδ
k, u

δ
k) ≥ −c∗

√
δ
(

1 +Hn−1(Juk) +Hn−1(∂∗Ak) +

m∑
i=0

Hn−1(∂∗F i)
)
.

Then by (2.15)

W(Ak, uk) ≥ W(Bδ
k, uk) +

∫
Gδk

Wp(x, Evδk)dx ≥ W(Bδ
k, uk)−

∫
Gδk

|f |dx.

Since f ∈ L1(Ω ∪ S), by (5.1c) and the absolute continuity of the Lebesgue integral
we have

W(Ak, uk) ≥ W(Bδ
k, uk) + oδ, (5.42)

where oδ → 0 as δ → 0. Now the proof of the compactness in Cp runs exactly the same
as Theorem 2.6 using (5.42) in place of (5.6);

– if {(Ak, uk)} ⊂ Cp is arbitrary sequence with supk FDir(Ak, uk) < +∞, then by [14,
Theorem 1.1] in the proof of Theorem 2.6 we will have only two sets F 0 and F 1

partitioning A : the sequence uk converges a.e. in F 1 (up to a subsequence) and
|uk| → +∞ a.e. in F 0. In particular, due to the Dirichlet condition for uk in S, we do
not need to add any rigid displacements, and then the proofs runs as in Cp.

The τ -compactness in Cp (resp. CDir) and the τ -lower semicontinuity of Fp (resp. FDir)

imply that for any λ > 0 there exists a minimizer of Fλp (resp. FλDir). Now obverving that the
proof of Proposition A.1 works also in Cp and CDir (see Remark A.2) we conclude that both
minimum problems (2.16) and (2.17) admit a solution.
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6. Decay estimates

This section is devoted to the proof of the following density estimates for minimizers of F .

Theorem 6.1 (Density estimates). There exist ς∗ = ς∗(b3, b4) ∈ (0, 1) and R∗ =
R∗(b1, b2, b3, b4) > 0, where bi are given by (2.8) and (2.10), with the following property.
Let (A, u) ∈ C be any minimizer of F in C such that Ω∩ ∂∗A ⊂Hn−1 Ju and

∫
Ω\A |Eu|dx = 0,

and let
J∗u := {x ∈ Ju : θ(Ju, x) = 1}. (6.1)

Then for any x ∈ Ω and r ∈ (0,min{1,dist(x, ∂Ω)})
Hn−1(Qr(x) ∩ Ju)

rn−1
≤ 4nb2 + λ0

b1
. (6.2)

Moreover, if x ∈ Ω ∩ J∗u and r ∈ (0, R∗) with Qr(x) ⊂ Ω, then

Hn−1(Qr(x) ∩ Ju)

rn−1
≥ ς∗. (6.3)

In particular,
Hn−1(Ω ∩ [J∗u \ J∗u]) = 0. (6.4)

Since Ju isHn−1-rectifiable, by the rectifiability criterion [3, Theorem 2.63]Hn−1(Ju\J∗u) =
0. Thus, if we remove a Hn−1-negligible set from Ju, then (6.4) implies that the jump set of
u is essentially closed in Ω.

To prove Theorem 6.1 we follow the arguments of [37, Section 3]. First we introduce the
local version F(·;O) : C → R of F in open sets O ⊂ Ω as

F(A, u;O) := S(A, u;O) +W(A, u;O), (6.5)

where S(·;O) and W(·;O) are the local versions of the surface and the elastic energy, i.e.,

S(A, u;O) :=

∫
O∩∂∗A

ϕ(y, νA)dHn−1 + 2

∫
O∩A(1)∩Ju

ϕ(y, νA) dHn−1

and

W(A, u;O) =

∫
O∩A

C(y)Eu : Eudy.

Next we introduce the notion of quasi-minimizers.

Definition 6.2 (Θ-minimizers). Given Θ ≥ 0, the configuration (A, u) ∈ C is a local Θ-
minimizer of F : C → R in O if

F(A, u;O) ≤ F(B, v;O) + Θ|A∆B|
whenever (B, v) ∈ C with A∆B ⊂⊂ O and supp (u− v) ⊂⊂ O.

For any (A, u) ∈ C and any open set O ⊂⊂ Ω let

Φ(A, u;O) := inf
{
F(B, v;O) : (B, v) ∈ C, B∆A ⊂⊂ O, supp (u− v) ⊂⊂ O

}
, (6.6)

and let
Ψ(A, u;O) := F(A, u;O)− Φ(A, u;O) (6.7)

be the deviation of (A, u) from minimality in O.

The following proposition is a generalization to our setting of [12, Theorem 4] established
for the Griffith model.
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Proposition 6.3. Let QR(x0) ⊂⊂ Ω. Consider sequences of Finsler norms {ϕh} and ellip-

ticity tensors {Ch} such that {Ch} is equicontinuous in QR(x0) and there exist d3, d4, d5 > 0
with

d3M : M ≤ Ch(x)M : M ≤ d4M : M for all (x,M) ∈ QR(x0)×Mn×n
sym (6.8)

and

inf
(x,ν)∈QR(x0)×Sn−1

φh(x, ν) ≥ d5 sup
(x,ν)∈QR(x0)×Sn−1

φh(x, ν), (6.9)

and define Fh and Ψh in C as in (6.5) and (6.7), respectively, with ϕh and Ch in places of ϕ
and C. Let {(Ah, uh)} ⊂ C be such that∫

QR(x0)\Ah
|Euh|dx = 0, (6.10a)

M := sup
h≥1
Fh(Ah, uh;QR(x0)) <∞, (6.10b)

lim
h→∞

Ψh(Ah, uh;QR(x0)) = 0, (6.10c)

lim
h→∞

Hn−1(QR(x0) ∩ Juh) = 0, (6.10d)

QR(x0) ∩ ∂∗Ah ⊂Hn−1 Juh . (6.10e)

Then there exist u ∈ H1(QR(x0)), an elasticity tensor C ∈ C0(QR(x0);Mn×n
sym ) and sequences

{aj} of rigid displacements and subsequences {(Ahj , uhj )}, {ϕhj} and {Chj} such that

(i) Chj → C uniformly in QR(x0) and

wj := uhj − aj → u a.e. in QR(x0) and Ewj ⇀ Eu in L2(QR(x0))

as j →∞;
(ii) for all v ∈ u+H1

0 (QR(x0))∫
QR(x0)

C(y)Eu : Eudy ≤
∫
QR(x0)

C(y)Ev : Ev dy; (6.11)

(iii) for any r ∈ (0, R]

lim
j→∞

Fh(Ahj , uhj ;Qr(x0)) =

∫
Qr(x0)

C(x)Eu : Eudx. (6.12)

Proof. Without loss of generality, we assume R = 1 and x0 = 0. Also by (6.10d) we may
assume Hn−1(Q1 ∩ Juh) < 1/4 for any h. Let

b′h := inf
(x,ν)∈QR(x:0)×Sn−1

φh(x, ν), b′′h := sup
(x,ν)∈QR(x:0)×Sn−1

φh(x, ν)

so that by (6.9)

d5b
′′
h ≤ b′h ≤ b′′h for any h. (6.13)

By [11, Proposition 2] and (6.8), there exist a constant co (depending only on n and d3) and
sequences {ωh} of a measurable subsets of Q1 with |ωh| ≤ coHn−1(Q1∩Juh) and {ah} of rigid
displacements such that∫

Q1\ωh
|uh − ah|2 dx ≤ co

∫
Q1

Ch(x)Euh : Euh dx. (6.14)
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By (6.10a) and (6.10b), ‖(uh − ah)χQ1\ωh‖L2(Q1) ≤ Mco, and thus, there exist u ∈ L2(Q1)

and a not relablled subsequence such that (uh − ah)χQ1\ωh ⇀ ũ in L2(Q1). Since |ωh| → 0,
the set

F := {y ∈ Q1 : lim sup
h→∞

|uh(y)− ah(y)| = +∞}

satisfies |F | = 0. Furthermore, by (6.10a), (6.8) and (6.10b) as well as the equality Juh =
Juh−ah

sup
h≥1

∫
Q1

|E(uh − ah)|2 dx+Hn−1(Q1 ∩ Juh−ah) <
M

d3
+

1

4
,

and hence, by [14, Theorem 1.1] there exist a not relabelled subsequence {uh − ah} and
u ∈ GSBD2(Q1) such that

uh − ah → u a.e. in Q1 (6.15)

E(uh − ah) ⇀ Eu in L2(Q1;Mn×n
sym ), (6.16)

Hn−1(Q1 ∩ Ju) ≤ lim inf
h→+∞

Hn−1(Juh) = 0. (6.17)

Since the weak limit and the pointwise limit coincide (see e.g., [22, page 266]), ũ = u a.e.
in Q1. Moreover, (6.14), (6.15) and the Fatou’s Lemma imply u ∈ L2(Q1) and by (6.17) one
has Hn−1(Ju) = 0. Thus, by Lemma A.4 u ∈ H1(Q1). Since our elastic energy is invariant
under additive rigid displacements, without loss of generality further we assume ah = 0 for
any h ≥ 1.

Next we prove (6.11). Let v ∈ H1(Q1) be such that supp (u−v) ⊂⊂ Qr for some r ∈ (0, 1).
Fix r′′ < r′ < r and let ψ ∈ C1

c (Qr; [0, 1]) be a cut-off function with {0 < ψ < 1} ⊂ {u =
v} ∩ Qr′ and supp (u − v) ⊆ {ψ ≡ 1} ⊆ Qr′′ . By (6.10d) and [12, Theorem 3] there exist
a positive constant c > 0 (depending only on n, d3 and d4), a function ṽh ∈ GSBD2(Q1),
rh ∈ (r − δh, r) with

δh := 2n

√
Hn−1(Juh), (6.18)

and a Lebesgue measurable set ω̃h ⊂ Qrh such that

(a1) ṽh ∈ C∞(Qr−δh), ṽh = uh in Q1 \Qrh , and

Hn−1(Juh ∩ ∂Qrh) = Hn−1(Jṽh ∩ ∂Qrh) = 0;

(a2) Hn−1(Jṽh \ Juh) < cδhHn−1(Juh ∩ (Qr \Qr−δh));
(a3) |ω̃h| ≤ cδ2

hHn−1(Qrh ∩ Juh) and by (6.8),∫
Qr\ω̃h

|ṽh − uh|2dx ≤ cδ4
h

∫
Qr

Ch(x)Euh : Euhdx; (6.19)

(a4) if η ∈ Lip(Q1; [0, 1]), then∫
Qr

ηCh(x)E ṽh :E ṽhdx ≤
∫
Qr

ηCh(x)Euh : Euhdx

+ cδsh[1 + Lip(η)]

∫
Qr

Ch(x)Euh : Euhdx (6.20)

for some s ∈ (0, 1) independent of h.

By (a1) ṽh ∈ H1(Qr′) and supp (ṽh − uh) ⊂⊂ Qr for all sufficiently large h. By (6.15), (6.19)
and the relation δ2n

h = Hn−1(Q1 ∩ Juh)→ 0 it follows that ṽh → u a.e. in Q1. Define

vh := (1− ψ)ṽh + ψv. (6.21)
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Then (Ah, vh) is an admissible configuration for Φh(Ah, uh;Q1) in (6.6). Therefore from
(6.10c) and the definition of deviation it follows that

Fh(Ah, uh;Q1) ≤ Fh(Ah, vh;Q1) + o(1), (6.22)

where o(1)→ 0 as h→∞. Note that by (a1), (a2), (6.13) and (6.10b)

S(Ah, vh;Q1)− S(Ah, uh;Q1) =

∫
A

(1)
h ∩Jṽh

φh(x, νJṽh
)dHn−1 −

∫
A

(1)
h ∩Juh

φh(x, νJuh
)dHn−1

≤
∫
A

(1)
h ∩(Jṽh\Juh )∩(Qr\Qr−δh )

φh(x, νJṽh
)dHn−1

≤b′′hHn−1(Jṽh \ Juh) ≤ cb′′hδhHn−1(Juh ∩ (Qr \Qr−δh))

≤cδh
d5
S(Ah, uh;Q1) ≤ Mcδh

d5
.

This estimate, (6.22) and the definition of localized elastic energy imply∫
Ah∩Q1

Ch(x)Euh : EuhdHn−1 ≤
∫
Ah∩Q1

Ch(x)Evh : EvhdHn−1 + o(1) (6.23)

as h→ +∞.
Next we estimate the integral in the right-hand-side of (6.23). By (6.21)

Evh = (1− ψ)E ṽh + ψEv +∇ψ � (v − ṽh),

where X � Y = (X ⊗ Y + Y ⊗X)/2. Since ṽh → u a.e. in Qr and u = v in Qr \Qr′ , one has
vh → v a.e. in Q1.

We claim that ṽh → u strongly in L2
loc(Qr). Indeed, fix any ρ ∈ (0, r). By (a1) ṽh ∈ H1(Qρ).

By (6.8), (6.10b) and (6.20) (applied with η = 1)

d3

∫
Qρ

|E ṽh|2dx ≤ d3

∫
Qr

|E ṽh|2dx ≤ C
∫
Qr

Ch(x)Euh : Euhdx ≤MC

for some constant C > 0 independent of h. Moreover, by the Poincaré-Korn inequality for
each h there exist a rigid displacement eh (possibly depending also on ρ) such that

‖ṽh − eh‖H1(Qρ) ≤
∫
Qρ

|E ṽh|2dx ≤ MCC ′

d3

and hence, the Rellich-Kondrachov Theorem implies the existence of w ∈ H1(Qρ) and not
relabelled subsequence such that ṽh− eh → w in L2(Qρ). Since ṽh → u a.e. in Q1, eh → w−u
and hence, e := u− w is also a rigid displacement. Then

lim sup
h→∞

‖ṽh − u‖L2(Qρ) ≤ lim sup
h→∞

‖ṽh − eh − w‖L2(Qρ) + lim sup
h→∞

‖eh + (w − u)‖L2(Qρ) = 0,

and the claim follows.

Since u = v out of {ψ = 1}, the claim implies ṽh → v strongly in L2({0 < ψ < 1}), and
hence,

lim
h→∞

∫
Qr

|∇ψ � (v − ṽh)
∣∣
Ah
|2dx ≤ lim inf

h→∞

∫
{0<ψ<1}

|∇ψ � (v − ṽh)|2dx = 0. (6.24)

Thus, by definition (6.21) of vh∫
Qr∩Ah

ChEvh : Evhdx =

∫
Qr∩Ah

(1− ψ)2ChE ṽh : E ṽhdx+

∫
Qr∩Ah

ψ2ChEv : Evdx
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+

∫
Qr∩Ah

Ch(∇ψ � (v − ṽh)) : (∇ψ � (v − ṽh))dx

+

∫
Qr∩Ah

(1− ψ)ChE ṽh : (∇ψ � (v − ṽh))dx

+

∫
Qr

ψChEv : (∇ψ � (v − ṽh))dx

=

∫
Qr∩Ah

(1− ψ)2ChE ṽh : E ṽhdx+

∫
Qr∩Ah

ψ2ChEv : Evdx+ o(1)

≤
∫
Qr∩Ah

(1− ψ)2ChEuh : Euhdx+

∫
Qr∩Ah

ψ2ChEv : Evdx+ o(1), (6.25)

where in the second equality we use (6.10b), (6.20) with η ≡ 1, (6.24), (6.8) and the Hölder
inequality, while in the last inequality we use (6.20) with η = (1 − ψ)2 and (6.10d). Now
combining (6.25) with (6.23) we get∫

Qr

(2ψ − ψ2)ChEuh : Euhdx ≤
∫
Qr

ψ2ChEv : Evdx+ o(1). (6.26)

Since {Ch} is equibounded (see (6.8)) and equicontinuous, by the Arzela-Ascoli Theorem,
there exist a (not relabelled) subsequence and an elasticity tensor C ∈ C0(Q1;Mn×n

sym ) such
that Ch → C uniformly in Q1. Hence, letting h → ∞ in (6.26) and using (6.16) and the
convexity of the elastic energy, we obtain∫

Qr

(2ψ − ψ2)C(y)Eu : Eudy ≤
∫
Qr

ψ2C(y)Ev : Ev dy. (6.27)

By the choice of ψ, (6.27) implies∫
Qr′′

C(y)Eu : Eudy ≤
∫
Qr

C(y)Ev : Ev dy. (6.28)

Since r′′ is arbitrary, letting r′′ ↗ r we deduce that (6.28) holds also with r′′ = r. Since
supp (u− v) ⊂⊂ Qr, this implies (6.11).

It remains to prove (6.12). If we take v = u in (6.26) and use 0 ≤ ψ ≤ 1 and ψ = 1 in Qr′′
we get ∫

Qr′′

CEu : Eudx ≤ lim inf
h→∞

∫
Qr′′

ChEuh : Euhdx

≤ lim sup
h→∞

∫
Qr′′

ChEuh : Euhdx ≤
∫
Qr

CEu : Eudx.

Since r′′ is arbitrary, letting r′′ ↗ r we deduce

lim
h→∞

∫
Qr

ChEuh : Euhdx =

∫
Qr

CEu : Eudx. (6.29)

In view of (6.29) to prove (6.12) it suffices to establish

lim
h→∞

Sh(Ah;Qr) = 0 (6.30)

for any r ∈ (0, 1). By (6.10e) Q1∩∂∗Ah ⊂ Juh up to an Hn−1-negligible set. Thus, by (6.10d)
and the relative isoperimetric inequality, up to a subsequence, either

lim
h→∞

|Q1 ∩Ah| = 0 (6.31)
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or
lim
h→∞

|Q1 \Ah| = 0. (6.32)

We claim that there exists a not relabelled subsequence {Ah} such that for a.e. t ∈ (0, 1)

lim
h→∞

∫
Ah∩∂Qt

φh(x, νQt)dHn−1 = 0 (6.33)

if (6.31) holds, and

lim
h→∞

∫
(Q1\Ah)∩∂Qt

φh(x, νQt)dHn−1 = 0 (6.34)

if (6.32) holds.

We establish only (6.31), the proof of (6.34) being similar. By the coarea formula (applied
with f(x) = max{|x1|, . . . , |xn|})

lim
h→∞

|Q1 ∩Ah| = lim
h→∞

∫ 1

0
Hn−1(Ah ∩ ∂Qt)dt = 0,

thus, passing to further not relabelled subsequence, lim
h→∞

Hn−1(Ah∩∂Qt) = 0 for a.e. t ∈ (0, 1).

In particular, if suph b
′′
h < +∞, then

lim sup
h→+∞

∫
Ah∩∂Qt

φh(x, νQt)dHn−1 ≤ lim sup
h→+∞

b′′hHn−1(Ah ∩ ∂Qt) = 0. (6.35)

On the other hand, if b′′h → +∞ (up to a subsequence), then by the coarea formula and the
relative isoperimetric inequality in Q1

b′′h

∫ 1

0
Hn−1(Ah ∩ ∂Qt)dt = b′′h|Ah ∩Q1| ≤ b′′hcnP (Ah, Q1)

n
n−1 , (6.36)

where cn > 0 is the relative isoperimetric inequality for cubes. By (6.9)

P (Ah, Q1) ≤ 1

ah
S(Ah, Q1) ≤ 1

d5b′′h
S(Ah, Q1) ≤ Fh(Ah, uh, Q1)

d5b′′h
,

hence, by (6.36)

b′′h

∫ 1

0
Hn−1(Ah ∩ ∂Qt)dt ≤ cn

[M
d5

] n
n−1

[b′′h]−
1

n−1 .

This and (6.10b) imply

lim
h→+∞

b′′h

∫ 1

0
Hn−1(Ah ∩ ∂Qt)dt = 0.

In particular,
lim

h→+∞
b′′hHn−1(Ah ∩ ∂Qt) = 0

for a.e. t ∈ (0, 1). Now the proof of (6.33) follows as in (6.35).

Now we prove (6.30) assuming (6.31). Given t ∈ (r, 1) for which (6.33) holds, define
Eh := Ah \Qt. Then (Eh, uh) is an admissible configuration in (6.6), and thus,

Fh(Ah, uh;Q1) ≤ Φh(Ah, uh;Q1) + o(1) ≤ Fh(Eh, uh;Q1) + o(1), (6.37)

where in the first inequality we use (6.10c) and in the second we use the definition of Φh.
From the definition of Eh and (6.37) it follows that

Sh(Ah;Qt) ≤
∫
Ah∩∂Qt

φh(x, νQt)dHn−1 + o(1).
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This and (6.33) imply (6.30).

Now suppose that (6.32) holds. Let δh be defined as in (6.18), and let and ψ, and r′′ <
r′ < r and vh be as in (6.21) with v = u. Fix any t ∈ (r, 1) for which (6.34) holds and set
Eh := Ah ∪ Qt. Then for sufficiently large h that (Eh, vh) is an admissible configuration for
Φh(Ah, uh;Q1) in (6.6). Thus by (6.10c)

Fh(Ah, uh;Q1) ≤ Fh(Eh, vh;Q1) + o(1).

By the definition of Fh, as in the proof of (6.26) we establish

Sh(Ah;Qt) +

∫
Qr

(2ψ − ψ2)ChEuh : Euhdx

≤
∫
Qr

ψ2ChEu : Eudx+

∫
(Q1\Ah)∩∂Qt

φh(x, νQt)dHn−1 + o(1).

Thus, as in (6.27) letting h→∞ we obtain

lim sup
h→∞

Sh(Eh;Qt) +

∫
Qr

(2ψ − ψ2)CEu : Eudx ≤
∫
Qr

ψ2CEu : Eudx. (6.38)

Since ψ = 1 in Qr′′ and |ψ| ≤ 1, from (6.38) it follows that

lim sup
h→∞

Sh(Ah;Qt) +

∫
Qr′′

CEu : Eudx ≤
∫
Qr

CEu : Eudx.

Now letting r′′ → r we get (6.30). �

Recall that by [42, Theorem 6.2.1] if the elasticity tensor C is constant and satisfies (2.10),
then there exists Cb3,b4 > 0 such that every local minimizer u ∈ H1(Q1(x0)) of the functional

v ∈ H1(Q1(x0);Rn) 7→
∫
Q1(x0)

CEv : Evdx (6.39)

is analytic in Q1(x0) and satisfies∫
Qr(x0)

CEu : Eudx ≤ Cb3,b4 rn
∫
Q1(x)

CEu : Eudx (6.40)

for any r ∈ (0, 1/2). Let

τ0 := τ0(b3, b4) := (1 + Cb3,b4)−2. (6.41)

Using Proposition 6.3 and repeating similar arguments in [13] we get the following decay
property of the functional F .

Proposition 6.4. Assume (H1)-(H3). For any τ ∈ (0, τ0) there exist ς = ς(τ) ∈ (0, 1),
ϑ := ϑ(τ) > 0 and R := R(τ) > 0 such that if (A, u) ∈ C satisfies

Qρ(x) ∩ ∂∗A ⊆ Ju,∫
Qρ(x)\A

|Eu|dx = 0,

Hn−1(Qρ(x) ∩ Ju) < ςρn−1,

F(A, u;Qρ(x)) ≤ (1 + ϑ)Φ(A, u;Qρ(x))

for some Qρ(x) ⊂⊂ Ω with 0 < ρ < R, then

F(A, u;Qτρ(x)) ≤ τn−1/2F(A, u;Qρ(x)).
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Proof. Assume by contradiction that there exist τ ∈ (0, τ0), positive real numbers ςh, ϑh, ρh →
0, cubes Qρh(xh) ⊂⊂ Ω, and admissible configurations (Ah, uh) ∈ C such that

Qρh(xh) ∩ ∂∗Ah ⊆ Juh , (6.42a)∫
Qρh (xh)\Ah

|Euh|dx = 0, (6.42b)

Hn−1(Qρh(xh) ∩ Juh) ≤ ςhρn−1
h , (6.42c)

F(Ah, uh;Qρh(xh)) ≤ (1 + ϑh)Φ(Ah, uh;Qρh(xh)), (6.42d)

but

F(Ah, uh;Qτρh(xh)) > τn−1/2F(Ah, uh;Qρh(xh)) (6.43)

for any h. Note that F(Ah, uh;Qρh(xh)) > 0. Let us define the rescaled energy Fh(·;Q1) as in
(6.5) with

φh(y, ν) :=
(ρh/2)n−1ϕ(xh + 1

2ρhy, ν)

F(Ah, uh;Qρh(xh))

in place of ϕ(y, ν) and

Ch(y) := C(xh + ρhy)

in place of C(y), for y ∈ Q1. In view of (6.42a)-(6.42d) for

Eh := σxh,ρh(Ah)

(see definition of blow-up map σx,r at (2.1)) and

vh(y) :=
(ρh/2)

n−2
2 uh(xh + 1

2ρhy)√
F(Ah, uh;Qρh(xh))

we have

Fh(Eh, vh;Q1) = 1,

Q1 ∩ ∂∗Eh ⊂Hn−1 Jvh ,∫
Q1\Eh

|Evh|dx = 0,

Hn−1(Q1 ∩ ∂Jvh) < 2n−1ςh,

Ψh(Eh, vh;Q1) ≤ ϑhΦh(Eh, vh;Q1) ≤ ϑhFh(Eh, vh;Q1) = ϑh,

where Φh and Ψh are defined as in (6.6) and (6.7) (with ϕh and Ch in places of ϕ and C,
respectively). By the boundednes of Ω, there exists x0 ∈ Ω such that, up to extracting a
subsequence, xh → x0 as h → +∞. In particular, xh + ρhy → x0 for every y ∈ Q1. Then
the uniform continuity of C implies that Ch → C0 := C(x0) uniformly in Q1. Also by (2.8)
φh satisfies (6.9) with d5 := b1/b2. Thus, by Proposition 6.3 there exist v ∈ H1(Q1) and
infinitesimal rigid displacements ah such that, up to a subsequence,

wh := vh − ah → v

pointwise a.e. in Q1, Ewh ⇀ Ev in L2(Q1) as h→ +∞, and

lim
h→+∞

Fh(Eh, vh;Qr) = lim
h→+∞

Fh(Eh, wh;Qr) =

∫
Qr

C0(x)Ev : Evdx (6.44)
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for any r ∈ (0, 1]. In particular, from (6.43) and (6.44) it follows that∫
Qτ

C0(x)Ev : Evdx = lim
h→+∞

F(Eh, vh;Qτ )

≥ τn−1/2 lim
h→+∞

F(Eh, vh;Q1)

= τn−1/2

∫
Q1

C0(x)Ev : Evdx.

Since Fh(Eh, vh;Q1) = 1, by (6.44)
∫
Q1

C0(x)Ev : Evdx = 1. Moreover, as C0 is constant and

v is a local minimizer of (6.39), applying (6.40) with r := τ and R := 1 we get

Cb3,b4 τ
n =Cb3,b4 τ

n

∫
Q1

C0(x)Ev : Evdx ≥
∫
Qτ

C0(x)Ev : Evdx

≥τn−1/2

∫
Q1

C0(x)Ev : Evdx = τn−1/2,

which contradicts to the assumption τ < τ0. �

By employing the arguments of [43, Section 4.3] and using Proposition 6.4 we establish the
following lower bound for F .

Proposition 6.5. Given τ ∈ (0, τ0), let ς := ς(τ) ∈ (0, 1), ϑ = ϑ(τ) > 0 and R := R(τ) > 0
be as in Proposition 6.4 and let

R0 := R0(Θ, τ, b1) := min

{
R(τ),

b1nω
1/n
n ϑ

Θ(2 + ϑ)

}
, Θ > 0.

Let (A, u) ∈ C be a Θ-minimizer of F in Qr0(x0) such that Ω ∩ ∂∗A ⊂Hn−1 Ju and∫
Ω\A |Eu|dx = 0. Then for any x ∈ Qr0(x0) ∩ J∗u, where J∗u is given by (6.1), and any cube

Qρ(x) ⊂ Qr0(x0) with ρ ∈ (0, R0) one has

F(A, u;Qρ(x)) ≥ b1ςρn−1. (6.45)

Proof. Let (C,w), (D, v) ∈ C and O ⊂ Ω be such that C∆D ⊂⊂ O. By the isoperimetric
inequality, the inclusion ∂∗(C∆D) ⊂ O∩ (∂∗C ∪ ∂∗D), (2.8), the definition of S(·;O) and the
nonnegativity of W(·;O) one has

nω1/n
n |C∆D|n−1

n ≤P (C∆D) ≤ P (C,O) + P (D,O)

≤S(C,w,O) + S(D, v,O)

b1
≤ F(C,w;O) + F(D, v;O)

b1
, (6.46)

From (6.46) and the Θ-minimality of (A, u) in Qr0(x0) we deduce

F(A, u;Qr(x)) ≤F(B, v;Qr(x)) + Θ|A∆B| 1n |A∆B|n−1
n

≤F(B, v;Qr(x)) +
Θr

b1nω
1/n
n

(
F(A, u;Qr(x)) + F(B, v;Qr(x))

)
(6.47)

for any Qr(x) ⊂ Qr0(x0) and (B, v) ∈ C with A∆B ⊂⊂ Qr(x) and supp (u − v) ⊂⊂ Qr(x),
where in the last inequality we used the inequality |A∆B| ≤ |Qr| = rn. By the choice of R0,
if r ∈ (0, R0), then Θr

b1nω
1/n
n

≤ ϑ
2+ϑ , and thus, by (6.47)

F(A, u;Qr(x)) ≤ (1 + ϑ)F(B, v;Qr(x)).
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By the arbitrariness of (B, v) this inequality is equivalent to

F(A, u;Qr(x)) ≤ (1 + ϑ)Φ(A, u;Qr(x)). (6.48)

Now we prove (6.45). Fix any x ∈ J∗u; for simplicity we suppose that x = 0. By contradic-
tion, assume that

F(A, u;Qρ) < b1ςρ
n−1

for some Qρ ⊂⊂ Qr0(x0) with ρ ∈ (0, R0). Then by the nonnegativity of the elastic energy
and (2.8) one has

b1ςρ
n−1 > S(A, u;Qρ) ≥ b1Hn−1(Qρ ∩ Ju)

so that

Hn−1(Qρ ∩ Ju) < ςρn−1.

By Proposition 6.4 and the definition (6.41) of τ0

F(A, u;Qτρ) ≤ τn−1/2F(A, u;Qρ) < b1ς(τρ)n−1

so that

Hn−1(Qτρ ∩ Ju) < ς(τρ)n−1.

Then by induction,

Hn−1(Qτmρ ∩ Ju) < ς(τmρ)n−1 for any m ≥ 1.

However, by the definition of J∗u

1 = lim
m→+∞

Hn−1(Qτmρ ∩ Ju)

(τmρ)n−1
≤ 2b1ς

2b1
= ς < 1,

a contradiction. Hence, (6.45) holds for any x ∈ J∗u. Note that the map F(A, u; ·), defined for
open sets O ⊂⊂ Qr0(x0) extends to a positive Borel measure in Qr0(x0), and therefore, by
continuity of Borel measures, (6.45) extends also for x ∈ Qr0(x0) ∩ J∗u. �

Now we are ready to prove (6.2) and (6.3).

Proof of Theorem 6.1. Let (A, u) be a minimizer of F such that Ω ∩ ∂∗A ⊂ Ju and∫
Ω\A |Eu|dx = 0 and let λ0 > 0 be given by Theorem 2.4. Since (A, u) is also a mini-

mizer of Fλ0 , for any open set O ⊂ Ω and (B, v) ∈ C with A∆B ⊂⊂ O and supp (u−v) ⊂⊂ O
we have

F(A, u;O) ≤ F(B, v;O) + λ0

∣∣|A| − |B|∣∣ ≤ F(B, v;O) + λ0

∣∣A∆B
∣∣.

Hence, (A, u) is λ0-minimizer of F(·; Ω) in Ω.

Let us prove (6.2). Fix x ∈ Ω and let rx := min{1,dist(x, ∂Ω)}. Then by the λ0-minimality
of (A, u) for any r ∈ (0, rx) and ρ ∈ (r, rx)

F(A, u;Qρ(x)) ≤ F(A \Qr, u;Qρ(x)) + λ0|Qr(x) ∩A|, (6.49)

where for shortness Qr := Qr(x). Since F(A, u;Qρ(x) \ Qr(x)) = F(A \ Qr(x), u;Qρ(x) \
Qr(x)), from (6.49) and the definition and nonnegativity of F we get

F(A, u;Qr(x)) ≤
∫
∂Qr(x)

ϕ(x, νQr(x))dHn−1 + λ0r
n.

By (2.8) ∫
∂Qr(x)

ϕ(x, νQr(x))dHn−1 ≤ b2Hn−1(∂Qr(x)) = 2nb2r
n
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thus, using r ≤ 1 we obtain

F(A, u;Qr(x)) ≤ (2nb2 + λ0)rn−1. (6.50)

Using the nonnegativity of W(A, u;Qr(x)), (2.8) and the equality Qr(x) ∩ Ju = (Qr(x) ∩
∂∗A) ∪ (Qr(x) ∩A(1) ∩ Ju) in (6.50) we get

F(A, u;Qr(x)) ≥ S(A, u;Qr(x)) ≥ b1Hn−1(Qr(x) ∩ Ju).

Therefore,

Hn−1(Qr(x) ∩ Ju) ≤ 2nb2 + λ0

b1
rn−1.

Next we prove (6.3). Fix x ∈ J∗u. For τ0, given by (6.41), let ςo = ς(τ0/2) ∈ (0, 1) and
Ro = R0(τ0/2, b1, b2, λ0) > 0 be as in Proposition 6.5. By (6.45)

F(A, u;Qγr(x)) ≥ b1ςo(γr)n−1 (6.51)

for any γ ∈ (0, 1) and r ∈ (0, Ro) with Qr(x) ⊂ Ω. Let

ς∗ := ς(τ∗), ϑ∗ := ϑ(τ∗) and R∗ := min{R(τ∗), Ro}
be given by Proposition 6.4 for

2τ∗ := min
{τ0

2
,
( b1ςo

2nb2 + λ0

)2}
(6.52)

By contradiction, if Hn−1(Qr(x) ∩ Ju) < ς∗rn−1, then applying (6.48) with τ = τ∗ we get

F(A, u;Qr(x)) ≤ (1 + ϑ∗)Φ(A, u;Qr(x)).

Hence, by Proposition 6.4

F(A, u;Qτ∗r(x)) ≤ τn−1/2
∗ F(A, u;Qr(x))

so that by (6.51) and (6.50)

τ
1/2
∗ ≥ b1ςo

2nb2 + λ0
,

which contradicts to (6.52).

Finally, (6.4) follows from the density estimates together with a covering argument. �

From Theorem 6.1 we get the partial regularity of minimizers of F .

Proof of Theorem 2.7. (i)-(iii). Let (Ã, ũ) ∈ C be a minimizer of F and let

A′ := Ã(1), u′ := ũχA′∪S + ξ′χΩ\A′ ,

where ξ′ ∈ (0, 1)n is chosen such that Ω∩∂∗A′ ⊂ Ju′ . By [41, Chapter 15], ∂A′ = ∂∗A′. Clearly,
(A′, u′) is a minimizer of F , and by Theorem 6.1 Hn−1(J∗u′ \ J∗u′) = 0. Since Ju′ is rectifiable,

by [3, Theorem 2.63] Hn−1(Ju′ \ J∗u′) = 0 and hence observing Ω ∩ ∂A′ = Ω ∩ ∂∗A′ ⊂ Ju′ we
observe

Hn−1(A′ \ Int(A′)) ≤ Hn−1(∂A′) ≤ Hn−1(∂Ω) +Hn−1(Ju′) < +∞.
Now let

A := Int(A′) and u := ũχA∪S + ξ′χΩ\A.

Since |A∆A′| ≤ |∂A′| = 0, u = u′ a.e. in Ω ∪ S and hence, (A, u) is also a minimizer of F .
Moreover,

Hn−1(Ã(1) \A) ≤ Hn−1(∂A′) < +∞, Hn−1(Ju \ J∗u) = Hn−1(Ju′ \ J∗u′) = 0,
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and

Hn−1(J∗u \ J∗u) = Hn−1(J∗u′ \ J∗u′) = 0.

Thus, (i) follows. The assertions (ii) and (iii) directly follow from the minimality of (A, u)
and Theorem 6.1.

(iv). Finally, if E ⊂ A is a connected component of (the open set) A with Hn−1(∂∗E ∩Σ \
Ju) = 0, then for v := uχA∪S\E + u0χE we have

S(A, u) ≥ S(A, v)

and

W(A, u) ≥ W(A, v). (6.53)

In (6.53) the equality holds if and only of u = u0 in E. Therefore, by the minimality of (A, u)
it follows that u = u0 in E (up to an additive rigid displacement). It remains to prove

|E| ≥ ωn
(b1n
λ0

)n
.

Consider the competitor (A \E, u) ∈ C. Since (A, u) solves (2.13), Fλ0(A, u) ≤ Fλ0(A \E, u)
so that using u = u0 in E and the additivity of the surface energy, we get∫

∂∗E
ϕ(x, νE)dHn−1 ≤ λ0|E|.

Using (2.8) and the isoperimetric inequality in this estimate we obtain

λ0|E| ≥ b1P (E) ≥ b1nω1/n
n |E|

n−1
n .

Hence, |E| ≥ (b1nω
1/n
n /λ0)n and (iv) follows. �

Appendix A.

A.1. Equivalence of volume-constrained and uncontrained penalized minimum
problems. The following proposition can be seen an extension of [26, Theorem 1.1].

Proposition A.1. Assume (H1)-(H3). There exists λ0 > 0 (possibly depending on b1, b2 and
Ω) with the following property: (A, u) ∈ C is a solution of (2.12) if and only if (A, u) is also
a solution to (2.13) for all λ ≥ λ0.

Proof. Note that any minimizer (A, u) ∈ C of Fλ with |A| = v is also minimizer of F . Hence,
it suffices to show that there exists λ0 > 0 such that any minimizer (A, u) of Fλ for λ > λ0

satisfies |A| = v.

Assume by contradiction that there exist a sequence λh →∞ and a sequence (Ah, uh) ∈ C
minimizing Fλh such that |Ah| 6= v. Take any A0 ∈ BV (Ω; {0, 1}) with |A| = v. Then by
minimality, Fλh(Ah, uh) ≤ Fλh(A0, u0) = F(A0, u0) for all large h and hence, by (2.8) and
(2.9),

sup
h≥1

P (Ah) ≤ a :=
F(A0, u0) + b2Hn−1(Σ) +Hn−1(∂Ω)

b1
(A.1)

and

sup
h≥1

λh||Ah| − v| ≤ F(A0, u0) + b2Hn−1(Σ).

This implies |Ah| → v as h → ∞. By compactness, there exists a finite perimeter set A ⊂ Ω
and a not relabelled subsequence such that χAh → χA a.e. in Rn. In particular, |A| = v.
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Further we assume |Ah| < v for all h; the case |Ah| > v can be treated analogously. As in
the proof of [26, Theorem 1.1] given ε ∈ (0, 2εn), where εn > 0 will be chosen later, there exist
small r > 0 and xr ∈ Ω such that Br(x) ⊂⊂ Ω and

|A ∩Br/2(xr)| < εrn, |A ∩Br(xr)| >
ωnr

n

2n+2
.

For shortness, we suppose that xr = 0 we write Br := Br(xr). Since Ah → A in L1(Rn), for
all large h,

|Ah ∩Br/2| < εrn, |Ah ∩Br| >
ωnr

n

2n+2
.

Let Φ : Rn → Rn be the bi-Lipschitz map which takes Br into Br defined as

Φ(x) :=


(1− (2n − 1)σ)x, |x| < r

2 ,

x+ σ
(

1− r2

|x|2
)
x, r

2 ≤ x < r,

x, |x| ≥ r
for some σ ∈ (0, 1

2n ). Recall from [26, pp. 420-422] that the Jacobian JΦ of Φ satisfies

JΦ(y) ≥ 1 + C1(n)σ y ∈ Br \Br/2,
for some C1(n) > 0, and

JΦ(y) ≤ 1 + 2nnσ y ∈ Br.
Moreover, the tangential Jacobian Jn−1Tx of Φ on the tangent space Tx of ∂∗Ah satisfies

Jn−1Tx ≤ 1 + (1 + 2n(n− 1))σ, x ∈ Br ∩ ∂∗Ah. (A.2)

Set
Eh := Φ(Ah), vh := uhχAh\Br + u0χEh∩Br . (A.3)

Note that |Eh| < v and Eh∆Ah ⊂ Br. Let us estimate

Fλh(Ah, uh)−Fλh(Eh, vh) =

∫
Br∩∂∗Ah

ϕ(x, νAh)dHn−1 −
∫
Br∩∂∗Eh

ϕ(x, νEh)dHn−1

+2

∫
Br∩Juh

ϕ(x, νJuh )dHn−1 − 2

∫
Br∩Jvh

ϕ(x, νJvh )dHn−1

+

∫
Br∩Ah

W (x, Euh −M0)dx−
∫
Br∩Eh

W (x, Evh −M0)dx

+λh

(
|Eh| − |Ah|

)
:= I1 + I2 + I3 + I4. (A.4)

By the definition of vh and the nonnegativity of W, I3 ≥ 0 and

I2 ≥ −2

∫
∂Br

ϕ(x, νJvh )dHn−1 ≥ −2b2nωnr
n−1.

Moreover, by (A.2) and the area formula as well as from (2.8) and (A.1)∫
Br∩∂∗Eh

ϕ(x, νEh)dHn−1 =

∫
Br∩∂∗Ah

ϕ(Φ(y), νAh)Jn−1Ty dHn−1(y)

≤2b2(1 + 2n(n− 1)σ)Hn−1(Br ∩ ∂∗Ah) ≤ 2b2(1 + (1 + 2n(n− 1))σ)a.

Moreover, by (2.8)∫
∂Br∩∂∗Eh

ϕ(x, νEh)dHn−1 ≤ 2b2Hn−1(∂Br) ≤ 2nωnb2r
n−1,
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thus,

I1 ≥ −2b2(1 + (1 + 2n(n− 1))σ)a− 2nωnb2r
n−1.

Finally, repeating the same arguments of Step 4 in the proof of [26, Theorem 1.1], we obtain

I4 ≥ λhσrn
[
C1(n)

ωn
2n+1

− C1(n)ε− (2n − 1)nε
]
,

thus,

Fλh(Ah, uh)−Fλh(Eh, vh) ≥λhσrn
[
C1(n)

ωn
2n+1

− C1(n)ε− (2n − 1)nε
]

−2b2(1 + (1 + 2n(n− 1))σ)a− 2nωnb2r
n−1. (A.5)

Now if we define

εn :=
C1(n)ωn

2n+2[1 + C1(n) + (2n − 1)n]
,

then from (A.5) applied with ε = εn we deduce

Fλh(Ah, uh)−Fλh(Eh, vh) ≥ λhσεnrn − C
for some C independent of h. Thus, Fλh(Ah, uh) > Fλh(Eh, vh) for all sufficiently large h,
which contradicts to the minimality of (Ah, uh). �

Remark A.2. The same proof of Proposition A.1 works also with Fp and FDir in Theorems
2.8 and 2.9. Indeed, in case Fp, for configuration (Eh, vh), given by (A.3), the equality (A.4)
is written as

Fλhp (Ah, uh)−Fλhp (Eh, vh) =

∫
Br∩∂∗Ah

ϕ(x, νAh)dHn−1 −
∫
Br∩∂∗Eh

ϕ(x, νEh)dHn−1

+2

∫
Br∩Juh

ϕ(x, νJuh )dHn−1 − 2

∫
Br∩Jvh

ϕ(x, νJvh )dHn−1

+

∫
Br∩Ah

Wp(x, Euh −M0)dx−
∫
Br∩Eh

Wp(x, Evh −M0)dx

+λh

(
|Eh| − |Ah|

)
:= I1 + I2 + I3 + I4.

The estimates of I1, I2 and I4 are the same, and by (2.15) for I3 we have

I3 ≥
∫
Ah∩Br

Wp(x, Euh −M0)dx ≥ −
∫
Br

|f |dx,

which is independent of h.

Similarly, in case of FDir we define vh in (A.3) as

vh = uhχAh\Br
and the proof runs as in the case of Fp.

A.2. Some properties of GSBD-functions.

Lemma A.3. Let U be an open set and A ⊂ BV (U ; {0, 1}). Assume that u, v ∈ GSBD2(U).
Then uχA + vχU\A ∈ GSBD2(U).

Proof. Recall that by [18, Remark 9.3] if Since w ∈ GSBD2(U), then the Radon measure

µw(B) := Hn−1(B ∩ Jw) +

∫
B
|Ew|dx for all Borel sets B ⊂ U,
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can be used in [18, Definition 4.1]. Thus, uχA+vχU\A belongs to GSBD since, as A has finite
perimeter in U, the measure

λ(B) = µu(A ∩B) + µv(B \A) +Hn−1(B ∩ ∂∗A) for all Borel sets B ⊂ U
can be used in Definition 4.1 of [18]. Since EuχA + vχU\A = EuχA + EvχU\A, it follows that

uχA + vχU\A ∈ GSBD2(U). �

Note that this property does not hold for GSBV -functions, because the condition uχA +
vχU\A ∈ GSBV (U) requires some regularity of the traces of u and v along U ∩ ∂∗A. From

Lemma A.3 we get GSBD2(Int(Ω ∪ S ∪ Σ)) = GSBD2(Ω ∪ S).

Lemma A.4. Let n ≥ 2 and D ⊂ Rn be a connected bounded Lipschitz open set and let
u ∈ GSBD2(D) be such that Hn−1(Ju) = 0. Then u ∈ H1(D) and there exists a rigid
displacement a such that

‖u− a‖H1(D) ≤ Cn,D‖Eu‖L2(D)

for some constant Cn,D > 0 depending only on n and D.

Proof. Recall that by the Poincaré-Korn inequality for any connected Lipschitz set U ⊂ Rn
there exists Cn,U > 0 such that

‖v − a‖H1(U) ≤ Cn,U‖Ev‖L2(U) (A.6)

for any v ∈ H1(U) and for some rigid displacement a : Rn → Rn. Obviously, Cn,U is indepen-
dent of translation, and let us show

Cn,λU ≤ Cn,U for any λ ∈ (0, 1]. (A.7)

We may assume 0 ∈ U. Note that (A.6) is equivalent to

min
a rigid

‖v − a‖H1(U) ≤ Cn,U‖Ev‖L2(U), v ∈ H1(U). (A.8)

Fix any u ∈ H1(λU) and let vλ(x) := u(λx). Then vλ ∈ H1(U),∫
U
|vλ(x)|2dx = λ−n

∫
λU
|u(y)|2dy

and ∫
U
|∇vλ(x)|2dx = λ2−n

∫
λU
|∇u(y)|2dy,

∫
U
|Evλ(x)|2dx = λ2−n

∫
λU
|Eu(y)|2dy.

Then for any rigid displacement a(x) = Mx+ b we have

‖u− a‖2H1(λU) =λn‖vλ − aλ‖2L2(U) + λn−2‖∇vλ −M‖2L2(U) ≤ λn−2‖vλ − aλ‖2H1(U),

where aλ(x) = λMx+ b. Now taking aλ, satisfying (A.6) with v = vλ, we have

‖u− a‖2H1(λU) ≤ λn−2‖vλ − aλ‖2H1(U) ≤ C2
n,Uλ

n−2‖Evλ‖2L2(U) = C2
n,U‖Eu‖2L2(λU),

and thus, from (A.8) we get (A.7).

Now we prove the lemma. By [37, Proposition A.3] u ∈ H1
loc(D) and hence, by (A.6) we

just need to show u ∈ H1(D).

Step 1. First assume additionally that D is simply connected and 0 is in the interior of D.
Consider the sequnce

Di = (1− 2−i)D, i ∈ N,
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of rescalings of D. Since Di ⊂⊂ D and u ∈ H1(Di) by (A.6) and (A.7) there exists a rigid
displacement ai : Rn → Rn such that

‖u− ai‖H1(Di) ≤ Cn,D‖Eu‖L2(Di). (A.9)

Consider the sequence {ai}. Since D1 ⊂ Di ⊂ D, by (A.9)

‖ai − a1‖H1(D1) ≤ ‖u− ai‖H1(Di) + ‖u− a1‖H1(D1) ≤ Cn,D‖Eu‖L2(D).

Thus, {ai} is uniformly bounded in H1(D1). Since ai are linear, up to a subsequence, ai → a0

in H1
loc(Rn) and ai → a0 a.e. in Rn for some rigid displacement a0. Hence, by (A.9)

‖u− a0‖H1(Di) = lim
j→+∞

‖u− aj‖H1(Di) ≤ lim sup
j→+∞

‖u− aj‖H1(Dj) ≤Cn,D lim sup
j→+∞

‖Eu‖L2(Dj)

Since Dj ↗ D and Eu ∈ L2(D), by the monotone convergence theorem

‖u− a0‖H1(Di) ≤ Cn,D‖Eu‖L2(D).

Letting i→ +∞ in this inequality and using again the monotone convergence theorem we get
u− a0 ∈ H1(D), and thus, u ∈ H1(D).

Step 2. Now consider the general case. Since D is Lipschitz, for any x ∈ ∂D there exists
a cylinder Rx such that D ∩ Rx is a subgraph of a Lipchitz function. In particular, D ∩ Rx
is Lipschitz and simply connected. For x ∈ D let Rx be largest cube centered at x and
contained in D. Then D ⊆ ⋃xRx and hence, by the compactness of D, there exists finitely

many points x1, . . . , xm such that D ⊂ ⋃m
j=1Rxj . Since Rxj ∩D is simply connected, by Step

1, u ∈ H1(Rxj ∩D) and there exists a rigid displacement aj such that

‖u− aj‖H1(Rxj∩D) ≤ Cn,Rxj∩D‖Eu‖L2(Rxj∩D).

Thus,

‖u‖2H1(D) ≤
m∑
j=1

‖u‖2H1(D∩Rxj ) ≤ 2
m∑
j=1

‖u− aj‖2H1(D∩Rxj ) + 2
m∑
j=1

‖aj‖2H1(D∩Rxj ) < +∞.
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