EXISTENCE OF MINIMIZERS FOR THE SDRI MODEL IN R":
WETTING AND DEWETTING REGIMES WITH MISMATCH STRAIN

SHOKHRUKH YU. KHOLMATOV AND PAOLO PIOVANO

ABSTRACT. The existence and the regularity results obtained in [37] for the variational model
introduced in [36] to study the optimal shape of crystalline materials in the setting of stress-
driven rearrangement instabilities (SDRI) are extended from two dimensions to any dimen-
sions n > 2. The energy is the sum of the elastic and the surface energy contributions, which
cannot be decoupled, and depend on configurational pairs consisting of a set and a function
that model the region occupied by the crystal and the bulk displacement field, respectively.
By following the physical literature, the “driving stress” due to the mismatch between the
ideal free-standing equilibrium lattice of the crystal with respect to adjacent materials is
included in the model by considering a discontinuous mismatch strain in the elastic en-
ergy. Since two-dimensional methods and the methods used in the previous literature where
Dirichlet boundary conditions instead of the mismatch strain and only the wetting regime
were considered, cannot be employed in this setting, we proceed differently, by including
in the analysis the dewetting regime and carefully analyzing the fine properties of energy-
equibounded sequences. This analysis allows to establish both a compactness property in the
family of admissible configurations and the lower-semicontinuity of the energy with respect
to the topology induced by the L'-convergence of sets and a.e. convergence of displacement
fields, so that the direct method can be applied. We also prove that our arguments work as
well in the setting with Dirichlet boundary conditions.

1. INTRODUCTION

Elastic effects can strongly affect the structure of crystalline materials by inducing morpho-
logical destabilizations from the optimal free-standing crystalline equilibrium, that are often
referred to as the family of stress-driven rearrangement instabilities (SDRI) [4, 19, 30, 34, 48].
In order to relieve the strain, atoms move from their crystalline order possibly inducing both
bulk deformations and interface irregularities. The latter can be originated in various forms,
such as the roughness of the exposed crystalline boundaries, the formation of internal cracks in
the bulk, the nucleation of dislocations in the crystalline lattice, and the delamination at con-
tact edges with adjacent materials. However, such corrugations and extra boundary interfaces
are not favorable with respect to the surface energy, which would instead prescribe regular
specific Wulff/Winterbottom-type shapes [44, 45, 50, 51]. Therefore, the surface energy com-
petes against the destabilizing effect of the elastic energy with a regularizing effect: a delicate
microscopical compromise between such opposite mechanisms must then be reached strongly
affecting in a variety of ways the original crystalline-material macroscopical properties.

In the strive of capturing such interplay between elastic and (anisotropic) surface energy
described by the physical literature [25, 35, 39, 46, 47, 49, 52|, various mathematical models
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with a variational nature have been introduced in relation to the different settings relevant
for the applications. A non-exhaustive list includes [6, 9, 20, 21, 27, 33, 38| for epitaxially-
strained thin films deposited on supporting materials, [10, 11, 29] for fractures, [5, 40] for
delamination, and, e.g., [28] for crystalline cavities. Establishing the existence of minimizers
for such models even in dimension n = 2 is a challenging task especially due to compactness
issues. Such issues were first solved in simplified settings, by working under the antiplane-shear
assumption [8, 16], or by distinguishing the applications with adhoc geometric assumptions on
the morphology of the crystalline materials, such as adopting graph-type and star-shapedness
constraints on film profiles and crystal cavities, respectively. More recently, the development
of several techniques related to GSBD-functions, a specific subclass of functions of bounded
deformation [18], have been sucessfully applied to models related to the Griffith energy [11,
12, 13, 14, 18, 29]. Following this progress, there has been a growing effort [15, 17, 36,
37] to develop mathematical frameworks enabling the simultaneous treatment of the various
mechanisms of mass rearrangement and boundary instabilities, which is of crucial importance,
as often such phenomena concomitantly occur in applications.

The aim of this paper is to extend to dimension n > 2, and hence including the physical
relevant case of n = 3, the existence and the regularity results obtained in [37] for n = 2
for the SDRI model introduced in [36]. In regard of the existence, such an extension was
previously achieved in [17] for the wetting regime, i.e., the case for which it is more convenient
for the crystal material to always cover the surface of a (supporting) adjacent material rather
than letting it exposed, and the setting in which the stress driving effect characterizing SDRI
is mathematically prescribed by introducing boundary Dirichlet conditions. Here we address
also the dewetting regime and, as previously done by the authors in [36, 37] for n = 2, by
following the physical literature [4, 19, 30, 34, 47, 48, 52] we avoid the use of any Dirichlet
boundary conditions and we directly introduce a mismatch strain in the elastic energy. As
suggested by its name, such strain is induced in the free crystal, i.e., the crystal of which
we are studying the morphology, by the mismatch between its ideal free-standing equilibrium
lattice and the lattice of adjacent materials. Since the approach used in [17] cannot be applied
to this setting without boundary conditions as it is described below (see also [37]), we have
developed an alternative strategy that allows us to tackle both the case with mismatch strain
and the one with Dirichlet conditions (see Remark 2.10 for more details). Finally, the method
of this paper extends (also to both the settings with and without Dirichlet conditions) the
regularity results for the bulk displacements and the morphologies of the energy minimizing
configurations obtained by the authors in [37] for n = 2 (besides extending the existence
results of [37] to the presence of different adjacent materials and to Griffith-type models with
mismatch strain and delamination).

To facilitate this generalization, we adopt the terminology introduced in [36, 37], by refer-
ring to the bounded region € in the space R™ where the free crystal is located as the container
in analogy to capillarity problems, and to the region .S occupied by adjacent materials outside
the container, i.e., S C R™\ 2, as the substrate in analogy to the thin-film setting where S
is the supporting material on which the film is being deposited. We notice that the contact
region between the container and the substrate ¥ := 92N 95 is assumed to be a Lipschitz
(n — 1)-manifold and that S can be given by a finite number of different connected compo-
nents possibly modeling different adjacent materials. The free crystals are then represented
by configurational pairs of set-function type (A, u), where A C Q is a set of finite perimeter
denoting the region occupied by the free crystal and subject to the volume constraint |A| = v
with v € (0,|9]], and u is a vector valued faction in GSBD?(Int(AUXUS))NHL (S) denoting

loc
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the displacement field of the free-crystal and substrate bulk materials with respect to their
optimal equilibrium arrangements. The family of all such admissible configurational pairs
(A, u) is denoted by C.

The configurational energy of any free-crystal pair (A, u) € C is defined by
F(A,u) = W(A,u) + S(4,u), (1.1)

where & and W represent the elastic and the surface energy, respectively. The elastic energy
W in (1.1) is defined as in [27] by

W(A,u) = C(x)[Eu — M) : [Eu — M| dx,
AUS
where C is a bounded measurable tensor-valued map C in U S satisfying the coercivity
assumption C > ¢I > 0 (in the sense of linear operators), where I is the identity tensor, Eu is
the approximate symmetric gradient of u (see (2.2)) and My is the (discontinuous) mismatch

strain defined as
5’LLO in Q,
My = 1.2
0 {0 in S (12)

for some fixed ug € H'(R"). In the special case in which the equilibrium lattice of the free

crystal and of the substrate matches at 3, we take ug = 0. The surface energy S in (1.1) is
defined as

S(A,u) = /8*AUJ P(z, v(z))dH" L,

where 9% A is the reduced boundary of A, J, is the jump set of u, and the surface energy
density (-, v(+)) is given by

o(r,va(z)) ifxeQNI*A,
) 20(z,vy,(2) ifze AV,
Ve r@) =9 50 if z € [ZN0* A\ Ju, (1.3)

oz, vs(z))  fzeXnNo*ANd,,

where vy () denotes the outward-pointing normal vector to U at x € 9*U for any set of finte
perimeter U C R", vy := vg, v, is the normal on J,, AWM is the set of points of density
1 for A, p € C(Q x R") is a a Finsler norm denoting the anisotropic surface tension of the
free-crystal material, and f € L*(X) represents the relative adhesion coefficient of ¥ for
which we assumed, as in capillarity theory (see, e.g., [24]), that

1B(x)] < p(x,vy) for ae. x €. (1.4)

We notice that the weights in (1.3), which forbid to decouple the surface energy from
the elastic energy making the energy F highly nonlocal, are consistent with the ones chosen
in [17, 27, 28, 36, 37|, where they were crucial to prove energy lower-semicontinuity-type
properties. In particular, the anisotropy on internal cracks A N J, is weighted twice as
much as the free boundary €2 N 9*A of the exposed boundary of the free crystal, because
cracks can be approximated by “closing voids” as in [17, 27, 36]. The presence of the surface
energy over X NJ*ANJ, allows to consider a more general framework for thin films depositing
on a substrate, in which cracks are allowed to appear not only inside the film material, but also
along the surface of the substrate characterizing the delamination region, where debonding
between the atoms of the two materials occurs, and as such, the corresponding surface tension
in (1.3) is regarded as the same of the one on the free-crystal exposed boundary. Finally, on
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the complementary region to the delamination in 3 N 9*A where the bulk displacement is
continuous, the relative adhesion coefficient [ is considered.

We observe that in the case of total wetting case, i.e., if f(x) = —p(z,vs(z)) for a.e.
z € X, we reduce to the setting of material voids considered in [17] (with the mismatch strain
Mj replaced by a Dirichlet boundary condition). On the contrary, in the total dewetting
case, i.e., if B(x) = p(z,vs(z)) for a.e. x € X, then one can readily check that the energy
F is minimized by configurational pairs with displacement v = wug in §2 and null otherwise,
and so characterized by having a zero elastic energy: the model reduces to the dewetted
capillarity setting, or in other words, to the anisotropic isoperimetric problem in a container.
Finally, in the case with v = ||, we reduces to the Griffith model with the inclusion of
possible delamination at the substrate boundary, which generalize also for n = 2 the setting
considered by the authors in [36, 37] together with S # ().

We now present the two main results of the paper (see Section 2.2 for more detailed state-
ments) and comment their proofs. We begin by observing that, since the values of the ad-
missible displacement fields u in the void regions 2\ A do not play any role in the energy
of (A,u), as only a formal difference with respect to the previous presentation of the SDRI
models introduced in [36, 37], for every (A, u) € C we can redefine u in Q\ A with a properly
chosen constant such that QN9*A C J, (see Remark 2.1), and so without changing the value
of F(A,u). We make use of this observation in the following.

Theorem 1.1 (Existence of minimizing configurations). The minimum problem

i A 1.
(A,u)renclﬂA\:v F(4u) (1.5)

admits a solution.

We refer the Reader to Theorem 2.4 for a more detailed and comprehensive statement of the
existence result of Theorem 1.1.

Theorem 1.1 is established by means of the direct method of the calculus of variations with
respect to a properly chosen topology 7¢ with which we equip C, and that is characterized by
the convergence:

Ay — A in LY(RY),

A = (4
( kauk)—>( ’u) — {uk—)u a.e.in QU S.

In order to establish the 7¢-lower semicontinuity of F in Theorem 2.5 we consider the pos-
itive Radon measures p; and p in R™ associated to the localized energy versions of F (A, ug)
and F(A,u), respectively, for which it holds that

liminf F(Ag, ux) > F(A,u) = liminf g, (R™) > p(R™). (1.6)
k—+o00 k—+o00
Then, we observe that, up to a subsequence, u; weakly® converges to some positive Radon

measure fi9, and that u is absolutely continuous with respect to H* 'L(0*A U J, U X) +
L (QU S), and we establish the following estimates for the Radon-Nikodym derivatives:

dpg du B )

> =1 _a.e. AU J, U, 1.7

dHr-1 I—(a*A UJ, U E) — dHnr—1 L(a*A UJ, U E) H a.e. on ( )
duo > du L"-a.e. in QUS, (1.8)

dcrlL(QuS) — dLrl(QuS)
which imply that lim p;(R™) = po(R™) > p(R™) and, in view of (1.6), conclude the proof of
the lower-semicontinuity. For the estimate (1.7) we need to distinguish between the estimate
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at the reduced boundary of A and at X\ J,,, where we can implement techniques developed in
capillarity theory [1, 24|, from the estimate at the (approximate) jump points of u, where we
employ arguments based on the slicing properties of GSBD-functions as in the Griffith model
[13, 14, 15], for which though extra care is needed: unless v = ||, we cannot directly apply
those arguments because at jump points we need to obtain different weights with respect to
the ones at the reduced boundary of A. Rather, we replace .J,, in small “holes” up to some
error by means of Corollaries 3.3 and 3.5 in such a way that each slice intersects the boundary
of those holes at least in two points (see the proof of Proposition 4.1), which in turns yields the
desired estimate with weight 2 at such jump points (see Corollary 4.2). Finally, we prove (1.8)
by using the convexity of W(A, ) and by observing that the condition uy — u a.e. in QU S,
together with the compactness result [14, Theorem 1.1}, allows us to conclude that Eup — Eu
in L?(QUS). We recall that in [17] the authors prove the lower semicontinuity of an energy for
crystalline voids via relaxation arguments. Namely, the authors start in the regular family of
pair configurations given by voids with a Lipschitz boundary and Sobolev displacement fields,
and then in the relaxation, the jump set appears as the void boundaries collapse, resulting in
a coefficient 2 in front of the jump energy of S. We are here actually arguing in the reverse
direction: first we start in C with admissible pairs allowing displacements with jump sets, and
then we carefully create an at most countable family of voids around them.

The 7¢-compactness of an energy-equibounded sequence {(Ag,ux)} C C is established in
Theorem 2.6. We easily get the uniform bounds on the perimeters of Ay, the H"~!- measure of
the jumps J,, , and the L2-norm of Euy, by the assumptions on the anisotropic surface tensions
and the elasticity tensor (see Remark 2.3). Thus, we can directly deduce the convergence in
L'(R™) up to a non-relabelled subsequence of A; to some set A C  of finite perimeter.
However, establishing the £" a.e. convergence of the displacements wuy is delicate: by [14,
Theorem 1.1] there could be an exceptional set E' with £" positive measure, in which |ug| —
+00. The presence of such an exceptional set has been previously treated by prescribing
Dirichlet boundary conditions [13, 14, 17]. For instance, in [17] the compactness issue is solved
by considering in the proof an auxiliary more general class GSBD%,, p > 1, of displacements
(which are allowed to attain the infinite value on a subset of their domain of also L™ positive
measure) and then, by using the Dirichlet condition imposed on the displacements at the
boundary, the authors are able to prove that the minimizing displacements belong to the
original space GSBDP. However, as in the setting with the mismatch strain (1.2), we cannot
rely on any fixed boundary condition, one cannot even exclude the situation with £ = QU S
and hence, this issue unfortunately forbids the implementation of the strategy of [17] to our
SDRI setting. The other option of excluding the presence of the exceptional set is based on
the employment of Poincaré-Korn inequality for GSBD-functions citeCCF:2016 with small
jump: the set €2 is partitioned into a Caccioppoli family {P;} of sets P; in which a sequence
{ai} of rigid displacements are defined in such a way that uy — ai/, is convergent pointwise a.e.
in Pj, so that one can conclude that the sequence

Vg = U —Zaixpj (1.9)
J
converges to some u € GSBDP(Q) a.e. in , Ev, — Eu in LP(Q), and

lim H(g,) = 1 (LU @n o))
J

k—+o0

(see [15, Theorem 1.1]). However, also this approach seems not implementable in our SDRI
setting, since the functions vy defined in (1.9) may admit extra jumps along the boundary
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of the partition phases P; that should be counted with different weights in our setting with
different surface tensions.

In view of these issues, in order to prove compactness we use a different strategy in this paper
by directly partitioning the sets A and Ay (not only A!) into Caccioppoli families (that need
to be created by starting from the connected components of the substrate) up to a controllable
error (see Figures 3 and 5). Such strategy is a reminiscence of the ideas already used by the
authors in [36, Theorem 2.7], of partitioning Ay by means of introducing extra circles closing
the shrinking “necks”, which though works only for n = 2 and under the constraint assumed
in [36] on the number of boundary components for the admissible free-crystal regions. More
precisely, we proceed here arguing as follows: First, by the classical Poincaré-Korn inequality
we partition S in a family {S*};>1 of sets S? such that for each i > 1 the set S is a union of
connected components of S and there exists a sequence of rigid displacements {a};} such that,
up to a subsequence, ug — aiz converges a.e. in S* and ]a}; — aﬂ — +00 a.e. in R” for every
j # 4. Second, by applying [14, Theorem 1.1] with uj, — ai we construct a family {F*};>o of
pairwise disjoint Caccioppoli subsets of A, such that for 7 > 1 the sequence uy — a}'C converges
a.e. in F*U S® and diverges to infinity otherwise, and FY := A\ |J,~, F*. Furthermore, since
FY is the portion of the free crystal, so-called in the following “hanging phase” (see Figure
1), that does not “interact” with any substrate component, we can redefine the displacements
in F as ug (see (1.2)), which corresponds to providing a zero contribution to the overall
elastic energy. Third, by using the H"~ !-rectifiability of 9* F% and Propositions 4.1 and 5.2,
we construct for any § > 0 a union Gg C Q of open sets covering | J9*F® up to some error of
order O(v/0) and whose perimeter and volume are controlled, and we set

B) = A\ G2 and v} = ugxpo + Z(uk - a%)XSiU(Fi\Gi) + o X po. (1.10)
i>1

We notice that actually the definition of the v in (1.10) is more involved (see (5.3)), as
we need also to control the possible large jumps created along X, that though in the limit
disappear (becoming wetting layer), by creating artificial small jumps in Ai\A and redefining
U,‘i in that set near . The obtained configurations satisfy

F(Ag,ug) > F(B,v9) — C\/S(H"—l(a*Ak) +H "N (Jy,) + Em: P(Fh)) (1.11)
h=0

for some constant ¢ > 0 (see Proposition 5.1), from which Theorem 2.6 follows by a diagonal
argument.

We also notice that in the case with Dirichlet boundary conditions, one see at most 2
elements in the partition, the hanging phase F° and a phase F! interacting with the substrate,
since in this case we do not need to add any rigid displacements. Apart from this simplification,
the methods used in the proof of Theorems 2.5 and 2.6 still work, even by relaxing the
assumptions on the convex elastic energy densities, i.e., by allowing for a p-growth with
respect to the strains (see Section 2.3). This allows us in particular to recover in Remark
2.10 the existence results for the model representing material voids in the framework with
Dirichlet boundary conditions of [17] and the existence and regularity results for the Griffith
fracture model with Dirichlet boundary conditions of [13].

The second main result of the paper relates to properties of partial regularity satisfied by
the minimizers (A, u) of F, such as the essential closedness of .J, and 9*A.
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S

FIGURE 1. The partitions of the substrate and the free crystal into, respectively,
the families {S%};>1 and {F*};>0 of Caccioppoli sets, which are used to prove the ¢-
compactness result, are depicted by representing the various phases of the free crystal
that are interacting with the substrate with different line patterns and the remaining
“hanging phase” F© with a point pattern.

Theorem 1.2 (Regularity results for minimizing configurations). Let (A,7) be a
solution of (1.5). Then the pair (A,u) defined by

A :=Tnt(AW) and  w:=uxaus +&{xa\a,

where £ € R™ is chosen such that QNO*A C J, (see Remark 2.1), is also a solution of (1.5).
Furthermore, we have that

H AW\ A) < 400, H (I, \ J) =0, and  HHTF\J¥) =0,

where

Jy i ={x e Jy: 0(Jy,z) =1}
with 6(Jy,x) denoting the (n — 1)-dimensional density of J, at x. Finally, there exists a
constant ¢ > 0 such that if E C A is a “hanging” component of A, i.e., if H" 1([0* ENS]\J,) =
0, then |E| > c.

We refer the Reader to Theorem 2.7 for a more detailed statement of Theorem 1.2.

The proof of Theorem 1.2 is carried out by implementing in the SDRI setting the methods
for the partial regularity of the minimizers of the Griffith model by means of the ideas already
employed by the authors in [37] for n = 2: we introduce a localized version of F and establish
uniform lower and upper H" ! density estimates for the jump sets (see Section 6). by paying
extra care to treat the presence of voids and of the different weights for the surface tension in
the surface energy, which is a crucial difference from the Griffith model. We overcome such
difficulties by means of the strategy employed in [43] and based on the relative isoperimetric
inequality [3] to distinguish in the Decay Lemma the blows up “inside the free crystal” from
the ones “in the voids”, and by applying the approximation result of [12, Theorem 3].

The paper is organized as follows: In Section 2 we introduce the SDRI model, some pre-
liminary results related to sets of finite perimeter and GSBD-functions, and state the main
results. In Section 3 we provide some technical results which allows to replace a part of jump
set with an open set without modifying too much the corresponding SDRI energy. Section 4
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is devoted to the proof of the lower semicontinuity of F. Section 5 contains the proof of the
compactness for energy-equibounded sequences. In Section 6 we prove the decay estimates
for F and the regularity results of Theorem 2.7. Finally, we conclude the paper with the Ap-
pendix containing the results related to the equivalence of the volume-constrained minimum
problem with the volume-uncontrained penalized minimum problem, and to some properties
of GSBD-functions.

2. MATHEMATICAL SETTING AND FORMULATION OF THE MAIN RESULTS

Notation. Unless otherwise stated, all sets we consider are subsets of R™, in which the

coordinates (z1,...,%,) of x € R™ are given with respect to the standard basis {ei,...,e,}.

The symbol B, (x) stands for the open ball in R" centered at x and of radius » > 0. The
T

symbol Q(z) := x + [-§, 5| stands for the standard n-dimensional (hyper) cube in R™ of

sidelength r centered at z. We write @, := [—5,%]". Given r > 0, v € S"! and z € R" we

denote by Q. (x) the cube of sidelength r centered at x whose sides are either parallel or
perpendicular to v. The characteristic function of a Lebesgue measurable set F' is denoted
by xr and its Lebesgue measure by |F|; we set also w, := |B1(0)|. We denote by E° the
complement of F in R”. By H"~! we denote by (n — 1)-dimensional Hausdorff measure in R"
and we write K =yn-1 L and K Cyn-1 L to mean H* }(KAL) =0 and H* (K \ L) = 0.

Given an open set U C R™, the set of L!(U)-functions having bounded total variation in U
is denoted by BV (U) and the elements of

BV(U;{0,1}):={ECU: xg € BV(U)}

are called sets of finite perimeter in U. The standard references for BV -functions and sets of
finite perimeter are for instance [3, 32, 41].

Given E € BV (U,{0,1}) we denote

~ by P(E,U) := [,; |Dxg| the perimeter of E in U;
— by OF the measure-theoretic boundary of F, i.e.,

OE :={zxeR": 0<|B,NE|<|B,| Vp>0}
— by 0*F the reduced boundary of F, i.e.,

i Dxe(Bi()
b IDxE| (B (2)

— by vg the outer measure-theoretic unit normal to 0*F

O*E = {x eR": Jvg(z) = and |vp(z)| = 1}.

Given a Lebesgue measurable set £ C R™ and « € [0, 1] we define

B ( )N E|
E@ .— R™: 1 | = .
{9” LSS Bl O‘}

Given a set K C R™ and a point g € R", we denote by

n—1
0.(K, z0) = liminf -+ (Br(20) N K)

r—0 Wp_1r™1

and

n—1 Br K
0" (K, xo) : —hmsupH ( (:U;)Elm )
r—0 Wn—1T
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the (n — 1)-dimensional lower and upper density of K at xg, respectively (see e.g., [3, page
78]). When these densities coincide, we denote their common value by §(K, z¢). Recall that
by [3, Theorem 2.63], K is 1" !-rectifiable if and only if (K, x) = 1 for H" l-a.e. x € K.

Given x € R™ and r > 0, the blow-up map o, is defined as

o0 (y) = y;x. (2.1)

Given an open set U C R™ and a metric space X we denote by Lip(U; X) the family of all
Lipschitz functions ¢ : U — X. We denote by Lip(¢) the Lipschitz constant of ¢) € Lip(U; X).

By GSBD(U;R"™) we denote the collection of all generalized special functions of bounded
deformation (see [14, 18] for their definition and properties). Given u € GSBD(U;R") w
denote by fu € M”X” the approxzimate symmetric gradient and by J, the jump set of u; we
recall that by [18, Theorem 9.1]

oo i (200 000~ S0y ) (5 — )
y—o |y — =
and by [18, Theorem 6.2] J,, is H" L-rectifiable. Let us also define
GSBD?*(U) := {u € GSBD(U;R") : Eu € L*(U;M™")}.

sym

=0 forae. zeU (2.2)

Given a H" l-rectifiable set K C U, we consider a normal vector vi to its approximate
tangent space and we denote by u}g and uj the approximate limits of v € GSBD(U;R")
with respect to vy, i.e.,

ujl(r):= aplim wu(y) and wup(z):= aplim wu(y)
(y—z)-vg >0, (y—x)-vi <0
yelU yelU

for every x € K whenever they exist [18, Definition 2.4]. We refer to uj. and uy; as the two-
sided traces of u at K and we notice that they are uniquely determined up to a permutation
when changing the sign of vg.

Let us recall some notation from [14] related to GSBD-functions. For ¢ € S*~1, y € R",
BCR"and v:B — R" let

Mg :={r €R": z-& =0}, BS:={teR: y+t € B},
and
V() =y 1), BE(E) = E(t) - €.
We denote by m¢ the projection of R" onto Il¢, i.e.,
me =z — (z- )¢

Recall that if v € GSBD?(U) for an open set U C R", then 55 € SBVI(Q)C(sz) for every

€S and H* l-ae. y e II.. We denote by ug the the absolutely continuous part of Dug

w.r.t. £ Let us introduce
1Y = 0s 12dt
y,ﬁ(v) /5 |“y‘

I (v) := [D[r(v- &)1 (Uy),
% and satisfies 0 < 7/ < 1. By [14, Eq. 3.8]

1
} YR /\&) )€ - gy2dg;</ Ev2de (2.3)

and

where 7 € C1(R, (—
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and by [14, Eq. 3.9] and obvious estimate a < 1 + a?

[ =) = IDdrto-lw) < [ levia 1= wn
I, U

<|U| +/ Ev?dz + H" LU N Jy). (2.4)
By the Fubini Theorem and the equality '
L b =2, vesm,
for any " L-rectifiable Borel set L C R” and an open set U C R™ we have

/Sn_1 d”H"‘l(f)/ v, - £l AR (y)

UNL

H L (UNL) =

Wn—1
1
2wn—1

/ dH"NE) | HOUENLS) dH" (y), (2.5)
Sn—1 Il

where we applied the area formula with 7¢ in the second equality.
A linear function a : R* — R" satisfying Va = —(Va)’ is called an (infinitesimal) rigid
displacement.

2.1. The SDRI model. Given nonempty open sets Q2 C R” and S C R™ \ 2, we define the
space of admissible configurations by

C.= {(A, w): A€ BV(Q{0,1}), ue GSBDX(Int(QUSU)) N HILC(S)}
where 3 := 05 N 01.
The energy of admissible configurations is given by
F :C — [—o00, 400, F:=8+W,

where & and W are the surface and elastic energies of the configuration, respectively. The
surface energy of (A,u) € C is defined as

Sld,u) = /QQB*A (@, va(z)) dH" ™ (x)
T / [p(2, v, (2)) + (e, —vy, (2)] dH" " (2)
AN,

+/ mm&WWm+/ oz, —vs(2)) K™ (2),
£ A\ J,, $No* ANy,

where ¢ : Q x S"71 — (0,+00) and 8 : ¥ — R are Borel functions denoting the anisotropy
of crystal and the relative adhesion coefficient of the substrate boundary, respectively, and
vs, = vg. In applications instead of ¢(z,-) it is more convenient to use its positively one-
homogeneous extension ||¢(x,&/|€]). With an abuse of notation we denote this extension also
by ¢.

The elastic energy of (A, u) € C is defined as

W(A,u) := W(z,Eu — My)dz,
AUS

where the elastic energy density W is a quadratic form
W(z,M) :=C(z)M : M,
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determined by a tensor-valued measurable map = € QUS — C(x), the so-called stress-tensor,

in the Hilbert space Mg " of all n x n-symmetric matrices with the natural inner product

n
M:N = Z MZ]NU

ij=1
The mismatch strain x € QU S — My(z) € M is given by
Mo — 8”0 %n Q,
0 in S,

for a fixed up € H*(R™).
Remark 2.1 (Values of displacements outside a set).
(i) The functional F(A,u) does not “see” the values of u in 2\ A, i.e.,
F(Au) = F(A,uxaus +vxa\a) forany v e GSBD?*(Q).

Thus, we can redefine u in Q \ A arbitrarily without changing the energy of the
configuration (A, u).
(ii) For any (A,u) € C there exists an at most countable set Z(4% C R” such that for
any ¢ € R"\ 244 the function
ut = uxaus + {xa\a (2.6)
satisfies

e =31 (QNIAUENT)UAD N T,)U(E\ 9*A). (2.7)

Indeed, for £ € R” let EéA’u

J

u

)= {r e 0*AUY : try gu(r) =&} C X UO*A and let
=AW = {ee R H (B > 0}

Since H" 1(9*AUY) < 400 and EéA’u) N E7(7A7u) = () for £ # 7, by slicing arguments
(see e.g. [37, Proposition A.2]) the set Z(4%) is at most countable. By the definition
of jump, for any & € R" \ 2(4%) the function ué satisfies (2.7).

(iii) For any countable set & C C there exists an at most countable set =y C (0,1)" such
that for any & € (0,1)"\ =y and (A, u) € U the function u¢, defined as in (2.6), satisfies
(2.7). Indeed, it is enough to define

- =(A,
By = U (A,
(Au)eU

We introduce a topology in C as follows.

Definition 2.2. We say that a sequence {(Ag, ur)} converges to (A4, u) € C in the 7¢-topology
(or shortly 7e-converges) and denote as (Ay, ug) -5 (A, u) if

e A — Ain L'(R"),
e up —wuae in QUS.
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2.2. Main results. Unless otherwise stated, throughout the paper the parameters €, S, ¢,
B, C of SDRI energy and volume constant v are assumed to satisfy the following:

(HO) © and S are bounded Lipschitz open sets, S has finitely many connected components,
Y :=00QNJIS is a Lipschitz (n — 1)-manifold,;

(H1) ¢ € C°(Q x R™) and is a Finsler norm, i.e., there exist by > b; > 0 such that for every
r € Q, o(r,-) is a norm in R™ satisfying

bilg] < p(z,€) <b2lél,  z€Q, ERY (2.8)
(H2) g € L*™°(X) and satisfies
— oz, vn(z)) < B(z) < oz, vs(z)) H' lae x €Y, (2.9)
(H3) C € L>®(QQU S)N C%Q) and there exists by > b3 > 0 such that
WyM:M<C@M:M<2,M:M, =2eQUS, MeMyr  (210)

(H4) v € (0, |9]].

Remark 2.3 (A priori bounds). Hypotheses (H1)-(H3) are important to get a priori esti-
mates for energy-equibounded countable families. Indeed, let &4 C C be any at most countable
family of C such that

M := sup F(A5u)<+oo.
(Au)eU

Then by (2.8) and (2.9)
S(A;u) <M and W(A,u) < M+/ BlAH < M + by ().
)

Moreover:
(i) for any (A,u) e U
M + 627-["_1(2)

P(A) +H" 1AV N J,) < h + P(Q)
and
/ Euffde < 2 F (D) 3/ |Eug|*da;
AuS bs 0
(ii) if U 5 (Ap, ux) =5 (A, u) for some (A, u) € C, then!
Xaus€ur — xaus€u in L2 (Int(QU S UX)). (2.11)

Now we formulate main results of the paper. First we deal with the existence of admissible
configurations with minimal energy.

Theorem 2.4 (Existence of minimizing configurations). The minimum problem

inf  F(A, 2.12
(A,u)EHC'l7 |A|=v ( U) ( )
has a solution. Moreover, there exists A\g > 0 such that (A,u) € C is a solution of (2.12) if
and only if it solves

(Aig)fec FMNA,u) (2.13)

Hndeed, let Zy € R™ be the countable set, given by Remark 2.1 (c), and let £ € (0,1)™ \ Ey. Since the values of
ux, are not important in Q\ Ag, we may assume u = u®, where uf is given as (2.6). Then ux — uxaus +&xa\A
a.e. and hence, (2.11) follows from [14, Theorem 1.1].



EXISTENCE FOR THE SDRI MODEL IN R™ 13

for any A > Ao, where
FMAu) = F(A,u) + N|A| - v].

To prove Theorem 2.4 we will apply direct methods of Calculus of Variations. To this aim
we establish the 7¢-lower semicontinuity of F and the T-compactness of energy-equibounded
sequences in C.

Theorem 2.5 (Lower semicontinuity). Assume that the sequence {(Ax,ux)} C C 7¢-
converges to (A,u) € C. Then

lkiminf F(Ap,u) > F(A,u). (2.14)

—+00

Theorem 2.6 (Compactness). Let {(Ag,ux)} € C be such that
M :=sup F(Ag,ui) < +00.
k

Then there exists a subsequence {(Ag,,ur,)}, a sequence {(By,v))} C C and (A,u) € C such
that (By,v)) =5 (A, u), |Ay, AB)| — 0 and
liminf F(Ag,, uk,) > llierinf F(By,v) > F(A,u).
— 400

=400

Notice that our compactness result is analogous to those in [27, 36]. According to the proof,
in general we have |Bj| < |Ay,|, i.e., the volume constraint may not be preserved. Rather,
Theorems 2.5 and 2.6 allow to solve the unconstrained minimum problem (2.13), and then,
as in [26, Theorem 1], using the equivalence of the minimum problems (2.12) and (2.13) (see
Proposition A.1), we establish the existence of a volume-constraint minimizer.

It is worth to remark that in both Theorems 2.5 and 2.6 (and hence, in the existence) the

assumption C € C(2) can be relaxed to C € L*>(€2). The continuity of C is important in the
(partial) regularity of minimizers of F.

Theorem 2.7 (Properties of minimizing configurations)). Let (A,%) € C be a solution
of (2.12) and let

A= Int(g(l)) and u = uxaus + EX\ A
where € € (0,1)" is chosen such that QN 0*A Cyn-1 Jy (see Remark 2.1), and let
Jy={zeJy: 0(Jy,x)=1}.
Then:
(i) (A,u) is a minimizer of F and
HHAWN A) < oo, H NI N =0, HTHTR\ J;) =0;
(ii) for any x € Q and r € (0, min{1, dist(z, 0Q)})
HHQr () N Ty < 4nba 4 Ao
rn—1) - by

where Ay s given by Theorem 2./;
(iii) there exist o = sp(b1, b2, b3, bs) € (0,1) and Ry = Ro(b1, b2, b3, bs) > 0 such that

H'HQr(z) N Ty
(Qng) ) > o
r
for all cubes Q,(z) C Q centered at x € QN J; with sidelength r € (0, Ry);
(iv) if E C A is any connected component of A with H" Y([0*E N Y]\ J,) = 0, then
|E| > wn(%)n and u = ug + a in E for some rigid displacement a.
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2.3. Generalization and extra results related to Literature models. In this section
we discuss some models related to the SDRI model for which the proofs of the main results
above can be adapted, by also recovering as a byproduct of our analysis some results already
available in the Literature.

First we consider more general elastic energy densities.
Theorem 2.8 (Elastic density with p-growth). For p > 1 let a measurable function
Wy Int(QU S U ) x MEZ® — R be such that

(al) for any x € Int(QUSUZX), Wy(z,-) is convex and there exist ¢ > 0 and f €

LY(Int(QU S UY)) such that

Wp(z,M) > c[MP + f(x) for a.e. x € Int(QUSUX) and for all M € ML (2.15)

Sym
(a2) for any u € GSBDP(Int(QUSUY)) the map x — Wy(x,Eu(z)) belongs to
LY(Int(QU SUY)).

Let
Cp:={(A,u): Ae BV(Q;{0,1}), u e GSBD?(Int(QU S UYX))}
be a class of admissible configurations and let

Fp=8+W, in Cp,

where
Wy(A,u) = Wy(x,Eu — Mp) dx.
AUS
Then for any v € (0, |Q|] the minimum problem
min Fp(A, u) (2.16)

(Au)€eCy, |Al=v

admits a solution. Moreover, there exists A\g > 0 such that for any A > Ao a configuration
(A, u) is a solution to (2.16) if and only if it is a minimizer of

F(A,u) = F(A,u) + A||A] —v].

A standard example of W), is
Wy(z, M) = f(z)[ M|’ + g(x)
for some f € L>®(Int(Q U SUYX)) with f > ¢ > 0 a.e. and g € L'(Int(QU S UX)).

Now we study the existence of minimizers in models related to the SDRI setting, but with
Dirichlet boundary conditions.

Theorem 2.9 (Dirichlet case with a p-growth elastic density). Forp > 1 let
Coir == {(4,u) : A€ BV(92;{0,1}), u € GSBDP(Int(QU SUY)), u=wug in S},
where ug € HY(R™) is fized, and let
Fpir =S + Whir in Cpir,
where
Whir(A, u) 1= / Wp(z, Eu) dx
and the elastic energy density W), satisfies allAassumptions of Theorem 2.8. Then for any
v € (0,|9] the minimum problem

min Foir(A, u) (2.17)
(A,U)ECDir, |A|:V
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admits a solution. Moreover, there exists Ao > 0 such that for any A > Mg a configuration
(A, u) is a solution to (2.17) and only if it is a minimizer of

ff\)ir<A7 u) = FDir(A7u) + )\HA’ — V‘.

Remark 2.10 (Relation to some Literature results). As a consequence of Theorem 2.9
we have:

(i) Let B(x) = —p(x,vg(z)) for H" -ae. z € ¥ and let W, : M2 — R satisfy
M — " < Wp(M) < " (IMPP + 1)

for some ¢, ¢’ > 0. Then Theorem 2.9 coincides with the existence result [17, Propo-
sition 5.8] in the setting of material voids.

(ii) Let § = 0 and W), be as in (i). Then the minimizers of Fp;, in Cpi with volume
constraint |v| = || (i.e., free-crystal regions have full £™-measure) coincide with the
(strong) Griffith minimizers in [13] under Dirichlet boundary condition.

(iii) In the proof of Theorem 2.7 we work only in €, i.e., we study the regularity of 0*A
and J, only in the points of 2. Therefore, the assertion on the essential closedness
of J, and 0*A holds also for minimizers of Fp;, with Wy(z,M) = C(z)M : M. In
particular, this covers a partial regularity part of results in [13].

We anticipate here that we equip both C, and Cp; with the same type of convergence
introduced in C, i.e.
- Ll(Rn) .
(Ag,ug) = (Au) <= Ay — Aandup — uvae in QUS. (2.18)

3. REPLACING CRACKS WITH VOIDS

In this section we provide some technical results that allow to replace a portion of the jump
set of the displacement fields with an open set without modifying too much the corresponding
SDRI energy. These results will be used in both the lower-semicontinuity and the compactness
results. We start with the following main ingredient of all crack-opening results.

Lemma 3.1. Let § € (0,1/4), Q = Qr(x0) be a cube, I' C Q is an (n — 1)-dimensional
Lipschitz graph and K C Q be an H"™ '-rectifiable set. Assume that

(al) zg € T, v is the unit normal to T at xy and |(x — xo) - v| < r/2 for all x € T;
(a2) T separates @ into two open connected components Gy and Ga;
(a3) O(K,xo) = (K NT,x0) = 1, v is the generalized unit normal to K at xo, and

(1=0)r" P <H" YK NT) <H" YD) < (14 6)r L
(ad) H LK \T) < 6rn 1.
Then there exist open sets C, D CC Q of finite perimeter such that
(i) C c Gy, and H""1(OC \ 0*C) = H" 1 (OD\ 0*D) =0
(i) H YK\ C) < 25r" 1 and H* Y(K \ D) < 207" L;
(iii) |C| < 6r™ and |D| < dr™;
(iv) 1 =28)r" "t <H"HKNOCNT) <H"HIC NT) < (14 8)r"1;
(v) for any norm ¢ in R™ satisfying (4.1) one has

Pp(vp)dH" 1 <2 / H(vg )AH L + Bbyorn L. (3.1)
oD K
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p(ve)dH™ 1 < 2 / H(vg )AH 1 + 5bydr™ 1 (3.2)
oC K
and

/ p(ve)dH ! < / (v )AH" ™! + 3byor™ (3.3)
Gi1noC K

Proof. Without loss of generality we assume that v = e,, ro = 0 and G; lies above I'. Since
I is a Lipschitz graph, f € Lip(V) such that I' = graph(f), where V = [-%, 5]"~! c R,
By (al), || flloo < /2, hence, T intersects only lateral sides of Q. Let

0
- 41+ Lip(f))’
Let V" cC V' CC V be any (n — 1)-dimensional cubes in R"~! such that
H VAV < ermL (3.4)

For v € (0,er) let g € Lip.(V;[0,7]) be such that g = v in V", supp(g) = V' and ||g]|oc < 1.
Let C be the open set bounded between the graphs of f and f + ¢g and let D be the open
set bounded between the graphs of f 4+ ¢ and f — g. Since both 9C and 0D consists of two
Lipschitz graphs, it is a set of finite perimeter.

We claim that C and D satisfy the assertion of the lemma.

(i) Since ||f + glloo < 3r/4 (by (al) and choice of ) and ¢ = 0 on V \ V', C C G; and
C,D CC Q,. Moreover, since V' is an (n — 1)-dimensional hypercube, by the area formula

HHAC\ 0" C) = H" 1 (D \ 9*D) < (1 + Lip(f))H" *(V'\ V') =0
(i) By (a4)
H Y KN\C) <H" YT NEK\C)+H" Y (K\T) < H" YT\ O)+dr" L.
Moreover, by contruction
P\C=T\0C=T\D=fV\V),

and hence, by the area formula and (3.4)

H YT\ O) < /V\V/ V14 |Vf2da' < 14 Lip(f)H" LV \ V') < gr"—l. (3.5)

Thus, H" (K \ C) < 5 6r"~L. Similarly, H*~}(I'\ D) = H"1(I'\ D) < L6r—1.

(iii) By the Fubini’s theorem, the choice of 7 and also the area formula

1= [ (9= D <m V) < [ VIV = om0
and
DI= [ (F+a=( = a)e <200 V) < 20 | VTEIVIPO = 2097(D)

Hence, by (a3) |C| < H&) r™ and |C| < 1+6) r’.

(iv) By (a3)
HHOC NT) < HVH(T) < (1 + 8)rm !
Moreover, by (3.5)

H Y EKND)—H" Y (KNoCNT) = H HKNT\JC) < H* H(\oC) = H YT\ C) < gr"_l.
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Hence, by (a3)

H Y (KNnoCNT) >H" 1 (KNT) — gr"_l > (1 —38)rm L,

(v) By the definition of C, the area formula, the convexity of ¢, the definition of g, (4.1)
and (3.4)

/ b(ve)dH ! = / o) dH = [ G(—V(f +g), aH!
G1naC G1Ngraph(f+g) v
<[ s(-vr a4 / (=g, 0)dH"!
V/ V/
< —Vf,1)dH" ! —Vg,0)dH" !
< [ ocvsnoets [ o-9o0)

< / ) AH ™ + balgllscH LV \ V)
T

byd

< / G(vr)dH" ™ + ==
r 4

Moreover, by (a3)
H I T\ K)=H"1(T) -H" N (T NK) <25,
and hence, by (4.1)
9b
[ otiant < .
r 4

Thus, (3.3) follows. Since 9C N dG; = T, the proof of 3.2 follows from (3.6) and (3.3).
Similarly,

d(vi)dH" L+ b H" YT\ K) < / (v )dH™ H+ == 5r""1. (3.6)
K

Knr

$p)a ™ = [ [6(-V(f + 9. 1)aH" + 6=V~ g).1)]ar!
oD !

<2 | ¢(=Vf,)dH" 1 +2 [ $(=Vg,0)dH" !
Vl Vl

§2/ P(vp)dH" ! + %2(57'”_1
r

90

5 or™ L,

<2 / P(vi)dH L +
K
O

The following result will be used in the proof of Proposition 4.1 with K = A,(:) N Jy, and
allows to replace uj with v, whose jump set is a reduced boundary of an open set of finite
perimeter (see Corollary 3.3 below). Recall that this property is important to obtain the
surface tension 2¢ in the “interior” jump energy in the functional S.

Lemma 3.2. Let U C R" be an open set, K C U be a H" -rectifiable set and § > 0. There
exists an at most countable family {C;}i>1 of open sets of finite perimeter such that

(i) C; ccU and 7—[”_1(80, \ 8*(]2) =0,

(ii) H YK\ U; Ci) <6 and ||J; Ci| < 6;
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(iii) for any norm ¢ in R™ satisfying (4.1)

Z/ é(ve,) H“1<2/¢>VK )dH ! + 6.

i>1

Proof. First we consider a special case.

Claim. Let K = graph(f) for some f € Lip(V), where V' C R"! is a bounded open set.
Let V' cc V' cC V be smooth open sets such that

1 0
1+ — V£ Dda' + HH (VA V") < : 3.7
( +b1) /V-\V,,¢( S 1T VAV < 5705, (3.7)
For v € (O,W) let ¢ € Lip(V;[0,7]) be such that supp(g) = V/, g = v in V"

and [|Vg|ze)y < 1. Then g = 0 on 9V'. Moreover, taking v small enough we assume that
the graphs of f + g|,,, are compactly contained in U. Let C' be the bounded open set whose
boundary consists of the graphsof f —¢g: V' —wRand f+g¢g: V' — R. Then C cC U and by
the area formula, triangle inequality for ¢, (4.1), (3.7) and the inequality ||Vgl|lco < 1

o)t = [ (6(=9(7 +9).1) + (=Y (f - ), 1>)da:'

oC
2 [ ¢(=Vf,1)da' +2 <Z>( Vg,0)dz
V/

<2 [ ¢(=Vf,1)dz' + 2/

V// V/\V//

S(—Vf,1)de’ +2 / 6(Vg, 0)ds’

V/\V//
2 [ ¢(=Vf,1)dz'+6§= 2/ (v )dH" ! +4.
% K
Moreover, by (4.1) and (3.7)

1
H"_I(K\C):/ \/1+|Vf|2dx’§b/ d(—Vf,1)da < 6.
V\V/ 1 Jwv\v7

Finally since 0 < [g| < it follows that

Cl= /W/[f g (f — g)lda’ < 2gllocH™ (W) < 6.

The equality H*~1(0C \ 0*C) = 0 follows from the smoothness of V.

Now we prove the lemma. By the countable " !-rectifiability of K there exists an at
most countable family {I';} of Lipschitz graphs such that I'; C U, I'; NT'; = 0 for ¢ # j, and
H* LK\, Ti) = 0. Since H" LT is Radon, by the regularity of Radon measures for each
i there exists a relatively open subset I'; of I'; such that I'; N K C I'; N K and

4]
n—1/1/ .
N\K) < ——— > 1. :
H" I\ )<21+2(1+62), i > (3.8)
For shortness, we assume I'; = I',. Then applying the claim above with § := m and
I' =T; we find an open set C; CC U such that
) )
|Cy| < H U\ C)) < (3.9)

2H1(1 + by)’ 2H1(1 + by)
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and

1)
n—1 < n—1
. d(ve,)AH" L < 2/& G(vp, )M + TR (3.10)

Thus, by the pairwise disjointness of {T';}
W (K U c;) <u( U (ri\ U c;)) = >ow (ri\ U c5)
J gzwzwri\oj)d | j
and by (3.8) and (3.10), Z

Z ¢> o, )dH"™ 1<22/¢w ydH L+
<22/ (v )dH 1+QZ/ d(vp,)dH" ! +

I'inK

_ 2b96 )
<2 A 4y —— = 4 =
> /UiriﬂK ¢(VK) ; 21+2(1 + b2) 2

=2 /K p(vi)dH" L + 4.

Finally, by the estimate for |C;| in (3.9)

)

i| <) |Gl <6
O

Corollary 3.3. Let U CC Q be an open set, (A,u) € C and 6 > 0. Then there exists an open
set G CC U of finite perimeter such that
(i) the configuration (B,v) with B := A\ G and v := uxpus belongs to C;
) |G| <
(iii) H* YU N BY N J,) < ;
(iv) for any norm ¢ in R™ satisfying (4.1)

/ p(va)dH™ ! +2/ o(vg, )dH >/ p(vg)dH" ! — 6.
Uno*A UunAMnJ, Uno*B

Proof. Let € := . Since H""1(U N AV N J,) < +o0, there exists an open set U’ CC U such
that
HLW(WUN\U)YNAD N, < (3.11)
By Lemma 3.2 applied with U’, K := U'NnA®N.J, and € we find an at most countable family
{Ci}i>1 of open sets of finite perimeter such that
(al) C; CC U’ and H”_l(ac’l \ 8*CZ) = 0;
(a2) H Y ([U'N K]\ U; Ci) < € and |, Ci| < €

(a3)
Z/ d(ve,) dH™™ 1<2/U p(vr) dH 1 4 €

i>1 'NK



20 SH. KHOLMATOV AND P. PIOVANO

Define
G = U C'Z
1>1
We claim that G satisfies the assertion of the lemma. Indeed, (i) is obvious and (ii) follows
from (ag). By construction, B N.J, =41 BM N .J, and hence, by (3.11) and (a2) we have

H Y UNBYNJ) <H N (UN\NU)YNAD N ) +H WU N AD N T, \ G) < 2.
Finally, since 9*B \ 0*A C 9*G, by (a3)

/ Pp(v)dH ! = / P(vp)dH L + / Pp(vp)dH" !
UNno*B UNo*BNo* A UNo*B\0* A

n—1 n—1
g/m*ﬁ(m)d% +Z/@Ci b(ve,) dH

i>1

g/ Pp(va)dH™ ! +2/ p(vy )dH" ! +e.
Uno*A UNK

O

The next lemma is a counterpart of Lemma 3.2 and relates to the “opening” of cracks along
Y. Notice that in this case the opening should not get out from 2. Thus, we are replacing
the jump of u only from one side (Corollary 3.5) and this is the reason for having ¢ (without
factor 2) in the jump energy along ¥ in the functional S.

Lemma 3.4. Let U CC Int(QU SUZX) be an open set, 6 € (0,1) and K C UNY be any
H" 1 -measurable set. Then there exist an open set C C U N of finite perimeter such that

)y C ccU and H" 1 (0C\ 0*C) =0
i) H" 1K\ 0C) =H" YK\ C) <6 and |C] < §;
(iii) H*L{(UNXNaC \ K) < d;
(iv) for any norm ¢ in R™ satisfying (4.1)

1

/ p(vo)dH ! < / P(vs)dH" 1 +6,
QNaC K
and

P(ve)dH™ <2 / P(vs)dH" L + 6.
aC K

Proof. Let
0

8(1+b2)(1+H (X))

€=

We divide the proof into two steps.

Step 1. Let Qr(x0) C U be a cube centered at z € ¥ such that ¥ N Q,(xg) = graph(f) for
some Lipschitz function f : V — R and a cube V C R"~! and assume that S N Q, () is a
subgraph of f. Let V" CcC V' CC V be open sets such that

H"H(Qr(x0) N %)
1+ Lip(f)
H'L(Qy (20)0)

and for v € (0, TR €) let g € Lip.(V;[0,7]) be such that g =1 in V", supp (¢9) = V'
and Lip(g) < 1. We may assume that v is so small that the set open set C, whose boundary

HL(V\ V") <
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lies on the graphs of f and f + g, is compactly contained in Q,(x¢) and C' NS = (). Then
[ otveran = [ o(-V(r 49 nan < | (o(-9£1)+ 6(-Vg.0))an!
QnacC v %
< [ (=9I 4 baLip(F)H VA V)
v

< / (v2)dH™ ™+ boH"H(Qr (20) N D)e.
Qr(xo)ﬂz
Similarly,

/ b(ve)dH ! = / G-V (f +9),1) + $(—V f, D]aH"
oC /
< [ (20(-V1.1) + 0(-Yg,0))dnr!

<2/ P(vs)dH" ™ + boaH"H(Qr(z0) N D)e.
Qr(xo)ﬂz
Also by the Fubini’s theorem
] = / gda! < AUV < HL(Qp(20) M) €.
V/
Finally,
H'H(@:a0) NENDC) =1 Q) 12NC) = [ TV AP
V\V/
<+ Lip(/HH VAV <HHQr(wo) N D) e.
Step 2. Since ¥ is Lipschitz and K is H" !-rectifiable, we can find a finite family

Qrin (1), o, Qryy v () C U of pairwise disjoint cubes centered at K such that

(a1) for each j, ¥ N Qr, ., (7;) is a graph of a Lipschitz function in v; direction;
(ag) O(K,z;) = 0(3,z;) = 1, and the unit normals vk (z;) and vs(x;) exist and coincide
with vj;

(az) (1— e)r;”_l < H”_I(er7,,j (z;)NENK) < H”_I(er% (;)NE) <1+ 6)7‘?_1;

(a) H*H (K O\ Uy Qs () < e
Note that by (a3)

12_1%”*1(@”,”]. (z;) N'D). (3.12)

H N Qry () NE\K) < 2er77! <

By Step 1 for each j we can contruct an open set Cj CC @y, ,(z;) with C; NS = () and

/ P(ve,)dH" ! < / G(vs)dH" ! + baH" (Qr, 0, (25) N D)e (3.13)
QNAC; Qrjv; ()NE
and
d(ve,)dH" ! <2 / G(ve)dH™ ! + baH" Q) 0, () N D)e.
B(Jj Q'rj,uj (xj)mz
Moreover,

1C5] < H" N Qr, 0, () NT)e (3.14)
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and
H N Qr, 0, (1) NEN\OC)) < H' HQp, 0, (z;) NE) €. (3.15)

We claim that C' = [J!", C; satisfies all assertions of the lemma.

(i) By construction C' CC U and since each Cj is almost Lipschitz, H"~1(0C; \ 9*C;) = 0.
Hence, by the pairwise disjointness of Cj, H"~1(dC \ 8*C) = 0 and (i) follows.
(il) By (a4) and (3.15)

H KN OC) H (KN Qryas () + D0 H M (Qryy (w7) 121, 0C5)

j=1 j=1
<€+ Y H" N Qryw; () NT) e < (L+H"(E))e < 6.
j=1
Moreover, by (3.14)
IC1 <D 1G] < HH(E)e < 6.
j=1
(iil) By (3.12)

H*HUNSNOIC\K) =Y H" Q. (2;) NENIC; \ K)

s

Il
i

J
2¢

< Hn_l(er,uj(xj)mE\K) < 1

“:

Il
i

6H”—l(z) < 6.
J

(iv) Since 0*C' C U;0*C}, by (3.13) we get
/ p(vo)dH 1 < Z / d(vs)dH" 1 + b H" (D)
Qnac /0NN e
Moreover, by (4.1)
/ ss)an < [ D) A"+ b H Q0 (2) N2\ K),
er ]( ])mz er,uj(mj)mK
and thus, by (3.12)
| otveran < [ olm)an + (& + b (S)e < [ smpant 46
QnocC K K

Finally, since ¥XNoC C KU (XNJC\ K),

p(ve)dH L = / d(ve)dH L + / P(vs)dH L
oC QNoC YNoC

<2 / P(vs)dH" ! + 3 H" T (D)e + byH" 1 (XN IC \ K)
K

<2/ H(vs)dH ™+ ThyH 1 (Z)e < 2/ d(vs)dH"! + 4.
K K
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Corollary 3.5. Let U CC Int(QU SUX) be an open set, (A,u) € C and § > 0. Then there
exists an open set G C ) of finite perimeter such that

(i) GcC U and |G| < 0;;
(ii) the configuration (B,v) with B := A\ G and v := uxpys belongs to C;
(iii)
HHENO G\ (0" ANT)) +HHUNENT,NI*A\I*G) <§
and
H* N UNBYNJ,) <s+H"HUNENJ,NI*B) <6;

(iv) for any norm ¢ in R™ satisfying (4.1)

[ etan e [ sm)an + [ ovs)dH!
UNnQNo*A UnAMNJ, UNZNO* ANJy

> / p(vp)dH"! — 5 > / p(vg)dH" 1 -5 (3.16)
UnQno*B Uno*G

and

/ H(va)dH L +2 p(rs)dH L 4+ 2 / P(vs)dH L
UnQNo*A unAMnJ, Unsno*AnJy,

> / P(vg)dH ! + / Pp(vg)dH L -6 > p(vg)dH™ L (3.17)
UnQNo*B YNo*G o*G

Proof. The last inequalities in (3.16) and (3.17) follow from the definition of B.

Let € := %. Let U’ cC 2NU be any open set such that

H N QNUNTN\U') <e

By Corollary 3.3 applied with U’, (A,u) € C and € we find an open set D’ CC U’ of finte
perimeter such that

(a1) the configuration (B’,v') with B’ := A\ D’ and v’ := uygyp’ belongs to C;

(ag) |D'| <€
(as) HO U7 A (B 1) < 6
(a4)

/ p(ra)dH ™ + 2/ P(vy, )dH L > / (v )dH" ! — .
U'no*A U'NnAMNT, U'no* B!

Now choose another open set U” CC U such that U’ N U” = () and
HL(UN\NUYNENIANT,) < e

By Lemma 3.4 applied with U”, € and K := U"NXNd*ANJ, we find an open set C' C U"NQ
of finite perimeter such that

(b1) ¢’ cc U’ and H"1(3C"\ 9*C") = 0;

(by) HP YK\ 0C") =H" YK\ C') <eand || < ¢

(b3) H 1 (X NOC'\ K) < ¢

(ba)

/ (v )dH™ L < / P(vs)dH ! + e,
QNnoC’ K
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and
Pp(ver)dH ™ < 2/ P(vs)dH" ! + e
oc’ K
Define
G:=C'uD.

We claim that G satisfies the assertion of the lemma. Indeed, assertions (i)-(iii) follow from
(a1)-(ag) and (b1)-(bs), whereas (iv) follows from the inclusion 8*B\ 9*A C QN aC" U oD’
and conditions (as) and (by). O

4. Tc-LOWER SEMICONTINUITY

In this section we prove Theorem 2.5 by following the arguments of [36, Proposition 4.1],
and in particular by using density estimates for some Radon measures associated to F. We
start with the following lower bound for the localized surface energy.

Proposition 4.1. Let § € (0,1), Q.. (79) CC Int(QUXUS), r > 0, v € S" L, be a cube and
I' C Qru(x0) be an (n—1)-dimensional Lipschitz graph separating Q.. (zo) into two connected
components such that

(al) zo € I, vr(xo) = v and
vr(z) —v| <& and |(x—z0) -v| <% forallzeT;
(a2) H" Y Qrp(zo) NT) < (14 §)r"L.
Assume that a sequence {(Ag,ur)} C C and a configuration (A,u) € C satisfy
(a3) ug = & for some § € (0,1)" \ Eqa, u,)y (see Remark 2.1) and

M = sup F(Ag, ux) < +00;
k>1
(a4) A — A in LY(R");
(a5) H" 1 (Qru(z0) NO*(AUS)) < "L and [(AUS) N Qrp(x0)| > (1 — )1
(ab) either
up > u  a.e in Qr,(zo)
and
K = Qr,u(xO) NJy
or there exists a set of finite perimeter E C Qy,,(xo) such that
up = u  a.e inQry(xo) \ E and |ug| = +00  a.e. in Qr(x0) NE,
and
K := Qr,u(xl)) No'E
(see Figure 2).
(a7) the set K satisfies
(a7.1) vi(zo) = v and 0(K,xo) = (' N K, x9) = 1;
(a7.2) H YK NT) > (1 —6)r™ L
(a7.3) H YK \T) < or" L.
We also denote by ¢ a norm in R™ satisfying
by < p(v) < by, veSL (4.1)

Let C,D CC Qu(x0) be given by Lemma 3.1 applied with §, I' and K. Then there exist
d = ¢, >0 and kj := kg(bz) > 0 such that for any k > kj :
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K = Qr(z0) NO*E

FIGURE 2. Set K in Proposition 4.1.

(1) Zf Qr,u(l’o) CcC Q, then

/ (va, )dH +2 / b1, )AH !
DNo* Ay, pnAM Ny,
22/ (v )dH" 1 — ot
K

> [ ¢(vp)dH" 1 — (¢ +5b)or™ ™ (4.2)
oD

(ii) if xo € L and T' = Q,(z0) N X, then

/ P(va, )dH" ™ +2 / ¢(vs, JAH" ! 42 / P(vp)dH™ 1
CNo* Ay cnAVngy, SNOCNI* AN Ju,,
22/ P(vi)dH™ ™ — ot
K

> [ plve)dH™ ™ — (¢ +5bo)ér™ . (4.3)
oC

The proof of this proposition is left after the proof of Theorem 2.5. In the proof of lower
semicontinuity we only use the following corollary of Proposition 4.1; the assertions including
sets C, D and F will used in the proof of compactness.

Corollary 4.2. Under assumptions of Proposition 4.1, together with
(a6) up = u a.e. in Qry(x0) and

K = Q"',V(wo) N J’ll,a
there exist ¢ = CZQ > 0 and kj := kj(ba) > 0 such that for any k > kj :
(1) if Qrp(zo) CC Q, then

/ P(va, ) dH ! +2 / ¢(vy,, JAH" !
Qr,v(x0)NO* Ay, Qr,u(xo)ﬂAg)ﬁJuk

> 2/ P(vx)dH™ ™ — oL
K

(ii) if zo € ¥ and I' = Q. (z0) N X, then

/ Sa)d 42 [ B(,, )]
Qv (z0)NO* Ay, Qrw(@0)NAL NI,
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+ 2/ P(vr)dH™ ! > 2/ p(v)dH ™t — orm L
Qro (20)NTNO* AN, K

Proof of Theorem 2.5. In view of Remark 2.1 we may assume that u; = £ for some & €
(0, 1)™ \ E{(44,uz)}- Moreover, there is no loss of generality in assuming liminf in (2.14) is a
finite limit. Thus,

M :=sup F(Ap,ug) < +oo.
k>1

In particular, {(Ag, ux)} satisfies the assumptions (a3) and (a4) of Proposition 4.1.
Let

pi(B) ::/ o(x,va,)dH" ™ + 2/ e(z,vg,,) dH™ 1
BNQNd* Ay BnALN Iy,

+ [ 8+ plo a2 [ o, ) dHP !
BNENO* A\ Ju, BNEN* AN Ju,,
+/ o(x,vs) dH™ ! +/ Wz, Euy, — Mo)dz
BNE\9* Ay, BN(AUS)
and

w(B) ::/ o(x,vg) dH L + 2/ o(x,vy,)dH
BNQNo* A BnAMNJ,

+ / B+ oz, vs)] dH" 1 + 2/ o(x,vs) dH" !
BNEN9* A\, BNEN&* AN,

—|—/ o(x,vs) dH ! —I—/ W(z,Eu — My)dx
BAX\o* A BA(AUS)

be positive Radon measures in R™. Notice that

uk(Rn) = ]:(Ak, uk) + /E QO(JZ, VE) d/Hnil (4.4)
and
p(R™) = F(A,u) + /Z o(x,vs) dH" L. (4.5)

In particular,

supj(R") < M+ [ (o vm)an™,

E>1 b
and thus, there exist a positive Radon measure pg in R™ and a not relabelled subsequence
{pr} such that pr —* po. Let us show

Ho = H. (4.6)

Note that (2.14) directly follows from (4.6), (4.4), (4.5). By the nonnegativity of p and po,
and the explicit form of the support of u, to establish (4.6) it suffices to prove the following
density estimates:

. Hn_lﬁfgﬁ 5 @2 e@a@) W lae s e (@NOAUE\TA), (@7

dpo
dH1L[AD N J,]

(z) > 2¢(z, vy, (z) H" t-ae ze AV N, (4.7b)
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dpo

IS0 AN ) (z) > 2p(z,vs(z)) H" l-ae z€XTNI*ANT,, (4.7¢)
—— ng 5 ()2 B@) + elavn(e) W ez e SN OA (4.7d)
. Hn_lﬁ‘[‘zo o (7) 2 plaas(@) W ne s €S\ 0 (4.7)
m (z) > W(z, Eu(z) — Mo(z)) L -ae z€AUS. (4.7F)

Proofs of (4.7a), (4.7d) and (4.7e). By assumptions (H1)-(H3), the capillary functional
BV = [ plwwna e [ e a e [ ) dn!
Uno*E UNsno*E UNE\0*E

is L'(U)-lowersemicontinuous in any open set U C R™ (see e.g., [1, Theorem 3.4]). As A, — A
and pp —* po, for any ball B, (xg) with po(0Br(z¢)) = 0 we have

po(By(a0)) = lim o (Br(20)) = lim inf C(Ax, By (x0) > C(A, By (a))

This inequality and the Besicovitch differentiation theorem imply (4.7a), (4.7d) and (4.7e).

Proof of (4.7b). Fix € € (0,2710) and let K := AM N J,. By the H" !-rectifiability of K,
there exists an at most countable family {I';} of (n — 1)-dimensional C'-graphs such that

! (K\ U Fl) = 0.
>1
Let zg € L be such that

(a1) zo € Iy for some [ > 1 so that the generalized unit normal vy := vi(zg) to L at

exists and equals to v, (zo);
(32) 9(K7 330) = G(Fl N K, :L‘O) = 17
_duo e
(a3) d‘H”—lJ_K(xO) exists; 1
(34) ;I—I}(l) =T er,uO(;to)ﬁK (,0(.%0, VK)dHni = QO(.%'(), 1/0).

By the H" l-rectifiability of K, [3, Theorem 2.63] and Lebesgue-Besicovitch differentiation
theorem, the set of zp € K for which at least one of these conditions fails is H"L-negligible.
Since ¢ is uniformly continuous in £, there exists r; . > 0 such that

lp(z,v) — @(y,v)| < e whenever |z —y| <7y and v € S"1. (4.8)
Decreasing 7 ¢ if necessary, we assume that Q. , ., (x0) CC €. Then for any r € (0,71,¢)
lu“k‘(QT‘,l/o (1:0)) > ak(Qr,Vo (xO))
- e(H"‘l(QWO (20) N 0" Ag) + 2H" 1 Qo (z0) N AD Juk)), (4.9)

where

Oék(U) = / (Z)(Z/Ak)dHn_l + 2/ L ¢(Vjuk)dHn_1
UNd* Ay UnAL N,
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and ¢(v) := p(zo,v). By assumption (2.8) and the nonnegativity of the summands of p; we
have an a priori bound

— * n— TV €
H ™ (Qran ) 107 A1) + 2™ Quan(0) 1 A 1 gy, ) < Hmanl0))
and thus, inserting this in (4.9) we get
€
(14 5 ) (@ (0)) 2 Qs (0). (4.10)

Now we estimate aj from below using Corollary 4.2 (a). Since I'; is a C'-graph, by (a;)
there exists 72 € (0,71,c) such that

I'; divides the cube @, ., (7o) into two connected components;
lvr, (z) — wo| < e for any o € Qp, 1 (20) N T

|(z — x0) - vo| < er/2 for any r € (0,72,) and & € Q. (xo) NT';
H N Qr o (m0) NTY) < (14 €)r™ L for all r € (0,72,).

In particular, for any r € (0,r2.) the cube Q. ,,(xo) and the Cl-graph T := Qruo(zo) N T
satisfy the assumptions (al)-(a2) of Proposition 4.1. As we mentioned in the beginning of the
proof, {(Ag,uz)} satisfies (a3)-(a4) of Proposition 4.1. Moreover, by assumptions zo € A
and (ag) there exists r3. € (0,72,) such that

o P(A,Qru(z0)) < er™tand [ANQy (o) > (1 —€)r™ ! for all r € (0,73,);

o H' 1 (Qruy(xo) NKNTY) > (1 —€)r" ! for any r € (0,73,);

o 1" HQruy(xo) N K\ T}) < 8r"~L for any r € (0,73,).
Thus, assumptions (a5)-(a7) of Proposition 4.1 also hold. Therefore, by Corollary 4.2 (i) there
exists k. > 0 and ¢ > 0 such that

ar(Qruy(x0)) > 2 / H(v)dH ™t — et

QT,VO (CC())ﬂK

for all k& > k.. This and (4.10) yield
(1 + i)uk(Qwo (z9)) > 2/ H(vg)dH ™t — der L.
b1 Qr vy (20)NE
Now letting k — +oo for a.e. r € (0,r3,) we get
(1+ 5 JrolQuun(ao)) 22 [ H(v)AH ™ — dern .
b Qg (20)NK
Therefore, by (a3) and (a4)
€ dHO € . ,LLO(QT’ V(xO)) /
7 — _ PO VAT —Cde.
(1 + b1) dHnr 1 LK(xO) (1 + b1> 7“1—1>%1+ rn—1 = 2p(wo, 1) = c'e
Now letting € — 0 we obtain (4.7b).
Proof of (4.7c). Let € € (0,2719) and let L := X N 9d*A N J,. Since ¥ is Lipschitz, L is
H" L-rectifiable.
Let zg € L be such that
(b1) vy :=vx(xp) exist and equals to v (xp);
(bg) Q(L,(I}()) = 0(2, .%'()) = 0(6*14, xo) = 1;

dpo :
(bs) pryma iy (z0) exists.
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(ba) i s o, oy, #1000, va )M = a0, 0)
By the lipschitzianity of ¥, H" !-rectifiablity of 0*A, [3, Theorem 2.63] and Besicovitch

differentiation theorem, the set of xg € L for which at least one of these conditions fails is
H"L-negligible.
Let r1,c > 0 be such that (4.8) holds and Qy, , ., (7o) CC Int(2U SUX). Then as in (4.10)
€
(14 ) @ (0)) = @ (0))
for any r € (0,71,c), where
wo) = [ sadd ez [ g, gan e Hv)dH L.
UnQno* Ay, unA N, UNZNd* ApNu,

Since ¥ is Lipschitz continuous, by (b1) and (bg) there exists ra . € (0,71,¢) such that

e X divides the cube Qy, . ., (o) into two connected components;

o |vs(z) —vs(zo)| < € for any & € Qr, 1y (w0) N;

o |(z — ) | <er/2for any r € (0,72,) and x € Q. (x0) N X;

o H' Q. (o) NX) < (1+€)r™ L for all r € (0,79,).
Moreover, since g € X N 0*A and 0(L,z9) = 0(0* A, x¢) = 1, there exists r3, € (0,r2,) such
that

o H' 1 (Qruy(xo) NENI*A) > (1 — €)r™ and H* H(Qrppy (m0) NO*A\ X) < 6777 L
Thus, applying Corollary 4.2 (b) we find &/ > 0 and ¢”” > 0 such that

(@ (0)) > 2 / Plvs)dHM ! — 15
QTWO (xo)ﬂL
for all k > k. Therefore,
(1+ £ )el@uunao)) = 2 [ Hlus) W —
bl Qr,uo (JTO)QL

and hence, by (bs) and (by)

dp
d?—["—ifl_L(xo) > 2¢(z0, ).
Proof of (4.7f). By the nonnegativity of ux and our assumption ug = £ on Q \ Ag
(B, () = [ W (y, Eux — Mo)dy
By (2)N(ARUS)
:/ W (y, Eu, — Mo)dy — / W (y, —My)dy. (4.11)
- (2)N(QUS) Br(z)N(Q2\Ayg)

Since p —* po, Eup — Eu in L2(QUS) (see (2.11)) and Ay — A in L' (R™), letting k — +o0
in (4.11) for any ball B,(z) with uo(9B,(x)) =0, we get

po(By(2)) = lim_ju( By ()

> / W (y, €1 — Mo)dy — / W (y, —Mo)dy
B, (2)N(QUS)

By (z)N(2\A)
=/ W (y, Eu — My)dy,
Br(z)N(AUS)
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where in the equality we used u = & in Q \ A. Now (4.7f) follows from the Besicovitch
differentiation theorem. O

Remark 4.3. According to the proof of Theorem 2.5 both S and W are 7¢-lower semicon-
tinuous in C.

Now we prove bounds (4.2)-(4.3).

Proof of Proposition 4.1. We only prove (i). The last inequality in (4.2) directly follows
from (3.1)-(3.3). Therefore, we establish only the first estimate. Without loss of generality,
we assume 2o =0, r = 1 and v = e,. By (al) I' C (-4, 1)1 x (—g, g), by (a3) and a priori
estimates in Remark 2.3
M; :=sup (/ |Eug |2 da + H"il(Juk)) < +o0. (4.12)
k>1 N Jaus

We prove (4.2) for K = Q1 NO*FE (i.e., in the case |ux| — +00 a.e. in Q1 N E); the other case
being similar. For any open set G C @1 define

awl@ = [ sagaw ez [ g, )ane
GNa* Ay, anaVn,,

Step 1. Let
T:={¢cS": £ e, >26).
Then by (al) forany £ € T and x € Q1 NT
€ vn(@)] 2 16 enl = € (r(x) — e0)] > 4.
and hence, Q1 NI is a graph also in {-direction, i.e., for any y € I the line Trgl(y) intersects
@1 NT at most at one point.

Step 2. Let D be given by Lemma 3.1 and let U CC D be any open set such that
UNTNK # 0. Let also (BY,vY) be given by Corollary 3.3 applied with U, § = % and
(Ag,ug). Then for all k :

(a1) BY C Ag, A\ BY cC U and |4y \ BY| < 1/k;

(a2) v =y in BY U S;
(ag) H* MU N [BYIM N Jw) < 1/k;
(ag) ax(U) +|U|/k > Ak(U), where
A(U) = / (v )AH .
Uno*BY

k
By (a1) BY — A in LY(R™), and by (a1), (a2) and also (a6)
v u ae.inU\E and  |oY| = 400 ae in UNE. (4.13)
Moreover, by (4.12) and (ag)
sup (/ |Ev P de + HHU N Jvu)> < 400.
k>1 NJu k

We claim that

lim inf A (U) ijf(g) /UﬁF lup - E|dH™ 1 — 20, P(A,U) — 20, H" L (U N[\ 0*E]). (4.14)

for H* l-ae. £ €Y.
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To prove (4.14) we study some properties of one-dimensional slices [ﬁg]g of vg. We closely
follow the arguments of [14, pp. 11-13]; see also [15]. Let k; := k:]U be such that

liminf/ o(vy U)d?—["_l = lim vy, JdH" L.
k—+oco Jung U vg Jj—+oo Jung U Vk;

Yk Yk
J

Applying (2.3) and (2.4) with v = v,gj, (2.5) with L = Jou and using (4.12) we find
i

1}21 inf /H {HO(JW%}% ) + Kl e (Vi) + KIL ¢ (v]) )}d%’“(y) < 400 (4.15)

for any x > 0 and H" !-a.e. £ € Y. Moreover, by [14, Lemma 2.7] and (4.13)
WY €| = +oo ae. inUNE (4.16)
for H" l-a.e. € € Y. Fix any ¢ € T satisfying (4.15) and (4.16) and consider the one-

dimensional slices [ﬁgj]g and ag In view of (4.15) and Fatou’s lemma, for H" !-a.e. y € m¢(U)

lim inf [H(Jy ¢) + RIE(0F)) + RIL(0f))| < +oc.
J
Thus, for H"'-a.e. y € me(U) there exists a subsequence {7} € {k;} (depending also on
x> 0) such that
lim inf [HO(J[%;]g) + /inU’,g(kaj) + ﬁllgg(vgj)}

J—>+oo

Jj—+oo

= lim [HO(J[ﬁgy]g)—FffIgg(U%)+/€II£{§(U;%/), (4.17)
J

and by (4.13) and (4.16)

~U

For 7(t) = arctan(t), set fj := 1o [ﬁgy]g Then f; € SBV}2
J

loc

— @ Llae in [U\Ef and ‘[ﬁ%]g‘—>+oo Llae in [UNES.  (4.18)

(Uy) and J50 ¢ = Jp,- By (4.17),

kY
J

(4.18) and [2, Proposition 4.2] we find a not relabelled subsequence {Ugy} such that
J
fi — fo Ll-ae. in U§ as j — +oo.
By (4.18)

fo=Totl in([U\ B,
[fol =m/2 in[UNE.

By [2, Proposition 4.2]

J—>+oo J—+00

lim inf H‘)(JWU ]g) —liminf HO(J,) > HO(J,)- (4.19)
kY'Y

Thus, HO(US N J #,) < 400 and hence, [U N EJ5, consists of finitely many segments in each of
which either fy = /2 or fo = —7n/2.

By (4.17) H°(Jy,) is uniformly bounded and hence, there exists a further not relabelled
subsequence and N, € Ny such that

HO(Jy) =N, and Jy ={t},....t;"} CUS forall j.
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Then points of Jy, converges to M, < N, points t! < ... < tMv. Since Ilgg(vgy) is uniformly
SR

bounded, the precise representatives of f; uniformly bounded in I/Vlloc1 (¢!, t+1) so that fi = fo
locally uniformly in (¢, #+1) and Jy, C {t!,...,t"s}. Repeating the arguments of [14, Section
1] we can show that t! := U5 N [0*E]§ € s
Let us estimate the 4"~ !-measures of the sets
Yo:={yellenm:(UNK): N, =0},
Yi={yellenn(UNK): N, =1},
Yo:={yelleNms(UNK): N, > 2}.
By (4.19) HO(Jg,) = 0 for any y € Y. Hence, U N Trgl(y) N(0*E U J,) = 0, and therefore
Yo C me(UNT \ 0*E). Then by the 1-Lipschitz continuity of the projection ¢
H' L (Yo) S H " Hme(UN[T\I*E))) <H" N UNT\*E)). (4.20)

Now consider any y € Y. By definition Te 1(y) intersects U N Jv]lc]y just once and therefore,
by the construction of (BY,vY) (see the proof of Corollary 3.3) eitjher Y € e (U N [B,CU;_,](U N
J“k;! N J”,gy) ory € me(U\ Bl%,) If y € me(U \ B,%,), then t} divides the line U N ﬂgl(y) into
two partsjone is a subset of U N B]g? and the other is that of U \ Bllcjg. Since Bg? — A and

th = U§ N [3*E]§ € Jy,, it follows that t! € *A and divides U N ng(y) into two parts one
belonging to U N A other to U \ A. In particular, y € m¢(U N 0*A). Hence,
£ £
y € [U NBYIV N J,, Ny )} U [U N 8*A}
J i Ky Y
for all j. Thus,

wln) = [

Yi

3

# (N ([U N [ng]ﬂ) N Ty N ngy)E U [U \ ng]y

i J

- 0 U1(1)
g/Yl lim H ([Un[Bka] ﬂJuk?ﬂJU%)}

j—+oo

)| e tw)

3

Y

) dn ()

+ /Y HU([U N 8*A]§) AH" L (y).

Y

By the choice of {k:;’}, the Fatou’s lemma, the second equality in (2.5) and (as)

3
. 0 U (1) n—1
[, (oo o [ e
s n—1 U1(1) _
< liminf # (Uﬂ B A J,, N ng)) —0.
Similarly,
3
/ %0([Uma*,4} )dH”_l(y) <P(A,U).
Y1 Y
Thus,

H" (Y1) < P(A,U). (4.21)
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Now using II¢ N 7¢(U) = Yo U Y7 U Yo, from (4.20) and (4.21) we obtain
H' (e N7e(U)]\ Ya) < P(A,U) + H* 1 U N[\ 9*E)).
Moreover, let
X ={yellenm(U) : ng(y) NI NO*E is a singleton}.
Then as above

H' (Yo \ X) <HP ([T N (U)]\ X) < HPH([UN (T UO*A)\ O*E)
<H" N UN[T\9*E]) + P(A,U),
and therefore,
H ([T Nme(U))\ [YaN X)) < 2P(A,U) +2H" 1 (U N [T\ 9*E)). (4.22)

By the definition of X and Y» for any y € YN X we have H°(J;,) = 1 and N, > 2, therefore,
we can improve (4.19) as

lim H° (JW ]g) >2 =2H"([UNT}).
kY
J

Jj—r+oo
For such y from (4.17) we get

lim inf [HO(J[%]g ) + Kl (o) + KIT] (v, )] > 2H([UNTTS)

J—+o00

Now integrating over X N Y5 and using (4.15) and the Fatou’s lemma we get

s 0 U U U U n—1 0 13 n—1

By the definition of Y, HO([U NT]5) = 1 for all y € ¢ N7 (U) and therefore by (4.22)

HO([U N TS an" (y) > / HO([U N TIE) M (y)

XNYs Hg ﬂ7T£ (U)

— P(A,U)-H" Y (UN[T\ O E)]).

Hence,

i /H HOUguis) + A1) + w11 (o] )| 41" ()

k—4o0
> 2/ HO([UNTE)dH (y) — 2P(A,U) — 21" 1 (U N [T\ 0" E)).
Henme (U)

This, (2.5), (2.3), (2.4) as well as (4.12) yield

liminf/ vy - ElAH + (M + U)Kk > 2/ lvp - E[dH™ T
k——+o0 Um‘]vg Yk unr

—2P(A,U) —2H" YU N [T\ 0*E]) (4.23)
Let ¢° be the dual norm to ¢, i.e.,

¢%(§) = sup [§ v
o) =1
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Then [€ - v| < ¢°(€)¢p(v) and hence, by (4.23) and the arbitrariness of k we get

$°(€) liminf/ P(vg ,)dH L > 2/ lvp - €| dH™ !
UnJ ’k unr

k—+o00
—2P(A,U) = 2H" YU N[\ 0*E)). (4.24)
Now using ¢°(§) > 1/by from (4.24) we get (4.14).
Step 3. Now we prove (4.2).
Substep 3.1. Let
St i={E£eR™: ¢°() =1},
Since Sg; ! is compact,

o(n) = max ) - &

for any countable set {¢;}; C S§, ! dense in Sgo L

Fix any such dense set {{;}; C SZO_I that if £ = &;/|¢;| € T, then (4.15) and (4.16) hold
with €. By [23, Lemma 6] there exists a finite family Uy, . .., U, of disjoint open set compactly
contained in D such that

Dnr

m

2 G(up)dH ! < 22/ op - &]dH" " + 6. (4.25)
j= Ujﬁl—‘

Recalling the definition of (Bg, ug ) from Step 2, let us define

m
U.
By, = ﬂ B,? and wg = ugxB,us-
j=1

Then by (ag) B, C Ak, A \ B, cC D and

<

w‘Q‘

m m D
A\ Bl < D10 N (A \ BY) Z 7

=1

Let Ax(D) be defined as in (a4) of Step 2 with (Bg,vx) in place of (BY,vY). Then by the
definition of (Bg,vg), ax(D) and (ay)

Thus,
ox(D) > Ay(D) — 121 (4.26)
Substep 3.2. Now we estimate Ay(D) from below. Note that if &;/|¢;| € T, then since
¢°(§5) = 1, by (4.14)

2/ lup - &ldH™ Tt < lim inf Ag(U;) + 26 P(A, Uj) + 202 H™ 1 (U; N [T\ 9% E]).  (4.27)

Now assume that & :=§;/|¢;| ¢ Y. Then by the definition of T and (a3)
vr(@) - €] < [(vr(z) —en) - & +en - §] <30
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for any x € U; NI'. Thus,
2/ lvp - §j|d7-£"71 < 657—["71(U]~ Nnr). (4.28)
u;nr

Now by (4.25), (4.27) and (4.28)

2 Svr)dH" <5+ > liminf A(U;) +65 Y H"HU;NT)
bar j=tjex e j=1,j¢
+20, ) [P(A, U;) + 21" (U; N [0\ °E))].
j=1
Since set function @ — Ax(Q) is additive and non-increasing and the family {U;} is pairwise
disjoint,

Z liminf Ag(Uj) < hmmfAk(U]U) < hmlank( )
j=1er k—+o00 k—+o00 k—+o00

Moreover, by (a2)

S HNUNT) < HTHQINT) <1+,
J=1,j¢Y
and by (a2), (ab), (a7.2) and (a7.3)

n

> [P(A, Uj) +H" (@ N[0\ 8*E])}

Jj=1

P(A,Q1) +H" Qi NT) —H" 1 (Q, NT NI*E) < 66.

Then
2/ p(vp)dH ™ <6 + hmlank( ) +65(1 + 0) + 6b20,
DNT k—+oo

and hence,

liminf Ay (D) > 2 o(vr)dH" 1 — ¢, (4.29)

k=400 DAl
where

co := 13 + 6by

depends only on bs.
Substep 3.3. From (4.26) and (4.29) there exist ko := ko (9, b2) > 0 such that
Ap(D) > 2 d(vr)dH™ ™ — 2¢0 (4.30)
DT
for all k > ko. Since |D| < |Q| = 1, one has [D|/k < coé provided k > . Let
1
K —max{ko, 05}
Observe that

/ G(vp)dH™ > / p(vp)dH L.
DN DNI'No*E
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Moreover, by (a7.3)
/ H(vg)dH 1 < byo
DNo*E\T

and by Lemma 3.1 (ii)
H QLN O*E\ D) < 26,

and therefore,

p(vp)dH 1 > / p(vp)dH" ™! —3bd  for all k > kj.
DAl Q1NO*E

Combining these estimates with (4.26) and (4.30) we deduce
Oék(D> > 2/ ¢(VK)dHn_1 — (260 + 6b2)5.
K
Hence, ¢’ := ¢}, = (2co + 6b2) satisfies the assertion. O

4.1. Lower semicontinuity of 7, and Fp;.. We conclude this section by showing that the
functionals 7, and Fpj;; in Theorems 2.8 and 2.9, respectively, are lower semicontinuous with
respect to the 7-convergence defined in (2.18). Indeed, the proof of the T-lower semicontinuity
of § in Cp, and Cp;, is exactly the same as the 7¢-lower semicontinuity of S in C (see the proof of
Theorem 2.5). To prove the 7-lower semicontinuity of W, and Wp;, we notice that according
to the proof of the density estimate (4.7f), we only need the convexity of Wj(x,-) and the
weak convergence of Euy to Eu in LP(Int(2 U S U X)); the first condition is already stated in
the assumption (al) of W), and the second condition follows from the lower bound in (a2) and
the compactness result [14, Theorem 1.1].

5. COMPACTNESS IN C

In this section we prove Theorem 2.6. Note that if {(Ag,ur)} is an energy-equibounded
sequence, then by a priori estimates (see Remark 2.3) we can find a set of finite perimeter
A C Q such that, up to a subsequence, Ay — A in L'(R"). Moreover, since each connected
component S; of S is Lipschitz, the convergence of u in S; can be obtained by adding rigid
displacements in S;. However, since the rigid displacements for S; may differ from those for
Sj, j # 1, we need to create extra jumps for the resulting displacement field. Hence, as in [36]
we need to partition A to compensate those jumps. The following proposition provides such
a partition up to some error.

Proposition 5.1. Let (Ag,ug),(A,u) € C be admissible configurations, S for i €
{1,...,m} be a nonempty union of some connected components of S such that S* N S7 =
0 and S = U, S {at},....{a*} be sequences of rigid displacements, u',...,u™ €

GSBD?*(Int(QUSUY)) and F',...,F™ C A be pairwise disjoint sets of finite perimeter.
Assume that

o supy, F(Ag, up) < +00 and Ay — A in L'(R™); - |
o for any i€ {1,...,m} one has up — aj, — v’ a.e. in S*UF" and [uy — ap| — +00 a.e.

(S\S)U(A\FY).

Then for any 6 € (0,% min;;{1,dist(S, 57)}) there exist a (not relabelled) subsequence
{(Ak,ur)}, ks > 0, s5 € (0,8) and a sequence {GS} C BV (2;{0,1}) such that

H (1AL \ AY N {dist(-, S) = s5}) < ¢, (5.1a)
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H L ({dist(-, S) < ss} NI*A) < ¢4, (5.1b)
Gyl < V6 Y P(FY), (5.1c)
0<i<m
P(GY)<c > P(FY, (5.1d)
0<i<m
and the sequence {(B2,v?)}, defined as
B) = A\ G2 (5.2)
up —al, in SCUFY\ GIJU[REN(BI\ A)] fori=1,...,m,
09 = ¢ g in By N FO, (5.3)
3 in (Q\ BY) U (B \ [AUUL, Ry)),

where £ € (0,1)",
L= {2z € Q: dist(z,SY) < ss5}, FO:= A\ G F*,
satisfies -
S(Ap,ug) > S(BL,v)) — V3|14 P(Ar) + H 1 (J,) + i%n—l(a*w’)} (5.4)

i=0
for all k > ks. Here constant ¢* > 0 depends only on n, by and bs.

e S? 52

F? ............. ' \QE F?

| @ R

g F3 E - 1 %% &'%
St i 153 7 F

I R | s ]

| -' T ANT L]

N | by 8 e B

- Bs

I F4 5 :

; 86. — g
_ A —— _31_4..__._..__ e —

FIGURE 3. The partition of A = (J;5, F" and the construction of B := A \ G}
in Proposition 5.1. The set G5 is a finite union of holes along the boundaries F* U
U, 7 in which uy — aj, converges. Note that the sets {F'\ Gy}i~, partition By.
Since FY is a “hanging” component of A, i.e., not linked to the substrate, and hence,
it is reasonable to assume that the elastic energy in F° is 0. Then we define the
displacement fields v as follows: in STU(F*\GS) fori = 1,...,m we set v := uj, —a},
and in F° \Gi we write v,‘i := ug. Finally, since A\ A may present large trace portions
along S on which v} forms a jump, we need to change the values of v§ in R} \ A near
S

We postpone the proof of Proposition 5.1 after the proof of Theorem 2.6.
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Proof of Theorem 2.6. Since S is Lipschitz open set with finitely many connected compo-
nents, applying the Poincaré-Korn inequality and the Rellich-Kondrachov compactness theo-
rem we find a not relabelled subsequence {(Ay,ux)}, a partition {S*}™ | of S and m sequences
{a}}, ..., {a} of rigid displacements such that

(a1) each S® is the union of some connected components of S and S = JI*, S%
(ag) for each i € {1,...,m} there exists w' € H'(S") such that uy — a}, converges to w’
weakly in H'(S?) and a.e. in S%;
(ag) if i # j, then |a} — a£| — 400 a.e. in R™.
We may also assume Ay — A in L'(R") for some A € BV (£;{0,1}). Since Ev = E(v + a) for
any rigid displacement a, by Remark 2.3 we have

n—1 A g2
sup (P(AR) + " U —afpragus) + / | Jem —apar) < oo
for any i. Hence, by [14, Theorem 1.1] there exist a not relabelled subsequence {(Ag,ug)}
such that for each ¢ the set
F;:={x € Q: limsup |(ux(z) — ak(x))xa, (z)] = +o00}
k—+o00
has finite perimeter and there exists a function v € GSBD?*(Int(Q2 U S U X)) such that
up —ay, —u' ae. in STUFY,
where ‘
F':= A\ F;.
By assumption (ag) the sets F'!, ..., F™ are pairwise disjoint (see Figure 3).

Let 6 := 2710 min#j{l,dist(Si, S7)} and consider any sequence &; N\, 0 with & < Jp. By
Proposition 5.1 for any [ > 1 there exists a subsequence {(Ag 1, ur) e C {(Aki—1, Uk i1-1) }is
ks, > 0, s5, € (0,6;) and a sequence {Gil}k of sets of finite perimeter satisfying (5.1a)-(5.1d)
with § = ¢; such that the sequence {(Bil,vil)}k, defined as (5.2)-(5.3), satisfies

S(Akpyuet) > S(BIL W) = Va1 + P(A) +H (o) + Y MO F)] (55)
=0

for all k& > ks,. Here we set (Ago,ur0) = (Ag,ux). By (5.1d) we may also assume that
Gi’ — G% in L'(R™) as k — +o00, and therefore, Bil — A\ G%. Moreover, setting ng =¢in

)\ BZ’ and Bgl \ [UiRj, U A] for some & € (0,1)™\ E{le oy (see Remark 2.1), by the choice
K oUg Sk,

of afc we get vgl — % a.e. in QU S, where

m
V= Z U X i) T X FovGt T EX @\ G-
=1

By (5.1¢)-(5.1d)

GY < Va Y P(FY),  P(GY) < ey PEY,
=0

i=0
and hence, G% — ) in L' (R") as [ — +o0. Therefore, v — u a.e. in QU S as | — 400, where

m
wi=Y_u'Xgiupi + uoXro + Exana-
=1
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By the nonnegativity and invariance w.r.t. rigid displacements of the elastic energy we have
also

W(Apg, ukg) > W(BJ, o). (5.6)

For each [ > 1 let us choose k; > ks, and consider the sequences {(Ag,;,u, 1)} and let
(B, vp) == (B,lﬂ,uéﬂ). We may also assume that [ — k; is strictly increasing. By construction

and the definition of u, one readily check that (B;,v;) — (A, u). Moreover, by construction
and (5.1c) |Ay, 1 AB)| = \Gill\ — 0. Finally, from (5.5) and (5.6) we immediately get

. S T '
lllinﬁif F(Ag, 1, up, 1) > l}gljg@fF(Bl, up)

Thus, the subsequence {(Ag, 1, ux, 1)}, the sequence {(Bj,u;)} and the configuration (A,w)
satisfy the assertions of Theorem 2.6. U

Note that by construction |B;| < |Ag,| and hence, in general our technique does not imply
the compactness of energy-equibounded sequences { (A, uy)} satisfying a volume constraint.

5.1. Proof of Proposition 5.1. We start with the following estimates near the points of
reduced boundary of A (in Proposition 5.1).

Proposition 5.2. Let § € (0,1/8), U C R™ be an open set, Ex,E € BV (U;{0,1}), and
Qrv(mg) CCU, 7> 0, v €S, be a cube such that

(al) zg € O*FE, vg(xo) = v and
1
15</ p(vp)dH" 1 <14 6;
oW)r" =t Ja., oo E (ve)
(a2)
1 . ) . 1 .
(5-0)r" < 1EN Qo). |EN @ (wo)l < (5 +8)",

where Qf,(z0) = {x € Qru(wo) : (z — mp) v = 0};
(a3) Ey — E in LY(U).

We also denote by ¢ a norm in R™ satisfying (4.1). Then there exists ks > 0 such that for
any k > ks there is t € (V/8,2v/8) such that ’H”_I(Ttir NO*Ey) =0 and

H" (T, 0 EM) + H Ty, (@1 EWY) + H Ty, 0 (BEVAEMY)) < 4yt

where
Ty ={z € Qru(zo): (x—zo)-v=t}, te(-rr),
and the set
DY := Qo) N {|(x — x0) - v| < t3r}
satisfies

/ S(vE)AH" ™ 2p(W)H" " (T ys,) — (4n + 12)byV/orm L,
Dzﬂa*Ek

(see Figure /).

In the proof of Proposition 5.1 we apply this proposition with U = Q, Ej, := A and F = A.
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Q1

FIGURE 4. The sets E}j, and E in Proposition 5.2.

Proof. Without loss of generality we assume that zyp =0, v = e, and r = 1. By (a2)
QT NE|<|B| - |ENQy| <25,
and hence, by (a3) there exists ks > 0 such that
|Qf NEx| <25 and |E,AE|<d forall k > ks. (5.7)

Also by (a2)
QU \ Bl <[Qr] =@y NE| <4,
thus, by (5.7) and the coarea formula

1/2
48 > |QF N Exl +1Qy \ Bl + |BAE| = / (e mn B + 1 (T 0 7 \ BY))
0
+H YT N EDAED)) 4 1 (T N [E,§1>AE<1>])] dt.
In particular there exists ¢ € (v/d,2v/5) such that
H (T N BD) +HHT 0 0(Q7 \ ED) + H (T N (BVAEW)) < V5. (5.8)

Define
Dy = (=1/2,1/2)" " x (—t], 1)
(see Figure 4). Note that

Lo ewsyawt = [ (g, AN
D2No* By, {z-en>—t21N0* (DINEY) k

B /B\*EkﬂDl‘zﬂan
By the choice (5.8) of
/ dlen)H L < byH" HEN NTy) < 4by/5
Efj)nTti K

and

/ - D(rg, Y H" 1 < by H" 1 (OD) N Q1) < 4(n — 1)baV/3,
9*ExNDINOQ1
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where 2(n — 1) is the perimeter of (—1/2,1/2)"~!. Moreover, by the anisotropic (local) mini-
mality of half-spaces (see e.g. [7, Example 2.4])

/ Svp s )AH™ > dlen M (B AT ),
{z-en>—13}N0* (DN Ey,) k
and hence, by (5.8) (we can replace Ej with E)
/ (e )AHL > dlen) K™ (EW NT ) — dby/5.
{z-en>—t}N0* (DyNEy,) k
Again by (5.8)
H N EDNT ) = W T gg) = H QU N W) N T ) > HTHT ) — 4V5

and therefore,

[ om)an = oo W (T_yg) ~ A0 + 3)ba
DINd* By, k

Now applying Proposition 4.1 and 5.2 we construct the set Gi in Proposition 5.1.

Proof of Proposition 5.1. Without loss of generality we assume ug = £ in '\ Ay, for some
§€(0,1)"\ Eq(a,up))} (see Remark 2.1).

By the uniform continuity of ¢, there exists r5 € (0,1) such that
lo(z,v) — p(y,v)| < § for all x,y € Q with |z — y| < rs. (5.9)
Let

Ki=xnoanl] (as'n|Jo F),
i=1 G
Ky :=0n AW N JorF,
=0
ﬁy:ﬂmyAm08WW
1=0

Since these sets are "~ !-rectifiable and pairwise disjoint, (by a simple covering argument)
we can find open sets Uy CC Int(Q2U S UX) and Us, Us CC Q with disjoint closures such that

3 3
ZHTL_I([’E} \ Ul) + Z Hn_l (I?l N U Uj) <. (5.10)
i=1 i=1 i
Set
K, =Unk,;, i=123.
Note that around H" !'-a.e. point of U; K; there exist j €{1,...,m} and a cube @ such that
U; K; “roughly divides” @ into two parts in one uj — aj, converges and in the other either uy,

is constant or |u — aj| — +o0. For convenience of the reader we divide the construction of
Gi into smaller steps.
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Step 1. Using the H" l-rectifiability of K;, 0*A, 0*F?, the lipschitzianity of ¥ and the
Borel regularity of corresponding unit normals we construct a fine cover of U; K; as follows.

Substep 1.1: fine cover for K. For H“_l—a.e. z € K there exist iy, jz € {1,...,m} with
iz # jz and 7, > 0 such that z € (05" \ 0*F**) N 0*F’* and:

(a1.1) 1z < %min{m, dist(x,0Uy)}, where 75 is defined in (5.9);

(a12) O(2,7) = O(K1,x) = 0(0*FI=, ) = 0(0*A,z) = 1 and vs(z), vk, (2), Vg (z) and
v4(x) exist and are parallel each other. For shortness, we set v, := vy (x);

(a13) Tz := Qr, 1, (x) N X separates @, ., (z) into two connected components;

(a1.4) for any r € (0,r,)

lvr,(y) —ve| <6 and |(y—z) v < %’ for all y € Ty, (5.11a)

(1-0)r" < H"YQ, NI, NI Fi=) < W HQ, NT,) < (14 8)r" L, (5.11b)

H”_1<[QT nJ a*Fﬂ} \rm) +HHQ, N [0 FI= AT,)) < 7L, (5.11c)
§=0

(F=US)N Q| > (1 - )™, (5.11d)

where Q, := Q. ().

Removing an H" '-negligible set from K if necessary we assume that for all points = € K;
there exist 7, and iy, j, satisfying (a1.1)-(a1.4).

Let us show that for any € K; and r € (0,7,), the cube Q... (z), the sequence { (A, uy —
a)”)}, the configuration (A,w/*), conditions (a11)-(a1.4), the sets E := Q, ,, (z) \ F’= and
K := Qy, ., (z) N 0*F'= satisfy all assumptions of Proposition 4.1. Indeed, conditions for T’
follow from (a; 3), (5.11a) and (5.11b), while conditions (a3)-(ad) for {(Ag, ux)} follows from
our assumption in the beginning of the proof and the assumption of Proposition 5.1. The
definition of FV= implies condition (a6) with E := Q.. ,,,(z)\ F’* and K = Q,, ., () NO*F=.
Finally, the estimates (5.11b) and (5.11c) together with (a;2) yield that AU S and K satisfy
conditions (a5) and (a7), respectively.

Substep 1.2: fine cover for K. For H" '-a.e. x € K3 there exist r, > 0, iz, j, € {0,...,m}
with i, # j, and an (n — 1)-dimensional Cl-graph I', containing x such that

(a2.1) e < §min{rs, dist(z, dUs)}.

(ag2) O(Ka,x) = 0(0*Fi= 2) = 0(0*FJ=,x) = (Ko NO*Fi= N 9*FJ* NT',,z) = 1 and unit
normals v, , Vi, (x) and vpj, (z) exist and is parallel to v, := vp, (z);

(ag.3) I'y separates @, ,, () into two connected components;

(ag.4) for any r € (0,74)

lvr, (y) — v <6 and |(y — ) - v < %T forall y e T, N Qy, (5.12a)
(1=0)r" ' < H" YQ, NTy N Ky NO*Fi= N9 Fix)
<H"HQ,NTL) < (1+06)r™ 1, (5.12D)

Na
W QLA Fno PR + 7 ([Qon o F|\T,) <o, (5.12)
=0

(% _ 5)7“” < |Fi= nQ:|, | Fia NQf| < (% _|_5>r”’ (5.12d)



EXISTENCE FOR THE SDRI MODEL IN R™ 43

where Q, := Q. (z) and QF := {y € Q, : (y— =) vy = 0}. Here the volume density
estimates follows from the definition of reduced boundary.

Removing an H™ '-negligible set from Ky if necessary we assume that for all points z € Ky
there exist 7, and i, j, satisfying (ag1)-(ag.4). Then using A = U§.V:20Fj and 0*A C uj.\’goa*FJ'
as in Substep 1.1. one can check that for any x € K5 and r € (0,7;), the cube Q,,, (z), the
sequence {(Ag,ur — aij”)}, the configuration (A, u’) and the sets E := Q,, ,, () \ F'= and
K = Qy, v, (x) N O*F" satisfy all conditions of Proposition 4.1.

Substep 1.3: fine cover for K3. For H" '-a.e. x € K3 there exist r, > 0, i, € {0,...,m}
and an (n — 1)-dimensional C'-graph T, containing = such that

(33,1) Ty < imin{r(g, diSt(ﬂC, 8U4)};

(ag2) O(K3,x) = 0(0*Fi= ) = 0(0*A,xz) = (K3 N T, NI*ANI*Fi= x) = 1 and the unit
normals v, (x), va(z) and vpi, (x) exist and coincide with v, := vp, (x);

(asz3) I'y separates @y, ., () into two connected components;

(ag.4) for any r € (0,r,)

lvr,(y) —ve| <6 and [(y —x) - vg] < 52—7" forally e ', N Qy, (5.13a)
(1-0)r" < H"YQ, NT, N K3NI*F= Nd*A)
<H"YQ,NTy) < (14 68)r™ Y, (5.13b)
N3
HH(Q, N [T A Fie 1 0* A)]) + %HQQT nJ 6*F”} \rx> <ol (5.13¢)
j=0
1
1-0)r" < / (2, Vi (y))dH" Ly 5.13d
(1-9) @) S (%, vpic (y)) (y) (5.13d)
1
< T,V dH" L (y) < (14 8)rt, 5.13e
o) o P A ) < (140) (5.13¢)
(%—5)#1 <1Q; NFis| <|Q- NA| < (%—1—5)7"”, (5.13f)
QF N Al < ar”, (5.13g)

where QT = Qr,um (CC)

Removing an H" !-negligible set from K3 if necessary we assume that for all points = € K3
there exists r, > 0 and i, satisfying (as1)-(a34). Then for any x € K3 and r € (0,7,) the set
U = Us, the cube Q,,,(z), the sequence Ej, := Q. (z) N A, the set £ := Q,,, (x) N A and
conditions (ag.1)-(as.4) satisfy all assumptions of Proposition 5.2. Indeed, conditions (al)-(a2)
are given in (5.13e) and (5.13f), whereas (a3) follows from the assumption Ax — A in L}(R")
as k — +o00.

Step 2. Now we extract finitely many covering cubes still covering U; K; up to some error
of order O(V/4), and create “holes” inside those cubes (i.e., the sets C{, C3 and Dj, in Figure

5). By Step 1, for each i € {1,2,3} the collection {Q,,, (z) : = € K;, r € (0,75)} of cubes
provides a fine cover for K; and hence, by the Vitali covering lemma we can extract an at
most countable pairwise disjoint family {Q,: , . (2%), 2 € K;} such that

]7 -Z/L-

(K U@, (z1)) = 0.
j J
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SZ SZ -

I | Yy 4

s F

: I Og_:_@ .......................................... 3,
J L T TR g4

FIGURE 5. Construction of holes C7, CJ and Di

Since H"1(K;) < 400, there exists N; > 1 such that

H”—l( AU @ s ) 3. (5.14)

J>N;

Moreover, decreasing r; a bit necessary, we assume that QT;’V;ci (.Tj) N QT;“W (a:j,) = () for

all 1 < j < j/ < Nj. Since U; NU; = () for i # j, cubes belonging to the union of G; :=

{Q, , (mé)}ﬁvzll, 1 = 1,2,3, have disjoint closures. When no confusion arises, we drop the
3"zt

dependence of :c; and rj- on i.

Substep 2.1: definition of Cf. Let Qy, z;(7;) € G1 for some j € {1,..., Ni}. By Substep
1.1 z; € K1 NdSY No*Fhi for some 1, h; € {1 .,m} with I # hj. Applying Proposition
4.1 (ii) with Q%,,Ij (zj) cCInt(QUSUX), T QT],Z,I () NE, {(Ag, ug —ak N, (A, uh),
E = Q""j,l’wj (zj)\ Fl, K := Q""j,l’wj () N 8*Fhf and ¢(-) = ¢(xj,-) we find an open set
C’f cQn er%?j (x;) of finite perimeter (given by Lemma 3.1) and kg’j > 0 such that

/ (o )dH 42 / | By, JAH" +2 / | b(v,, )AH !
Cino= Ay, cinAP Ny, $N9*CINO* AgNu,
22/ G n, JAH" ™ — o
Q'r] ](:Uj)ﬂa*th F J

> H(vg)AH" ™! — (¢ + Bba)éry ™ ' (5.15)
8*6”

for all k& > k:;’j and for some ¢/ > 0 (depending only on by).
Let us estimate the perimeter and the volume of UjC’{. By (5.11b)

< ﬁ”h{” Y@y, NN O FM) (5.16)
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and hence, by (2.8) and (3.2)

b O D) < [ Slug)dH <2 /
! Q

(Vo )AH ™ 4 5bydr !
9+C] Y !

vy ()00 F
<29 H" N (Qr, w, (w5) N O*FM) + Bboor? !
so that
H N 9*Cd) < %H"_I(QTM (z) NO*FM). (5.17)
Moreover, ‘ 1
G| < orf < 6rt 7t < 260" (Qryuy (25) NS N O FM)

and therefore,
Ni m
‘ U C{’ <25 HHOTFN). (5.18)
j=1 h=1

Let us estimate the error in covering K; by {C{} Fix some j € {1,..., N1}. Then by the
definition of K7, the error estimate (5.11c) and Lemma 3.1 (ii)

Ny
H Qv (@) VKON CD) < H T ([Quy (@) 1 0 FI| \ Ty ) + 171 (T, \ 07 F ™)
§=0

+H (@, (27) N O FM]\ CF) < 3607
and thus, by (5.16) and the choice § < 1/8
H " (Qryw, () NED)\ C]) < 40H" N Qr,, (z)) NENGFY). (519
From (5.14) and (5.19) it follows that

N1 - Nl R
H (K ) =1 (BN U Qi @) + D0 H T (@ () N I\ C)
j=1 j>Ny j=1

N1
<6446 H" Qo (z)) NE NI FM)
j=1

so that by the disjointness of {F"}

N1 _ m
T <K1 VU c{) <54+463 H O FN). (5.20)
j=1 h=1

Substep 2.2: construction of C3. Let Qr;v;(z5) € Go for some j € {1,...,Na} so that
there exist l;, h; € {0,...,m} with [; # h; # 0 such that x; € 8*F% N 9*F". As in Substep
2.1 applying Proposition 4.1 with Q, ., (z;) cC Q, Ty, {(Ar,up — aZj)}, (A uh), E =
Qry () \ FM, K := Qr, ., (x;) N O*F" and ¢(-) = ¢(x;,-) we find an open set C} CC
Qrjva, (x;) of finite perimeter (given by Lemma 3.1) and k‘?’j > 0 such that

/ C P(ra AT 2 / | S, JAH ™ 2> [ (v dH T~ dort T
CIno* Ay, cinAV N, acd 2
(5.21)
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for all k > k?’j, where ¢’ depends only on by. As in Substep 2.1, by (5.12b)
— 1 — * ; * i
< il Y@y () NO*FY N o*F) (5.22)

by (2.8) and (3.1)

9 b b
HOO"C) < ZEH @y ) 107 F) 4 T2 07 < TEUNQu () MO FY)
(5.23)
and
No ' m
‘ U og‘ <203 HHO M. (5.24)
j=1 h=0
Moreover,
Vs (K \ U CJ) <5+ 452w L@ Fh (5.25)

j=1
Substep 2.3: construction of D{C. Let Qr; ., (7;) € G3 for some j € {1,..., N3} and let z; €
O*Fhi N 9* A for some h; € {0,...,m}. Using Proposition 5.2 applied with U := er,yzj (x4),
Ep = Qr; v, (xj) NAg, E = Qrjva, (xj)NA and ¢(-) = p(xj,-) we find k:?’j > 0 such that for
any k > kj’ there exists t ;€ (v/8,2+/6) such that H"1(8* A, NT% ) =0 and

5
tk i

HNT )T m[czw@n\A )

+HNT, N [AYAAD)) <avErnTl (5.26)
k,j L]
where ‘
T) :={x € Qrjw;(x5) : (x—xj) vy =t}, te(=rjr)),
and the set ‘
Dy = {a € Quyp,, (2)) 1 (& —25) - vy <8 15}
satisfy
[ oagdt = )= VG (527)
Djkﬁa*Ak
for some ¢’ > 0 depending only on b2 and n. Note that by (5 13b)
< — 57{" YQr, 0, () NO*FM 0 9" A) (5.28)
and hence by the choice of tk,j and (5.28)
. 45
__ o0 .n n—1 * b
|Di| = th,ﬂ" < 17_57‘[ (QT]',Z/J' (35]) NO*F")
so that
N3 ‘ m
‘ U D{C) < 5\/SZH"—1(8*Fh). (5.29)
i=1 =

Moreover, by the definition of Di, (5.26), (5. 28) and the equality #" (T’

have

_ .n—1
g ) =i we

H'HO" DY) < (24 4Vt < AR (Qy, , (x5) N OTFM). (5.30)
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Let us estimate the error in covering K3 with {D‘,i} Fox some j € {1,..., N3}. Recalling
the definition of I';; in Substep 1.3 in view of (5.13a) we have Q, ., (z;) N Ty, C Dj and
hence, by (5.13c) and (5.28)

HV([K3NQy, 0, (7)] \ DY)

N3

A ([@raa(e) VU VT )+ 1771 (Quy (2) OTo ]\ AN )

7=1
<ot < 26N (Qry () N OFFM)

and hence, by (5.14)

Vi (K3 \ (VJ Di) =1 (Kg \ U @, (:cj)) + i T <[K3 N Qo ()] \ Di)

j=1 5>N3 j=1
so that
N3 m
T (K3 VU Di) <5420 WO F"). (5.31)
j=1 h=1

Step 3: Definition of G2. Let ki := maxj_y _n, k', i = 1,2,3, and for each k > ks :=
max{k}, k2, k3} let us define

Ny V2 - Ns ‘
Gy = JciulJciulJ D,
j=1 j=1 j=1

obviously, G¢ is open. By (5.18), (5.24) and (5.29) as well as the inclusion 9*A C U;0*F7 we
get

N N2 Ny m
63| < ‘ U C{‘ + ‘ U C%‘ + ‘ 9 Di‘ <8V5 S HN O F").
j=1 j=1 j=1 h=0

Moreover, summing the estimates (5.17), (5.23) and (5.30) and using the disjointness of the
closures of C{, C3 and Dj, (because so are the containing cubes) we get

N1 No N3 m
5 j j j 3by n—1/ 9% mh
P(G)) < ;Pw{) +J§:;P<cg> +;P<D@ <(4+37) S HOE)

Step 4: Definition of ss. Since A — A in L'(R"), by the coarea formula applied with the
1-Lipschitz function f(z) = dist(zx, S)

0= lim |A;AA|= / H " ({x € ARAA - dist(z, S) = s})ds
k—+o00 0

and thus, passing to a not relabelled subsequence if necessary,

lim H" '({x € A,AA: dist(z,S) =s}) =0

k——+o0

for a.e. s > 0. In particular, there exists s5 € (0,0) such that
H L ([ARAA] N {dist(-, S) = s5}}) < and H" ({0 < dist(-,S) < s5}} NI*A) < 6,
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Step 5: Proof of (5.4). Let BY and v) be given by (5.2) and (5.3). As in the proof of lower
semicontinuity, given (B, v) € C and a Borel set D C R™, let us introduce

pBw(D) ::/ (p(l’,I/B)dHn_l + 2/ @(x,u{;ﬂ)d%”_l
DNo*B DnBMANJ,

+o / ol vs)dH 1+ / 1B+ (e, ve) K
DNYXNo*BNJy, DOZOO*B\JU

+/ o(x, vg)dH" L.
DNX\o*B

Since ppp(R") = S(B,v) + [ ¢(z,ve)dH" !, we have
S(Aks ) — S(BE, 1) = ity (RY) — g s (R).
By construction

QNI AJ\ G =[QN (@ BI\ G, [ENd*AJ\ G =%nd*BY,

ENO* AN T, ]\ G = SN BIN T, T\ (8*Ak U U 9°Ci) = £\ 9B,
j=1

(AW 1AL NI\ G =AY N B N,

[AD N Js]\ uy, = Ua*FJ\G JgnoAc | Jo i\ Gy,
j=0
AP\ A N C <[R5\A]< )1 Ju) U (A \ AJY N 0Rs) U (Rs 1 0" A),

and hence,
Sk e) =SB ) > o (@) =g (GD =2 [ lmayar!
5MO*

go(x,l/ng)d%n_l - 2/ o(z,vgy)dH™ . (5.32)

_ 2/
J sNIBWNU, 8+ Fi [4\A]DNARs
k

By (2.8), the definition of I?j and Uj, the construction of C’j, Cj, Di, the choice of s5 and the
error estimates (5.20), (5.25), (5.31) and (5.10) we have

/ o(x,v4)dH ! +/ o(z,vy )dH"!
RsNo* A J s N[BYMNUR, 0% F ’k
k

+ / oz, vgy)dH" ™ < CZ6<1 + Z’H”_I(G*Fh)). (5.33)
[A\A]DNIRs h—0

Furthermore, from the additivity of the set-function ap, and disjointness of the closures of
CY, C} and Dj, we obtain

L - N1 P o Na R I
Haan (GY) = s s (G) = Z [ () = g 0 (C)] + Z [ (C8) = g 0 (CF)]
J= J=
N3 _ o
+ 3 (A (D) = gy (DD =1 + B+ I, (5.34)

j=1
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Substep 5.1: A lower estimate for I. Let

ot = p(apa)dH T 2 [ e, vy, )dH" !
CIno* Ay cinAM Ny,

+ 2/ _ o(x, Vluk)dH"_l.
$NO*C{Nd* ANy,

By (5.9) and (5.15) we have

o’ 2/8@- (@, vy )AH ™ = SHH(CL 1 [y, WO A]) = 011 (@°CY) = dory L (5.35)

Since |B(z)| < ¢(,vs) (see (2.9)), by the definition of pa, 4, , (B, v9) and [ips w6 We have

fAgu (Cf) > a,”  and / (g )AH T = s (CF).
e ! .
Therefore, from (5.35) and (5.16) we get

gy (C]) = pps (CF) 2 —0H""H(Quy o, (a7) N [Juy, U " Ay))

o
1-6
Summing these estimates in j and using the disjointness of {Q, ., (7;)} and the perimeter
estimate (5.17) of CY we deduce

— SH N (9*C)) — H" N (Qr, 0, NENOFM).

nL> —cf&(%"‘l(Juk) FHLO A + ZH”—l(a*Fh)) (5.36)
h=0

for all k& > k; = max; k;’j and for some c] depending only on b; and bs.
Substep 5.2: A lower estimate for Is. Let

Oéz’j ::/_ (p(x,yAk)d’H”_l—i—Q/_ " (p(x,yjuk)d?’-l”_l.
CIno* Ay, CINAL Ny,

By (5.9) and (5.21)

o2 > /8 AR Ry (1) N[0T AL U | = 08 C) = o
2
(5.37)

for all k > k?’j Since Cz NY =0, from the definition of f14, ,, (B/,‘z7 v,‘i) and fips o0 We have

KA ug (Cg) = O‘Z,j and 90( z, Cﬂ)dHn = NBg,v;z (O%)

9}
and thus, using (5.22) and (5.23) in (5.37) we obtain

KA ug (C%) - Mst 9 (C%)

—c25<7{” HQrywn, (27) V0" Ak U i) + H' Qo () VO FI 0 th))
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for some constant c¢5 > 0 depending only on by, be. Summing these estimates we get

I > —c§5(H”*1(Juk) FHN O A Y 7—["’1(8*Fh)) (5.38)
h=0
for all k > k? = max; k3.
Substep 5.3: A lower estimate for Is. Let

3’j — -1
Q" = / ) ‘P(x’VAk)d/Hn :
Diﬁa*Ak

Since H" (T

i _Tj)r;?_l, using (5.9) and (5.27) we get
]

o > / (0, v, )AL — (64 VB! (5.39)
Q (z)NT_,s

i Vg
70 xr r
J k,j

for all k > k:g”j. Moreover, by the choice of t‘s,j, (5.26) and (2.8)

ppp g (D) < /

Qrjva; (%‘)“T—ti,ﬂ'

n / |
o*DI\[T

o(z, I/Ij)d’l-[nf1 +/ o(z, ij)d'anl

) (1)
er wa (33] )ﬂAk mTtiJ

.T‘j

(P(xa Vpi)dHn_l

,tz’jrj UTtiyj’l‘]'}
= / (v, )AH" ™!+ AboV/or7 " 4 2t 171
er,uxj (xj)ﬂTiti e

Now using ti’j < 2v/6 and (5.28) in this estimate and combining with (5.39) and obvious
inequality g Ak,uk(Di) > az’j (recall that Di NX =0) we get

Hrsu (Di) T HBl g (Di) = _Cg\/ngn_l(er,uj (37]) N G*th)

for some c3 depending only on n and by, ba. Summing these inequalities in j we get

I3 > c3Vo Y H' (0" F") (5.40)
h=0
for all k > k3 = max; k;”.
Including (5.36), (5.38) and (5.40) in (5.34) and using (5.33) in (5.32) we deduce

S(Ap, ug) — S(B,ul) > —c*\/5<1 +H T () + HHO AR + ) H”*l(a*pl’))
=0

for all k > ks = max{k%, kg, kg’} Finally, since the elastic energy density is nonnegative, and
invariant w.r.t. to additive piecewise rigid displacements

W( Ak, ur) > W(B},v})
and hence, (5.4) follows. O

From Theorems 2.5 and 2.6 together with Proposition A.1 implies that the minimum prob-
lem (2.12) is solvable.
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Proof of Theorem 2./. Fix any A > 0 and let {(Ag,ux)} C C be a minimizing sequence
for F*. Then supy, F (A, ux) > 400, and hence, by Theorem 2.6 there exists a not relabelled
subsequence {(Ag, uz)}, a sequence {(By, vx)} C C and (A,u) € C such that (By, vp) = (A, u),
’AkABk‘ — 0 and

liminf F(Ag,ug) > hmlnf}'(Bk,vk) > F(A,u). (5.41)

k—4o0 k—4o00
Since the map E ~ ||E| — v| is L'(R™)-continuous, from (5.41) it follows that
lim inf FAN Ay, ug) > hmlnf]: (B, vr) > FNB,v).

k——+o0

Hence, (B,v) is a minimizer of F*. By Proposition A.1 there exists A9 > 0 such that for
A > Ao every minimizer (A,u) of F* satisfies the volume constraint |A| = v. Thus, (A,u)
solves also the problem (2.12). Conversely, if (A, u) solves (2.12), then for A > Ao,

min  F(B,v) =F(A,u) = F*A,u) > min F*(B,v)
(Bw)eC, |B|=v (Bw)eC

= min  FN(B,v) = min  F(B,v)
(B,v)eC, |Bl=v (B,w)eC, |Bl=v

and hence, (A,u) is a minimizer of F*. O

5.2. Compactness in C, and Cp;,. In this section we comment on the 7-compactness of
energy-equibounded sequences in C, and Cpi,; for the definition of 7-convergence see (2.18).
Using (2.15) and the compactness result [14, Theorem 1.1] we have:

—if {(Ag,ux)} C Cp, is arbitrary sequence with supy, Fp(Ag, ui) < 400, then repeating
the same arguments in the proof of Proposition 5.1 we construct a not relabelled
subsequence, the set G, numbers s; and ks satisfying (5.1a)-(5.1d) such that the
configuration (B2, v?) € Cp, given by (5.2) and (5.3), satisfies

S(Ap,ug) — S(BSul) > —c f(1+'H” W) + H 10" A) +§ Y 8*F2)>
1=0
Then by (2.15)

W( A, u) = W(BR, ur) + / Wy (, EvQ)da = W(B, u) — / |fldz.
Gy, G

Since f € LY(Q U S), by (5.1c) and the absolute continuity of the Lebesgue integral
we have

W(Ag, ux) > W(B}, ux) + os, (5.42)
where o5 — 0 as 6 — 0. Now the proof of the compactness in C, runs exactly the same
as Theorem 2.6 using (5.42) in place of (5.6);

—if {(Ag,ur)} C Cp is arbitrary sequence with sup;, Fpir(Ag, ur) < 400, then by [14,
Theorem 1.1] in the proof of Theorem 2.6 we will have only two sets FV and F!
partitioning A : the sequence uj; converges a.e. in F'' (up to a subsequence) and
|ug| — 400 a.e. in F°. In particular, due to the Dirichlet condition for uy, in S, we do
not need to add any rigid displacements, and then the proofs runs as in C,,.

The 7-compactness in C, (resp. Cpi) and the 7-lower semicontinuity of F, (resp. Fpi)
imply that for any A > 0 there exists a minimizer of .7-"5‘ (resp. FJ;.). Now obverving that the
proof of Proposition A.1 works also in C, and Cp;, (see Remark A.2) we conclude that both
minimum problems (2.16) and (2.17) admit a solution.
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6. DECAY ESTIMATES

This section is devoted to the proof of the following density estimates for minimizers of F.

Theorem 6.1 (Density estimates). There exist ¢. = < (b3,b4) € (0,1) and R, =
R (b1,ba,b3,bs) > 0, where b; are given by (2.8) and (2.10), with the following property.
Let (A,u) € C be any minimizer of F in C such that QN 0*A Cyn—1 Jy and fQ\A |Eu|ldz =0,
and let

Jy={z e Jy: 0(Jy,x) =1} (6.1)
Then for any x € Q and r € (0, min{1, dist(z, 0N)})

H Q. (z) N J) < 4nby + Ao

6.2
pn—1 - bl ( )
Moreover, if x € QN J* and r € (0, Ry) with Q,(z) C €, then
n—1
r
In particular,
HH QN [T\ J;) = 0. (6.4)

Since J,, is H"!-rectifiable, by the rectifiability criterion [3, Theorem 2.63] H"~1(J,\ J) =
0. Thus, if we remove a H" !-negligible set from .J,, then (6.4) implies that the jump set of
u is essentially closed in 2.

To prove Theorem 6.1 we follow the arguments of [37, Section 3]. First we introduce the
local version F(-;O) : C — R of F in open sets O C §) as

F(A,u;0) := S(A,u;0) + W(A,u;0), (6.5)
where S(-;O) and W(+; O) are the local versions of the surface and the elastic energy, i.e.,
S(A,u;0) :—/ Py, va)dH " + 2/ Py, va) dH
ONo*A OoNnAMNJ,
and
W(A,u;0) = C(y)€u : Eudy.
ONA

Next we introduce the notion of quasi-minimizers.

Definition 6.2 (©-minimizers). Given © > 0, the configuration (A,u) € C is a local ©-
minimizer of F : C — R in O if

F(A,u;0) < F(B,v;0) + ©|AAB]
whenever (B,v) € C with AAB CC O and supp (u —v) CC O.

For any (A, u) € C and any open set O CC € let
®(A,u;O) ;= inf {]:(B,U;O) : (B,v) € C,BAA CC O, supp(u—v) CC O}, (6.6)
and let
V(A u;0) := F(A,u;0) — (A, u;0) (6.7)
be the deviation of (A,u) from minimality in O.

The following proposition is a generalization to our setting of [12, Theorem 4] established
for the Griffith model.
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Proposition 6.3. Let Qr(zg) CC Q. Consider sequences of Finsler norms {pp} and ellip-
ticity tensors {Cp} such that {Cy} is equicontinuous in Qr(xo) and there exist ds,ds,ds > 0
with

dsM : M < Cp(x)M : M < dyM : M for all (z, M) € Qr(wo) x MY (6.8)
and
inf ¢h($7l/) > ds sup ¢h($,V), (69)
(z,v)EQR (o) xSm~! (z,v)€QR (z0)xSn—1

and define Fp, and ¥y, in C as in (6.5) and (6.7), respectively, with ¢y, and Cy, in places of ¢
and C. Let {(Ap,up)} C C be such that

/ |Eup|dz =0, (6.10a)

QRr(w0)\An

M = sup Fp(Ap, un; Qr(zo)) < oo, (6.10Db)

h>1

Jim Wi (A, ups Qr(wo)) = 0, (6.10c)
—00

Jim H" Y Qp(w0) N Jy,) =0, (6.10d)
—00

QR(.QC(]) No*Ay, Cyyn—1 Juh' (6.106)

Then there exist u € H' (Qr(x0)), an elasticity tensor C € C°(Qgr(xo); M) and sequences
{aj} of rigid displacements and subsequences {(Ap;,un;)}, {wn;} and {Cy,} such that

(i) Cn; — C uniformly in Qr(zo) and

wj = up; — aj — u a.e. in Qr(wog) and Ew; — Eu in L*(Qr(20))

as j — oo;
(ii) for all v € u + HY(QRr(z0))
/ C(y)u: Eudy < / C(y)€v : Evdy; (6.11)
Qr(xo) QR(zo)
(iii) for any r € (0, R]
lim (A, un,; Qr(z0)) = / C(x)éu : Euda. (6.12)
Jroo Qr(z0)

Proof. Without loss of generality, we assume R = 1 and xg = 0. Also by (6.10d) we may
assume H"1(Q1 N Jy,) < 1/4 for any h. Let

b/h = inf ¢h(.’L',l/), b/}; = Sup ¢h(xal/)
(z,v)EQR(2:0)xSm~1 (2,0)€Qr (2:0)xSn—1

so that by (6.9)
dsbj, < by, < b, for any h. (6.13)
By [11, Proposition 2| and (6.8), there exist a constant ¢, (depending only on n and d3) and

sequences {wy, } of a measurable subsets of Q1 with |wy| < ¢, "1 (Q1N Jy,) and {as} of rigid
displacements such that

/ lup, — ap|* dz < ¢, Cn(x)Eup, : Eup, d. (6.14)
Q1\wn Q1
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By (6.10a) and (6.10b), |[(un — an)X@,\ws llL2(@1) < Mco, and thus, there exist u € L*(Qy)
and a not relablled subsequence such that (up — ap)x@Q,\w, — U in L?(Q1). Since |wp| — 0,
the set

F:={y € Q1 : limsup|uy(y) — an(y)| = +oo}

h—o00

satisfies |F| = 0. Furthermore, by (6.10a), (6.8) and (6.10b) as well as the equality J,, =

Juh—ah

- M 1
Sup/ E(up, — ap)Pdz +H" Q1N Juy—ay) < —+ 1
h>1JQ1 3

and hence, by [14, Theorem 1.1] there exist a not relabelled subsequence {uj, — a5} and
u € GSBD?*(Q1) such that

Up — ap —> U a.e. in Qq (6.15)

E(up —ap) — Eu  in L*(Qq; Mg ), (6.16)

H N QN Jy,) < liminf H"1(J,,) = 0. (6.17)
h—+o00

Since the weak limit and the pointwise limit coincide (see e.g., [22, page 266]), u = u a.e.
in Q1. Moreover, (6.14), (6.15) and the Fatou’s Lemma imply u € L?(Q1) and by (6.17) one
has H""!(J,) = 0. Thus, by Lemma A.4 u € H'(Q1). Since our elastic energy is invariant
under additive rigid displacements, without loss of generality further we assume aj;, = 0 for
any h > 1.

Next we prove (6.11). Let v € H!(Q1) be such that supp (v —v) CC Q, for some r € (0, 1).
Fix 7" < 7' < r and let ¥ € C1(Q,;[0,1]) be a cut-off function with {0 < ¢ < 1} C {u =
v} N Qp and supp (u —v) C {¢p = 1} C Q. By (6.10d) and [12, Theorem 3| there exist
a positive constant ¢ > 0 (depending only on n, d3 and dy), a function v, € GSBD?(Q1),

ry € (r — op, ) with
Op = R/ H Y (Ty,), (6.18)

and a Lebesgue measurable set wy, C Q,, such that
(a1) op € C®(Qr—s,), Uh = up in Q1 \ Qy,, and
H Ty, NOQy,) = H" 1 (J5, NOQy,) =0
(a2) /Hn_l(‘]ﬁh \ Juh) < 05th_1(Juh N (QT \ Qr—éh));
(ag) |wn| < 67 H" 1 (Qy, N Jy,) and by (6.8),
/ On — up|?da < cdﬁ/ Ch(z)Eup : Eupde; (6.19)
Qr\‘:’h Qr
(aq) if n € Lip(Q1; [0, 1]), then

/ NCr(x)Evy, :Evpdr < / NCr(x)Eup, : Eupdx

T T

+cop[1+ Lip(n)] | Cu(x)Eup : Eupda (6.20)
Qr

for some s € (0,1) independent of h.

By (a1) v, € HY(Q,+) and supp (v, — up,) CC Q, for all sufficiently large h. By (6.15), (6.19)
and the relation 6;" = H"1(Q1 N Jy,) — 0 it follows that v, — u a.e. in Q1. Define

vp = (1 =)o, + Yo. (6.21)
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Then (Ap,vp) is an admissible configuration for ®,(Ap,up; Q1) in (6.6). Therefore from
(6.10c) and the definition of deviation it follows that

Fr(Apsun; Q1) < Fn(Ap, s Q1) + o(1), (6.22)
where o(1) — 0 as h — oco. Note that by (a1), (a2), (6.13) and (6.10b)
S(Aps v Q1) — S(An, un; Q1) Z/ Sn(, vy, JAH" ! —/

n—1
(1) ., Onl@va, )dH
AV, AT,

< / on(z, vy ydH" !
AL, \Jup)N(Qr\Qr—s),) "

<O (g, \ Ju,) < O H" ™ (T, 0(Qr \ Qr-s,))
MC(Sh

ds
This estimate, (6.22) and the definition of localized elastic energy imply

co
sd—hS(Ah,uh;Ql) <
5

/ Chr(z)Eup : 5uhd7‘[n_1 < / Cp(z)Evp, : gvhdf}‘[n_l +0o(1) (6.23)
ApNQ1 ApNQ1

as h — +oo.
Next we estimate the integral in the right-hand-side of (6.23). By (6.21)
Evp = (1 = )Evp +YEv + VY © (v — 1),
where X OY = (X ®Y +Y ® X)/2. Since vj, = u a.e. in @, and u = v in @, \ @/, one has
vy, — v a.e. in Q1.

We claim that 0, — u strongly in L2 (Q,). Indeed, fix any p € (0,7). By (a1) v, € H(Q,).
By (6.8), (6.10b) and (6.20) (applied with n = 1)

dg/ 1ET,|2de < dg/ 1ETL2dz < C | Cu(x)Euyp : Eupdx < MC
P r Qr

for some constant C' > 0 independent of h. Moreover, by the Poincaré-Korn inequality for
each h there exist a rigid displacement e, (possibly depending also on p) such that

. - MCC!
15 — enllio,) g/ €5, 2z <
Qp 3

and hence, the Rellich-Kondrachov Theorem implies the existence of w € H'(Q,) and not
relabelled subsequence such that v;, —e;, — w in LQ(QP). Since vy, — u a.e. in Q1, ej, > w—1u
and hence, e := u — w is also a rigid displacement. Then
lim sup ||vp, — u < limsup ||vy, — ep, — w + limsup |lep, + (w —u =0,
]Hoop [on HLQ(QP) }HOOP [0 — en HL2(QP) }HOOP llen + ( )”L2(Qp)
and the claim follows.
Since u = v out of {¢) = 1}, the claim implies 75, — v strongly in L?({0 < ¢ < 1}), and
hence,
lim [ Vg (0—)|, Pde <lim inf/ Voo (w—5)Pde=0.  (6.24)
h {o<wp<1}

h—o0 Qr h—o00

Thus, by definition (6.21) of vy,

/ CrEuyp, : Evpda = / (1 — )2 CrED, : Evpda + / Y2CrEw : Evda
QrmAh QrﬁAh QrﬁAh
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+ /Q GO =T (V60 (0= T)))de
rNAp
+ / (1 - )ChlD : (Vo © (v — T))da
anAh
+ / YCrév : (VY © (v —vp))dx
Qr

= / (1 —)2CLED, : ETpdx + / Y CpEv : Evdx + o(1)
QrmAh QrmAh

§/ (1 — )’ CrEuy, : Eupda +/ Y CrEv : Evda 4 o(1), (6.25)
QrNAp QrNAp

where in the second equality we use (6.10b), (6.20) with n = 1, (6.24), (6.8) and the Holder
inequality, while in the last inequality we use (6.20) with n = (1 — ¢)? and (6.10d). Now
combining (6.25) with (6.23) we get

/ (2¢) — Y ChEuy, : Eupda < /Q Y2CrEW : Evdx + o(1). (6.26)

Since {Cp} is equibounded (see (6.8)) and equicontinuous, by the Arzela-Ascoli Theorem,
there exist a (not relabelled) subsequence and an elasticity tensor C € CO(Ql;MQyXH?) such

that C;, — C uniformly in @;. Hence, letting h — oo in (6.26) and using (6.16) and the
convexity of the elastic energy, we obtain

/ (2¢) — p*)C(y)Eu : Eudy < | *C(y)Ev : Evdy. (6.27)
r Qr
By the choice of 1, (6.27) implies
C(y)éu : Eudy < C(y)Ev : Evdy. (6.28)
Q1 Qr

Since r” is arbitrary, letting »” ~ r we deduce that (6.28) holds also with r” = r. Since
supp (u — v) CC @, this implies (6.11).

It remains to prove (6.12). If we take v = w in (6.26) and use 0 < ¢ <1 and ¢ =1 in Q,»
we get

CEu : Eudx <lim inf/ Cpluy, : Eupda
QT//

Q. h—o0

<limsup Cpluy, : Eupdx < C&u : Eude.
h—o00 QT‘” QT

Since r” is arbitrary, letting v 7 r we deduce

lim / Cpéluy, : Eupdr = Cé&u : Eudx. (6.29)
h=ee JQ, Q@r
In view of (6.29) to prove (6.12) it suffices to establish
lim Sp(An;Qr) =0 (6.30)
h—o0

for any r € (0,1). By (6.10e) Q1 N9* Ay, C Jy, up to an H" L-negligible set. Thus, by (6.10d)
and the relative isoperimetric inequality, up to a subsequence, either

lim |Q1 N Ayl =0 (6.31)
h—o0
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or
lim [Q1\ Ax| = 0. (6.32)
h—o00
We claim that there exists a not relabelled subsequence {4y} such that for a.e. t € (0, 1)
lim on(z,vg,)dH" 1 =0 (6.33)
h—o0 ApNoQs
if (6.31) holds, and

lim on(z,vg,)dH" 1 =0 (6.34)
h=00 J(Q1\A41)N0Q:
if (6.32) holds.

We establish only (6.31), the proof of (6.34) being similar. By the coarea formula (applied
with f(l') = max{]fg1|, R ’$n|})

1
lim Q1 NAp| = lim [ H"'(A,N0Q,)dt =0,
h—o00 h—oo Jo

thus, passing to further not relabelled subsequence, hlim H 1 (ApNOQ;) = 0 for a.e. t € (0,1).
—00
In particular, if sup;, b} < 400, then
lim sup/ on(z,vg,)dH™ ™! < limsup bjH" (A, NOQ;) = 0. (6.35)
h—+o0 JARNIQ: h—+00

On the other hand, if b} — 400 (up to a subsequence), then by the coarea formula and the
relative isoperimetric inequality in ()1

1
b;;/ H" (AR N OQy)dt = b | Ap N Q1| < bhen P(An, Q1) 1, (6.36)
0
where ¢, > 0 is the relative isoperimetric inequality for cubes. By (6.9)
1 1 Fn(An, un,
P(An Q1) < L S(An, Q1) < —- S(Ap, Qu) < T2Am 4 Q1)
an d5bh

dsbj ’

hence, by (6.36)
" ! n—1 M= -ty
by, H (Ah N aQt)dt < |:7:| [bh] mt
0

ds
This and (6.10b) imply

h—+o0

1
lim b / H (A 0 OQ)dt = 0.
0

In particular,
lim bH" (A, NOQ:) =0

h—+o00

for a.e. t € (0,1). Now the proof of (6.33) follows as in (6.35).
Now we prove (6.30) assuming (6.31). Given ¢ € (r,1) for which (6.33) holds, define
Ep = Ap \ Q. Then (Ej, up) is an admissible configuration in (6.6), and thus,
Fr(An, un; Q1) < Pr(Ap, up; Q1) + o(1) < Fp(Ep, un; Q1) + o(1), (6.37)

where in the first inequality we use (6.10c) and in the second we use the definition of ®j.
From the definition of E}, and (6.37) it follows that

Sn(An; Q) < /A o, (@) o),
nNOQ¢
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This and (6.33) imply (6.30).

Now suppose that (6.32) holds. Let &, be defined as in (6.18), and let and ¢, and " <
r" < r and v, be as in (6.21) with v = u. Fix any t € (r, 1) for which (6.34) holds and set
Ej, := A, UQq. Then for sufficiently large h that (Ep,v,) is an admissible configuration for
@h(Ah,uh; Ql) in (66) Thus by (610C)

Fr(Ansun; Q1) < Fn(En, vp; Q1) + o(1).
By the definition of F, as in the proof of (6.26) we establish

Sn(An; Q) + / (20 — *)CpEuy, : Eupda

T

< V2Créu : Eudx +

/ 61 (2, v ) AH™ 1 + o(1).
Qr (Q1\Ap)NOQ:

Thus, as in (6.27) letting h — 0o we obtain

lim sup Sy, (Ehn; Q+) +/ (2¢) — p*)CEu : Euda < Y CEu : Eud. (6.38)

h—00 Qr Q-

Since ¢ = 1 in Q,» and || < 1, from (6.38) it follows that

limsup Sy, (An; Q) + Céu : Eudx < Céu : Eudz.
h—o0 Qr” Qr

Now letting "/ — r we get (6.30). O

Recall that by [42, Theorem 6.2.1] if the elasticity tensor C is constant and satisfies (2.10),
then there exists Cp, p, > 0 such that every local minimizer u € H'(Q1(zp)) of the functional

v e HY(Qq(xo); R") — Cév : Evdx (6.39)
Q1(z0)
is analytic in Q1(xo) and satisfies
/ Céu: Eudx < Chyp, r”/ CEu: Eudx (6.40)
Qr(wo) Q1(x)

for any r € (0,1/2). Let
70 := 70(b3,b4) == (1 + Chyp,) 2 (6.41)

Using Proposition 6.3 and repeating similar arguments in [13] we get the following decay
property of the functional F.

Proposition 6.4. Assume (H1)-(H3). For any 7 € (0,79) there exist ¢ = ¢(7) € (0,1),
¥ :=9(1) >0 and R := R(T) > 0 such that if (A,u) € C satisfies

Qp(z)NIO*"AC Jy,

/ |Euldx = 0,
Qp(x)\A

Hn_l(Qp(x) N JU) < gpn_17

F(A, u;Qp(x)) < (1 +9)(A, u;Qp(w))
for some Q,(x) CC Q with 0 < p < R, then

F(A, 05 Qrp()) < 7712 F(A u5Q,(x)).
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Proof. Assume by contradiction that there exist 7 € (0, 79), positive real numbers ¢, ¥y, pp, —
0, cubes @, (z5) CC Q, and admissible configurations (Ap,us) € C such that

Qp, (xr) N 0" Ap C Ju,, (6.42a)
/ |Eup|dx =0, (6.42b)
Qpp, (zn)\Ap,
H' N (Qpy (xn) N Juy,) < suppp ", (6.42¢)
F(Ap,un; Qpy (z1)) < (14 Un)2(Ap, uns Qpy, (z1)), (6.42d)
but
F(An, up; Qrpy (1)) > T Y2 F (A, un; Qp, (1)) (6.43)

for any h. Note that F(Ap, up; Qp, (1)) > 0. Let us define the rescaled energy Fj,(-; Q1) as in
(6.5) with
(on/2)" " p(zn + 3P0y, V)

F(An, un; Qpy, (xn))

bn(y,v) =

in place of ¢(y,v) and
Chn(y) = Clzn + pny)
in place of C(y), for y € Q1. In view of (6.42a)-(6.42d) for
Ep := 0uy,,p, (An)

(see definition of blow-up map o, , at (2.1)) and

n—2
(pn/2) 2 wpl(zn + Spny)

VF (A, un; Qp, (xn))

vp(y) =

we have

Fn(En,vp; Q1) =1,
Q1N O*E}, Cyn—1 Jvh,

/ |Evp|dz =0,
Q1\Ep

HH Q1N dTy,) <2V g,

Up(Ensvn; Q1) < Op®p(Ep, vps Q1) < InFn(Ep, vn; Q1) = Vs
where @, and ¥, are defined as in (6.6) and (6.7) (with ¢, and Cp, in places of ¢ and C,
respectively). By the boundednes of 2, there exists xg € € such that, up to extracting a
subsequence, zj — xo as h — +oo. In particular, zp, + ppy — xo for every y € Q1. Then
the uniform continuity of C implies that Cp, — Cy := C(x¢) uniformly in Q. Also by (2.8)

¢y, satisfies (6.9) with ds := by/by. Thus, by Proposition 6.3 there exist v € H'(Q;) and
infinitesimal rigid displacements aj; such that, up to a subsequence,

Wh = Vp —ap — U

pointwise a.e. in Q1, Ewy, — Ev in L*(Q1) as h — 400, and

lim Fp(Ep,vp;Qr) = lm Fp(Ep, wp; Qr) = Co(x)Ev : Evdx (6.44)
h—+oc0 h—+o00 Qr
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for any r € (0, 1]. In particular, from (6.43) and (6.44) it follows that

Co(z)€v : Evdxr = lim F(Epn,vp; Qr)
Q- h—+o00

> 712 lim F(Ep, vn; Q1)

- h—4-o00

= 7"1/2 / Co(x)Ev : Evde.
1

Since Fp(E}p, vp; Q1) = 1, by (6.44) le Co(z)Ev : Evdxr = 1. Moreover, as Cy is constant and
v is a local minimizer of (6.39), applying (6.40) with r := 7 and R := 1 we get

Coypy ™" =Chy p, ™" Co(z)Ev : Evdx > Co(x)Ev : Evdx

Ql QT
>7n1/2 Co(x)€v : Evdax = =172,
Q1
which contradicts to the assumption 7 < 7. O

By employing the arguments of [43, Section 4.3] and using Proposition 6.4 we establish the
following lower bound for F.

Proposition 6.5. Given 7 € (0,7)), let ¢ :==¢(7) € (0,1), 9 =9(7) >0 and R:= R(1) > 0
be as in Proposition 6.4 and let

. blanll/nﬁ
= b1) := _— .
Ry := Ro(O, 7,b1) := min {R(T), 02+ 0) } , ©>0
Let (A,u) € C be a ©-minimizer of F in Qp,(xo) such that Q N *A Cyn— Jy and
fQ\A |Euldz = 0. Then for any x € Qy,(m0) N J, where J: is given by (6.1), and any cube
Qp(x) C Qry(x0) with p € (0, Ry) one has

F(A,u;Qp(x)) = brgp™ . (6.45)

Proof. Let (C,w),(D,v) € C and O C Q be such that CAD CC O. By the isoperimetric
inequality, the inclusion 0*(CAD) C ON(9*CU0O*D), (2.8), the definition of S(-; O) and the
nonnegativity of W(-; O) one has

nwl/™ |CAD|"* <P(CAD) < P(C,0) + P(D,0)
<S(C’,w,0) +S(D,v,0) < F(C,w;0) + F(D,v;0)
- b1 B by ’
From (6.46) and the ©-minimality of (4, u) in @, (xo) we deduce

F(A,u; Qr(x)) <F(B,v;Qu(z)) + O AAB|w |[AAB|"+

Or
<F(B,v;Qu(w)) + — - (F(A,uQu(2)) + F(B,v; Qy())  (647)
blnwn/n
for any Qr(z) C Qr,(z0) and (B,v) € C with AAB CC Q,(z) and supp (v — v) CC Qr(z),
where in the last inequality we used the inequality |[AAB| < |@Q,| = ™. By the choice of Ry,

if » € (0, Rp), then bmiq 7 < 35, and thus, by (6.47)

n

(6.46)

F(A,u;Qr(2)) < (1+9)F(B,v; Qr(x)).
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By the arbitrariness of (B, v) this inequality is equivalent to
F(AuQr(x)) < (1+90)(A, 45 Qr (). (6.48)

Now we prove (6.45). Fix any x € J¥; for simplicity we suppose that x = 0. By contradic-
tion, assume that
F(Au;Q,) < bigp™ !
for some Q, CC Qry(zo) with p € (0, Rg). Then by the nonnegativity of the elastic energy
and (2.8) one has
bicp" ! > S(A,u;Q,) = biH" T (Q,N Ju)
so that
HHQ, N Ty) < sp™ L.

By Proposition 6.4 and the definition (6.41) of 7y

F(A w3 Qrp) < 77 V2F(A,15.Qp) < brs(rp)" !
so that

H'HQrp N ) < s(rp)"

Then by induction,

H' N (Qrmp N Jy) < s(77p)"" 1 for any m > 1.
However, by the definition of J;;

Hn_l(QTmp N Ju) < 2big .

1= lim —¢<1,

m—4o0 (rmp)n—1 - 20

a contradiction. Hence, (6.45) holds for any = € J;;. Note that the map F (A, u;-), defined for
open sets O CC Qr,(zo) extends to a positive Borel measure in Qy,(xo), and therefore, by
continuity of Borel measures, (6.45) extends also for z € Q,,(zo) N J;t. O

Now we are ready to prove (6.2) and (6.3).

Proof of Theorem 6.1. Let (A,u) be a minimizer of F such that Q N 9*A C J, and
fQ\A |Eulde = 0 and let Ay > 0 be given by Theorem 2.4. Since (A,u) is also a mini-

mizer of 720, for any open set O C Q and (B,v) € C with AAB cC O and supp (u—v) CC O
we have
F(A,u;0) < F(B,v;0) + Xo||A| — |B|| < F(B,v;0) + \|AAB].
Hence, (A, u) is Ag-minimizer of F(-;) in Q.
Let us prove (6.2). Fix z €  and let r,, := min{1, dist(z, 9Q)}. Then by the A\p-minimality
of (A,u) for any r € (0,7;) and p € (r,ry)

F(Au;Q,(x)) < F(A\ Qr,u; Qpx)) + Xo|Qr(x) N Al (6.49)
where for shortness Q, := Q,(x). Since F(A,u;Q,(z) \ Qr(x)) = F(A\ Qr(x),u; Qp(z) \

Qr(z)), from (6.49) and the definition and nonnegativity of F we get

F(A, 1 Q) < / (s v (o)) M 1 Agr™
0Qr(x)

By (2.8)
/ o(z, VQT(I))d/H"_l < boH"H0Q, () = 2nbyr™
0Qr(x)
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thus, using » < 1 we obtain
F(A,uw;Qr(x)) < (2nby + Ag)r™ L. (6.50)
Using the nonnegativity of W(A,u; Q,(z)), (2.8) and the equality Q,.(z) N J, = (Qr(z) N
O*A) U (Qr(z) N AW N J,) in (6.50) we get
F(A,u;Qr(x)) > S(A,u;Qr(2)) = biH" ™ (Qr(2) N Ju).

Therefore,

2nb2 =+ )\0 n—1

— "
by

Next we prove (6.3). Fix x € J*. For 79, given by (6.41), let ¢, = ¢(70/2) € (0,1) and
R, = Ro(70/2,b1,b2, A0) > 0 be as in Proposition 6.5. By (6.45)

F(A, 13 Qr(2)) 2 brsy () (6.51)
for any v € (0,1) and r € (0, R,) with Q,(z) C Q. Let
G i=¢(T), Vi :=9(r") and R, :=min{R(7.), R}
be given by Proposition 6.4 for

27, := min {%, (%:;i)\[)Y} (6.52)

By contradiction, if H" 1(Q,(x) N J,) < ™!, then applying (6.48) with 7 = 7, we get
F(Au;Qr(z)) < (1+9,)P(A, u; Qr(x)).

Hence, by Proposition 6.4
F(A 05 Qrr(@)) < 772 F (A, 4 Qr ()

so that by (6.51) and (6.50)

HHQ, (z) N T,) <

A2 b1So ’
— 2nby 4+ Ag
which contradicts to (6.52).
Finally, (6.4) follows from the density estimates together with a covering argument. g

From Theorem 6.1 we get the partial regularity of minimizers of F.

Proof of Theorem 2.7. (i)-(iii). Let (A, @) € C be a minimizer of F and let

A= AW, u' = Uxaus + € Xovarn
where ¢’ € (0,1)™ is chosen such that QNo*A" C J,/. By [41, Chapter 15], 0A’ = 9* A’. Clearly,
(A’,u) is a minimizer of F, and by Theorem 6.1 H"~(J%, \ J%) = 0. Since J,, is rectifiable,

by [3, Theorem 2.63] H"~!(.J, \ J%) = 0 and hence observing Q NJA’ = QN I*A’ C J,/ we
observe

HP LA\ Int(A)) < HLHOA) < HHOQ) + H N Jyw) < +oc.
Now let
A:=Tnt(A) and wu:=uyxaus+ §'XQ\A.
Since |[AAA'| < |04 =0, u = v ae. in QU S and hence, (A4, u) is also a minimizer of F.
Moreover,

H L (ADN\ A) < 71 (04) < +o0, HY YT N\ D) = H (T \ J5) =0,
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and o
H N TGN Jg) = H T\ J) = 0.
Thus, (i) follows. The assertions (ii) and (iii) directly follow from the minimality of (A, u)
and Theorem 6.1.
(iv). Finally, if E C A is a connected component of (the open set) A with H* 1 (0*EN Y\
Ju) = 0, then for v := ux aus\g + tuoXE We have
S(A,u) > S(A,v)
and
W(A,u) > W(A,v). (6.53)
In (6.53) the equality holds if and only of u = ug in E. Therefore, by the minimality of (A, u)
it follows that u = ug in E (up to an additive rigid displacement). It remains to prove
bln n
Bl 2w, ()"
LEPNC
Consider the competitor (A\ E,u) € C. Since (A,u) solves (2.13), FA(A,u) < F(A\ E, u)
so that using u = ug in E and the additivity of the surface energy, we get

/ oz, ve)dH" ™ < Xo|E].
O*E
Using (2.8) and the isoperimetric inequality in this estimate we obtain
1/n n=1
M|E| > 01 P(E) > binw,/"|E| = .
Hence, |E| > (bmw}/n/)\g)” and (iv) follows. O

APPENDIX A.

A.1. Equivalence of volume-constrained and uncontrained penalized minimum
problems. The following proposition can be seen an extension of [26, Theorem 1.1].

Proposition A.1. Assume (H1)-(H3). There exists Ao > 0 (possibly depending on by, by and
Q) with the following property: (A,u) € C is a solution of (2.12) if and only if (A,u) is also
a solution to (2.13) for all A > Xp.

Proof. Note that any minimizer (A, u) € C of F* with |A| = v is also minimizer of . Hence,
it suffices to show that there exists Ag > 0 such that any minimizer (A4,u) of F* for A > Ag
satisfies |A| = v.

Assume by contradiction that there exist a sequence \j, — oo and a sequence (Ap,up) € C
minimizing F*» such that |Ay| # v. Take any A9 € BV (9;{0,1}) with |A] = v. Then by
minimality, F (Ap, up) < FM(Ag,up) = F(Ag,up) for all large h and hence, by (2.8) and
(2.9)

n—1 n—1
sup P(Ay) < a = TA0U0) + b} . (2) +H" (99) (A1)
h>1 1

and
sup Ap||Ap| — v| < F(Ao, uo) + by H" 1 (%).
h>1

This implies |A| — v as h — oco. By compactness, there exists a finite perimeter set A C Q
and a not relabelled subsequence such that xa, — x4 a.e. in R”. In particular, |A| = v.
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Further we assume |Aj| < v for all h; the case |Ay| > v can be treated analogously. As in
the proof of [26, Theorem 1.1] given € € (0, 2¢,,), where €, > 0 will be chosen later, there exist
small r > 0 and =z, € Q such that B,(x) CC Q and
W™
on+2"

AN B, s(x)| < e, AN B, ()] >

For shortness, we suppose that x, = 0 we write B, := B,(z,). Since A4, — A in L'(R"), for
all large h,
A n A wpr™
|Ap N By ja| <er”, | hmBr|>W'
Let @ : R® — R” be the bi-Lipschitz map which takes B, into B, defined as
1-2"-1o)z, |z|<3,
O(x) = a:—I—a(l— %)x, 5<x<r,
x, lz| > r
for some o € (0, 5). Recall from [26, pp. 420-422] that the Jacobian J® of ® satisfies
JO(y) > 14+ Ci(n)o y € B\ By s,

for some Ci(n) > 0, and
JP(y) <14 2"no y € By.

Moreover, the tangential Jacobian J,_1T, of ® on the tangent space T, of 0" Aj, satisfies
Jn-1Ty <1+ (142"(n—1))o, x € B, NO"Ay. (A.2)
Set
En = ®(Ap), Uh 1= UhX a,\ B, T YOXE,NB,- (A.3)
Note that |Ey,| < v and E,AA;, C B,. Let us estimate

fAh(Ah,uh) — fkh(Eh,vh) :/ @(x,l/Ah)danl - / go(x,I/Eh)d’anl

BrNo* Ay, B-No*E}

—1—2/ go(ac,ujuh)dH"_l - 2/ gp(:v,ijh)d";’-["_l
BNy, BrNJy),

—|—/ Wz, Eup — Mp)dx — / W(z, Evp, — Mp)dx
BrNAp BrNEy,
+)\h<|Eh\ - \Ahy) =0+ L+ I+ I (A.4)
By the definition of v, and the nonnegativity of W, Is > 0 and
I, > —2/ go(x,ujvh)d’}-[”_l > —2bynw,r™ L.
0By
Moreover, by (A.2) and the area formula as well as from (2.8) and (A.1)
/ (P(:U7VEh)dHn_1 :/ @((D(y)vl/Ai)Jn—lTy dHn_l(y)
B,NO*Ey, B-No* Ay,

<2by(1 4 2"(n — 1)o)H" (B, N0*Ap) < 2b5(1 + (1 +2"(n — 1))0)a.
Moreover, by (2.8)

/ o(x,vg, )dH"™ < 200H" 1 (OB,) < 2nw,ber™ L,
OB,NO*Ey,
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thus,
I} > —2by(1+ (142" (n — 1))o)a — 2nw,byr™ 1.

Finally, repeating the same arguments of Step 4 in the proof of [26, Theorem 1.1], we obtain

Wn, "
Iy > Apor™ [C’l(n) ol Ci(n)e — (2" — 1)ne],
thus,
FM(Ap,up) — FM (Ep, o) >Apor™ [Cl (n) % ~Ci(n)e — (2" — 1)7@
—2by(1 + (1 +2"(n — 1))0)a — 2nw,bor™ 1. (A.5)
Now if we define
Cy(n)wn,

T 21 4 Cy(n) + (27 — D]’
then from (A.5) applied with € = ¢, we deduce
f)‘h (Ah, uh) — f)‘h (Eh, ’Uh) Z )\h06n7“n — C

for some C independent of h. Thus, F*(Ay,up) > FM(Ey,vy,) for all sufficiently large h,
which contradicts to the minimality of (A, up). O

Remark A.2. The same proof of Proposition A.1 works also with F, and Fp;; in Theorems
2.8 and 2.9. Indeed, in case Fp, for configuration (Ej,vy), given by (A.3), the equality (A.4)
is written as

]:;‘h(Ah,uh) — ]:;‘h(Eh,vh) :/ go(x,l/,ﬁlh)dﬂnf1 —/ cp(m,VEh)dHT“l

BrNo*Ay B.NO*E}

+2/ (p(:p,l/Juh)dH"_l — 2/ @(x,quh)dH"_l
BrNJu, ByNJy,

—|—/ Wy (x, Eup, — Mo)dz — / Wy(x, Evp, — My)dz
B,NA,, B,NE;,

(1Bl = 4n]) =T+ B+ I + .

The estimates of I, I and Iy are the same, and by (2.15) for I3 we have

I3 > / Wy(x, Eup, — Mp)dx > —/ | f|dz,
ApNB;

which is independent of h.

Similarly, in case of Fpi we define vy, in (A.3) as

Un = UhX Ap\B,

and the proof runs as in the case of F,.

A.2. Some properties of GSBD-functions.

Lemma A.3. Let U be an open set and A C BV (U;{0,1}). Assume that u,v € GSBD?(U).
Then uxa + vxip\a € GSBD?*(U).

Proof. Recall that by [18, Remark 9.3] if Since w € GSBD?(U), then the Radon measure

pw(B) == H"Y BN Jy) +/ |Ew|dz  for all Borel sets B C U,
B
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can be used in [18, Definition 4.1]. Thus, ux 4 +vxn 4 belongs to GSBD since, as A has finite
perimeter in U, the measure

A(B) = pu(ANB) + puy(B\ A) + H" 1 (BN 9*A) for all Borel sets B C U

can be used in Definition 4.1 of [18]. Since Euxa + vXxina = Euxa + EvX\ a4, it follows that
uxA +vxXu\A € GSBD?(U). O

Note that this property does not hold for GS BV -functions, because the condition uy 4 +
vx\a € GSBV (U) requires some regularity of the traces of u and v along U N 9*A. From

Lemma A.3 we get GSBD?*(Int(QU SUYX)) = GSBD?*(QU S).

Lemma A.4. Let n > 2 and D C R™ be a connected bounded Lipschitz open set and let
u € GSBD?*(D) be such that H" " 1(J,) = 0. Then u € HY (D) and there exists a rigid
displacement a such that

lu = all g1 (py < Cn,pllEull2(p)

for some constant C,, p > 0 depending only on n and D.

Proof. Recall that by the Poincaré-Korn inequality for any connected Lipschitz set U C R"
there exists Cp, y > 0 such that
v —all gy < Coull€vl L2 (A.6)

for any v € H'(U) and for some rigid displacement a : R" — R"™. Obviously, C,, i/ is indepen-
dent of translation, and let us show

Cpav < Cpu  for any A € (0,1]. (A7)
We may assume 0 € U. Note that (A.6) is equivalent to
Inin, lv = all gy < Coull€vl2wy, ©veH'(U). (A.8)
Fix any u € HY(AU) and let vy(x) := u(\z). Then vy € HY(U),

/m e =37 [ jutu) Py

/ V(@) Pde = A2" / Vu(y)Pdy, / Eoa(2)[2de = A2 / Euly)dy.
U U U AU

Then for any rigid displacement a(x) = Mz + b we have

and

lu = allF oy =A" o = axllZey + A2 Vor = M1 22y < A ?[lox = axllin ),
where ay(z) = AMz + b. Now taking a), satisfying (A.6) with v = vy, we have
l[u— a”%ﬂ(AU) D a)\H%Jl(U) < Cg,U/\n_QHgvAH%%U) =C;

and thus, from (A.8) we get (A.7).

Now we prove the lemma. By [37, Proposition A.3] u € H} (D) and hence, by (A.6) we
just need to show u € H'(D).

Step 1. First assume additionally that D is simply connected and 0 is in the interior of D.
Consider the sequnce

D;=(1-2"9D, ieN,
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of rescalings of D. Since D; CC D and u € HY(D;) by (A.6) and (A.7) there exists a rigid
displacement a; : R®™ — R” such that

v = aill (D) < Cn,pll€ullL2(D,)- (A.9)
Consider the sequence {a;}. Since Dy C D; C D, by (A.9)
la; — a1llgr(pyy < 1w — aillgrp,y + lu — a1llgrpyy < CopllEullL2(p)

Thus, {a;} is uniformly bounded in H'(D;). Since a; are linear, up to a subsequence, a; — ag
in HI{)C(R”) and a; — ag a.e. in R™ for some rigid displacement ag. Hence, by (A.9)

- L= i —a; L <1 —a; L <O, p li g _
lu = aoll g (py) j;gloo\lu ajllz1(py) < ;rgigop\\u ajllg1(p;) <Cn.p gigop!! ull2(p;)

Since Dj /D and Eu € L?(D), by the monotone convergence theorem
|u = aollg(p,) < Cn.plIEu] 2Dy

Letting ¢ — 400 in this inequality and using again the monotone convergence theorem we get
u—ag € H'(D), and thus, u € H(D).

Step 2. Now consider the general case. Since D is Lipschitz, for any x € 0D there exists
a cylinder R, such that D N R, is a subgraph of a Lipchitz function. In particular, D N R,
is Lipschitz and simply connected. For z € D let R, be largest cube centered at x and
contained in D. Then D C U, R» and hence, by the compactness of D, there exists finitely
many points 1, ..., x,, such that D C U;’;l R,,. Since R;; N D is simply connected, by Step
1, u € H'(R;; N D) and there exists a rigid displacement a; such that

luv = ajll (R, D) < Cn.Ro;nDlI€Ull L2(R, ,AD)-

Thus,

m m m
|UHH1 Z HUHJZLII(Dmsz) < 22 llu— aj”%fl(DﬂRIj) + 22 ”aj”?ﬂmezj) < +oo.
j=1 j=1 j=1

g
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